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INTRODUCTION 

Olive Chapman ï President, CMESG/GCEDM  

University of Calgary 

The 38th annual meeting of the Canadian Mathematics Education Study Group/Groupe 

Canadien dô®tude en didactique des math®matiques [CMESG/GCEDM 2014] was another 

memorable learning and social event!  

Our hosts at the University of Alberta made sure we were well fed, entertained, and 

accommodated. The excursion to Fort Edmonton Park (which allowed some of us to also 

enjoy a nature hike to the venue) with dinner at the rustic Eggeôs Barn and the conference 

dinner at the Faculty Club were beyond my expectations. Thanks to our colleagues, faculty 

members, Drs. Yvette dôEntremont, Florence Glanfield, Julie Long, Lynn McGarvey, and 

Elaine Simmt for their thoughtful planning and hosting of the meeting. Also thanks to the 

other members of the organizing team for their valuable contribution to the planning and 

smooth running of the meeting: the sessional instructors, Robert Bechtel, Janelle McFeetors, 

and Carrie Watt and the undergraduate and graduate students, Shelley Barton, Priscila Dias 

Correa, Trina Ertman, Behnaz Herbst, Dakota Jesse, Lixin Luo, Billie Dawn McDonald, 

Marina Spreen, Jayne Powell, and Christine Wiebe Buchanan. Finally thanks for the financial 

support of the Faculty of Education conference fund, the Faculty of Education Centre for 

Mathematics Science Technology Education, the Dean of the Faculty of Education, the 

Departments of Elementary and Secondary Education ï Faculty of Education, and the Faculté 

St Jean. 

I also acknowledge the CMESG/GCEDM executive for organizing another stimulating 

program with topics relevant to our membership of mathematicians, mathematics teacher 

educators and mathematics education researchers. On behalf of the executive, thanks to the 

two plenary speakers, Dr. Dave Hewitt for engaging us in the economic use of time and effort 

in mathematics classrooms and Dr. Nilima Nigam for the meaningful examples of 

mathematical problem-solving as applied to real problems from industry and the non-profit 

sectors. Thanks to Dr. Tom Kieren whose Elder Talk offered insights of the various ways 

interaction affects mathematics knowing and of mathematics knowing-in-action in 

mathematics classrooms. Thanks also to the leaders of the five Working Groups; the 

presenters of the three Topic Sessions; the ten new PhDs; the Ad Hoc and Math Gallery Walk 

presenters; the presenters of the Panel for tackling the issue of what we have not been hearing 

about PISA in the reporting and interpretation of the results for Canada; and all the 

participants for making the 2014 meeting a stimulating and worthwhile experience.  

This ñProceedingsò of the meeting offers the opportunity for readers to learn about some of 

the mathematics education research and interests of our community. The variety of topics 

covered from the early grades to post-secondary mathematics education will definitely 

provide a meaningful way for participants to further reflect on and build on their experiences 

at the meeting and for others to share in and be inspired by the work of the mathematics 

education community in Canada. 
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Down from Grande Prairie 

a contingent of thirteen 

descended upon 

 

CMESG (GCEDM) 

meeting here in Edmonton 

changing the climate 

 

by being present 

thus enriching discussion. 

Transforming the place 

 

in multiple ways 

affecting interactions 

expanding circles 

 

changing perceptions 

nudging boundaries moving 

forth inclusiveness. 

 

More teachers welcomed 

whether elementary 

or secondary. 

 

Adding dimensions, 

understandings, perspectives 

widening the lens. 

 

Viewing with fresh eyes. 

Ears hearing differently. 

Voicing new questions. 
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gratitude today for your 

participation. 
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THE ECONOMIC USE OF TIME AND EFFORT IN THE TEACHING 
AND LEARNING OF MATHEMATICS 

Dave Hewitt 

Loughborough University, (previously) University of Birmingham 

United Kingdom 

INTRODUCTION 

I start with two statements: 

1. The learning of very young children before they enter school is impressive. 

2. The learning of those same children, later on when they are in secondary school, is less 

impressive. 

With respect to the first, newly born children cannot walk, speak in their first language, 

control their bowel movements, feed themselves, throw and catch things,é, etc. The list goes 

on. 

For the second, I look at the mathematics curriculum at the end of primary school and 

compare this with the end of high school and the difference does not seem so profound. Of 

course, there are many other subjects as well, but overall I find myself far more impressed 

with the learning which takes place in a childôs first few years (see Hewitt, 2009, for how 

observation of this has helped me reflect upon my practice). 

I also note that: 

1. Children are not taught formally how to do the things they achieve in their pre-school 

years. 

2. The students in secondary school are formally taught in their subject lessons in school. 

These statements raise the issue of how we are asking students to work in school and how this 

relates to the way they worked as younger children before entering school. 

During my talk I showed two videos, each available on YouTube, which use Cuisenaire rods 

to help teach the addition of fractions. The first is a clip1 which lasts for 5 minutes 48 seconds 

where there is a lot of verbal explanation. It uses the rods to explain how to work out  . 

The second2 lasts for 1 minute 32 seconds and has no spoken words as it works on  . 

What explanation there is comes mainly from the way the rods are arranged and some 

                                                 
1 http://www.youtube.com/watch?v=QuJayqMsXE0 [Accessed 3rd November 2014] 
2 http://www.youtube.com/watch?v=1_E_SrpyPvU&list=UUOE7NqEwBhF-bhN7Sh77_Ag [Accessed 

3rd November 2014] 

http://www.youtube.com/watch?v=QuJayqMsXE0
http://www.youtube.com/watch?v=1_E_SrpyPvU&list=UUOE7NqEwBhF-bhN7Sh77_Ag
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pointing gestures. The dynamics in what might be learned through watching each of these is 

complex but an oversimplified impression I have is that with the first I am listening to 

explanations and with the second I am trying to generate explanations. These are examples of 

two quite different ways in which a learner is being asked to work. There is a temptation here 

to offer a constructivist perspective, however, in both cases students have to construct their 

own knowledge, from a radial constructivist viewpoint (von Glasersfeld, 1987). So, for me the 

language of construction does not help me to work on the difference I experience when 

viewing these two videos. Instead I turn to what Gattegno (1971) calls powers of the mind. 

For each power of the mind I will offer an activity to try to help a reader gain a sense of that 

power from within. Mason (1987) makes reference to the Rig Veda which talks of two birds, 

one eating the sweet fruit whilst the other looks on without eating. In this spirit, I ask for you 

to engage in each activity, and to also observe yourself whilst doing so. There are nine powers 

I will introduce within three separate headings: Guiding; Working with ómaterialô; and 

Holding information. 

POWERS OF THE MIND 

I would like to start by asking you to remember the word pimolitel. 

The powers of the mind are exactly that. This means, since we all have minds, that we all 

have these powers of the mind. As such, there is nothing profound about these activities. They 

are designed just to help get in touch with those things which are ordinary and which we use 

moment by moment, every day of our lives. 

GUIDING 

 

 

 

 

 

 

As you try to read the above note the effort which you are putting into your eyes and the 

straining involved. The wanting to read is an act of will, and the Will places energy to where it 

is needed in order to try to do what you want to do. As Dewey (1975, p. 8) remarked ñThe 

exercise of will is manifest in the direction of attentionò. Of course, you will only experience 

this presence of the Will if you really tried to read the above. Instead you may have taken one 

look and decided either not to engage in the activity or started engaging and then quickly 

decided that the text was too small and so not bothered trying to read it. In such circumstances 

your Will did not place energy into the act of reading and you are unlikely to have noticed 

anything. If you go back and try to read each line, then note how the energy placed in your 

sight increases. You may also note the moving of your head forwards. The Will is the first 

power of the mind and one which controls the placement of energy within your internal 

system. It is at the heart of everything we do. As such it is also an indicator of the nature of all 

the powers of the mind; they are within us, no matter what gender, race, socio-economic class 

Activity 1:  

Read the following and do as it says: 

¶ If you can read this please put your left hand on your head. 
 

¶ If you can read this the please use your right hand to point to your nose. 

 

¶ If you can read this then say ñI am sorry but I cannot read this.ò  

 

¶ If you can read this then try to whistle. 
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or disability we may have. It is an attribute of the mind (Gattegno, 1971) no matter what our 

circumstances. 

A consequence of the Will is that energy is channelled somewhere in particular and this 

results in some things being stressed whilst others, as a consequence, are ignored. Stressing 

and ignoring is the result of an act of the Will. 

 

 

 

 

 

 

As you bent down, there is an issue about how much you have to bend. This will be judged 

partly from a bodily ómemoryô of bending down many times in the past but also from the 

sense of touch you experience when your hand touches the floor. You may well have found 

that you bent down a certain amount but your hand had not touched the floor yet and so more 

bending was needed. Alternatively, you may have bent down too much and found that your 

hand óhitô the floor and so you came back up a little so that your body was in a position such 

that the height of your shoulder above the floor was just a little less than the length of your 

arm. So the amount of bending was informed by the sensations gained from your hand being 

in contact with the floor. Following this, you may have moved your hand over an area until 

you felt it touch something. You may then have moved your hand so that your fingertips 

could come in contact with the object and you had to decide whether this was the shape of 

something which might be a pen and judge whether it was the pen or the pencil. If that tactile 

sensation did not ófeel rightô you would have let go and continued moving your hand along 

the floor. It might have been the case that your body position needed to change as only a 

certain area of the floor could be covered from one body position and the pen may have 

bounced further away. Eventually, you felt that the touch sensations from your fingers were 

consistent with that of feeling a pen, rather than a pencil, and that was when you picked it up 

with a degree of confidence that you had the pen in your hand. 

During this activity, it is possible to gain a sense of how your body position changed so that 

the height of your shoulder ófelt rightô in order for you to explore an area of the floor with 

your hand. You then made use of the tactile sensations in your fingertips until those 

sensations were consistent with what you would expect from feeling a pen. Your actions are 

guided by what feels right and consistent with your expectations. This sense of truth is a 

power of the mind which guides your actions. 

So there are two powers of the mind which are concerned with guiding: 

¶ Will  

¶ A sense of truth 

 

 

Activity 2: 

Take out a pen and a pencil and hold them both in one hand. 

Close your eyes and keep them closed. 

Drop both the pen and the pencil so that they fall on the floor. 

With your eyes remaining closed, bend down and pick up the pen, not the pencil. 
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WORKING WITH óMATERIALô 

Let me first address the word ómaterialô (Hewitt, 1997). A common usage of this word relates 

to the substance with which we might work in order to create something. For example, 

curtains are made from material, or the materials with which a shelf is made might include 

wood, metal brackets and screws. Materials are the things with which we work in order to 

produce or make something. In a similar way, I can work with ideas in order to produce 

something, which may or may not be physical. For example, within the sphere of history there 

are scripts which contain written comments and ideas which a historian may use to argue for a 

particular perspective upon someoneôs life or about a series of events which happened in the 

past. Although the scripts may be physical, it is the ideas and information which come from 

the written texts which are the real ómaterialô with which such a historian may work. A 

mathematician works with certain ideas, theorems and images in order to create a line or 

argument which can result in a proof. The material with which they work are the awarnesses 

they have of certain mathematical properties and relationships. A politician may work with 

statistical information on a particular issue and data on popular opinion about that issue, in 

order to offer an argument for why a particular policy should be adopted. All of these use 

ideas, information, images from our senses, etc. We work with those things in order to make 

our actions and decisions. It is these things with which we work, that I describe as material. 

 

 

 

 

 

 

I have provided some material within the box above and you have provided other material 

from your own knowledge and awareness. However, you have not been told how to use that 

material in order to succeed with the challenge. You have tried this and tried that, perhaps 

finding that a little adjustment needs to be made to your initial ideas. You may have used an 

awareness that certain numbers might be helpful within your calculation, such as cube 

numbers, and you have made decisions about what to try out through the knowledge and 

awareness you have and worked within the constraints stated within the task. You had to 

come up with numbers and ideas of how you might get -12 whilst meeting the constraints 

stated. Another power of the mind is creativity. I am not talking here about exceptional 

creative talent, but about the everyday ability to generate ideas and ways to proceed with the 

material at hand given certain constraints. Indeed, the constraints are part of the material with 

which one works. As such constraints are a necessary aspect of creativity. Whether someone 

else gets the same expression or not does not change the fact that someone has been creative 

in order to produce their expression. Creativity, in this sense, has nothing to do with the 

uniqueness of the final product. The creation by two people of the ósameô final expression, 

will inevitably have involved unique ways in which each person used their creativity to arrive 

at what looks the same in terms of an expression on paper. The final articulation can never 

reflect all that has been involved in producing it. 

 

Activity 3: 

Write down a ósumô equalling -12 which involves all of these operations: 

¶ Add 

¶ Subtract 

¶ Square 

¶ Cube root 
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This image is one for which there is no common name. As such it is difficult to express the 

whole in words. Instead it is likely that you are driven to attend to the parts which make the 

whole. There are many things which can be noticed, of which a few are: 

¶ There are squares/triangles. 

¶ There is a triangle in the centreé or is it a square at the centre? 

¶ If I move out horizontally from the centre, then I see a collection of one, three and 

then five triangles. 

¶ I see squares with a triangle on each side (but not every square has this). 

¶ I see a triangle with a square on each side (are there more like this?). 

Another power of the mind is that of extraction. We can extract parts from a whole. Indeed to 

do otherwise would make our lives almost impossible. There is so much potential within our 

field of vision alone that to act in any way will require stressing part of what is available. 

Those people who suffer from a little deafness and wear a hearing aid talk about finding it 

difficult to hear in crowded, noisy, situations. It is not because they cannot hear; it is because 

the hearing aid magnifies all the sounds and is not discriminating. What we use in hearing 

something is not only the volume level but the ability to stress one particular set of sounds 

over all the sound waves which enter our ears. Indeed, there are times when you might not 

have heard something because your attention was elsewhere. The sound may well have been 

loud enough, it was because your Will directed your attention elsewhere. To hear is not about 

sounds being loud enough but about an ability to stress and ignore. 

To attend to something has a consequence that some things are stressed whilst others are 

ignored. This can result in us becoming aware of something in particular. This is the power of 

extraction and something which we all possess. We can, do, and must, extract parts from the 

whole. 

 

 

 

 

Activity 4: 

Look at this and say something that you can see. 

 

Activity 5: 

(a) Say the following out loud: 1, 2, 3, 4, 5, 6, 7, 8, 9 

(b) What does this sign mean? 
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The symbols 1, 2, 3, etc. are just squiggles on paper. You have associated a sound with each 

particular squiggle. There is nothing within the squiggle ó2ô which means you have to say two. 

Indeed, you may well have said deux. For someone new to this squiggle, there is nothing 

about it which someone can ówork outô as to how the squiggle is to be said. It is about 

associating a sound with a squiggle. Likewise the sign is representing a gesture of a finger 

being placed vertically by the lips, a gesture which we associate with being quiet or not 

talking. However, there is no reason why such a gesture must mean this. We make 

associations with signs happening at the same time as the context in which they appear. 

Association is another power of the mind. We have been exposed to two pieces of material ï 

the squiggle ó2ô and the word ótwoô ï and we are able to associate one with the other. 

The next activity I offer is slightly different to the one I used in the talk. This is because the 

original activity made use of time in the way which cannot be done within just this text. 

 

 

 

 

 

 

 

 

 

I have not told you any rules behind which symbol appears within which shapes, except 

saying that it will be a thumb or a face. Instead I offer examples and a question which implies 

that there are particular symbols which should be in the remaining three shapes. You are 

likely to have looked at what is the same and what is different in the given shapes, such as 

there are a number of squares, there are different shadings and some have a bold boundary 

whilst others do not. Each of these awarenesses come from extracting some things from the 

whole. I suggest you began to see whether you can associate a face, for example, with some 

attributes of the shapes. When is there a face and when is there a thumb? You also need to 

consider the range of different possibilities, there are thumbs and faces, but what kind of 

thumb and what kind of face? Some are larger than others, some have thumb up and a smiley 

face, and others have thumb down and a sad face. Within all these variations I suggest that 

you were looking for what attributes within the shapes are associated with which of these 

variations. A consistent association can then lead to a sense of spotting rules and from there 

you might apply those rules to the three remaining shapes. Abstraction of patterns and rules 

from examples is another power of the mind and, as with all powers of the mind, is something 

which we use on a daily basis. 

We have not run our lives by only those things which we are told to do. I can say this as it is 

not possible for other people to tell us everything that is involved in speaking our first 

language or knowing how to manage our way around a city we have not visited before. The 

shear variety of what is involved in such activities means that there is simply too much for us 

Activity 6: What sort of thumb or face should be in each of the three remaining 

shapes? 

 

 D 

J 

J 

L C 
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to be told everything. The amount we are told is minute in comparison to the amount we have 

worked out for ourselves. In our first language, we looked for patterns and rules in how the 

language seemed to behave and we applied those patterns to similar situations. An example in 

English is how verbs tend to change when shifting from present to past tense. Instead of 

having to be told how each separate verb behaves, we apply an observed pattern of adding ïed 

on the end. The evidence is seen every day with children saying sentences such as ñI goed to 

the park yesterday.ò They have not been told to say this and so it comes from their ability to 

abstract a rule from the examples they have heard and apply the perceived rule with other 

verbs (Ginsburg, 1977). Most often, this results in them saying the verbs correctly, but they 

then learn that there are exceptions, and these do have to be learned on a more individual 

basis. Abstraction allows us to deal with new situations based upon what we have noticed and 

learned from the experiences we have had up to this point in time. 

The powers of the mind which relate to working with material are: 

¶ Creativity 

¶ Extraction 

¶ Association 

¶ Abstraction 

These are ways in which we work with material to select, link and take forward what we have 

noticed, into new situations. 

HOLDING INFORMATION 

As well as working with material, we also need to retain information which is of significance 

to us. 

 

 

 

 

I have asked people to do some something equivalent to this on many occasions. On each 

occasion, only about half the people managed to write down the word correctly spelt. This is 

just one word and, within a relatively short space of time, so many failed to remember it 

correctly. We all have the power of memory, but sometimes as educators, we do not 

acknowledge the inefficiency of this power. I do not know whether you, the reader, did try to 

remember this word when I asked you to do so several pages back. If so, I suggest that you 

spent a certain amount of energy trying to memorise it at the time of reading. You may have 

used association to try to link it with another word or words that you knew already. Those that 

were successful at remembering the word reported shifting attention back to that word on 

several occasions whilst engaged in the rest of the tasks and talk (or text, in the case of you 

reading this now). 

Remembering and forgetting exist alongside each other. To remember successfully requires 

significant effort, both at the time of being asked to memorise, and also at intervals thereafter. 

That is why practice has played such a significant role in many classrooms, because it is 

memory which is called upon so often. There are times when we need to memorise but as 

Activity 7: 

Several pages ago, I asked you to remember a word. 

Without looking back, say that word and write it down. 
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Gattegno (1986, p.126) said ñmemory should be relegated to a limited area in education ï that 

it should be used only for that which we cannot inventò. 

The next activity is again slightly adapted from that which I gave in the talk. 

 

 

 

 

 

When you visited that place you did not try to memorise the surroundings just in case you 

were going to be asked about it when you came to read this article. You have not spent your 

time in between time to check whether you still remembered it. Indeed, this is something quite 

different to memorisation. Here, you put no effort at all whilst you were at that particular 

place and you have not needed to do so since either. It is only now, when asked to recall some 

things about the surroundings, that you have used a little energy to do so. Another way we 

hold information is through imagery and this is very different in nature to memory. 

 

 

 

 

 

 

 

Whether you were successful with this is not important. I am about to ask you a question but 

before doing so I would like you to put any free hand you have (you can continue to hold this 

book with one or both hands) on your lap, palm down. Now, without moving your hands, 

what provided the twist of the pen: fingers, wrist, or something else? 

Without the freedom to repeat the physical movements, you are likely to use your imagery in 

trying to answer this question. What is of significance is that I suggest you were not able to 

answer this question immediately without recall to some imagery to try to run through doing 

this movement again. Yet, at the time of doing the activity, I conjecture that you did manage 

to make the pen twist and so within you, at some level, you knew what to do. Yet now, when 

asked about it, the answer is not immediately available despite you doing this only a matter of 

seconds previously. We hold a lot of information at a deeper level than that of which we are 

consciously aware. Here the information is of a functional nature, it is available as and when 

we need it with no or little cost in terms of energy. Knowing how to walk, or scratching an 

itch, are other examples. We have not always been able to do these things, so they are learned 

activities. I suggest that there was a time in our lives when we were very conscious of what 

was involved with such things. However, now we are so skilled that we often do not even 

Activity 8: 

Consider somewhere you have visited in the last month which is not a place you 

spend a lot of time on a frequent basis. 

Imagine that place now and say out loud two things about the surroundings there. 

Activity 9: 

¶ Get a pen or pencil. 

¶ Hold out your hand, palm upwards and place the pen so that the nib is 

pointing away from you. 

¶ Throw it from one hand to another so that it rotates 360º with nib of the pen 

ending up pointing in the same direction as it did at the start. 

¶ Do this again, going back to the original hand. 

¶ Continue. 

¶ Now stop. Do not throw it again. 



Dave Hewitt · Economic Use of Time and Effort 

11 

notice what we are doing. The same can be said about counting. Watching young children 

learn the complexities of counting (and counting is a complex activity) can help us realise 

how much we can do this with such little attention; so much so that we might find it difficult 

to answer the question ñhow did you manage to count those objects?ò other than to say ñI just 

didò. The ability to make some things seemingly automatic frees us to give our attention to 

new things and learn more. Wood (1988) expressed the significance of automaticity:  

developing óautomaticityô means that the child no longer has to consciously attend 

to the practised elements of her task activity. óAutomatedô actions may be performed 

without the need for constant monitoring or awareness. As some aspect of the 

developing skill is automated, the learner is left free to pay attention to some other 

aspect of the task at hand. (p. 175) 

So, the powers of the mind are: 

Guiding: 

¶ Will  

¶ A sense of truth 

Working with material: 

¶ Creativity 

¶ Extraction 

¶ Association 

¶ Abstraction 

Holding information: 

¶ Memory 

¶ Imagery 

¶ Automaticity 

It seems to me that common practice in many mathematics classrooms means that of all the 

powers which can be called upon, it is memory which is called upon most. Yet, as 

demonstrated by my little activity, it is one which requires significant energy and is often 

accompanied with forgetting. If learning is then based upon memory, and something has been 

forgotten, then it is hard for that to become known again. So, the task for us is to consider 

ways in which we can call upon more of the available powers and restrict memory to its 

rightful place. To do so I will consider four frameworks: 

¶ Arbitrary and necessary 

¶ Practise through progress 

¶ Subordination 

¶ Direct Access 

ARBITRARY AND NECESSARY 

I have discussed this framework in greater detail elsewhere (Hewitt, 1999). The basis of the 

framework is one of viewing each part of the mathematics curriculum and asking the 

question, ñIs it possible for someone to come to know this for sure without being informed of 

it?ò If the answer is no, then that aspect is arbitrary; if yes, then it is necessary. For example, 

what is the name of the shape below? 
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I cannot stare at this shape and know for sure it is called a square. If I am in a French 

speaking area then it is not called a square, it is called un carré. In other languages it has a 

different name. There is nothing about the shape which means a particular collection of 

sounds, in the form of a word, must be associated with it. Consequently, if I am trying to learn 

the name of this shape then I will not know for sure what it is called within a certain language 

unless I am informed. Of course, I can also invent a name. However, if we all did this then we 

would find that we are unlikely to have come to the same decision. So, for agreement to 

happen, for new learners to use the same names as other people do, then they need to be 

informed. So names are arbitrary and I use arbitrary as this describes how it might feel for a 

learner. As a learner might ask, why is it called that? A question for which there is no 

mathematical reason. 

As well as names, conventions are also arbitrary, in the sense that I am using this word. Why 

is the x-coordinate written before the y-coordinate when a position on a graph is described? 

Why is there a comma in-between the two? And why are brackets involved? I class all 

socially agreed conventions as arbitrary. No matter how often I might turn round or stare at a 

circle, I cannot know for sure that there are 360 degrees in whole turn. Why 360? Why not 

100? There are historical reasons, as the Babylonians were working in base 60 and there were 

mathematical conveniences with having a number with many factors. However, this is still 

about choice; there is nothing that means a learner would know it has to be 360 and could not 

be anything else. Indeed, for other mathematical reasons, radians are preferred. Even though 

there are reasons, it is still not necessary, it is only convenient. Thus I still class this as an 

arbitrary aspect of the curriculum. 

Not everything on the curriculum is arbitrary. For example, in Euclidean geometry all 

triangles tessellate. This is not a matter of choice, it is something which can be worked out 

and argued that it must be true. Given the conventions (arbitrary) regarding names, symbols 

and number system (base 10), then 3+4=7. This is something which everyone will agree upon. 

It is the necessary where mathematics lies. It is here where things must be how they are. It is 

not a matter of choice, instead it is a matter of justification and proof. It is with the necessary 

that the question why? is appropriate, unlike with the arbitrary. 

The arbitrary is about acceptance and memory as there is no mathematical reason why 

something is how it is. Without reasons, a learner is left only with memory. The necessary is 

about questioning and awareness as here there are always reasons. The fact that there are 

reasons means that a learner can use and educate their awareness to come to know these 

things. This dichotomy has significant implications for the teacher as well as a learner. To 

teach something which is arbitrary involves assisting memory, whereas I suggest teaching 

something which is necessary involves the very different task of educating awareness.  

With respect to the arbitrary, I know as a teacher that I need to inform my students of what is 

arbitrary. More detail can be found elsewhere (Hewitt, 2001) but there are many ways in 

which I can go about telling someone something. This is, in itself, something worthy of 

careful consideration. The when and how to tell is important. I will offer one example here 

relating to the order in which a coordinate is written. One way is to say that you write the x-

coordinate first and then the y-coordinate and leave it there. A minor addition would make use 

of the fact that x comes before y in the alphabet to help them know which comes first. This 

small addition does, at least, try to make use of the power of association in their attempt to 

memorise this. 

Practise of the arbitrary is important since it is about memorisation, and students need to be 

helped in their attempts to memorise. One example of a way to practise the convention of co-

ordinates is for two pairs of students to play a game on a coordinate grid. The game is 
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secondary to the way in which the game is played. The rules of playing the game involve each 

pair having one person who decides which coordinate they should go for next (in whatever 

game it is they are playing) and saying out loud (or writing down) the coordinate, whilst the 

other person has to listen to (or read) this and put a cross at that coordinate (the first person 

not being allowed to say ñno not thereò, etc.). This means that each person is practising the 

convention of which comes first, one saying/writing and the other listening/reading. The game 

itself could be one of many. An example would be taking turns between the teams to put a 

cross in their colour on a coordinate grid in order to have four crosses of their colour which 

would lie on the corners of a square. One point for each square created. The size of the grid 

could be decided and whether it involved all positive numbers in the coordinates or a mix of 

positive and negative numbers. 

The arbitrary is the rightful place to call upon memory and a teacherôs role is to acknowledge 

this and assist students in their task of memorising. 

The necessary can be known without students being informed. As such, I suggest there is a 

very different job to be done. Figure 1 represents two aspects to consider, the awareness of 

students and the desired mathematical property or relationship which you might want them to 

come to know. 

 

Figure 1 

The first challenge of a teacher is to design or choose and activity which can (a) be 

meaningfully engaged with the awareness the students already possess and (b) engagement 

with that activity can lead to an awareness of the desired properties or relationships (see 

Figure 2). 

 

Figure 2 

However, the choice of the activity is not the end of a teacherôs role, of course. What is 

important is the way in which that teacher works with the students whilst the students are 

working on the activity. This may involve a series of questions which help challenge and 

focus students on particular aspects whilst they are working (see Figure 3). 
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Figure 3 

An example of such an activity might be where students are given the information that 100% 

is $360 and asked what other percentages they could work out. A gradual development of 

something like Figure 4 can come from students starting to say they can work out 50% by 

halving, then 25% by halving that; 10% is often stated quite quickly and this can lead to other 

percentages, such as 5% and 20%. Then someone might realise that if they know 10% and 

20%, they can also work out 30%. This can go on for some time until 1% is known and 

someone realises that they can then find any percentage at all from the 1%. This can lead to an 

awareness of how any percentage can be found. 

 

Figure 4 

Such an activity does not call upon students being told a rule, which they then have to 

memorise. Instead they have to use a variety of powers, such as will, a sense of truth, 

creativity and abstraction. Memory is kept in its rightful place and not called upon explicitly. 
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PRACTICE THROUGH PROGRESS 

I will only briefly discuss this aspect. However, the nature of practice is important for 

successful learning. Firstly, I will make use of the two topics mentioned above: coordinates 

and percentages. The suggested activity above for practising the convention of saying and 

writing coordinates gives the possibility of becoming aware of something new. It is 

sometimes a while into such an activity before one team realises that squares do not have to 

have horizontal or vertical sides. In fact, going for such obvious placements of your teamôs 

crosses are more likely to be thwarted by the other team as they are more obvious. 

Consequently, students are coming to learn about different orientations of a square and how 

they can be sure whether any four particular crosses of the same colour are positioned at the 

corners of a ósquiffyô square. The practice of coordinate conventions does not just result on 

students standing still. Instead they can continue to progress in terms of educating their 

awareness whilst practising a particular convention. This contracts to a traditional form of 

practice in the form of an exercise, where they have to plot given coordinates, or write down 

the coordinates of given points (and are never doing anything with those answers). In such a 

traditional exercise the best that can be hoped for is that someone does not ógo backwardsô. 

With respect to percentages, rather than doing a traditional exercise with questions such as 

find 40% of 260, a challenge such as that in Figure 5 will have students carrying out a lot of 

practice of find percentages but also this practice is carried out with a purpose in order to 

succeed with the given challenge. Finding more examples which have one or two steps to 

make a 50% increase overall can result in educating their awareness in how percentages 

behave and that attention needs to be placed on what a percentage is of, as much as the 

numerical value of the percentage. 

 

Figure 5 

 

SUBORDINATION 

Subordination has some of the features of practise through progress but with significant shifts 

in some of the components. With practise through progress, something has already been 

learned and it is a matter of finding an activity which practises what is already known whilst 
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simultaneously allowing opportunities to progress in other areas. Subordination turns this on 

its head, by having the activity clearly understood whilst the thing which the activity practises 

is not known to the student. The activity calls upon the practice of something of which the 

students do not yet know. So the learning takes place with what is being practised rather than 

what comes out from the activity itself. So, as a teacher I will appear, as far as the students are 

concerned, to be interested in the outcome of the activity. However, my real agenda is not that 

at all, but whether what is required to be practised by the activity has been acquired or not. 

The example I offer is based upon the computer program Grid Algebra 3. This is based upon a 

grid of numbers in multiplication tables (see Figure 6). 

There are many activities and features of the software, but here I concentrate mainly on just 

one. Initially students become familiar with the structure of the grid through several activities 

built into the software. Then it is revealed that any number can be picked up and dragged to a 

cell either horizontally or vertically (see Figure 7). When such movements are made, the 

software shows the notational consequence of such a movement. So, the number 3 is dragged 

one cell to the right (addition), and this results in 3+1 appearing in the cell which previous had 

shown 4. The 3+1 then becomes an object in its own right and can be dragged down (from the 

one times table down to the six times table: multiplication) to show 6(3+1), which in turn is 

dragged to the left (subtraction) to show 6(3+1)-12. The ópeeled back cornersô in certain cells 

indicate that there is more than one expression in those cells. For example, the number 4 is 

still in the cell which now has 3+1 showing and can be seen again by clicking on the peeled 

back corner. 

 

Figure 6 

                                                 
3 Grid Algebra is available from the Association of Teachers of Mathematics (ATM): 

http://www.atm.org.uk/Shop/Primary-Education/Software-Media/Grid-Algebra---Single-User-

Licence/sof071  

http://www.atm.org.uk/Shop/Primary-Education/Software-Media/Grid-Algebra---Single-User-Licence/sof071
http://www.atm.org.uk/Shop/Primary-Education/Software-Media/Grid-Algebra---Single-User-Licence/sof071
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Figure 7 

A key activity can then be set up where the grid is empty apart from one number and the 

result of that number being dragged around the grid with all intermediate expressions rubbed 

out. Thus, only the number and the final expression can be seen (such as in Figure 8). 

The task for the students is to re-create that journey by picking up the 17 and dragging it to 

various positions until they produce the expression ρς . The formal notation of 

this expression might be something of which students are not familiar and they may not know 

about order of operations either. Yet these are the things which need to be used in order to 

carry out the activity. This is a situation which involves subordination. The students are 

familiar with the idea of physical journeys and so can understand the nature of the challenge. 

They know they have to make movements on the grid and this is something they can do 

(whether or not the movements are correct!). Yet this activity requires practice of interpreting 

formal notation and knowing order of operations ï something, let us assume, they do not 

know about. So the desired learning is in what is required to be practised rather than the result 

of the activity. 

 

Figure 8 
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A key factor with subordination is that someone needs to be able to see the consequences of 

their actions and be able to understand those in relation to their success or otherwise in 

achieving the challenge. So, in the case of the Grid Algebra activity, students will make a 

decision to move 17 somewhere and the software will feed back the consequence of their 

movement in the form of notation. The students can then see whether this notation is 

beginning to build up to the desired final expression ρς . Suppose, for example, 

they started off with the correct order of operations by adding two (moving to the right) and 

then multiplying by six (moving down). However, after they then subtracted 18 (moved to the 

left), they felt that they should add 12 next and then divide by two, they would find the 

software would show  which looks different from the target expression. Hence, 

they can tell that they have done something wrong simply because it does not look the same. 

They would also end up in a different place (see Figure 9). 

Thus, the feedback is understandable in terms of the achievement or otherwise of the task and 

so they can become aware from this feedback whether they have interpreted the notation 

correctly or not and make adjustments accordingly. My experience working with students is 

that it does not take long for them to learn how the four operations are written in formal 

notation and the order of operations. Furthermore, they become very fluent with this quite 

quickly (Hewitt, 2012). 

 

Figure 9 

When something has become fluent, we hardly know we are doing what we do. This includes 

a whole range of knowings and skills, such as walking, counting, spelling of many words and, 

for many of us, correct use of algebraic notation. Every person has a long list of things which 

have become automated and little or no attention is given to these things. Instead attention is 

placed on some other goal for which one or more of these are required. Subordination 

attempts to mimic this relative imbalance of where attention is placed. As a teacher I focus 

studentsô attention on the goal, rather than the means of achieving that goal. So, in the Grid 

Algebra example above, the goal is to re-produce a particular expression through movements 

on the grid. The means of how to achieve that ï being able to interpret formal notation and 

know order of operations ï is not explicitly mentioned and certainly not ótaughtô beforehand. 

The learning comes from noticing the effect of movements on the ólookô of the expression 

generated compared with the target expression. Plenty of incorrect movements are made 
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initially, but after many of these tasks, students become very adept at interpreting notation and 

can begin to articulate the órulesô of what the notation means in terms of operations and order 

of operations. The fact that their attention is deliberately placed on the goal rather than the 

means, allows the means to be learned in a way more akin to much of their early pre-school 

learning, where little was explicitly explained and yet they had to find the means to achieve 

what they wanted to achieve. 

DIRECT ACCESS 

The phrase ódirect accessô comes from Laurinda Brown with whom I spent many an evening 

discussing our classrooms when we were both teaching in Bristol in the UK. Too often the 

mathematics curriculum is structured in a way where small steps are made and one piece of 

the curriculum is built upon another which is, itself, built upon another, which, in turn, is built 

upon another, etcé Figure 10 gives a sense of a typical situation where, in order to learn Y, 

you need to know C, which in turn requires you to know B, which is built upon A. The 

problem with this is two-fold: it takes time to come to know A, B and C; and by that time, 

there is a chance that at least one of A, B or C have been óforgottenô. So trying to teach Y 

becomes a problem. 

 

Figure 10 

Instead, a pedagogic challenge is to analyse Y to find its fundamental essence and structure, 

and consider what is the least which needs to be used to engage in a meaningful way with Y 

(see Figure 11). 

 

Figure 11 
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This has connections with Brunerôs (1960, p. 52) statement that ñany subject can be taught to 

any child in some honest formò. This statement becomes possible if we do not call upon a list 

of previous learning. Instead, the powers of the mind can be called upon since we all possess 

these. So the challenge is to use as little prior learning as possible in order to engage in the 

mathematical essence of what Y is really about. What can be used is the expectation that a 

student will engage in a way where their powers of the mind are being utilised. An example is 

the image in Figure 12, of a dot moving round a circle. 

 

Figure 12 

I will briefl y give a sense of how I might work with a class. The dot starts as in Figure 12 and 

rotates anti-clockwise. I ask a class to say ñnowò when the dot is at its highest position and I 

tell them that at this point the height of the dot is one. I do likewise with the place where it is 

lowest and tell them the height is negative one. I then ask them to say ñnowò when the height 

is zero. We establish that this gets said twice within one revolution. I introduce the radius and 

the angle the radius has turned through from its start position (see Figure 13). 

 

Figure 13 

The students articulate that the angle says 90 when the height is one, 270 when it is negative 

one, and 0 and 180 when it is zero height. A discussion often arises as to whether one of those 

occurrences of zero height is at 0 or 360 and I suggest it is both and ask what happens after 

the 360 as the point continues turning. We establish a sequence of 0, 180, 360, 540, 720é. I 

rotate my hand many times round the circle quickly and then move another 90 degrees. I 

begin to introduce some notation and the awareness that a height of one can be obtained from 

lots of 360 degrees followed by another 90 degrees is written as 

height(360n + 90) = 1 

This, later on, becomes: 

sin(360n + 90) = 1 

I will not go into detail but I have a way of addressing the issue of which angle produces a 

height of 0.5 and the following is established: 

If sin x = 0.5 then x = 360n + 30 or x = 360n + 180 ï 30 

67
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The notation comes only as a form of expressing the awareness they have already revealed. 

Whether the values n can take is expressed as ὲᶅᶰὤ or in words is not of importance. 

However, sometimes I find students can be excited by a bit of óweirdô notation being used as a 

way of expressing an awareness as long as they are feeling quite comfortable with that 

awareness. 

A different stressing of the dot leads to establishing cosine and tangent and further work leads 

to working on equations such as cos x = sin x. At some point the graphs of these functions are 

produced (see Figure 14). 

 

Figure 14 

This image is quite a well-known one. The significance is in the way of working with students 

so that they are not being asked to remember anything particular from their previous 

mathematics lessons. Instead they are just being asked to watch, observe and comment upon 

what they see. They will use most if not all of the powers of the mind listed earlier. The 

labelling and notation is something that I will look after as teacher. So, I provide only that 

which is arbitrary ï the notation. The students provide that which is necessary ï the properties 

and relationships. I simply label any awareness which becomes established. Gradually the 

students begin to adopt the notation as part of the way they communicate any further 

awareness they have. As little previous knowledge is called upon, such work can take place 

with relatively young students. I have worked with 11-12 years olds in a mixed attainment 

class in such ways and it may be that this is just as possible with younger students. However, 

the aim is not to play a game of seeing how young students can be to engage with this 

particular idea but to note that it is possible to work on a topic such as finding general 

solutions to some trigonometric equations without the need to have a long series of previous 

mathematics work to prepare them for this. Note also that this image is not something to be 

remembered (as in memorising) but is something which is recalled. The significance of 

recalling rather than remembering is that it is not necessary to ask students to memorise this 

image; instead the process of working with the image on activities over time means that this is 

an image which can be recalled in the same way as you recalled a place in Activity 8 above. 
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CONCLUDING REMARKS 

The framework of arbitrary and necessary offers a way to distinguish between the areas of the 

mathematics curriculum which necessitate the use of memory and those areas where the use 

of memory is best avoided. Most significantly the aspects of the curriculum which are 

necessary are where the real mathematics lies. This is the area where the other powers of the 

mind can be called upon so that awareness is educated rather than the inappropriate and 

inefficient use of memorisation. Whether practising an arbitrary name/convention, or the use 

of a necessary property/relationship, there are ways to practise which can call upon a range of 

powers of the mind where progress is made alongside the desired practice; and the practice is 

seen as purposeful. 

Subordination offers a way new things can be met for the first time as the vehicle through 

which a certain challenge can be achieved. The notion of immediately having to use and 

practise something which is unfamiliar may seem strange, yet I argue that this is what we all 

did as young children in learning language in order to say what we wished to communicate, 

and in developing the skills of walking in order to get to objects we find desirable. 

Subordination mirrors the behaviour of when something is already automatised. In such 

circumstances, we do not place our attention on what it is we are using; instead we place our 

attention on the effect its use has upon a desired goal. I suggest that this form of practice not 

only helps what is used to be learned relatively quickly, but also drives it into becoming 

automatised.  

The notion of direct access takes away the need to have remembered earlier mathematics 

content; instead a carefully designed activity utilises the powers of the mind which can result 

in educating awareness, which can take the form of items on the mathematics curriculum 

through direction of attention and carefully timed notating and formalising. 

A final note is that I have not specifically focused on the use of one power of the mind over 

others. This is due to the fact that they do not come singly. For example, association and 

imagery are frequently used when someone is trying to memorise. In fact, it is impossible to 

stop any of these powers being at work. The argument I am making is about the degree to 

which each is stressed when working with students. In some classrooms, students can come to 

know that it is memory which is stressed over other powers and come to expect this within 

mathematics lessons. As a consequence, when a greater use of the other powers is suddenly 

expected, students can respond in a way which makes it appear that they do not have them! 

All students do, of course, have all of these powers, and use them on a daily basis. However, 

there can be a culture established where the guiding powers of will  and a sense of truth can 

result in a student directing energy into seeking what it is that needs to be memorised (since 

this is the norm). Something different to this can mean their sense of truth provides a feeling 

that this is not what mathematics lessons are about; and this can result in a lack of 

engagement. Shifting the culture is required, which means that a studentôs will  and sense of 

truth are aligned with the expectation that the full range of powers of the mind are utilised 

rather than seeking only to memorise. To change that culture is a teacherôs responsibility so 

that students can learn more, faster and in a deeper way. 
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The skill set of graduates encompasses technical depth in a relevant discipline, 

breadth of knowledge across the mathematical and computational sciences, interest 

in and experience with the scientific or business focus of the employer, enthusiasm 

for varied challenges, the flexibility and communications skills required to work in 

an interdisciplinary team, the discipline to meet time constraints, and a sense for a 

reasonable solution. (Society for Industrial and Applied Mathematics, 2012, p. 28) 

There is a hidden curriculum of cognitive and verbal skills, of abstraction and 

interpretation and of some very quantitative skills (estimation, bounding, 

determining approximate and qualitative solutions) that form a core of the syllabus 

equal in importance to the core that is represented by the table of contents of the 

textbook. Students profit from being made explicitly aware of these course goals. 

(Pemantle, in press) 

A metaphor is useful only for transforming what happens, enriching it in some way. 

It never tells you what actually happened, how it happened, or why it happened. A 

fleeting thought might be compared to a ship on the horizon, but surely itôs saying 

something that a shop on the horizon is never compared to a fleeting thought? ... If 

metaphors increase our understanding, they do so only because they take us back to 

a familiar vantage, which is to say that a metaphor cannot bring anything nearer. 

Everything new is on the rim of our view, in the darkness, below the horizon, so that 

nothing new is visible but in the light of what we know. (Haider Rahman, 2014, p. 

290) 

INTRODUCTION 

It was an honour to be invited to the CMESG 2014 meeting, and Iôd like to thank the 

organizers as well as the conference participants for their hospitality and patience. My own 

research interests lie in the mathematical modelling of natural systems, and the subsequent 

theoretical and numerical analysis of such systems. In other words: I claim neither training 

nor research expertise in the pedagogy of mathematics. My presentation concerned my own 

personal experiences and thinking in the classroom; the opinions I expressed in my lecture 

and in this article are representative of nothing more than my own story. The willingness of 

the audience members, each with considerable training in education, to listen to such a story is 

laudable. 

In the fi rst part of the lecture, I attempted to describe what a good mathematical problem in 

industry may be, and what skills may be needed to solve it. I tried to abstract these skills away 

from their specific contexts, and described three attempts to teach them.  
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In the second part of the lecture, I reflected on the current public discourse around the 

teaching of mathematics, particularly with the intent of training a skilled workforce. I shared 

my personal confusion about the often contradictory, but passionately held, beliefs around a 

crisis in the training of STEM (science, technology, engineering and mathematics) students. 

In terms of structure, I discussed somewhat controversial questions during the lecture. 

1. Are problems in industry worthy of our mathematical attention? 

2. Should we tell our students about mathematical problems in industry? How? 

3. Are the mathematical abilities one acquires at university worthy of industryôs 

attention? 

4. Is it worth trying to teach industrially-relevant mathematics? 

5. Perhaps most controversially, why are we teaching mathematics to non-

mathematicians? 

In this article, Iôll focus on the content of the fi rst part of the lecture. 

MATHEMATICS IN INDUSTRY? 

The fact that the quantitative sciences form the underpinning of much of our current societyð

ranging from banking, internet commerce, the design of highways, scheduling of the logistics 

of delivering healthcare to remote placesðis neither novel nor surprising. We know, with 

varying degrees of expertise, that science and technology are intimately connected with most 

facets of our lives, and that mathematics plays a key role.  

We know this fact about the central importance of mathematics in our lives, we teach this to 

our students, yet most of us do not actually use a lot of mathematics directly in our daily 

routines. Mathematics is ubiquitous, and yet somehow hidden from us in its explicit use. We 

swipe a credit card, but donôt actually know or daily think of the principles of encryption 

which made the transaction secure. We board a flight, but donôt explicitly solve an 

optimization problem to see if thereôs a reason we board in the order we do. Weôre consumers 

of mathematics, and particularly in how it is used in industry. We use mathematical ideas in 

the form of black-boxes (Damlamian, Rodrigues, & Strässer, 2013). This extends even to 

companies and industries which routinely employ mathematical tools while solving problems, 

but may not recognize that they are doing so.  

I think this disconnectðwe are told mathematics is important, yet most of us never actually 

see more advanced topics explicitly in useðis interesting. It is also personally frustrating to 

me.  

Students in a typical mathematics class may learn advanced concepts. They may see beautiful 

results. So intoxicating, so pristine is the sheer beauty of mathematics that the relation of these 

ideas to problem solving in industry seems almost like a sullying of these ideas. They may see 

an óapplicationô or a óword problemô, but these too frequently seem arid and contrived. 

Without a prior (or concurrent) exposure to the application, this is not surprising. Thinking 

about the convergence of series is interesting. An example about pensions and compounded 

interest is less interesting, especially if the student has never heard about pensions or 

compound interest elsewhere.  

Iôve been told by a stellar mathematics student that she did these word problems because she 

had to, but what she really loved was proving theorems. Because the mathematics in industry 

is so hidden, she wasnôt aware that some of the most interesting mathematics is motivated by 

questions arising there. 
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Students of other disciplines, on the other hand, see advanced mathematical concepts, and are 

not impressed by their beauty. Theyôd like to see how this idea is relevant to their core interest 

in some other field, otherwise it seems a waste of time. It would be ideal if students in, say, 

first-year biology learned mathematical concepts relevant to what they were learning in their 

biology class. Unfortunately, the profusion of other fields and the very real constraints of 

universities and colleges makes it nigh-impossible to achieve this integration of curricula. 

There are constraints of funding, there is politics, there is institutional history. The student 

doesnôt see these constraints. The student only sees a mathematics class that he/she does not 

want to be in, doesnôt see the relevance of, and (if we are honest) is scared will decimate 

his/her odds of a high GPA. 

Iôve been told by a stellar engineering student that he hated the mathematics classes he took, 

particularly numerical analysis, but that what he really loved was the finite element analysis 

of mechanical structures. He saw this in his engineering classes, using commercial software. 

When I told him that the analysis of the finite element method was, in fact, a major part of 

numerical analysis, he told me to ñget out of here!ò Once again, because the mathematics is 

hidden from the user of these commercial software packages, he wasnôt aware that 

mathematics was key to much modern engineering design. 

ARE PROBLEMS IN INDUSTRY WORTHY OF OUR MATHEMATICAL 
ATTENTION? 

I think we owe it to our students to answer this question. Of course, I personally believe the 

answer is a resounding yes. It is worth defining what I mean by a good mathematical problem 

in industry. First, it should possess the feature that its mathematical reformulation is close to 

the original problem, that is, it satisfies 

ὗόὩίὸὭέὲ  ὖὶέὦὰὩά  

for some small   > 0. The question, ñWill eating this candy right now make me sick, yes or 

no?ò does not possess this feature, since a half-ways decent mathematical formulation would 

be a question about expected outcomes and distributions, with probabilities of getting sick 

being the answer. But this was not what the question asked. In a related sense, a good 

mathematical problem in industry leads to models which are verifiable. We should arrive at a 

model with descriptive as well as predictive powers. 

A mathematical problem in industry may require new mathematics to be developed. Or, it 

may need very simple, existing mathematical tools. So, if we start from the premise that we 

need to teach students about mathematics in industry, we should alert them to these 

possibilities. They will sometimes need to learn new mathematical concepts to solve a given 

problem. Occasionally they may use basic arithmetic. What is important is for a student to 

recognize how to formulate a mathematical question, and then use the most appropriate 

mathematical tool to solve it. 

These are somewhat nebulous ideas. I would like to believe this is what I teach, but in truth I 

teach calculus or analysis or partial differential equations, and only convey these ideas along 

the way. There is no class that Iôve taught called óhow to be mathematically open-mindedô or 

óhow to be mathematically curious about your surroundingsô. When I teach differential 

equations, I focus on the concepts, and then show a lot of instances where students need to use 

differential equations to solve a problem. With a few exceptions, I have not walked into a 

classroom, given students a problem and said: ñGo figure out what mathematics you need to 

solve this, and if you donôt know it, go learn it.ò But this is, I think, how they will frequently 
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encounter problems in industryðnot in some neatly packaged form where the mathematical 

tools required are obvious. 

At this point it is useful to distinguish between: 

¶ well-defined mathematical problems of industrial relevance, where the company 

understands the need for mathematics; and 

¶ poorly-defined problems of industrial relevance, where mathematics may be useful. 

The first set of problems is nice to have. Someone confronted with a well-defined 

mathematical problem with industrial relevance in a supportive managerial environment 

should, with a solid mathematical training, be able to make good progress. Unfortunately, as 

described above, I think many problems in industry fall into the second category. A company 

may not even recognize that a mathematical solution is what is required. Indeed, a quick look 

at any jobs listing will reveal lots and lots of job descriptions like supply chain expert or 

business analytics for enterprise software, but very few for mathematics. Yet, embedded in 

the former job descriptions are lots of (poorly defined) problems where mathematics could 

contribute a lot. What skills are needed for problem solving in this setting? Are we teaching 

these? 

WHAT MATHEMATICAL SKILLS SHOULD WE BE TEACHING 
STUDENTS TO PREPARE THEM FOR CAREERS IN INDUSTRY, AND 
HOW SHOULD THEY LEARN THESE SKILLS? 

In the previous section, Iôve tried to describe two broad classes of mathematical problems in 

industry. What should a student learn at university in order to be successful at solving these? 

The Society for Industrial and Applied Mathematics (SIAM) has released two very thoughtful 

reports (Mathematics in Industry) in 1996 and 2012. The ICME/ICIAM study on Educational 

Interfaces Between Mathematics and Industry (Damlamian et al., 2013) collected pedagogical 

experiences of colleagues from a host of countries on precisely the interface between 

mathematics, education and industry. The details of how and what to teach varies 

considerably, but one can think like a mathematician and try to abstract some key ideas. 

What Iôve extracted from these reports, and numerous interactions with colleagues in the 

academe as well as industry, is the following: in order for a student to successfully use 

mathematics in industry, they need disciplinary content, interdisciplinary breadth and soft 

skills. 

Obviously, a student first needs to see mathematical concepts. These can vary depending on 

the core discipline, but if one is going to solve mathematical problems in industry, one must 

know some mathematical concepts. These we are good at identifying, and these we teach. We 

may decide to emphasize some concepts (for example, limiting processes in Calculus) over 

others (for example, discrete probability), but we can revisit these choices. What else should 

students be learning in our classes? 

As the first epigram from the beginning of this article suggests, the Society for Industrial and 

Applied Mathematics (a very large international scholarly society for mathematicians) 

believes that in addition to core technical knowledge, students must also develop intellectual 

breadth (including exposure to another discipline), flexibility, and the ability to interact, 

communicate and collaborate with others (SIAM, 1996, 2012). 

Why are flexibility and breadth of knowledge so important? I think it is because they allow a 

mathematically-trained student to draw fruitful analogies between a new problem and a 
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problem they may have seen in a different incarnation, in a different setting. The problems 

may be drawn from disparate fields, but a successful student of mathematics ought to be able 

to identify if the underlying mathematical principles needed to study the problems may, in 

fact, be the same. An excellent example comes to mind when thinking about how long it takes 

to bake a cake, and how long it takes an accidental ink-drop to colour water in a glass. The 

framing and the setting of these problems is rather different, but the mathematical models 

describing them end up being very similar indeed. So if one has seen the heat-flow problem 

solved mathematically, and if one understands the features of the model and its solution, and 

one understands a bit about how ink might mix with water, then one can fruitfully use 

mathematical insights from the former problem to understand the latter. In such an instance, a 

successful analogy between situations has been drawn. The mathematical model, then, plays 

the role of the metaphor expressing the analogy. 

For this enterprise to be successful, one needs to have seen a lot of mathematical concepts, 

and one needs to be prepared to use these in unanticipated situations. I like to tell students that 

likely no one will give them a 5-by-5 matrix to invert for money, but that if they know how 

matrix inversion works, they can help mechanical engineers design cars. 

In the second epigram of this article, abstraction and synthesis are highlighted as critical 

skills. I think this is again because the ability to abstract the essence from a given problem, 

and then synthesize these ideas with other concepts one knows, is important for drawing 

fruitful analogies. 

If I assume that all threeðdisciplinary content, interdisciplinary breadth and soft skillsðare 

important, and that a central aspect of successful problem solving is the ability to draw fruitful 

analogies, how do I go about translating this into pedagogical practice? 

MATHEMATICAL PROBLEM SOLVING IN TEAMS 

When appropriate and when resources allow, I have found open-ended mathematical problem 

solving in teams to be an interesting pedagogical tool. Depending on format, open-ended 

problem solving in teams teaches/uses: 

¶ Disciplinary content 

¶ Interdisciplinary breadth 

¶ Soft skills 

¶ Ability to draw fruitful analogies 

I think such activities are valuable as training. If possible, students should be given poorly 

formulated problems, and organized into teams which comprise of students from different 

disciplines, and where they take their time to formulate a mathematical problem, learn the 

tools they need, and then solve the problem. As I write this, colleagues in a university setting 

will recognize that Iôm talking of a luxury. I have not attempted this in large classes with no 

assistants where the curriculum is specified; I have not attempted this in classes which are 

required as part of accredited programs (where the content is non-negotiable). In the settings 

where I have tried such team-based approaches, I have sometimes found that students see: 

¶ few problems in industry are even formulated as clean word problems; 

¶ they donôt know what mathematical concepts they will need during their lives; 

¶ intellectual flexibility, humility and willingness to learn are key; 

¶ they need to defend and critique their mathematical ideas with honesty; 

¶ there are no medals awarded for a complex solution, if a simple one suffices; 

¶ sometimes there is no ócorrectô answer; 

¶ (non)-mathematical communication is useful. 
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I find that working in teams to arrive at a mathematical solution to a non-mathematical 

problem reinforces the need for mastery of the óhidden curriculumô (in Pemantleôs formu-

lation). 

Iôll now describe, as promised, three different attempts to teach skills which are useful in 

mathematical problem solving in industry. 

EXAMPLE 1: PROBLEM SOLVING IN GROUP TEAM PROJECTS 

I attempted to train 3rd-year undergraduate students within an existing course in Elementary 

Numerical Analysis (Math 317), at McGill (between ô01 ï ô07). This also coincided with my 

attempts to apply the principles of reflective teaching, and I am grateful to Prof. Lynn 

McAlpine and Dr. Denis Berthiaume, Faculty of Education, McGill, for their help and advice 

during this (McAlpine, Weston, Berthiaume, Fairbank-Roch, & Owen, 2004). 

The curriculum of the course was specified. It was a co-requisite in an accredited course (in 

Mechanical Engineering), and I had no flexibility in terms of drastic changes to content or 

assessment. However, I had the students work in groups on a semester-long project. The class 

was a 3rd-year Numerical Analysis class, and the audience consisted of students in mechanical 

engineering, math, physics and computing science. I had anywhere from 80 to 120 students. 

Over and above the group project, the students had five assignments (including coding 

projects), two midterms and one final exam. I had two teaching assistants, who also helped 

with the marking. The introduction of these group projects required me to schedule six 

additional offi ce hours (over and above the usual) per week for this course. 

The groups were self-selected with 4-5 students with complementary expertise. The goal for 

the group projects was to show students: 

¶ the relevance of mathematical concepts learned to problem of their interest; 

¶ concepts beyond those taught in class; 

¶ how to write modular scientific codes; 

¶ how to work in teams; 

¶ how to communicate their results. 

The students were asked to find an interesting mathematical problem with a time-dependent 

partial differential equation that they wanted to solve. They were asked to set up a precise 

mathematical model, and then discretize it using the method of lines. Along the way, each 

team was required to write an algorithm to use a Newton iteration for a system of nonlinear 

equations, embed it as a part of an implicit solver for ODE, and then finally combine it with a 

finite difference discretization in space to yield a solver for their evolution problem. They 

were asked to relate their findings back to their original problem, and post their work on a 

publically-viewable Wiki. There were three ócheck pointsô during term where I monitored 

their progress. 

I think the students learned to work in an interdisciplinary team. They certainly learned 

concepts beyond the curriculum, in context; they learned the details of their specific teamôs 

open-ended problem. They had public exposure of work as an incentive. It was hopefully fun 

and rewarding for them as well, but extremely time-intensive. I am not sure it would work 

well for students who have other work or family obligations. 

I learned from this experience. Groups were initially over-ambitious in the problems they 

wanted to solve, picking projects that were simply too complex for the mathematical and 

science/engineering background they possessed. Some wanted to study heat flow in a jet 
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turbine, some wanted to model entire financial markets, and some wanted to understand the 

buckling of a car under impact. Working with them to find a more tractable problem which 

was still interesting took a lot of time, and (I hate to admit it) involved a certain 

disappointment among the students. Groups learned that communicating and sharing code is 

difficult in heterogeneous teams... and yet this is something they will be expected to do most 

of the time in industry. I also learned that group projects were a lot of work for students and 

instructors. It was fun and rewarding for me, but I cannot recommend this strategy without 

reservation. I also learned that I had neither the training nor the patience to properly resolve 

the inevitable issues which arose between personalities in groups. But these issues are very 

important. 

Most importantly, however, I learned that perhaps students at this stage did not have enough 

disciplinary information to fruitfully draw analogies and identify metaphors. Too many things 

were simultaneously newðthe application (problem), the mathematics, the computational 

skillsðand while the students learned quickly, I believe this strategy would work better with 

students with more experience in either the mathematics or in the application area. 

EXAMPLE 2: PROBLEM SOLVING IN A COURSE 

I decided to structure an entire course around problem solving, where the problems and 

applications would become the focus and the mathematical/computational science ideas 

would be taught as the need arose. This is a mathematics-by-case-study approach. I also tried 

to separate the soft-skills aspect from the mathematical training aspect. 

The class was a 3rd-year óspecial topicsô class, consisting of around 20 mathematics, physics 

and computer science students. This group possessed more in terms of mathematical 

background than the group in the previous example. However, they had less exposure to 

problems arising in technological or engineering applications. 

The class was structured around five case studies. There were five assignments, one midterm 

and one final. My role as instructor was to provide case studies and help students with new 

concepts. 

The intent was for mathematical and computational concepts to be introduced in the context 

of applications. These applications and the related concepts were: 

¶ Mathematical epidemiology, ODE, ODE solvers; 

¶ Walking on coals, non-dimensionalization, scaling, asymptotics; 

¶ Mystery chord in a Beatlesô song, Fourier analysis, FFT; 

¶ Cost of annuities, probability, Monte-Carlo methods. 

A fif th case study was picked by the students. 

The students certainly worked on several interdisciplinary problems. They learned how to 

write a mathematical formulation of these problems, and also how to identify when their 

existing mathematical tools would need to be augmented by new tools. They learned the 

details of five open-ended problems, and got a broad exposure to modeling and simulation 

techniques. 

However, the lack of familiar structure was a challenge for students. Once again, I found that 

lack of familiarity with both the application and the mathematics made the enterprise 

challenging for the studentsðthey had to learn not only about asymptotics, but also about 

how heat transfer works, what the thermal conductivity of skin is, etc. Moreover, Iôm not sure 
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I was successful in conveying the mathematical ideas in a manner which could be abstracted 

away from the specific example. In this approach, students learned concepts in the (narrow) 

context of a given application. I had no clear idea of how to test whether theyôd learned how 

to transfer these concepts to a different application entirely. And, once again, this course was 

a lot of work for students and instructor. 

So, returning to Pemantleôs quote, while I made the course goals explicit and exposed the 

hidden curriculum, Iôm not certain how to assess whether it was pedagogically successful. I 

do not have a clear idea how to assess the effects of this class on their long-term mathematical 

habits or their ability to make mathematical analogies and connections. Ideally, I would have 

an opportunity to evaluate their abilities in these areas before, during, and a few months after 

the course. If the intent of the class was, explicitly, to train students in problem-solving 

strategies of the kind theyôd need in industry, then it should be possible to design long-term 

assessment strategies to measure the success of the pedagogical ideas I tried. If I ever teach 

such a class again, I plan to get expert help on this. 

EXAMPLE 3: MATHEMATICAL MODELLING GRADUATE CAMPS 

There is a long tradition of mathematical problem-solving study groups for industry, intense 

workshops where mathematicians and graduate students spend a few days trying to model and 

analyse problems in industry. Iôd like to share my experience with running a training camp for 

students in preparation for such a study group. 

The structure of an Oxford-style study group is as follows. Prior to the event, the number of 

problems and the number of participants (M, N natural numbers) are known. The duration (T 

+ 2) days of the event is also known. 

¶ On day 1, people from industry/non-profits present M problems. 

¶ N mathematicians/students self-select into M teams. 

¶ Teams work on problems for T + 0.5 days. 

¶ The work is fast-paced, and can be intellectually intense. 

¶ On day T + 2, teams present their solutions. 

¶ Solutions usually = mathematical models, some analysis and simulation. 

Typically, M = 5, N = 40, T = 3 (so, duration of event = 5 days). Usually, the graduate student 

participants have the opportunity to gain experience in a training camp, held the week before 

the main event. The format is similar, except the problems are presented by mathematicians, 

and the teams comprise only of students. 

I was involved as a mentor as part of such a training camp at Oxford in April 2014. The 

problem I assigned was the so-called Airbus 380 Problem. I knew that this was a 

mathematically challenging, industrially important problem with no óperfectô solution. 

The set-up of the Oxford Grad Modelling Camp was as follows: There were several teams of 

graduate students, each assigned a mentor who presented a problem. I had a team of six 

graduate students of mathematics with diverse backgrounds. They had 3.5 days to study the 

problem, propose model(s), and prepare a presentation. My role as mentor was to guide, but 

not direct. 

The stated goal for the students was to design a boarding protocol for the Airbus 380. 
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The protocol: 

¶ was for an Airbus 380 in economy-only configuration; 

¶ must be effi cient: reduce total boarding time for the flight; 

¶ must be robust to out-of-order boarding. 

I gave them the total number of seats in the plane, and the configuration of the seats. It makes 

sense that mathematics may be useful to help design such a protocol, but how? What is even a 

good mathematical question to ask? Based on this very loosely formulated question, they had 

to construct a mathematical model, and then use it to give me a protocol. 

Very quickly, the team found important resources (papers). The students in my team built a 

computational tool for timing and visualizing boarding strategies; investigated optimization 

algorithmsðinteger programming, genetic algorithms; located actual physical parameters in 

the problem; and examined combinatorial questions 

An impressive amount of work got done, but the team tended to split into sub-groups to 

pursue different ideas. The tendency to work alone, and locate the óperfectô answer, was in 

evidence at the beginning! 

My observations based on this, and similar camps in the past, are that it is: 

¶ good to let the team make their own mistakes; 

¶ important to have ógroup summaryô meetings 4-5 times a day, to force team members 

to explain their thoughts and progress; 

¶ key to not explicitly favour one approach over the other; 

¶ helpful to keep reminding the students of the problem at hand, not the problem we 

wished we had; 

¶ strategic to distinguish between useful and unproductive frustrations. 

I believe the students became aware of the need to recognize analogies with problems in other 

contexts. This was critical given the short duration of the workshop. They learned to model 

this specific problem in deterministic, stochastic, and computational waysðthis represented a 

very large number of new mathematical concepts they had to learn on the spot. They learned 

to locate relevant information, and discard irrelevant information. They worked with a team of 

peers under time pressure, and learned to accept that there wonôt be a single, óperfectô, answer 

to every problem in industry. 

REFLECTIONS 

Returning now to the questions I raise in the introduction, I have some (personal) answers. 

1. Are problems in industry worthy of our mathematical attention?ðYes. 

2. Should we tell our students about mathematical problems in industry? How?ð

Maybe/I donôt know the best way. 

3. Are the mathematical abilities one acquires at university worthy of industryôs 

attention?ðMaybe. 

4. Is it worth trying to teach industrially-relevant mathematics?ðI donôt know. 

5. Why are we teaching mathematics to non-mathematicians?ðWe should be honest 

about the answer, whatever it may be. 

The first two questions I have attempted to address in previous sections. Even the thirdðAre 

the mathematical abilities one acquires at university worthy of industryôs attention?ðhas 

been partially addressed. We have seen that it is not enough for our students to acquire 
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disciplinary expertise. They need to work in an interdisciplinary setting, get comfortable with 

poorly-formulated open-ended problems and learn soft skills such as teamwork and 

communication. 

I think success in solving mathematical problems in industry follows from the ability to draw 

fruitful analogies and identifying mathematical commonalities. I am not sure we are 

universally able to help our students learn these skills with the very real constraints at a 

university. As Iôve tried to describe, my attempts to convey some of these skills, some of this 

óhidden curriculumô, required a very serious commitment of time and resources. These 

challenges facing us at universitiesðlarger student bodies, more educationally-diverse 

backgrounds and aspirations, constrained resources, poorly-defined yet very real pressures to 

óteach industry-ready skillsô, institutional traditions and rivalriesðplay as significant a role in 

what happens in our classrooms as our thoughts on pedagogy. It is all well and good for me to 

suggest team problem solving or a flipped classroom as a good pedagogical idea, but for you 

to adopt it, you must look around you and determine if it would even begin to make sense in 

your context. This isnôt the math-education/mathematics dialectic. This is the can-this-be-

done-with-what-I-have question. 

After the CMESG meeting, I had the opportunity to design and teach a mathematics class for 

first-year students with strong Calculus backgrounds, who are interested in physics. The 

content of the class was structured to support a physics class the students would be taking at 

the same time. Our lecture schedules were coordinated, as were some of our homework 

assignments. We explicitly drew connections between topics in the mathematics and the 

physics classes. The students enjoyed it a great dealðthere was no question about the 

relevance of the mathematics they were seeing, nor of the formalism of the physicsðand the 

instructors learned a lot, too. We tried very hard to demonstrate how we approach problems in 

our disciplines, including the importance of drawing connections, trying a range of 

quantitative and qualitative approaches and genuinely collaborating with peers. As a 

consequence, this cohort of students saw material at a much more sophisticated level in both 

their mathematics and physics classes.  

Teaching these courses was a privilege and a joy. I was able to try a lot of the pedagogical 

strategies described above, and some new ones. Some worked, and the feedback from the 

students was invaluable. They were truly active learners, which, after all, is what we hope of 

our students at university. However, since both classes were very challenging and structured 

in an unfamiliar way, the initial enrolment was low. We operate in a system with constraints, 

and so, despite our collective best intentions pedagogically and the demonstrable success of 

the course (in terms of student learning), the future of this pair of courses is unclear. 

This last example serves to remind us that while we may want to train our students for 

successful careers in industry, where the drawing of connections (analogies) will be rather 

important, at the university our pedagogical focus is on the disciplinary tools (the metaphors). 

As mathematicians, we recognize the need to make explicit the hidden curriculum, and to 

show ómathematics in actionô. Indeed, we know we need to help our students acquire both 

technical depth and a simultaneous breadth in using those tools in novel situations. Many of 

us seek to explicitly integrate problem solving into our curricula. But we do this within the 

framework of the institutions we teach in. At least I have to temper my expectations and 

pedagogical aspirations with this in mind, in the light of what I know. 

In conclusion: yes, I think there is very interesting mathematics in industry, and we do our 

students a disservice by not showing them instances of it. Iôm not sure how best to do this, but 

at all levels of mathematical instruction we should be honest about the importance and role of 

abstraction and logical argumentation. These are the traits which will be useful for them going 
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forward, in addition to learning how to communicate, be intellectually flexible and work in 

professional environments. 

Most of all, I think when we teach mathematics, we should remember that it is fun for us. 

Maybe some of our students will be convinced it is fun for them as well. 
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PROLOGUE 

Fifteen years ago, in my discussing with Les Steffe his study of various aspects of childrenôs 

construction of mathematical ideas, Les made an interesting distinction between two kinds of 

concepts: childrenôs mathematics and the mathematics of children. By the latter, Les points to 

the various observed knowing actions that children take as they work on mathematical tasksð

in his case, mainly dealing with whole numbers and the fractional numbers of arithmetic. But 

Les sees as his project to develop a childrenôs mathematics that is formed by selecting and 

abstracting, from observations of such a body of mathematical actions, key action/action 

sequences and the relationships between them, which form schemes of knowing a particular 

set of inter-related mathematical concepts in a particular domain. To what Brent Davis (1996) 

calls the formal aspect of the body of mathematics, I think Les wishes to contribute a category 

that, at a formal level, portrays necessary action sets, sequences and relationships among them 

that would characterize, say, the meaning of knowing whole numbers or fractional numbers 

by children. As noted above, this mathematics comes out of, or is an abstraction from, the 

body of careful observation of and describing of and cataloging of actions that children take in 

doing what can be observed as mathematics in very cleverð frequently computer-basedð

action settings (mathematics of children). Les, as well as being a great theorist, has with his 

colleagues and students amassed one of the greatest collections of such data. Les has written 

about this multi-faceted project of many years extensively (e.g. Steffe & Olive, 2010) and his 

work, though different from mine, continues to stimulate my thinking. I will use these two 

concepts of child/student related mathematics in my own way in what follows.  

From my point of view, one can see a wonderful example of an abstract portrayal by Merlyn 

Behr, Gershon Harel, Tom Post and Dick Lesh of a form of childrenôs mathematics related to 

fractional numbers (related to each of the sub-constructs that I developed in 1976), especially 

in their 1992 paper. In this very dense paper that uses systems of representations of fractional 

objects and systems of representations of (mental-physical) mathematical actions on them that 

are seen as necessary for a childðto use one very small exampleðto see, that ¾ seen as three 

¼ units is equivalent to ¾ seen as a 3-unit divided by 4 is equivalent to a ¾ unité. While 

Steffeôs idea of childrenôs mathematics tends to focus on the order of schemes or mechanisms 

that he sees as a sufficient condition for a particular mathematical idea complexðe.g. adding 

whole numbers, the Behr et al. (1992) ideas with respect to the different constructs of rational 

numbers try to provide a theoretical picture for each of a wide variety of fractional number 

tasks (showing equivalence, adding, multiplying, orderingé) within each construct (e.g. 

fractions as measures or operatorsé).  
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While I have worked with both Steffe and the four Rational Number Project researcher-

writers above, what you will see below are examples of the mathematics of children occurring 

within one fractional number lesson. Yet I see this mathematics knowing-in-action as related 

to the childrenôs mathematics, particularly as seen in the work of Behr et al. cited above. I 

have talked with Merlyn Behr many times, before his untimely death, about his beautiful 

representation systems. I have seen many examples of instances of his abstractions in my 

observations of children in action (see Kieren & Simmt, 2002), particularly examples of 

abstractions such as unit-forming, unit-comparing and unit-transforming. One can also 

observe such abstractions-in-action in the actions and inter-actions shown in the childrenôs 

work later in this paper, actions that can be related to Behr et al. (1992) ideas. 

Because of my interest in the work of Maturana and Varela (1980, 1987) for the last 30 years, 

contrasted with the childrenôs mathematics work pointed to above, I have looked at 

mathematics of children as it arises in inter-action with aspects of the environment and with 

others in it, including the teacher. I have sought to think about the implications of this for 

mathematics knowing and teaching using the ideas garnered from these observations of 

students from age 5 to 17. Following ideas from Maturana and Varelaôs book, Tree of 

Knowledge (1987), I, with colleagues Elaine Simmt and Joyce Mgombelo (Kieren, Simmt, & 

Mgombelo, 1997), have come to see knowing as occurring in the praxis of living in an 

environment with others. In this living, individuals bring forth a world of SIGNificance with 

others that an observer sees as involving mathematics. Varela, Thompson, and Rosch (1991) 

would argue that in inter-acting with an environment and others in it, the knowing action on 

the part of the knower can be observed to co-emerge with the environment. It is almost a 

cliché to say that the environment affects the individual knower and knowing, but what is 

interesting here is that the knowers in action and inter-action necessarily affect and change the 

environment and in particular the cognitive domain. These enactivist ideas can be observed in 

action as the children as described in my memoire below are seen bringing forth a world in 

the flow of their praxis of living in inter-action in a particular setting. 

PART I: AN EXAMPLE OF MATHEMATICS IN INTER-ACTION 

VIGNETTE 1ðDOING MATHEMATICS DIFFERENTLY IN INTER-ACTION 

Ja and her partner Ru sit at side-by-side desks at the back of the classroom. They are two of 

20 students, mostly girls in a Grade 4 Spanish bilingual classroom. They are working on a 

task, using a particular ñFraction Kitò where they are asked to find at least three examples of 

ways to make ¾ of a pizza without using fourth-pieces; they are also asked to sketch their 

work and write addition sentences representing it. They are allowed, if they wish, to make 

their sketches and write their expressions on the board as well. Before we follow their work, 

weôll consider the setting in which it occurred. 

I have done mathematics lessons of various kinds with this class over the last five years, 

starting even in pre-school, so I am no stranger. In fact I am known as Abuelo Tom to this 

group. The children have done a short unit on fractional numbers in Grade 3 and have in the 

Grade 4 year done initial work on decimal fractions, mainly using tenths and hundredths, 

previously. 

The lesson from which the three vignettes in this paper are drawn will not come as a surprise 

to those of you who know me. 
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At the front of the class is a large sign: 

ABUELO TOMôS TIENDA DE LA PIZZA 

LA CASA DE ñ1 CENT PIZZAò 

Each student has a kit in an envelope containing two ones-units worth of each of these 

fractional number amounts: ones, halves, fourths, fifths, tenths, twentieths, twenty-fifths, 

fiftieths, and hundredths. These fractional pieces, each fraction piece being a different colour, 

are based on óoneô being a square 20 cm  ³ 20 cm; with the others being assorted rectangles of 

appropriate sizes, ending with 2 cm ³ 2cm-squares for hundredths. 

 

Figure 1. Pieces in the fraction kit (stacked on the ones unit). 

The amounts are not labeled on the pieces. It is important to note that one canôt judge the 

relationship between piece sizes for many comparisons either by simple looking or simple 

coveringsðfor example, comparing the fifth and the fourth pieces cannot be done by looking, 

although one can easily see that the tenth is one half of a fifth piece by laying a tenth piece on 

a one-fifth piece (and even this relationship is not obvious if one centres the tenth piece on the 

fifth piece). This feature of the kit is there, in part, to promote student óreasoningô as to 

relationships between amounts shown by fractional numbers, rather than relying simply on 

ólooks likeô perceiving. (This distinction is related to the difference between the first two 

vanHiele levels.) The children had not worked with all of these fractional numbers in 

combination before. Nor had they worked with this kit before. Although the children made 

use of all of the different pieces in dealing with tasks, the activities described below deal 

mainly with fractional parts of 1 whose relative ósizeô is greater than or equal to 1/20. 

The first task, that proved very easy for the class with nearly everyone offering ideas, is: 

Given that the large square is one, what is the fractional number for each of the other 

pieces of ópizzaô?  

So each of the coloured pieces now has a fractional number associated with it, based on the 

largest piece being 1. (See the first column in Figure 2 below.) You will notice right from the 

start both the ratio relation aspect of rational numbers and rational numbers as being 

ñmuchnessesòðquotients or measures, in particularðcome into play. From previous work in 

Grade 3, these students are at least informally aware of the actions needed to name at least 

some of the pieces in relationship to the whole or 1 with the correct fractional number (e.g. ½ 

and ¼). And as we started naming the smaller pieces using fractional numbers, they easily 

saw how tenths could be created from fifths, as well as how both fiftieths and hundredths 
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could be created using a twenty-fifth as a unitð 2
1 of 25

1 is 50
1 ; 2

1  of 50
1 is 100

1 and 2
1  of 2

1  of 

25
1 is 100

1 . Notice the connection to Behr et al (1992) ideas of unit-forming and unit-

transforming noted above. Also note, just in this task itself, the relationship of forming 

fractional pieces from a whole in various ways, as well as the possibility that children would 

see one fiftieth both as 2
1  of a twenty-fifth and as 50

1  of 1. Examples of Piaget, Inhelder and 

Szeminskaôs (1960) critical ideas on fractional thinking from their book The Childôs 

Conception of Geometry include: forming fractional parts of the whole of the form 1/n; given 

such a fraction, use it to form a fraction of that amount 1/np; and from 1/np recreate 1/n; as 

well as 1 (where n and p are natural numbers).  

The second task is to give the cost for each piece, given that the largest is priced at $1 or 100 

cents. This task was a little harder, but most of the class, if not all members in it, soon worked 

out that 2
1  is 50 cents; one-fourth is 25 cents; 10

1 is 10 centsðso 5
1 , which is twice as big, is 

20 cents. Some children notice that you can just divide 100 by n to get the cost of a 1/n size 

pizza. Of course, this problem setting is an artificial one; nevertheless, several children also 

argued that there should be an added ñcutting costò, especially for the smaller fractional parts. 

When task two was finished the children were asked to write the costs in ñdollarsò form (e.g. 

50 cents as $0.50). This left us with what is shown in Figure 2 below. 

Fractions Cost (cents) Cost ($) 

1 100 1.00 

2
1  50 0.50 

4
1  25 0.25 

5
1  20 0.20 

10
1  10 0.10 

20
1  5 0.05 

25
1  4 0.04 

50
1  2 0.02 

100
1  1 0.01 

Figure 2. Various designations related to fractions and fractional numbers. 

Now the children were asked to do the following: Find several ways to make an amount of 

pizza equal to one half using the kit and write a mathematical sentence to describe this 

situationðe.g. 4
2 = 2

1 ; 4
1 + 20

5 = 2
1 . As noted above, students were urged to draw pictures of their 

solutions and write their mathematical sentences next to them on the white board. Of course 

once a couple of students had done this there was a parade to the board. Some of this work is 

shown in Figure 3 below. (Notice the variety of responses, including one using subtractive 

methods.) 

Although this was not a research study, nor did I have another person observing groups of 

children (making observations of their mathematical actions) during the lesson, I did watch 

the three pairs of students discussed here more closely than I did the others, and what is 

described here is my reconstruction from things I noted down in each case. The purpose is to 

The One 

Cent Pizza 
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provide the readers with situations to stimulate discussing roles that inter-action has in the 

mathematics-knowing actions of these children. 

 

Figure 3. Reports of making one half a pizza. 

Getting back to Ja and Ru and their work, the class then was asked to work on the following: 

An order comes in for ¾ of a pizza but there are no fourth pieces available. Make up 

¾ of a pizza without using fourth pieces in at least 3 ways. Write mathematical 

sentences to describe your work. 

When I came to their desks Ru was putting fractional pieces together to make three fourths 

and talking aloud as she did so: ñYes, I think one half plus 2 one tenths will do it, because 

these parts here will just make it fit.ò 

 

Figure 4. Ruôs actions/expressions in making Ĳ. 

Ja immediately replied, ñThat canôt be right. Three fourths should cost 75 cents but your 

amount costs just 50 cents plus 20 cents.ò Ru, now talking to Ja, ñI see. My two parts wonôt 

cover the rest of the fourth. I need another little piece; oh yea, a twentieth, so 2
1 + 10

2 + 20
1 = 

¾.ò Ja replied, ñYup 50 + 20 + 5 [for the twentieth] is 75 cents.ò Then aloud, but to herself, 

appearing to be looking up at the chart on the board, ñOh this is just like decimals.ò   

Following that remark Ja says, ñLetôs do something else. Weôll do five fourths instead.ò Ru is 

puzzled and looks at her. Ja says: ñYou know4
5 ; thatôs like 1 and ı pizzas. You make4

5 of a 

pizza and Iôll write down the decimal for each piece you use and check if mine adds up to 

1.25.ò Ru puts out 5 one-fourth pieces. Ja says, ñThatôs too easy. Itôs 5 times 0.25. You know 

.25; .50 ; .75; 1.00; 1.25.ò ñOK,ò says Ru and puts out 2 halves and 2 tenths as Ja writes 0.50 

+ 0.50 + 0.20 in column form. Ru, not attending to Ja, says, ñWait. Thatôs not enough. I need 

another half of a tenthðoh, a twentieth piece.ò Now Ja adds a 0.05 to her column and says: 

ñYouôre right. That adds to 1.25.ò 


