Keynote Lectures from CMESG Annual Meetings

1977 Queen’s University, Kingston, Ontario

  • A. J. COLEMAN: The objectives of mathematics education
  • C. GAULIN: Innovations in teacher education programmes
  • T. E. KIEREN: The state of research in mathematics education

1978 Queen’s University, Kingston, Ontario

  • G. R. RISING: The mathematician’s contribution to curriculum development
  • A. I. WEINZWEIG: The mathematician’s contribution to pedagogy

1979 Queen’s University, Kingston, Ontario

  • J. AGASSI: The Lakatosian revolution*
  • J. A. EASLEY: Formal and informal research methods and the cultural status of school mathematics*

1980 Université Laval, Québec, Québec

  • C. GATTEGNO: Reflections on forty years of thinking about the teaching of mathematics
  • D. HAWKINS: Understanding understanding mathematics

1981 University of Alberta, Edmonton, Alberta

  • K. IVERSON: Mathematics and computers
  • J. KILPATRICK: The reasonable ineffectiveness of research in mathematics education*

1982 Queen’s University, Kingston, Ontario

  • P. J. DAVIS: Towards a philosophy of computation*
  • G. VERGNAUD: Cognitive and developmental psychology and research in mathematics education*

1983 University of British Columbia, Vancouver, British Columbia

  • S. I. BROWN: The nature of problem generation and the mathematics curriculum*
  • P. J. HILTON: The nature of mathematics today and implications for mathematics teaching*

1984 University of Waterloo, Waterloo, Ontario

  • A. J. BISHOP: The social construction of meaning: A significant development for mathematics education?*
  • L. HENKIN: Linguistic aspects of mathematics and mathematics instruction

1985 Université Laval, Québec, Québec

  • H. BAUERSFELD: Contributions to a fundamental theory of mathematics learning and teaching
  • H. O. POLLAK: On the relation between the applications of mathematics and the teaching of mathematics

1986 Memorial University of Newfoundland, St. John’s, Newfoundland

  • R. FINNEY: Professional applications of undergraduate mathematics
  • A. H. SCHOENFELD: Confessions of an accidental theorist*

1987 Queen’s University, Kingston, Ontario

  • P. NESHER: Formulating instructional theory: The role of students’ misconceptions*
  • H. S. WILF: The calculator with a college education

1988 University of Manitoba, Winnipeg, Manitoba

  • C. KEITEL: Mathematics education and technology*
  • L. A. STEEN: All one system

1989 Brock University, St. Catharines, Ontario

  • N. BALACHEFF: Teaching mathematical proof: The relevance and complexity of a social approach
  • D. SCHATTSNEIDER: Geometry is alive and well!

1990 Simon Fraser University, Vancouver, British Columbia

  • U. D’AMBROSIO: Values in mathematics education*
  • A. SIERPINSKA: On understanding mathematics*

1991 University of New Brunswick, Fredericton, New Brunswick

  • J. J. KAPUT: Mathematics and technology: Multiple visions of multiple futures
  • C. LABORDE: Approches théoriques et méthodologiques des recherches françaises en didactique des mathématiques

1992 ICME-7, Université Laval, Quebec, Quebec

1993 York University, Toronto, Ontario

  • G.G. JOSEPH: What is a square root? A study of geometrical representation in different mathematical traditions
  • J CONFREY: Forging a revised theory of intellectual development Piaget, Vygotsky and beyond*

1994 University of Regina, Regina, Saskatchewan

  • A. SFARD: Understanding = Doing + Seeing ?
  • K. DEVLIN: Mathematics for the twenty-first century

1995 University of Western Ontario, London, Ontario

  • M. ARTIGUE: The role of epistemological analysis in a didactic approach to the phenomenon of mathematics learning and teaching
  • K. MILLET: Teaching and making certain it counts

1996 Mount Saint Vincent University, Halifax, Nova Scotia

  • C. HOYLES: Beyond the classroom: The curriculum as a key factor in students’ approaches to proof
  • D. HENDERSON: Alive mathematical reasoning

1997 Lakehead University, Thunder Bay, Ontario

  • R. BORASI: What does it really mean to teach mathematics through inquiry?
  • P. TAYLOR: The High School mathematics curriculum
  • T. E. KIEREN: Triple embodiment: Studies of mathematical understanding-in-inter-action in my work and in the work of CMESG/GCEDM

1998 University of British Columbia, Vancouver, British Columbia

  • J. MASON: La structure de l’attention dans l’enseignement des mathématiques / Structure of attention in teaching mathematics
  • K. HEINRICH: Communicating mathematics or mathematical storytelling

1999 Brock University, St. Catharines, Ontario

  • J. ALDER: Learning to understand mathematics teacher development and change: Researching resource availability and use in the context of formalised INSET in South Africa
  • B. BARTON: An archaeology of mathematical concepts: Sifting languages for mathematical meanings
  • J. BORWEIN: The impact of technology on the doing of mathematics
  • W. LANGFORD: Industrial mathematics for the 21st century
  • W. WHITELEY: The decline and rise of geometry in 20th century North America

2000 Université du Québec à Montréal, Montréal, Québec

  • G. LABELLE: Manipulating combinatorial structures
  • M. BARTOLINI BUSSI: The theoretical dimension of mathematics: A challenge for didacticians

2001 University of Alberta, Edmonton, Alberta

  • O. SKOVSMOSE: Mathematical learning and critique
  • C. ROUSSEAU: Mathematics, a living discipline within science and technology

2002 Queen’s University, Kingston, Ontario

  • D. BALL & H. BASS: Toward a practice-based theory of mathematical knowledge for
  • J. BORWEIN: The experimental mathematician: The pleasure of discovery and the role of proof

2003 Acadia University, Wolfville, Nova Scotia

  • T. ARCHIBALD: Using history of mathematics in the classroom: Prospects and problems
  • A. SIERPINSKA: Mathematics education: Teleological considerations

2004 Université Laval, Quebec City, Quebec

  • C. MARGOLINAS: La situation du professeur et les connaissances en jeu au cours de l’activité mathématique en class
  • N. BOULEAU: La personnalité d’Evariste Galois : le contexte psychologique d’un goût prononcé pour les mathématiques abstraites

2005 University of Ottawa, Ottawa, Ontario

  • S. LERMAN: Learning mathematics as developing identity in the classroom
  • J. E. TAYLOR: Formative influences

2006 University of Calgary, Calgary, Alberta

  • B. JAWORSKI: Developmental research in mathematics teaching and learning: developing learning communities based on inquiry and design
  • E. DOOLITTLE: Mathematics as medicine

2007 University of New Brunswick, Fredericton, New Brunswick

  • R. NÚÑEZ: Understanding abstraction in mathematics education: Meaning, language, gesture, and the human brain
  • T. C. STEVENS: Mathematics departments, new faculty, and the future of collegiate mathematics

2008 Université de Sherbrooke, Sherbrooke, Quebec

  • A. DJEBBAR:  Art, culture et mathematiques en pays d’Islam (IXe-XVe s.)
  • A. WATSON: Adolescent learning and secondary mathematics

2009 York University, Toronto, Ontario

  • G. DE VRIES: Mathematical biology: A case study in interdisciplinarity
  • M. BORBA: Humans-with-media and the production of mathematical knowledge in online environments

2010 Simon Fraser University, Burnaby, British Columbia

  • W. BYERS: Ambiguity and mathematical thinking
  • M. CIVIL: Learning from and with parents: resources for equity in mathematics education
  • B. HODGSON: Collaboration et échanges internationaux en éduction mathématique dans le cadre de la CIEM : regards selon une perspective canadienne / ICMI as a space for international collaboration and exchange in mathematics education: Some views from a Canadian perspective
  • S. DAWSON: My journey across, through, over, and around academia: “…a path laid while walking…”

2011 Memorial University of Newfoundland, St. John’s, Newfoundland

  • C. K. PALMER: Pattern composition: Beyond the basics
  • P. TSAMER & D. TIROSH: The pair-dialogue approach in mathematics teacher education

2012 Université Laval, Québec, Québec

  • P. GERDES: Old and new mathematical ideas from Africa: Challenges for reflection
  • M. WALSHAW: Towards an understanding of ethical practical action in mathematics education: Insights from contemporary inquiries
  • W. HIGGINSON: Cooda, wooda, didda, shooda: Time series reflections on CMESG/GCEDM

2013 Brock University, St. Catharines, Ontario

  • R. LEIKIN: On the relationships between mathematical creativity, excellence and giftedness
  • B. RALPH: Are we teaching roman numerals in a digital age?
  • E. MULLER: Through a CMESG looking glass

2014 University of Alberta, Edmonton, Alberta

  • D. HEWITT: The economic use of time and effort in the teaching and
    learning of mathematics
  • N. NIGAM: Is there really good mathematics in industry? And do we
    want our students to know this?
  • T. KIEREN: Mathematics knowing and inter-action

2015 Université de Moncton, Moncton, New Brunswick

  • RODITI: Diversity, Variability and Commonalities among Teaching Practices
  • H. HALLET: Connections: Mathematical, Interdisciplinary, Personal, and Electronic

2016 Queen’s University, Kingston, Ontario

  • BERNARD R. HODGSON: Apport des mathématiciens à la formation des enseignants du primaire : regards sur le « modèle Laval »
  • CAROLYN KIERAN: Task Design in Mathematics Education: Frameworks and Exemplars
  • ERIC MULLER: A Third Pillar of Scientific Inquiry of Complex Systems—Some Implications for Mathematics Education in Canada
  • PETER TAYLOR: Structure—An Allegory

2017 McGill University, Montréal, Québec

  • YVAN SAINT-AUBIN: The Most Unglamorous Job of All: Writing Mathematics Exercises
  • ANNIE SELDEN: 40+ Years of Teaching and Thinking about University
    Mathematics Students, Proofs, and Proving
  • JOEL HILLEL: Nice, Nice, Very Nice – So Many CMESG People in the Same
    Device [with apologies to Kurt Vonnegut Jr. in the Cat’s Cradle]


* These lectures, some in a revised form, were subsequently published in the journal, for the learning of mathematics.