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INTRODUCTION 

Olive Chapman – President, CMESG/GCEDM  

University of Calgary 

The 41st annual meeting of the Canadian Mathematics Education Study Group/Groupe 

Canadien d’étude en didactique des mathématiques [CMESG/GCEDM] was another eventful 

learning and social gathering. With Montréal, Québec as the venue, this was our largest meeting 

with many newcomers that offered new opportunities and challenges in maintaining the 

uniqueness of the meeting as a discussion-oriented, community-based event. This was reflected, 

for example, in the large number of traditional poster presentations during the Gallery Walk. 

However, the meeting was a success in terms of the social and scientific programs that requires 

acknowledgement of everyone responsible for making this possible. 

On behalf of the CMESG/GCEDM executive and participants of the meeting, I acknowledge 

the excellent work of our hosts at McGill University who offered us a social program in which 

we were well-fed, entertained, and accommodated, in addition to having the opportunity to 

enjoy Montréal. Special thanks to our colleagues and co-chairs of the local organizing 

committee, Annie Savard and Limin Jao, for their leadership, time commitment and thoughtful 

planning and hosting of the conference. The meeting was excellently organized and managed 

from beginning to end. Thanks to the other members of the local organizing team for their 

valuable contribution to the planning and smooth running of the conference. Specifically, 

thanks to the graduate students who did a tremendous amount of work both before and during 

the meeting: Alexandre Cavalcante, Dominic Manuel, Brandes Hadas, Hailey Iacono, Hannah 

Chestnutt, Laura Broley, Marta Kobiela, Noor Affana, Sarah Mathieu-Soucy, Scosha Merovitz, 

Sophie Pinard, and Vandana Chandrasekhar. Thanks also to faculty members Marta Kobiela 

and Dawn Wiseman. Thanks to the Department of Integrated Studies in Education and the 

Faculty of Education of McGill University for their support of the meeting and to the following 

sponsors for their contributions: Calvin Leung (Clear Educational Solutions), Centre de 

Recherches Mathématiques, Chuck Hughes (Crown Salts), Concordia Department of 

Mathematics and Statistics, Institut des Sciences Mathématiques, and McGill Bookstore. 

I acknowledge the CMESG/GCEDM (2016-2017) executive for organizing another interesting 

scientific program with topics relevant to our membership of mathematicians, mathematics 

teacher educators and mathematics education researchers. On behalf of the executive, thanks to 

the invited session speakers/leaders for making the program possible. Thanks to the two plenary 

speakers: Dr. Yvan Saint-Aubin (Université de Montréal) for engaging us in his work on writing 

meaningful mathematics exercises for students in his university mathematics courses that 

stimulated rich discussions and interest regarding designing, selecting, and using mathematics 

exercises; and Dr. Annie Selden (New Mexico State University) for taking us on an insightful 

journey of her 40+ years of teaching and thinking about university mathematics students, 

proofs, and proving. Thanks to Joel Hillel for presenting the “Elder Talk” that took us down 

memory lane as he shared highlights from his long active membership in CMESG/GCEDM. 

Thanks to our colleagues who took on the demanding roles of leaders of the six Working 

Groups. We are honoured to have such colleagues who are willing to commit their time and 

expertise to guarantee the success of this central aspect of our meeting. Thanks to the presenters 
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of the three Topic Sessions, the twelve new-PhD presenters, the Math Gallery Walk presenters, 

the presenters and coordinator of the Panel, the Ad Hoc discussion leaders, and all the 

participants for making the 2017 meeting a meaningful and worthwhile experience. 

This publication of the proceedings of the CMESG/GCEDM 41st Annual Meeting offers readers 

the opportunity to learn about some of the ongoing mathematics education research and 

interests of our community. It also provides a means for participants to further reflect and build 

on their experiences at the meeting and for others to share in and be inspired by the work of the 

mathematics education community in Canada. 
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THE MOST UNGLAMOROUS JOB OF ALL: WRITING EXERCISES 

Yvan Saint-Aubin 

Université de Montréal 

The author reviews his learning process on how to write mathematical exercises. To 

understand his conclusions reached by trial and error, Anna Sfard’s three stages of 

mathematical concept development are illuminating. 

INTRODUCTION 

You are a teacher. You have goals and expectations for your students. You must manage wisely 

your time and theirs to help them reach these goals. Your time will be divided between 

preparing lectures, delivering them, writing exercises, outlining assignments, grading them, 

meeting students during office hours, preparing exams, and grading them. You have other duties 

as an employee in your school; but your abilities as a teacher are most challenged by the day-

to-day activities in the previous list. 

Several facts will influence the time you spend on each of these activities. Like a performance 

artist, you need to be ready to meet your students at scheduled times. These encounters provide 

you instant feedback, either by your students’ questions or their bemused silence. If everything 

goes well, the periods will have helped your students and given you some encouragement to go 

prepare your next meeting with them. Writing and choosing exercises for students to work on 

at home or as part of an assignment is more delicate. There is no immediate feedback, no 

witnessing of mental processes, no sense of the students’ psychological reactions to the 

challenges you posed. The grading will provide some indications of where your students stand. 

However, contrary to classroom interactions, trying to assess your students’ progress through 

grading is like admiring a landscape on a foggy day: outstanding features will be caught, but 

fine details are likely to be missed. Preparing exams and grading them are somewhat different 

than preparing homework. Your goal here is to build a tool to assess which concepts your 

students have mastered and at what level. Besides the mathematics, your mind will be busy 

probing all the material, tuning the difficulty, making sure the questions represent what was 

taught and exercised, et cetera. In other words, your outstanding concern will be fairness. All 

these pedagogical activities play an important role in your teaching. How should you divide 

your time between them? 

Let us turn the table. How much time do (or should) your students spend (or should spend) on 

the various activities to master what you teach? Most attend your classes and write your exams. 

That is granted. But how much time will they allot to the exercises you suggest to them and to 

your assignments? The answer may vary from one level to another of the schooling system. In 

primary school, there are only assignments, usually to be handed in the morning after. Starting 

with high school, students are expected to do some exercises on their own, whether or not these 



CMESG/GCEDM Proceedings 2017  Plenary Lecture 

4  

exercises will be formally graded. At the university level, students will be required to do as 

many exercises as they can, without supervision or grading. The official requirement calls for 

one hour of work at home for every classroom hour; and my own experience, as a student and 

a teacher, shows me that this requirement is far from sufficient. Finally, for some of these 

courses, feedback will be given through exams only. If guidance is to be given, it is through a 

good selection of exercises. 

The necessity of exercises is recognized by both teachers and students, even uninterested ones. 

The roles of teachers and students in this part of their pedagogical contract are somewhat 

disconnected. My perception of this part is that the teachers suggest the exercises, the students 

try to do them, but scarce communication flows one way or the other. If there is any truth in the 

last sentence, the situation is rather problematic. Mathematical ideas, algorithms and concepts 

might be introduced during classes, but, however great your teaching ability is, it is while doing 

exercises that your students will grow familiar with and eventually apprehend them. In other 

words, good understanding rarely occurs in the classroom; it occurs during independent work. 

As critical the job of writing and choosing exercises is, it is very difficult due to the very limited 

feedback on how the students work through exercises and what they eventually learn from them. 

Moreover praise for good teachers is usually given due to classroom performance, fairness in 

grading, and moral support provided to students, but rarely, if ever, does it acknowledge the 

quality of the exercises proposed. Writing exercises is crucial but totally unglamorous! 

I am a mathematician, not a ‘didacticien’. Most of what I have learned about mathematics 

teaching is through intuition, and trial and error. My path to writing good exercises was rather 

sinuous. Recently a colleague suggested that I read Anna Sfard’s (1991) reflections on 

mathematical processes and objects. My impression of Sfard’s paper is that she captures vividly 

the various stages of my personal acquisition of any mathematical concept. This reading 

brought me to put words on how I now design a series of exercises targeted to learning a given 

mathematical idea or concept. The next two sections will try to describe my understanding of 

Sfard’s ideas on the fruitful tension between the operational and structural sides of a concept 

(Learning a Mathematical Concept: Algorithm vs Abstract Object) and her three stages of 

concept developments: interiorization, condensation and reification (The Three Stages in 

Concept Development). Only after will I give examples of exercises from one of my courses 

and draw the parallel with Sfard’s three stages (Writing Exercises). In the conclusion, I shall 

explain how I design sets of exercises now (Conclusion). 

LEARNING A MATHEMATICAL CONCEPT: ALGORITHM VS ABSTRACT 
OBJECT 

My first recollection of fractions (or of rational numbers as mathematicians call them) is tied to 

the règle de trois (cross-multiplication): a mom has four apples and always treats her children 

equally. How many apples does she give each if she has two kids? My early understanding of 

this difficult concept of fraction was rooted in the process of sending the number 2 under the 

number 4 to make a fraction and eventually realizing that this fraction was also the integer 2. 

The exercise became much harder when the number of kids changed, for example, to three. The 

fraction would not simplify, and I had to realize that, first, I had no words for the result and 

second, that result needed a numerator and a denominator to be written. We practiced this règle 

de trois on all type of situations (and it brought me a lot of joy). I thus learned the rational 

numbers through a recipe: send an integer under another one, look for common factors, remove 

them if any. It is hard for me to pinpoint the moment in my understanding of fraction when this 

algorithm gave way to a more abstract object: that of numbers that might be integers or lie 

between them, and that, in a sense, superseded integers by including them in a richer family. 
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Many mathematical notions were historically discovered and are now learned through 

computations, an algorithmic procedure or an operational process. Sfard (1991) calls this aspect 

of this mathematical concept operational conception. But a different aspect of the same concept 

is often used. 

Even though rational numbers are not integers, one can use the addition and multiplication of 

integers to define how to add and multiply rational numbers. To master these operations, I had 

to give up my understanding of fractions as a dynamical process (write a over b, look for 

common factors, simplify them). This dynamical process needed to be replaced by a more 

abstract definition, that of a pair of integers, identified respectively by the names numerator and 

denominator. After a transition period, the number 
8

3
 no longer triggered the image of a mom 

dividing eight apples among three kids. My new conception of 
8

3
, as an object on which new 

operations could be defined, made accessible to me a larger set of problems involving fractions. 

The adaptability of a mathematical concept to many situations often depends on a more abstract 

definition, one independent or partially removed from its algorithmic incarnation. Sfard (1991) 

calls this new aspect of the mathematical concept structural conception. The definition of a 

rational number as a pair (numerator, denominator) provides an example of such a structural 

conception. The abstract definition does not replace the algorithmic one; instead the former 

completes the latter. Proving properties on rational numbers will often require going back and 

forth between the two ways of thinking about the concept. 

Sfard (1991) argues that, on a student’s learning path toward a given mathematical concept, its 

operational conception is often mastered before its structural one. Of course our understanding 

of operational conceptions of mathematical concepts should not be limited to computational 

algorithms whose output is a number. The mathematical concept of vector is often introduced 

as an arrow drawn on a plane. At first it is simply a geometrical drawing. The addition of two 

vectors (or two arrows) is then obtained algorithmically by a geometric construction: Move the 

second arrow so that its base sits at the tip of the first, then join the base of the first arrow to the 

tip of the (translated) second. The result of the addition is a new arrow. This, for me, is an 

operational conception of a vector. A student pursuing mathematics at the university level will 

see this introductory conception of a vector enlarged by several definitions, getting more and 

more abstract, each one encompassing the previous ones into a broader, more structural, 

conception. 

Sfard’s (1991) key argument is that, for a large set of mathematical concepts, the learning of an 

operational conception before a structural one will be the most efficient path for a majority of 

students. Her stand is not that the teaching of a concept should follow its historical development. 

Instead she argues that, in the process of many types of learning, some universal characteristics 

are independent of external stimuli, like teacher’s preferences, the textbooks, the curricula, et 

cetera. The precedence of the operational conception over the structural one appears to be such 

a characteristic. 

A second example may be useful to distinguish the operational and structural sides of a concept. 

I have chosen the concept of the derivative of a function, in part because it is taught at the end 

of high school or during the first of the undergraduate years (or in cégeps in the Province of 

Québec). This two-sided development of a mathematical concept appears to be useful at all 

stages of the mathematical education. 

I first encountered the concept of the derivative of a function during my first year of cégep. I 

believe that my experience is similar to that of many student’s first contact with this concept. 



CMESG/GCEDM Proceedings 2017  Plenary Lecture 

6  

The textbook I learned from used the formal definition to introduce the concept. If 𝑓 ∶ ℝ → ℝ 

where ℝ denotes the set of real numbers, the derivative of 𝑓 at 𝑥 is given by 

lim
∆𝑥→0

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
 .                        (∗) 

I recall that I did not get much from this definition. I had barely any understanding at this point 

of what a limit is. A better understanding of this formal definition, i.e., a structural conception, 

would have to wait for my first real analysis course at the university level and a structural 

conception of the mathematical limit. Two operational conceptions were fortunately provided.  

 

Figure 1. The graph of a function 𝑓 (in red) with the tangent to the graph (in blue) drawn at the 

point 𝑥 = −1. Here the derivative is 1. 

The first one is the concept of derivative as calculating the slope of a tangent to a graph. Having 

mastered the slope of a line in high school, it was easy for me to understand the ‘number’ that 

the derivative was computing. This operational conception does not lead to a precise value of 

the derivative. Indeed to get a gross estimate of the derivative, one has to draw as carefully as 

possible the graph of the function, draw (again carefully) the tangent at the desired point, and 

read the slope from the graph paper. Of course, nowadays a student can use a computer to draw 

the graph and the tangent, but the estimate of the exact value of the slope will still be difficult 

to measure by visual means only. These limitations do not restrict the power of this first 

operational conception. It provides a (geometric) algorithm to get the number, however grossly. 

The second operational conception of derivative was given to me through a series of 

computational rules. I still recall the beginning of the list as I still use it regularly in my work. 

If the reader has learned it once in his or her life, the list will be (very!) familiar. 

𝑑  

𝑑𝑥
 𝑥𝑛 = 𝑛𝑥𝑛−1 

𝑑  

𝑑𝑥
sin 𝑎𝑥 = a cos 𝑎𝑥 

𝑑  

𝑑𝑥
cos 𝑎𝑥 = − a sin 𝑎𝑥 

𝑑  

𝑑𝑥
𝑒𝑎𝑥 = 𝑎𝑒𝑎𝑥 

𝑑  

𝑑𝑥
log 𝑎𝑥 =  

1

𝑥
 

𝑑  

𝑑𝑥
(𝑓 + 𝑔) =

𝑑𝑓

𝑑𝑥
+

𝑑𝑔

𝑑𝑥
 

𝑑  

𝑑𝑥
(𝑓𝑔) =

𝑑𝑓

𝑑𝑥
 𝑔 + 𝑓 

𝑑𝑔

𝑑𝑥
 

⋯
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If I recall correctly, some of these rules were justified, either geometrically, graphically or 

algebraically. However none was given a proof starting from the formal definition (*). My 

introduction to the derivative thus stopped short of a structural conception, but I think it was a 

good first step: These two operational conceptions provided tools to apply the new concept to 

other disciplines (physics being an obvious one) and to introduce geometrically the difficult 

concept of the limiting process involved in the definition. The path toward a structural 

conception had been opened. 

A lack of understanding of the formal definition rules out any formal proofs. Many scientists 

pursue fruitful careers, even though they have not mastered the abstract definition (*). As shall 

be argued in the next section, their understanding of the derivative goes beyond the purely 

algorithmic computation and has reached some form of structural conception. In other words, 

a structural conception is not a strict synonym of an abstract definition. 

Mathematicians tend to conceive a mathematical concept through both its algorithmic and 

abstract definitions. One might think that the operative conception is only a step toward the 

structural conception, a step that can be forgotten once the structural stage has been reached. 

This is not the case. A mathematical concept is the amalgam of the two conceptions. Even 

professional mathematicians will use both in their discussions. To underline this point, Sfard 

quotes Paul R. Halmos: “To try to decide which component is more important is not much more 

meaningful than to debate whether for walking you need your right foot more than your left” 

(cited in Sfard, 1991, p. 9). 

THE THREE STAGES IN CONCEPT DEVELOPMENT 

Beside the two complementary operational and structural conceptions of a mathematical 

concept, Sfard (1991) also proposes a model of how an individual comes to develop an 

understanding of a new mathematical concept. She identifies three stages through this progress 

that she names interiorization, condensation and reification. This section describes these stages 

and gives examples of them. 

SFARD’S THREE STAGES 

A student’s first contact with a new mathematical concept is the stage of interiorization. This 

step is mainly the acquisition of the operational processes that are attached to the concept. The 

mastering of the règle de trois (cross-multiplication) was definitely a first contact with fractions, 

one based on an algorithm leading to the unavoidability of some numbers of the form 

(numerator / denominator). These algorithmic processes use objects introduced previously and 

mastered to the point of being considered ‘elementary’, ‘basic’, ‘low-level’. Of course, what is 

low-level will change as the student progresses through school. For example, the mathematical 

concept of rational numbers, that is a focus of study throughout primary school, will become a 

low-level tool during high school.  

Through practicing the algorithmic processes, the student will develop mental representations 

of the new mathematical concepts. Sfard (1991) declares that interiorization has been reached 

whenever these mental representations can be conjured or summoned up without the student 

having to perform the steps of the process. I guess I interiorized fractions when 
8

3
 stopped being 

related to eight apples and a family of three children and started being some object on its own.  

The student then starts a step where the processes attached to the mathematical object are 

compressed, condensed and perceived as a whole. An example of this condensation occurs 

when the two processes of ‘computing the slope of the tangent to the graph’ and ‘apply some 
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algorithmic rules to transform a function into another one’ merge into two representations of 

the same object called the derivative of a function. Using Sfard’s (1991) words, a “new concept 

is ‘officially’ born” (p. 19). In the learning of fractions, the stage of condensation might also 

include the mastery of addition and multiplication. These two new algorithmic processes would 

be interiorized by themselves and eventually be condensed into the larger concept of fraction. 

The last stage in the acquisition of a new mathematical concept is the reification, from the Latin 

word res meaning a thing. (The same root is used in republic, the ‘entity’ of the ‘people’.) Sfard 

(1991) describes this step as “an instantaneous quantum leap: a process that solidifies into 

object, into a static structure” (p. 20). It happens when various representations are unified in a 

purely static structure, a structure detached from any process. This structure can then be used 

to solve problems and new processes can be built in which it appears as a building block, a new 

‘low-level’ object. 

Sfard (1991) notes that certain minds, e.g., those of certain professional mathematicians, might 

be able to manipulate a new abstract object without becoming proficient in some algorithmic 

processes that underlie it, but she claims (and I certainly agree with her) that mastering a new 

concept through first interiorization, then condensation and finally reification is the prevailing 

path. This said, I would prefer not to present reification as an ontological quantum leap. Instead 

I think that reification may happen over such a long period that it is difficult to pinpoint when 

it has actually occurred. Merging various representations of an object requires first learning 

these many faces of the same mathematical concept. In my experience, their fusion or 

solidification into one abstract unit is often a slow process. Finally, I believe that reification of 

a given object might mean a different thing for different people. The derivative is, without a 

doubt, a mathematical concept. As such, mathematicians will want its rigorous definition given 

in equation (*) to be one of the representations coalescing with others into its reification. 

However, for engineers working in the design of airplane wings, this rigorous definition might 

not be necessary; it may not even be known to them! That does not mean these engineers have 

not reified the concept. Their use of this mathematical object in the partial differential equations 

modeling airflow around a wing has all the characteristics that Sfard calls for reification. 

The following examples might help understand Sfard’s (1991) three stages. I should warn the 

reader that these examples are my own and reflect my understanding of her work. 

EXAMPLE 1: THE RATIONAL NUMBERS 

For this first example, I chose to pursue the description of the mastery of fractions, or rational 

numbers, because the learning and eventual reification of this mathematical concept spans 

usually more than a decade of study. Here is a (partial!) list of what ‘rational numbers’ gather 

in my mind. I hope that a large part of it coincides with the reader’s own list. I formulate them 

as actions that I can now perform. In a course syllabus, I would present them as goals to be 

achieved or abilities to be acquired. But below, I will use the word competencies that seems to 

be the preferred one nowadays. 

 I know how to answer problems similar to that of the mother giving apples to her kids 

with something of the form 𝑎/𝑏. 

 I know that 𝑎/𝑏 is the same thing as (2𝑎)/(2𝑏); it is also the same thing as (7𝑎)/(7𝑏) 

and so on. 

 I know how to add 𝑎/𝑏 and 𝑐/𝑑 and express the result in the form 𝑒/𝑓. 

 I know how to multiply 𝑎/𝑏 and 𝑐/𝑑 and express the result in the form 𝑒/𝑓. 

 I know how to solve a real-life problem that calls for fractions (e.g., to decide how 

large are two pieces of the same pie put together). 

 I know that the addition of 0 with any fraction 𝑎/𝑏 gives back 𝑎/𝑏. 
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 I know that the multiplication by 1 of any fraction 𝑎/𝑏 gives back 𝑎/𝑏. 

 I know that the addition and multiplication of two fractions are commutative and 

associative. 

 I can decide whether 𝑎/𝑏 is smaller, equal or larger than 𝑐/𝑑. 

 I know how to solve algebraic equations like 3𝑥 = 2. 

 I know that solutions of linear equations formulated with fractions are themselves 

fractions. For example the equations 2𝑥/3 + 3𝑦/2 = 1/2 and 3𝑥/2 − 2𝑦/3 = 2/3 

have a solution where 𝑥 and 𝑦 are fractions. 

 I know how to prove that solutions of 𝑥2 = 2 are not rational. 

 I know that rational numbers can be defined rigorously as equivalence classes of pairs 

(𝑛, 𝑑) where 𝑛 is an integer and 𝑑 is a non-zero integer. 

 I know how to prove commutativity and associativity of the operations of + and × 

defined on these equivalence classes. 

 I know that the set of rational numbers forms a field, that it is the smallest containing 

the integers and how to show these facts. 

And the list goes on. It is organized in the order I have acquired them and contains competencies 

that are mastered from primary school to a bachelor degree in mathematics. If you have not 

done a BSc in mathematics, some might be unfamiliar. (Do not worry, keep on reading!) Before 

moving to the next paragraph, I invite you to stop for a while and decide which competencies 

are learned during the interiorization, condensation and reification of the concept of rational 

numbers. 

I really hope you did the exercise. There are many algorithmic processes involved, some aimed 

at the concept of fraction (1. and 2.), at their addition and multiplication (3. to 7.), and others at 

the solution of algebraic equations (10. and 11.), et cetera. Is the mathematical concept of 

fractions dissociable of the operations of addition and multiplication on them? In other words, 

can one understand fractions without knowing how to add them? If yes, then the mastery of the 

first two competencies would complete the interiorization of the fractions. If not, then I would 

propose that the seven first would be necessary for this first stage. I would put the competencies 

8., 9. and 10., and probably 11. at the stage of condensation; they all require an ease to think 

about fractions more abstractly and ‘visualize’ addition and multiplication without actually 

doing them. The last competencies, starting at 11. or 12., require conceiving the set of fractions 

as a whole, together with the various operations defined on them: addition, multiplication, but 

also taking the power of a fraction, writing and solving algebraic equations, et cetera. I would 

say that they are achieved while reification is happening or after. 

With such a long list of competencies, one can also see the interweaving of the development on 

various mathematical conceptions and concepts. The ‘real-life’ competency 5. is almost 

synonymous to the procedural conception 4, but it is likely that both will require some efforts. 

The concepts of identity elements for + and × in 6. and 7. appear intimately related to the 

operational conceptions 3. and 4.  

It is clear that the actual moment of completion of one stage or another is difficult to decide 

precisely and may depend on what is included in the mathematical concept. That being said, 

the extremes are easily distinguished as belonging to interiorization and reification respectively: 

on one hand, the basic règle de trois and, on the other hand, the structural conception of the 

rational numbers as one of the sets of numbers distinguished by their properties from other sets, 

like the integer, the real or the complex numbers. 

The rational numbers also give an example of the fact that the two conceptions of a 

mathematical concept described in Learning a Mathematical Concept: Algorithm vs Abstract 
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Object are necessary to do mathematics. The usual proof of the fact that ‘√2 is not a rational 

number’ requires writing a solution in the form 𝑛/𝑑 and obtaining a contradiction. 

Understanding the statement itself requires the structural conception of the rational numbers, 

obtained through condensation and probably reification of the concept of fraction. Its proof 

requires the algorithmic conception (numerator / denominator) of fractions acquired at the stage 

of interiorization (competencies 1. and 2.). In other words, the two conceptions play a symbiotic 

role, even at the higher level of statements requiring reification. 

EXAMPLE 2: MATRICES AND LINEAR TRANSFORMATIONS 

This second example targets a mathematical concept that is first encountered at the end of high 

school (and at the cégep level in the Province of Québec). Its condensation and reification might 

only occur during the undergraduate years or even after. I chose it because the algorithmic steps 

usually presented to introduce matrices are very similar to those used to teach fractions. I 

propose the following list of competencies. 

 I know when two matrices can be added and how to add them when they can. 

 I know when two matrices can be multiplied and how to multiply them when they can. 

 I know that the matrix full of zeroes is the identity element for the addition. 

 I know what the identity matrix is and why it is the identity element for the 

multiplication. 

 I know how to recognize when a function is a linear transformation. 

 I know that only the first column of 𝐵 is used to compute the first column of the product 

𝐴 ∙ 𝐵 of the two matrices 𝐴 and 𝐵. 

 I know how to prove that the matrix multiplication is associative. 

 I know that every matrix corresponds to a linear transformation. 

 I know that, given bases, every linear transformation corresponds to a matrix. 

 I understand that the image of the product 𝐴 ∙ 𝐵 of two linear maps is a subspace of 

the image of 𝐴. 

 I understand that isometries encountered in Euclidean geometry that leave a point fixed 

are linear transformations.  

This list is shorter than the one presented for fractions. It covers only parts of the first courses 

of university-level linear algebra. Even students who master all competencies of the list might 

not reach the level of reification, in part because these are covered in a very short period. For 

me, reification is a slow process. 

Matrices and linear transformations are often taught as two different concepts. The 

interiorization of the first is reached by doing exercises aimed at competencies 1. to 4. The 

interiorization of the second is done in the same way, but in relation to competency 5. The 

exercises are usually quite different in taste, with those for matrices involving integer- and 

rational-valued matrices and those for linear maps given in terms of more abstract functions. 

Contrary to rational numbers whose learning is spread over more than a decade, the fact that 

matrices and linear transformations are two faces of the same object is taught during the same 

course. Competencies 7. to 9. definitely require the fusion of these two representations into a 

unique object. The best students therefore reach condensation of the concept within a term. This 

concept is used in competencies 10. and 11. to state properties that mix it with other (new or 

old) knowledge: the concept of vector space for 10., and the concepts of isometry and scalar 

product for 11. For the best students, ‘inserting the concept ‘matrix-linear transformation’ into 

this larger framework might represent the beginning of its reification. 
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WRITING EXERCISES 

By ‘writing exercises’, I mean designing a set of exercises aimed at a specific group of students 

following a given course with some lectures (usually given by me) and based on a given 

textbook or notes that I have written.  

I have learned how to write exercises the hard way: by trial and error. My main errors were to 

write exercises that I wanted the students to be able to do, without helping them to reach that 

‘right’ level. Based on the framework developed in Learning a Mathematical Concept: 

Algorithm vs Abstract Object and The Three Stages in Concept Development, it seems obvious 

that the exercises should be chosen or written so that they help the students reach the 

interiorization of a given mathematical concept and start its condensation. Rarely will it be 

possible to guide students to achieve reification of the concepts that form the content of the 

particular course being taught, but relationships between these concepts and those mastered 

earlier in other courses might trigger reification of the older ones. It is absolutely necessary to 

provide enough algorithmic or procedural exercises for the student to grasp the technical aspects 

of the concepts being introduced, but these kinds of exercises are not sufficient. More exercises 

are needed to lead the students into some form of condensation so that the various aspects of 

the technical gymnastics coalesce into a well-circumscribed object. Of course these exercises 

leading to condensation would be useless (and cruel!) if the algorithmic aspects had not been 

somewhat transcended. 

The course MAT 1101 Mathématiques fondamentales is a compulsory course for the students 

registered in the program for future teachers of high-school mathematics at Université de 

Montréal. (I have taught it twice by now.) It reviews and defines rigorously the common number 

sets (the natural numbers, the integers, the rational, real and complex numbers) and introduces 

the main structure of mathematics (group, ring and field). Even though most mathematical 

objects are familiar, the abstraction level of the course makes it hard. The following exercises 

are taken from notes I have written for this course. They all appear in a section on isometries 

of the plane and their group structure. This section thus provides an example of the group 

structure for transformations that form the basis of the concept of congruence of geometric 

objects, like triangle, polygons, angle, et cetera. The latter concepts are taught in Euclidean 

geometry in high schools of Québec, as I assume they are elsewhere. 

           

Figure 2. The isometry on the left represents a rotation of 2𝜋 3⁄  of the green triangle onto the 

yellow one, that on the right is reflection through the line at angle 𝜋 3⁄  with the horizontal axis. 
Both transformations preserve the distances. For example, the distances between the vertices 

of the green triangle coincide with those of the yellow one. 
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When students start MAT 1101, they have encountered isometries during their high-school 

years, but under another name. These isometries include the rotations and translations of the 

plane, which are called rigid motions. They also include reflections through a line of the plane. 

These transformations of the plane all have in common that they preserve angles and the 

distances between any pair of points. That is why they are called isometries. Several new 

properties will be introduced in the course. First, it will be shown that any transformation of the 

plane that preserves the distance between all pairs of points is either a rotation, a translation, a 

reflection, or a combination thereof. Second, while the Euclidean geometry classes will have 

emphasized ruler-and-compass constructions, the course will explore Cartesian-coordinate 

expressions for these transformations. 

The exercises that are described below are a subset of those that I propose to the students after 

the formal discussion in the classroom. During these lectures, I have defined an isometry as a 

function 𝑓: ℝ2 → ℝ2 that preserves distances and shown that they are indeed the translations, 

rotations and reflections. The expressions of the functions 𝑓 in Cartesian coordinates are then 

given, and the following theorem proved: 

Theorem. For any isometry 𝑓: ℝ2 → ℝ2, there exists a 2 × 2 matrix 𝐴 and a vector 𝑡 

such that (i) 𝐴 is an orthogonal matrix and (ii) 𝑓(�⃗�) = 𝐴�⃗� + 𝑡 for all �⃗� ∈ ℝ2. 

The fact that isometries form a group has been partially proved (an exercise will complete the 

proof), and the relationship between isometries (rigid motions and reflections) and congruent 

geometric objects has been recalled: two geometric figures are congruent if there exists an 

isometry that brings the first onto the second. (The objects of the same shade in Figure 3 are 

congruent.) Sometimes I have time during the lectures to discuss some of these problems, 

otherwise a teaching assistant helps the students work their way through some of the exercises. 

The rest is the students’ responsibility and could be discussed during my office hours. 

 

Figure 3. The objects of the same shade are congruent. 

Preparing the exercises, I wanted to be sure that the Cartesian expression 𝐴�⃗� + 𝑡 was understood 

and what it meant for figures drawn in the plane. The first exercise below is a direct application 

of the formula 𝑓(�⃗�) = 𝐴�⃗� + 𝑡 for a rotation and a reflection. The formula for the matrices 𝐴 for 

the two cases of a rotation and a reflection was given in the notes and discussed in class. 

Exercise 1. Consider the square of vertices (1,1), (1,2), (2,2), (2,1). 

(a) Give the vertices of its image under a rotation of −𝜋 2⁄ . Check the computation 

by drawing the new vertices. 

(b) Same question for the reflection through a line at an angle −𝜋 4⁄  with the 

horizontal one. 
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The exercise requires putting the right value of the angle (here −𝜋 2⁄  or −𝜋 4⁄ ) in the formulae 

given in the notes and applying the isometry to the four vertices of the square, drawing the 

vertices, and checking that the resulting figures correspond to the rotated (or reflected) square. 

It is completely algorithmic and actually does in coordinates what students have done in high 

school either by moving the drawing over one another or by ruler and compass. It provides a 

new procedural representation of a rigid motion (or reflection) and is thus clearly at the level of 

interiorization. I thought the problem was easy, but it did give a hard time to some of the 

students. The new procedural element ‘Cartesian form 𝑓(�⃗�) = 𝐴�⃗� + 𝑡 of an isometry’ definitely 

needed to be interiorized. 

The following two exercises are more difficult. Both suppose some mastery of two mental 

representations of an isometry: as a rigid motion like in high school and as a function is 

Cartesian form. Exercise 2 also uses the Cartesian equation describing a line; it is recalled in 

the question. This exercise also proves a property of isometries (they transform lines into lines), 

thus adding to the (hopefully) emerging mathematical object. 

Exercise 2. The parametric equation of a line is of the form 𝑑(𝑥) = 𝑥 �⃗� + �⃗⃗�. The line 

goes through �⃗⃗� and has �⃗� as direction vector. 

(a) Obtain the image of this line by an isometry 𝑓(�⃗�) = 𝐴�⃗� + 𝑡. 

(b) Show that this image is a line. 

Exercise 3. TRUE or FALSE. If TRUE, give a proof; if FALSE, give a counter-

example. 

(a) Two segments of a line are congruent if they have the same length. 

(b) Two angles are congruent if they have the same measure. 

(c) A reflection applied to a polygon does not change its area. 

(d) Two isosceles triangles of the same area are congruent. 

(e) To be congruent is an equivalence relation between polygons. 

I first comment on the ‘easiness’ of Exercise 3. The student’s familiarity with the high school 

representation of rigid motions made it easy to decide between TRUE and FALSE for each 

statement. Only statement (d) caused some discussion. Some students noted that an isosceles 

triangle with a base and height of length 1 would have the same area as one with base 2 and 

height ½. Clearly these two triangles would look very different and no rigid motions would 

bring the first onto the second, so it was quickly agreed upon that (d) was FALSE. Statement 

(e) used the concept of equivalence relation that was introduced earlier in the course. Maybe it 

gave yet another representation of an equivalence relation and contributed to the beginning of 

a reification, not of the concept of isometry, but of that of equivalence relation. 

Proving statements is always a challenge at this level and Exercise 2 proved to be the hurdle 

here. The main difficulty was to apply the isometry to the line, that is, to compute the 

compositions of two functions. The composition of functions is introduced in cégeps in Québec 

and maybe before. It is also discussed in courses taken by the students during their term before 

MAT 1101. But it remains difficult. In terms of Sfard’s (1991) stages, students have not reified 

(and even condensed) the concept of composition of functions. Even proving the true statements 

of Exercise 3 remained difficult after the solution of the previous exercise. My teaching 

assistant and I knew about these difficulties, and we tried to help the students as follows. 

After Exercise 1, it was natural to solve Exercise 2 by writing down this composition of 

functions in terms of Cartesian coordinates, spelling out the horizontal and vertical coordinates. 

In the short period of time allotted to the exercise period, it is unlikely that a complete 

interiorization is reached. Despite this, Exercise 2 was meant to lead toward condensation. Sfard 

(1991) identifies certain characteristics of condensation as follows: ability to think about a given 
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process as a whole, without the urge to go into details; and growing ease in alternating between 

different representations of the concept. In helping the students through the proof of Exercise 

2, my teaching assistant suggested avoiding explicit Cartesian coordinates in favor of using 

simply �⃗� as the point upon which the isometry was applied. But the transition toward a simpler 

notation, and thus omitting the details of the procedural conception, was not easy for all. 

I consider Exercise 4 below very difficult. It calls for many mathematical concepts that the 

students have mastered at this point, but have rarely used together. According to Sfard (1991), 

a key feature of a reified concept is that it can be used as an input into new processes. In this 

proof, the isometry, seen as a function on coordinates, is such an input. 

Exercise 4. Does every isometry have an inverse? If so, compute it. If not, give a 

counter-example. 

The solution below identifies by numbers the many concepts that enter the proof. Despite the 

fact that all these are known, the proof is very difficult for my students.  

Proof: 

(1) The inverse 𝑔 of a function 𝑓 is such that 𝑓 ∘ 𝑔(�⃗�) = 𝑔 ∘ 𝑓(�⃗�) = �⃗� for all �⃗�.  

(2) Let 𝑓 and 𝑔 be isometries. These are thus of the form: 𝑓(�⃗�) = 𝐴�⃗� + 𝑡 and 

𝑔(�⃗�) = 𝐵�⃗� +  �⃗⃗�.  

(3) If 𝑔 is the inverse of 𝑓, then 

�⃗� = 𝑔 ∘ 𝑓(�⃗�) = 𝑔(𝐴�⃗� +  𝑡) = 𝐵 ∙ (𝐴�⃗� +  𝑡) + �⃗⃗� = (𝐵 ∙ 𝐴) ∙ �⃗� + (𝐵 ∙ 𝑡 + �⃗⃗�) 

and thus (4) 

𝐵 = 𝐴−1    𝑎𝑛𝑑    �⃗⃗� = −𝐴−1 ∙ 𝑡  
and (5) every isometry has an inverse because the matrix 𝐴 is always invertible. 

At step (1), the concept of the inverse of a function is used together with the composition of 

two functions. It is in (2) and (3) that the specific form of an isometry in Cartesian coordinates 

is used. Step (3) requires the computation of the composition, the associativity of matrix 

multiplication and regrouping terms so that they have the form of an isometry. Step (4) solves 

for 𝐵 and �⃗⃗�, and uses the existence and unicity of solution of linear equations. Finally step (5) 

uses a property proved in the course that the matrix 𝐴 is orthogonal, thus invertible. 

This exercise is difficult, and I propose some of this type as challenges only once in a while. 

They are not meant to help reach any of Sfard’s (1991) three stages in particular, though they 

might. Some students try (and enjoy) them, others stay away. After having tried them, a few 

may come to my office to have their solution checked or to ask for help. Discussions with these 

intrepid students are always inspiring. If these exercises have any use, it is in encouraging 

students to use any concepts and results they find appropriate for the problem at hand, and to 

not limit their horizon to the objects just introduced in class. 

CONCLUSION 

So, how do I write exercises about a given new mathematical concept? I let my mind wander 

and try to capture properties that I know about it, to draw parallels with lower-level objects that 

students master already, to indicate why the concept was introduced, how it is used, and so on. 

This brainstorming usually gives me a fairly long list of exercises. I then try to order them from 

what seems the easiest to the most difficult. Then comes the sobering question: will the students 

be able to do them? The answer is almost always no! The list must then be completed so that 

the students will be able to progress from one to the other. This part is the most difficult as it 

requires one to assess intuitively what difficulties the students will experience and what is a 

good way to lead them in the right direction though yet another exercise. 



Yvan Saint-Aubin  Writing Exercises 

15 

Do I use Sfard’s (1991) three stages to do this job? To be honest, no. As said before, I have 

developed my way of preparing exercises by submitting many students to too difficult exercises 

and witnessing their disheartenment. It took me a while to understand their comments that 

“these are way too difficult!” It dawned on me that it is necessary to practice each step toward 

a good understanding which, in a course, often means condensation. This led me to break down 

the mathematical concept under study in minute pieces that could be understood easily, a step 

that made me start, in most of the cases, with algorithmic techniques. Did I discover and 

formulate Sfard’s three stages? No, I did not. Is Sfard’s model obvious to practicing 

mathematicians? Probably not. To formulate clearly the various steps of the very complex 

process of understanding mathematics is a major step toward better teaching. And her three 

stages capture very well what I go through when I learn new mathematics. Now that I know her 

model of the development of a mathematical concept, I can often recognize in my graded sets 

of exercises some that could help them reach interiorization and maybe condensation. 

Since Sfard’s work is already a quarter-century old (1991), there must be many refinements of 

her thoughts that I unfortunately ignore. The remaining lines raise questions that might have 

already been settled. They are aimed at a competency that is very hard to acquire, namely, the 

ability of writing proofs. What is the range of applicability of Sfard’s model of development of 

mathematical concepts? Is teaching ‘how to write a proof of a mathematical statement’ similar 

to teaching a mathematical concept? Are there stages of interiorization, condensation and 

reification in the process of acquiring this ability? These questions are intimately related to the 

other plenary lecture of Annie Selden on the difficulties met by university mathematics students 

with proofs and proving. She and her husband have written extensively on these difficulties (as 

a starting point, see Selden, 2018) and have designed courses to help advanced students in the 

development of abilities in proving statements and recognizing when a logical reasoning is or 

is not a proof. Several universities have developed similar courses, either at the undergraduate 

or graduate levels. Clearly the ability of proving a statement is crucial for mathematicians, but 

the necessity to help students acquire this ability has only started to be recognized fully. 

ACKNOWLEDGEMENT 

I would like to thank my colleagues France Caron for her wise guidance in the realm of 

mathematical didactique, and Laura Broley for a meticulous reading of the manuscript and 

many constructive suggestions. 

REFERENCES 

Selden, A. (2018). 40+ years of teaching and thinking about university mathematics 

students, roofs, and proving. In J. Holm, S. Mathieu-Soucy, & S. Oesterle (Eds.), 

Proceedings/actes of the 2017 annual meeting of the Canadian Mathematics 

Education Study Group/Groupe Canadien d’étude en didactique des 

mathématiques (pp. 17-35). Waterloo, ON: CMESG/GCEDM. 

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on 

processes and objects as different sides of the same coin. Educational Studies in 

Mathematics, 22, 1-36. 
 





 

17 

 

 

 

40+ YEARS OF TEACHING AND THINKING ABOUT UNIVERSITY 
MATHEMATICS STUDENTS, PROOFS, AND PROVING: AN 

ABBREVIATED ACADEMIC MEMOIR 

Annie Selden 

New Mexico State University 

INTRODUCTION: HOW WE GOT INTO THE FIELD 

I plan to take you on a journey through how my husband John and I, who have PhDs in 

mathematics and spent our early academic years in pure mathematics, got into research in 

mathematics education. Along the way, I will discuss the kinds of research we have done, some 

challenges we have faced, and where we are in our thinking today. We have been mainly 

concerned with university students’ learning of mathematical ideas, concepts, and processes, 

especially with proof and proving.  

Before we got interested in mathematics education as a research subject, we were 

mathematicians teaching at least some upper-division and graduate mathematics courses using 

the Moore Method (Mahavier, 1999). Doing so gave us a lot of exposure to students’ proving 

difficulties in courses like abstract algebra and topology. However, in other courses, like 

calculus, we lectured. The problem, as we saw it, was that despite our seemingly well-

constructed and thoughtful lectures, students often had misconceptions and didn’t perform as 

we wished. We wondered why. This was the germ of our interest in mathematics education 

research at the university level. 

I finished my PhD in topological semigroups in l974, when academic positions in U.S. 

mathematics departments were scarce and the number of new PhDs in mathematics was perhaps 

at an all-time high. In order to obtain two academic teaching positions, we accepted posts at 

universities in Turkey (1974-1978) and later in Nigeria (1978-1985). While teaching 

mathematics at the University of the Bosphorus in Turkey, we wrote a paper analyzing 

university students’ errors in logical reasoning (Selden & Selden, 1978). In that paper, we 

analyzed Turkish undergraduate university students’ proofs submitted in a Moore Method 

course in abstract algebra. When we returned to the U.S. in 1985, we took up two academic 

teaching positions in the Department of Mathematics at Tennessee Technological University. 

When we heard of the 1987 Cornell Conference on Misconceptions and Educational Strategies 

in Science and Mathematics, we decided to ‘recast’ our earlier paper on Turkish undergraduate 

university mathematics students’ errors in logical reasoning in terms of misconceptions (Selden 

& Selden, 1987). This conference itself was an ‘eye opener’. There we met Shlomo Vinner, 

who encouraged us to continue our research in mathematics education and to attend the 

conferences of the International Group for the Psychology of Mathematics Education (PME).  
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A little while later, in 1988, we attended the Calculus for a New Century Symposium, held at 

the National Academy of Sciences in Washington, DC. That was a ‘heady’ time with all sorts 

of people, mathematicians, administrators, engineers, and so forth, thinking about calculus 

reform and how to teach mathematics more actively and better. Shortly thereafter, we conducted 

a small study on whether students, who had completed first-semester differential calculus with 

a grade of C, could solve non-routine calculus problems, that is, problems they had not 

specifically been taught how to solve (Selden, Mason, & Selden, 1989). This led to two further 

studies of students’ ability to solve non-routine calculus problems (Selden, Selden, & Mason, 

1994; Selden, Selden, Hauk, & Mason, 2000). All three calculus studies are described below. 

This was our excursion into examining calculus students’ ability to solve non-routine problems. 

After that, we switched our research to students’ difficulties with proof and proving. The bulk 

of this paper is devoted to this work, including our “unpacking” paper (Selden & Selden, 1995), 

our “validation” paper (Selden & Selden, 2003), and our “affect” paper (Selden, McKee, & 

Selden, 2010), all leading up to a discussion of our more recent theoretical work (Selden & 

Selden, 2015). 

OUR THREE CALCULUS STUDIES 

After having attended 1987 Cornell Misconceptions and Educational Strategies in Science and 

Mathematics and the 1988 Calculus for a New Century Symposium, we decided to conduct a 

study on the ability of students who had completed differential calculus with a grade of C and 

were currently taking integral calculus, to solve non-routine differential calculus problems. This 

was partly inspired by the often expressed view of science and engineering professors that 

students just “can’t do applications”, where by applications they presumably meant the kinds 

of mathematical problems that come up in their courses. Our conjecture at the time was that 

applications, per se, were not the primary difficulty, rather we speculated that C differential 

calculus students weren’t able to solve any non-routine problems, whether in pure mathematics 

or applied subjects.  

This led to our developing, in conjunction with our department chair, Alice Mason, a one-hour 

test of five non-routine differential calculus problems which we administered to 17 volunteer 

students who had completed differential calculus with a grade of C (Selden et al., 1989). The 

way we decided that these were non-routine for our differential calculus students was to ask the 

teachers of all the first calculus sections for that year whether they had taught their students 

how to do any of the problems we developed. None had. For example, the second of the five 

non-routine problems was:  

Does x21 + x19 – x-1 + 2 = 0 have any roots between –1 and 0? Why or why not? 

We analyzed all responses to the problems, with the major finding being, “Notably, not a single 

student solved an entire problem correctly and most solution attempts relied heavily on earlier, 

more elementary, mathematics” (Selden et al., 1989, p. 45). This led us to ask: How would A 

and B differential calculus students do on the same problems? And, did they have the 

prerequisite knowledge? 

This led to our second calculus study (Selden et al., 1994), in which we administered the same 

non-routine test and a subsequent routine test of prerequisite knowledge questions to 20 

volunteer A and 19 volunteer B students who had completed differential calculus with those 

grades and were currently enrolled in integral calculus. For example, the matching prerequisite 

knowledge questions for the second non-routine problem, given above, were: 

If f (x) = x5 + x, where is f increasing?  

If f (x) = x – 1, find f '(x).  
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If 5 is a root of f (x) = 0, at what point (if any) does the graph of y = f (x) cross the x-

axis? 

The major finding in this study was:  

Although they [the participating volunteer A and B students currently enrolled in 

integral calculus] performed slightly better on our test of non-routine problems, two-

thirds of the students failed to solve a single problem completely and more than 40% 

did not make substantial progress on a single problem. The routine test confirmed 

that these students possessed an adequate knowledge base of relevant calculus skills. 

(Selden et al., 1994, p. 19)  

Convinced that students eventually do learn differential calculus, we decided to explore the 

‘folk theorem’ that students really learn a course in the next course that uses it. This time the 

same non-routine and routine tests were administered to 28 students who had gotten A, B, or C 

in their differential calculus courses, but who were currently taking differential equations. The 

major finding was:  

More than half of these students [the participating volunteer students currently 

enrolled in differential equations] were unable to solve even one problem and more 

than a third made no substantial progress toward any solution. A routine test of 

associated algebra and calculus skills indicated that many of the students were 

familiar with the key calculus concepts for solving the non-routine problems; 

nonetheless, students often used sophisticated algebraic methods rather than calculus 

in approaching the non-routine problems. (Selden et al., 2000, p. 128)  

Thus, one can have appropriate knowledge, but not think of using it. Why? We conjectured at 

the time that these students were accustomed to solving problems using worked examples from 

sections of their mathematics textbooks, and hence, had never had to think of how to start an 

arbitrary problem. Or, as Lithner (2008) later wrote, they were good at imitative reasoning, 

rather than creative reasoning. 

While we conducted the third of our calculus studies not long after our second calculus study, 

as they say, “life happens”. We got busy with teaching and other research and put aside the data 

for about six years until we had an opportunity to mentor a young fellow mathematician, Shandy 

Hauk, into mathematics education research. This delay in analyzing our data enabled us to 

follow-up on what happened to at least some of the participating students, and to ask the 

question, “Does it matter whether students are able to solve non-routine problems?” Perhaps 

surprisingly, our answer was both yes and no.   

No, because the students in this study were among the most successful at the university 

by a variety of traditional indicators, both at the time of the study and subsequently, 

yet half of them could not solve a single non-routine problem. They had overall GPAs 

[grade point averages] of just above 3.0 [a B average] at the time of the study and 

almost double the graduation rate of the university as a whole. At least seven of them 

subsequently earned a master’s degree and one a PhD in mathematics. (p. 147) 

And  

. . . yes, it does matter. Most mathematicians seem to regard this kind of [non-routine] 

problem solving as a test of deep understanding and the ability to use knowledge 

flexibly. In addition, most applied problems that students will encounter later will 

probably be at least somewhat different from the exercises found in calculus (and 

other mathematics) textbooks. It seems likely that much original or creative work in 

mathematics would require novel problem solving at least at the modest level of the 

problems in this study. (p. 147) 

We have continued to think about the difficulty that students have in ‘bringing to mind’ factual 

knowledge that they possess when they might make good use of it during problem solving or 
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theorem proving. We have tried planting ‘seeds’ in the form of asking students to prove a useful, 

related technical set theory theorem early in our current ‘proofs course’ in order to see if they 

would recall that technique later when it would be useful for proving a point-set topology 

theorem. So far this has not proved to be the case, and we have found no useful psychology 

research on how one might cause spreading activation of a useful sort to occur when needed. 

Spreading activation is a way that cognitive psychologists explain the phenomenon that a 

person is able to more quickly recall information about a topic once a related concept has been 

introduced. As with much of the psychology research literature, phenomena are studied in order 

to understand how they work ‘naturally’, rather than how they might be harnessed to work in 

the service of some objective, such as solving mathematical problems or proving theorems. 

A MOVE TO RESEARCH ON PROOF AND PROVING WITH OUR 
“UNPACKING” PAPER 

After having worked on the three calculus studies, described above, and perhaps because we 

had taught Moore Method courses and transition-to-proof courses in a variety of ways, we had 

seen numerous student difficulties with proving. As a result, we switched our research interests 

to various aspects of proof and proving. Another reason for this may have been that, starting in 

1989, we began attending the Advanced Mathematical Thinking Working Group sessions at the 

annual PME Conferences. That is how we became acquainted with the group’s work on the 

book, Advanced Mathematical Thinking (Tall, 1991), which was already well underway when 

we joined the group. However, somewhat later, Tommy Dreyfus agreed to edit a special follow-

up issue on advanced mathematical thinking for Educational Studies in Mathematics, and we 

were invited to submit a paper. For that special issue, we analyzed ‘found data’ from tests and 

examinations given in several of our own transition-to-proof courses (Selden & Selden, 1995).  

Before writing a bit about what is in that paper, it might be interesting for those who might 

think that publishing research in mathematics education is easy, that for our first attempt at 

writing this paper, we received rather lengthy reviews with the strong suggestion that we 

“totally re-conceptualize” it. For us, as mathematicians, who had published a number of papers 

in mathematics research journals and who had directed or co-directed PhDs in mathematics, 

this was a rather puzzling injunction. However, we went to work for perhaps half a year, 

attempting to do what the reviewers had advocated. We later heard, via the grapevine, that our 

paper was perhaps read more in advance of publication than later. However, according to recent 

Google citations, what we refer to as our “unpacking” paper has had 269 citations to date.  

Our “unpacking” paper has both theoretical and empirical parts. The empirical part came from 

the analysis of our students’ test and examination papers. The students, who had previous 

experience with logical translation in their transition-to-proof courses, were asked to translate 

(i.e., unpack) calculus statements, not all true, written in mathematical English into equivalent 

logical versions, using the symbols  ∀, ∃, ˅ ,˄, ⌐, →, and ↔, and inserting all variables and 

quantifiers. One such mathematical statement was:  

If f is defined at a, then lim
𝑥→𝑎

𝑓(𝑥) exists implies f is continuous at a. 

As it happens, this particular calculus statement, is not true and you might want to figure out 

why. Correct responses were not unique. However, one sample correct unpacking, given in the 

paper, was:  

(∀f  F) (∀a  ℝ) {(f is defined at a) → lim
𝑥→𝑎

𝑓(𝑥) exists) → (f is continuous at a)]}. 

Empirical results included the following: For simplified informal calculus statements, just 8.5% 

of all unpacking attempts were successful. For actual statements taken directly from calculus 

texts, this dropped to 5%. We inferred that these students would be unable to reliably relate 



Annie Selden  40+ Years of Teaching and Thinking 

21 

informally stated theorems with the top-level logical structure of their proofs. Hence, these 

students could not be expected to construct proofs or evaluate their validity (Selden & Selden, 

1995, p. 123). 

In addition to the above empirical findings, we introduced, or extended, some theoretical 

constructs, only some of which have since been taken up by the mathematics education research 

community. We extended the notion of concept image to statement image, because we thought 

that individuals could have images of both definitions of mathematical concepts and of 

theorems relating mathematical concepts. We introduced preliminary versions of the notions of 

proof framework and of proof validation, which have recently been taken up by at least some 

researchers in undergraduate mathematics education (e.g., Inglis & Alcock, 2012, Weber, 

2008). By a proof framework we meant the portion of a proof that can be written from just the 

logical structure of the statement of the theorem. We have since expanded upon this idea and I 

will discuss that later. By proof validation we meant reading and checking a proof for 

correctness. In the Appendix of our “unpacking” paper, we included a hypothetical validation 

of the theorem that the sum of two continuous functions is continuous. Tommy Dreyfus as 

editor said, at the time, that we could make the appendix into a separate paper, not for the special 

issue. But having had so much trouble getting our “unpacking” paper accepted, we declined.  

In addition to the above theoretical distinctions, we also contrasted formal and informal 

mathematical statements. For example, Differentiable functions are continuous, is informal 

because a universal quantifier and a variable are omitted, and because it departs from the usual 

if-then form of the conditional. A corresponding formal version would be: For all real-valued 

functions f, if f is differentiable, then f is continuous. We see the former version as being more 

memorable, while the latter version facilitates students in beginning to construct a proof by 

writing a proof framework. 

It took us awhile to get our next study conducted and published. This may have been because, 

in addition to teaching, we did a lot of expository writing, which unfortunately, while needed, 

and a service to the community, is not well rewarded in academia. In particular, at the time of 

the calculus reform movement, circa 1987, some individuals in the mathematics community 

were awarded an NSF-grant to publish a newsletter, UME Trends: News and Reports on 

Undergraduate Mathematics Education, about reform efforts.1 Ed Dubinsky was selected as 

editor and he asked us to write a column which he described as like ‘movie reviews’ for 

mathematics education research papers. Thus, we developed the Research Sampler column, for 

which we wrote 26 columns and 36 news/feature articles, published in UME Trends and MAA 

Online from 1989 through 2001. Since newsletters are considered ‘ephemeral’, I do not think 

many of them are archived anywhere, but we have made our columns and news/feature articles 

available on www.academia.edu and www.researchgate.net, where some people have found 

and even cited them. Also, beginning in 1994 and continuing to this day, we write short abstracts 

of mathematics education research articles for the Media Highlights section of the College 

Mathematics Journal. Our next published research paper was concerned with the validation of 

proofs by undergraduates. 

OUR “VALIDATION” STUDY 

This was an exploratory study, published in the Journal for Research in Mathematics 

Education, of how eight mathematics and secondary education mathematics majors at the 

beginning of a transition-to-proof course validated (read and checked for correctness) four 

                                                 
1 In 2000, Ed Dubinsky wrote a FOCUS article about the founding of UME Trends, which is available at 

http://www.math.kent.edu/~edd/FocusArticle.pdf  

http://www.academia.edu/
http://www.researchgate.net/
http://www.math.kent.edu/~edd/FocusArticle.pdf
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student-generated arguments purported to be proofs of a single theorem (Selden & Selden, 

2003). The theorem was: 

Theorem. For any positive integer n, if n2 is a multiple of 3, then n is a multiple of 3. 

We began the paper by expanding on what we meant by validation:  

A validation is often much longer and more complex than the written proof and may 

be difficult to observe because not all of it is conscious. Moreover, even its conscious 

part may be conducted silently using inner speech and vision. Validation can include 

asking and answering questions, assenting to claims, constructing subproofs, 

remembering or finding and interpreting other theorems and definitions, complying 

with instructions (e.g., to consider or name something), and conscious (but probably 

nonverbal) feelings of rightness or wrongness. Proof validation can also include the 

production of a new text—a validator-constructed modification of the written 

argument—that might include additional calculations, expansions of definitions, or 

constructions of subproofs. Towards the end of a validation, in an effort to capture 

the essence of the argument in a single train-of-thought, contractions of the argument 

might be undertaken. (Selden & Selden, 2003, p. 5) 

There was a theoretical part to this paper2, but I will concentrate here on the empirical findings. 

The participating students were told that the four ‘proofs’ that they were to read and evaluate 

had been generated by students like themselves in a previous year. The first student-generated 

‘proof’ was the following:  

Proof: Assume that n2 is an odd positive integer that is divisible by 3. That is n2 = (3n 

+ 1)2 = 9n2+ 6n +1 = 3n(n + 2) + 1. Therefore, n2 is divisible by 3. Assume that n2 is 

even and a multiple of 3. That is n2 = (3n)2 = 9n2 = 3n(3n). Therefore, n2 is a multiple 

of 3. If we factor n2 = 9n2, we get 3n(3n); which means that n is a multiple of 3. ■ 

(Selden & Selden, 2003, p. 12) 

We found at least 10 errors in the above ‘proof’. Indeed, we presented it to our participants as 

the first argument to consider precisely because there are so many errors, with the notational 

ones being very easy to spot. However, all participants took a good deal of time reading and 

trying to make sense of the above argument, with one participant spending 15 minutes reading 

and rereading, before finally deciding it was a proof, except for one minor notational error.  

The empirical findings on validation included the following. Participants’ correct judgments on 

whether a given argument was, or was not, a proof went from 46% correct (i.e., essentially 

chance level) to 81% correct, after having considered and reconsidered the arguments. “Most 

of the errors detected were of a local/detailed nature rather than a global structural nature” (p. 

24). To our knowledge, this was the first published paper to investigate students’ proof 

validations, and later studies have confirmed this result. For example, the eye-tracking study by 

Inglis and Alcock (2012) found that “compared with mathematicians, undergraduate students 

spend proportionately more time focusing on ‘surface features’ of arguments” (p. 358). 

At the end of the interview, participants were also asked debrief questions such as, (1) When 

you read a proof is there anything different you do, say, than in reading a newspaper? and (2) 

Specifically, what do you do when you read a proof? From their responses, we concluded that: 

What students say about how they read proofs seems to be a poor indicator of whether 

they can actually validate proofs with reasonable reliability. They tend to “talk a good 

line.” They say that they “check proofs step-by-step, follow arguments logically, 

                                                 
2 For example, we took the view that the meaning of a proof resides in the proof text itself. Much like, for 

Martin Luther, the meaning of Scripture could be found in a deeper reading of the Bible (Selden & Selden, 

2003, p. 6, Footnote 2). 
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generate examples, and make sure the ideas in a proof make sense.” (Selden & 

Selden, 2003, p. 27)  

The “unpacking” and “validation” papers, described above, while introducing some theoretical 

concepts such as proof frameworks and proof validation, were largely empirical. After that, we 

became more theoretical in our research and writings.  

MOVING TOWARD A THEORETICAL PERSPECTIVE ON PROOF AND 
PROVING 

The next research paper, which we sometimes refer to as our “affect” paper, appeared in a 

special issue of the International Journal of Mathematical Education in Science and 

Technology (iJMEST). It considered the role of consciousness in the proving process and 

introduced the ideas of <situation, action> pairs, behavioral schemas, and non-emotional 

cognitive feelings (Selden et al., 2010). We wrote: 

We see (at least the conscious part of) cognition in general, and the proving process 

in particular, as a sequence of mental and physical actions, such as writing or 

thinking a line in a proof, drawing or visualizing a diagram, reflecting on the results 

of earlier actions, or trying to remember an example. Many such actions appear to be 

guided by small ‘habits of mind’ that often link a particular recognized situation to a 

particular action. Such <situation, action> pairs, or habits of mind, can reduce the 

burden on working memory. 

As a person gains experience, much of proof construction appears to be separable 

into sequences of small parts, consisting of recognizing a situation and taking a 

mental or physical action. Actions which once may have required a conscious warrant 

become automatically linked to triggering situations. From a third-person, or outside, 

perspective these regularly linked <situation, action> pairs might be regarded as 

small ‘habits of mind’ [14]. On the other hand, taking a first-person, inside, or 

psychological perspective, they are lasting mental structures that we have called 

behavioral schemas. (Selden et al. 2010, p. 204)  

An example of a non-emotional cognitive feeling would be a feeling of being on the right track. 

A behavioral schema that might be invoked during proving begins with a situation. For 

example, one might be starting to prove a statement having a conclusion of the form ‘p or q’. 

This would be the situation. Having encountered this situation many times before, one might 

readily write into the proof “Assume not p” and proceed to attempt to prove q or vice versa. 

While this action can be warranted by logic (‘if not p then q’, is equivalent to, ‘p or q’), there 

would no longer be a need to do so.  

In that “affect” paper, we presented a six-point theoretical sketch of the genesis and enactment 

of behavioral schemas, which I paraphrase below: 

1. Within very broad contextual considerations, behavioral schemas are immediately 

available. They do not normally have to be recalled, that is, searched for and brought to 

mind. 

2. Simple behavioral schemas operate outside of consciousness. One is not aware of doing 

anything immediately prior to the resulting action—one just does it. 

3. Behavioral schemas produce immediate action, which may lead to subsequent action. 

One becomes conscious of the resulting action as it occurs or immediately afterwards.  

4. One cannot ‘chain together’ behavioral schemas in a way that functions entirely outside 

of consciousness and produces consciousness of only the final action. 

5. An action due to a behavioral schema depends on conscious input, at least in large part. 

6. Behavioral schemas are acquired through practice. To acquire a beneficial schema a 

person should actually carry out the appropriate action correctly a number of times—not 
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just understand its appropriateness. Changing a detrimental behavioral schema requires 

similar, perhaps longer, practice.  

(Selden et al., 2010, pp. 205-206). 

Behavioral schemas can be detrimental, as well as beneficial. An example of a detrimental 

behavioral schema that students often learn tacitly is that √𝑎2 + 𝑏2 equals a + b. Showing a 

counter example is ineffective—almost any two numbers substituted for a and b show this is 

false. However, students persist. We would not refer to this as a misconception, but rather 

characterize it as a ‘misaction’. Perhaps the most interesting detrimental schema reported in our 

“affect” paper was the case of a mathematics graduate student, Sofia, in our ‘proofs course’ 

who had developed an unreflective guess schema, which we also thought of as grasping at 

straws. Enacting this schema often prevented Sofia from making progress on constructing 

proofs. Since one such unreflective guess often led to another for Sofia, we wanted to rid her 

of this ‘bad habit’, so we suggested substitute actions such as: draw a figure, look for inferences 

from the hypotheses, reflect on everything done so far, or even do something else for a while 

(p. 212). By the end of the semester, we felt Sofia had made much progress. To substantiate 

this, we included in the paper the following:  

As the course ended, our intervention of directing Sofia to do something else, whether 

it be draw a diagram or review her notes, was beginning to show promise. For 

example, on the in-class final examination Sofia proved that if f, g, and h are functions 

from a set to itself, f is one-to-one, and f ◦g = f ◦h, then g = h. Also on the take-home 

final, except for a small omission, she proved that the set of points on which two 

continuous functions between Hausdorff spaces agree is closed. This shows Sofia was 

able to complete the problem-centred parts of at least a few proofs by the end of the 

course, and suggests her ‘unreflective guess’ behavioural schema was weakened. 

(Selden et al., 2010, p. 212) 

AN EXCURSION INTO RESEARCH ON READING 

We next investigated how precalculus and calculus students read their textbooks (Shepherd, 

Selden, & Selden, 2012). This study was conducted with a mathematician colleague, Mary 

Shepherd, who wished to be mentored into the field. The students in this study had high ACT3 

mathematics and reading scores and did much of what good readers do. The selected 

participants were invited to read passages, a little ahead of where they currently were reading 

for the course, but which their teacher judged were accessible to them. The research question 

we asked was: Could they work straightforward tasks associated with the reading soon after 

reading passages explaining, or illustrating, how the tasks should be carried out, and with those 

passages still available to them?  

Our empirical findings included: Only three of the eleven volunteer students could 

independently work at least half of the tasks. Why? Their difficulties seemed to arise from: (1) 

insufficient sensitivity to, or inappropriate response to, confusion or error; (2) inadequate or 

incorrect prior knowledge; and (3) insufficient attention to details, often due to mind wandering 

(Shepherd et al., 2012, p. 238). 

We wondered: Why are mathematicians good readers of mathematical texts? While we did not 

go on to investigate this, our colleague, Mary Shepherd did. She explored how mathematicians 

read mathematical material unfamiliar to them (Shepherd & van de Sande, 2014). Being a 

                                                 
3 Most students in the US are required to have at least minimum scores (set by each university) on a 

national reading comprehension test and a national mathematics test, either the ACT or the SAT, as well 

as other qualifying materials in order to be admitted to the university. The ACT tests are provided by 

American College Testing, Inc. 
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mathematician herself, she selected the beginning section of a volume on differential geometry, 

a subject her participants were unfamiliar with, but was in her area of expertise. Perhaps the 

most interesting finding of this study, was that the mathematicians, but not the graduate student 

participants, often engaged in what she called reading-the-meaning. For example, when coming 

to the definition of a metric space, the mathematicians quickly noted this without reading the 

words or symbols—it was as if they were seeing a familiar icon. In addition, the authors 

proposed a framework for reading mathematical exposition from novice to intermediate to 

expert (Shepherd & van de Sande, 2014, p. 85). 

Of interest, to young researchers perhaps, is that it took 10 years from my first answering Mary 

Shepherd’s RUME email listserv request for help until the publication of our joint paper. Not 

knowing the reading comprehension research literature, Mary and I delved into it for about two 

years and corresponded via email about it. Then we, with John, met to design the study and 

Mary collected the data. Then, for awhile, I got sick and the study was set aside. After we finally 

submitted our manuscript, the journal editor took about a year to get back to us and rejected it. 

Then the three of us took what we thought were the legitimate criticisms of the reviewers, 

rewrote the paper, and submitted it to Mathematical Thinking and Learning. This time we got 

back a “revise and resubmit”, rewrote the paper again, and eventually it was published. 

(Shepherd et al., 2012).  

BACK TO PROOF AND PROVING: OUR CURRENT PERSPECTIVE ON 
PROOF CONSTRUCTION 

Much of our current theoretical perspective was detailed in our RUME Proceedings paper 

(Selden & Selden, 2015), which was given an honorable mention by the Special Interest Group 

of the Mathematical Association of America on Research in Undergraduate Mathematics 

Education (SIGMAA on RUME). It was an attempt to ‘weave together’ all of our previous work 

on proof, together with more recent research from 10+ years of teaching our inquiry-based 

‘proofs course’. That course is taught mainly to beginning mathematics graduate students who 

feel they need help with proof construction. It is taught entirely from our own notes, with 

students constructing original (to them) proofs and receiving, sometimes extensive, critiques in 

class. Topics very briefly covered include sets, functions, real analysis, abstract algebra (in the 

form of semigroups), and if time permits, some point-set topology. A major aim of the course 

is to facilitate students’ learning through experiences constructing as many different kinds of 

proofs as possible. Another important aim of the course is to have students learn to write proofs 

acceptable to their other professors. (For a more detailed description of the course, see Selden, 

et al., 2010, p. 207.) 

We video and analyze all classes and many planning sessions. As a consequence, we have 

developed a theoretical perspective of the proving process that includes: (a) mathematical 

aspects and (b) psychological aspects. First, I will discuss some of the mathematical aspects of 

our theoretical perspective including the genre of proofs and the structure of proof texts.   

MATHEMATICAL ASPECTS: THE GENRE OF PROOFS 

Our thinking and research on this topic actually began around Summer 1999 when we attended 

the Institute for Advanced Study/Park City Mathematics Institute (PCMI), which is designed 

for mathematics researchers, post-secondary students, and mathematics educators at the 

secondary and post-secondary levels. We had previously observed in our teaching that students 

sometimes find the manner in which proofs are written perplexing. That is, it is often at variance 

with other genres of writing, and we had identified some significant features that generally 

occur in proofs.  
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While at PCMI, we interviewed volunteer mathematicians about what they thought about some 

of our conjectured features of proofs, while they were looking at one of their own published 

mathematics papers. These features are indicated below.  

1. Proofs are not reports of the proving process.  

2. Proofs contain little redundancy.  

3. Symbols are (generally) introduced in one-to-one correspondence with mathematical 

objects.  

4. Proofs contain only minimal explanations of inferences, that is, warrants are often left 

implicit. 

5. Proofs contain only very short overviews or advance organizers. 

6. Entire definitions, available outside the proof, are not quoted in proofs.  

7. Proofs are logically concrete in the sense that quantifiers, especially universal 

quantifiers, are avoided where possible.  

(Selden & Selden, 2013b) 

None of the above features is very surprising for mathematicians, especially the first one. 

However, we know of no other study on this topic. But as has so often happened with us, life 

and other academic duties interfered, and the data were put aside and not actually published 

until the book originating from the Symposium in Honor of Ted Eisenberg’s retirement was 

published (Selden & Selden, 2013b). 

STRUCTURES OF PROOFS 

Some of our more recent thinking on this was incipient in our earlier papers (e.g., Selden & 

Selden, 1995, 2003). A proof text can be divided into a formal-rhetorical part and a problem-

centered part. The formal-rhetorical part is the part that depends only on unpacking the logical 

structure of the statement of the theorem, associated definitions, and earlier results. In general, 

this part does not depend on a deep understanding of the concepts or genuine problem solving 

in the sense of Schoenfeld (1985, p. 74). We call the remaining part of a proof the problem-

centered part. It does depend on problem solving, intuition, heuristics, and understanding the 

concepts involved (Selden & Selden, 2011).  

A feature that can help write the formal-rhetorical part of a proof is what we have called a proof 

framework, an idea we introduced earlier in our “unpacking” paper. However, we have since 

expanded on this idea to include several different kinds, and in most cases, both a first- and a 

second-level framework. We have detailed this in a recently published PRIMUS paper (Selden, 

Selden, & Benkhalti, 2017). Briefly, given a theorem of the form “For all real numbers x, if 

P(x) then Q(x)”, a first-level proof framework would be “Let x be a real number. Suppose P(x). 

… Therefore, Q(x)”, with the remainder of the proof ultimately replacing the ellipsis. A second-

level framework can often be obtained by ‘unpacking’ the meaning of Q(x) and putting the 

second-level framework between the lines already written for the first-level framework. Thus, 

the proof would ‘grow’ from both ends toward the middle, instead of being written from the 

top down.  

To write a second-level framework, one often needs to convert formal mathematical definitions 

and previously proved results into their operable interpretations—something that we initially 

found surprising. For example: Given a function f: X → Y and A ⊆ Y, one defines f -1(A) = 

{x ∊ X | f(x) ∊ A}. An operable interpretation would say, “If you have b ∊ f -1(A), then you can 

write f(b) ∊ A and vice versa”. One might think, as we previously often did, that translation into 

an operable form would be unnecessary or easy, especially because the symbols in 

{x ∊ X | f(x) ∊ A} can be translated into words in a one-to-one way, but for some students it 

requires both help and practice.  
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THE NEED FOR PREVIOUS RESULTS—PROOFS OF TYPES 0, 1, 2, 3 

In order to enhance the possibility of student successes in our inquiry-based ‘proofs course’, we 

have classified theorems of increasing difficulty in our course notes which consist of statements 

of theorems, definitions, and questions. While we had been thinking about proof difficulty for 

some time, I believe we first discussed some of these proof types in an invited article for a 

special issue of The Mathematics Enthusiast (Selden & Selden, 2013a). Our current 

classification into proof types is as follows: 

Type 0 often follows immediately from definitions.  

Type 1 may need a result in the notes.  

Type 2 needs a lemma, not in the notes, but relatively easily to discern, formulate, and 

prove.  

Type 3 should have at least one of discern, formulate, or prove be difficult.  

Here is an example of a Type 3 proof of a theorem from our course notes: A commutative 

semigroup S with no proper ideals is a group, when one is provided only the definitions of 

semigroup and ideal. One first needs to observe that, for a ∊ S, aS is an ideal, so aS = S. This, 

in turn, implies that equations of the form ax = b are solvable for any a ∊ S and any b ∊ S. We 

could have formulated these two facts as lemmas in advance of the theorem statement, but we 

chose not to. If one formulates and proves these two lemmas, then, using some clever 

instantiations of the equation ax = b, one can obtain an identity and inverses, and conclude S is 

a group. At last count, in our ‘proofs course’, only two of 74 students, after much hard work, 

have been able to prove this theorem on their own. (Additional details about this proof and 

about one mathematician’s proving attempt can be found in John Selden’s Topic Session paper 

in this Proceedings.) 

One of the reasons for classifying proofs into types according to difficulty is to be able to 

estimate, in advance, which students to call on to present their proof attempts at the board. We 

feel that if a proof is too easy for a student or if a proof is too hard for a student, then probably 

nothing will be learned by that student or the class. Worst of all, being called upon to present a 

proof attempt that one does not think is worth discussing may lower that student’s sense of self-

efficacy, a topic addressed below. 

THE NEED FOR UNGUIDED EXPLORATION 

In constructing some proofs, one may reach a point where there is no ‘natural’ way forward. 

One has come to an impasse, that is, colloquially, one is ‘stuck’. In what we call unguided 

exploration, one may need to find, or define, an object and prove something about it, with no 

idea of its usefulness, that is, one may need to ‘explore’ the situation to get an insight.  

For example, in proving the above Type 3 semigroup theorem, this kind of exploration, 

followed by a helpful insight, can happen at least twice. The first helpful insight comes when 

one notes that aS is an ideal, and hence, aS = S. The next helpful insight comes when one sees 

that the set equation, aS = S, implies that element equations of the form ax = b are solvable for 

any a ∊ S and any b ∊ S. We feel that many Type 3 proofs may require considerable perseverance 

and self-efficacy. We try to engender this in students by arranging for early proving successes, 

followed by assigning proofs of increasing difficulty. Discussing associated heuristics well 

before a target theorem arises may also be useful. 

THE NEED TO UNPACK THE LOGICAL STRUCTURE OF A THEOREM STATEMENT 

We made the distinction between informal and formal mathematical statements in our 

“unpacking” paper, mentioned briefly above. Informally stated theorems are commonplace in 
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everyday mathematics. They are not ambiguous or ill-formed because widely understood, but 

rarely articulated, conventions permit their precise interpretation by mathematicians and less 

reliably by students. Such informally stated theorems can be memorable and perhaps easily 

brought to mind, but may be difficult to unpack and prove, especially for beginners.  

We have found that proof frameworks are relatively easy to write for theorems stated in the 

customary if-then format. Thus, early on in our notes, we write theorem statements in this 

format. However, we know that students must eventually be able to unpack informally stated 

theorems into their if-then format in order to decipher what the theorem is stating, what the 

hypotheses are, and what the conclusions are in order to begin the process of proof construction 

by writing a proof framework. Next, I will discuss some psychological aspects of the proving 

process. 

PSYCHOLOGICAL ASPECTS OF THE PROVING PROCESS 

As mentioned above, we view proof construction as a sequence of actions which can be physical 

(e.g., writing a line of the proof or drawing a sketch) or mental (e.g., changing one’s focus from 

the hypothesis to the conclusion, trying to recall a theorem, or bringing up a feeling). The 

sequence of actions that eventually leads to a proof is usually considerably longer than the final 

proof and is often not constructed from the top down. Somewhat surprising to us, we once had 

a mathematics education graduate student from the School of Education, who did not know that 

proofs were not constructed from the top-down. Her recollection from a prior real analysis 

course was that the professor always wrote proofs from the top-down in lectures, so she had 

just assumed that was the way proofs are constructed.  

Some of what I write next may seem similar to what I wrote above. That is, no doubt, because 

theoretical perspectives develop slowly over time and our current perspective grew out of our 

earlier theoretical observations and empirical studies. 

SITUATION-ACTION LINKS, AUTOMATICITY, AND BEHAVIORAL SCHEMAS 

If, during several proof constructions in the past, similar situations have corresponded to similar 

reasoning, leading to similar actions, then a link may be learned between them, so that another 

similar situation evokes the corresponding action in future proof constructions without the need 

for the earlier intermediate reasoning. Using such situation-action links, or <situation, action> 

pairs as we called them earlier, strengthens them, and after sufficient experience/practice, they 

can become overlearned and automated, and hence, become behavioral schemas. These are the 

same behavioral schemas that I described above and whose six properties I mentioned.  

There are cognitive advantages to invoking automaticity appropriately during proof 

construction. So we aim to help our students convert System 2 (S2) cognition into System 1 

(S1) cognition where appropriate. S2 cognition is slow, conscious, effortful, evolutionarily 

recent, and calls on considerable working memory. In contrast, S1 cognition is fast, 

unconscious, automatic, effortless, evolutionarily ancient, and places little burden on working 

memory (Stanovich & West, 2000). Converting S2 cognition into S1 cognition conserves 

working memory, a precious resource.  

In discussing automaticity, we are largely depending on the work of social psychologists (e.g., 

Bargh & Chartrand, 2000). In general, according to Bargh (1994), an individual executing an 

automated action tends to: (1) Be unaware of any needed mental process; (2) Be unaware of 

intentionally initiating the action; (3) Execute the action while putting little load on working 

memory; and (4) Find it difficult to stop or alter the action. However, not necessarily all four 

tendencies occur in every situation. We feel that the first three of these tendencies, appropriately 
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harnessed during proof construction, would help conserve students’ working memory for the 

truly hard parts of proofs. 

We view behavioral schemas as belonging to a person’s knowledge base. They can be 

considered as partly conceptual knowledge (recognizing and interpreting the situation) and 

partly procedural knowledge (doing the action), and as related to Mason and Spence’s (1999) 

idea of “knowing-to-act in the moment”. We aim to encourage and develop beneficial 

behavioral schemas for proving in our students and discourage, and hopefully extinguish, 

detrimental behavioral schemas for proving, such as Sofia’s detrimental unreflective guess 

schema, described above.  

As a result of enacting beneficial proving behavioral schemas advantageously, students might 

simply not have to think quite so deeply about certain portions of the proving process, and might 

have more working memory available for the harder parts of a proof. However, helping students 

develop beneficial behavioral schemas is no easy task, because the process of learning a 

behavioral schema can often be implicit, although the situation and the action are at least, in 

part, conscious. That is, an individual can acquire a behavioral schema without being aware that 

it is happening. Indeed, such unintentional, or implicit, learning happens frequently (e.g., 

Cleeremans, 1993).  

NONEMOTIONAL COGNITIVE FEELINGS IN PROOF CONSTRUCTION 

We are particularly interested in the kinds of affect that might occur during proof construction, 

and have considered feelings, especially nonemotional cognitive feelings, as mentioned above. 

Often the terms feelings and emotions are used more or less interchangeably, perhaps because 

both appear to be conscious reports of unconscious mental states, and each can, but need not, 

engender the other. However, we follow Damasio (2003) in separating feelings from emotions 

because emotions are expressed by observable physical characteristics, such as temperature, 

facial expression, blood pressure, pulse rate, perspiration, and so forth, while feelings are not. 

Here are some examples of the kinds of nonemotional cognitive feelings we are interested in: 

(1) a feeling of knowing that one has seen a theorem useful for constructing a proof, but which 

one is not able to bring to mind at the moment; (2) a feeling of familiarity; and (3) a feeling of 

rightness. Such nonemotional cognitive feelings can guide cognitive actions. For example, 

these can influence whether one continues a search for a solution or a proof or aborts it.  

Feelings seem to be summative in nature and pervade an individual’s whole field of 

consciousness at any particular moment. For example, one can have a feeling of unease in the 

midst of concentrating on developing a proof or solving a problem. Finally, we conjecture that 

feelings may eventually be found to play a larger role in proof construction than indicated 

above, because they can provide a direct link between the conscious mind and the structures 

and possible actions of the nonconscious mind, which can process many streams of information 

in parallel. 

THE ROLE OF SELF-EFFICACY IN PROOF CONSTRUCTION 

In order to prove harder theorems—ones with a substantial problem-centered part—students 

need to persist in their efforts, and such persistence can be facilitated by a sense of self-efficacy 

(Selden & Selden, 2014). According to Bandura (1995), self-efficacy is “refers to beliefs in 

one’s own capabilities to organize and execute the courses of action required to manage 

prospective situations” (p. 2). Of developing a sense of self-efficacy, Bandura (1994) stated 

that, “The most effective way of creating a strong sense of self-efficacy is through mastery 

experiences” (p. 71, emphasis in original), that performing a task successfully strengthens one’s 

sense of self-efficacy. Also, according to Bandura (1994), “Seeing people similar to oneself 
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succeed by sustained effort raises observers’ beliefs that they too possess the capabilities to 

master comparable activities to succeed” (p. 72). Bandura’s ideas ‘ring true’ with our past 

experiences as mathematicians teaching courses by the Modified Moore Method. Seeing a 

professor succeed at proving a theorem does little to promote students’ sense of self-efficacy. 

Some of the ways we attempt to develop students’ self-efficacy are by: (1) letting them know 

early on that the raison d’être of the course is to help them with their proof writing, (2) arranging 

for early proving successes, and (3) slowly increasing the difficulty of the proofs in the course 

notes. 

THE DEVELOPMENT AND USE OF LOCAL MEMORY 

In constructing a proof of some complexity, often much more relevant information is brought 

to mind than can be held in one’s working memory. When such information is lost from 

consciousness, it may remain partially activated and easily accessed. We refer to such partially 

activated information as local memory. While we have experienced such easily accessed 

information during our own mathematical research, as well as its loss when too many days or 

weeks have passed by, we know of little research about its development, maintenance, or uses 

even in the psychology literature. Nonetheless, it seems to us that conscious thought can 

sometimes influence the activation of such information, that is, help bring something helpful to 

mind. We have observed of ourselves, when attempting an intricate complex proof, that a 

considerable amount of information is generated, but cannot all be kept in mind; however, it is 

easily recalled. We speculate that many mathematicians experience this when conducting their 

own research. We feel local memory is an area worthy of future research. 

What good is a theoretical perspective if one cannot use it for anything? Below, I discuss how 

we use our perspective to construct proofs and analyze students’ proof attempts. I also indicate 

how we use our perspective in designing our ‘proofs course’.  

USING OUR PERSPECTIVE TO CONSTRUCT AND ANALYZE PROOFS 

First, I show how one can construct a sample correct proof of a theorem using a proof 

framework and operable interpretations of definitions. Then I use our perspective to analyze an 

incorrect student proof attempt of the same theorem. 

CONSTRUCTION OF A SAMPLE CORRECT PROOF  

The theorem I consider comes from the semigroup portion of our ‘proofs course’. I begin with 

the statement of the theorem and its proof, showing both the first- and second-level proof 

frameworks. The second-level proof framework, lines [3] and [4] below, comes from unpacking 

the meaning of commutative. 

Theorem. Let S be a semigroup with an identity element e. If, for all s in S, ss = e, 

then S is commutative. 

Proof: 

[1] Let S be a semigroup with identity e. Suppose for all s ϵ S, ss = e. 

[3] Let a, b be elements in S. 

…  

[4] Thus ba = ab. 

[2] Therefore, S is commutative. QED. 

I now continue with the rest of the proof, filling in the ellipsis above. This may involve a bit of 

‘messing around’ with equations, that is, it may require quite a bit of exploration. A prover of 
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this semigroup theorem can write many unhelpful equations before coming upon useful 

equations that result in a proof. After selecting parts of his/her exploration and rearranging 

them, the remaining part could have been written as lines [5], [6], and [7] below. 

Theorem. Let S be a semigroup with an identity element e. If, for all s in S, ss = e, 

then S is commutative. 

Proof: 

[1] Let S be a semigroup with identity e. Suppose for all s ϵ S, ss = e. 

[3] Let a, b be elements in S. 

[5] Now, abab = e, so (abab)b = eb = b 

[6] But (abab)b = aba(bb) = abae = aba. 

[7] So, b = aba, so ba = (aba)a = ab(aa) = abe = ab. 

[4] Thus ba = ab. 

[2] Therefore, S is commutative. QED. 

We are not claiming that teaching students to write proof frameworks is a panacea. Rather, 

being able to write a complete proof framework exposes the ‘real problem’ to be solved during 

the proof construction process. We are also not claiming that mathematicians write proofs this 

way—only that they will accept the results of proofs written this way. 

A STUDENT’S INCORRECT PROOF ATTEMPT OF THE SAME THEOREM 

First, I will present what the student wrote and submitted as a proof of the theorem. Then I will 

analyze it using our theoretical perspective, looking for beneficial actions not taken and 

detrimental actions taken. Recall that the theorem is: 

Theorem. Let S be a semigroup with an identity element e. If, for all s in S, ss = e, 

then S is commutative. 

The student’s incorrect proof attempt, including scratch work, is given below: 

Let S be a semigroup with an identity element, e. 

Let s ϵ S such that ss = e. 

Because e is an identity element, es = se = s.  

Now, s = se = s(ss). 

Since S is a semigroup, (ss)s = es = s. 

Thus es = se. 

Therefore, S is commutative. QED. 

Scratch Work  

7.1: A semigroup is called commutative or 

Abelian if, for each a and b ϵ S, ab = ba.  

7.5: An element e of a semigroup S is called an 

identity element of S if,  

for all s ϵ S, es = se = s. 

ANALYSIS OF THE STUDENT’S INCORRECT PROOF ATTEMPT 

First, we look at beneficial actions not taken. The second sentence should have been “Suppose 

for all s ϵ S, ss = e”. With this change to include “all s ϵ S”, the first-level framework would 

have been correct. In addition, the student did not produce a second-level framework by 

introducing arbitrary a and b at the top, followed by “Then ab = ba” right above the conclusion.  

Had the student written the correct second sentence and taken the above actions, the situation 

would have been appropriate for exploring and manipulating an object such as abab. We think 

that such exploration calls for some self-efficacy, but can lead to a correct proof. 

Next, I consider what the student wrote ‘in the middle’, and analyze it line-by-line. It was:  

Because e is an identity element, es = se = s.  

Now, s = se = s(ss). 

Since S is a semigroup, (ss)s = es = s. 

Thus es = se. 
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The first line of ‘the middle’ above violates the mathematical norm of not including definitions 

that can easily be found outside the proof, in the proof. Also, it does not move the proof forward. 

The next three lines are not wrong, but also do not move the proof forward because to prove 

commutativity, one needs two arbitrary elements. We consider these actions detrimental 

because they can convince the student that he/she has accomplished something when that is not 

the case. This completes the analysis of the incorrect student proof attempt. 

HOW WE USE OUR PERSPECTIVE IN DESIGNING OUR ‘PROOFS 
COURSE’ 

I only mention a couple of things we do in designing and teaching the course. We want students 

to have early successes, so they gain a sense of self-efficacy. Therefore, we try to have relatively 

easy theorems at the beginning of our notes and gradually increase their difficulty. At the 

beginning of the course, we have students practice writing proof frameworks (without 

necessarily having to write complete proofs). There are several kinds of proof frameworks, but 

I have only demonstrated one kind. For example, other proof frameworks can involve proofs 

by cases or proofs by parts. There is yet another proof framework for proofs by contradiction. 

As for operable interpretations of definitions which are needed to write second-level proof 

frameworks, we have used handouts (with definitions on the left side of the paper and operable 

interpretations on the right side). The idea of doing this was to have students make flash cards 

using these handouts and practice these operable interpretations. Unfortunately, while these 

handouts were somewhat helpful, we found some students, who despite having these handouts 

available on our examinations, still did not use them appropriately in writing their proofs. 

TEACHING AND FUTURE RESEARCH CONSIDERATIONS 

We believe this perspective on proving, using situation-action links and behavioral schemas, 

together with information from psychology, is mostly new to the field. Thus, it is likely to lead 

to additional insights and teaching interventions. This brings up the question of priorities. For 

example: Which proving actions of the kinds discussed above are most useful for mid-level 

university mathematics students to automate when they are learning to construct proofs?  

Since every proof can be constructed using a proof framework, we consider constructing proof 

frameworks as a reasonable place to start. Doing so will get students started on proofs, as well 

as know where they are headed. This is preferable to staring at a blank piece of paper and not 

knowing what to do. Furthermore, we are not claiming that mathematicians write proofs this 

way—only that professors will accept the results of writing proofs this way. 

For students to have early successes and build self-efficacy, one can begin with more formally 

stated if-then theorems and later go to more informally stated theorems, which are harder to 

unpack. Furthermore, we have observed that some students do not write a second-level proof 

framework, perhaps because they have difficulty unpacking the meaning of the conclusion into 

an operable form. What are some effective ways of getting students to ‘unpack’ and use 

mathematical definitions in their proofs? 

SUMMARY AND CONCLUSION 

In this paper, I first briefly mentioned: (1) how we got into mathematics education research; (2) 

our early calculus studies; (3) our “unpacking” paper; (4) our “validation” paper; (5) our 

“affect” paper; and (6) our “reading” paper. Then, I discussed at greater length our current 

theoretical perspective on proof construction, how we use it to analyze student proof attempts, 
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and how we use it in designing our ‘proofs course’, as well as mentioning a couple of research 

questions. We would be pleased if others considered some of these ideas. 
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‘ELDER TALK’—A REVISIONIST VERSION 

Joel Hillel 

Concordia University 

When I gave my ‘elder talk’ at McGill this past spring I intended to cover the first ten years of 

CMESG by recounting some personal experiences and anecdotes. I mistakenly assumed that 

the 45 minutes allotted for my talk were to be measured in ‘elder minutes’ ( 1 ‘elder minute’ = 

5 minutes) but I was disabused of this notion by the Chair who told me that time was up when 

I was still somewhere in the middle of Year 2.  

I hope that during my talk I at least managed to convey the tremendous influence two people 

had on my ‘conversation’ from mathematics to mathematics education. One was David Wheeler 

who joined the Math Department at Concordia in 1975. The other was Tom Kieren who, by 

sheer luck, happened to be on sabbatical in the Math Education Department of the University 

of Georgia at the same time as I was. I could not have had better mentors and I am including a 

photo of Tom, David, and I taken at some CMESG meeting. 

 

Figure 1. Photo of Tom Kieren, David Wheeler and Joel Hillel (left to right) at CMESG. 

In what follows, I will recount few of the stories that I did not get to tell during my talk. 
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1978-1981: THE PROBLEM SOLVING YEARS 

Problem Solving was the dominate theme of math education in the 1970’s and David Wheeler 

and I embarked on a 3-year research project on problem solving which was funded by Quebec’s 

FCAR grant (Leslie Lee joined the team fairly early on). It was the first venture into math 

education research for me and, surprisingly, also for David, notwithstanding all the incredible 

contributions that he had already made to mathematics education. While most research projects 

on problem solving at the time focused on the heuristic enterprise (i.e., the possibility and 

effectiveness of teaching heuristics to enhance problem solving), we decided to focus our 

research on examining the mental operations used by ‘naïve’ students during the solving 

process. We deliberately chose to use ‘non-standard’ mathematics problems (e.g., cryptarithm-

type problems: “Can you cut a square into 7 square pieces?”) so as not to make our subjects 

think that they are being tested on school math knowledge. We adopted the ‘thinking aloud’ 

methodology that was becoming more acceptable as a research technique once Krutetskii’s 

(1976) book on mathematical abilities became better known. 

These were days before elaborate research protocols on the use of ‘human subjects’ were 

necessary and getting participants for the study was a simple matter of walking to the closest 

high school and asking the math teacher to solicit volunteers (“Johnny, why don’t you go and 

work with this math professor from Concordia”, “yes, sir”). Our subjects were mostly junior 

high school students and over the course of the research we ended with nearly 50 transcribed 

interviews. 

The ‘thinking aloud’ methodology had its limits. Most solvers, even those who were good 

verbalizers, became silent during critical junctures of the solution process. But, with some 

probing along the way, post-solution interviews, and having a record of the solvers’ written 

work, one could construct a pretty reliable description. (An aside: after spending lots of time 

talking about the ‘thinking aloud’ technique and how we were to conduct ourselves as 

interviewers by minimizing our interventions, I remember when we listened to the tape of the 

first session conducted by David. Within a millisecond of the student getting stuck, David was 

already jumping in and offering suggestions. Old teaching habits die hard, but we did improve 

our interviewing technique as we progressed.) 

There was the familiar tension of what to make out of all the data we accumulated. Part of the 

challenge was to see what remained after taking out the idiosyncratic features of each of the 

protocols. What we ended up with was a much better understanding of the kinds of challenges 

that our experimental problems created for ‘naïve’ solvers. This led to a much sharper ‘task 

analysis’ whereby each problem was analyzed in terms of a set of ‘demands’ (mathematical, 

structural—including goal definition, operations, and relations, psychological). The solvers’ 

behviours were subsequently analyzed in terms of their attempts to deal with these demands.  

One of the most striking aspect of the analysis was the observation that the process of 

‘understanding the problem’ was often continuing till nearly the very end of the solution 

process. Certainly, Pólya’s (1945) normative 4-stages description of the problem solving 

process (‘understand the problem’, ‘devise a plan’, ‘carry out the plan’, ‘look back’) was a far 

cry from the behavior of our novice solvers. Neither was the Information Processing model of 

problem solving with its goal-oriented approach at all evident with our solvers and with the 

type of problems we used. 

When it came time to disseminate our results we, not unlike our experimental subjects, were 

‘naïve’ researchers. Rather than publish our result in a journal we deliberately opted to produce 

a comprehensive research report which we thought would be a better reflection of the overall 

project. The report covered all aspects of the project from the planning stage to the actual 
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research (which included the modifications as we went along, particularly with the choice and 

wording of the experimental problems) and our method of analyzing the protocols. 

Furthermore, we also felt it important to offer alternative analyses of the same protocols. Other 

math educators (David Tall, Alan Bell, Lesley Lee, Stanley Erlwanger, and Allister McIntosh, 

all of whom happened to be around during at various stages of the research) were given a go at 

our protocols and came up with somewhat different analyses of the solvers’ behaviours, and 

these were included in the report. We also attached a compendium of all the transcribed protocol 

that we envisaged would serve as an ‘open source’ for other researchers in the field. It turned 

out, in retrospect, that we grossly overestimated researchers’ patience with reading lengthy 

research reports (a bit like reading theses) and, with the exception of Nicolas Balacheff, who 

read the report and made lots of astute comments, the research remained hidden in the literature 

on problem solving. We did, eventually, give a couple of presentations at PME meetings in 

Grenoble in 1981 and Shoresh in 1983, and by the time we started another research project, we 

were both wiser and more strategic. 

1980 MEETING, LAVAL UNIVERSITY: MUCH ADO ABOUT NOTHING 

Our first time meeting in Laval had Caleb Gattegno as one of the invited plenary speakers. 

Gattegno was, undoubtedly, one of the most influential math educator of the previous century 

with non-traditional views about teaching and learning (“only awareness is educable”; 

“subordinate teaching to learning” [Gattegno, 1981, p.5]). His friendship with David Wheeler 

went back a good 30 years. Around the time of the founding of the Association of Mathematics 

Teachers in England and before joining the department at Concordia, David was involved with 

Gattegno’s ‘Educational Solutions’ enterprise in New York. There were also other members of 

the Study Group who have worked with, and attended seminars, by Gattegno, and they often 

spoke of him with reverence usually reserved for a guru. David had tried to get Gattegno as a 

plenary speaker since the start of CMESG and was delighted that Gattegno finally accepted. 

Gattegno was the main proponent of the use of the Cuisenaire Rods, as well as other 

manipulatives, such as the Geoboard in the teaching of mathematics to children. He also 

espoused the use of the available technologies (TV initially and calculators later) in teaching 

and was starting to appreciate the potential for ‘micro computers’. In his CMESG lecture he 

talked about entering the ‘Era of Nothing’ and then added that “working on computers and TV 

makes me more aware every day that we must all become experts (among other things) in 

working on ‘nothings’” (Gattegno, 1981, p. 7). 

Gattegno had always argued that real learning does not require a lot of expenditure of energy 

but many in the audience were a bit mystified (and possibly skeptical) about the notion of 

‘nothings’. In the post lecture discussions, Gattegno was pressed to clarify his ideas. Somehow, 

and for the first and only time that I can remember, the mood of the session turned combative. 

He became impatient with the questions and basically seemed to imply that ‘if you don’t 

understand what I am saying then it’s your own problem’, leaving some members of the 

audience somewhat angry and frustrated. 

David Wheeler was clearly distraught at the turn of events. He tried to put a diplomatic spin on 

what we subsequently referred to as ‘the Gattegno Affair’ by writing in his introductory 

comments of the Proceedings, that “Gattegno baffled, intrigued and stimulated […]. The 

participants were unable to discuss this matter—‘nothings’—with the sensitivity and 

persistence that Gattegno demanded” (Wheeler, 1981, p. 2). But privately, he knew that his 

friend somehow blew it, and he lamented to me, “Oh, but he could have been so good.” 
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1986 MEETING, MEMORIAL UNIVERSITY: LAKATOS, SIGNAL HILL, AND 
DYNAMIC GEOMETRY 

The meeting at Memorial was our smallest ever with under 30 participants. The meeting 

coincided with the annual meeting of the Canadian Math Society (CMS), so for the first time 

we had scheduled an event in common, namely, inviting Alan Schoenfeld (1987) as a plenary 

speaker to talk about his work on problem solving. 

I do not remember how the idea of doing a live reading of Lakatos’ (1976) Proofs and 

Refutations came about. There was a bit of free time on a Saturday night, after supper and before 

a scheduled reception, during which the CMS was holding its AGM. A table was set just outside 

the hall where the AGM was held and several members of CMESG took on the roles of main 

characters in Lakatos’ masterpiece. The idea of the reading was, in part, an attempt to capture 

the attention and interest of the ‘math types’ when they came out of their AGM. As it turned 

out, it did not quite work that way—most of the mathematicians leaving the meeting walked 

right by, oblivious to the reading and probably already looking ahead to the reception. Few had 

a momentary ‘what’s that’ look as they went by us but then shrugged their shoulders and 

continued on. But, there was a silver lining to the endeavor as three mathematicians were 

curious enough to stay and listen and were obviously captivated by the dialogue. At the end of 

the reading they wanted to know what the book was and who was its author. Possibly, an eye-

opening experience for them as it was for me when David Wheeler, during his first year at 

Concordia, handed me the book and said, “I think you might enjoy reading this.” 

The Sunday afternoon break in the CMESG meetings was not nearly as organized an event as 

it is nowadays, and we were often left to fend for ourselves. Someone found out that on that 

particular Sunday afternoon was the annual run up Signal Hill and 10 of us decided to take part 

in the event.   

 

Figure 2. Signal Hill runners. 
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By the time the run was over and we got our ribbons for participating, we realized that we would 

be too late for dinner so we stopped at a Fish and Chips joint for a quick bite. It turned out that 

‘quick’ was not a word in Newfoundland’s vocabulary and by the time we got our portions, we 

were just a few minutes away from the start of Schoenfeld’s plenary. We rushed back to the 

venue by cabs and entered the lecture hall as discretely as possible (where Schoenfeld was 

getting the longest imaginable introduction in order to delay the start of the talk) still holding 

out newspaper-wrapped fish and chips. Alas, discretion was futile as the aroma of our yet 

uneaten fish and chips got every head in the hall turning toward us in unison—all we could was 

apologize profusely (and try to eat quietly as the lecture went on!). 

I participated in the working group on Microcomputers in Teacher Education which examined 

some recently developed educational material available on discs. At the end of the second day 

we were given a look at Judah Schwartz’ ‘The Geometric Supposer’, which was the first 

available dynamic geometry package (yes, Cabri came afterward), and it generated a lot of 

excitement among most of the participants. One member of the working group was a 

mathematician from Memorial who was very quiet throughout the sessions and did not seem 

much interested in the going-ons (I wondered if he was cajoled by Ed Williams, the organizer 

of the meeting, to attend). In the beginning of the third day, he surprised us by having thought 

about and written down a collection of delightful geometric problems, adding that “these are 

the kind of problems I would give my students to investigate with the Supposer”. He obviously 

got a lot more of the WG than we imagined, reminding us of some research findings that pointed 

out that sometimes it is those quiet students in the classroom who actually gain the most. 

FINAL COMMENT 

I could go on and talk about the Friday evening of our 1988 Winnipeg meeting where a dozen 

of us were walking through cow pastures (part of the Agricultural School) in total darkness, 

gingerly avoiding cow patties, with our elegantly dressed plenary speaker Christine Keitel in 

tow, as we desperately tried to find our way back from a pub to the residence building (it was 

a lot simpler to get to the pub from the residence when it was still daylight). But I better leave 

something for the next talk. 
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INTRODUCTION 

The transition (here on in referred to as ‘the Transition’) from high school to post-secondary—

including university, Cégep, community and technical colleges—is well documented as being 

difficult for students. In addition to jumping out of one academic culture and into another, with 

the numerous social changes brought, students often experience subject matter that appears and 

feels disjointed from what they had previously encountered. This being especially pronounced 

in mathematics is what brought this working group together.  

In this working group, we engaged in the following activities and discussions:  

 a discussion of the nature of the Transition; 

 a discussion of ‘what mathematics?’ Is the mathematics experienced in high school 

fundamentally different than that in post-secondary? And why mathematics is unique 

in the Transition; 
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 differences in instruction and assessment between secondary and post-secondary and 

how we teachers, instructors, and professors feel both prepared and unprepared for 

our teaching, and how our students appear unprepared; and 

 suggestions for ways to ease the Transition from secondary to post-secondary 

learning in mathematics. 

We solicited feedback from our participants to narrow the focus of the group but remained 

largely within the areas identified above. We acknowledge that the Transition is complex, with 

many factors extraneous to but heavily influencing mathematics, and is not easily summarized 

in a few brief bullet points. Our discussions were very productive—bordering on heated—and 

we summarize the flurry of activity that was our working group the best we can below. 

TRANSITION 

We began by identifying issues in the Transition. These are manifold and come from a variety 

of perspectives. Students experience a shift in social norms, academic norms of knowing and 

doing and learning, personal responsibilities and motivations, among a variety of others. These 

shifts are often not continuous and can be jarring. The participants recognized that, though 

perhaps more dramatic than others, the Transition is not the only transition faced by students in 

their academic careers. Depending on the jurisdiction, students undergo a transition from 

elementary to junior high to high school, or from high school to Cégep to university. On a 

smaller scale, students may experience a transition between semesters or years or instructors. 

So, there are discontinuities built into our educational systems—we were left wondering if there 

is a better way. Can these inherent transitions be made to be smoother?  

It became clear to the group that to address this question, we must first attempt to better 

understand the students. To that end, we asked the following two sets of questions: 

 Who are the students? Who do they become? 

The students’ worlds, once small, begin to enlarge in university. Many arrive with aspirations 

of being a medical doctor, a lawyer, or an engineer, but begin to realise the vast options 

available to them. Entire disciplines lay hidden—math often included—and are gradually 

‘discovered’ by the students. Gradually, students choose paths, not all of which lead to an M.D., 

J.D., or B.Eng. 

One goal stated by our participants as educators is to ignite the curiosity in their students 

necessary for them to expand their horizons. The careers we train them for likely do not yet 

exist and so all of us, students and educators alike, must come to terms with and navigate 

uncertainty.  

  Who were the students? Who are they now? 

Students enter university from a variety of backgrounds—socio-economic, linguistic, 

academic, regional, national, personal identity—and the confluence of individuals to one 

institution has a homogenising effect: these once disparate people now have a shared identity. 

This may not make the Transition any easier—students must now confront their new-found 

adulthood, with accompanying responsibilities and decisions and commitments. The sudden 

autonomy, especially as it pertains to academics, can cause stress for the students, since now 

the link between their actions and outcomes becomes more apparent. Academically, there is 

seldom someone in place to monitor the students’ progress and they are left to manage their 

time and effort devoted to studies. Grades are often lower than those received in high school, 

partly because of the high entrance cut-offs of Canadian universities, and students often must 

come to terms with being a little fish in a large pond. 
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In brief, there’s much to get accustomed to. 

MODELS OF THE TRANSITION 

This working group, of course, is not unique in its desire to better understand the Transition. 

Numerous models have been proposed to explain and describe aspects of the Transition. We 

chose two such models developed, fortuitously, by members of our working group.  

In the first, Clark and Lovric (2008) conceptualize the Transition as a ‘rite of passage’. The 

authors draw on the field of anthropology, specifically on the work of Arnold van Gennep 

(1960), to identify features of a rite of passage. These are 

 Life crisis: an individual’s customary routines are perturbed, 

 Phase of separation: the individual leaves the established community, 

 Liminal phase: an activity that facilitates the changes required of the individual, and 

 (Re)joining a community: changes complete, the individual (re)joins a community. 

These features are salient in the Transition—high school, due to its duration and dominance in 

all aspects of a student’s life, is the customary routine; post-secondary perturbs this, often 

violently. This is accompanied by the phase of separation, which is often a literal, physical 

separation from the established community. The liminal phase involves the new forms of 

education and assessment and the social freedom of choice and movement. Ultimately, the 

student joins the post-secondary community, which does not always happen, and becomes 

accustomed to new ways of knowing and working.  

Seeing these features in the transition from high school to university mathematics is perhaps 

more of a challenge. Other authors do identify that post-secondary mathematics, especially 

university-level mathematics, is fundamentally different than that of the previously encountered 

mathematics that is often rooted in physical experience:  

Advanced mathematics, by its very nature, includes concepts which are subtly at 

variance with naïve experience. Such ideas require an immense personal 

reconstruction to build the cognitive apparatus to handle them effectively. It involves 

a struggle [...] and a direct confrontation with inevitable conflicts, which require 

resolution and reconstruction. (Tall, 1991; p. 252) 

So the transition between mathematical ways of being and knowing is a rite of passage, less 

obvious than the jarring social transitions in the Transition, but just as jarring.  

The second model is from Corriveau and Bednarz (2017) and lends a complementary 

perspective to that of Clark and Lovric (2008)—the unit of focus is the teachers/instructors, 

rather than the students. These authors view the Transition as a change of cultures, where culture 

in this context is the teachers’/instructors’ Ways of Doing Mathematics (WMDs), in particular 

in relation to mathematical symbols and symbolism. High school teachers’ WMDs are 

described in Corriveau and Bednarz (2017) as 

 Progressive—the symbolism is gradually implemented. 

 Transparent—the accessibility to the student of the symbolism is valued.  

 Chosen—the choice of symbolism is maintained by the teacher in relation to their 

class and might not follow convention.   

In contrast, the Cégep instructors’ WDMs are: 

 Explicated—giving conventional symbolism meaning to the students. 

 Determined & exterior—adopting conventional symbolism. 
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 Compact symbolism—the symbolism is dense with meaning.  

With these distinctions in mind, the students do experience a movement between cultures of 

symbolism in mathematical practice.   

In our working group, we presented participants with two passages from the articles we 

considered and afforded time for them to engage with how they might identify the ideas present 

in their own students, institutions, and mathematics. These are 

Rite of passage cannot be successful without a proper social context and without the 

involvement of (relevant) communities. The primary purpose of ceremonies that 

accompany a rite of passage is to help the person pass from one well-defined, 

established and accepted position in life to another, which is equally well-defined, 

established and accepted. The success of the rite depends, in large measure, on the 

‘logistical’ assistance that the parties interested are able to offer to the individual 

undergoing the rite of passage. (Clark & Lovric, 2008, p. 26) 

These findings […] shed light on aspects of mathematics different from those that 

have, until now, been explored in research on transitions from secondary to 

postsecondary instructional settings. Indeed, such research has directed little 

attention to the theme of symbolization. And when it has done so, this theme emerges 

only indirectly, through an analysis of the tasks proposed at each teaching level in a 

way serving to highlight the additional demands confronting postsecondary students 

(e.g., formalization, breaking up of the meaning of symbols). By grappling with the 

informal mode of culture encountered at each level, the present research offers 

another perspective. It brings to light the complexity of the transition from one 

mathematical culture to another, in particular by showing up the “different rules of 

the mathematical game” (Drouhard, 2006). (Corriveau & Bednarz, 2017, p. 15) 

We left the group to meditate on these quotes with the hopes that they will facilitate further 

exploration. We acknowledged there is a great milieu in the Transition, which we necessarily 

relegate to the background to discuss the object of our focus: the mathematics.  

QU’EST-CE QUE LES MATHÉMATIQUES ? 

Pour établir notre objectif global rapidement, notre groupe a commencé par discuter des 

mathématiques prises dans la Transition. Afin de prendre du recul, nous nous sommes 

concentrés sur les thèmes suivants : 

 Quelles sont les mathématiques enseignées / réalisées / apprises / évaluées ? 

 Quelles mathématiques dans (la dernière année de) l'école secondaire sont différentes 

de celles enseignées à (la première année d') université ?  

 Qu'est-ce que ces mathématiques entravent/avancent/permettent ? 

Fait intéressant, mais pas surprenant, il était difficile pour le groupe de se concentrer sur les 

mathématiques. D'autres aspects de la vie des enseignants et des étudiants ont continué à 

« interrompre » la conversation : la gestion de classe, le contexte éducatif, la diversité, les 

contraintes institutionnelles telles que la taille des classes et le temps passé en classe. 

Cependant, les questions que nous avons proposé de discuter ont été reconnues comme 

pertinentes, mais difficiles à aborder. 

De nombreux exemples de différences apparemment concrètes dans l’enseignement des 

mathématiques au secondaire et à l’université ont rapidement été présentés : différences de 

terminologie, accent mis sur les concepts versus les algorithmes, vrai versus correct—et la 

notion de vérité en mathématiques, exactitude versus approximation, l’approche unique versus 

les approches multiples—la vision utilitaire des mathématiques versus la quête de la 
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connaissance, la différence dans les manuels scolaires et comment les élèves et les enseignants 

devraient les utiliser, différences dans les évaluations et dans l’accent mis sur les compétences 

métacognitives. Reconnaitre que ces différences pourraient bien être des mythes ou des moyens 

simples d’ignorer un problème complexe a également été reconnue. L’objectif de présenter ces 

différences, ou mythes, était de remplacer le narratif blâmant par une conversation dans le but 

de mieux comprendre les préoccupations dans la transition et la façon de les aborder. Cet 

exercice a permis au groupe d’envisager de passer d’un mode de pensée « préparatoire » et 

centré sur la « remédiation », vers différents modèles pour concevoir l'enseignement des 

mathématiques élémentaires et avancées. 

Tout en abordant les questions proposées, les participants et les co-leaders ont eu l’occasion de 

discuter des enjeux, à différents moments, dans des groupes homogènes et dans des groupes 

hétérogènes. Il a été reconnu que d’offrir ces possibilités aiderait peut-être à résoudre de 

nombreuses difficultés didactiques que rencontrent les enseignants des écoles secondaires, des 

collèges/cégeps et de l’université. D’une part, les participants ont souligné le manque 

d’occasions (institutionnalisée) pour discuter avec leurs pairs, par exemple, des mathématiques 

enseignées / réalisées / apprises / évaluées, et de ce que cela entrave / avance / permet. D’un 

autre côté, les participants des trois niveaux se sont plaints du manque d’espace 

(institutionnalisé) pour discuter avec des collègues d'autres ordres. Peu importe le niveau, les 

enseignants ont souligné qu’ils ne savaient pas « ce qui se passe » aux deux autres niveaux et 

comment ils devraient se connecter, se référer, ou pas du tout. Nous ne savons pas ce que les 

étudiants sont en train d'apprendre, ce qu’ils sont censés savoir, ce qu’ils savent réellement, et 

nous ne savons pas comment le découvrir—peut-être qu’il n’existe aucun mécanisme 

(institutionnel) conçu pour nous. 

Le groupe s’est engagé à expliquer explicitement les raisons pour lesquelles les enseignants 

d’un niveau peuvent être si peu familiers avec les autres niveaux. Ce n’est pas seulement que 

le temps s'est écoulé et que les « choses » ont changé depuis « que je suis allé au 

secondaire/cégep/ à l'université ». La réalité est que les enseignants n’ont pas toujours fait 

partie du même système que leurs élèves font ou vont faire partie. La mobilité nationale et 

internationale des étudiants et des enseignants se traduit souvent par le fait que les enseignants 

n’ont aucune idée de ce que leurs élèves ont été enseignés et de ce qu’ils ont appris, ainsi que 

de ce qui les attend dans leurs futures études. Ce n’est pas clair pour nous, participants à ce 

groupe de travail, que ce soit mauvais en soi—mais au moins, il semble que le déséquilibre 

entre les attentes des étudiants et des enseignants et les hypothèses entre les niveaux jouent un 

rôle dans les difficultés des étudiants et des enseignants dans l’apprentissage et l’enseignement 

des mathématiques. 

Certains professeurs universitaires de mathématiques du groupe ont été capables d’articuler une 

définition des mathématiques : la mathématique est l’étude abstraite des structures. Ils réfèrent 

aux mathématiques comme une activité ludique—en tant que mathématiciens professionnels, 

nous jouons avec des problèmes. Bien que certains (ou tous!) les professeurs d'université du 

groupe aient développé des approches d’enseignement qui se concentrent sur l’étude abstraite 

des structures et mettent en évidence le caractère ludique de l’activité, il est assez incertain que 

c’est l’approche générale de l’enseignement des mathématiques universitaires, au moins dans 

les premières années universitaires. La recherche en didactique des mathématiques en lien avec 

l’enseignement du calcul et de l'algèbre linéaire semble suggérer que ce n'est pas le cas. 

Cela a conduit à discuter des objectifs éducatifs de l’enseignement des mathématiques dans les 

différents niveaux. En lien au contenu, par exemple, il y a les attentes des professeurs 

d'université envers les étudiants, que ceux-ci arrivent avec un bagage de connaissances 

spécifiques (ce qu’est une équation, qu’est-ce qu’une variable, priorité des opérations de base), 

mais surtout avec des compétences métacognitives : persévérance, créativité, pensée critique et 
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théorique. Peut-être que de mieux définir et articuler les objectifs éducatifs (pas nécessairement, 

ou pas seulement, dans les documents ministériels et curriculaires, mais dans le langage et les 

cultures institutionnelles des enseignants et des étudiants qui doivent atteindre ces objectifs) 

aidera à établir des ponts entre les ordres. 

WHAT’S UNIQUE ABOUT MATHEMATICS IN THE TRANSITION?   

Mathematics often acts as a ‘gatekeeper’ course, both at the secondary and tertiary levels. This 

leads to ‘service’ courses in first-year university where one or both of calculus or linear algebra 

are required courses for degree/diploma programs but are ‘terminal’ in that they do not lead to 

further courses in mathematics. Many people, including teachers, have very emotional reactions 

to mathematics. It is a subject area where it is socially acceptable for people to say, “I’m not 

good at math” (search online for t-shirts that say “allergic to algebra” [girls only], a pink t-shirt 

that says “I’m too pretty to do math”, “I suck at math” and MATH “Mental Abuse To 

Humans”). This is not a sentiment that is socially accepted in reading, writing or other 

disciplines. 

In mathematics, we often work on big ideas but work on small, condensed parts while other 

areas take a statement or idea and expand upon it. In addition, there is an abstract nature to 

mathematics that is not rooted in the ‘real world’. The study of mathematics can be viewed as 

cumulative in nature, particularly with the current focus in secondary school that leads to 

calculus. For example, a thematic approach can be taken in studying history or literature where 

the order of material is flexible. It is possible to study the times or works of the renaissance and 

then subsequently study Ancient Rome, but it is more difficult to sequence the teaching and 

learning of content in mathematics. Mathematics also uses symbols and notation that can make 

it inaccessible to ‘outsiders’. There is a rigor and precise use of language and symbols. While 

it is easier to identify achievement in other domains such as music, members of the working 

group wondered what achievement in mathematics looks like. 

INSTRUCTION & ASSESSMENT  

Two of the most noticeable classroom aspects of the Transition for students are in the areas of 

instruction and assessment. Learning mathematics in post-secondary school is noticeably 

different than high school: classes are often larger, students can be anonymous, the pace may 

be quicker, and responsibilities have shifted more to the student. Most prominently, post-

secondary courses are often taught differently than in high school. Lectures remain the primary 

mode of instruction in post-secondary, in contrast to, at least nominally, more interactive, 

hands-on teaching in high school. This is partly due to the perceived infeasibility of hands-on 

teaching for large classes, but also reflects a difference in instructor mindset: university 

instructors are often trepidatious about interactivity during class time, yet many secondary 

school teachers are encouraged toward more interactive and responsive teaching. Assessment 

is also very different between post-secondary and high school settings. Post-secondary 

assessment is almost exclusively summative, and often high-stakes. While assessment in high 

school can also be high stake and summative (e.g., final exams), there is a much greater focus 

on the learning function of assessment where students receive personalized feedback which 

affords opportunity for student growth. There is also more opportunity in high school classes 

for conversations and observations to be used as part of informal or formal assessment. These 

marked differences in instruction and assessment were apparent to the participants, and we 

considered each, in turn. 
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INSTRUCTION 

To initiate a deeper discussion on instruction, the participants, in heterogeneous groups, created 

lessons on the topic of solving systems of linear equations. This topic was chosen because it is 

common in high school and university. 

There was a wide variety in approaches. Some groups wrote prompts to have students consider 

possible linear systems with a particular solution as shown in Figures 1 and 2. Some groups 

included a ‘real world’ context for solving equations, such as in Figure 3, and some included 

investigation of the number of solutions, such as in Figure 4, and a discussion of operations that 

preserve the solutions, as in Figure 5. 

 

Figure 1. 

 

Figure 2. 
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Figure 3. 

 

Figure 4. 

 

Figure 5. 
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What struck us as facilitators was that there were few original ideas brought forth by the 

participants during this session. This was surprising as our participants were all, individually, 

creative educators and often voiced that creativity in this and other sessions. We speculate that 

our groups were educational microcosms—that each individual representing a level of 

education in a group desired something creative and profound for their students, and through 

interacting with others from different levels of education, compromised on their ideas, 

producing an educational experience that satisfied each level but that none strongly desired.  

Having planned and discussed lessons, we moved on to viewing two lessons, one from middle 

school, and another from university, that could be taken as archetypal: the first being taken from 

the TIMSS study (TIMSS, 1999) and the second from a recorded lecture at the Massachusetts 

Institute of Technology (MIT, 2005). There was consensus within the working group that both 

of these lessons were likely typical samples, but there was widespread discomfort with both 

lesson samples. 

The middle-school lesson centred on the topic of exponential relations and exponent laws, but 

the teacher mainly lectured. The class was peculiar—with an awkward delivery of materials, 

where students were requested to take out a binder and put a sheet in, but then disregard that 

and put it away. What seemed to be a lesson intended to have a demonstration with 

manipulatives quickly degraded to a lecture. The teacher did not appear to take previous 

learning into account and afforded few opportunities for student involvement.  

The university lecture was just that, a lecture in the most traditional sense of the word, and was 

similarly devoid of consideration of students’ prior learning. It concentrated on 

presentation/delivery of ideas and problems, rather than consideration of the audience (in-

person or on-line).  

Both archetypal lessons seemed to perturb our participants. Neither went over well, and the 

participants generally felt that they served as archetypes of how not to teach. We nevertheless 

see value in studying these examples—a good example of how not to do something can be on 

par with an exemplar of how to do that thing. 

ASSESSMENT 

The next activity was intended to initiate a deeper discussion about assessment practices in high 

school and university. Participants, in their same group as in the instruction session, created 

assessments corresponding to their instructional lessons. 

The final portion of this session involved discussing authentic assessment samples from high 

school and university. These are in Figures 6 and 7.  

An interesting distinction emerged: post-secondary instructors, in particular the university 

professors, found the high school problem too ill-posed—the question did not appear to invite 

a response by its open ended-ness; whereas the high school teachers found that the university 

problem lacked richness—that it was far too routine to be invoke meaningful mathematical 

thoughts. Both teacher and professor retorted—the high school question did indeed make sense 

to the teachers, who found it to be in line with what they would likely present their students, 

and the university professors produced some insightful, and non-routine solutions to the 

university question. It seemed, then, that assessment is deeply intertwined with institutional and 

course-level cultures; not readily understood without the anchoring context. 
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Figure 6. High school example. 

 

Figure 7. University example. 

HOW ARE WE PREPARED/UNPREPARED FOR OUR TEACHING?  

Having discussed the Transition itself, and issues related to mathematics in the Transition, 

including instruction and assessment, we turned our attention to how we educators are 

(un)prepared for our teaching. We summarize these discussions below, based on educational 

level. 

HIGH SCHOOL TEACHERS 

The high school teachers in our working group felt very prepared for their teaching with good 

content knowledge as well as instructional activities from their teacher-preparation courses. 

There was consensus that there are disconnects between the preparatory experience in the 

Faculty of Education, which was largely theory-based, and the practical reality of teaching. 

Teachers felt that generalist courses for secondary teachers are not very useful for future math 

teachers, because of the dominance of social sciences and languages content in the examples 

and discussion. The assignments in the general courses on topics such as special education and 

assessment were perceived as being completed for their own sake, not for learning. While it 

was recognized that formal lesson planning could build an understanding of how to structure 

math classes, there was a perceived over-emphasis on formal lesson planning during teacher-

preparation. Learning about planning, assessment, and other key topics is largely left to content 

courses or the practicum for future secondary mathematics teachers. In addition, there was 

concern that many of the courses in a teacher-preparation program are mostly taught by 

professors who have never been a high school teacher, or have little teaching experience at the 

high school level. 
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Learning in the practicum setting was viewed as much richer, but it was pointed out that 

associate teachers are critical to ‘making or breaking’ the whole teacher education experience. 

Several participants had experiences where associate teachers undermined the messages 

received from the university faculty in the education program. 

One particular area that the high school teachers in this working group felt unprepared for was 

assessment and evaluation. There was consensus that teaching means nothing unless learning 

is occurring, and that teachers sometimes assume students know things they do not. Teachers 

wanted a deeper understanding of how to use assessment in planning and to inform 

pivots/changes on the fly in the middle of lessons. Most teachers had the majority of their 

learning about assessment through reading and lectures, which was largely devoid of the context 

of high school mathematics. 

Another area where high school teachers felt unprepared was in helping students prepare for 

programs at community colleges since very few teachers have attended college as a student. 

CÉGEP/COLLEGE INSTRUCTORS/PROFESSORS 

The Cégep and college instructors/professors in our working group felt very prepared for the 

mathematics content areas for teaching, with the exception of statistics. However, they felt they 

lacked preparation in didactics/pedagogy. In particular, they stated they felt they lacked a 

diversity of techniques in teaching particular topics, and stated it was hard to tell what ‘works’ 

in teaching at the Cégep and college levels. In particular, Cégep and college teachers/professors 

felt they lacked social and emotional connections with students due to class size.  

UNIVERSITY PROFESSORS/INSTRUCTORS 

University professors in our working group felt very confident and prepared in their knowledge 

of content and research, but felt they do not know their students. This is largely due to 

institutional constraints where class size is a major challenge to getting to know students. 

Professors worry about how to create a learning environment, for several hundred students, that 

allows students to do their best. In addition, professors do not feel prepared for the assessment 

and evaluation piece—what is a good test, how to assess conceptual understanding, how to use 

assessment to improve learning? 

The class size issue has impacts on assessment, because large class sizes mean it is very hard 

for university professors to use formative assessment to inform teaching and improve learning. 

Large class sizes require teaching assistants to grade assignments and exams, which removes 

professors from a key step in informing instruction. There was consensus among university 

professors that showing caring about learning is very important to students. Professors also 

noted there is increasing diversity in incoming students, and that while there is an assumption 

that students have strong technology and computer skills, many university students do not know 

how to use technology to look up basic mathematics concepts. They also noted they are dealing 

with more mental health issues that have a big impact on attendance and evaluations. 

On the topic of transitions, university professors find dialogue with high school teachers to be 

very productive, particularly when relationships are established to allow annual collaborations. 

Mentoring between university students and younger undergraduate students, as well as even 

younger high school students, is seen as helpful. 
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WHAT IS IT THAT STUDENTS DON’T KNOW OR CAN’T DO THAT YOU 
WANT/NEED THEM TO BE ABLE TO DO?   

As the working group progressed, we turned our attention to prospective thinking about the 

Transition. Groups were prompted to think about what they desired of their students to know 

about and do with mathematics. Two themes emerged in the ensuing discussions: mathematical 

content and dispositions towards mathematics. However, these themes were interpreted 

differently by the various types of participants. Below is a summary of the major points brought 

up. 

HIGH SCHOOL TEACHERS 

The primary content areas that high school teachers brought up as problematic for students were 

in the areas of orders of operations, fractions and algebra. Other areas included factoring 

polynomials and finding roots. A particularly rich area of discussion was in how estimation has 

been largely ignored in curriculum, but there has been a recent resurgence through the social 

media presence of two California educators: Andrew Stadel (Estimation 180) and Dan Meyer 

(Three-act math). 

In terms of mathematical dispositions, a wide range were mentioned. Of note are: 

 Perseverance. Students tend to not persist through problems. The high school 

teachers voiced a desire for students to keep trying and not give up too easily.  

Teachers ought to facilitate practice in perseverance, and perhaps model it in their 

own instruction. Rather than giving the impression that math ‘problems’ are short 

and quick, teachers ought to design tasks that afford perseverance. Participants 

mentioned that the students demonstrate perseverance in other areas—music, art, 

sport—and so it is certainly possible to stimulate that perseverance in mathematics 

as well.  

 Independence. High school math instills in students a dependence on the teacher or 

other external-to-the-student ways of validating and knowing mathematics. Students 

are told when they are right or wrong, and often have difficulty in determining that 

themselves. This situation changes very suddenly in university, where students 

experience a greater autonomy. And this is a source of discomfort for strong and 

weak students alike. The major challenge is to shift students’ motivations from 

external to internal—doing so is the first step to independence. An internalized 

motivation enables a student to, for example, check their solutions/answers, not rely 

too heavily on a calculator, and to know when they are right or wrong.  

 Societal. It remains a societal trope to claim one’s incompetence in mathematics, 

despite that being a perennial complaint of the mathematically inclined. This remains 

surprising, since other disciplines do not experience the same level of ignorance. 

What are we doing to change this? 

CÉGEP/COLLEGE INSTRUCTORS/PROFESSORS 

Similar to the high school teachers, Cégep/college instructors voice concerns about students’ 

competencies with particular mathematical content. In particular, syntax was a major concern—

students need a greater fluency with mathematical syntax. On a more procedural note, students’ 

work did not always follow the order of operations convention. This, of course, causes major 

errors in college-level mathematics.  

In terms of students’ dispositions toward mathematics, Cégep and college instructors tended to 

focus on the nature of students’ knowledge. They find that students are typically disposed 

http://www.estimation180.com/
http://blog.mrmeyer.com/2011/the-three-acts-of-a-mathematical-story/
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toward memorization of mathematics and have the notion that there is only one way to solve 

any given mathematical problem. These fixed mindsets should be transformed early on; being 

able to work flexibly, with multiple solution approaches, and to verify one’s mathematical work 

are valuable college-going skills.  

UNIVERSITY PROFESSORS/INSTRUCTORS 

University professors highlighted functional thinking as a core mathematical competency 

students tend not to exhibit. In addition, and similar to the other two groups of educators, 

professors highlighted basic algebraic skills as a point of concern. At this stage we ask, if all 

three levels of educators value the same foundational set of algebraic and arithmetic skills and 

conceptions, how is it not being developed in the students? 

Content aside, professors voiced a desire for many of the same dispositions that the other groups 

mentioned: internal motivation, persistence, for example. Two points of divergence are worthy 

of note. First, professors desired the non-mathematical attributes of general academic and 

personal maturity. They find often that students are still too reliant on an instructor to guide 

them and felt they ought to be much better prepared to engage with materials related to a course 

independently. Professors felt they were on the receiving end of a buildup of a culture of poor 

communication etiquette—they desired more formality from their students. The second major 

point was a desire for the students to ‘play’ with mathematics. Far too much mathematics 

encountered prior to university stifled the creativity and free inquiry of the students. This 

contrasts dramatically with the work of mathematicians. Mathematics is a source of enjoyment 

and fun for mathematicians and the professors voiced a strong desire for students to experience 

similar joy with mathematics.  

EASING THE TRANSITION 

The final session in our working group centred on creatively addressing the Transition. We 

presented each cluster of participants a blank sheet of paper and the instructions: 

Activity: Let’s Dream! Create a plan/experience that will address transitional issues 

from secondary to tertiary math. 

We emphasized that the groups should not feel too constrained by current 

power/institutional/cultural structures and imagine experiences that might better transition 

students into post secondary. Here is what they came up with: 

 

Figure 8. 
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Group 1: Dialogue between high school teachers/students and university or college 

professors/students. Teachers and professors share materials, teaching experiences and 

questioning epistemological issues Students are involved in mentoring activities. Development 

of a math knowledge network similar to the Fields Institute in Ontario. 

Group 2: Week-long summer ‘head start’ camp like is offered at Queen’s University. High 

school final exams could also serve as a diagnostic for the transition into first-year math. Work 

in small groups and meet teachers, professors and undergraduate students. 

Group 3: Dialogue between university/college professors and high school teachers; many high 

school teachers do not love math 

Group 4: One week of college/university immersion at the start of a term where there is new 

independence/responsibility 

Group 5: Create Cégeps in all provinces! 

CONCLUSION  

As is a typical outcome for a working group at CMESG, we parted with more questions than 

answers. But there was also the distinct feeling of having networked ideas in ways not 

commonly encountered. We facilitators physically structured the groups present in each session 

to maximize diversity of institutions—high schools, Cégeps, technical and community colleges, 

university students and professors, and government representatives were all present and 

engaged with each others’ perspectives. Perhaps this is what is needed, above all, in the 

Transition.  
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INTRODUCTION 

This CMESG Working Group (WG) attempted to bring fresh thinking to the enduring issue of 

elementary preservice teachers’ mathematics anxiety. While this is a topic that has resonated 

with teacher educators for many years, a recent upsurge of interest in the emotional component 

of mathematics learning at the Kindergarten to Grade 12 levels (e.g., Andersson, Valero, & 

Meaney, 2015; Brown, Brown, & Bibby, 2008; DiMartino & Zan, 2010; Lange & Meaney, 

2011; Takeuchi, Towers, & Plosz, 2016; Towers, Hall, Rapke, Martin, & Andrews, 2016; 

Towers, Takeuchi, Hall, & Martin, 2015) is prompting renewed interest in examining post-

secondary students’ (and particularly elementary preservice teachers’) emotional relationships 

with mathematics. We felt that it was time to ask again: What motivates, drives, and/or creates 

elementary preservice teachers’ mathematics (teaching) anxiety? And, have these drivers 

changed recently? Are we as teacher educators relying on (old) assumptions about the nature 

of our current students’ anxieties? Drawing on published and emerging research (e.g., 

Goulding, Hatch, & Rodd, 2003; Hobden & Mitchell, 2011; Takeuchi, Czuy, & Towers, 2016; 

Towers, Takeuchi, Hall, & Martin, 2017), we examined the kinds of K-12 and post-secondary 
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experiences that (may) have led the current generation of math-anxious preservice teachers to 

their relationships with mathematics, and then moved towards explorations of new responses 

to this enduring problem. 

The three days of the Working Group were designed around a theatre metaphor: day 1 of ‘actors 

and agents’, working to understand the primary actor—the preservice teacher, and the other 

actor—the mathematics educator; day 2 of ‘lines and scripts’, exploring the prior experiences, 

knowledge, and beliefs these two main actors bring with them; and day 3 ‘the stage’, exploring 

possibilities to interrupt the usual cycle of anxiety. An underlying premise of this Working 

Group was to provide many opportunities for participants to play, talk, and work together, a 

kind of modeling of the mathematics learning experiences we felt would act as interruptions to 

the cycle of anxiety and help preservice teachers in their professional learning. To that end, we 

designed homework for each day, included graphic, text, and auditory artifacts from preservice 

teachers expressing their mathematics and mathematics teaching anxiety as motivators and 

prompts for Working Group discussion, and provided opportunities for participants to create 

and express themselves in diverse ways. We worked in French and English and encouraged 

participants to speak whichever language they felt more comfortable with. Since we had 

resources in both French and English, we also encouraged the participants to familiarise 

themselves with the other language. To demonstrate our commitment to this principle, Manon 

frequently spoke in English, and Jamie and Jo spoke in French.  

Through the different activities, much of our intention was to present opportunities for critical 

reflection-on-action (Schon, 1983); we did not try to direct the discussion towards ‘an answer’, 

but left discussions and conversations open-ended, allowing participants to continually reflect, 

review, and revise their conceptions and thinking. We take this approach with this presentation 

of the work of our Working Group, offering our thinking on preservice teacher mathematics 

anxiety for you to interpret for yourself. 

DAY 1 ‘ACTORS AND AGENTS’ 

The first day of the Working Group started immediately with vignettes of preservice elementary 

teachers talking about their mathematics anxiety. These vignettes were drawn from Towers’ 

recent study of students’ experiences learning mathematics (e.g., Takeuchi, Czuy, & Towers, 

2016). On purpose we did not start with introductions; we felt the nature of the interactive and 

collaborative activities would naturally motivate people to talk to one another, and we could 

effect introductions as a natural part of the first day 1 activity. We wanted the participants to 

express themselves through the characters they created from the vignettes. Initially, participants 

began by talking about preservice teachers’ mathematics anxiety, but they soon began talking 

about themselves as fellow actors, with the preservice teachers helping them deal with their 

mathematics anxiety. Participants were disclosing, in essence providing introductions of, who 

they were as participants in the Working Group as they explained how they came to conclusions 

for the features of their character. 

The following are the five characters that came to exist as individual and collective preservice 

teacher entities in our Working Group. Participants naturally referred to these characters 

throughout the three days we worked together. In each case, the image is a photograph of the 

small group’s preservice teacher character, and the text in italics is a snapshot of the words used 

to introduce the character to the rest of the Working Group. 
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 Jane Doe, une étudiante en 

éducation au primaire qui se sent 

dépassée par la situation. Ses 

cours de maths se ressemblent 

tous et sont axés sur des 

exercices. Elle doit se concentrer. 

Elle doit être rapide. Elle ne sait 

pas à quoi tout cela va lui servir. 

Malgré la pression de réussir qui 

est grande (si elle ne réussit pas 

ses cours de maths, elle ne pourra 

pas être enseignante), elle n’ose 

pas demander de l’aide aux 

autres, car elle a peur d’être 

jugée. 

 

 

 

 

 Emotions, and gender were considered important—therefore the character is a girl 

named Rebecca; and a cognitive gap and/or awareness of the cognitive gap; grade 8 

as an important transition; procedures done without meaning; not grounded in ‘math’ 

class.  
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 Kevin, a boy, but gender was 

discussed; a bit of a timeline, 

at the beginning everything 

went well; evolution to 

becoming a preservice 

teacher; anxieties and 

frustrations; multiplication 

and division, glaze of the 

eyes; not enjoying the weekly 

Mad Minutes; a teacher 

helped show what math 

could be; education is an ‘at 

school’ thing, and not a 

‘home’ thing. The name is 

important—Kevin is a boy 

who comes from a 

background that is far from 

education, then there is 

embarrassment because of 

an inability that is not in his 

control, a progression of 

learning for Kevin, school 

took the math away from 

him—the math that he knew 

naturally at the beginning 

 

 

 Cathy, from Toronto, dropped out of the 

program; had success initially with a 

program exclusively about procedures; 

developed a need to understand why and 

not just how; discussion of conceptual vs 

procedural—what does the learner 

need?; the power of the language that 

the teacher uses—the language of 

identity laid onto the student by the 

teacher. Large-scale spatial awareness 

then helps understand the small 

procedural steps—such as directions in 

a city. Sometimes the student needs to BE 

an advocate for their own learning, and 

that is a personal kind of thing 
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 No name; right from being a 4 

year old not understanding 1+1 

is 2, it became an identification; 

frustration, but not defeated 

because she felt confident in 

other areas; language about not 

grasping. “I am …. This is not my 

experience with math but I have 

seen it” [a participant’s comment 

about themselves]. Green colour 

is important, there is something 

happening with the fingers, like 

adding, but there is no knowledge 

about what is going on behind 

i.e., in the thinking, therefore the 

green is that it is alien. 

 

 

 

 

 

 

 

After the mid-morning break, the focus turned to the mathematics educator. A small group 

placemat activity was performed with the participant mathematics educators. Three placemat 

spaces, representing a) goals (the horizon learning goals of what they hoped to accomplish with 

elementary school preservice teachers); b) intentions (what they intended to do to achieve those 

goals); and c) anxieties (relating to their own professional practice) spread from a central oval. 

The placemat was turned twice during individual brainstorming while participants wrote in the 

placemat space in front of them. Then they had a small group discussion about what was noticed 

in the placemat spaces. As enduring issues emerged from the discussion, those enduring issues 

were written in the centre oval of the placemat.  

The following are the six placemats that resulted from this activity. 
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As the small groups described their placemats and their thinking, it was interesting to note that 

the groups talked about their preservice teacher character, but often also, with pieces of an 

imagined elementary school student. An overriding theme was that of mistakes, 

“Acknowledging the mistakes we are going to make, means we can move ahead” (a participant). 

A small tangential discussion concerned the mathematics itself; that is, the mathematics of the 

curriculum. Is it different, does it change? Or is it the way mathematics is being taught that is 

changing? “There is a tension that exists no matter what we say we are doing” (a participant). 

The notion of preservice teacher anxiety and its effect on mathematics educators was an 

important discussion point. “We may not be able to remove anxiety, but we could support them 

[preservice teachers] to cope with it; but stressed students bring stress to me; therefore, how 

can I stay ZEN?” (a participant). The mathematics educators in the Working Group were self-

reflective, “I think it is interesting that you asked us to complete the anxiety section [of the 

placemat] because it [mathematics educator anxiety] is not something I have thought about 

before” (a participant). And the preservice teachers in the Working Group expressed a sense of 

relief in their reflection, “The fact that you [mathematics educators] have anxiety, it makes us 

preservice teachers feel better because we have anxiety. It makes us feel more confident and 

capable because we are still struggling. Thank you!” (a participant). 

HOMEWORK! 

Between the end of the first day, and the beginning of the second day of the Working Group, 

participants were asked to take and/or select one picture from anywhere in the world that they 

felt had something mathematical about it or something that could be considered and discussed 

that is mathematical. We introduced them to an online mapping tool that allows images to be 

uploaded and linked to a specific geographic location. Participants were asked to turn on their 

geo-coordinates and location services on their photographic equipment before taking their 

picture or to simply link their picture to somewhere in the world while uploading it to the online 

map. The pictures were to be posted online in the mapping tool or could be brought to the 

Working Group the next day and we would post the image for them. 

DAY 2 ‘LINES AND SCRIPTS’ 

La deuxième journée s’est articulée autour de deux activités, soit 1) une exploitation des 

géotechnologies (activité liée au devoir de la première journée) et 2) une réflexion sur la vision 

que les participantes et participants ont des mathématiques et sur l’effet que cette façon de voir 

les choses peut avoir ou non sur l’anxiété mathématique que vivent les futures enseignantes et 

futurs enseignants. Dans un premier temps, les participantes et participants ont travaillé à partir 

des images placées sur la carte en ligne (https://gcedm-

2017.maps.arcgis.com/apps/StoryMapCrowdsource/index.html?appid=2dd100d066984cbe81

1e027c9e769900). Voici quelques-unes de ces images : 

https://gcedm-2017.maps.arcgis.com/apps/StoryMapCrowdsource/index.html?appid=2dd100d066984cbe811e027c9e769900
https://gcedm-2017.maps.arcgis.com/apps/StoryMapCrowdsource/index.html?appid=2dd100d066984cbe811e027c9e769900
https://gcedm-2017.maps.arcgis.com/apps/StoryMapCrowdsource/index.html?appid=2dd100d066984cbe811e027c9e769900
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Les participantes et participants ont d’abord travaillé en petits groupes et se sont inspirés d’une 

image (la leur ou une image choisie parmi celles des autres) pour rédiger un problème. Le fait 

que l’objectif et le niveau ciblé (p. ex. : 1re année universitaire vs. 4e année universitaire) 

changent grandement le problème rédigé est un des constats qui a émergé de cette tâche. Les 

problèmes proposés furent riches et variés. Alors que certains ont tout simplement demandé 

une description de l’image, d’autres ont rédigé des problèmes plus traditionnellement 

mathématiques (p. ex. : À ton avis, combien de fenêtres y a-t-il à la Place Ville Marie?). Les 

participantes et participants ont ensuite précisé la solution que leur personnage (développé lors 

de la première journée) proposerait à ce problème. Enfin, ils ont identifié la façon dont leur 

personnage réagirait devant ce problème (actions) et la façon dont il se sentirait (émotions).  

Une discussion s’ensuit sur les différents éléments abordés lors de cette activité. Les 

participantes et participants ont entre autres partagé ce qui s’était passé lors de la rédaction des 

problèmes (réels) et des solutions (réelles—la leur; et fictives—celle du personnage). L’un des 

premiers éléments notés fut la richesse des échanges autour des différentes images. La plupart 

des gens avaient un ou des problèmes en tête lorsqu’ils ont proposé une image. Or, la plupart 

du temps, leurs collègues ont vu d’autres mathématiques dans cette même image. En serait-il 

de même avec les étudiantes et étudiants? Que se passerait-il si nous leur demandions tout 

simplement, comme l’a proposé l’un des participants, de décrire l’image? Seraient-ils en 

mesure, malgré leur anxiété, de nous faire voir les choses autrement? D’autre part, à travers les 

discussions, les participantes et participants se sont rendu compte qu’une telle activité pouvait 

permettre l’exploitation à la fois des mathématiques et de la didactique des mathématiques. 

Les images ont mené plusieurs personnes à rédiger des problèmes ouverts. Il semble toutefois 

que ce type de problème puisse à la fois nuire et avantager les étudiantes et étudiants. En effet, 

alors que certains affirment que de tels problèmes sont plus accessibles et moins intimidants, 

d’autres disent que plus la tâche est ouverte, plus les étudiantes et étudiants sont anxieux. Il 

semble donc indispensable de présenter des contraintes claires, afin d’encadrer, du moins en 

partie, le problème proposé. D’autre part, il appert de se pencher sur l’évaluation de tels 

problèmes. Un problème ouvert peut-il être utilisé pour évaluer les étudiantes et étudiants de 

façon sommative? Si oui, comment évaluer la solution proposée à un tel problème? 

Après avoir « joué » avec les images pendant un certain temps et discuté de leur expérience, les 

participantes et les participants ont été invités à se questionner sur leur propre façon de voir les 

mathématiques. Le contexte suivant leur a été présenté comme mise en situation : « Vous êtes 

dans votre classe. Un nouveau chargé de cours va vous remplacer dans votre cours avec les 

futures enseignantes et futurs enseignants du primaire pendant que vous êtes en congé 

sabbatique. Sans perdre de vue la continuité du programme que vous avez développé, qu’allez-

vous leur dire? ». Afin d’aider les participantes et les participants dans leurs réflexions, les 

questions suivantes leur ont aussi été présentées :  

 Comment conceptualisons-nous les mathématiques dans les activités que nous 

réalisons avec les futures enseignantes et futurs enseignants du primaire? 

 Quels effets les décisions des formatrices et formateurs peuvent-elles avoir sur 

l’anxiété vécue par les futures enseignantes et futurs enseignants du primaire?  

 Est-ce que cela va atténuer leurs craintes ou les empirer? 

 Que peut-on dire à propos de la façon dont les futures enseignantes et futurs 

enseignants se sentent prêts ou non à enseigner les mathématiques? 
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DAY 3 ‘THE STAGE’ 

The first task of the third day was to attempt to connect some of the pictures in the online map 

in some coherent manner, such as a math trail. Participants worked flexibly, individually, in 

pairs, and in small groups.  

A second task involved a paper version of a ‘map’ task. Find a minimum number of ice cream 

shops that can exist on the vertices of the map so that everyone can reach an ice cream shop. 

People only live at vertices. People are only willing to walk one edge to get to a shop. Various 

versions of the map, often increasing in complexity, were explored by the participants. The 

depth and breadth of mathematics, appropriate for the elementary school level, as well as 

branching into other levels of learning, spontaneously and naturally pervaded the conversations. 

“I made a cube, and a 3-D vertex, but I was not able to convince my team-mates” (a participant). 

Participants were not trying to be mathematical, they were not trying to be problem solvers; 

they acted naturally and showed themselves to be mathematical problem solvers. Ultimately, 

knowledge of the ‘greedy algorithm’ was acquired, and implemented into their thinking.  

Next, drawing again on data from Towers’ research study (e.g., Towers et al., 2017), drawings 

of students’ expressions of mathematics anxiety were explored. Participants were asked to 

reflect on the drawings submitted by Kindergarten to Grade 12 students and think about how 

they would help their own preservice teachers to help such students.  

Interesting moments of reflection and thought popped up regularly for the group. The discussion 

was perhaps chaotic, but focused through the lens of the participants’ own realizations and 

appreciations of their roles and responsibilities with respect to mathematics anxiety and 

mathematics teaching anxiety. In the following comments, participants reflected on the 

mathematics task we had done as a group (the ice-cream shop task)—a graph theory task—and 

the kind of mathematics that was referred to by the students in Towers’ research study, which 

was predominantly related to number and operations. 

“To enable them [preservice teachers] to think about how they are thinking about a problem.” 

“Preservice teachers’ experiences are often disconnected from exercise to exercise.” 

“How not to see every problem as an entirely new problem.” 

“It [about anxieties] was an analogy for me about how anxiety was 

generated.” 

“We couldn’t grasp the first task before the next map was given to us, and then on to another map…” 

“I was starting to feel quite dumb and lost because another group clearly got it, and I didn’t get it yet.”  

“I was frustrated, I could not grasp…, I know how to do this but it wasn’t coming.” 

“There was some positive and some negative experiences; I was feeling motivated to  

keep the solution to myself.” 

“It’s not the personality type that you are, it’s the history of experiences you have had that lead one to 

think of themselves in a negative way.” 

“The anxiety in the characters is mostly about number and calculation, the pictures are most  

about geometry.” 

“Even if we had good experiences with this graph theory, etc., how much does it 

address the anxiety with number; e.g., how is this different than learning to play the 

piano as an analogy.” 

“Pictures [the presented research data] were predominantly about 

number and operation; there is potential that using tasks such as these 

students may see themselves as being able to do math in one way, and then 

try to do the other math.” 

“It may not be the task at hand that causes anxiety, it might be the environment and or the people 

themselves that bring the anxiety to the front. It’s not the math, it’s the environment; the preservice 

teacher classroom may show more anger and frustration, etc., with such tasks; timing of bringing tasks 

to students’ attention can be important.” 

“It depends upon the person—I didn’t want any help or hints, I wanted to do it myself.” 
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“This might not be the students we are trying to address in this WG, because they 

are likely less anxious.” 

“Therefore we also need to be careful not to frustrate those that are not 

anxious as we work to alleviate anxiety in others; this task was a nice one 

because it was easy to start.” 

“This may suggest the teacher has an integral role to give help where needed.” 

“There is also the situation of the math anxious will wait for the other one to solve it. 

Therefore engagement is low as they wait; these kinds of tasks are not about ‘fractions’.” 

“I have learned to be very explicit about my own practice when I teach preservice 

teachers.” 

“Especially when tasks that are not directly connected to the curriculum.” 

“Whose, our focus? Just those with anxiety, those who like to work alone and therefore mostly just 

watch the other work through the task.” 

“Preservice teachers must also be able to use tasks that are not evaluated because of the 

curriculum.” 

 “Now, on day three we are trying to determine what an anxious student looks like…!” 

An ‘aha’ moment occurred for many of the participants as they thought about their work as 

preservice educators of preservice teachers. Preservice teacher learning may not just be about 

helping preservice teachers appreciate elementary students’ mathematics anxiety, preservice 

learning may also be about our (the participants’) consideration that preservice teachers may be 

carrying their own mathematics anxiety. Perhaps a valuable lens is the perspective that they are 

teaching a preservice teacher course as mathematics educators (who carry aspects and levels of 

their own anxiety) helping preservice teachers (who carry their own mathematics anxiety) to 

help students (who also have mathematics anxiety) learn mathematics. The discussion then 

revolved around the question, “How do we break this cycle?” 

How do we break this cycle? Perhaps a moment of sense making… “one thing I have is power 

as a university prof—not only about the task, the task may be more minor than how we respond 

to their work on the task.” “Be explicit about their actions—that they are acting 

mathematically—giving them permission, moving slowly, to stop and make sure they are 

making sense, and understand.” “Invite them to stop the class.” 

A potential new response to this issue of reducing mathematics anxiety and mathematics 

teaching anxiety is to look closely at the work we do in teacher education that has the deliberate 

aim of working on preservice teachers’ anxieties. We know that our CMESG/GCEDM 

community houses a wealth of expertise in developing tasks for elementary preservice teacher 

education that aim to challenge problematic perceptions of mathematics, expand those 

perceptions, and address students’ mathematics anxieties. Part of the intent of this Working 

Group was to gather, co-develop, play with, and, for our community (and perhaps wider 

distribution), develop a collection of ‘new’ designed tasks. Although we did not achieve that 

last, lofty goal, we have a stronger understanding of the complexity of the underlying 

phenomena.  

We are aware, though, that exposure to pedagogically rich mathematical tasks is not a panacea 

for preservice teachers’ mathematics anxieties. And so we will proceed with caution, inviting 

Working Group participants to continue to ask: Is it possible to turn all elementary preservice 

teachers into mathematicians or some sense of mathematician, or even lovers of math, and 

indeed, should that be our goal? 

We invited Working Group participants to be sensitive to the changing, and ever more political, 

educational landscape into which our new teachers step. For example, Ontario has recently 

moved to emphasize financial literacy in the mathematics curriculum; New Brunswick’s 

recently revised high school mathematics curriculum calls upon learners to choose between 

three pathways that offer differing levels of applicability to everyday life and careers; and 
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concerns about students’ competence in numeracy (rather than mathematics) are emerging in 

the social discourse in Alberta. In thinking about new responses to the issue of mathematics 

anxiety among elementary preservice teachers, we explored the questions: What effects might 

such moves have on preservice teachers’ math anxieties? Will this ease their fears or add to 

them? Will preservice teachers feel more, or less, prepared to teach mathematics through such 

curricula? What are the implications for the work of teacher educators? How can we help new 

teachers feel they can be, and, ultimately, be, more engaged in the broader conversation about 

the role of mathematics in society? 
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INTRODUCTION 

Social media has enabled a dramatic shift in how individuals can participate in society. Social 

media tools allow for participating in co-creating and curating ideas, experiences and constructs 

that are publicly accessible and frequently remixable (e.g., Cardone & MTBoS, 2015; Carpenter 

& Krutka, 2014; Larsen, 2016; Larsen & Liljedahl, 2017). Mathematicians, mathematics 

educators, students, and the general public are influencing and are being influenced by 

publications about the teaching and learning of mathematics posted online on various forms of 

social media (Freiman, 2008). This participatory culture moves quicker than traditional forms 

of scholarship and dissemination; however, the implications of social media for the field of 

mathematics education are yet to be explored. Given the above, the key purpose of this working 

group was to explore the possibilities that social media presents the mathematics education 

community.  

In this endeavour, we were guided by the following questions: 

 What is the nature of social media in the context of mathematics education? 

 What might be implications of social media use on the teaching and learning of 

mathematics? 

 What are considerations regarding social media for mathematics education 

researchers?  

Since this is a relatively new topic that has not been adequately explored particularly in the 

context of mathematics education, we began the first day of the working group by experiencing, 

exploring, and defining social media. 
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EXPERIENCING SOCIAL MEDIA 

Our first prompt for exploring social media was a YouTube video shared by Viktor of a train 

plowing through a large pile of snow, which happened to be filmed close to Viktor’s residence 

(video found here: https://www.youtube.com/watch?v=Yja2VmZOfdA). This video, which 

lasts three minutes, captures a train steadily approaching a railway crossing that is blocked by 

a pile of snow from road ploughing. The video has over 10 million views, 24 thousand likes, 

600 dislikes, and 1500 comments. Group members were asked to comment on the video 

anonymously. Comments were posted on pieces of paper around the room. The following are 

some of these responses. 

 Nothing can stop this train!  I thought the train would be pushed off the 

track because of so much snow. 

 Wow! Amazing! Wish I could have seen 

this in person 

 So much snow in Canada. 

 Woo-woo! Here comes the choo-choo!  Spectacular! 

 Canadian weather sucks!  Wow! Almost! 

 Beautiful!  Impressionnant ! Surprenant toute cette 

neige qui s’envole 

 Woowoochoochoo!!  

Group members were then asked to comment again, but this time, to include their name and the 

professional affiliation they were representing at the conference. The following are some of the 

professionally affiliated responses, which were also posted around the room. 

 Belle explosion de neige. Très joli !—

Dimitri, Cégep St-Laurent 

 Spectacular!—Olive Chapman, UC, 

CMESG president 

 Cette vidéo pourrait-elle être utilisée 

comme tâche mathématique ? Quelle serait 

la question ? 

#UtiliserLesMathsAuQuotidien—Mathieu 

Thibault, UQAM 

 How often does this happen? 

Woohoochoochoo—Steven Khan, Brock U. 

 You have managed to catch a really close 

encounter with the train. I can use the video 

in my class talking about perspective.—

Jennifer Holm, University of Alberta 

 I wonder what algorithms can be used here 

to find out what’s happened here.—Osnat 

Fellus, University of Ottawa 

 Wow! I’m glad that the train didn’t have an 

accident. Watching this was 

mesmerizing.—Caitlin Furlong, Université 

de Moncton 

 Need to learn more about it.—Calvin, 

University of Alberta/University of Dodana, 

Tanzania 

 Look how hard Canadians push through.—

Krista, U of C 

 How might I use this video in my math 

classes?—Jill Lazarus, University of 

Ottawa 

 Anybody else wondering how much (m3) 

snow there is actually flying to the sides?—

Christina Krause, Univ. of Duisburg-Essen 

 Does it happen all the time?—Xiong Wang, 

University of Alberta 

Discussion ensued regarding these comments as well as the comments found on the video 

online. We found that the nature of writing and the level of language changed between when 

comments were anonymous and when comments had a professional affiliation attached. There 

was a higher register of language and attention to grammar when professional affiliation was 

included. There was also more hesitation when comments were being written with the 

professional affiliation. ‘Saving face’ and maintaining responsibility to the profession became 

a concern when commenting was professionally affiliated and public. Because professional 

affiliation seemed to make a difference in how we responded publicly, the notion of ‘multiple 

https://www.youtube.com/watch?v=Yja2VmZOfdA
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selves’ and identity arose. That is, how do we form a digital identity through our participation 

in social media and who do we perceive ourselves to be? 

Further, the relevancy of the video prompt to one’s interest, context, and past interactions with 

social media seemed to play a role in how each of us responded. For instance, those who were 

familiar with the ‘notice wonder’ routine, an approach where mathematics teachers use a visual 

prompt to question students about what they notice and wonder (NCTM, 2016), saw this post 

as such. An example of a ‘notice wonder’ prompt found on Twitter is shown in Figure 1. 

Regardless of whether the video was treated as a ‘notice wonder’ prompt or not, many in the 

group indicated a search for deeper meaning and revealed an interest in how this video could 

be used in teaching mathematics within the professionally affiliated comments. Making a 

relevant contribution became important when identity was attached. 

 

Figure 1. ‘Notice wonder’ prompt with soft drink boxes posted on Twitter. 

EXPLORING AND DEFINING SOCIAL MEDIA 

Since working group members had varying degrees of experience with using social media, as a 

group, we listed out social media platforms we are aware of that currently exist, which included 

Twitter, Facebook, Pinterest, YouTube, Vimeo, Instagram, WhatsApp, Tumbler, SnapChat, 

blogs, Reddit, Academia, ResearchGate, LinkedIn, and discussion forums (e.g., Math Forum). 

From this, we worked towards a shared understanding of what counts as social media for the 

purposes of our working group. For example, “social media” (2017) is defined to be “forms of 

electronic communication (such as websites for social networking and microblogging) through 

which users create online communities to share information, ideas, personal messages, and 

other content (such as videos,)”, but this definition may be interpreted in various ways. 

Interestingly, Francophone participants in the working group noted that social media is seen in 

two ways in the French language as a distinction between social networks, which are more 

professional in nature, and social media, which are more general in nature (Theirs, 2013). This 

distinction does not exist in the English language, which has interesting implications on how 

we perceive what counts as social media.  

We eventually established a working definition of social media for the purposes of our working 

group, which was that ‘social media are tools that can curate a variety of media and allow for 

interaction among users using the media’. We intentionally chose to include both openly public 
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and varyingly closed forms of social media, because even when media is closed off from a 

global public audience, it is still social in nature as it allows for the curation of media that is 

made available to members who are privy to accessing it. It is understood, also, that curation 

includes interaction, where media is the mediating tool with which the interaction occurs. 

EXPLORING MATHEMATICS EDUCATION CONTENT ON VARIOUS 
PLATFORMS 

After identifying what social media is and how it is manifested in the daily world, we pursued 

identifying mathematics education content on a variety of platforms. Groups were formed to 

explore what are considered five prominent social media platforms: Twitter, Facebook, 

Pinterest, YouTube, and blogs. The findings from each group are summarized below.  

TWITTER 

Twitter was found to be a tool designated primarily for public broadcasting. Twitter affords 

knowledge mobilization as things are shared (Tweeted), re-shared (Retweeted), and commented 

on. Twitter can even be used as a planning tool for teaching mathematics because it gives one 

the ability to find resources, videos, pictures, and research links, that is, to curate material. 

Twitter does, however, contain substantial content and therefore runs the risk of being perceived 

as disorganized. Certain members of the group acknowledged that the vast amount of content 

to follow was a barrier to effectively using the platform in a professional setting. To combat 

this issue, organization, developed through hashtags, and knowing the hashtags, became the 

focus of discussion regarding manners of finding desired resources. 

FACEBOOK 

Facebook has several special interest ‘groups’ related to mathematics education. ‘Groups’ are 

pages on Facebook created and managed by certain members, and can be set as either private, 

requiring approval to join, or openly accessible to all. Members of a group can post to the group 

page, and each post may elicit comments. There are professional groups and pages for teachers, 

students, classes, and academics. Some of these include Math Lovers, ‘MathFacts’, Groupe 

d’Action pour les Mathématiques en Acadie, Numberphile, AERA Division K: Teaching and 

Teacher Education, Mathematics Education Researchers, and CMESG 2017. There are a lot of 

curricular resources shared on group pages, and there are opportunities to receive feedback on 

ideas from peers.  

PINTEREST 

Pinterest is a tool for curating external links on various ‘boards’ where hyperlinked content is 

collected and featured. Any user can create a ‘board’ and can select what they include on it. 

Pinterest has both ‘users’ and ‘boards’ that claim to be dedicated to ‘mathematics’. Users could 

be high school students or future teachers. The mathematics education content on Pinterest 

seems to be primarily visual in nature. There may be concerns with copyright and maintaining 

focus within searches. Some members of the group noted that many early career math teachers 

used Pinterest to obtain lesson plans et cetera more than any of the other platforms. Possible 

reasons for this phenomenon were discussed.  

YOUTUBE 

YouTube is a video sharing platform that houses many math related videos. Through an 

algorithm, YouTube also suggests videos to watch based on what one has viewed. Users can 

choose to subscribe and receive updates when new related content is released. There are a 

variety of channels dedicated to mathematics (e.g., Numberphile). Content is also shared widely 

and feeds many other social media platforms, such as Facebook, Twitter, Google+, and 

https://www.facebook.com/geekmathlovers/
https://www.facebook.com/MathematicsFacts/
https://fr-fr.facebook.com/GAMA-Groupe-dAction-pour-les-Math%C3%A9matiques-en-Acadie-569649299901526/
https://fr-fr.facebook.com/GAMA-Groupe-dAction-pour-les-Math%C3%A9matiques-en-Acadie-569649299901526/
https://www.facebook.com/Numberphile-735576309927365/
https://www.facebook.com/groups/AERADivisionK/
https://www.facebook.com/groups/AERADivisionK/
https://www.facebook.com/groups/mathedresearchers/
https://www.facebook.com/CMESG-2017-247178619089486/
https://www.youtube.com/channel/UCoxcjq-8xIDTYp3uz647V5A
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Pinterest, which contributes to the tendency for certain videos to go ‘viral’ (e.g., “Can you order 

43 nuggets?”) There are also comment panes under each video. Comments can be made either 

on the YouTube platform or on other platforms on which a video is shared, which brought us 

back to our initial discussion of the train. 

BLOGS 

Blogs present material in more depth. As such, they are more time consuming to read. Blogs 

may also be challenging to find as they are written by many people on a variety of platforms 

without established search terms; however, other platforms such as Twitter, Facebook, and 

Pinterest offer spaces for sharing blogs. Mathematics related blogs may be found either by 

categories via https://mathblogging.org/, by bloggers via 

http://mathtwitterblogosphere.weebly.com/list-of-tweeps-and-blogs-by-category.html, by a 

Google search, or by personal connections. Blogs are relatively easy to create, and users have 

freedom over their design. Various people in mathematics education use blogs to write about 

their ideas and to share their work. This includes mathematics teachers, education leaders, and 

academics. As such, they are a rich source of discourse about mathematics education.  

The discussion about the various platforms left the group with several questions. In particular, 

how do the structural features of a social media platform affect its utility and affordances? How 

does one maintain a focus when using social media? How can learning be different through 

social media and what enhancements does it provide? What is the potential impact of social 

media on learning? 

MATHEMATICAL AND PEDAGOGICAL EXAMPLES 

After exploring the broad range of social media options available, the group zoned in on specific 

examples of mathematical and pedagogical ideas found on social media.  

NOTICE AND WONDER 

  

Figure 2. ‘Notice wonder’ prompt with T-shirts posted on Twitter. 

Since some group members had used a ‘notice wonder’ approach to the train video, we engaged 

in a ‘notice wonder’ example. As noted earlier, a ‘notice wonder’ is an instructional routine 

used in classrooms that aims to promote student thinking about what they notice and what they 

wonder and is typically prompted by an image or situation. The goal of this strategy is to 

encourage a variety of responses in a non-threatening manner (NCTM, 2016). Teachers often 

create ‘notice wonder’ prompts and share them within social media circles. As such, we briefly 

engaged in a ‘notice wonder’ example prompted by an image of piled T-shirts shared by Alex 

https://mathblogging.org/
http://mathtwitterblogosphere.weebly.com/list-of-tweeps-and-blogs-by-category.html
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Overwijk as shown in Figure 2. Some members of the group questioned what mathematics 

could arise from this, and others wondered about how long a teacher would spend investigating 

the questions that students generated based on the prompt. 

OPEN MIDDLE 

Another task type prevalent on social media is an ‘open middle’. ‘Open middle’ problems have 

a closed beginning and a closed end in that they start with the same problem and end with the 

same solution, but they emphasize an ‘open middle’ in that “there are multiple ways to approach 

and ultimately solve the problem” (Johnson, Kaplinsky, Anderson, Luevanos, & Miller, n.d.). 

The way these problems are curated is that users often discuss open middle examples on Twitter 

using the hashtag #openmiddle, and eventually submit examples to the openmiddle webpage 

(http://www.openmiddle.com/) where they are uploaded and stored. As a group, we explored 

the ‘open middle’ problem in Figure 3. 

 

Figure 3. ‘Open middle’ number sentence problem. 

To mimic the online space in our physical setting, we explored the task in randomized groups 

on whiteboards around the room (see Figure 4). This approach was developed by Liljedahl 

(2016) to promote mobility of knowledge, an increase in random interactions, and a reduction 

in social barriers. 

 

Figure 4. The group working on the ‘open middle’ number sentence problem. 

http://www.openmiddle.com/
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From working on the problem and reflecting on our problem-solving process, we noticed that 

we quickly moved to pursuing what all the possible ways could be to satisfy the number 

sentence rather than just finding one way to arrange the digits as the problem requested. We 

also noticed that what was left on the boards could not always speak for itself in terms of 

revealing the reasoning of the group. 

After working on the problem, we explored the responses that were made to the Twitter post 

made by Graham Fletcher (https://twitter.com/gfletchy/status/852494584538181634) where 

this problem was initially introduced. The problem was accompanied by Fletcher’s (2017) 

statement: “Almost ready to submit this new 2nd-grade task to @openmiddle. I’ll take any 

feedback and/or possible solutions you want to throw my way.” This post garnered 43 retweets, 

109 likes, and 33 response threads. We quickly noticed that many of the same approaches we 

had taken were made in the responses. Table 1 summarizes the group’s observations and 

questions in relation to the treatment of this problem on social media. 

What we noticed What we wondered 

 Some things are opaque and other things are 

transparent in such a setting. A lot is hidden. 

The degree to which it is clear exactly what 

lies behind a post varies. Some responses 

included media such as video or photos, 

while others did not include. In all cases, 

there is something that is not completely 

known, and therefore makes it ‘opaque’. 

 One of the responders showed all the 

scribbles they made in working through the 

problem, and stated that it’s a sign of a good 

problem if there are lots of scribbles. The 

fact that someone would post about 

scribbles is intriguing. 

 The asynchronicity seems to allow for a 

particular kind of exchange to take place. 

 There was communication through images 

happening in the threads. 

 Many things we had thought of were also in 

the thread (e.g. add 0, use playing cards, ask 

what are all the possible ways, etc.). Social 

media validated our thinking process.  

 This is an incredibly rich data set 

(comments, videos, pictures, etc.). In the 

mathematics research world, one video such 

as the one posted within this thread, would 

be analyzed and written about in many 

articles. This is only one post within one 

thread.  

 Social media is a treasure trove of data that 

is waiting to be analyzed! 

 What grade levels could this task be 

appropriate for? How does this task get at 

the curriculum? 

 When a teacher sees this task, will they 

view it based on their own predisposition 

and their assumptions on student ability? 

 Who is being judged or evaluated? 

 Do respondents think about how they will 

be judged based on what they post? 

 Who are respondents and what are their 

digital identities? 

 Who can participate in the conversation?  

 Is participating in this way a self-fulfilling 

prophecy or echo chamber? How do we 

find people who will disagree? Do we only 

look for things that are relatable for us? 

 How are failures shared online? 

 What can be transparent online? 

 What classroom environment would this 

sort of task would be used in and how 

would it be used? 

 How does the visual presentation within 

posts change the nature of interactions?  

 What are the affordances of social media? 

 How does a community form online and 

what are the effects of being part of an 

online community such as the one that 

seems to be prevalent in this example? 

Table 1. Summary of observation and questions to Open Middle problem. 

RANKING CONVINCING ARGUMENTS IN A FORUM 

We further explored the context of a forum. Viktor shared about his experiences of introducing 

a Discussion Forum within the CAMI virtual learning community (Freiman & Lirette-Pitre, 

2009). The Forum was used by LeBlanc (2012) to conduct her research about proof evaluation 

by the grade 8 students using an online asynchronous discussion. Manon LeBlanc shared a set 

https://twitter.com/gfletchy/status/852494584538181634
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of proofs (Figure 5) where the students were presented with five different proofs showing that 

the sum of two even numbers is even. The goal of the activity was to rank the proofs from most 

convincing to least convincing, which is what we did as a group as well. 

 

Figure 5. Five proofs for showing the sum of two even numbers is even (LeBlanc, 2012). 

In our working group, we broke into small groups and worked on two tasks related to Figure 5. 

Task 1 was to rank the proofs shown in Figure 5, to discuss these choices with group members, 

and then to think about how it can be done online. Task 2 was to use Google Docs to debate 

about the problems. 

We found that, among our members, everyone interpreted Task 1 differently, which led to a 

rich discussion going beyond the original task of ranking proofs towards a deeper analysis of 

the task itself and possible affordances of social media (in our case, the discussion forum) to 

enrich mathematical communication and reasoning opportunities in mathematics classroom and 

beyond. As an extension of the activity, we also suggested the use of Google Docs by our 

members to collaborate on the task (Task 2). Google Docs is a word processor that allows for 

multiple users to collaborate on a given document in real-time. The group discussed how 

mathematical reasoning can be fostered in collaborative digital spaces. 

SOCIAL MEDIA USER EXPERIENCES 

As the group became interested in more nuanced aspects of using social media for mathematics 

education, it became important to hear various perspectives on social media use within 

mathematics education. Fortunately two prominent social media for mathematics education 

users, participating in other working groups at CMESG, were willing (we would be remiss not 

to mention they were invited via Twitter) to come and share their experiences with our working 

group. We thank Alex Overwijk and Nat Banting, as well as the leaders of their working groups 

for letting them join us to present. 

ALEX OVERWIJK 

Alex is a mathematics teacher in Ottawa. He noted that the Internet has changed the way he 

teaches because it offers opportunities for collaboration. Alex was also prompted to discuss his 

social media ‘stardom’ for becoming known for being the world’s best circle drawer. He had 

been drawing ‘perfect’ circles in class for 10 years before one of his students videotaped him 

and it was posted to YouTube in 2007 (https://www.youtube.com/watch?v=eAhfZUZiwSE). 

https://www.youtube.com/watch?v=eAhfZUZiwSE
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He noted that he had 2.5 million hits in two weeks, and about six years after the video went 

viral, he was asked to draw a perfect circle on the Today Show on NBC 

(https://www.today.com/video/teacher-who-can-draw-perfect-circle-does-it-live-

44508739725). To this day, he is still asked to do this because, well, he is known for it. This 

speaks to the far-reaching effect social media can have and the identity it can contribute to. 

Participants of the working group were challenged by Egan to draw perfect circles. 

Congratulations to Mathieu Thibault who emerged from the group to take on Alex, but Mathieu, 

of course, lost closely to the World Champion in the final round. (see Figure 6). 

  

Figure 6. Drawing perfect circles. 

NAT BANTING 

Nat is a mathematics teacher in Saskatoon as well as a mathematics education researcher who 

has just recently completed his Master’s degree at the University of Alberta. He spoke about 

his slow immersion into social media as a way to reflect on his own teaching, to organize his 

ideas, to feel accountable to his ideas, and to collaborate with other teachers. Nat spoke about 

how he uses Twitter and blogs, and his experience initiating the ‘fraction talks’ resource (see 

Figure 7). 

 

Figure 7. Nat Banting sharing about using Twitter and blogs. 

Nat started a Twitter account during his first year of teaching, and although he had many 

colleagues, he did not have many opportunities for collaboration. Through the Twitter network, 

he can connect with teachers around the world. Nat believes he has a lot of control in what he 

sees because he only subscribes, or ‘follows’, people who post interesting or useful things. This 

is how he builds his own ‘sphere of influence’. For Nat, the Twitter mathematics teacher 

network (commonly referred to as the Math Twitter Blogosphere, or MTBoS) has been most 

powerful in terms of opportunities for interaction with other mathematics teachers. He noted 

that most of the interactivity with others happens in the Twitter space because that is where the 

network is. Nat also maintains a blog space called Musing Mathematically (found via 

natbanting.com/blog/) in which he writes about ideas prompted by his experiences as a 

mathematics teacher through his views as a researcher in mathematics education. The blog 

space does not get as much interactivity, but he can share his posts on Twitter to promote 

discussion.  

https://www.today.com/video/teacher-who-can-draw-perfect-circle-does-it-live-44508739725
https://www.today.com/video/teacher-who-can-draw-perfect-circle-does-it-live-44508739725
http://natbanting.com/blog/
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The network allowed Nat to develop a space in which a ‘fraction talks’ resource developed. Nat 

was initially inspired by Ilana Horn, who shared about using a partitioned square to talk about 

fractions during one of her keynotes. He used this idea with students, and soon found his 

students wanted to create their own examples, which became more and more complex. When 

he shared about these examples on Twitter, other mathematics teachers from around the world 

began to send him their students’ examples. To make it easier to talk about, Nat developed a 

fraction talks website (www.fractiontalks.com), and it reached half a million views in about 

eight months. There is also an associated hashtag used on Twitter (#fractiontalks) and a Twitter 

handle for it (@FractionTalks). Nat became known for this ‘thing’ and he is associated with 

this resource frequently, but he emphasizes that he really only provided the space for the 

network to work on creating the resource. 

SOCIAL MEDIA AND ACADEMIA 

The conversations prompted by Alex and Nat shifted our conversations towards the relationship 

between the mathematics teacher network on social media and the field of mathematics 

education. Although the two groups have different currencies to measure success and validity 

(e.g., a retweet versus a reference), both are outlets for scholarship around mathematics 

education. Parallels between the nature of the mathematics teacher network on social media 

(i.e., MTBoS) and CMESG were made as they are both grassroots movements where 

mathematics educators connect to interact about ideas in a generative way. However, there is 

also a bleeding between the network on Twitter and academia. For instance, MTBoS recently 

celebrated the first dissertation about the MTBoS, written by Christopher Parrish (2016). There 

are also nationally funded research projects that are originating out of the work that MTBoS 

members have developed (e.g., Illana Horn and Melissa Gresalfi’s National Science 

Foundation’s project titled Playful Mathematics Learning: An Exploration of Design, Learning, 

and Engagement). There is this idea that one thing can become another thing, and it feeds back 

onto itself—a sort of snowballing. 

Pivotally, Steven Khan asked Nat and Alex about “what the MTBoS community wants from 

researchers”. Nat and Alex agreed that it is about contributing and interacting. It is important 

that researchers not just ‘study’ MTBoS members, but rather, that they become involved in the 

ways they would around their interest areas. Nat suggested that researchers should find people 

who post about things they are studying and interact with them. Alex added that sometimes he 

posts on his blog, and a researcher will comment with a reference to an article that supports 

what he is doing, and he finds this very helpful. The group discussed how social media seems 

to be a great platform for connecting the academic and teaching worlds in an accessible manner, 

and it behooves mathematics education researchers not to get involved in the interactions about 

mathematics teaching online. 

SOCIAL MEDIA AND MATHEMATICS EDUCATION 

As a group, we engaged in a summarizing activity to bring out the most important things we 

learned as a group from the three working group meetings. Some themes arising from our 

discussions included identity, community, research, accessibility, rich data source, and 

opportunities for collaboration. More broadly, though, our key learnings can be summarized 

within three areas: the nature of social media, implications for teaching and learning 

mathematics, and implications for mathematics education researchers. These are outlined in 

what follows. 

 

http://www.fractiontalks.com/
https://twitter.com/hashtag/fractiontalks?f=tweets&vertical=default
https://twitter.com/FractionTalks
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THE NATURE OF SOCIAL MEDIA 

‘Social media’ consist of tools that curate a variety of media and allow for interaction among 

users using the media platform. The structure of various media platforms may affect how users 

interact. For instance, Twitter is less structured, and blogs are more structured, but Twitter 

allows for more interactivity. Importantly, social media are not only used for capturing and 

sharing moments but also for collaborating about ideas. Therefore, social media allow for 

curating, contributing, and collaborating. Social media can also support building networks and 

communities. Various roles can be taken on such as lurker, leader, critical challenger or devil’s 

advocate within these communities. Further, anonymity seems to play an important role in how 

content is shared on social media. For instance, having a professional affiliation attached to 

one’s digital identity may make one more thoughtful about making public comments. There is 

also a difference between a real person and what one appears as online. Although personal 

stories are not easily seen online, having a backstory about someone can make them more 

relatable and easier to understand. At times, it is possible for social media to be ‘dark’ in that it 

can disturb in-person relationships as digital identities conflict with real-life identities. 

However, social media becomes what you make of it. Some may view it as an echo chamber, a 

fire hose, or as a place for snowballing of ideas, but this is highly dependent on how it is used. 

For instance, hashtags are an important framework for organization and can prevent social 

media from being overwhelming. Also, finding and pursuing connections with others who share 

common purposes, even if they have diverse ideas, makes it a more personally useful space.  

IMPLICATIONS FOR TEACHING AND LEARNING MATHEMATICS 

The virtual mathematics teacher community (e.g., MTBoS) can be very supportive and 

generative in terms of building ideas for teaching mathematics. Methods of teaching are 

accumulated on social media and found within the posts made by mathematics educators. In-

person conferences (e.g., Twitter Math Camp) have even developed out of social media 

connections between mathematics educators in relation to conversations about mathematics 

teaching. Inspiring stories of lived experiences pertaining to mathematics teaching are shared 

on social media, and authors are available to connect about these experiences, which makes a 

rich opportunity for networking and dialogue. Given that ‘stardom’ can be reached from simple 

things such as drawing a perfect circle, there is a powerful opportunity for influence within the 

realms of social media. 

IMPLICATIONS FOR MATHEMATICS EDUCATION RESEARCHERS 

Social media provide a rich data gold mine for research and teaching and also allow for putting 

research in the hands of teachers. Namely, it is a rich place for dialogue between mathematics 

educators on social media (i.e., Twitter) and mathematics education researchers. Although both 

groups are invested in success around the teaching and learning of mathematics, they have 

different outlets for scholarship. Social media allow for dialogue; whereas, research papers are 

static. Social media are also more current and allow for real-time and asynchronous discussions. 

For instance, teachers post problems and their colleagues respond to them with ideas, often 

sharing video of students working through the problems. This sort of interaction offers similar 

opportunities to that found in ‘lesson study’ approaches. It also constitutes a rich data source 

that offers insight into the state of pedagogy in mathematics education. We cannot stop the 

social media train (Woo-woo! Choo-choo!), so how will we utilize it to its fullest potential? 

OPPORTUNITIES FOR FUTURE EXPLORATION 

It is no surprise that with such a new and ever-growing topic, we are left with many unanswered 

questions. We have only scratched the surface of possibilities that may result in further 

exploration of the nexus between social media and mathematics education. We are left with the 
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following questions: How can teachers’ and researchers’ use of social media help students learn 

mathematics? How do we use social media with students in classrooms? What enhancements 

does it provide? And what is the potential impact of social media on learning? How do the 

structural features of a social media platform affect its utility and affordances? Who is using 

social media for mathematics education? How can we research the social media phenomenon? 

How do we build bridges between MTBoS and mathematics education researchers? 
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INTRODUCTION 

In the closing panel of 2016 CMESG, Anna Sierpinska questioned whether the kinds of tasks 

provided to children in elementary school enhanced their quantitative reasoning. In this working 

group, we worked on extending Anna’s wondering by exploring the development of 

quantitative reasoning in the early years (pre-K-4) from different perspectives. We drew on 

recent literature, a range of mathematical tasks, and teachers’ practice and pupils’ responses as 

part of this exploration.  

In particular, we explored the links between quantitative reasoning and early algebraic thinking 

through processes such as generalizing, pattern noticing, conjecturing and justifying. How are 

these reasoning processes utilized in tasks involving mathematical structures (e.g., even and 

odd numbers, commutativity, regularities in multiples, skip counting, adding decimal numbers, 

etc.)?  

Through the three days we worked together, we addressed the following key questions:  

 What is quantitative reasoning and what are the different forms of quantitative 

reasoning? 
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 Is early development of quantitative reasoning important and if so, why? 

 What types of mathematical tasks emphasize quantitative reasoning processes? 

 How might we enhance quantitative reasoning through teaching? 

DAY ONE 

During day one, we considered the following questions:  

 What is quantitative reasoning and what are the different forms of quantitative 

reasoning? 

 What types of mathematical tasks emphasize quantitative reasoning processes? 

The goal was to explore the discourse around quantitative reasoning and so, to start to 

conceptualize what quantitative reasoning is. As researchers and educators, we already have 

some ideas about what quantitative reasoning is without necessarily referring to an already built 

theory. By exploring one task and two transcripts of children mathematical activities, we shared 

what we considered as part of quantitative reasoning in the early years.  

THE TASK  

We explored a task not designed to develop quantitative 

reasoning. It was first used in the project MathéRéaliser 

(Corriveau & Jeannotte) to explore the use of 

manipulatives in grade 1. We chose it because, it was 

suitable for first-grade pupils and the task itself is based on 

relation between quantities. 

 

Figure 1. Rules of the Diamonds’ game. 

WHAT EMERGED FROM THE DISCUSSION 

Even if the task is based on relation between quantities, is it possible to find quantitative 

reasoning in students’ mathematical activities?  

 Counting vs Quantitative Reasoning 

One important element that emerged from our conversation is the difference between 

counting and quantitative reasoning. As the task is suitable for young children, it is 

also solvable only by counting. It was clear that counting a quantity was not 

quantitative reasoning even in early grades. 

  The Idea of Relation and Working on Relationship 

Thompson (1993) links quantitative reasoning and working on relationship. One form 

of reasoning that grade 1 students can do is to use the ratio between the different types 

of diamonds to go faster. For example, we could observe children explaining to the 

class that if they got 12 on the dice, they would know they can take a white diamond 
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directly because: “four, four, four (pointing at each group of on the dice) make three 

reds” (see Figure 1). But, even if this reasoning implies working on relationships, we 

were not convinced it was enough to talk about quantitative reasoning.  

 Question we could ask children to help the emergence of quantitative reasoning 

To enhance quantitative reasoning, we tried to think about what kinds of questions we 

could ask children when using this game. One that appears interesting is to stop the 

game before there is a winner and then ask each team who is closest to obtaining the 

blue diamond. In doing so, we help students focus on the difference between what they 

have and the target. They can also compare those differences with the relation more or 

less.  

Pupils making their own rules would also help focus on relationship and how this can affect the 

game. For example, is the strategy of picking one white when we roll 12 on the dice always 

good regardless the relation in play? Why? 

THE FIRST TRANSCRIPT 

The first transcript was from Tian and Huang (2009). The study of Tian and Huang aimed at 

documenting spatial and quantitative reasoning abilities of young children. During interviews, 

3 to 5 years old children had to answer the question how many doors, flower pots, and houses 

in Figure 2. 

 

Figure 2. Spatial and quantitative reasoning (Tian & Huang, 2009). 

What seemed implicit is that pupils who use quantitative reasoning would rely on a pattern 

(every row is the same) to answer the question versus counting what was visible. The idea of 

pattern, visualization, comparing and of concrete situations emerge from the discussion. 

THE SECOND TRANSCRIPT 

The second transcript was from Radford (2011). The task explored by grade 2 children in the 

transcript is a patterning activity (see Figure 3). 

 

Figure 3. The first four figures of a sequence given to the students in a Grade 2 class (Radford, 
2011). 

In the transcript, we could read how students were reasoning to find a relation which would 

enable them to find the number of squares in any figure. In addition to the relationship, 

generalization is needed to solve this task, as it is designed to enhance algebraic reasoning. Two 
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questions emerged from this exploration: (1) What are the differences between algebraic 

reasoning and quantitative reasoning in the early grades? (2) If algebraic reasoning requires 

analytic reasoning, is there another way of considering the unknown imply in the quantitative 

reasoning? 

At the end of day one, we finished with a vocabulary list that we felt was linked to the meaning 

of quantitative reasoning in some way. 

 Concrete 

 In context 

 Structure 

 Conversion 

 Comparing 

 Spatial 

 Imaging 

 Imagining 

 Hidden parts make 

multiplication emerge 

 Relationships 

 Counting 

 Representation 

 Flexibility 

 Relation 

 Quantities 

 Visualization 

 Patterns 

 Patterning 

 Interpretation 

Table 1. Vocabulary related to quantitative reasoning. 

DAY TWO 

Our focus for Day Two was to address the following questions: 

 What is quantitative reasoning and what are the different forms of quantitative 

reasoning? 

 What types of mathematical tasks emphasize quantitative reasoning processes? 

Much of our discussion during Day One was wrestling with the question “What is quantitative 

reasoning?” Through our activities of the previous day, we found we were employing multiple 

forms of thinking under the general umbrella of mathematical reasoning to describe and justify 

perspectives. We debated whether it was worthwhile making distinctions amongst the multiple 

forms of mathematical reasoning that we brought forward. 

 

Figure 4. 

To explore the distinction between quantitative reasoning and other forms of reasoning, we 

turned to literature to help define quantitative reasoning. According to Smith and Thompson 

(2007), quantities “are attributes of objects or phenomena that are measurable; it is our capacity 

to measure them—whether we have carried out those measurements or not—that makes them 
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quantities” (p. 101). Understanding the nature of a quantity fed into the definition of quantitative 

reasoning as defined by Thompson (1993): 

Quantitative reasoning is the analysis of a situation into a quantitative structure—a 

network of quantities and quantitative relationships (Thompson, 1989). A prominent 

characteristic of reasoning quantitatively is that numbers and numeric relationships 

are of secondary importance, and do not enter into the primary analysis of a situation. 

What is important is relationships among quantities. In that regard, quantitative 

reasoning bears a strong resemblance to the kind of reasoning customarily 

emphasized in algebra instruction. (p. 165) 

In order to understand how to operationalize the definition of quantitative reasoning, we have 

engaged in a task deemed by Smith and Thompson (2007) to elicit such reasoning: 

I walk from home to school in 30 minutes, and my brother takes 40 minutes. My 

brother left 6 minutes before I did. In how many minutes will I overtake him? 

(Krutetskii, 1976, p. 160). 

Working group members were asked to determine a solution to the problem. They were 

discouraged from using algebraic solutions, at least initially. One approach was to develop a 

table to record fractional distances traveled at specific time intervals. The relationship of time, 

distance and speed were identified for “me” and “my brother” somewhat independently and the 

recursive relationship was applied until an equal value (or distance) was obtained. 

 

Figure 5. 

Other groups attempted to establish a relationship between “me” and “my brother’s” speed 

either arithmetically or algebraically. 
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Figure 6. 

Several groups expanded upon the four-thirds speed relationship to help diagram the context to 

find the point where the person overtook the brother at 18 minutes. 

 

Figure 7. 

  

Figure 8. 

  

Figure 9. 

Finally, some groups used algebraic conventions to establish a relationship and to solve the 

problem. 
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Figure 10. 

After completing the problem and sharing solutions, we discussed if, how, and when 

quantitative reasoning was employed by attending to how the context of the problem was 

analyzed into a quantitative structure or set of relationships, and when the focus was on the 

relationship between quantities rather than the numbers themselves. In general, our group 

reached general agreement that when problem solving, we tend to move in and out of 

quantitative reasoning. That is, the initial analysis or mathematizing of the problem requires 

attention to the relationship between quantities. In this specific problem, the relationships 

between time, speed and distance traveled were needed for each individual and, depending on 

the solution method, between the individuals walking as well. However, once the initial 

relationships were established, applying quantitative reasoning was often minimal. People often 

employed either arithmetic or algebraic operations to compute a solution without the need to 

keep the quantitative relationships in mind. Upon arriving at a solution, quantitative reasoning 

was often used to analyze the situation again to ensure that the result was reasonable in the 

context of the actual problem.  

To further our understanding of potential distinctions of quantitative reasoning and other forms 

of thinking, we examined sets of problems used by Thompson (1993) in a teaching experiment 

on complex additive structures. Three sub-groups were formed to examine a set of problems 

and discuss how the modifications to the problems—from numeric to generalized—prompted 

learners to attend to the relationship between the quantities. Each problem led to various ways 

to represent the relationships. 

Problem 1 
Jim, Sue, and Tom played 
two games of marbles 

together. Sue won 6 marbles 

from Jim and 5 marbles from 

Tom. Jim won 3 marbles from 

Tom and 4 marbles from Sue. 

Tom won 12 marbles from 

Jim and 2 marbles from Sue. 
Compare the number of 

Tom’s marbles before and 

after these two games. 

Problem 2 
Jim, Sue, and Tom played 
two games of marbles 

together. Sue won 6 marbles 

from Jim and 4 marbles from 

Tom. Jim won 5 marbles from 

Tom and 3 marbles from Sue. 

Tom won 2 marbles from Sue, 

and altogether he came out 

ahead 4 marbles. 
How many marbles did Tom 

win from Jim? 

Problem 3 
Jim, Sue, and Tom played 
two games of marbles 

together. Sue won ___ 

marbles from Jim and ___ 

marbles from Tom. 
Jim won ___ marbles from 
Tom and ___ marbles from 
Sue. 
Put numbers in the blanks so 

that altogether, Sue came out 

behind by 3 marbles. 

Table 1. Marbles Problem (Thompson, 1993, p. 169). 
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Figure 11. Solutions for the Marbles Problem. 

Problem 1 

Metcalf has two third grade 

rooms (C and D) and two 

fourth grade rooms (E and F). 

Together, rooms E and F have 

46 children. Room C has 6 

more children than room F. 

Room D has 2 fewer children 

than room E. Room F has 22 

children. 

 

How many children are there 

altogether in rooms C and D? 

Problem 2 

Metcalf has two third grade 

rooms (C and D) and two 

fourth grade rooms (E and F). 

Together, rooms E and F have 

46 children. Rooms C and D 

have 50 children together. 

Room C has 6 more children 

than room F. Room D has 2 

fewer children than room E. 

There are ___ children in 

room E. 

 

What number or numbers can 

go in the blank so that 

everything works out? 

Problem 3 

Metcalf has two third grade 

rooms (C and D) and two 

fourth grade rooms (E and F). 

Together, rooms E and F have 

46 children. Rooms C and D 

have 48 children together. 

Room C has 6 more children 

than room F. Room D has 2 

fewer children than room E. 

There are ___ children in 

room E. 

 

What number or numbers can 

go in the blank so that 

everything works out? 

Table 2. Classroom Problem (Thompson, 1993, p. 171). 

 

Figure 12. Solutions for the Classroom Problem. 
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Problem 1 

Two fellows, Brother A and 

Brother B, each had sisters, 

Sister A and Sister B. 

The two fellows argued about 

which one stood taller over his 

sister. 

It turned out that Brother A 

won by 17 centimeters. 

Brother A was 186 cm tall. 

Sister A was 87 cm tall. 

Brother B was 193 cm tall. 

How tall was Sister B? 

Problem 2 

Two fellows, Brother A and 

Brother B, each had sisters, 

Sister A and Sister B. 

The two fellows argued about 

which one stood taller over his 

sister. 

It turned out that Brother A 

won by 17 centimeters. 

Brother A was 186 cm tall. 

Sister A was 87 cm tall. 

Brother B was ___ cm tall. 

Sister B was ___ cm tall. 

Put numbers in the blanks so 

that everything works out. 

Problem 3 

Two fellows, Brother A and 

Brother B, each had sisters, 

Sister A and Sister B. 

The two fellows argued about 

which one stood taller over his 

sister. 

It turned out that Brother A 

won by 17 centimeters. 

Brother A was ___ cm tall. 

Sister A was ___ cm tall. 

Brother B was ___ cm tall. 

a) Put numbers in the blanks so 

that everything works out. 

b) What has to be true about 

the numbers anyone puts in the 

blanks if everything is going to 

work out? 

Table 3. Brother and Sister Problem (Thompson, 1993, p. 175). 

 

Figure 13. Solution for the Brother and Sister Problem. 

DAY THREE 

For day three, working group members were asked to share a problem or task that might elicit 

quantitative reasoning in children. Several examples were shared during the final morning. A 

sample of tasks is provided below along with some points of interest for each one. 

ALTERING A TRADITIONAL ARITHMETICAL PROBLEM (SIMON LAVALLÉE)  

Simon suggested that altering a traditional arithmetical problem so that it became more open-

ended, allowed more opportunities for quantitative reasoning.  

Arthur a 2 pommes et Boris en a 3. Ensemble, combien en ont-ils ? 

VS 

Arthur et Boris ont chacun un sac qui contient des pommes. Ensemble ils ont 10 

pommes. Combien de pomme y a-t-il dans le sac d'Arthur et combien y en a-t-il dans 

le sac de Boris ? 
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En ouvrant le problème, il est possible de discuter avec les élèves de la relation entre le nombre 

de pommes d’Arthur de Boris et le total.  

MATHVILLE PROBLEM WITH REVISIONS (AUDREY GARNEAU) 

Initially, the Mathville task was posed as follows: 

À Mathville, le dernier hiver a été très rigoureux. Au début de l’hiver, Augustin avait 

2005 buches. Les jours chauds, il a brulé 25 buches pour chauffer sa maison. Les 

jours froids, il en a brulé le double. À la fin de l’hiver, il lui reste 205 buches. Sachant 

qu’il y a eu autant de jours chauds que de jours froids, combien de jours l’hiver a-t-

il duré ?   

Cette tâche correspond à l’énigme Long hiver sur le site de la semaine des maths 

http://www.semainedesmaths.ulaval.ca.  

En discutant en équipe de travail, il a été réalisé que cette tâche permet plus ou moins de 

travailler le raisonnement quantitatif, puisque la question est fermée, une seule réponse est 

possible et cette réponse ne peut être obtenue que par calcul. En ouvrant le problème, il est alors 

possible de poser d’autres questions aux élèves afin de les amener à se centrer sur les relations. 

À Mathville, le dernier hiver a été très rigoureux. Augustin avait 1800 buches au début 

de l’hiver et il les a toutes brulées. Les jours chauds, il a brulé 25 buches pour chauffer 

sa maison. Les jours froids, il en a brulé le double. Combien de jours l’hiver a-t-il 

duré ?  

Les élèves peuvent obtenir des résultats différents puisque l’hiver peut durer un nombre pair de 

jours entre 36 et 72. L’enseignant pourrait alors demander à ses élèves 

 Pourquoi ta solution fonctionne-t-elle ? 

 Pourquoi y a-t-il d’autres solutions possibles ? 

 Quelles situations sont impossibles ? 

 Pourquoi les nombres impairs ne fonctionnent-ils pas ?  

Cette nouvelle tâche semble davantage pertinente pour développer le raisonnement quantitatif 

puisqu’il s’agit d’un problème ouvert dans lequel les relations entre les nombres sont 

importantes et où plusieurs réponses sont possibles. 

SIMON’S NEIGHBORHOOD (VALÉRIANE PASSARO) 

In this problem Valériane offered a problem involving the relationships of time, distance and 

speed that would be accessible to elementary school students and introduce them to the idea of 

covariation. 

 

Figure 14. Le plan du quartier de Simon. 

http://www.semainedesmaths.ulaval.ca/
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 La distance entre la maison de Simon et celle de son amie Annie est-elle plus courte 

ou plus longue que la distance entre la maison de Simon et l’école ?  

 Si Simon marche pour aller chez son amie Annie, est-ce que ça lui prendra plus ou 

moins de temps que s’il marchait pour aller à l’école ?  

 Si Simon se rend chez Annie en courant est-ce que ça lui prendra plus ou moins de 

temps que s’il y allait en marchant ?  

 Si Simon prend 5 minutes pour marcher de chez lui jusque chez Annie, combien de 

temps cela devrait-il lui prendre approximativement pour aller à l’école en marchant ?  

 Si Simon prend 5 minutes pour aller chez Annie en courant, combien de temps cela 

pourrait lui prendre pour y aller en courant ?  

 Supposons que Simon se déplace toujours en marchant, complète les phrases 

suivantes :  

Plus la distance parcourue par Simon est grande, _______ ça prend de temps.  

Moins la distance parcourue par Simon est grande, ________ ça prend de temps.  

 Simon se rend à l’école, complète les phrases suivantes :  

Plus Simon se déplace rapidement, _______ ça prend de temps.  

Moins Simon se déplace rapidement, ______ ça prend de temps.  

JELLY BEANS PROBLEM  

The Jelly Bean problem is known to many people and was also used as a task to emphasize 

relationship between quantities: 

A jar of jelly beans sat on the teacher’s desk. Suhong was very hungry so he helped 

himself to half of the jelly beans. Angela forgot to bring a snack for recess so she ate 

a third of what was left in the jar. Fatima saw Angela eating jelly beans at recess so 

when she came back into the room she took a fourth of the remaining jelly beans. The 

teacher noticed that when Tim returned from recess he quickly sat down and got 

organized for the afternoon math class, so she said that Tim could be rewarded with 

6 jelly beans, and he ate them. Barbara was hoping to get some too, but she was 

having trouble settling down, and the teacher said that she could only have some when 

she was quiet. Chris told Barbara that it’s no big deal because there are only 3 left in 

the jar anyway. So, how many jelly beans were there to begin with?  

CONCLUDING REMARKS 

As a synthesis, we asked participants to construct a concept map that could help us understand 

what quantitative reasoning is in primary school. First, we all agreed that quantitative reasoning 

is linked to Number and Operational sense development, a crucial element of every Canadian 

curriculum. By focusing our attention on relationship, we help children explore numbers and 

operations: this is more difficult when the focus is on the calculation and answer. Second, we 

were able to link quantitative reasoning to a variety of processes: using referents from 

experience, justifying, analyzing relationships, and comparing quantities, to name a few. Third, 

we concluded that relations between quantities and patterning activities were at the junction of 

quantitative reasoning and algebraic reasoning.  
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INTRODUCTION 

In this working group we examined tools for doing mathematics within the social, cultural, 

historical, theoretical and philosophical contexts of both their use and their origins. By ‘tools’, 

we mean any of the things people imagine using as part of their mathematical activity—and we 

spent a good deal of time in the working group exploring differing conceptualizations of ‘tools’ 

and their effects. During the working group sessions, we used a variety of tools to solve 

mathematical problems at all educational levels (elementary, secondary and post-secondary) 

and discussed what takes place in light of different theoretical perspectives. We explored the 

‘enabling constraints’ of approaching a particular mathematical relationship using historical 

mathematical tools from a broad range of cultures and in contemporary practices. We tried to 

contextualize each tool as much as possible in the philosophical and sociocultural milieu in 

which it developed. From a theoretical perspective, we looked at Leontiev’s ideas on actions, 

operations and tools; we got inspired by Heidegger’s work on tools as essentially non-

functioning devices; we talked about Vygotsky’s perspectives on how tools carry with them the 

perceptions and thoughts of people who made/used/modify them over time; and discussed 

McLuhan’s analysis of the cultural effects of tools and technologies (where making tools 

                                                 
1 This text was written based on notes from the group leaders, but also on reflections shared by the 

participants, for example on the blog we created to accompany our working group: 

https://cmesgmathtools.blogspot.ca. 

https://cmesgmathtools.blogspot.ca/
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immediately leads to tools remaking us). Participants also brought their own favourite 

‘mathematical tools’. 

DAY 1 THEORETICAL BACKGROUND: McLUHAN’S APPROACH TO 
‘TOOLS’ (LED BY SUSAN GEROFSKY) 

In the first session we started by posing the question of “What do we mean by tools?” and 

focused on the theoretical approaches of Canadian media theorist Marshall McLuhan to explore 

this question. McLuhan was an English professor at the University of Toronto from the 1950s 

to the 1970s who became an influential theorist of culture and technology, and his work is both 

highly-regarded and provocative to this day.  

McLuhan saw tools as extensions of our bodies that both enhance and simultaneously numb the 

part of the body they extend. For example, automobiles extend the powers of our legs and feet, 

but simultaneously immobilize us and numb our legs and feet when we travel by car. McLuhan 

saw that “we shape our tools and our tools immediately shape us” (McMahon & Sobel, 2002), 

as human individuals and infrastructures are wholly reshaped by each new pervasive 

technology, with technology defined broadly to include spoken and written  language, the 

printing press, cinema, radio and television, computers and the Internet, and much more. 

In a time when other theorists were focused on a metaphor for technologies as ‘pipelines’ 

delivering content, McLuhan controversially pointed out that “the medium is the message” 

(McLuhan, 1964/1994, Ch. 1)—that is to say, the effects of a new tool or communication 

medium in restructuring society and people are indescribably greater than the effects of any 

particular content of that medium. McLuhan theorized that a radical shift in a society’s media 

and tools also remakes the balance of our senses (call the sensorium). For example, McLuhan 

argued that widespread alphabetic literacy from the 16th to the 20th centuries, through the effects 

of the movable type printing press, skewed the human sensorium toward the visual; and the 

advent of electric and electronic media, from the introduction of the telegram in the 19th century 

up to and beyond our current networked computer environment, is taking us rapidly ‘back 

through the Renaissance’ to a global village dominated by new forms of oral culture, where 

everyone is involved in everyone else’s business (McLuhan, 1964/1994, 1962/2011). 

For McLuhan, there is no distinction between tools, communications media, technologies, and 

cultural extensions of the self. He explains that, since new technologies simultaneously extend 

and numb us, we are as unconscious of our media environment as fish are of water (McLuhan, 

1968/2001). McLuhan’s insights include the fact that every new medium surrounds the old and 

immediately makes it visible, obsolete and an art form; that new media take old media as their 

content; and that all media work us over completely. Marshall McLuhan with his son Eric 

developed a four-part methodological frame, the McLuhan tetrad, for analyzing the effects of 

media, tools, technologies (Figure 1; McLuhan & McLuhan, 1988).  

 

Figure 1. McLuhan’s tetrad, from https://mcluhangalaxy.wordpress.com. 

https://mcluhangalaxy.wordpress.com/
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ACTIVITIES DAY 1: QUIPU, STICK MAPS, GREENLAND COASTAL MAPS: HOW CAN WE 
CONNECT WITH MATHEMATICAL TOOLS FROM OTHER TIMES AND CULTURES?  

With McLuhan’s theoretical approach in mind, we worked with three hands-on activities from 

three different cultural contexts, to explore how tools are formed by us and at the same time 

form us. 

Our first question was a concern around cultural appropriation. We have material evidence of 

many mathematical technologies that have been used in other places, times and cultures. In 

many of those cultures, there may not have been a term for ‘mathematics’—or for ‘art’, or for 

‘technology’—in the way we frame these entities. So these objects and the techniques that 

created them come from cultural contexts that are almost certainly quite different from those of 

contemporary urban Canada, for example. Can we connect with these technologies as 

mathematical tools in meaningful ways that respect the cultures that made and used them? 

We acknowledged that we would certainly be reframing things according to our own 

understandings of mathematics and tools. We can begin to conjecture and intuit how they may 

have been significant in other cultures, and years of study and/or cultural immersion may help 

us do this better, but we can never fully live other cultures, especially those that have changed 

or are gone. 

The organizers of this working group discussed this issue. Our collective take on it is this: 

We can approach these objects with a sense of wonder. Jean-François writes: 

Things we are curious about, things we try to understand, make sense of, things that 

surprise us, things in which we also recognize ourselves, but mostly things to be 

curious about! So we do not pretend to know what they are, what they do, what they 

are for, what they mean, we don’t appropriate them. They fascinate us, and we share 

that fascination! 

Yasmine writes:  

I always see it as a form of getting to know one another and getting closer to each 

other. …We are not saying ‘what the tools are’ we are only sharing ‘how the tools 

make sense to us’ and invite others to do the same thing. 

Marcia Ascher spent over ten years studying Inca quipu. She writes, in the seminal work, 

Mathematics of the Incas: Code of the quipu: 

Using material things as a source of knowledge does not, however, do away with 

distortion. […] There are some things in one culture for which there are no 

counterparts elsewhere. When this happens, understanding becomes even more 

difficult for someone outside the culture. […] And the problem increases when an 

attempt is made to know about a culture that is remote in time as well as in space. 

(Ascher & Ascher, 1981/1997, pp. 13-14) 

With that proviso, we began to explore these objects from cultures somewhat distant from our 

own, with a sense of curiosity and wonder, and from a starting point in our own sense of what 

mathematics and technologies are. We acknowledged that, although we would no doubt find 

some surprises and fascinating things, we cannot claim to have a full sense of these lifeways 

and cultures—but would take a small step towards approaching them. 

One group formed to work around Marshall Islanders’ Mattang, Rebbelith and Meddo stick 

charts for navigation by ocean swells (Figure 2). Stick charts are a significant element of the 

Marshallese South Pacific navigation tradition. Skilled navigators have used the maps for many 

generations as training devices, marking the interplay of oceanographic phenomena and land 
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masses. A detailed and intimate knowledge of prevailing ocean swells, and the ways that they 

were reflected and refracted on either side of even the smallest island, along with a thorough 

knowledge of navigating by the stars at night, allow traditional Marshall Islander navigators to 

cross the huge expanses of the south Pacific Ocean in small sailing canoes through a series of 

mid-course corrections, without getting lost or off-course (Davis, 2009; Hutchins, 1983).  

With an activity, we tried to focus on the mathematical ideas of modeling and mapping 

embodied in these charts, as well as on the ideas about wave dynamics that they incorporate, 

not in the ocean, but in a sloped and bumpy back yard of the Education building at McGill 

University. A group of 10 participants went outside to feel the nuances of the contours of the 

ground (as a land-based analogy to ocean swells), noticing its slopes and curves by walking the 

terrain—sometimes uphill and downhill, feeling the slope, and sometimes across the hill to 

sense lines of equivalent altitude. Participants walked both forward and backward, sometimes 

with eyes shut to give attention to their sense of balance, the touch of feet on ground, and the 

way that sounds directed them on the hill. They noticed ‘desire lines’—the places that would 

be easiest and most welcoming to walk—and saw that a gravel path sometimes veered away 

from the actual desire lines. They observed students traversing the hill on their way to class and 

saw that their feet moved off the gravel path to follow the same desire lines the group had 

identified. They looked for the reasons behind the bumpy terrain of this small hill and realized 

that it was a result of tree roots lifting the soil—and so the group was able to map the unseen 

tree roots beneath the surface of the ground. They speculated on the path that water would flow 

along and down the hill in a heavy rain, and wondered whether it would follow the same desire 

lines/paths of least resistance as people’s feet.  

Throughout this process, the group gathered sticks to map their growing knowledge of the 

terrain. Conventions were decided and agreed up for ways to indicate slope, pathways and 

flows, and these conventions were materially enacted in the stick map that was developing on 

the ground beside the hill. As the map did not interlock as thoroughly as the Marshall Island 

ocean maps, it was necessary to take reference photos and sketches of the original map of the 

hillside to translate and re-make it accurately indoors. Finally this group re-constituted their 

terrain-mapping stick chart on the classroom floor, and introduced their work and its results to 

the rest of the working group. 

 

Figure 2. An example of a Marshall Island stick chart; collecting wood and mapping the terrain. 

As one of the participants reflected:  

The activity challenged us to visually record the characteristics of an outdoor space 

using the stick maps of the Marshall Islanders to record wave movements. This tool 

was striking in three significant ways: 1) We attend to what we value; 2) As much as 

the user adapts the function of the tool, the tools also changes the user; 3) As a tool 

constructed for one purpose by a culture is appropriated into a different culture it 

reveals new insight on the new culture through the lens of the old.  

A second group of participants simultaneously used twine to represent a mathematical problem 

with knots of Quipus (Figure 3).  
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Quipus are constructions made of knotted strings in different colours that recorded numbers 

and possibly words (in abbreviated, coded form) as well. They were used in the Incan kingdom 

that extended over most of the western portion of South America from the 12th C-16th C CE. 

String and rope technologies were highly developed in Andean cultures and continue to be used 

to construct (and re-construct annually) sturdy pedestrian suspension bridges across mountain 

valleys. (See, for example, the fascinating film of contemporary collective rope bridge 

construction in the Andes at http://nmai.si.edu/inkaroad/engineering/video/bridge-

qeswachaka.html.)  

In the Incan kingdom, communications networks were maintained by human runners who could 

traverse these rope bridges much easier than llamas or other pack animals. Records of financial 

and military interactions, supply movements and political decisions had to be light, 

weatherproof and easily carried by runners in adverse conditions. Where the Roman empire 

used papyrus scrolls, Incan rulers and bureaucrats used quipus—string constructions that used 

a notation system of knots and colours to indicate numbers for accounting, and no doubt much 

more that has not yet been decoded. Incan culture used a base-10 system in their numerical 

notation and calculation, and base-10 was also very important in the administration of the 

empire. For example, each leader on a particular level of the imperial administration was 

responsible for 10 sub-units of administration beneath them. The knots formed patterns of base-

10 numbers, with special knot formations indicating the units column, and these can be read by 

knowledgeable interpreters to this day. It is very unfortunate that the 16th C Spanish conquest, 

and the resultant burning of most of the quipus existant at the time, has meant that much of the 

culture and knowledge of the Incan notation system has been destroyed, but there are still about 

600 surviving quipus that are available for study. (See, for example, the Harvard Khipu 

Database Project at http://khipukamayuq.fas.harvard.edu/WhatIsAKhipu.html, and the US 

National Endowment for the Arts Quipu project at https://50.neh.gov/projects/quipus-inca-

language-knots). Marsha and Rosbert Ascher’s book (Ascher & Ascher, 1981/1997) continues 

to be an important source of information about the ways numbers were coded on the quipu. 

 

Figure 3. Quipus made out of yarn treads telling various stories. 

In our working group, participants working on quipu-making started by trying to learn about 

the tool and its functionality from Ascher & Ascher (1981/1997) and began by considering 

some suggested exercises for recording financial transactions or timetables on a quipu. The 

group decided to diverge from these exercises, though, and took on the task of recording their 

own family relationships via the quipu they were constructing. Each person’s immediate family 

was coded with different coloured twine, and ‘offshoot’ strings were knotted into the pattern to 

represent different families and generations. Knots were tied into the quipu to represent 

numbers of siblings, parents, children, aunts, uncles and cousins in different generations of their 

families. The group used their own interests, their perceptions of the affordances and pleasures 

of using the quipu, and information that they found on different websites, to create 

representations of something they cared about—their own families.  

http://nmai.si.edu/inkaroad/engineering/video/bridge-qeswachaka.html
http://nmai.si.edu/inkaroad/engineering/video/bridge-qeswachaka.html
http://khipukamayuq.fas.harvard.edu/WhatIsAKhipu.html
https://50.neh.gov/projects/quipus-inca-language-knots
https://50.neh.gov/projects/quipus-inca-language-knots


CMESG/GCEDM Proceedings 2017  Working Group Report 

108  

A third group work on creating edge-carved wooden maps inspired by Greenland Inuit 

Ammassalik shoreline and island charts (Figure 4). These traditional maps, carved from 

driftwood in lands above the treeline, have the advantage of buoyancy (so that they would float 

if accidentally dropped in the water) and being both visual and tactile (so that they can be read 

even in the dark). To conserve wood and make these traditional maps more efficiently usable, 

Inuit mapmakers would carve around all the edges of an oblong piece of driftwood to represent 

a linear, crenulated shoreline. The map would be read ‘all the way around’, but interpreted as 

the more or less linear shore. (See figure 4, with an example of an Ammassalik carved wooden 

chart and its correspondences to a map in the style we are more familiar with). 

 

Figure 4. An Greenland Inuit Ammassalik map (from 
http://nuukmarluk.weebly.com/uploads/7/4/2/3/7423064/2044082_orig.jpg?667). 

A trek outdoors inspired a carved wooden vertical contour map of a rocky waterfall in Mount 

Royal Park, located on the edge of the McGill University campus. The waterfall group made 

the decision to carve the crenulated vertical elevation of the rocks along the edge of the waterfall 

and stream, rather than a bird’s eye view of the path of the stream, and so diverged from the 

sample Ammassalik maps by repurposing the orientation of the edge-carved map to suit their 

new purposes. Another group described the pathway, street crossings and stoplights between 

two buildings we were using on campus for the conference. When someone from outside the 

working group happened to come by and ask directions to the place we would have lunch, this 

group handed their edge-carved basswood map to the inquirer and told them that everything 

was included there!  

Both the map-carving groups were struck by the importance of actually walking the terrain or 

the elevation they were representing, rather than simply looking at is. As with the stick mapping 

group, participants found that the multisensory information and the counting of steps and other 

uses of body measurement were necessary to the task of carving an accurate map—even though 

they also used mobile phone cameras to record the scene they were mapping as an additional 

check once the maps were complete. As one of the participants noted, doing this difficult work 

of mapping and carving “made us appreciate the detail and delicate nature of this Inuit 

tradition”. The mathematical skills required to produce (and even use) such maps also very 

quickly became apparent. 

http://nuukmarluk.weebly.com/uploads/7/4/2/3/7423064/2044082_orig.jpg?667
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Figure 5. Carved maps inspired by Greenland Inuit Ammassalik shoreline and island charts. 

DAY 1 REFLECTIONS: ATTENDING, KNOWING, EXPERIENCING AND MEANING 

We attend to what we know, and know what we attend to. The ways we used tools on this first 

day revealed that relationship with the words and preoccupations of our cultures. We saw that 

we mapped and recorded what was important to us as an exploration and a recording of what is 

useful. Whether it was the map of a terrain, a pathway to follow, or a series of quantities or 

relationships, there was the tendency to select things to represent what was important to us and 

perhaps served a useful function. But we also found that we learned in-depth about whatever 

we mapped as we mapped it. The mathematics involved was an intense core of the process of 

experiencing and representing the ways we made sense of the world, as we changed and were 

changed by the tools, and by the things we did as we worked with these tools. Walking the path 

and scaling at the same time, we expanded our senses and our mathematical tools. 

As we struggled to make meaning of the world through a map or quipu, a tension also became 

apparent between other cultures’ tools and how we tend to viewed space, quantities, 

relationships, and through this tension, questions emerged. As a tool constructed in one culture 

is appropriated into a different culture, it necessarily reveals new insights. The tool becomes a 

lens through which our attention is filtered. Stickmaps reflect wave movement, and the group 

creating them had to shift their attention from visible modern pathways to gradients and tree 

roots. The group edged-carving a wooden map realized how we needed to travel at a different 

speed to use and create such map and realized the importance of touch in the emerging textured 

symbolism they started to create. Such maps really communicate an alternate perspective on 

the world—an alternate world. 

DAY 2 THEORETICAL 
BACKGROUND: VYGOTSKY AND 
THE MAKESHIFT OF TOOLS (LED 
BY YASMINE ABTAHI) 

In the second day of this working group we 

examined how we interact with tools to 

create artefacts that make sense to us, in 

terms of thinking about mathematics. A 

general overview of the Vygotskian idea of 

tools and artefacts was discussed. 

 Tools, such as a hammer are “are 

defined as means of external activity 

with which humans can influence the 

objects” (Vygotsky, 1978, p. 55). 

 Signs, such as language and the 

various systems used for counting, 

CONTEXTE THÉORIQUE DU 
JOUR 2: VYGOTSKY ET LA 
FORTUNE DES OUTILS (DIRIGÉE 
PAR YASMINE ABTAHI) 

Dans la deuxième journée de ce groupe de 

travail, nous avons examiné comment nous 

interagissons avec des outils pour créer des 

artefacts qui ont un sens pour nous en termes 

de réflexion sur les mathématiques. Un 

aperçu des idées vygotskienne d’outils et 

d’artefacts a été discuté. 

 Les outils, tels que le marteau, sont 

« définis comme des moyens d'action 

extérieure avec lesquels les humains 

peuvent influencer les objets » 

(Vygotsky, 1978, p. 55). 



CMESG/GCEDM Proceedings 2017  Working Group Report 

110  

are “means of internal activity that 

affect human behaviour” (p. 55).  

To Vygotsky, the most essential difference 

between signs and tools is the ways in which 

they orient human behaviour. A tool’s 

function is externally oriented: “aimed at 

mastering nature” (p. 55). A sign, on the 

other hand, is internally oriented: “aimed at 

mastering oneself” (p. 55). This looks a bit 

dualistic—external/internal, back and 

forth—but it is not meant to indicate 

dualism. Vygotsky further expanded his 

thinking on signs and tools to note, 

“distinctions between tools as a means of 

labor […] of mastering nature, and language 

[signs] as a means of social intercourse 

become dissolved in the general concept of 

artefacts” (p. 57). To Vygotsky artefacts are 

created by attaching signs to the tools. So, for 

example, children tie signs to mathematical 

tools by, for instance, talking about what 

they do, about a mathematical concept at 

play, or by writing mathematical symbols as 

they interact with a tool. Yasmine explained 

that for her, an artefact is not a ‘thing’, an 

object independent of the perception of the 

child who is using it and independent of what 

he/she is using it for. Rather, artefacts are 

created as children tie signs to their 

interactions with tools to work on or solve 

particular tasks. 

In this session, we watched a three-minute 

video of a 5-year old child showing her 

mother how she used a TV remote control to 

count by threes. As we watched the video, 

we tried to focus on the properties of the 

remote control as a tool. How, for example, 

did the layout of the numbers that are 

organized in rows of three guide the child’s 

counting? In the short discussion, we 

brought up and reflected on a few issues such 

as the embodied action of the child, the 

format of the tool, the non-mathematics 

design of the tool, the relation between the 

tool and ways of thinking about it, and more. 

As one participant put it, 

I see interaction of multiple tools as a kind 

of system. For example, the child 

interacts with the remote, including the 

buttons, the layout of the buttons, the 

symbols on the buttons, her fingers, 

 Les signes, tels que le langage et les 

différents systèmes de comptage, sont 

des « moyens d'action interne qui 

affectent le comportement humain » 

(p. 55). 

Pour Vygotsky, la différence la plus 

essentielle entre les signes et les outils est la 

manière dont ils orientent le comportement 

humain. La fonction d’un outil est orientée 

vers l’extérieur : « visant à maîtriser la 

nature » (p. 55). D'un autre côté, un signe est 

orienté vers l’intérieur : « destiné à se 

maîtriser » (p. 55). Cela semble un peu 

dualiste—externe/interne, va-et-vient—mais 

ce n’est pas ce que Vygotsky met de l’avant. 

Ainsi, Vygotsky élargit sa réflexion sur les 

signes et les outils en notant que « les 

distinctions entre les outils comme moyen de 

travail […] de maîtriser la nature, et le 

langage [signe] comme moyen de relations 

sociales se dissolvent dans le concept général 

d'artéfact » (p. 57). Les artefacts sont créés 

en attachant des signes aux outils. Ainsi, par 

exemple, les enfants lient des signes à des 

outils mathématiques en parlant par exemple 

de ce qu’ils font, d’un concept mathématique 

en jeu, ou en écrivant des symboles 

mathématiques lorsqu’ils interagissent avec 

un outil. Yasmine a expliqué que pour elle, 

un artefact n'est donc pas une « chose », un 

objet indépendant de la perception de 

l’enfant qui l’utilise et indépendant de ce 

pour quoi il l’utilise. Les artefacts sont plutôt 

créés lorsque les enfants lient des signes à 

leurs interactions avec des outils pour 

travailler ou résoudre des tâches 

particulières. 

Dans cette session, nous avons regardé une 

vidéo de trois-minutes d’un enfant de 5 ans 

montrant à sa mère comment elle utilisait 

une télécommande de télévision pour 

compter par trois. En regardant la vidéo, 

nous avons essayé de nous concentrer sur les 

propriétés de la télécommande en tant 

qu'outil. Comment, par exemple, la 

disposition des nombres organisés en 

rangées de trois a-t-elle guidé le comptage de 

l’enfant ? Nous avons ainsi abordé quelques 

questions telles que l’action incarnée de 

l’enfant, le format de l’outil, la conception 

non mathématique de l’outil, ainsi que la 
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language of counting, other language, her 

mother’s questions, the camera. Making 

meaning with a tool—significance—

transforms the tool into an artefact. In 

most mathematical situations, multiple 

tools are used together (such as symbols, 

algorithms, methods, diagrams, 

language). But rather than multiple 

artefacts emerging, maybe we should talk 

about them as single artefact, or an 

artefact system. Something that assembles 

at a particular moment, and continually 

changes, reassembles, disassembles, 

according to what is going on. Meaning 

arises from the intertextual relations 

between the tools in the artefact system. 

‘Artefactness’ arises from this 

intertextuality. I can fold a piece of paper 

to help add fractions, but the task already 

involves the written problem, using 

fraction symbols, so intertextuality arises 

across an artefact system comprised of 

the symbols, the folded paper, various 

gestures, counting, etc. Conjecture: 

developing broader, more complex 

artefact systems is a valuable aspect of 

mathematical thinking. 

We see how the web of relations among the 

child with her previous knowing of 

mathematics and of the tool, her mother, and 

the particulars of the designs of the tool come 

together here. 

For the second activity on this day we first 

watched another short video, within which 

two children in grade 7 worked with sets of 

tools—ones that have some sort of 

mathematical thoughts of the designer 

incorporated into them (fraction strips, 

Cuisenaire rods), and tools with no 

specifically mathematical design (ribbons, 

tapes and papers) to add two fractions. After 

a short reflection, the participants were asked 

to work with a variety of different tools to 

think about adding two fractions. The 

(mathematical) tools used were pencils, 

markers, grid papers, transparent papers, 

green and blue pieces of Poster board, blank 

A4 print paper, scotch tape, red masking 

tape, glue, ribbons, three different sizes of 

rulers (1 m, 50 cm, 15 cm), and pairs of 

scissors. The challenge the participants 

further took up was to imagine that they did 

not know the concept of common 

denominator. During and after interactions 

relation entre l’outil et les façons de le 

penser. Comme l’a dit un participant, 

L’interaction de plusieurs outils peut être 

vue comme une sorte de système. Par 

exemple, quand l’enfant interagit avec la 

télécommande, plusieurs aspects de 

l’objet interviennent : les boutons, la 

disposition des boutons, les symboles sur 

les boutons, les doigts de l’enfant, le 

langage de comptage, le langage 

ordinaire, les questions de sa mère, et 

même la caméra qui filme l’événement. 

Dans la plupart des situations 

mathématiques, plusieurs outils sont 

utilisés ensemble (symboles, algorithmes, 

méthodes, diagrammes, langage). Mais 

plutôt que de multiples artefacts 

émergents, nous devrions peut-être parler 

d’eux comme d’un artefact unique, ou 

d’un système d’artefacts. Quelque chose 

qui s’assemble à un moment donné, et 

change continuellement, se rassemble, se 

démonte, selon ce qui se passe. Le sens 

provient des relations intertextuelles 

entre les outils du système d’artefact : 

faire du sens avec un outil—la 

signification—transforme l’outil en 

artefact. Vu ainsi, l’artéfact est le produit 

de cette intertextualité. Je peux plier un 

morceau de papier pour aider à 

additionner des fractions, mais la tâche 

implique déjà le problème écrit, utilise 

des symboles, etc.; l’intertextualité 

survient à travers un système d’artefacts 

composé des symboles, du papier plié, de 

divers comptages, etc. Développer des 

systèmes d’artefacts plus larges et plus 

complexes est un aspect précieux de la 

pensée mathématique.  

Nous voyons par-là comment le réseau de 

relations entre l’enfant avec sa connaissance 

précédente des mathématiques et de l’outil, 

sa mère, et les particularités des conceptions 

de l’outil se rejoignent dans cet épisode. 

Pour la deuxième activité de ce jour, nous 

avons d'abord regardé une autre courte vidéo 

dans laquelle deux enfants de 7e année 

travaillaient avec des outils pour additionner 

des fractions. Ces outils étaient de différents 

types : certains ‘contenaient’ une sorte de 

pensée mathématique de la part du 

concepteur (bandes de fractions, bâtonnets 

de Cuisenaire), d’autres étaient des outils 

sans conception spécifiquement 
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with the tools, we discussed how the 

interactions with the tools were mediated by 

the feedback from the different artefacts that 

they created throughout their interactions 

with the tools.  

We also noted that in interactions with the 

tools and in all problem solving stages, both 

attaching mathematical meaning(s) to the 

tools and the consequential process of 

creating an artefact were a gradual and 

complex process, which were closely related 

to: (a) The ways in which the participants 

perceived the mathematical affordances of 

the tools—through the feedback provided by 

the tools—to create and to use the artefacts; 

(b) their previous mathematical knowing of 

fractions in general and of the addition of 

fractions in particular; and (c) the task of 

adding two fractions.  

There were many thoughtful discussions that 

resulted on the use of tools to develop 

mathematics from tools that have been 

designed for the purpose of teaching such as 

Cuisenaire rods, geometric shapes and graph 

paper, to less obvious but still valuable tools 

such as a television remote control, our 

fingers, and conversation. 

mathématique (rubans, bandes et papiers). 

Après une courte réflexion, les participants 

ont été invités à travailler avec ces outils 

pour réfléchir à l’addition de deux fractions. 

Les outils (mathématiques) offerts étaient 

des crayons, des marqueurs, des papiers 

quadrillés, des papiers transparents, des 

affiches vertes et bleues, du papier blanc A4, 

du ruban adhésif transparent, du ruban 

adhésif rouge, de la colle, des rubans, trois 

tailles de règles (1m, 50 cm, 15 cm), et des 

paires de ciseaux. Le défi particulier proposé 

aux participants était de faire l’addition de 

deux fractions avec ce matériel en faisant 

comme s’ils ne connaissaient pas le concept 

de dénominateur commun. Pendant et après 

le travail, nous avons discuté de la manière 

dont les interactions avec les outils ont été 

influencées par les réactions des différents 

artefacts qu'ils ont créés tout au long du 

processus. 

Nous avons également noté que dans les 

interactions avec les outils et dans toutes les 

étapes de résolution de problèmes, attacher 

une ou deux significations mathématiques 

aux outils et au processus consécutif de 

création d’un artefact est complexe et se fait 

graduellement. Il est intéressant de souligné 

comment ceci est étroitement lié à : (a) les 

façons dont les participants ont perçu les 

affordances mathématiques des outils—à 

travers le retour d’information fournie par les 

outils—pour créer et utiliser les artefacts; (b) 

leur connaissance mathématique préalable 

des fractions en général et de l’addition de 

fractions en particulier; et (c) la tâche 

d’additionner deux fractions. De vives 

discussions bien réfléchies ont suivi 

l’activité, concernant l’utilisation d'outils 

pour développer les mathématiques, que ce 

soit des outils conçus pour l’enseignement 

(tels que les bâtonnets Cuisenaire, les formes 

géométriques et le papier millimétré), ou des 

outils moins évidents, mais néanmoins 

précieux comme une télécommande, nos 

doigts et la conversation. 
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DAY 3 THEORETICAL BACKGROUND: RE-THINKING (MATHEMATICAL) 
TOOLS (LED BY JEAN-FRANÇOIS MAHEUX) 

In this third session, we looked into mathematical tools from a historical perspective, keeping 

in mind perhaps a reflection on what this tells us about the nature of mathematical activity. We 

are very familiar with those Babylonian tablets collating important results, as well as heuristics 

in the form of problems and their solutions. These clay tablets can probably count as one of the 

oldest known mathematical ‘tools’ that might also have been designed to teach or learn 

mathematics. 

Dans les sections précédentes, nous avons pu voir et expérimenter comment la matérialité des 

outils, leur matière même, peut être inséparable de leur fonction, et du type d’expérience 

(mathématiques) qu’ils offrent. Dans le cas des tablettes, on peut se demander comment la 

matière (argile, stylet de bois) a pu influencer le travail mathématique de l’époque et le choix, 

par exemple, d’un système de notation positionnelle utilisant seulement deux symboles.  

Le terme « outil » est en fait lié à une foule de mots intéressants pour penser, et repenser ce que 

nous entendons par « outils mathématiques » … et ce que nous attendons d’eux, peut-être ! 

Dans la même veine, nous nous sommes arrêtés un moment pour penser à nos outils en relation 

avec ceux d’autres métiers, ou pratiques. Qu’ont donc de particulier ces outils que l’on dit 

« mathématiques » ? 

 

 

Figure 5. Re-thinking (mathematical) tools. 

Certainly, an important part of what makes a tool a mathematical one is its inclusion, its 

participation into some mathematical practices or activity (which, of course, opens the question 

of what makes them mathematical, but that is for another time!). Many tools present 

mathematical features, and many tools without ‘specific’ mathematical features can certainly 

enter mathematical activity, and then become mathematical tools for that reason (a pen, a rope, 

words, gestures, etc.). This becoming part can also simply be this moment when an object 

becomes the object of mathematical attention. Is this not an interesting way to see what we did 

in the previous sections? 
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Suite à nos discussions à propos de ce qui fait d’un outil un outil mathématique, nous avons 

proposé aux participants d’examiner en sous-groupes quelques propos encore une fois un peu 

dérangeants à propos d’outils. Lors du partage qui s’en est suivi, nous nous sommes rendu 

compte que l’exercice avait encore une fois permis de spécifier, d’illustrer, de nuancer nos 

rapports aux outils, et à leur rôle dans l’activité mathématiques. Voici quelques-unes de ces 

idées dans la figure 6. 

L’homme se découvre quand il se mesure avec 

l’obstacle. Mais, pour l’atteindre, il lui faut un 

outil. Il lui faut un rabot, ou une charrue.  

A. de St-Exupéry 

 

Humans find themselves when they measure 

against obstacles. But to engage the earth, we 

need tools. We need a spade or a plough. 

A. de St-Exupéry 

La fabrication et l’utilisation d’outils, 

d’instruments et de machines font partie de ce 

qu’est la technique, mais la technique n’est pas 

que des moyens (à maitriser). Elle un mode de 

dévoilement : une provocation par laquelle la 

nature est mise en demeure de livrer. 

M. Heidegger 

 

Making and using tools, instruments and 

machines is part of technology, but technology is 

no simply means (to master). It a mode of 

revealing: a challenging which order nature to 

deliver. 

M. Heidegger 

Human are not something natural that then 

develop technology: both co-emerge. And in fact 

technology comes from behind. It is within the 

(back of the) human, and it arrives by chance. 

D.Wills 

L’humain n’est pas quelque chose de naturel qui 

développe ensuite la technologie : ils co-

émergent. Et en fait, la technologie provient de 

l’arrière. Elle est dans (le dos) de l’humain, et 

elle arrive par hasard. 

D. Wills 

 

We carry out actions to achieve a goal, assisted 

by tools (instruments, symbols, signs, language) 

that mediate them. The fate of operations 

(actions that have become unconscious) is to 

become functions of a machine. 

A. Leontiev 

On réalise des actions pour atteindre un objectif, 

aidé d’outils (instruments, symboles, signes, 

langage) qui servent de médiation. Le sort des 

opérations (actions devenues inconscientes) est 

de devenir des fonctions d’une machine. 

A. Leontiev 

Figure 6. Prompts to new ways to specify, illustrate, nuance our relationship with tools, and 
their role in mathematical activity. 

WHAT ABOUT ‘CONCEPTUAL’ TOOLS? 

The second part of this last session was dedicated to somehow different kind of tools: 

conceptual mathematical tools. More precisely, we explored a few methods to figure the square 

root of 200, as it was done in the past. 

Quand on pense à des outils mathématiques, on a souvent en tête quelque chose de plus abstrait 

que les règles, compas, et autres bidules du genre : on pense aussi aux méthodes par exemple ! 

Dans la seconde partie de cette session, nous nous sommes intéressés à quelques manières 

(tirées de l’histoire) d’obtenir la racine carrée de 200. 

Find the side of a square whose surface is 200 hops. Solve this problem without using any 

algorithm (or any instrument) can be quite challenging… but not impossible. Although you do 

have to immediately take a stand in terms of what you will count as an instrument or not. Can 

you draw using a pencil and some paper? Can you use counters of any sort? 

A Babylonian method 

Les Sumériens avaient développé, semble-t-il, différentes méthodes leur permettant de 

« résoudre » des équations du second degré. Résoudre, ou en tout cas trouver des résultats 
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satisfaisants pour eux. Leur technique la plus simple consiste à faire une moyenne. C’est la 

même méthode que présente Héron d’Alexandrie quelque 1700 ans plus tard. Il s’agit 

d’appliquer la formule suivante, dans laquelle « e » est une approximation de la valeur 

recherchée : 

 

We asked, “allowing yourself to use our symbols as well as your favorite ways to do additions 

and divisions solve the problem of 200 hops with this formula, where e is an approximation of 

the root you are looking for.” Amazingly enough, this simple formula gives very good results 

even with a pretty rough approximation of the root. With a good one (e.g., reusing results given 

with the formula), we can be more precise than ever needed! 

La formule en tant qu’outil est un objet intéressant, par exemple du point de vue de sa 

réutilisation. Une des propriétés communes des outils est justement cette réutilisabilité 

(reusability). Le marteau peut servir à la construction de plusieurs projets, mais il sert aussi 

plusieurs fois dans le travail d’enfoncer un clou. Les plus perspicaces auront déjà reconnu dans 

la formule sumérienne l’essentiel de la méthode de Newton : nos outils mathématiques se 

raffinent, mais gagnent aussi en généralité (avec Newton, résoudre 𝑥2 = 𝑦 est simplement un 

cas particulier). Ce gain s’accompagne cependant d’une difficulté à les manipuler. Le cheval 

tirant une charrette s’arrête de lui-même devant un obstacle, une voiture… pas encore! Quelque 

chose d’intéressant se dégage de l’utilisation et de l’observation d’outils « simples », dont on 

peut bien suivre bien la mécanique (la racine de n est forcément entre e et n/e !). Comparons 

avec la méthode suivante, par exemple. 

In India 

An interesting elaboration of the Babylonian formula was found in India, in a Bakhshali 

manuscript dating from circa -4002. Taking into consideration the difference between what our 

first approximation gives and the number we want to square, the method (in modern notation) 

looks like this: 

Let n = e2 + b, where e is the number we want to square (e.g., 28), e is our 

approximation (e.g., 5) and b is, of course, the difference between n and e2 (28-5=3). 

Then e' is given by 

 

The tool here is a more complex and opaque; more prone to errors, more mysterious. And more 

efficient too, provided that one would be using it with the same as what we saw with the 

Sumerian approach. Unpacking it, figuring out how the tool works, is still possible. But clearly 

a much more difficult exercise than observing how the root of a number is necessarily between 

some number and its multiplicative inverse. And as much as we can find beauty in simple tools, 

more intricate ones (baroque?) also have their charm, if or when we are willing to see it. Tools 

are beautiful objects, and beauty has many faces (e.g., Sartwell, 2013). There is also pleasure, 

                                                 
2 I recently discovered that this manuscript might actually be even a few centuries older that previously 

thought. 
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different kinds of pleasures, in using simple or complex tools. There are different kinds of 

struggles with each tool. And probably also, especially if we think about these two examples, 

there is the possibility of an enriching sense of doing things in the ‘old fashioned way’, the 

possibility for wonder in a sense similar to what we described when discussing various cultures’ 

tools. These more or less ancient mathematical ways to go about the (mathematical) world 

invite us to reconsider, through tools, who we are, what we do, where we come from, and where 

we go. 

Pas à pas 

Les outils n’ont pas tous la même précision, donc ! On peut imaginer que cette précision dépend 

souvent de la fin qu’ils servent. L’intérêt mathématique d’un calcul précis, exact, de la racine 

d’un nombre a aussi donné naissance à son outil : un algorithme dont la trace la plus ancienne 

se trouve également dans un vieux manuscrit indien (daté d’il y a environ 500 ans, il est signé 

de la main d’un certain Aryabhata). Cet outil, complexe, pénible à utiliser, et opaque à souhait 

a néanmoins traversé l’histoire. On le voit dans les travaux des mathématiciens arabes puis 

européens, et il fut même assez longtemps enseigné dans les écoles du 20e siècle. Il ressemble 

un peu à l’algorithme de division que nous connaissons (encore) bien (mais dont plusieurs 

prévoient la ‘disparition’ prochaine !). La page web créée pour le groupe de travail en donne 

une illustration assez facile à suivre (https://cmesgmathtools.blogspot.ca/2017/05/session-3-

fr.html).  

I can illustrate it for you in the fairly simple case of the calculation of √150.  So, let’s first 

observe that 150 is also …000150.0000… What we do then is to split the number in two-digit 

packets, starting from the decimal point: 00 01 50 . 00 00 00 … We are now interested in the 

number packet different from 00 at the highest position: here it is 01. 

 We are looking for the root r of the closest perfect square c such as c ≤ 01. Here, it 

is simply r = 1 since 12 = 1 ≤ 01. This r is the first digit of √150. 

 For the next step, we now compute the difference d between r2 and our packet: 

01 – 12 = 0. We can then move on to the next packet.  

 Note that with another number (e.g., 2842) we could obviously have had a remainder 

different from 0 (e.g., 3 because we would have 5 as the first digit: 5 × 5 = 25 < 28 

and 28 – 25 = 3). 

 We put the next packet onto the right of our difference d: 050. We multiply by 20 

the number formed by the digits identified so far (regardless of the decimal point if 

there is one, see below): 1 × 20 = 20. And then we look (again) for the digit r giving 

us the closed number c such that (20 + r) × r ≤ 050. Here, we take r = 2 since 

22 × 2 = 44 < 50 (and 23 × 3 = 69 is too large). This r is, as previously noted, the 

next digit of √150. 

 For the next step, we compute the difference d: 50 – 44 = 6, etc. Up to here we have 

√150 = 12. 

There is (at least) one ‘shortcut’ we can use to find r relatively easily even with large numbers. 

For example, if we need to solve: (24480 + r) × r ≤ 190400), we can notice that r is, of course, 

near the floor value of the division of our ‘augmented’ d by the product of our digits by 20. 

Here we have r ≈ [190400 ÷ 24480] = [7.77...] = 7. So if doing division is not a problem, we 

can actually save ourselves some time/work. We can even get a pretty good guess with simple 

approximation, e.g., 19 ÷ 2.4 = 7.9166… Here, 7 is in fact the next digit. 

Learning to use these kinds of tools really emphasizes what we often call the procedural aspect 

of doing mathematics. But here again we can see that being procedural is not a given. 

Remembering and managing apparently meaningless, intricate rules (the illustrated case does 

https://cmesgmathtools.blogspot.ca/2017/05/session-3-fr.html
https://cmesgmathtools.blogspot.ca/2017/05/session-3-fr.html
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not show some of the ‘difficulties’ we can come against) can be hard mathematical work. There 

can be a real sort of craftsmanship there, and we do know of individuals who, in the past, were 

celebrated for such skills. Historically speaking, this all changed when de Prony created the 

first ‘mathematics factory’ (a few years after the French revolution), training unemployed 

hairdressers to fill sheets of additions and subtractions used to compute logarithmic and 

trigonometric tables. The creation was at the origin of Babbage’s invention of his difference 

machine, one of the first computers. 

By the rules 

Le côté lent et pénible de cet algorithme explique bien qu’on lui préfère souvent des méthodes 

approximatives. En termes d'efficacité, on a en fait tout avantage à retourner vers des outils au 

sens où on l’entend généralement. La règle à calculer est un de ces ingénieux instruments ! 

Selon les règles offertes, il est possible de connaitre des valeurs trigonométriques par exemple, 

mais aussi des racines carrées, cubiques, etc. Mais contrairement aux calculatrices modernes, 

ceci demande un peu plus de travail mathématique. Et puis évidemment, il existe plusieurs 

variations de règles. Comment ça marche ? 

Disons simplement que l’idée générale est d’avoir une règle graduée de manière à ce qu’on 

puisse avoir en vis-à-vis les nombres 1,2,3,4... et leur racine 1, 1.414, 1,732, 2. On utilise ensuite 

la règle en se basant sur le fait que √𝑎𝑛 = √𝑎√𝑛 en prenant 𝑎 = 10 et 𝑎 = 100 (ou une puissance 

de 10 ou 100). De cette manière, on peut toujours « ramener » un nombre à une valeur entre 1 

et 10. Avec 200, on aura 𝑎 = 100 et 𝑛 = 2. Avec 14.3 on aurait 𝑎 = 10 et 𝑛 = 1.43. Pour des 

nombres plus grands (ou plus petits, car on peut aussi diviser par 10 ou 100), on est encore 

toujours dans un cas soit on a un facteur de 100, soit on a un facteur de 10. Et comme √10 et 

√100 ont des valeurs différentes, la règle présente deux graduations. 

La règle nous donne en général que la valeur de √𝑛 est 0 > 𝑛 > 10. Si le nombre qui nous 

intéresse est plus grand ou plus petit, on compte les chiffres pour savoir si on va lire sur la règle 

de « impair » (pour 20, 2000, etc.) ou « paire » (pour 2, 200, etc.). C’est l’utilisateur qui doit 

ensuite « placer la décimale » en fonction de l’ordre de grandeur attendue. Ainsi, pour √200 on 

va chercher sur la règle « paire » la valeur de √2, et on multiplie par 10. On peut voir sur la 

figure suivante, la racine à extraire est choisie sur la graduation A, et la racine obtenue est lue 

sur la graduation C. Ainsi, à gauche on reconnait √2 ≈ 1,41(4) et à droite √20 ≈ 4,47. 

 

Figure 7. On a slide rule, we read 2 values for √2. 

Similarly we see on the left √4.5 ≈ 2.12 and on the right √45 ≈ 6.70. It is possible to increase 

the level of precision, by ‘amplifying’ the rule by using the central part of the ruler in the same 

way Vernier calipers work. 

Participants explored with slide rules made of paper. The ruler itself is a fascinating object for 

many, and manipulating them showed how dexterity can also be an issue in ‘higher’ 

mathematics! But besides that, the tool offers an interesting mixture of needing to understand 

what is going on (to choose the appropriated scale), and the mindlessness of instrumented 

activity in the sense that the tool is taking care of the work and provides the answers. This is a 

https://2.bp.blogspot.com/-6rz9sububEg/WRV4JlgwmAI/AAAAAAAAL_g/Ba5PjnimdzAv7UJ5azo5Yh_3WJBBVs7LgCLcB/s1600/sqrt2.gif
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quite refined version of the mind-enlarging observation that (mathematical tools) need us a 

much as we need them. It is through our actions that they become part of mathematical activity. 

Once started, they will support us just as much as we support them in this dance we call doing 

mathematics. 

Si on accepte que toutes ces instances soient malgré tout bel et bien…activité mathématique, 

comment se comparent-t-elles? Que signifie, très concrètement, faire des maths dans chaque 

cas? 

CONCLUSION 

Mathematical tools are things we are curious about, things we try to understand and make sense 

of. They are things that surprise us, things in which we also recognize ourselves! We do not 

pretend to know what they are, what they do, what they are for, what they mean. We do not 

appropriate them. They fascinate us, and this working group was, first of all, about sharing that 

fascination. This is one of the ways in which mathematical tools are also forms of getting to 

know one another and getting closer to each other. Sharing how the tools make sense to us, and 

inviting others to do the same, these tools gave us occasion to do mathematics together. Each 

offered us mathematical experiences of a kind, and each carried traces of the mathematical work 

of others. They all presented themselves as standing proofs of the often-forgotten existence of 

the mathematicians who created them, as Pimm (2007) puts it. 

Looking back, we realize how our discussions around tools tended to personify them, as if they 

even had agency, and perhaps intentions different from our own. Tools shape us? Tools need 

us? Tools learn? Can they go wrong? Make mistakes? Refuse to work? Mostly metaphorical 

perhaps, these images come with a transformation in our languaging, our thinking. Do they 

layer the ground for the upcoming time where the biomechanical fusion of humans and 

instruments will, perhaps, change everything? 

Another idea that emerged from our three days together examining mathematical tools concerns 

the materiality and aesthetics of physical tools and the ways they are constructed. Most of the 

typical manipulatives used in elementary mathematics classrooms are made industrially (by 

others) from coloured plastics and cost money. This reveals something of our society’s ways of 

integrating and processing experience through our interactions with the material world.  

It is a very different learning experience to work with purchased industrial plastic objects in a 

classroom or to go outdoors and work with natural materials that we forage or grow in our own 

gardens. We took pleasure in working with sticks, wood, hand-made twine and other materials 

we could collect and make for ourselves. But we also felt pleasure and surprise as we 

experimented with Cuisenaire rods and fraction circles in unusual ways, and when we worked 

with the Babylonian square root algorithm and the slide rule. Working in new and surprising 

ways with particular tools may be also a way to re-discover our own (mathematical) roots. 

CONCLUDING REFLECTIONS 

To recap some insights from our first day’s questions about tools, cultures and appropriation,  

JF writes: 

Things we are curious about, things we try to understand, make sense of, things that 

surprise us, things in which we also recognize ourselves, but mostly things to be 

curious about! So we do not pretend to know what they are, what they do, what they 

are for, what they mean, we don't appropriate them. They fascinate us, and we share 

that fascination! 
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Yasmine writes:  

I always see it as a from of getting to know one another and getting closer to each 

other….We are not saying “what the tools are” we are only sharing “ how the tools 

make sense to us” and invite others to do the same thing. 

Susan reflects at the end of Day 3:  

I am struck by the differences between industrial/ Modernist and post-modern ideas 

about tools that we saw in the quotations about tools that Jean-François brought 

today, and throughout the working group sessions. 

Modernist writers use the language of master and servant: tools serve us as we master, control 

and use the Earth and natural things (for example, by industrial and mathematical means). Goals 

are linear and clearly-defined. There are no unplanned side effects, or at least, they are 

considered to be minimal and not worth noting. The image is muscular, efficient, deliberate and 

a one-way action of humans taking and making what they want. 

The post-modern theorists, including McLuhan and David Wills, use the language of mutual 

shaping and co-emergence: humans are shaped by tools as much as we shape them, and things 

arise unnoticed or by chance as much as by design. Whatever goals we might think we have are 

a kind of distraction from the really big effects of interactions between people and technologies. 

The unintended side effects are always much greater than the intended effects. The image is of 

a complex co-emergent ecology where no one is in control, intentions and human ‘will’ are 

constantly reshaped by interactions, and where mastery is impossible and, in fact, undesirable. 

Even the post modern is very human-centric, as Richard Barwell pointed out in one of our 

discussions. Perhaps a next move might be to recognize the being-ness of all beings in the more-

than-human, greater-than-human world. These beings could be as diverse as trees, rocks, fellow 

animals, cell phones, hammers and language… 

So I am struck by some of the ideas Yasmine, JF and others introduced where tools are 

personified and have agency (and perhaps intentions different from our own!):  

“Tools need us as much as we need them”—JF  

“Do tools learn?”—Richard Barwell 

“Tools accumulate knowing.”—Yasmine 

“I am interested in what happens when tools go wrong or don't work. Does this open up new 

possibilities?”—JF 

“What if we had a calculator that sometimes (randomly) gave wrong answers?”—Nat Banting 

“What is interesting is when a tool is used for unintended purposes—as in the video where 

Laila used the TV remote control for counting by 3s.”—Yasmine 

“We shape our tools and then our tools immediately shape us”—Marshall McLuhan 

I am also interested in the materiality and aesthetics of physical tools, and the ways they are 

constructed. So many of the typical manipulatives used in elementary math classrooms are 

made industrially (by others) from coloured plastics and cost money. I am interested in how 

this differs from tools we make ourselves, outdoors, from more natural materials that we find, 

forage, grow in our gardens, et cetera. 
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What effect does this have on us as physical, earthly creatures? What effect does this have on 

our senses and sensory perceptions and awareness/noticing? How might it affect in-depth 

understanding? Certainly people who walked a terrain, grew to love a certain place, became 

friends with the rocks of a waterfall, closed their eyes and walked backwards to feel the balance 

and texture of the land, who became intimate with ropes and knots, who saw their family appear 

symbolized in their quipus…felt emotions, pleasure, depth of knowledge, surprise. 

We also felt pleasure and surprise as we experimented with Cuisenaire rods, with Babylonian 

square root algorithms, with slide rules, with fraction circles and with drawings. Perhaps it is 

that freshness of knowing (and suddenly not-knowing!) that we hope to reach by taking up the 

constraints as well as affordances of particular tools? 
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INTRODUCTION 

The focus of this working group was to explore what the group’s notions of ‘deep 

understanding’ was and to see if we could articulate what that looked like and felt like through 
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engaging in mathematical tasks. Ensuring that students develop a ‘deep understanding’ is a 

phrase often used to describe the goals of both K-12 and post-secondary mathematics education. 

We framed our session around the following questions: 

 What does having a deep 

understanding of school mathematics 

mean?  

 Qu’est-ce que veut dire « avoir une 

compréhension approfondie des 

mathématiques scolaires » ? 

 

 How is it different from deep 

understanding of mathematics? 

 En quoi est-ce différent d’avoir une 

compréhension approfondie des 

mathématiques ? 

 

 How can we teach for deep 

understanding of school 

mathematics? 

 Comment peut-on enseigner pour 

provoquer une compréhension 

approfondie ? 

 

 How do we work with pre-service and 

in-service teachers to teach for deep 

understanding? 

 Comment travaille-t-on avec les 

futurs enseignants et les enseignants 

pour enseigner cette 

« compréhension approfondie » ? 

 

These are open questions within the field of mathematics education that we did not expect to 

arrive at a complete answer to but to explore our understandings of. Throughout the three days, 

we posed mathematical problems to participants that we hoped would stimulate our thinking as 

researchers, teachers, and teacher educators exploring pedagogical, didactic, curricular, and 

evaluative implications for practice. We were not disappointed! 

Il semble que les questions proposées dans la description du groupe ont intéressé plusieurs 

participants qui avaient des expériences/expertises variées. En effet, le groupe était formé 

d’enseignants du secondaire, du collégial et de l’université, d’enseignants en formation des 

maîtres, de chercheurs et d’étudiants gradués. Ils ont également mentionné diverses raisons qui 

les ont amenés à participer au groupe. Parmi les raisons mentionnées, la vision de ce qu’est la 

compréhension, en général, et ce que sont les mathématiques scolaires ont été particulièrement 

soulevés. 

We drew on Liljedahl’s (2016) work on Building Thinking Classrooms to promote engagement 

with the tasks we were posing. We had participants working on vertical surfaces in groups of 

three with the problems we posed. We were unable to provide non-permanent surfaces for all 

participants but had two groups for each problem working on the larger white-boards. Our intent 

was to provide common mathematical experiences for participants in the working group that 

we could draw on to frame ‘deep understanding’. 

JOUR 1 : QU’EST-CE QUE LA COMPRÉHENSION APPROFONDIE? 

Pour la première rencontre du groupe, il nous est apparu important d’aborder en premier lieu le 

thème de la compréhension approfondie. Nous pensions qu’avant d’aller de l’avant sur les 

thèmes de l’enseignement pour une compréhension approfondie, il était nécessaire de connaître 

les différentes visions de ce qui est entendu par « compréhension approfondie ». 

The problem that we posed for the participants to engage with was the following: 

An escaped prisoner finds himself in the middle of a square swimming pool. The guard 

that is chasing him is at one of the corners of the pool. The guard can run faster than 

the prisoner can swim. The prisoner can run faster than the guard can run. The guard 
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does not swim. Which direction should the prisoner swim in order to maximize the 

likelihood that he will get away? 

Un prisonnier évadé se retrouve au centre d’une piscine carré. Le gardien qui est à 

sa poursuite se trouve à un coin de la piscine. Le garde peut courir plus vite que le 

prisonnier peut nager. Le prisonnier peut courir plus vite que le garde peut courir. 

Le garde ne sait pas nager. Dans quelle direction le prisonnier devrait-il nager pour 

maximiser ses chances de pouvoir s’évader? 

Participants worked in groups to create solutions to the problem. Four groups’ solutions are 

shown in Figure 1 below. 

  

Figure 1. Solutions to the prisoner problem. 

Participants then engaged in a Gallery Walk to view their other groups’ solutions. We then 

came back as a whole group and asked the question 

 Qu’est-ce qu’une compréhension approfondie des mathématiques scolaires (de 

l’école) ? 

 What is deep understanding of school mathematics? 

Plusieurs idées intéressantes sont ressorties de cette discussion. D’abord, quelques concepts 

mathématiques qui pourraient être utiles pour résoudre ce problème ont été identifiés : par 

exemple, les concepts de taux de variation, de vitesse, de dérivée. Cela nous a amenés à parler 

plus généralement « d’outils mathématiques » à posséder pour pouvoir résoudre des problèmes. 

Également, l’importance de l’habileté à choisir les « bons » outils pour résoudre des problèmes 

a pu être identifiée comme un aspect d’une compréhension approfondie. Ceci a également 

permis de soulever l’aspect dynamique de la compréhension. Il s’agit de l’idée que la 

compréhension serait en constant changement : de nouveaux concepts mathématiques, de 

nouvelles façons de représenter des situations et des concepts, de nouveaux problèmes à 

résoudre qui nécessitent une nouvelle stratégie de résolution, etc.  

De plus, le groupe a également souligné l’importance de la schématisation ou de pouvoir se 

faire une image de la situation. Particulièrement dans ce problème, le schéma était un point de 

départ presque inévitable pour aller plus loin dans la situation. La discussion autour de la 

schématisation nous a amenés à identifier la créativité en mathématique comme un autre aspect 

possible de la compréhension approfondie. Par exemple, la créativité dans la schématisation de 

la deuxième équipe dans la figure 1 les a amenés à voir le problème différemment. Aussi, 

l’ouverture du problème et le questionnement par rapport au caractère complet de la réponse 

(par exemple : est-ce que ma démarche est suffisante ? Puis-je aller plus loin ?) ont également 

été identifiés comme une certaine créativité qui pourrait être associée à une compréhension 

approfondie. 
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Enfin, nous avons pris la liberté de formuler d’autres questions qui nous ont semblé ressortir de 

la discussion :  

 Is there a turning point where we can say that we will need deep understanding in a 

problem? (The ‘is that enough’ part of the problem was a suggestion for being a 

manifestation of a deep understanding.) 

 Are there characteristics of a task that might provoke or develop a deep 

understanding? 

 Is that deep understanding: selecting which tools we need, produce a schema or a 

picture that represent the situation? 

 Are the mathematical concepts in themselves a part of a deep understanding? In 

which way?  

En deuxième partie de journée, nous avons proposé le problème suivant : 6 ÷ 2 (4-1). Nous 

avons demandé de résoudre ce problème en ayant en tête la question suivante : est-ce qu’une 

compréhension approfondie est nécessaire pour résoudre ce problème ? Si oui, comment se 

manifeste-t-elle ? What is deep understanding in this problem, if present? Les participants ont 

encore une fois été invités à travailler en équipe de trois sur de grandes affiches collées aux 

murs.  

La discussion qui a suivi a été très animée. En effet, tous n’étaient pas d’accord sur la place de 

la compréhension approfondie dans ce problème. Certains semblaient assez catégoriques 

comme quoi ce problème n’avait « rien à voir » avec une compréhension approfondie. 

L’utilisation de règles ou de conventions a été un enjeu. Ces conventions font-elles partie d’une 

certaine compréhension approfondie ? Sont-elles nécessaires ? Le fait que ces conventions 

soient parfois liées à un contexte culturel a mis en lumière l’aspect « humain » des 

mathématiques et a soulevé l’importance de la communication en mathématiques. Ainsi, on 

peut se questionner sur la place de la communication en/avec les mathématiques dans ou pour 

une compréhension approfondie. 

Plusieurs ont aimé le fait qu’il n’y ait pas de consignes liées au problème. Ils y ont vu une 

occasion de se demander d’où venait cette opération, de rechercher des exemples de problèmes 

écrits qui pouvaient être représentés par cette opération. Certains participants ont d’ailleurs 

remarqué que cette tâche n’était pas si simple. Le travail de deux équipes est présenté ci-après 

dans la Figure 2. 

    

Figure 2. Sample participant responses to the order of operations question.  
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Again, after groups worked on this problem, they participated in a Gallery walk where they 

viewed other groups’ solutions. This activity prompted much discussion around mathematical 

conventions and communication. Questions arose regarding the ‘deep mathematics’ that 

students might need to know in order to have a discussion regarding the mathematical 

conventions that are at play in this question. Additionally, there was agreement that knowing 

the conventions is not enough to qualify for ‘deep understanding’. 

At the end of Day 1, for homework, we asked participants to respond to the following prompts 

in a Google Doc in order to get insight into what they were thinking regarding the following 

topics: 

 State 5 words that you think of when you hear ‘deep understanding’ 

 State 5 words that you think of when you hear ‘school mathematics’ 

DAY 2: WHAT IS SCHOOL MATH? TEACHING FOR DEEP 
UNDERSTANDING OF SCHOOL MATH? 

At the beginning of Day 2, we took all of the contributions that participants made to the Google 

Doc and illustrated the responses to each question visually using a word cloud generator. 

Though we gave instructions as to how participants were to respond, some wrote fewer than 5 

words and some chose to write paragraphs. The word clouds that were presented are shown in 

Figure 3. 

  

Figure 3: Word clouds of group contributions. 

These visual representations caused much discussion among the participants. Many noted that 

the words that were being used to describe ‘school mathematics’ were harsh and cold, while 

the words used to describe deep understanding were more collaborative in nature. This led to a 

question posed by one of the participants regarding school mathematics and defining what it is 

specifically. This prompted a series of generalities being produced about school mathematics 

but nothing that anyone could agree on specifically.  

The next phase of Day 2 was to address teaching for deep understanding. We used resources 

from the National Council of Teachers of Mathematics (NCTM) professional development 

materials in order to highlight specific teaching practices that either support or inhibit the 

development of deep understanding. We posed the Candy Jars Problem shown in Figure 4 

(Retrieved from http://www.nctm.org/Conferences-and-Professional-Development/Principles-

to-Actions-Toolkit/The-Case-of-Mr_-Donnelly-and-the-Candy-Jar-Task/) with the intent of 

then using the teaching scenarios based on the same problem.  

School mathematics Deep understanding 

http://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Mr_-Donnelly-and-the-Candy-Jar-Task/
http://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Mr_-Donnelly-and-the-Candy-Jar-Task/
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Figure 4. The candy jars problem. 

Groups of 3 worked together to come up with solutions to the problem. Group solutions to the 

problem are in Figure 5 below. 

  

Figure 5. Group solutions to the candy jar task. 

After engaging in the task, participants were placed in six random groups of five, with three 

groups given one teaching scenario, and three groups given a second teaching scenario. The 

teaching scenarios illustrated the ways in which two different teachers enacted this task in their 

classes. (Videos found at http://www.nctm.org/Conferences-and-Professional-

Development/Principles-to-Actions-Toolkit/The-Case-of-Mr_-Donnelly-and-the-Candy-Jar-

Task/). Groups were asked to analyze the scenarios and were asked to discuss the following: 

 What did you notice about elements of the teaching that led to student deep 

understanding? Or that got in the way of developing deep understanding in the 

students? 

Once groups had a chance to explore their scenario, participants were then placed in five 

random groups of six with three participants that had been experts on each of the scenarios. 

They were to present their scenarios to each other and to discuss what they noticed about 

http://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Mr_-Donnelly-and-the-Candy-Jar-Task/)
http://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Mr_-Donnelly-and-the-Candy-Jar-Task/)
http://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Mr_-Donnelly-and-the-Candy-Jar-Task/)
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teaching for deep understanding. We then did a large group debrief on what is needed to teach 

for deep understanding and the ideas were captured on the whiteboard in Figure 6 below. 

 

Figure 6. Debrief of teaching for deep understanding. 

Plusieurs aspects d’une compréhension approfondie, qui semblaient être parlant pour les 

participants, ont été identifiés. Par exemple, la confiance en eux et en leurs élèves, leur humilité, 

leur habileté à anticiper ce que les élèves feront, leur amour des mathématiques et de 

l’enseignement ont été reconnus comme des qualités aidantes pour enseigner pour une 

compréhension approfondie. Aussi, la propension des enseignants à pouvoir délaisser ou 

modifier en temps et lieu les plans qu’ils avaient prévus a également été discutée. Certains ont 

parlé d’être à l’aise avec une certaine « perte de contrôle ». Or, d’autres ont précisé que de rester 

confiant et à l’aise dans une situation qui dévie d’un plan initial, ou d’accepter de suivre les 

élèves vers des avenues imprévues, était tout sauf une perte de contrôle. Au contraire, cela 

demanderait un très grand contrôle pour rester ouvert et confortable dans ce type de situations.  

As a culminating activity for the day, we had participants individually reflect on the 

understandings that they now had about what it means to teach for deep understanding using a 

Four-Square Frayer Model. Sample participant responses are below in Figure 7. 

 

Figure 7. Participant Four-Square Frayer Model responses. 

Overall, participants identified the following elements of teaching for deep understanding in 

each of the sections of the Four-Square Frayer Models: 
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Essential Characteristics 

 Multiple representations and connections between the representations 

 Deep understanding by the teacher of the concepts or willingness to work with 

students to further their own understanding 

 Anticipating student responses and approaches—both accurate and inaccurate ones 

 Well-designed sequencing/scaffolding 

 Deep understanding comes from discovering the concepts through engaging with 

them with very little ‘covering’ of the curriculum 

 Understanding that deep understanding is a marathon not a sprint and that you will 

only be with the student for a very short part of the process 

 Valuing failure as a way to get to success 

 Having clear objectives related to possible learning trajectories 

 Class culture that is conducive to cooperative learning 

 Provide thinking time—mulling over time 

 Having students reflect on their misconceptions and why they changed their thinking 

 Promoting diversity 

 Synthesis of concepts through discussion  

 Teachers create activities that allow students to develop/inquire/discover/create/ 

explore the mathematics themselves 

 Students are the ones ‘doing’ the mathematics 

 Modeling honesty and the integrity of someone seeking the truth 

 Humility to listen, understand, and be surprised and/or taught by student thinking 

 

Non-Essential Characteristics 

 Tasks ‘after the teaching’ that match the math skills learned in the lesson 

 Requiring specific algorithms  

 Suggesting specific solutions to ‘move on’ in the lesson 

 Teacher does not need to have all of the answers or need to anticipate all possibilities 

 ‘Real life’ applications 

 Copying class examples or ‘notes’ prescribed by teacher 

 Giving directions of what to do 

 Rote learning/memorization/surface learning 

 Providing exemplars or models 

 Prior knowledge or prior successful positive experience with the content can add an 

extra layer to deep understanding; however, it is not essential, since deep 

understanding is not linear where one needs to master previous level to develop the 

next level 

 Using conventions and mathematical terminology 

 

Examples 

 Open tasks that allow for students to struggle  

 Teacher moves that allow for students to work and communicate together 

 Having students connect their solutions to each other’s and then the teacher connects 

student thinking to the specific focus of the lesson 

 Giving questions that enable the student to model with the use of the concept needed 

to be built upon 

 Allowing multiple representation questions and discussing them in the whole class 

discussion 

 Connections between different strategies: it is this connection that makes/takes basic 

understanding of a concept to a deeper level 
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 Reflecting on teaching—if lesson did not go as expected or learning was not as 

expected asking oneself what did not work and why 

 

Non-Examples 

 ‘Chalk and talk’ 

 Checklist approach to teaching concepts/skills 

 Teaching procedure only 

 Have students apply an algorithm in a new situation 

 Questions like “What is π?” “What is multiplication?” 

 Aimless tasks—tasks without a learning intention 

DAY 3: TEACHER EDUCATION 

Day three would not be complete unless we started with a problem! The problem we posed was 

Start with two numbers. The third number is the 

sum of the first two. The fourth is the sum of the 

second and third, and the fifth number is the sum 

of the third and the fourth (yes it is Fibonacci).  

We want the fifth number to be 100. Find all the 

whole number pairs for the first two numbers 

that will make this so. 

Commence avec deux nombres. Le troisième est 

la somme des deux premiers. Le quatrième est la 

somme du deuxième et du troisième, et le 

cinquième est la somme du troisième et du 

quatrième (oui, c’est Fibonacci). 

Nous voulons que le cinquième nombre soit 100. 

Trouve toutes les paires (premier et deuxième 

nombres) de nombres entiers qui remplissent 

cette condition. 

We had participants think about how this problem could be used with pre-service and/or in-

service teacher educators to promote deep understanding in their students.  

 

Figure 8. 

The conversation kept coming back to the samples of teacher practice from the day before. The 

question that arose was: How do we work with pre-service and in-service teachers to help move 

their practice from the ‘blue sheet (Sandra Pascal) to the green sheet (Mr. Donnelly)’? This was 

something that we puzzled over and did not come to a conclusion on, but suggestions were 

made that included teachers need to see the value in engaging students in tasks that evoke deep 

understanding and that they also need to experience engagement in tasks that elicit deep 

understanding from them so that they could have a sense of what being a student in that 

environment would be like. The points that were raised in our conversation are as follows: 

 Paradigm shift is scary to think about—shifting gradually is maybe ‘easier’ to 

consider 

 Having an occasion to ‘see’, ‘feel’ deep understanding and to reflect on that practice 

 Teachers have deep understanding learning—learning is an organic process—learn, 

practice, assess—teachers need time to reify 
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 Collaborative conversations between university, in-service teachers, pre-service 

teachers, field instructors 

 Nudged to think about experience to make sense of it 

 Safe place for teacher reflection—publicly or privately 

o Safe place does not necessarily mean free from criticism but a sense of “working 

together” 

 Teachers noticing kids learning—see the deep understanding—then identifying what 

do we (teachers) or they (students) do next 

 Teaching in isolation inhibits the potential for reflection and the opportunity to 

engage with others 

 Structured observation and sharing and opportunities for growth 

 Rethinking professional growth opportunities; i.e., math residency—working 

together with others over an extended period of time in a teacher’s space, sharing 

ideas, lessons, and modelling 

 For pre-service teachers, get them to solve math problems, engage in case studies of 

teacher practice, watching videos of teacher practice 

 Instructors of pre-service teachers also could have deep understanding and teaching 

for deep understanding 

 A sense of freedom for in-service teachers to do what they need to do—working with 

department heads or principals to help them know how to work with teachers 

 Unpack own experiences of doing math and teaching math 

 Maybe moving from ‘Add on learning’, which is comfortable, to uncomfortable 

learning which involves rearranging or letting go of currently held conceptions—put 

at risk complacencies about roles in education—push for dissonance or 

disequilibrium—embrace that nagging voice in one’s head to not continue in the 

‘stuck’ for both pedagogy and content—letting go of the notions of ‘I’ve got to 

cover…’ 

After this discussion, we offered up a sample set of student solutions to the previous problem 

and asked the participants to ‘mark’ those solutions. An exciting and intense conversation 

followed before groups were comfortable starting—a conversation that we did not expect but 

really enjoyed! Participants wondered what the criteria were that we were assessing and what 

outcomes the task was designed to assess. Questions were raised regarding why we needed to 

assess this task. An agreement was made that groups would ‘mark’ the student work based on 

what they thought in their groups and then we would discuss the different grading options that 

were used.  

Un autre aspect qui a été soulevé est que la langue anglaise semble permettre de distinguer un 

« assessment » d’une « evaluation ». Une participante a appuyé cette distinction par la racine 

latine des deux termes: « assessment » est « be aside » comme dans le sens d’accompagner, 

alors que « evaluation » est « to give a value ». Il a été souligné qu’en français, il ne semble pas 

avoir de mot qui traduirait directement l’idée du terme « assessment ». En effet, le mot 

« évaluation » est la traduction « officielle » des deux mots. Or, une distinction peut se faire si 

l’on qualifie l’évaluation de « formative » par exemple. Dans ce cas, on retrouverait l’idée 

portée par le terme anglophone « assessment ».  

Different groups approached the evaluation of student work in different ways based on their 

understanding of assessment and their own contexts. This discussion was shorter than the rest 

and mainly raised issues of ensuring that students know what they are being assessed on, that 

the assignments are aligned to the curriculum, and that students know the criteria for evaluation 

before or during the completion of the assessment. 
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The last section of the third day we posed our original questions back to the group, had them 

reflect on the questions and provide ‘answers’ or commentary on the questions. As we had 

hoped, some of our questions were revised to be better questions and participants were very 

thoughtful in their responses.  

A summary of their responses and adjustments to the questions follow. 

 How is having a deep understanding of school mathematics different than having a 

deep understanding of mathematics? 

o Deep understanding for whom? 

o Is there a difference? Should there be a difference? 

o School math is developing—it is a present tense verb, a personal one 

o Deep understanding of school math includes knowing what the problem aims to 

evaluate or help you practice. The understanding of the school context allows 

the student to concentrate his/her solution on the ‘available maths’ and in the 

‘available time’. Deep understanding of maths requires one to learn to cope with 

liberty and discover the solution’s characteristics by himself/herself 

o Deep understanding of school mathematics involves the understanding of the 

mathematics in school curriculum of specific level while deep understanding of 

mathematics involves understanding of mathematics in all levels 

o Deep understanding of school mathematics includes a wise familiarity with the 

sorts of ways in which students come to understand school mathematics 

o Math should be math everywhere. The notion of school math is a way to make 

a difference between what is taught and what could be acquired 

o Beside institutional constraints ‘time’ or ‘perceptions of time’ there should not 

be a difference 

o What is deep understanding? Definition can be subjective/relative to its 

environment!! 

o Deep knowledge of mathematics taught in schools and deep knowledge of 

students and how they interact with content plus recognition of and awareness 

of some of the constraints that doing math within a school context may impose 

(e.g., curriculum predefined, time concerns, need to evaluate) 

o ‘School math’ is equivalent to ‘school curriculum’ + ‘students’ cognition’ + 

‘pedagogical strategies’; ‘math’ does not need to consider students and 

pedagogy  

 How can we teach for continue developing deep understanding of school 

mathematics?  

o Uncover curriculum instead of cover curriculum 

o Do not give out answers—make/help/guide/inspire students to do the work 

o Encourage struggle 

o Go beyond the original task with questions such as “what if…” or “why…” 

o Make connections with what students already know; pour qu’ils aient quelque 

chose sur lequel s’appuyer 

o Give the opportunity to all students to walk the ‘understanding road’ at their own 

pace 

o Restructure our course design from unit based to activity based interleaving big 

ideas—teaching through tasks 

o Focus on processes in our classes—communicating, reasoning and proving, 

connecting, representing, selecting tools and strategies, reflecting, problem 

solving 



CMESG/GCEDM Proceedings 2017  Working Group Report 

132  

o We can teach as if we were on a personal quest for deep understanding of school 

mathematics 

o Make connections that are meaningful to childrens’ ways of knowing, being, and 

doing 

o Actively reinvest concepts from previous courses so that objects are not isolated 

 How do we work with pre-service and in-service teachers to teach for deep 

understanding? 

 Comment travaille-t-on avec les futurs enseignants et les enseignants pour enseigner 

cette « compréhension approfondie » ? 

o Nous pourrions les amener à promouvoir certaines valeurs intellectuelles telles 

que : l’honnêteté, la curiosité, la recherche de la vérité, l’humilité, le courage. 

o Permettre aux enseignants de rendre transparente leur propre expérience à faire 

des mathématiques et à les enseigner.  

o Avec l’humilité de reconnaitre que peu importe quelle « compréhension 

approfondie » pour enseigner avec ou pour une compréhension approfondie, 

nous sommes tous à une distance infinie de notre but.  

o Fournir des tâches qui permettent une compréhension conceptuelle avec 

plusieurs représentations, solutions et approches. 

o Les engager dans des expériences riches et variées dans lesquelles, ils peuvent 

réfléchir aux mathématiques, approfondir leur propre expérience et penser à la 

pédagogie. Apprendre à le faire pour eux-mêmes.  

o Amener les futurs enseignants et les enseignants à développer leur propre 

compréhension approfondie.  

o Développer des expériences en communauté qui démontrent à ces communautés 

qu’elles apprennent avec les savoirs développés dans ces communautés.  

o Les mathématiques ont besoin d’être conceptualisées de façon plus large que le 

modèle « Eurocentralisé ». Le raisonnement mathématique est présent dans une 

variété de cultures autour du monde et dans différents systèmes de 

connaissances.  

o Différentes façons de comprendre doivent être prises en compte en plus de la 

façon plus traditionnelle d’apprendre. 

o Varier les approches et les outils, les laisser tenir les mathématiques dans leurs 

mains—apprendre avec la personne dans son entièreté.  

o Comprendre les concepts et leurs applications dans la vie de tous les jours.  

o Placer les enseignants et les étudiants ensemble dans un contexte d’immersion 

où ils vivront des expériences riches et excitantes (ex., Camps mathématiques) 

CONCLUSION 

En conclusion, nous croyons que le groupe de travail a été très enrichissant. Les discussions 

étaient très animées et nous ont permis de réfléchir plus en profondeur au concept de 

compréhension approfondie et des contextes dans lesquels développer un tel type de 

compréhension. Aussi, la question des mathématiques de l’école a semblé intéresser tout le 

monde. La difficulté à trouver un consensus sur les éléments pouvant décrire ce concept est en 

fait très parlante sur sa complexité. Enfin, toutes ces discussions ont mené à la formulation de 

plusieurs questions très intéressantes qui pourront continuer à être explorées.  

In conclusion, we believe that the working group has been very rewarding. The discussions 

were very lively and allowed us to think more deeply about the concept of deep understanding 

and the contexts in which to develop such a type of understanding. Also, the issue of school 

mathematics seemed to interest everyone. The difficulty of finding a consensus on the elements 
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that can describe the concept of school mathematics is very complex. Finally, all these 

discussions have led to the formulation of several very interesting questions that can continue 

to be explored. 
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MODELLING MATHEMATICAL MODELLING 

MODÉLISER LA MODÉLISATION MATHÉMATIQUE 

France Caron 

Université de Montréal 

Mathematical modelling is a powerful way for anticipating or getting insight into real-world 

situations and phenomena. It thus seems appropriate to approach the integration of modelling 

in mathematics education from a modelling perspective. In this session, I started with a 

representation of the modelling process, more detailed than what we typically see, and I showed 

how this representation has helped me engage in discussion with students and professors, design 

learning activities, analyse student projects and assist students in gaining autonomy with respect 

to modelling. I then shared recent refinements to this model that have been introduced to reflect 

in more detail the complexity of simulation-based engineering and help plan a new training 

program for this specialization.  

As the topic session consisted of a collage of distinct experiences that revolved around a 

common model, I give myself permission here to alternate between French and English.  

MODÈLES ET MODÉLISATION 

Puisque les mots « modèle » et « modélisation » ont acquis des sens différents dans certains 

discours éducatifs, il peut être utile de préciser le sens qu’on leur donne autant en 

mathématiques appliquées qu’en épistémologie des sciences.   

Un modèle est d’abord une représentation simplifiée d’une situation qui met en évidence les 

aspects essentiels de cette situation (objets, variables et relations) au regard d’un certain but 

(Blum et al., 2002). Une telle représentation peut se faire dans les registres graphique (ex., un 

diagramme), symbolique (ex., une équation), numérique ou simplement verbal, ou même avec 

du matériel concret, dans la mesure où elle résulte d’un processus d’abstraction.1 Un 

programme informatique peut aussi être vu comme modèle, dont la description permet la 

résolution du problème, la simulation d’un système ou l’exploration de la situation ou de 

scénarios possibles.  

Dans cette perspective, modéliser consiste à élaborer, utiliser, valider et ajuster un modèle 

mathématique pour comprendre une situation réelle ou anticiper un phénomène qui lui est 

associé. Il s’agit donc d’un type particulier de résolution de problèmes, dont la raison d’être 

                                                 
1 Lorsqu’on utilise du matériel concret pour expliquer un modèle mathématique plus abstrait, il 

m’apparaît plus juste de parler de contextualisation.  Le modèle est toujours plus abstrait que ce qu’il 

représente.   
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procède d’une situation réelle et dont le succès se mesure à son applicabilité à cette situation 

pour atteindre le but poursuivi. Ce processus complexe a été lui-même modélisé par différentes 

représentations cycliques (ex., Blum et Leiß, 2007; Giordano, Weir et Fox, 1997) où selon ce 

qu’on cherche à mettre en valeur, on inclut typiquement de deux à sept phases envisageables à 

l’intérieur d’un même cycle et où l’on ne suppose pas que ces phases s’organisent selon une 

séquence linéaire. Dans ces différents modèles, on fait ressortir l’importance de la simplification 

de la situation. Blum et al. (2002) en font une étape où l’on extrait et l’on organise en structure 

les éléments essentiels de la situation en fonction du but poursuivi et des connaissances 

disponibles. Il en résulte un modèle réel (ou modèle conceptuel), pas encore tout à fait 

mathématisé, à partir duquel on peut formuler plus précisément le problème à résoudre. 

En vertu du but particulier poursuivi à l’intérieur d’un projet de collaboration consacré à la 

modélisation chez des étudiants universitaires (Caron et Bélair, 2007), nous avons cru utile d’y 

aller de notre propre représentation de ce processus. 

EXPLORING MODELLING COMPETENCIES 

Another representation of the modelling process came about in a study (Caron & Bélair, 2007) 

that aimed at exploring the competencies displayed by undergraduate students of mathematics 

in modelling a given situation. We also looked for reasons for the different degrees to which 

they engaged in the situation and achieved the intended goal. The study was done in a third-

year mathematical modelling course at Université de Montréal with a rather heterogeneous 

student group. It revolved around a modelling project that was part of the course assignments. 

The project was to be chosen from a list of ten topics, most of which came with an initial 

reference. The work could be done in pairs, and students were encouraged to use technology, if 

deemed relevant.  

 

Figure 1. Our model of the modelling process. 

While incorporating many elements of the description of the modelling process by Blum et al. 

(2002), our model shown in Figure 1 made explicit the fact that one does not reinvent the wheel 

every time a new problem emerges and that known models are part of the resources that one 

uses, adapts, or extends when modelling. This is particularly true when modellers already have 

a substantial mathematical tool box as well as an experience of applied mathematics; building 
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an adequate model can sometimes be more a matter of adapting and combining known models 

than of building a completely original one only from abstraction. 

Another property of our model is that each of the phases of the modelling process had been 

linked to the modelling competencies that play a key role in that phase. The three-tier 

classification of work sociologist De Terssac (1996) was used to that end, as was done 

previously with the more general process of problem solving (Caron, 2004):  

 CO: communication skills (‘compétences d’explicitation’): to translate, represent, 

interpret what the context is, what is to be done, and what has been done; 

 IN: intervention skills (‘compétences d’intervention’): to act upon a situation by 

using available knowledge and by transforming encountered situations into reusable 

knowledge; 

 EV: evaluation skills (‘compétences d’évaluation’): to identify, choose, and justify 

whatever is being engaged into action. 

For instance, mathematising a problem requires both evaluation skills to identify appropriate 

mathematical objects to be included in the model and communication skills to translate the 

structure of the situation and the associated problem into mathematical language with which 

the mathematical work will be done. With that model, we were considering computer 

programming languages as extensions of mathematical language.  

The model was used first to analyze the organization or the modelling project reports produced 

by nine students; the consecutive elements of the report (sentences, equations graphs, etc.) were 

mapped to the different stages of modelling, as shown in Figure 2.   

 

Figure 2. Sequential structure of a project report. 

For each of the phases of the modelling process, we then looked for connections between the 

competencies that the students displayed and their educational background, interests in 

mathematics (that we captured with a questionnaire), the motivation that they showed for the 

project, and the modelling paradigm they seemed to have adopted—theoretical, for 

understanding, or empirical, for predicting (Maull & Berry, 2001).   
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The analysis made us see possible connections, which could become hypotheses to be tested 

with a larger group of students. Interest in reading appeared connected with communication 

skills mobilized in modelling the project. Experience of complexity, understanding of the role 

of the model, and familiarity with the context or underlying principles emerged as possibly 

favoring stronger evaluation skills. And the level at which technology had been integrated in 

one’s mathematical practice appeared to play a significant role in the intervention skills 

displayed. 

CONTRIBUER AU DÉVELOPPEMENT DE LA MODÉLISATION 

Le même modèle a été utilisé dans des cours de didactique pour permettre aux étudiants de 

s’approprier le processus de modélisation mathématique à travers l’étude d’une situation réelle 

de leur choix (évolution de la population étudiante, prix des billets d’avion, etc.).  

Il est frappant de voir les étudiants utiliser un tel diagramme un peu comme une carte routière, 

pour mieux se situer dans le processus et comprendre les actions nécessaires pour passer d’une 

phase à l’autre. Le modèle permet notamment de voir que le simple passage d’un ensemble de 

données représentant la relation entre deux variables au modèle fonctionnel qui ajuste le mieux 

ces données a souvent pour effet d’escamoter la phase de structuration de la situation, limitant, 

au mieux, à un rôle prédictif le modèle ainsi construit. Pour envisager une explication de la 

relation entre les deux variables, il faut souvent creuser davantage, en remontant et en 

combinant des relations déjà connues ou qui s’appuient sur des principes acceptés. En d’autres 

mots, il faut passer du paradigme empirique au paradigme théorique (Maull et Berry, 2001).  

Une situation proposée par deux étudiants a permis de l’illustrer clairement (Caron, sous 

presse). S’intéressant à la durée de vie d’un site d’enfouissement, ils disposaient pour chacune 

des années considérées du volume de déchets qui avaient été acheminés à ce site et de la capacité 

restante du site (𝐶(𝑛)), telle qu’évaluée à partir de photographies aériennes. Connaissant la 

capacité totale du site, ils pouvaient aisément déduire le volume de déchets accumulés (𝑉(𝑛) =
𝐶max − 𝐶(𝑛)) pour chacune des années. Mais ces valeurs ne pouvaient être liées par de simples 

relations additives avec la quantité de déchets acheminés par année : le volume accumulé était 

toujours en-deçà de la valeur anticipée (𝑉(𝑛) < 𝑉(𝑛 − 1) + 𝑄(𝑛)). Une fonction 

logarithmique paraissait le mieux ajuster les données du volume en fonction du temps, mais 

elle n’offrait ni garantie de validité pour la suite des choses ni pouvoir d’explication.  

C’est en cherchant une explication à la perte de volume (la compression des déchets) qu’on a 

pu rebâtir un modèle relativement simple, basé sur une nouvelle relation de récurrence : 𝑉(𝑛) =
𝑎 𝑉(𝑛 − 1) + 𝑏 𝑄(𝑛). Dans cette relation, interviennent deux facteurs de compression 

distincts : un premier (𝑎) pour le volume de déchets déjà présents à l’année précédente, et un 

second (𝑏) pour le volume de déchets frais acheminés dans l’année. Il devenait ensuite possible, 

par un ajustement itératif de ces deux facteurs sur le tableur, de reconstruire une excellente 

approximation de la courbe du volume occupé par les déchets dans le site d’enfouissement. La 

recherche des valeurs optimales pour ces deux paramètres a d’ailleurs constitué un moment 

intéressant où un authentique questionnement interdisciplinaire a émergé : quels déchets sont 

appelés à être comprimés davantage ? Un plus grand facteur de compression signifie-t-il une 

pression plus forte ?    

SUPPORTING PROGRESSIVE INTEGRATION OF MODELLING 

For many decades, three streams have been offered to Québec students for completing their 

secondary studies in mathematics. Starting in 2008, one of these streams was to promote 

learning mathematics via applications, instruments, case studies and experimental data. From a 
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lack of resources for embracing such a direction, a collaboration was put in place between 

Montréal school boards and École de technologie supérieure (ÉTS). Voluntary teachers and 

instructors regrouped in teams to codesign learning activities in mathematics that would feed 

from scientific investigation and use of technology. They were progressively joined by CEGEP 

teachers from the Montréal area. The learning activities that were developed are now in use in 

secondary schools, cégeps and in the transitional mathematics course at ÉTS. 

To varying degrees, the learning activities that have been produced involve some aspects of 

modelling (Caron & Savard, 2012). Yet, because they are centered on specific mathematical 

content to be learned, they do not have the openness typically associated with a modelling task. 

The diagram of the modelling process became instrumental in locating what aspects of 

modelling were being addressed. This was done in particular for one of the learning activities 

in its implementation at ÉTS (Caron & Pineau, 2017). 

The activity is based on L’Hospital’s Weight Problem, a classical optimization problem that 

was presented in 1691 by Johann Bernoulli to the Marquis de L’Hospital as an introduction to 

differential calculus. It aims at predicting the equilibrium position of a weight in an apparatus 

that includes two strings, three bars and a pulley. Prior classroom experiments (Drijvers, 1999; 

Van Maanen, 1991) tended to suggest that modelling was at the core of some of the difficulties 

experienced by the students. 

The problem thus was transformed into a hands-on activity where all students could interact 

with their own apparatus and use measuring tools to assist them in mathematising the system 

(Figure 3). The activity was introduced in the ÉTS transitional course to consolidate knowledge 

and use of trigonometry, functions, and the recently encountered derivative, while developing 

skills for constructing and validating a model.  

 

Figure 3. Measuring on a hands-on version of L’Hospital’s problem. 

The interaction with the physical apparatus was shown to enable students to explore and 

anticipate the behaviour of the system, to formulate a real model and to interpret and validate 

the formulas that they were led to build. It helped them distinguish between parameters and 

variables in structuring the situation. 

In addition to the use of the apparatus, scaffolding has revealed very useful for students to 

progress in mathematising the situation, along the axes of interest for the course and within the 

allotted time. A partially defined model with a schematic representation of the situation is given 

for students to complete. The idea is for them to experience how an elaborate model can be 

built from combining simple relations, through variable substitution (or function composition) 
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and simple arithmetic operations. For some students, this exercise was a moment of revelation, 

something different from what they had been used to doing for defining a model, an entry into 

the theoretical paradigm, which can help explain as much as it can help predict.   

Making explicit the contribution to modelling of a learning activity that might otherwise be 

looked as an application has been an interesting use of the modelling diagram. It has shown the 

possibility of introducing elements of modelling in a content-driven course and of progressively 

reducing scaffolding as students are exposed to more activities of that nature.  

ORGANISER LA FORMATION AU GÉNIE PAR SIMULATION 

Le développement de la capacité à résoudre des problèmes d’ingénierie complexes en tirant 

parti des outils d’ingénierie modernes constitue l’une des « qualités » à développer dans la 

formation au génie (Ingénieurs Canada, 2014). Cela renvoie notamment au rôle croissant que 

la simulation joue dans le travail d’ingénieur (Caron et Garon, 2013).   

À Polytechnique Montréal, une spécialisation en génie s’appuyant sur la simulation est en voie 

de développement dans les départements de génie mécanique et de génie chimique. Dans le but 

de soutenir l’organisation cohérente des cours d’une telle spécialisation et de son prolongement 

aux cycles supérieurs, une nouvelle version du cycle de modélisation a été élaborée pour servir 

de cadre de référence.  

Cette autre version était rendue nécessaire en raison de l’importance du travail informatique 

pour résoudre les problèmes dont la complexité commande un passage par la simulation. La 

seule petite « boîte » associée au traitement mathématique, à la droite du diagramme de la 

Figure 1, ne rendait pas justice à l’ensemble des étapes impliquées pour passer du modèle 

mathématique à sa solution. On a donc choisi de distinguer le modèle informatique du modèle 

mathématique, et d’intégrer dans la partie de droite du diagramme les principales étapes qui 

sont impliquées dans la résolution numérique par simulation. De plus, à l’instar de Roache 

(1998), nous avons convenu de distinguer la vérification (s’assurer que les équations sont bien 

résolues, qu’il y a cohérence interne, mathématique) de la validation (s’assurer qu’on a résolu 

les bonnes équations, qu’il y a cohérence externe entre le modèle utilisé et la situation de 

départ). 

 

Figure 4. Le processus de modélisation dans la pratique du génie par simulation. 
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L’élaboration de ce nouveau modèle s’est faite à partir d’échanges avec des professeurs 

impliqués dans la conception de cette nouvelle spécialisation liée au génie par simulation. Le 

modèle a ensuite été testé, d’abord à l’aide d’un étudiant à la maîtrise qui l’a utilisé pour résumer 

un article, à la fin de l’exercice, il a spontanément exprimé qu’il aurait bien aimé connaître ce 

modèle avant. La validation et l’exploitation du modèle se sont poursuivies dans une séance de 

travail avec d’autres professeurs qui devaient identifier pour chacune des phases les savoirs 

importants qu’il convient de mobiliser, les difficultés auxquelles se heurtent typiquement les 

étudiants, et les activités qui peuvent ou pourraient développer leurs compétences au regard de 

cette phase. Les échanges ont conduit notamment à réaliser qu’on ne revenait peut-être pas 

assez aux principes et aux lois quand on utilise les équations qui en rendent compte, et qu’il y 

aurait avantage à le faire de façon plus systématique. 

Nous avons parcouru ce cycle avec des étudiants au premier cycle et aux cycles supérieurs, en 

leur demandant, pour chacune des phases du cycle, d’identifier des cours ou des expériences où 

ils avaient le sentiment d’avoir travaillé cette phase et d’évaluer ensuite leur sentiment de 

compétence au regard de cette phase. Cela a permis d’identifier (ou de confirmer) que la 

mathématisation, la discrétisation et l’algorithmisation ainsi que les considérations d’efficacité 

informatique étaient relativement peu couvertes dans les cours actuels et mériteraient une 

attention particulière dans cette nouvelle voie de spécialisation consacrée au génie par 

simulation. Des séances d’enseignement et des questions d’évaluation sont aussi examinées à 

l’aune de ce diagramme. 

Le modèle sert maintenant de cadre à la rédaction d’un guide de modélisation appelé à servir 

dans l’ensemble des cours de cette spécialisation. 

CONCLUSION 

As was provocatively asserted by Box (1979), “all models are wrong, but some are useful” (p. 

202). Our model of the modelling process is no exception to the rule. It has been designed, used, 

adapted or extended according to the goal pursued with each project. Yet, despite (or because 

of) its inherent simplifications, such schematic representation has helped engage dialog, analyse 

tasks and courses, identify or explain phenomena, assess progress, define a course of action or 

promote a change of perspective. More generally, it has shown that the use of a model to talk 

about modelling indeed appears a sound approach to get to the core of the matter.  
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COLLECTIVE LEARNING: RE-THINKING THE ENVIRONMENT, 
ARTIFACTS AND CLASSROOM INTERACTIONS 

Joyce Mgombelo 

Brock University 

INTRODUCTION 

Over the past two decades, a group of CMESG members have been working on understanding 

the ways in which mathematics learning occurs in classrooms viewed as collective systems. 

That is, how mathematics classrooms can be seen as complex systems in which agents 

spontaneously interact and adapt to each other organizing and sustaining learning processes in 

a collaborative way. In this paper I draw from a groups’ work on SSHRC funded collaborative 

research titled Advancing Research Methodology for Mathematics Education. Specifically in 

the paper I offer a discussion about how artifacts such as a classroom boards play a vital role in 

the coordination of behaviours or actions in a mathematics classroom viewed as a complex 

system. The source of inspiration for this discussion comes from studies in cognitive stigmergy 

which have led to a better understanding of how agents in a complex system communicate 

indirectly through their environment which is articulated and is typically composed of artifacts, 

which build up the social workspace, or field of work. I begin the paper with introducing the 

notion of stigmergy in complex systems followed by a discussion about cognitive stigmergy, 

role of artefacts, and the environment. Then I discuss how we might conceptualize cognitive 

stigmergy, artefacts and environment in mathematics classrooms. Finally I conclude with some 

implication of this discussion for mathematics education practice and research.  

COMPLEX SYSTEM BEHAVIOUR: SELF ORGANIZATION AND THE 
COORDINATION PARADOX 

Complex systems can self-organize themselves to produce organized patterns resulting from 

localized-neighbouring interactions within the components of the system, without any central 

control. This complex system behavior known as decentralized control raises the so called 

‘coordination paradox’. As Varela (1997) notes 

What I wish to insist upon here is the relatively recent (and stunning!) conclusion that 

lots of simple agents having simple properties may be brought together, even in a 

haphazard way, to give rise to what appears to an observer a purposeful and 

integrated whole, without the need for a central supervision. (Varela, 1997, p. 83)  

While in a complex system each agent appears to pursue its own agenda, somehow the 

collective as a whole exhibits high levels of organization or coordinated actions or behaviour 

(Theraulaz & Bonabeau, 1999). Another key aspect of complex systems is the dialectical 

entanglement of the system and its environment. That is, the system both shapes and is shaped 

by its environment. In 1959 a French zoologist, Grassé, sought to understand the mechanisms 

underlying decentralized control in social insects. Specifically, Grassé inquired into the so-

called ‘coordination paradox’. Grassé found out that in the coordination and regulation of 



CMESG/GCEDM Proceedings 2017  Topic Session Report 

146  

termite colonies there is the phenomenon of indirect communication mediated by modifications 

of the environment, i.e., insects interact indirectly: each insect (ants, bees, termites) affects the 

behaviour of other insects by indirect communication through the use of the environment, which 

is made of objects and artifacts, such as material for the nest or chemical traces. In this sense, 

the environment of the system is not a simply passive ‘container’, but in contrast, it embeds 

dynamical mechanisms and processes that promote the emergence of local and global 

coordinated behaviours. Grassé coined this phenomenon or mechanism stigmergy. The term 

stigmergy is formed from the Greek words stigma “sign” and ergon “action” and captures the 

notion that an agent’s actions leave signs in the environment, signs that it and other agents sense 

and that determine their subsequent actions. 

COGNITIVE STIGMERGY, ROLE OF ARTIFACTS AND THE 
ENVIRONMENT 

Despite the differences between social insects and other animal systems (flocks of birds, schools 

of fish, etc.), these animal systems appear to exhibit similar collective behaviours suggesting 

the possibility of stigmergy as a mechanism underlying the collective coordination of actions 

within human systems. However, ant-like agents are not humans, and therefore, they do not 

have same cognitive ability as humans. Moreover, the ant environment is quite different and 

elementary, including pheromone-like signs/signals compared to that of humans (Ricci, 

Omicini, Viroli, Gardelli, & Oliva, 2007). As Maturana (2002) notes unlike other animal 

systems, human beings exist in language as consensual coordinations of coordinations of 

behaviours. 

As we [humans] language, objects arise as aspects of our languaging with others, they 

do not exist by themselves. That is, objects arise in language as operations of 

coordinations of coordinations of doings that stand as coordinations of doings about 

which we recursively coordinate our doings as languaging beings. (Maturana, 2002, 

p. 29) 

Thus for human systems, the environment includes signs or signals that are subject to an 

interpretation in the context of a shared, conventional system of signs. Also the environment is 

articulated and is typically composed of artifacts, which build up the social workspace or field 

of work (Ricci et al., 2007). There are many examples of human-human stigmergy, in fact “it 

would be more difficult to show a functioning human institution that is not stigmergic, than it 

is to find examples of human stigmergy” (Parunak, 2005, p. 163). Parunak (2005) proposes a 

framework that can be used to analyze a stigmergic system. A stigmergic system comprises of 

a population of agents and an environment in which they are immersed. Each agent has an 

internal state, which generally is not directly visible to other agents; sensors that give it access 

to some of the environment’s state variables; actuators that enable it to change some of the 

environment’s state variables; a program (its ‘dynamics’) that maps from its current internal 

state and its sensor readings to changes in its state and commands given to its sensors and 

actuators. The environment has a state, certain aspects of which generally are visible to the 

agents; a program (its ‘dynamics’) that governs the evolution of its state over time. One example 

of human-human stigmergy is that of trail formation (Parunak, 2005). In trail formation the 

environment is comprised of vegetated terrain. Its state can be seen as degree of ground cover, 

while its dynamics might be articulated as in dying of trodden vegetation and/or regrowing on 

the untrodden areas. The agents are the people—pedestrians who sense the smoothness to path 

and act by walking the next step. The emergent system behavior is walking trails (Figure 1). 

Another example of human-human stigmergic system is that of document editing (Parunak, 

2005)  
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Figure 1. Image of walking trail (“Cornish Hill walking trail,” n.d.).  

The environment—artifact is the document (see Figure 2). Its state is the current content and its 

dynamics is internal semantic propagation. Agents are writers/editors who sense the current 

state of the document and act by adding new content and/or strikeouts and highlights. The 

emergent system behaviour is the joint expression of the content. 

 

Figure 2. Image of document editing (Cactus, n.d.). 

COGNITIVE STIGMERGY, CLASSROOM INTERACTIONS, 
ENVIRONMENT AND ARTIFACTS 

In the field of mathematics education, there has been an interest in the importance of classroom 

interaction in the teaching and learning of mathematics. The impetus for this focus comes from 

a general realization that classroom interactions—through students’ discussion and other forms 

of interactive participation—has potential to enhance mathematical understanding. Within 

mathematics education there is extensive literature dealing with interaction stemming from 

social interactionism (e.g., Bauersfeld, 1980) and socio-constructivism (e.g., Cobb & Yackel, 

1996). Indeed the field of mathematics education has witnessed a proliferation of research 

issues, topics and visions such as cooperative learning, collaborative inquiry and communities 

of practice (Balacheff, 1991; Bauersfeld, 1995; Cobb, Wood, & Yackel, 1993; Lampert & 

Cobb, 2003; Yackel & Cobb, 1996). A common thread through this research is a need to better 
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understand, describe and define collective learning systems both in theory and methodology 

(Roth & Lee, 2002; Saxe, 2002; Sfard & Kieran, 2001). In our research, we use the word 

collective rather than collaborative (Martin, Towers, & Pirie, 2006), as we realize that not all 

collaborative classroom interactions and actions lead to the emergence of a collective learning 

system. In this paper, I am interested in thinking about a classroom as stigmergic (complex) 

system comprising of agents and the environment in which they are immersed as articulated by 

classroom artifacts that play a vital role in the coordination of behaviours/actions. In the 

following I try to articulate some of the components of classroom as a stigmergic system using 

the Parunak (2005) framework as previously discussed in the paper. 

WHO ARE THE AGENTS IN MATHEMATICS CLASSROOMS?  

Agents interacting in mathematics classrooms are not bodies—they are emergent (global 

patterns) cognitive selves. As Rudrauf, Lutz, Cosmelli, Lachaux, and Van Quyen (2003) notes 

Thus, from both the biophysical and the concrete experiential points of view, there is 

no central “I,” other than the one sporadically actualized in a linguistic, self-

referential mode in communication. The “I” can only be localized as an emergence 

but it acts as the center of gravity of the subject himself/herself, of his/her real-life 

experience (Varela, 1993). (p. 42) 

WHAT ARE ARTIFACTS IN MATHEMATICS CLASSROOM ENVIRONMENT THAT MEDIATE 
COORDINATION OF ACTIONS FOR COLLECTIVE LEARNING 

Flip chart paper, board (white, green, black, interactive), post it notes, social networks, 

computational environments, et cetera are examples of artifacts. The state and the dynamics of 

these artifacts will depend on the type of artifacts. 

WHAT ARE THE POTENTIAL SIGNS THAT AGENTS IN MATH CLASSROOMS CAN SENSE 
AND ACT ON? 

Signs or markers might include students’ mathematics productions, mathematical ideas, et 

cetera. I prefer to call these signs as cognitive trails: 

Cognitive Trails are in the environment, certainly, but they are also cognitive objects. 

A trail isn't just an indentation in a physical surface, but a marking of the 

environment; a signposting for coordinating sensation and movement, an experiential 

line of force. Hence the marking is both experiential and environmental. (Cussins, 

1992, p. 674) 

Figures 3 and 4 are some of mathematics cognitive trails that might be found in mathematics 

classrooms. 

 

Figure 3. Mathematics cognitive trails example. 
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Figure 4. Mathematics cognitive trails examples. 

WHAT EMERGENT SYSTEM/COMPLEX/COLLECTIVE BEHAVIOR MIGHT WE OBSERVE IN 
MATHEMATICS CLASSROOMS? 

Collective mathematics understanding; solution for problem; a coherent mathematics lesson; 

coherent idea, et cetera might be observed. 

CONCLUDING REMARKS 

The role of artifacts in human cognition continues to be a central focus in activity and 

distributed cognition theories (Suzi & Ziemke, 2001). Since the early 1990s there has been a 

growing interest in the role of artifacts as they relate to collective behaviour in complex systems. 

In this paper I have introduced the notion of stigmergy, its relation with the environment, and 

interaction through artifacts. I have tried to show how we might begin to think about the role of 

artifacts in coordination collective learning behaviour in mathematics classrooms. This has 

implications for both practice and research.  As practitioners (whether designing or selecting), 

we might think about what and in what ways classroom artifacts have more potential for 

mediating collective mathematics behaviour. In his work on building thinking mathematics 
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classrooms, Liljedahl (2016) explored the potential for alternative work surfaces, such as poster 

board, flipchart paper attached to the walls, and smaller whiteboards laying on desks and 

vertical white boards in supporting students’ thinking (thinking classroom). He observed that 

Groups are more eager to start, there is more discussion, participation, persistence, 

and no-linearity when they work on the whiteboards. However, there are nuances that 

deserve further attention. First, although there is no significant difference in the time 

it takes for the groups to start discussing the problem, there are a big difference 

between whiteboards and flipchart paper in the time it takes before groups make their 

first mathematical notation. This is equally true whether groups are standing or 

sitting. This can be attributed to the non-permanent nature of the whiteboards. With 

the ease of erasing available to them students risk more and risk sooner. (Liljedahl, 

2016, p. 371) 

Clearly the board in the classroom can be used in various ways ranging from a static space for 

conveying information as in chalk and board traditional way of teaching to a dynamic 

intellectual commons for coordinating actions. The following excerpts from Blackboard: A 

personal history of the classroom by Lewis Buzbee (2014) says it all: 

Once I start on the board, I often can’t stop and continue to add phrases, strange 

pictures, the titles of books, sometimes just marks, a kind of visual punctuation. The 

ham of my left hand will be covered with red or blue or green dry-erase marker by 

the end of the evening, and when I stand back to look over what I’ve written, nothing 

makes any sense. My board work looks more like a foreign language than literary 

criticism. But it’s still effective board work. I’ve been able to draw connections; I’ve 

been able to drive home key points. I’ve made the students look beyond me, 

themselves, and our little room. (para. 29) 

In our SSHRC collaborative research we are in are interested in  

 Exploring new ways of observing and visualizing dynamic phenomena in collective 

learning systems, particularly in classroom contexts 

 Identifiying data collection techniques suitable for collecting data from and about 

complex systems 

 Crafting methodological tools that reveal collective learning rather than individual 

learning 

 Developing means for representing and analyzing data collected from collective 

learning systems 

Given this, we choose to focus on and develop a tool for observing (non)actions/activity on the 

board (i.e., its state and dynamics) as one of vital signs of classroom life. 
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A PSYCHOLOGICAL VIEW 
OF TEACHING PROOF CONSTRUCTION 

John Selden 

New Mexico State University 

INTRODUCTION 

For over 10 years, Annie Selden and I have jointly taught a small (4 to 10 students, 3 hours per 

week) graduate course for incoming mathematics graduate students who think they need a little 

help in constructing proofs. The course is taught from notes containing statements of theorems, 

definitions, requests for examples, questions, and some advice.  

The notes include some theorems about sets, functions, real analysis, abstract algebra (in the 

form of semigroups), and if time permits, some topology. The abstract algebra is about 

semigroups so that the students are not likely to have seen proofs of the theorems. The notes 

and advice are always available, but nothing else outside the course is. The students 

autonomously (i.e., independently) construct proofs for the theorems in the notes and present 

them at the board, and we provide comments and advice where needed. Our goals include that 

students learn to write proofs acceptable to the other faculty and begin to build an ability to 

construct proofs of some difficulty. In adjusting the course to student needs, we call on both of 

the mathematics education research and psychological literatures. 

Logic is handled in context in brief lectures/discussions as the need arises. Also, early in the 

notes, theorems and definitions are written in the most unpackable/formal way, as opposed to 

the most informal/memorable way. For example, in real analysis, “For all a ∈ ℝ and all 

functions f, if f is differentiable at a, then f is continuous at a”, rather than “Differentiable 

functions are continuous”. We earlier found that students often had difficulty unpacking the 

meaning of informally written statements (Selden & Selden, 1995). Such unpacking would 

needlessly interfere with maximizing students’ early successes. We want students to have early 

successes to help maximize their sense of self-efficacy (Bandura, 1994, 1995), which can be 

helpful in constructing the harder parts of proofs towards the end of the course. 

I have included the above paragraph because it illustrates how purely psychological information 

(e.g., about self-efficacy) can inform the early notes in a way that may well aid a student in later 

(autonomously) constructing a difficult proof near the end of the notes. This kind of teaching 

would probably be very difficult to arrange when lecturing with a book. 

We have almost always taught this course to very small numbers of students. However, 

occasionally we have taught larger classes. I suggest that at or above 10 students, it would be a 

good idea to have the students responsible for constructing proofs in small autonomous groups 

with some mechanism to be sure no student is left out. 
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BEHAVIORAL SCHEMAS 

ACTIONS 

In discussing proof construction, I use the term action broadly, as a response to a situation in a 

partly constructed proof. An action might be physical, such as making a sketch in scratch work, 

or writing an additional part of the proof. It could also be mental, such as trying to recall an 

earlier result or saying something in inner speech. It could even be a ‘meta-action’ meant to 

alter one’s own ability to act, such as taking a break in an effort to seek a fresh approach. 

If, in several proof constructions, similar situations in partly completed proofs, have led to 

similar reasoning, which in turn, have led to similar actions, then a link may be learned between 

the kind of situation and the kind of action. Later, other similar situations will evoke the action 

without the need for the intermediate reasoning. This kind of associative learning can be 

implicit and has been studied by psychologists interested in the psychology of everyday life 

(Bargh, 1994; Bargh & Chartrand, 2000). Using such situation-action links strengthens them, 

so they eventually become automated. We call such automated situation-action links behavioral 

schemas. 

I first noticed behavioral schemas in my own thinking when I was writing out a key without 

stating explicit reasons in preparation for grading an examination. I now suggest that behavioral 

schemas can occur naturally, that is, without explicit instruction. They can be detrimental or 

beneficial. Beneficial ones can express appropriate inferences, reduce needless burdens on 

working memory, and reduce confusion. (For more details, see Selden, McKee, & Selden, 2010, 

pp. 204-207.) 

The associative learning of situation-action links and behavioral schemas is reminiscent of the 

conditioning of behaviorism in the early 20th century. At the time, behaviorism was a major 

perspective in psychology, at least in the US. It was later surpassed by the cognitive revolution 

that began around 1950. The major difficulty with behaviorism seems not to have been with 

conditioning per se, but with an accompanying philosophical perspective. That perspective 

maintained that to be ‘scientific’ everything involved in an explanation should be observable 

and measurable. Such specificity is still not currently possible in studying the functioning of 

the brain, but this is not regarded as a fundamental research flaw. Indeed, in teaching, one can 

often design associative learning experiences and be reasonably sure that such learning will 

occur. Despite this, the idea of associative learning does not seem to be used with constructivist 

perspectives.  

EXAMPLES OF BEHAVIORAL SCHEMAS 

A person driving a car typically stops at a red light in an automated way. That is, without 

examining any warrant for doing so and with little awareness of the constituent actions. Here is 

a more mathematical example. A person familiar with simple algebra might solve  

x + 1 = 7 – 2x 

using a sequence of five behavioral schemas with outputs:  

x = 7 – 1 – 2x 

x = 6 – 2x 

x + 2x = 6 

3x = 6 

x = 2 
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Note that, in the above, consciousness of the result of each behavioral schema seems to be 

required as input for the next. One cannot just see the original equation, hold one’s mind blank 

for some time, and then provide the solution, x = 2.  

THE NATURE OF BEHAVIORAL SCHEMAS 

One might see behavioral schemas as largely conceptual in nature. This is because one must 

recognize a situation as something one is familiar with, perhaps in a new setting. Also, one 

might see a behavioral schema as knowledge-in-action, perhaps only a small extension of the 

idea of theorems-in-action (Vergnaud, 2009, p. 88).  

I will now turn to two ways of using situation-action links and behavioral schemas to alleviate 

two early proving difficulties we have noticed—getting started and using definitions. 

PROOF FRAMEWORKS 

A feature that can help students get started constructing a proof is what we call a proof 

framework, of which there are several kinds and often a first-level and a second-level 

framework. Given a theorem of the form, “For all real numbers x, if P(x), then Q(x)”, a first-

level framework would be “Let x be a real number. Suppose P(x). … Therefore, Q(x).”, with 

the remainder of the proof replacing the ellipses. 

A second-level framework can often be obtained by ‘unpacking’ the meaning of Q(x) and 

putting the framework for its proof between the lines already written for the first-level 

framework. This will cause the proof to ‘grow’ from both ends towards the middle, instead of 

from the top down. 

EXAMPLE: USING A PROOF FRAMEWORK 

Below is a first-level proof framework for a very elementary number theory theorem. 

Theorem: For all integers n and m, if n is even and m is odd, then n + m is odd. 

Proof: Let n, m be integers. Suppose n is even and m is odd. 

. . . 

Therefore, n + m is odd.   QED. 

After adding the second-level framework based on the meanings of odd and even, the emerging 

proof looks like: 

Theorem: For all integers n and m, if n is even and m is odd, then n + m is odd. 

Proof: Let n, m be integers. Suppose n is even and m is odd. 

Then there exist integers i and j such that n = 2i and m = 2j + 1.  

. . . 

Then n + m = 2k + 1, where k is an integer. 

Therefore, n + m is odd.   QED. 

To complete the proof, one only needs to replace the above ellipses with something like, “Now 

let k = i + j so that n + m = 2i + 2j + 1 = 2(i + j) + 1 = 2k + 1. (For more information and another 

example, see Selden, Selden, & Benkhalti, 2018.) 
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PROOFS INVOLVING INFINITE SETS 

There is a bit more to say about the above apparently ‘straightforward’ proof. The theorem 

starts “For all integers n”, treating n as an integer variable. But the proof starts “Let n be an 

integer”, which means that n represents an unspecified integer constant, such as 6 or -17. This 

technique is generally accepted in mathematics as proving something about all integers because 

any integer can replace n to yield a correct proof. That is, n is often said to be “fixed, but 

arbitrary”. 

Some students feel there is something peculiar about writing “Let n be an integer”, even though 

they may carry out the action. Doing an action without understanding the reason violates the 

idea/norm that students should understand and agree with an action before executing it. I 

suggest that this idea should be moderated somewhat. What is needed is that students eventually 

agree that the action is legitimate, not that they agree before using it in any particular proof. 

Below is an interview excerpt from a graduate student, Mary, in which she reported her 

experiences taking a real analysis course taught by Dr. K two years prior to the interview. 

Mary:  At that point [early in Dr. K’s real analysis course] my biggest 

idea was, well he said to ‘do it’, so I’m going to do it because I 

want to get full credit. And so I didn’t have a real sense of why 

it worked. 

Interviewer:  Did you have any feeling … if it was positive or negative, or 

extra …  

Mary:  Well, I guess I had a feeling of discomfort … 

Interviewer:  Did this particular feature [having to fix x] keep coming up in 

proofs?   

Mary:  … it comes up a lot and what happened, and I don’t remember 

[exactly] when, is that instead of being rote and kind of 

uncomfortable, it started to just make sense … By the end of the 

semester this was very comfortable for me. 

Mary appears to have developed both the behavioural schema and the associated 

feeling of appropriateness only after executing the <situation, action> pair numerous 

times. In early executions of this <situation, action> pair, Mary carried it out partly 

based on Dr. K’s authority. In addition, after completing each such proof, Mary 

reported that she had attempted to convince herself that considering a fixed, but 

arbitrary element resulted in a correct proof. Only after repeatedly executing this 

<situation, action> pair, and convincing herself that the individual proofs were 

correct, did she develop a feeling of appropriateness. (Selden et al., 2010, p. 209) 

This agrees with the idea that students can perform certain actions procedurally and only later 

understand the reasons for them. 

While proof frameworks are very useful when students are beginning to learn to construct 

proofs, they can also be useful later. It turns out that considerably later, Mary, who had also 

taken our ‘proofs’ course, was taking her real analysis PhD comprehensive examination 

consisting of eight (original to her) theorems to prove in three hours. Upon reading one of the 

theorems she panicked, but then controlled herself and decided to write a proof framework. Just 

this simple act oriented her to the ‘real problem’ at hand, relieved her anxiety, and allowed her 

to begin to construct a proof. 

 



John Selden  Teaching Proof Construction 

157 

OPERABLE INTERPRETATIONS 

In addition to helping students start proofs, some students appear to benefit from early 

suggestions on how to use definitions and previously proved results. What I mean by this, and 

call an operable interpretation, is perhaps best conveyed by an example. Given a function 

f: X → Y and A ⊆ Y, one defines f -1(A) = {x ∊ X | f(x) ∊ A}. An operable interpretation would 

say, “If you have b ∊ f -1(A), then you can write f(b) ∊ A and vice versa”.  

One might think translation into an operable form would be unnecessary or easy, especially 

because the symbols in {x ∊ X | f(x) ∊ A} can be translated into words in a one-to-one way. But 

for some students it requires practice. Perhaps the most pedagogically useful question is not: 

Can a student see this without help? But rather: Will a student use such an operable 

interpretation in the midst of a proof construction without it having been previously mentioned? 

Based on our experience helping students in our ‘proofs’ course, the answer to the latter 

question often seems to be: No. 

DIFFICULTIES IN PROOF CONSTRUCTION 

At the beginning, I mentioned our goal that students in our ‘proofs’ course build the ability to 

construct proofs of some difficulty. The meaning of some difficulty may change from teacher 

to teacher, and from course to course. However, articulating some meaning can allow a teacher 

to include advice or other material early in a course which can prime a student’s thinking later 

in the course to autonomously overcome some difficulties. 

Currently in our ‘proofs’ course, we think of proof construction difficulties as of four types: 

Type 0 involves difficulties with using definitions. 

Type 1 calls for using a result in the notes. 

Type 2 needs a lemma, not in the notes, but relatively easy to discern, formulate, and 

prove. 

Type 3 needs a lemma for which at least one of discern, formulate, and prove should 

be difficult. 

Types 0, 1, and 2 can occur in any course requiring many introductory definitions. Type 3, 

however, consists of theorems whose proof construction calls for ideas that are fundamentally 

different in kind, somewhat like dimensions in a vector space. I will give just one example of 

this kind of theorem, but first I need some background. 

UNGUIDED EXPLORATION 

In constructing some proofs, one may reach a point where there is no ‘natural’ way forward. In 

unguided exploration, one may need to find, or define, an object and prove something about it, 

with no idea of its usefulness. That is, one may need to ‘explore’ the situation (in an unguided 

way). Below I give an example of a Type 3 proof near the end of our ‘proofs’ course. The proof 

entails unguided exploration, but first I need some definitions for semigroups and groups. 

EXAMPLE OF A THEOREM WITH A TYPE 3 PROOF 

A semigroup is a nonempty set, S, together with an associative binary operation (often written 

as if it were multiplication). The operation on S is commutative provided for all x, y ∊ S, xy = yx. 

An ideal of S is a nonempty set I ⊆ S so that SI ∪ IS ⊆ I. Also, I is proper if I ≠ S. 
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A group is a nonempty set, G, together with an associative binary operation (often written as if 

it were multiplication). There is an identity element e ∊ G, that is, for each g ∊ G, eg = ge = g. 

Finally, for each g ∊ G, there is a g′ ∊ G so that g′g = gg′ = e.  

STARTING THE PROOF  

Given the theorem, “A commutative semigroup with no proper ideals is a group”, this can be 

rewritten as an if-then statement with a first-level proof framework: 

Theorem: If S is a commutative semigroup with no proper ideals, then S is a group. 

Proof: Let S be a commutative semigroup with no proper ideals. 

. . . 

Then S is a group.  QED. 

Adding the second-level proof framework yields: 

Theorem: If S is a commutative semigroup with no proper ideals, then S is a group. 

Proof: Let S be a commutative semigroup with no proper ideals. 

Part 1: (Find an identity element e.) Let s ∊ S. 

. . . 

Then es = s so e is an identity of S. 

Part 2: (Find an inverse t′ for each t ∊ S.) Let t ∊ S. 

. . . 

Then t′t = e. 

Then S is a group.  QED. 

Unfortunately, the proof framework is not much help in finding an identity element. But 

eventually, one may see there are two objects to work with—S itself and an element, a ∊ S. 

Now about the only action available is multiplication, so one looks at aS and wonders whether 

this might be an ideal. It turns out that (aS)S ⊆ SS ⊆ S (and S is commutative) so aS is an ideal. 

But there are no proper ideals. So aS = S and if b ∊ S then there is an x ∊ S so ax = b. This means 

any equation of the form ax = b can be solved for x. This should be good for something. To find 

out, one needs to ‘explore’ the situation. 

If one ‘plays with’ the equation ax = b and replaces b by a, one obtains an element e so that 

ae = a and ea = a. Now e ‘looks like’ an identity element, but unfortunately only ‘works’ for a. 

If one next notes that, for any s ∊ S, there is a solution c ∊ S of the equation s = ax, one can 

write s = ac. Then es = e(ac) = (ea)c = ac = s. Thus, e is an identity for S and this finishes Part 

1. Part 2 can also be proved by clever instantiations of the equation ax = b and is left to the 

reader.  

We are considering adding some heuristic advice about unguided exploration early in the 

course. However, even if students recall such advice, we suspect some might be hesitant to act 

on it because it can seem a lot like guessing. We conjecture some students have implicitly 

learned to avoid guessing because, on normal (timed) tests, doing so can use up considerable 

time and reduce one’s grade. To overcome this, students should have some self-efficacy. It 

might be helpful to see what a mathematician did when proving this theorem (alone and for the 

first time). 



John Selden  Teaching Proof Construction 

159 

DR. G PROVES THE THEOREM 

Dr. G, a very accomplished mathematician, took various ‘twists and turns’ in his proof attempt. 

He was working from a very brief set of notes on semigroups cut down from our course notes 

in which this semigroup theorem was labeled Theorem 20. Dr. G’s work was documented using 

a Livescribe pen that records sound and writing with time stamps, which can be played back on 

a computer. Below is a very abbreviated transcript of Dr. G’s proving.1  

7:20 am: Dr. G starts by considering Theorem 20. He has breakfast and goes 

for a walk. 

8:07 am: He returns from the walk, realizes gS is an ideal so gS = S. He then 

thinks about inverses. Then he strikes through everything that he has 

written. 

8:09 am: Dr. G notes that he needs an identity element. 

9:44 am: He is suspicious that Theorem 20 is not true, but has few examples. 

9: 48 am: He “tosses around” the idea that a commutative semigroup with no 

proper ideals must have an identity. But why? He thinks about 

translating by a fixed element. This seems not to be helpful. 

9:54 am: Dr. G can neither prove Theorem 20 nor find a counterexample. So 

he looks ahead to Question 22 (final task). He sees how to answer 

this. He looks at Theorem 21 A minimal ideal of a commutative 

semigroup is a group. He thinks he can prove that, but does not 

believe there are minimal ideals. 

10:08 am: Dr. G again attempts Theorem 20. He sees for a ∊ S, there is e ∊ S 

so ae = a, which acts like an identity for a. Does it work for any b? 

10:12 am: He finds e′ so be′ = b, but that’s no help. He needs e = e′.  

10:13 am: He sees there is f so b = af. So be = afe = aef = af = b. So e is an 

identity. 

10:18 am: By a similar method, he shows S has inverses and is a group. 

OBSERVATIONS ON DR. G’S WORK 

Perhaps the most important thing about Dr. G’s work is what is not there. There is no evidence 

Dr. G thought there was anything wrong with having gone in all those unhelpful directions. 

What mattered to him was the generation of ideas. He exhibited persistence and a willingness 

to try argument directions that he didn’t know ahead of time would be helpful. Dr. G’s 

persistence was probably supported by a well-developed sense of self-efficacy. Also, he did not 

seem to need any prior knowledge of semigroups to succeed in proving the theorem. Sometimes 

it is suggested that what students need is additional mathematical knowledge, but here that is 

not the case. What is needed is the kind of persistence and self-efficacy that Dr. G exhibited. 

We think persistence and self-efficacy, and perhaps other positive psychological habits, can be 

‘taught’ to students.  

IN CONCLUSION 

I have mentioned a few capabilities/habits that can be useful for constructing proofs, but that 

receive little explicit attention in transition-to-proof or other proof-based courses: (1) how to 

get started—our suggestion is proof frameworks; (2) not always writing top-down; (3) looking 

up definitions and learning how to use them in an operable form; (4) looking for possibly useful 

                                                 
1 These data come from the PhD dissertation of our student Milos Savic (2012). 
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previous results; (5) how and when to ‘explore’; (6) how and when to persist; and (7) self-

efficacy. Teaching/facilitating/engendering these capabilities/habits seems to call as much on 

psychology as on mathematics. 
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THINGS KIDS THINK WITH: THE ROLE OF THE PHYSICAL 
PROPERTIES OF MATHEMATICAL TOOLS IN CHILDREN’S 

LEARNING IN THE CONTEXT OF ADDITION OF FRACTIONS 

Yasmine Abtahi 

University of Ottawa 

Within the field of mathematics education, there is a strong impetus to incorporate different 

mathematical tools into the teaching and learning of mathematics in general and into the 

teaching and learning of fractions in particular (Abrahamson, 2009; Abrahamson, Gutiérrez, 

Lee, Reinholz, & Trninic, 2011; Bartolini Bussi, 1996, 2011; Bartolini Bussi & Mariotti, 2008; 

Friedman, 1978; Prince & Felder, 2006; Sowell, 1989). Nevertheless, the concerns that have 

been articulated with regard to the role of the physical properties of mathematical tools and 

their constraints and affordances for the learning/knowing of fractions remain largely 

unanswered.  

I define mathematical tool as any tool-like object for which its mathematical affordances are 

perceived by a child who is using it to solve a mathematical task. Examples include a piece of 

paper, an apple, fraction circles, or Java-Bars. I use Engeström’s (2009) conceptualisation of 

object as any focus of attention. I emphasise here that an object becomes a mathematical object 

if the person(s) perceive(s) its mathematical affordances. For example, a paper clip can become 

a mathematical object if we can perceive the ‘measuring’ affordances that are provided by the 

paper clips for non-standard measurement. To examine the role that is played by the physical 

properties of mathematical tools in the learning of mathematics, I selected the mathematical 

concept of fractions.  

WHAT IS THE ISSUE?  

The incorporation of mathematical tools into the teaching and learning of fractions is 

recommended by both research and different ministry documents, which conceptualise tools as 

being useful. Yet, these tools also have limitations. The usefulness (or not) of a mathematical 

tool depends not only on its physical properties and affordances of the tools, but also on the 

child’s perceptions while interacting with them. A tool that is useful for one child to solve a 

particular task may not be useful for another child for the same task or for the same child for a 

different task (Pimm, 2002). Similarly, a tool that is useful for working on one task may not be 

useful for working on another (Clements & McMillen, 1996; Cramer & Wyberg, 2009). For 

example, it is one thing for a child to show 
1

2
 or 

1

3
 using Cuisenaire rods (see Figure 1) but it is 

quite another to use the rods to add 
1

2
 and 

1

3
. 



CMESG/GCEDM Proceedings 2017  New PhD Report 

164  

  

Figure 1. Cuisenaire rods (“Cuisenaire rods,” 2018). 

The literature in mathematics education includes such unanswered questions as “What is it 

about pattern blocks that did not support students’ thinking on fraction order tasks?” (Cramer 

& Wyberg, 2009, p. 14) and “Is it the sensory characters [of the manipulative] that make 

mathematical tools helpful?”(Clements & McMillen, 1996, p. 270). These questions are posed 

to identify the strengths and limitations of the tools used in learning fractions. However, they 

are not addressed in terms of the role that is played by physical properties or in terms of the 

feedback from the mathematical tools in solving a mathematical task. These questions, the 

questions which arose from my interim report, along with my own experience as a teacher and 

a learner of mathematics, led me to look more closely at the interrelationships between the 

physical properties of the mathematical tools used to teach the addition of fractions and 

children’s knowing of and learning about the addition of fractions.  

THE SPECIFICS OF MY STUDY 

This study is a continuation of my interim report within which I looked at the role of feedback 

from mathematical tools used in children’s problem solving. I describe feedback as the physical 

properties of a mathematical tool and/or the interrelationships among its various components 

that make the mathematical affordances of the tool more apparent. For example, in fraction 

circles, I consider the relationships among the sizes of the pieces to be a form of feedback (see 

Figure 2). 

 

Figure 2. The relative sizes of pieces in fraction circles are feedback (Abtahi, 2016, p. 6). 

My purpose in this study was to investigate how children use the physical properties of the 

mathematical tools to think about and/or solve addition of fractions problems and the role of 

feedback from the tools in this process. I investigated these interrelationships with respect to 

the Zone of Proximal Development (ZPD). The ZPD is described by Vygotsky as “the distance 

between the actual developmental level (independent problem solving) and the level of potential 

development (problem solving under adult guidance or in collaboration with more capable 

peers)” (Vygotsky, 1978, p. 69). Following Vygotsky’s view, in the field of mathematics 

education, the more knowledgeable others are usually conceptualised as agents such as teachers, 

adults and peers. Furthermore, the communication and interactions that take place within the 

ZPD have usually been referred to as sign-mediated and inter-subjective (Lerman & Meira, 

2001; Roth & Radford, 2010), meaning that within these studies the notion of ZPD is looked at 

between children and adults or between children themselves.  

To look at the interrelationships between the feedback from the mathematical tools, what 

children did and said, and the mathematical task I examined 
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 the children’s perceptions of the mathematical tools;  

 the children’s interactions with the tools, which lead them to work on or to solve the 

mathematical task at hand; and 

 the children’s talk about the mathematical tools and their actions, which might 

indicate the emergence of the ZPD. 

The two research questions I addressed were 

 How does the feedback from the mathematical tools play a mediating role between the 

physical actions of the child with respect to the mathematical affordances of the tools 

and the child’s thinking about and learning and knowing of solving addition of 

fractions problems? 

 What role is played by mathematical tools in the emergence of a Zone of Proximal 

Development during the child’s solving of addition of fractions problems? 

To address these research questions, I used Vygotsky and Gibson as my theoretical background. 

THEORETICAL FRAMEWORK 

In order to systematically analyse the role of feedback in the dialectic process of the children’s 

interaction with tools, I looked at: tools as physical ‘things’; the dialectic process of children’s 

modifications to the mathematical tool and the modifications to their mathematical thinking and 

ways of problem solving; and children’s learning during their work on the addition of fractions 

problems. In order to explore tools as physical ‘things’, I used Gibson’s view of affordances. 

To investigate the dialectic modifications to the tools and to the children’s thinking as they 

interact with the tools, I used a Vygotskian perspective on the tie between tools and signs as 

well as Vygotsky’s perspective on perception. To investigate children’s learning I focused on 

the emergence of the Zone of Proximal Development. 

Gibson: Concerned with how the environment supports thinking and action, Gibson (1977) 

contended that “in any interaction involving an agent with some other system, conditions that 

enable that interaction include some properties of the agent along with some properties of the 

other system” (p. 68). For my study, the “system” was the mathematical tool and the agents 

were the children. Therefore, using Gibson’s (1977) analogy, my reference to the term 

affordance would be to whatever it was about the mathematical tool that contributed to the kind 

of interaction that happened. In consequence, I referred to perception as whatever it was about 

the child’s thinking/knowing (of the tools and the addition of fractions) that contributed to the 

kind of interaction that happened.  

Vygotsky: Two important assumptions by Vygotsky provide the theoretical foundation of my 

study: 1) a child’s development and learning depend on the presence of the mediating agents of 

tools and signs; and 2) the tie between tools and signs creates artefacts. The notion of tool I 

refer to is based on Marx’s view of working tools whereby that man uses the physical and 

mechanical properties of objects to reach his goals (Marx & Engels, 1865). The Marxian view 

of tool was then extended by Vygotsky as a means of external activity (i.e., labour) with which 

humans influence the environment. Hammers, nails and chairs are examples of tools. Signs, on 

the other hand, are means of internal activity that affect humans internally. Languages, various 

systems for counting, and algebraic symbol systems are examples of signs. For the purpose of 

this study, I consider both x² and an abacus as mathematical objects, though an abacus is a 

mathematical tool and x² is a mathematical sign. Vygotsky (1978) believed that an essential 

difference between signs and tools are the ways in which they orient human behaviour. A tool’s 

function is externally oriented: “It is a means by which human external activity is aimed at 

mastering nature” (Vygotsky, 1978, p. 55). A sign, on the other hand, is internally oriented: “It 
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is a means of internal activity aimed at mastering oneself” (Vygotsky, 1978, p. 55). It is in 

conjunction with the child’s solving of a mathematical problem that the mathematical tool 

acquires a new meaning and form. The mathematical tools acquire a new form because it is in 

solving a mathematical task that the child needs to perceive mathematical affordances provided 

by the tools. These affordances become apparent to the child by the help of more knowledgeable 

others. The mathematical tools acquire new meaning because it is in solving a mathematical 

task that mathematical tools are tied to the signs—especially in talking about the task, drawing 

and using symbols (Arzarello, 2010; Bartolini Bussi, 2011; Bartolini Bussi & Mariotti, 2008).  

To go about thinking about my research questions, I collected data by interviewing 13 children 

from two grade 7 classes, in Ottawa, Canada. The interviews were conducted in teams of two 

(and one team of three) and in three parts. In each part of the interviews, conducted over three 

different days, children were given different types of tools to work with in order to solve two 

addition of fractions problems. Interviews were designed so that the children could interact with 

specific types of tools to think about and solve addition of fraction problems. In the second 

round of interviews, the children used tools that have some fraction related properties already 

designed into them. These tools include Cuisenaire rods, fraction strips and fraction board. In 

the third round of interviews, the children used tools that did not have any fraction related 

properties incorporated in their design, such as, papers, adhesive and masking tapes and 

ribbons. Data collected from the interviews was then analysed to answer both research 

questions.  

THE EMERGENCE OF THE ZONE OF PROXIMAL DEVELOPMENT 

Lerman and Meira (2001) stated that “the ZPD is not something that pre-exists; it is not carried 

around, like a box, by the child” (p. 203). The ZPD emerges as a field for “interaction and 

communication where learning leads development” (p. 204). How then does one recognize the 

emergence of the ZPD? Radford (2013) referred to a social and sign-mediated process of 

becoming acquainted with historical and cultural forms of expression, action and reflection. 

Hence, one possible way of looking at children’s learning is to look at the ways in which 

children express, reflect and act change as they participate in an interaction (among themselves, 

with the teachers, or with the tools). How does learning happen? For Lerman (2014), the zone 

of proximal development is “the mechanism through which learning happens” (p. 22). 

Vygotsky (1978) proposes that a fundamental feature of learning is that it creates the zone of 

proximal development because “learning awakens a variety of internal developmental 

processes that are able to operate only when the child is interacting with people in his 

environment” (p. 67). In my study, I focused on what children did with the tools and say about 

them to see if and how their interaction with the tools provided for them newer possibilities of 

expression, reflection and action.  

FINDINGS 

In general, the analysis of data showed the following two findings in relation to the role of 

feedback from the tools in children’s interaction with the tools to solve addition of fraction 

tasks: 

 Children’s interactions with the tools were mediated by the feedback from the different 

artefacts that they created throughout their interactions with the tools. One of the 

theoretical foundations of this study was that instead of acting directly, in unmediated 

ways in a social and physical world, all our actions are indirect and mediated (Wertsch, 

1993) and that from a Vygotskian perspective, these actions are mediated by tools and 

signs (Vygotsky, 1978). With this finding, I propose to extend the notion of mediation 

to show that it was neither the tools nor the signs that independently mediated the 

children’s interactions with the tools. Rather, it was the children’s created artefacts 
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that played a mediating role between the children’s modifications to the tools as well 

as the modifications to their mathematical thinking.  

 In the children’s interactions with the tools and in all problem-solving stages, both 

attaching mathematical meaning(s) to the tools and the consequential process of 

creating an artefact were a gradual and complex process, which were closely related 

to (a) the ways in which the children perceived the mathematical affordances of the 

tools—through the feedback provided by the tools—to create and to use the artefacts; 

(b) the children’s mathematical knowing of fractions in general and of the addition of 

fractions in particular; and (c) the task of adding two fractions.  

Vygotsky, in his description of ZPD, explicitly referred to “problem solving under adult 

guidance or in collaboration with more capable peers” (Vygotsky, 1978, p. 69), referring to the 

more knowledgeable other(s) as an “adult” or “more capable peers”. Following Vygotsky, other 

researchers also looked at the ‘more knowledgeable others’ as being people (Goos, 2014; 

Graven & Lerman, 2014; Lerman & Meira, 2001; Roth, 2014; Roth & Radford, 2010; Steele, 

2001; Tudge, 1992; Valsiner, 1984).  

In this study, I am expanding the inter-subjective notion of ZPD to include the guidance 

provided by the tools. I build on Roth and Radford’s (2010) conceptualisation of 

“participation”—in which the zone of proximal development is viewed as an interactional 

achievement that allows all participants to become teachers and learners (p. 305) to carefully 

describe the more knowledgeable others. By the more knowledgeable others, I mean the 

participant(s) in an interaction whose knowing or feedback are used in different stages of the 

process of the problem-solving activity to think about the problem and/or to solve it. In 

children’s interaction with the tools, I consider the ‘participants’ to be the children and the tools, 

and I see the role of the more knowledgeable other as alternating between the children and the 

tools. 
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EXAMINING MATHEMATICS ANXIETY AMONG CLASSROOM 
TEACHERS 

Atinuke Adeyemi 

University of Windsor 

INTRODUCTION 

This paper focuses on the part of my dissertation that describes my research with in-service 

elementary school teachers on the nature and causes of mathematics anxiety that they 

experienced and how the anxiety differs in terms of various demographic factors. I also 

examined the relationship between mathematics anxiety and mathematics teaching anxiety, as 

well as the types of mathematics teaching anxiety among teachers. Convenience sampling was 

used to select two school boards in Southern Ontario. The data were collected through an online 

survey completed by 111 elementary in-service teachers and face-to-face interviews. A brief 

discussion on the findings from this study is provided, together with recommendations on 

strategies that could be used by teachers and school boards to reduce mathematics anxiety and 

break its re-occurring cycle.  

MATHEMATICS ANXIETY AND TEACHERS 

Mathematics anxiety continues to receive increasing attention in various countries, including 

Canada and the United States, in recent years as it appears to be an impediment to the learning 

of mathematics. Mathematics anxiety is described as a person’s negative affective reactions to 

situations that involve mathematics, numbers, and calculations (Ashcraft & Moore, 2009). It 

may weaken an individual’s state of mind and eventually progress to mathematics avoidance 

and mathematics phobia (Tobias, 1978), resulting in low achievement in mathematics (Ashcraft 

& Kirk, 2001). Individuals with mathematics anxiety steer away from mathematics courses and 

careers that involve mathematical competence, thus limiting their career potions in lives.  

Studies have shown that some teachers possess levels of mathematics anxiety (Hadley & 

Dorward, 2011; McAnallen, 2010) and that their anxieties could be transferred to their students 

(Vinson, 2001). Teachers who have mathematics anxiety have been shown to be less successful 

at conveying important mathematical concepts that are requisites for further academic growth 

to their students. In Canada, mathematics requirements for students majoring in elementary 

education are minimal (TEAS, 2012), indicating that one can pursue a career as an elementary 

school teacher despite having mathematics anxiety and a history of avoiding the subject. Having 

teachers who are anxious about mathematics in the classroom could have detrimental effects on 

the students’ achievement and attitude towards mathematics (Beilock, Gunderson, Ramirez, & 

Levine, 2010).  

Gender differences in mathematics anxiety have been reported by some researchers (Khatoon 

& Mahmood, 2010; Ma & Cartwright, 2003) who argue that, although males and females 
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experience some level of anxiety towards mathematics, the level of anxiety in females appears 

to be greater than in males. Despite the fact that researchers have investigated the possible 

causes of mathematics anxiety, “there is still no clear answer as to the nature and causes of this 

anxiety” (Balogˇlu & Kocak, 2006, p. 1331). Some studies offered that mathematics anxiety 

does not originate from mathematics itself but rather from the way the subject is taught in school 

and the way it might have been presented to teachers when they were children (Fiore, 1999; 

McAnallen, 2010; Stuart, 2000). According to Hadfield and McNeil (1994), the causes of 

mathematics anxiety can be categorised into three factors—environmental, intellectual, and 

personality. Environmental factors include negative school experiences, parental pressure, 

insensitive teachers, non-democratic and non-supportive class environment. Intellectual factors 

include negative attitude, low persistence, self-doubt, learning style, and lack of confidence in 

mathematical ability. Personality factors include reluctance to ask questions due to shyness, 

low self-esteem and gender bias. Teachers are categorized under environmental factors and they 

have been reported to have an influence on students’ mathematics anxiety levels through their 

teaching methods (Arem, 2003; Tobias, 1998; Vinson, 2001). Amongst these teaching methods 

are those that place emphasis on getting the right answers rather than concept development; 

repetition and rushing through materials, or ‘timed tests’, rather than understanding; and 

continuous lecturing rather than providing hands-on mathematics experiences, together with 

accommodating different learning styles (Arem, 2003; Geist, 2010; Harper & Daane, 1998; 

Popham, 2008; Scarpello, 2007). Teachers with high mathematics anxiety often use traditional 

teaching methods, and as a repercussion, mathematics anxiety limits the teachers’ skill in doing 

or teaching mathematics. 

MATHEMATICS ANXIETY AND MATHEMATICS TEACHING ANXIETY 

There are indications that teachers who are anxious about mathematics are likely to be anxious 

about teaching mathematics (Hadley & Dorward, 2011). The construct, mathematics teaching 

anxiety, is defined as the teachers’ feelings of tension and anxiety that happen in the course of 

teaching mathematical concepts, theorems, and formulas or problem solving (Peker, 2006). 

Mathematics teaching anxiety could be due to subject knowledge, self-confidence, attitude 

towards teaching mathematics, and subject teaching knowledge. Although some studies 

(Brown, Westenskow, & Moyer-Packenham, 2011; Peker, 2006) have looked into mathematics 

anxiety alongside mathematics teaching anxiety, they focussed on pre-service teachers and 

reported inconsistent results. Similarly, while most studies on mathematics anxiety have been 

conducted with pre-service teachers (e.g., Brady & Bowd, 2005; Gresham, 2009; Liu, 2008; 

Vinson, 2001), college students (e.g., Ashcraft & Kirk, 2001; Hembre, 1990; Wilder, 2012; 

Shields, 2006), adolescents (e.g., Khatoon & Mahmood, 2010) and school children (e.g., Ma & 

Cartwright, 2003), few studies, conducted in the United States, have involved elementary 

school teachers (McAnallen, 2010; Hadley & Dorward, 2011). Therefore, my dissertation was 

inspired by the observed limited research in the literature that addressed mathematics anxiety 

and mathematics teaching anxiety among in-service elementary school teachers, particularly in 

Canada. Thus, the purpose of the study was to examine the nature (levels, causes, and effects) 

of mathematics anxiety that exists among in-service elementary school teachers in Southern 

Ontario and how this anxiety differs by gender and other demographic factors, including socio-

cultural factors. The study also investigated the relationship between mathematics anxiety and 

mathematics teaching anxiety, as well as the types of mathematics teaching anxiety that may 

exist among in-service elementary school teachers.    

THEORETICAL FRAMEWORK 

Vygotsky’s (1981) sociocultural theory was one of the theories that was used as a framework 

in the study. Sociocultural theory positions an individual in specific historical, cultural, and 

institutional contexts. It highlights the influences of adults, siblings, and peers (environmental 

factors) on an individual’s development and formation of concepts. It was used in the study to 
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understand the social and cultural influences that may contribute to elementary teachers’ 

mathematics anxiety. By taking a socio-cultural view of Vygotsky, this dissertation tried to 

consider not only individuals, but also the groups and the society they belong to. According to 

Vygotsky, social interactions are crucial for learners to explore knowledge domains with more 

capable peers and adults (e.g., teachers and parents) in and outside the classrooms. He asserted 

that “it is through others that we develop into ourselves” (1981, p. 161); which further 

accentuate the influences of others—capable peers, siblings, and adults—in the development of 

an individual. However, the process of learning is thrown into disarray when any hindrance, 

such as feelings of anxiety, is experienced by peers, siblings, and adults. This affects the 

individual’s interaction with people in his/her environment (Wilder, 2012). Better 

understanding of the social and contextual causes and development of mathematics anxiety 

could be achieved with the examination of past experiences of individuals with mathematics 

anxiety, including their interactions with social group and other cultural factors.  

METHOD 

The study employed an explanatory sequential mixed methods design (Creswell & Plano Clark, 

2011; Teddlie & Tashakkori, 2009) that consists of quantitative and qualitative phases. The 

quantitative data were collected through surveys and analyzed in the first phase, while the 

qualitative data were gathered through interviews in the second phase, as a follow up and to 

help explain or elaborate on the quantitative results that were obtained in the first phase. The 

quantitative and qualitative findings were integrated to draw conclusions.  

PARTICIPANTS AND INSTRUMENTS  

In the first phase of the study, 111 in-service elementary school teachers from grades 1 to 8 

participated. Convenience sampling was used to select two school boards (Cohen, Manion, & 

Morrison, 2000; Nardi, 2005). Eighty-seven (78.4%) of the participants were females, 20 (18%) 

were males, and four (3.6%) of them did not respond to the survey’s gender question. Data were 

gathered using three instruments. The first instrument was a questionnaire that was developed 

by the researcher and it contained questions relevant to demographic factors such as gender and 

race/ethnicity. The second instrument, the Revised Mathematics Anxiety Rating Scale 

(RMARS, developed by Alexander & Martray, 1989), was used to measure the elementary 

teachers’ mathematics anxiety scores whilst the third instrument, the Mathematics Teaching 

Anxiety Survey (MATAS, developed by Peker, 2006), was used to measure the types of 

mathematics teaching anxiety they experienced. The RMARS is a 25-item survey comprising 

of three subscales with each of its item designed using a 5-point scale. Two-week test-retest 

reliability of RMARS obtained from a sample of 62 undergraduate students was reported as .86 

(Alexander & Martray, 1989) and high reliability coefficient (.95) was also reported by 

Balogˇlu and Koçak (2006) for the entire RMARS scale. In my study, the reliability coefficient 

of RMARS scale was found to be reliable at .97.  

MATAS is a 5-level Likert scale Turkish instrument that consists of 23 items with 5 responses 

to each item. Positive responses were coded from 1 to 5, while the negative ones were reverse-

coded from 5 to 1. MATAS is a four-factor scale that measures mathematics teaching anxiety 

due to subject knowledge, self-confidence, attitude towards teaching mathematics, and subject 

teaching knowledge. The reliability coefficient of the entire scale was reported to be .91 (Peker, 

2006). MATAS was translated into English language for the purpose of the study and the 

translated version referred to as MATAS-E has a .96 reliability coefficient.  

In the second phase, data were collected through individual interviews with four (one male, 

three females) purposefully selected teachers. The interview protocol was developed by the 

researcher and contained 10 open-ended questions, which was used to elaborate on the results 
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from the quantitative part and also to explore the causes of mathematics anxiety among 

participants and how they overcame or coped with their anxieties. The interviews with each 

participant took about 45 minutes to complete and were recorded on a digital recorder. 

PROCEDURE AND DATA ANALYSIS 

The survey instruments, which took about 20 minutes to complete, were administered online 

and accessed by teachers through the in-service teachers’ active email addresses. Scores for 

each participant were computed by adding the item values on the RMARS and MATAS-E. Data 

were analysed by calculating the means, standard deviations, and by conducting non-parametric 

test such as Mann-Whitney U test since the data collected with RMARS and MATAS-E were 

skewed and the variances for the groups (that is, females and males) that were compared could 

not be assumed equal. The data from the interviews were transcribed and the transcripts were 

analyzed using thematic analysis (Braun & Clarke, 2006; Ezzy, 2002). 

RESULTS 

ONLINE SURVEY RESULTS 

The results from the online survey showed that 

 participants experienced different levels of mathematics anxiety with 19 (17.1%) of 

them having low level, 71 (64%) moderate level, and 21 (18.9%) high level;   

 female participants had higher mathematics anxiety scores (M = 56.67, SD = 22.67, 

n = 87) than their male counterparts (M = 37.6, SD = 10.8, n = 20); 

 there were no significant differences in mathematics anxiety based on participants’ 

race/ethnicity, perceived socio-economic status, and mother’s educational levels; and 

participants with fathers in the lowest educational level experienced higher 

mathematics anxiety than those whose fathers had higher levels of education, 

specifically graduate degrees;  

 a statistically significant, strong positive correlation (rs = .72, p < .01, n = 107) exists 

between mathematics anxiety and mathematics teaching anxiety. The result indicated 

that as mathematics anxiety scores increased, mathematics teaching anxiety scores also 

increased. That is, participants with low levels of mathematics anxiety experienced 

lower levels of mathematics teaching anxiety while those with high levels of 

mathematics anxiety had much higher levels of mathematics teaching anxiety.  

 overall, participants’ mathematics teaching anxiety due to lack of self-confidence was 

higher than the other three types of mathematics teaching anxiety (that is, subject 

knowledge, attitude towards teaching mathematics, and teaching knowledge). 

However, with the consideration of gender, mathematics teaching anxiety due to 

subject knowledge and self-confidence were significantly higher in female participants 

than their male counterparts and the two groups did not significantly differ in their 

mathematics teaching anxiety due to attitude towards mathematics and teaching 

knowledge. 

INTERVIEWS RESULT 

The participants attributed the causes of mathematics anxiety to their past teachers’ teaching 

strategies and insensitive comments, mean behavior, as well as their own lack of understanding 

of mathematics concepts in developmental years. For instance, one of the participants stated 

that 

[The teachers] assumed we knew everything and didn’t, maybe, review everything. 

Sometimes I felt the teachers were just going at the speed of strong students, not at 

the speed of some other students and you didn’t always want to ask questions because 
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sometimes you didn’t know what to ask […] they teach the top of the class and they 

leave other people behind. 

The negative effects of mathematics anxiety on the participants include lack of confidence in 

doing mathematics; negative attitude towards mathematics; feelings of inferiority and 

exclusion; and avoidance of mathematics courses and mathematics-related careers. However, 

the participants expressed that their own teachers and parents helped them overcome, reduce, 

or cope with mathematics anxiety. 

DISCUSSION AND CONCLUSION 

The findings from this study not only provided evidence on the existence of different levels of 

mathematics anxiety among elementary teachers but also supported the commonly 

acknowledged difference in mathematics anxiety between females and males, which is in favor 

of males (Balogˇlu & Kocak, 2006; Hadley & Dorward, 2011; Hembree, 1990; Ma & 

Cartwright, 2003). The findings also revealed a positive correlation between mathematics 

anxiety and mathematics teaching anxiety. A similar result was reported by Hadley and 

Dorward (2011) in their study with grades 1 to 6 teachers in the United States. A few studies 

have provided evidence in relation to gender differences in mathematics teaching anxiety 

(Yazıcı & Ertekin, 2010). This study is no exception, as classroom teachers’ differential 

treatment plays an important role in the differences found in mathematics learning that favor 

male students (Geist, 2010).  In addition, from the interviews, the findings showed that the 

experience of mathematics anxiety affected the participants both personally and professionally.  

Essentially, findings from this study indicate mathematics anxiety and mathematics teaching 

anxiety as concerns that warrant further research. These findings emphasized the need to 

eradicate, or at least reduce, mathematics anxiety and mathematics teaching anxiety among in-

service elementary school teachers. Elementary teachers need to acknowledge their fears, 

anxieties, and difficulties with mathematics, create a plan to get rid of them, and ask for 

assistance when they need it. Frequent discussions about mathematics are recommended as 

helpful, specifically for women, to prevail over their fear and negative feelings about 

mathematics. Arem (2003) suggested positive self-talk and journal writing about the past and 

everyday experiences of mathematics as progressive means of handling mathematics anxiety.  

Mathematics is a compulsory subject that is required to be taught by all elementary school 

teachers. Therefore, implementing changes to the teachers’ practices and professional 

development is paramount. School boards have a vital role to play by investigating the status 

of mathematics anxiety and mathematics teaching anxiety in their schools. All elementary in-

service teachers need to be more informed about the causes, damaging consequences, and 

preventive measures of mathematics anxiety. School boards should provide such information 

through reading materials, videos clips on mathematics anxiety, and effective workshops and 

conferences for in-service elementary teachers. Such workshops should emphasize strategies, 

including better understanding of the mathematics curriculum, which teachers could use to 

address many aspects of mathematics anxiety and mathematics teaching anxiety that they may 

be experiencing. Progress towards breaking the re-occurring cycle of mathematics anxiety will 

be achieved when more efforts are expended to help teachers who suffer from it.  
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TEACHING TEACHERS: A LOOK INSIDE PROFESSIONAL 
DEVELOPMENT1 

Melania Alvarez 

University of British Columbia and PIMS 

INTRODUCTION 

As I was doing research regarding successful professional development, I found no descriptions 

about the lived experiences between professional developers and teachers. What I usually found 

were survey results from teachers’ program evaluations, which provided information about 

teachers’ individual perspectives regarding the effectiveness of professional development 

sessions, or statistical analysis of school performances after the application of a particular 

professional development opportunity. Not much if anything has been done to show what 

happens during those learning opportunities and how teachers’ and professional developers’ 

predispositions and the setting allow for a fruitful learning opportunity and when they will not 

(Garet, Porter, Desimone, Birman, & Yoon, 2001; Grammatikopoulos, Gregoriadis, & 

Zachopoulou, 2013; Linder & Simpson, 2014). This study presents a framework that attempts 

to provide an initial tool for a description and analysis of this experience. 

FRAMEWORK 

I made use of the phenomenological perspective, to analyze the ‘lived experience’ of 

professional development sessions and describe teachers’ reactions to a variety of approaches 

and activities. This study explores and describes ‘lifeworld’ learning experiences, and looks for 

the meaning of a phenomenon by uncovering, as much as possible, the many layers that socially 

and culturally influence a person’s experience in their lifeworld, where ‘lifeworld’ is defined 

by Van Manen (1997) as “the world of immediate experience”, the world as “already there” (p. 

182). 

According to Smith (2013) phenomenologist practices consist of three different methods: 

 rich descriptions of lived experience, 

 use of relevant features in the context to interpret  the experience,  

 analysis of the form of a type of experience. 

One can combine all three to analyze the description of the lived experience, and to interpret it 

by assessing and using the relevant features in the context and analyzing structures  which 

resonate with our own experience—that which one can be conscious of. In this study, a tool 

                                                 
1 This is a summary of my PhD Thesis presented at Simon Fraser University under the 

direction of Peter Liljedahl. 
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was developed to analyze and provide a description of a professional development session as it 

occurred. As a result of my analysis of professional development sessions, I was able to bring 

forward some important elements to consider like mood, motives, wants, and who is carrying 

the flow of the conversation (flux) during the sessions. I also focused on engagement, and how, 

through engagement, teachers show their motivation, wants, moods, needs and learning. In this 

study, engagement is defined as different ways in which individuals and groups come into 

action, or become involved with an activity, where these different ways of acting/engaging are 

influenced by different levels of motivation, motives, and goals.   

This framework, which is based on a  modified version of Remillard’s (2012) analytical 

perspective, connects positioning and  engagement in order  to analyse the various ways a 

professional developer tries to position teachers in an experience that is engaging to them.  

Professional developers want to position teachers in a way where interaction is possible, and 

furthermore this is something that they want to do of their own volition. Remillard classifies 

positioning and interactions by using the following terms, which I redefine as follows:  

 mode of address (MoA): how a group of people are positioned in order to become 

engage in an activity; 

 forms of address (FoA): artifacts/resources used  in order to position people; 

 modes of engagement (MoE): the way people react/engage; 

 forms of engagement (FoE): what artifacts/resources, ideas result  from the activity.  

To represent the phenomenology of professional development in a way that was succinct and 

useful, I developed the idea of scenarios for my analysis. A scenario is defined as a unit of 

exchange, where the professional developer has a plan, and in accordance with it (mode of 

address), s/he introduces or presents an idea or task (form of address). This action is taken in 

by the teachers (mode of engagement), and the teachers then respond (form of engagement). 

Communication is not perfect, the original idea passes through the teachers’ ‘wants-motives-

mood’ filter, so what the teachers take out of what the professional developer presents to them 

is not necessarily what the professional developer expects, given that the response the 

professional developer receives also passes through her/his ‘wants-motives-mood’ filter. The 

unit is completed when the professional developer takes in the response and sees a need to re-

direct.  

By dividing activities into scenarios, and then focusing on each of its components, the analysis 

was considerably simplified. I was able to find units of meaning, and significant themes 

emerged from the analysis: how teachers use the teachers’ guides, how previous practice can 

play a role for change, and how a teacher’s resistance can interfere with the learning of others. 

As I look at the data using a visual model of the framework and the idea of Scenario as a unit 

of exchange, six possible basic scenarios emerged from my analysis. I was able to analyze the 

professional development process by taking a look at each component (MoA, FoA, MoE, FoE, 

moods, wants, motives and flux) and the part it played within this unit of exchange. In my 

experience, these six scenarios seemed to cover most of what can take place during teachers’ 

professional development.  

The analysis is illustrated through a bowtie (for the first five scenarios) and a circular visual 

model (for the sixth scenario). The scenario starts when the professional developer plans and 

applies particular modes and forms of address during the professional development session. 

The particular forms and modes of address run within a particular background of goals, motives 

and wants from all the participants involved, including the professional developer. Particular 

modes of engagement follow with particular moods and levels of activity or flux, and forms of 

address are re-sourced into particular forms of engagement. As the professional developer 
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observes and reflects upon the resulting modes and forms of engagement, she responds 

accordingly either by continuing or modifying the current mode and form of address. 

Modifications depend on how much the professional developer is able to perceive a level of 

learning where hopefully the teachers’ and professional developer’s motives, wants, and goals 

are addressed and realized. 

METHODOLOGY 

Data regarding the actions of teachers in a professional development setting were gathered in 

order to describe their participation and engagement throughout the sessions. This was done by 

audio-recording most of the professional development sessions, surveys, and through notes 

made by the facilitator during and after each session about teachers’ engagement. After every 

session, notes were made by the professional developer reflecting on the effectiveness of the 

session, which concerns were addressed, the level of engagement, her feeling and thoughts as 

well as questions that she wished she had asked during the session, and questions that she hoped 

to ask at the next session with the group. This reflective process served as a preliminary analysis 

of the data (Glesne, 1999). Most observations of teachers’ behaviour were made during the 

professional development sessions.  

For the data analysis, the following phenomenological protocol was used, which is a simplified 

version of Hycner’s (1999) process used by Groenewald (2004) together with some steps 

delineated by Van Manen (1997). First, we investigated the experience as we lived-it, then we 

bracketed the assumptions being made, as we looked at the data we delineate units of meaning, 

then we clustered them in themes and we created a composite. The participants in this study 

were the teachers involved in professional development and the facilitator. The professional 

developer is also a participant because her reflections and responses to teachers’ engagement 

as well as my motives and wants are part of the study. 

ANALYSIS 

What follows is a description, along with some illustrative examples, of the six possible 

scenarios.  

SCENARIO 1 

This type of scenario usually occurred when the professional developer came with a plan, put 

it in action, and the mode of engagement was such that the form of engagement turned out to 

be empty. That is, no apparent form of engagement was produced: there was simply no reaction. 

Either the teachers did not respond in any obvious way or their comments/answers added no 

additional information that would help the professional developer to follow up with a more 

suitable mode of address for them to actively engage. The teachers were not actively engaged 

and their mood can be one of confusion, boredom, resistance, passivity and/or fear. There was 

no conversational flux, and it was difficult for the professional developer to figure out their 

motives or wants without some previous information that could be linked to this behaviour. 

Example 1 

This is a general example that occurred with several of the groups I worked with, which fit 

Scenario 1 (Figure 1).  
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Figure 1. Example 1 diagram. 

SCENARIO 2 

Scenario 2 involves what one might call a lateral movement: a form of engagement is produced 

but what is being produced is an unexpected outcome, or a confusing response. Usually the 

professional developer will have to re-direct, further inquire or address what was produced. The 

form of engagement being produced is not useless; as a matter of fact, it can give us great insight 

into teachers’ wants, preoccupations and mistaken assumptions, as we will see in the example 

in Figure 2. In this scenario, the teachers produced statements, but there was no conversational 

flux. Nevertheless, the form of engagement provides the professional developer with hints on 

how to proceed. The professional developer carries the flux of the conversation by redirecting 

or asking questions.  

 

Figure 2. Example 2 diagram. 

SCENARIO 3 

In this scenario a form of engagement has been produced which indicates either a clear interest 

in or understanding of the professional developer’s plans. The form of engagement being 

produced could be questions or comments that indicate interest in, or understanding of, the 

material the professional developer has introduced. However, the teachers are not yet able or 

willing to carry the flux of the discussion themselves.  
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Figure 3. Example 3 diagram. 

SCENARIO 4 

In this diagram the facilitator starts the conversation but then the teachers mainly carry the flux 

of the conversation for the rest of the activity. The professional developer is a non-participant 

in the discussion, except perhaps for a few guiding comments (indicated by the dotted arrow in 

Figure 4).  

 

Figure 4. Example 4.1 diagram. 

The semicircular arrow indicates that the teachers discussed a variety of mathematical concepts 

in order create meaningful report cards (see Figure 4). After they got started, I was mainly 

ignored. They carried the flux of the conversation on their own. 

SCENARIO 5 

This scenario represents that there is a back-and-forth of ideas, where the flux of the 

conversation flows from professional developer to teachers and from teachers to the 

professional developer. The graph depicts a discussion between two groups or participants (see 

Figure 5). In this case there is a separation, between the professional developer and the teachers.  

 

Figure 5. Scenario 5 diagram. 
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SCENARIO 6 

In this scenario, positioning by the professional developer is no longer needed as everyone is 

engaged and is able to promote/trigger the conversation. Anyone participating in the session 

can trigger the form of address that will propel active engagement to continue. Resulting forms 

of engagement can become or are used as forms of address. Moods, motives and wants do not 

filter the interaction among the participants. This scenario was the least common in my sample. 

In my experience, one needs time to get a level of comfort amongst the participants for this 

scenario to occur. I find this scenario also occurred most often when the teachers felt more 

comfortable in their mathematical knowledge and practice. Sometimes this scenario evolves 

from Scenarios 4 and 5.  

 

Figure 6. Scenario 6 diagram. 

CONCLUSIONS 

The visual representation of the six scenarios provided me with a way to deal with many of the 

elements that compose the live-experience of professional development.  The first three 

scenarios can happen almost instantly as a facilitator starts working with a group for the first 

time. This instantaneity is not the case with the last three scenarios. There has to be a level of 

confidence, trust and/or knowledge for these scenarios to happen.  Mood and wants are 

important factors that affect the predisposition towards learning. Mood is very much influenced 

by the confidence teachers have in their knowledge, but it is also influenced by working with 

someone unfamiliar. Also the mood changes as the lived-experience of professional 

development unfolds. However the moods, motives and wants are not always clear during the 

interaction. Sometimes one cannot determine them until the scenario has run its course. Here is 

where the professional developer’s experience comes into play to inform how to proceed based 

on the information that s/he perceives coming from the teacher’s mode and form of engagement.  

Overall, I have identified six different types of scenario. Each type can be part of a learning 

activity or task. As each scenario runs its course, the professional developer should use what 

was learned from what took place in this interaction to answer the following questions: Has the 

goal for this task been accomplished? How should s/he guide the process through a mode and 

form of address in order to arrive at the desired goal? The forms of engagement being produced, 

the mood of the conversation, and who is carrying the flux of the conversation are important 

elements that had helped me evaluate whether I should continue with what I was doing or if I 

should redirect. It is my hope that research like the one initiated in this dissertation will be 

helpful in designing professional development workshops that are more meaningful and helpful 

to all teachers.  
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ABSTRACT 

Using a theoretical framework drawn from appraisal linguistics focussing on 

interpersonal instances of text, this presentation will report the findings of a study on 

the judgements made about teaching and learning mathematics and how those 

judgements reflect the values embedded in mathematics education. As judgement is a 

highly contextualized enterprise, my presentation will begin with an overview of the 

current socio-political climate within which teachers are expected to teach and within 

which students are attempting to succeed. I will also explore current theories that 

provide a means for researchers to investigate mathematics teaching in context. When 

outlining the findings, the discussion will be qualitative and interpretive, and I will 

argue that, despite the fact that the classes were well taught, the students continue a 

legacy of a narrow concept of the nature and purpose of mathematics and mathematics 

education.  

INTRODUCTION 

We reiterate our deep concern at the multiple and interrelated crises, including the 

financial and economic crisis, volatile energy and food prices and ongoing concerns 

over food security, as well as the increasing challenges posed by climate change and 

the loss of biodiversity, which have increased vulnerabilities and inequalities and 

have adversely affected development gains, in particular in developing countries. 

(United Nations General Assembly, 2010, p. 6) 

The 21st century has brought with it dramatic challenges, as formally declared by the United 

Nations in the quote above. There is significant research on economic (Organisation for 

Economic Cooperation and Development (OECD) Economics, 2013; United Nations, 2013) 

and environmental (Intergovernmental Panel on Climate Change, 2013) trends to support the 

concerns of the United Nations and encourage policy makers to take action to equip the 

population with the skills and knowledge to manage these changes. Globally, governments are 

responding by reviewing and reforming educational policy (Brochu, Deussing, Houme, & 

Chuy, 2013) and provinces have begun to implement strategies that focus on specific 

competencies such as creativity, innovation, collaboration, communication, character, culture 

and ethical citizenship, and computer and digital technologies (e.g., British Columbia Ministry 

of Education, 2013; Alberta Education, 2011; Gouvernement du Québec, 2007). This paper 

arises from the context of ‘21st century’ education and rests in the underlying tensions related 

to the responsiveness of public education to the changing needs of society and asks the question: 

Are these goals realized in the classroom in the teaching and learning of mathematics?  
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DEFINING 21ST CENTURY EDUCATION 

Throughout education-based literature, the terminology of 21st century education or 21st century 

skills, competencies, or learning, is used frequently. Many international jurisdictions (e.g., 

Australian Curriculum, Assessment and Reporting Authority, 2013; United Kingdom Secretary 

of State for Education and Skills, 2003) have produced comprehensive definitions of 21st 

century learning with accompanying frameworks and educational goals. In the United States, 

the American National Research Council (2012) produced a synthesis of these skills, grouped 

into three broad domains: cognitive (e.g., creativity, innovation, critical thinking), interpersonal 

(e.g., leadership, collaboration, service orientation), and intrapersonal (e.g., adaptability, 

curiosity, perseverance). In Canada, the Province of Ontario (Ontario Ministry of Education, 

2016) has recently published a review and synthesis of the literature and international policies 

regarding the 21st century competencies discussion. Through their synthesis, the authors 

proposed a draft framework of six broad categories of 21st century characteristics which 

include: critical thinking and problem solving; innovation, creativity, and entrepreneurship; 

learning to learn/self-aware and self-directed learning; collaboration; communication; and, 

global citizenship.  

Through an analysis of language use, this research looks at the judgements students make about 

mathematics and asks the question: How do the judgements students make about mathematics 

align with the goals of 21st century education? 

LANGUAGE ANALYSIS 

As participants in relationships in the context of schools and classrooms, students and teachers 

negotiate and act out their feelings about each other, the subject matter, their position within 

the classroom, and the institution of public education. These relationships are at the core of 

teaching and learning and affect achievement (Hattie, 2003; Hughes, Wu, Kwok, Villarreal, & 

Johnson, 2012), behaviour and motivation (Curby, Rimm-Kaufman, & Ponitz, 2009; Skinner 

& Belmont, 1993) and persistence (Knesting & Waldron, 2006; Montalvo, Mansfield, & Miller, 

2008). Language reflects these dynamics and deconstructing language use can help people to 

see to what extent their language rests upon culturally shared assumptions and relations of 

power (Fairclough, 1989).  

Systemic Functional Linguistics (SFL) is an analytical tool that acknowledges the social 

interaction and complexity of language by describing both the form and the function of 

language and recognizing that context is inseparable from understanding language (Halliday & 

Matthiessen, 2014). According to the theory, there are two basic functions of language: making 

sense of experiences and acting out social relationships (see Figure 1). When construing 

experiences, we are also enacting our personal and social relationships, thus language usage 

both represents a process (a doing or happening, saying or sensing, being or having), and a 

proposition or proposal (informing or questioning, giving an order or making an offer, 

expressing our appraisal of or attitude towards whomever and/or whatever is being addressed) 

(Halliday & Matthiessen, 2014).  

Appraisal is a discourse system within the interpersonal metafunction and regards how humans 

act out social relationships. As such, it provides a method to uncover a voice, or a subjective 

presence, evident in the pattern of choices in text. These patterns reveal the speakers/writers’ 

stances toward the material they are presenting and the person with whom they are 

communicating. They also reflect the community and/or the value system of the appraiser 

(Martin & Rose, 2003). The graphic in Figure 1 outlines the SFL and how appraisal fits within 

the model. 
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Figure 1. Appraisal as related to the metafunctions of language. Adapted from Martin and 
White (2005).  

The analysis in this investigation focuses on attitude a subset of appraisal. Attitude provides a 

framework for mapping feelings and consists of three regions: expressing emotions (“affect”), 

judging personal and moral character (“judgement”), and valuing the worth of things 

(“appreciation”).  

Figure 2 provides examples of expressions of attitude through judgements and appreciations. 

 

Figure 2. Examples of Judgement and Appreciation. Adapted from Martin and White (2005). 

As outlined, appraisal is one aspect of the different social functions of language use and, 

identification and categorization of the instances of judgement and appreciation within a 

context, provides access to reveal how we enact social relationships. This investigation uses 

appraisal as the system of analysis to understand values held about mathematics through the 

judgements and appreciations made while teaching and learning.  

RESEARCH DESIGN 

This data set consisted of textual analysis drawn from different interactions in two grade 8 

classrooms. The data included five recorded lessons from each classroom, journal entries from 

the teachers and students, teacher interviews, and student focus groups. The text was gathered 

over two school years. The teachers were experienced senior teachers and the schools were 

representative of typical Canadian schools. The notion of a ‘typical school’ is of course variable, 

however, where other high achieving countries tend to have a large achievement gap, Canadian 

schools comparably have a very narrow achievement gap, demonstrating a consistency from 

school to school. The schools were selected based on being close to the average Canadian social 

economics (Statistics Canada, 2011). The data included text from five recorded sessions of the 

regularly timetabled class for each school, journal writing from both the students and teachers, 

recorded focus group sessions of students, and interview with the teachers. The recordings took 
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place mid-way through a unit on graphing equations in one class, and mid-way through a unit 

on integers in the other class.  

THE DATA 

When analyzing a text using SFL, the clause is the basis of analysis and is what construes the 

meaning in text. The results analysis relies on clauses extracted from classroom conversation, 

in particular, clauses that emote attitude (affect, judgement, appreciation). I encountered many 

issues when trying to make the model fit to real classroom conversation, and I had to make a 

number of decisions to ensure consistency. Those decisions are elaborated on in another 

publication (Godfrey Anderson, 2016).  

To begin the analysis of text, first I identified clauses that appeared to express an attitude (for 

example, when comparing two equations the teacher says, “It is not very different is it?”). Then 

I identified the subject of the attitude. After identifying judgement clauses, I analyzed each 

instance to identify the appraiser (teacher or student), the subject of the appraisal (e.g., teacher, 

student, mathematics as a subject, technology), whether the appraisal was positive or negative 

(e.g., “that is acceptable” or “it is not very fun”), and the type of appraisal. I repeated this 

process in different formats (electronic and printed versions) with the same text several times 

to ensure accuracy. This process continued through both the oral text (lesson transcripts, focus 

groups, and interviews), and the written text (journal writing). Decisions were made to maintain 

consistency and the information from the tables was then sorted according to instance of 

appraisal (for elaboration on methods and limitations see Godfrey Anderson, 2016). Table 1 is 

an example of this sorting. 

 Affect Judgement                         Appreciation 

A2  Social Esteem Social Sanction Reaction Composition 

Teacher  norm 6 ver  imp  bal 2,3,4,7 

cap 1,8,9,10,13,15, 

16,19,21,22,18,29, 

30,31,32,33,34, 

35,36,40 

prop 20,27 qual  comp 18 

   

ten 11,12,14,17, 

22,24,25,26 

Student  norm  ver  imp  bal  

cap 23,38,39,41 prop  qual 5 comp  

ten        

Table 1. Instances of appraisal categorized: Class A, second recording. 

FINDINGS 

The distribution of judgements and appreciations as exemplified in Table 1 typified the 

classroom recordings. Table 2 summarizes classroom recordings and shows that there were 

more judgements of capacity than any other category. Judgements of capacity include teachers 

judging students’ ability and students judging their own or another’s ability. Examples of such 

judgements include “you are correct”, “good work”, et cetera. They also included clauses such 

as “she is ahead of me”, “you’re getting there”, “you’re good”, or less explicit judgements such 

as “for some of you that [using the model] is a long way off”, or “I can’t do this”. In both classes 

both teachers almost entirely judged capacity positively, with a few exceptions. In contrast, the 

students’ judgements of capacity were for the most part negative (see Table 2).  
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Table 2. Summary of textual instances of attitude (Classroom recordings). 

The text analysis of the journals and focus groups showed distinct and consistent student 

attitudes towards the utility of mathematics. A journal prompt asked students why they thought 

they were learning the particular topic they were studying at the time of my visits. Class A was 

learning how to graph an equation. Again, the appraisal clauses were extracted and categorized 

from the response. With few exceptions, all student responses referred to practical and future-

oriented purposes: for jobs, to complete assignments, or for future schoolwork. Class B were 

working with integers but had similar results. Where very few students in Class A discussed 

personal utility outside of employment and preparation for future school mathematics, many 

students in Class B related the purpose of the knowledge of integers to practical applications, 

most likely given as examples, such as working with banking, financing, and weather. Their 

responses included a recognition that “[math] is important in every job” and “If we sell products 

or offer a service we need to be able to get a price that allows us to make profit”. Many students 

commented that the only thing they will use is the basic operations and even then it was noted 

by several that technology would do that for them. There were a number of responses referring 

to the futility of learning certain skills that, in their lives, have been (and will be) taken up by 

technology (“by the time I need it there will be technology to do it for us and we won’t need to 

do it then”). It was surprising to note how many students discussed the need to know 

mathematics to help them in their generalized daily lives. 

Perhaps the most significant trend in the findings was student judgements about the subject of 

mathematics. Noticing that the only references to mathematics content were number related 

(except when discussing graphing a line which was the subject of study in Class A), the first 

question I asked the focus groups was “what is mathematics?” They repeated their previous 

judgements, making statements such as “a lot of numbers”. I did not want to direct the 

conversation aside from asking the question, and this particular question “what is mathematics” 

quickly moved from “a lot of numbers” to the utility of mathematics: “it is important because 

you need math for pretty much every job, and it’s like for everyday lives and like time and 

weights and buying things” and “school and work and to pay your taxes and stuff”. When 

pressed to find meaning of what they were learning the response was “I don’t really think we 

will use that outside of school but I think that we need it here for school if you build on top of 

it”. In response to this statement, a student responded by saying that they would need “adding 

and multiplying”, again, referencing only the number strand of mathematics. Outside of 

measurement for cooking, temperatures, and carpentry (and the graphing a line as a topic rather 

than a skill), all reference to the content of mathematics included only calculations (paying for 

things, taxes, etc.) and “for counting”. When I reiterated the question, “what is math to you” 
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again, I received the same comments. Mathematics is number, you need mathematics “for jobs” 

and “paying taxes”, and “it is used in everyday life”.  

Out of 46 students, not one student in either class referred to the aesthetics of mathematics, and 

only one student spoke of learning for personal development (outside of utilitarian purposes) 

when she wrote: “Any bit of knowledge someone can teach you, learn it. It’s not going to hurt 

you. Even if it’s not used in everyday life, it will just make you more intelligent than someone 

who has not learned it. And being intelligent is a good thing to be” (Student 18 Class B). 

DISCUSSION 

The social impact of the challenges of the 21st century require a significant shift in thinking and 

acting. Education, being at the heart of our communities and a foundation for our children, is a 

central player in this shift. The results show that students have values that reflect a limited 

understanding of mathematics as a compartmentalized and static subject, with traditional and 

limited utility. Students regarded mathematics as little more than the number strand. According 

to Devlin (1997) these are typical responses. Students regard mathematics as a subject of 

calculations, procedures, or rules. There are hints that changes are occurring in their instruction. 

Students did talk about the need for mathematics in their ‘daily lives’ and the ‘real world’ but 

they said them like a cliché—they could not explain the meaning (and what meanings they did 

have were almost entirely financial such as “paying for things” and “taxes”).  

The other striking finding was students’ attitudes towards the purpose of mathematics. With 

few exceptions, students judged that mathematics only has three purposes: to find employment, 

for future study, or for the vaguely understood notion of ‘daily lives’. While there was some 

discussion as to how mathematics is different from other subjects, there was no mention of the 

use of mathematics in other subjects. Article 83 of the United Nation’s (2016) Framework on 

climate change adoption of the Paris Agreement draft, “calls upon all Parties to ensure that 

education, training and public awareness, as reflected in Article 6 of the Convention and in 

Article 12 of the Agreement are adequately considered in their contribution to capacity-

building” (p. 11). Education, and particularly scientific education, is central to combating 

climate change yet there is no evidence that this is on the minds of our students. Inquiry-based 

experiences wherein students are able to investigate, make connections and conjectures, discuss 

and share solutions (Boaler, 2016; Devlin, 1997; Suurtamm & Vézina, 2010) are essential in 

making these connections. Teaching holistically, experientially, may be a method of integrating 

the subjects and reconnecting students to the entire, beautiful subject of mathematics. 

CONCLUSION 

To return to the opening quote, we are indeed living in a challenging time. Within this context, 

these findings show that there is a need to connect students to the breadth and possibilities that 

lie within the study of mathematics. I also discovered that formative and normative judgements 

of capacity are characteristic of mathematics classrooms. I believe this is a key finding and 

further investigation into other formative ways of interacting while learning is required to 

discover how to better foster curiosity about mathematics and how it can be used to better 

understand and live in the world. 
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COLLEGE FOUNDATIONAL MATHEMATICS: CAN THE 
AFFORDANCES OF ICT ENHANCE SELF-REGULATION SKILL OF 

STUDENTS? 

MATHÉMATIQUES FONDAMENTALES DU COLLÈGE : EST-CE 
QUE LES APPORTS DES « TIC » PEUVENT AMÉLIORER 

L’AUTORÉGULATION DES COMPÉTENCES DES ÉLÈVES? 

Carol Carruthers 

Seneca College 

This investigation examined the learning gains of an intervention that employed the 

affordances of information and communication technologies (ICT) to enhance the self-

regulation skills of 17 students taking a foundational mathematics course at an Ontario 

community college. The learning intervention consisted of a) surveys on demographics 

and perceived ability to self-regulate; b) materials delivered in real time using 

interactive software and pen-based computing or asynchronously distributed via the 

learning management system (LMS); and c) student design of studynote (stylus-written 

MS Word document) or screencast (audio-visual recording) artefacts to demonstrate 

mathematical solutions. Semi-structured interview responses revealed that the creation 

of these artefacts required goal setting, environment structuring, task strategy planning, 

and time management skills. When artefacts were viewed using the LMS, individuals 

compared their work to others (self-evaluation) and sought help if required. These 

findings indicated that the affordances of the learning intervention contributed to a 

transformation in self-regulation skill.  

Cette étude a examiné les apprentissages acquis suite à une séquence d’enseignement 

qui employait les technologies d’information et de communication (TIC) afin 

d’améliorer les compétences d’autorégulation de dix-sept étudiants suivant un cours de 

mathématiques fondamentales dans un collège communautaire. La séquence 

d’enseignement comprenait : a) des questionnaires sur la démographie et la capacité 

de s’autoréguler, b) du matériel transmis en temps réel à l’aide de logiciels interactifs 

et basés sur l’utilisation d’un crayon ou encore distribué de façon asynchrone via le 

« learning management system » (LMS) et c) la conception par les étudiants de 

« studynote » (un document MS Word écrit au crayon) ou d’objets de type 

« screencast » (enregistrement audiovisuel) pour montrer une solution mathématique. 

Des réponses à des entrevues semi-dirigées ont révélé que la création de ces artéfacts 

nécessite la détermination d’un objectif, un environnement structurant, la planification 

de stratégies en lien avec une tâche et des compétences en gestion de temps. Lorsque 

les artéfacts ont été affichés à l’aide du LMS, les participants ont comparé leur travail 

à d’autres (autoévaluation) et ont demandé de l’aide au besoin. Ces résultats indiquent 
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que la séquence d’enseignement a contribué à une transformation vis-à-vis la 

compétence d’autorégulation.  

Perhaps one of the greatest challenges facing education is how we engage individuals 

with the learning process and design and tailor instructional methods to sustain 

positive changes that are feasible, accessible and realistic. (Underwood & 

Farrington-Flint, 2015, p. 31) 

BACKGROUND 

During the mid-1960’s, the community college system was created to meet the changing 

requirements of the Ontario workforce. Currently, colleges are “the higher education pathway 

choice for many students with a lower level of academic preparedness” (Dziwak, 2014, para. 

2). These students may be less motivated (Grimes & David, 1999), have poor study habits 

(Jairam & Kiewra, 2010), and/or lack the ability to self-regulate (Ley & Young, 1998). My 

interests focussed on the rather less studied aspects of Ontario student preparedness for taking 

college-level mathematics courses (Dion, 2014; Maciejewski, 2012; Orpwood & Brown, 2013). 

Calling for changes to both mathematics curriculum and pedagogy, Dion (2014) underscored 

the lack of numeracy skills among college students—especially evident in 

developmental/foundational mathematics courses. Placement into developmental courses may 

be indicated by demographic factors (Reason, 2009) and/or affective traits like learning attitude, 

willingness to seek or accept help, and personal effort (Boylan, 2009; Garrett, 2010). Indicating 

a lack of ability to self-regulate, Ley and Young (1998) stated “developmental students may 

differ from regular admission students in the way they plan, organize, monitor, evaluate and 

even think about the learning process” (p. 47). As this ability is a learned response, research has 

demonstrated that students can benefit from a learning design that instructs and practices self-

regulation (Ley & Young, 2001). In my opinion, educators should utilize the learning 

affordances provided by information and communication technology (ICT) to encourage 

students to explore, analyze, and develop their self-regulation skills. 

PURPOSE OF THE STUDY 

At my college, students in technology programs are required to take a placement test and based 

on score, are enrolled in a Mathematics Foundations for Technology (MFT) course. With a 

desired outcome to improve student success, the MFT course was designed to strengthen and 

correct the previously learned mathematics concepts using a methodology requiring an 

increased use of ICT. After several years of practical experience teaching MFT, and a genuine 

curiosity to understand student preference in a multimedia environment, I questioned the 

effectiveness of an ICT-enhanced approach (Carruthers, 2010; 2012). Research that connected 

self-regulation, the affordances of ICT, and college mathematics courses taken by foundational 

students was limited. The purpose of this study was to evaluate the effectiveness of an instructor 

designed learning intervention in which college students taking a foundational mathematics 

course utilized the affordances of ICT to obtain skills in self-awareness and to better develop 

self-regulatory ability. 

RESEARCH QUESTION 

This presentation focussed on one of my research questions: How do the affordances provided 

by the learning intervention, that are perceived to support metacognition (i.e., self-awareness 

and self-regulation) enhance self-regulation of students in a foundational mathematics college 

course? 
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PARTICIPANTS 

Of the 17 students enrolled in a Mathematics Foundations for Technology (MFT) course, more 

than half were female (n = 10, 58.8%), the majority of participants were 25 years of age or 

younger (n = 12, 70.6%), and 58.8% identified their first language as other than English or 

French. Nine participants (53.0%) self-identified as Asian/South Asian/Southeast Asian and 

eight as other (Caucasian, Caribbean/West Indies, and Black). Ten participants either 

experienced a delay or had taken another post-secondary course, while seven entered directly 

from high school. Twelve students disclosed that the highest course they had taken was at the 

high school level. Some students had not taken a mathematics course in over five years, while 

82.4% had taken one more recently. 

METHODOLOGY 

In this mixed-methods research study, the learning intervention consisted of students 

completing surveys, creating studynotes and screencasts, and using scaffolded learning 

materials delivered either face-to-face (through a classroom learning system [CLS] DyKnow 

software utilizing pen-based tablet PC computing) or asynchronously (through the learning 

management system [LMS]) (Carruthers, 2016). It was conducted in three phases: 1) pre-

intervention, 2) intervention, and 3) post-intervention. Though primarily a quantitative study, 

qualitative data collection was used to illustrate the experience of the participants. In the pre-

intervention phase, quantitative data was collected by administering a survey package (see 

Table 1), and the Online Self-Regulatory Learning Questionnaire (OSLQ) survey was re-taken 

in the post-intervention phase. Qualitative data was gathered in both the intervention and post-

intervention phase through the use of activity surveys and semi-structured interviews. Thematic 

analysis (Braun & Clarke, 2006) was used to categorize student responses. Integration of 

quantitative and qualitative data in a non-sequential way validated findings. 

Phase Item Description 

Pre-

Intervention 

Survey Package Demographic Survey Learner Demographic and 

Characteristics Adapted from (Colleges Ontario, 2014) 

Online Self-Regulatory Learning Questionnaire (OSLQ)  

(Barnard, Lan, To, Paton, & Lai, 2009; Barnard, Paton, 

& Lan, 2008) 

Index of Learning Styles (ILS) 

(Felder & Soloman, n.d.) 

Mathematics and Technology Attitudes Scale (MTAS) 

(Pierce, Stacey, & Barkatsas, 2007) 

Intervention Activity A Students viewed and designed a studynote artefact 

Activity B  Students viewed and created a screencast artefact 

Activity C  Students designed a studynote and created a screencast 

artefact 

Activity D  Students designed a studynote or created a screencast 

artefact 

Post-

Intervention 

Survey OSLQ survey re-administered 

Semi-structured 

Interviews 

Conducted with six individual students 

 

Table 1. Study outline. 

ACTIVITIES  

In Activity A, students viewed an instructor-written studynote. A studynote was a one page MS 

Word Document written using the stylus of the MS Surface Pro 3 tablet PC. Participants 

responded to open-ended survey questions related to their learning gains. Students were then 
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instructed on how to design their own version of a studynote, both in its construction and the 

use of the handwritten annotation features of the tablet PC. This task required students to plan, 

organize and execute a one-page summary document reviewing basic concepts before giving a 

step-by-step solution to a problem. Studynotes were submitted, checked by the instructor, and 

posted to the course website. Participants were given access to these student-created artefacts 

for 31 days after posting.  

In Activity B, the same procedure was used, except that students viewed an instructor-produced 

screencast. A screencast was an audio-visual recording of the computer screen capturing the 

pen stroke motion simultaneously with an audio explanation of a problem solution. Students 

then created and submitted their own to be posted to the course website by the instructor.  

In Activity C, students were asked to create both a studynote and a screencast, while in Activity 

D, students had their choice of which artefact they preferred. As timing was limited to produce 

each of these artefacts, I felt that students would be challenged to activate their newly learned 

self-regulatory skills, thus furthering their development.  

FINDINGS 

The learning intervention afforded students a multimedia environment through the enhanced 

use of ICT, and for this study, development of self-regulation skills was measured. Student 

perception of their self-regulatory ability was evaluated pre- and post-intervention using the 

OSLQ survey. A paired sample t-test was used to compare the subscales of goal setting, task 

strategy, time management, environment structuring, help seeking, and self-evaluation across 

two matched groups. No statistically significant difference was found for a change in either the 

overall self-regulation ability, or each of the subscales noted above.  

Valuable evidence was gained by the analysis of student responses to the activity surveys and 

semi-structured interviews. For example, when explaining what self-regulation meant to them, 

participants illustrated many of the subscales of the OSLQ. In general, their definition saw self-

regulation as goal setting and using schedules to be productive. They found building an 

environment using an organized strategy to concentrate and self-evaluate was beneficial for 

their learning.  

A comparison was made of student awareness and self-regulation gains when presented with 

either an instructor provided studynote or screeencast. 

 Students viewing an instructor designed studynote  

They demonstrated a greater knowledge of themselves as mathematics learners with 

comments such as “it gives me a better understanding of my ability to study,” and “it 

makes me aware of my learning”. They felt they could learn “[anytime] we want” and 

“whenever [we] need”, identifying they found the material to be accessible and 

malleable. Efficiency was also noted, as they realized that a studynote provided “a 

quick review” with “no need to read again and again other notes.”  

 Students viewing an instructor designed screencast 

The benefit of screencasts was summarized with “it enhances the learning process 

with both audio and visual [modes]”. The response “[it] made it feel real, like I was in 

the class again”, indicated that a screencast could be used to remind them of previously 

learned material. They stated “the screencast just answered it all” and that they could 

“watch the video more than once if I don’t understand”, implying its functionality.  

 Instructor designed studynote versus screencast 

Although students described the studynote as an efficient summary tool for review and 

study, most found the screencast recreated the classroom experience at a time more 
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suitable to their personal learning needs. Present throughout was evident 

understanding of the connection between the affordances of the ICT and the growth of 

self-regulation skills. 

A comparison was made of student awareness and self-regulation gains when creating their 

own studynotes and screencasts. 

 Students creating their own studynote  

When choosing to solve a mathematics question related to order of operations, 

fractions, and proportions, designing a studynote helped students to “think through 

everything” and “learn, understand, and concentrate”. “Learn[ing] in a calm and 

comfortable environment” allowed them to structure their environment and manage 

their time “wisely”. I was interested in the finding that although students were familiar 

with writing studynotes, many expressed they had not considered this practice for 

reviewing mathematics concepts. Conversation with participants revealed using a 

stylus to write a studynote in a Word Document was unique, and further, that they had 

never previously shared mathematics work with their peers via a LMS.  

 Students creating their own screencast  

While solving a mathematics problem related to proportions, metric measurements, 

and conversions, creating a screencast taught them “how to study properly” and was 

“self-explanatory for avoiding mistakes”. One commented they “felt like the teacher 

where I was going to lecture the students”. As the artefact was always accessible it 

“help[ed] to study and understand when not in the class”. In conversation, some 

mentioned they were familiar with video creation, but none had used a stylus on screen 

while recording their voice, nor had they considered this technique for solving 

mathematics problems.  

 Students creating their own studynote versus screencast 

The requirement of the increased effort in having to explain mathematical operation 

in real-time was viewed differently by individuals. Some felt it was more labour 

intensive, as they had to “input step by step so the user can understand”, it was “hard 

to explain what I know”, and felt they were “not good at explaining clearly”. Although 

some thought this presented a challenge, others recognized it as a learning benefit as 

they were able to “[find] my mistakes” through this practice.  

A comparison made of the affordances of the CLS and the LMS in their potential to develop 

self-regulation abilities. 

 The Classroom Learning System 

The CLS consisted of using DyKnow Vision software to push instructor designed 

content to individual student pen-based tablet PC’s. This software provided an 

interactive and collaborative workspace for both instructor and students to share 

information. In terms of self-regulation, comments more closely related to the 

environment structuring and task strategy development subscales. They felt they 

“could take ownership of [the work]”. As instructor annotations were saved, they did 

not “need to copy all things on paper”, and thus had more time to be “focused on one 

thing [… because] it is in front of me”. Within the software, students could move at 

their own pace, thereby taking responsibility for their learning.  

 The Learning Management System (BlackBoard) 

The LMS allowed students to log into the course website at their convenience, in 

particular, outside of class time. The MFT course was replete with calendars and 

guidelines, subject outlines, lecture posts, and textbook assignments. Further, due to 

the study design, students were able to access their peers’ studynotes and screencasts. 

Related to the use of LMS, their comments focused on the self-regulation subscales of 

goal setting and time management. Participants were able to “prepare [themselves] for 
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when class was going to start”, “that way I know what I need to do”. Throughout the 

study, a total of 53 student-created artefacts (studynotes and screencasts) were made 

available, which they reviewed a total of 465 times within the 31 day time period. They 

mentioned using these resources for help-seeking and self-evaluation, such as “[I] go 

to answers and check what I did wrong”.  

CONCLUSION 

This work connected some of the pre-existing gaps in the literature related to how a learning 

intervention using the affordances of an enhanced ICT environment could improve the self-

awareness and self-regulatory abilities of students taking a foundational mathematics course 

within the Ontario community college system.  

A noteworthy perspective derived from this study is that a learning intervention which instructs 

and practices self-regulatory skills is beneficial for all learners. Based on response, a contrast 

was evident when viewing an instructor-designed artefact versus students creating their own. 

When viewing an artefact, their comments related to task strategy thinking and how it might be 

used for study and review. When creating their own artefact, responses related to setting goals 

for task completion within the prescribed time and structuring their environment for optimal 

success. This challenged students to develop and practice a new self-regulation skill set. When 

given the opportunity to view the work of their peers (through the LMS), students were able to 

draw comparisons and seek-help to enhance their understanding. Through this experience, I 

have recognized that the self-regulation skills needed in a classroom learning system (CLS) are 

different than those used through the learning management system (LMS). Typically the 

classroom is organized by the instructor, and the need for self-regulation skill is dependent on 

the provided environment (e.g., student-centered, teacher-centered, or technology-centered). 

Outside of the classroom, the student assumes all responsibility for learning, and must put their 

self-regulation skills into practice. For instructors, an awareness of the differing benefits to self-

regulation provided by the ICT affordances should be taken into consideration when designing 

student activities. 

The findings were restricted due to the small sample size, utilization of only one cohort, and a 

single course (Mathematics Foundation for Technology). Though relevant as a direction for 

further study, results may not be generalizable to other situations. 

Future research should include using ICT to understand how students can develop specific self-

regulation abilities through the creation of their own study artefacts. As education moves 

towards more flexible learning environments, straying from traditional face-to-face to the 

convenience of being fully online, course design needs to become more relevant. For students 

struggling in mathematics, understanding how they prefer to learn and self-regulate should 

guide learning interventions utilizing ICT.  
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INFLUENCE OF THE LEARNING ENVIRONMENT ON STUDENT 
TEST PERFORMANCE IN UNDERGRADUATE MATHEMATICS 

COURSES 

Amenda Chow 

York University 

It is common practice during an examination to divide students in the same 

undergraduate class into various locations. Often times, one group of students writes 

their exam in the lecturing room in which they learned the material, while the remaining 

students write elsewhere. Due to the familiarity of the learning environment, students 

writing a test in their lecturing room may be at an advantage over their peers writing 

the same test but in a different classroom. This raises concerns about academic fairness. 

Test scores of engineering students in an undergraduate mathematics course were 

collected. These results lend insights for training students to use their classroom 

environment as a mechanism for learning. 

INTRODUCTION 

At the undergraduate level, a common scenario in one class is for a group of students to write 

their exam in the lecturing room in which they learned the material, while the remaining 

students write elsewhere. This scenario is depicted in Figure 1. The lecturing room is defined 

as the room where the instructor taught the course; while the non-lecturing room is a room the 

instructor did not teach in.  

 

Figure 1. Setup of study 

Due to the familiarity of the learning environment, students who are writing a test in their 

lecturing room may be at an advantage compared to their peers who are writing the same test 
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but in a non-lecturing room. This raises questions about academic fairness, especially during 

high stakes evaluations, such as a midterm or final, and choosing appropriate testing 

environments. There is also the deeper question of how the learning environment is influencing 

students’ test performance and whether it can be used a mechanism for learning. 

The theory that an individual’s memory is easier to retrieve when considered in the environment 

it originated in is a psychology concept known as environmental context-dependent memory 

(Brinegar, Lehman, & Malmberg, 2013; Smith, 1979; Smith & Vela, 2001; Unsworth, Spillers, 

& Brewer, 2012). Environmental context-dependent memory has been explored in controlled 

experiments (Godden & Baddeley, 1975; Pointer & Bond, 1998; Smith & Guthrie, 1921), and 

for pedagogical explorations in the following disciplines:  

a) music (Mirshra & Backlin, 2007),  

b) psychology (Abernethy, 1940; Fansworth, 1934), and 

c) medicine (Coveney, Timothy, Corrigan, & Redmond, 2013; Koens, Cat, & 

Custers, 2003; Koens, Mann, Custers, & Cate, 2005).  

There is little literature available about environmental context-dependent memory in a 

mathematics discipline. Consequently, to address this, test results were collected from 

engineering students enrolled in several undergraduate math courses. Tests scores are based on 

students writing their examination in either their lecturing room or a non-lecturing room. This 

study was discussed at a talk at CMESG 2017, and this document summarizes that presentation. 

A full manuscript has been submitted for peer-review to a journal. 

RESULTS 

The math courses involved in this study ranged from 100 to 300 level, and course content 

focused on common areas of applied mathematics, such as calculus and differential equations. 

Class sizes ranged from approximately 75 to 140 students. Students were taught by one 

instructor per course in one lecturing room during either three 50 minute lectures or two 80 

minute lectures each week. Therefore, for each math course, students’ exposure to their 

lecturing room was between 150 to 160 minutes per week. Classrooms were standard rooms 

common to most universities. 

Two types of test scores were collected. The first type was aggregated data in the form of 

averages based on evaluations such as quizzes, in-class tests and final exams from several 

mathematics courses. In total, 20 averages for the lecturing room, and 20 averages for the non-

lecturing room were collected. This is displayed in Table 1, and demonstrates the sample mean 

between the lecturing room and non-lecturing room are essentially identical.  

 Sample sizes Sample means (%) Sample standard deviation (%) 

Lecturing Room 20 78.31 7.412 

Non-lecturing Room 20 78.41 7.676 

Table 1. Summary statistics for aggregated test scores. 

The second type of data was individual test scores from 77 students in one particular 

undergraduate math course, which was selected randomly. Each of the 77 students wrote a 

midterm and a final exam with one of these tests written in the lecturing room and the other in 

the non-lecturing room. These results are displayed in Table 2, where the difference is defined 

as the test score in the lecturing room minus the test score in the non-lecturing room. From the 

table, the difference is positive. In addition, statistical analysis suggests test scores in the 

lecturing room are (statistically) higher than in the non-lecturing room. However, since the 

midterm test and final exam are not identical, this may be an additional influencing factor. To 
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reduce this disparity, the data was standardized by taking each students’ test score and 

subtracting by the class average of the test. A summary of this standardized data is presented in 

Table 3, and shows similar results to the non-standardized test scores in Table 2. 

Number of paired data values 

 
77 

Sample mean of the differences 

 
2.32 

Sample standard deviation of the differences 

 
11.62 

Table 2. Summary statistics for individual test scores. 

Number of paired data values 

 
77 

Sample mean of the standardized differences 

 
2.56 

Sample standard deviation of the standardized differences 

 
11.24 

Table 3. Summary statistics for individual tests scores that has been standardized. 

SUMMARY 

The learning environment is explored as an influencing factor on student test performance 

during mathematical examinations. Aggregated data based on test averages of quizzes, in-class 

tests and final exams in several mathematics courses indicate the learning environment does 

not influence students’ test performance.  Test scores based on 77 students in the same 

(randomly selected) mathematics course indicate the learning environment does affect students’ 

test performance. A definitive conclusion remains open. Future considerations could be an 

experimental study in which potential influencing factors are controlled by researchers. This 

will help to pinpoint factors in the learning environment that affects students’ recollection of 

memory and in effect their test performance. 
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THE ROLE OF ORAL COMMUNICATION STRATEGIES IN 
ACCESSING ANDASSESSING MATHEMATICAL 

UNDERSTANDING: CASE STUDIES OF PRIMARY SCHOOL 
TEACHERS’ PERCEPTIONS OF TEACHING MATHEMATICS AND 

TEACHING LITERACY 

Cecilia Kutas Chisu 

University of Toronto 

The study investigated primary teachers’ perspectives on teaching mathematics and 

teaching literacy.  The focus was on oral communication strategies to see if perspectives 

could be harmonized by building on teachers’ greater comfort with teaching literacy.   

Case studies in a small suburban GTA school provided qualitative data through 

classroom observation, on-going conversations about observed teaching episodes, 

semi- formal interviews with the teachers and principal at the beginning and end of the 

study, and one participant’s blog and research report. 

Participants’ teaching experience ranged from 10 to 25+ years from kindergarten to 

grade 7.  During the study (2013-2014), members of the school staff were organized 

into teaching partners by grade level to teach math through inquiry with an emphasis 

on communicating mathematical ideas. Evidence collected from grades 1 and 3 lead to 

the following findings: 

 Essential resources for teaching math effectively that teachers need and want, are 

available; however, teachers are unaware of their existence; 

 Teachers who try to implement reform strategies without understanding how they work 

do not achieve the desired result; 

 A teacher with well developed processes for making sense of mathematics, can identify 

gaps in student understanding by relating student behavior to her own processes; 

 When a teacher contrasts his/her sense-making teaching strategies in literacy and 

mathematics, he/she can better identify areas of dissatisfaction in his/her math 

instruction and possible strategies to try; 

 A teacher who is able to think about teaching goals in more general terms may come 

to see parallel objectives between certain teaching strategies in math and non-math 

subjects;  

 Teaching mathematics through inquiry requires students to have a solid grounding in 

early literacy as well as early mathematics; and 

 Reporting requirements that ask for student achievement in mathematics on a strand 

by strand basis encourage teachers to teach the subject strand by strand.   



CMESG/GCEDM Proceedings 2017  New PhD Report 

208  

The study has implications for effective professional development, teachers learning 

math content and developing teaching materials, improving teacher confidence and the 

development of mindful reform practice. Suggestions for stakeholders to facilitate 

teachers’ reform practice are included at the end of the study. 

RESEARCH QUESTIONS 

A case study approach is used to pursue an understanding of the complex phenomena 

surrounding the implementation of oral communication strategies for deepening mathematical 

understanding and fostering mathematical reasoning in the elementary classroom. Teachers’ 

perspectives on the communication strategies they use in teaching mathematics and the 

communication strategies they use in teaching literacy will be explored, with a view to helping 

teachers identify areas where they feel that their instruction in the less favored subject is lacking. 

The thick, rich description characteristic of a qualitative approach is necessary for capturing the 

meaning perspectives of participants and their culture as they construct their world around them. 

The following questions have been developed to guide the study: 

 What teaching practices are used to strengthen the connections between spoken 

language and mathematical ideas? 

  How is students’ ability to reason facilitated through dialogue? 

  What kinds of challenges do teachers encounter as they facilitate classroom dialogue 

for deepening mathematical understanding? 

  What support and assistance do teachers need for facilitating oral communication? 

  What are teachers’ perceived needs for doing mathematics in order to teach math well 

through inquiry? 

These five questions form the basis for the development of this study and provide insight into 

(1) the effective facilitation of oral communication for voicing intuitive mathematical 

understandings, (2) the facilitation of classroom dialogue as a tool for developing students’ 

ability to reason, (3) the kinds of problems that arise as teachers work at implementing these 

practices, (4) where teachers find support for their developing practices, and (5) how self-

perceived teacher efficacy is affected by teachers’ own competence in doing mathematics. 

CROSS-CASE ANALYSIS 

To elicit as much convergent information as possible from the contributing cases, it seems 

reasonable to look at possible patterns in what the participants have to tell us about their efforts 

around the central theme the school adopted during this study. The theme was ‘collaborative 

inquiry in mathematics’ with a strong, embedded emphasis on facilitating student 

communication of ideas. To tease out the contributing components of teachers’ efforts, these 

two teaching objectives are considered individually, as well as how they are connected. 

Therefore, I examine teachers’ efforts to teach students to communicate their understandings, 

their efforts to teach mathematics as inquiry, and how these efforts might be connected.   

All participants made a big effort to teach their students to communicate; however, the bulk of 

their efforts were not based in mathematics. Even Sydney and Tom, who were concerned that 

they would have trouble eliciting students’ ideas during the debriefing part of the mathematics 

lesson, taught their students conversational moves in a language setting. To ensure students 

would be able to carry on extended, independent, topic based conversations, they practiced on 

stories they read. The teachers assumed the skills would transfer to conversations about 

mathematics.   
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Though students eventually learned to carry on topic based conversations for 20 to 30 minutes 

in small groups, Sydney and Tom found that the skill did not automatically transfer to 

conversations about mathematics. According to the literature students’ ability to use 

mathematical jargon meaningfully, referred to as mathematics register, needs to be developed 

as a part of regular conversation in the classroom (Forman, 1996).  For students to develop an 

adequate basis for mathematical communication, they must negotiate shared understandings, a 

common language, and a relatively symmetrical relationship in which none of the students is 

seen as a mathematics authority (Cobb, 1995; Lampert & Cobb, 2003). Furthermore, they must 

be taught to participate in mathematical reasoning practices, which form the core of 

mathematical conversations (Ball, Lewis, & Thames, 2008; Lampert, 2001).    

As the dates of the references show, none of this research is brand new. Teachers’ intensions 

were highly commendable.  However, the lack of awareness of available resources that would 

have tailored their efforts to ensure better success sheds light on a serious problem in 

communication between curricular requirements and curricular support.  If teachers are 

expected to teach students to communicate mathematical ideas effectively, they need structured, 

long-term instruction in how to do it.   

Teachers need to learn the language (mathematical terms) and the grammar (mathematical 

reasoning), and become comfortable with it, before they can be reasonably expected to facilitate 

such communication among their students. They must also teach their students how to talk 

about mathematics. They must develop shared meanings with their students about what it means 

to give a mathematical explanation, what a reasonable justification is, what it means to 

understand someone else’s explanation or justification, what it means to collaborate when 

learning mathematics, and so on (Cobb, Yackel, & Wood, 1989).   When the communication 

of mathematical ideas is seen as an aspect of students participating in the activities of a 

mathematical community, “learning to communicate as a goal of instruction cannot be cleanly 

separated from communication as a means by which students develop mathematical 

understandings” (Lampert & Cobb, 2003, p. 237).  

The mathematics lesson excerpt from Anne’s class on the word problem about “feet living at 

your house”; and the one from Tom’s class on describing geometric shapes both show the 

teachers’ efforts to teach the proper use of notation and mathematical vocabulary. Both teachers 

ask students for input, but the dialogue is very traditional in that the teacher does most of the 

talking in both cases. Students give short answers to specific questions with little or no 

reasoning required on their part. In addition, the teacher, as authority, automatically shuts down 

student reasoning because in the presence of authority, there is no need for argumentation. The 

authority’s word is accepted as known (Cobb, 1995).  

Teachers in this study seemed to do a better job of facilitating student communication and 

reasoning in non-mathematical subjects. Tom’s social studies lesson on the lifestyle of pioneers 

was conducted as inquiry to the point of students asking and answering their own research 

questions. What made it easier for him to facilitate students’ reasoning in this type of lesson? 

Was he more comfortable facilitating student communication and reasoning because he was 

less intent on drilling students in new vocabulary and new concepts? Was it easier for him to 

facilitate reasoning in social studies because he himself was more familiar with the language 

and felt more knowledgeable about the topic he was teaching? If we draw the analogy that 

learning to participate in mathematical reasoning is like learning to speak a new language, these 

kinds of explanations for teachers’ difficulties would seem reasonable. 

Roma was also more at ease facilitating reasoning in non-mathematical subjects. In her case, it 

was reading and writing. Her need for facilitating reasoning and making connections has to do 

with her teaching goals. Two of Roma’s top priorities for student learning focus on students 
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making sense of what she is teaching them and students seeing the reason for learning it. When 

she teaches students to read, the focus is on the story, so they can see the value of reading. She 

teaches reasoning strategies that enable students to better anticipate the story-line and thus make 

reading easier. In the same way, she believes that the math they are doing has to matter to 

students and the problems have to be real for them if they are to engage with mathematics in a 

meaningful way.   

In her opinion, the best way to engage students in meaningful conversation about mathematical 

ideas is to have them work together on problems they want to solve. Helping each other solve 

a real problem they care about will naturally result in students articulating their ideas. She 

believes that students need to talk about math in order to make sense of it because her own 

mathematical understanding is built on an on-going conversation about mathematics with her 

sister all the way through school. The literature supports the idea that mathematical meaning 

evolves through the repeated discussion of actions taken during engagement with mathematical 

tasks, particularly when students articulate their mathematical reasoning and connect their 

solutions to key mathematical ideas (Franke, Kazemi, & Battey, 2007; Hiebert et al., 1997).   

Roma’s contention that the math has to be real, even at the earliest stages of instruction, is 

supported by research that demonstrates that people are capable of figuring out mathematics 

they need without formal mathematical training. For example, a study of housewives in 

California found that the women could solve mathematical problems when comparison 

shopping, that they could not solve when the same problems were posed as formal mathematics 

(Lave, 1988; Sternberg, 1999). Similarly, Brazilian street urchins could do mathematics when 

selling merchandise in the streets, but they could not solve similar problems when presented in 

a school setting (Carraher, 1986; Carraher, Carraher, & Schliemann, 1985). 

Anne’s perspective on the idea that the math has to be real is her belief that students can see the 

value of math in organizing and making things more efficient from a very young age. The 

emphasis in her teaching is on having students work through concepts because in her 

experience, young students need to be exposed to a variety of representations of a math concept 

in order to understand it. She therefore plants the conceptual seeds before she adds vocabulary, 

which is completely consistent with the literature that advocates manipulative use for presenting 

ideas before adding mathematical language (National Council of Teachers of Mathematics, 

2000; Ontario Ministry of Education, 2003). She and Roma even introduce problem solving to 

their grade 1 students based on composing and decomposing numbers even before they cover 

formal operations. So they are focusing on teaching math through inquiry; when they have 

children engage with manipulative based activities in small groups, their objective is to teach 

mathematics through collaborative inquiry. However, they still have to work on adding the 

language, the back and forth discussions, that will make the activities mathematically 

meaningful. 

Anne has specifically stated that she wants and needs professional development on how to elicit 

students’ ideas. Her stated needs in this area, and her related actions helped shed light on some 

teacher challenges associated with mathematically meaningful dialogue in the classroom. 

Anne’s tendency to run out of time before she elicits student ideas orally limits the effectiveness 

of her manipulative-based lessons in generating mathematical meaning. Her habit of stating the 

main ideas herself instead of making students articulate them does little to support the 

emergence of meaning, according to the literature. Research shows that meaning emerges 

through the repeated back and forth between engagement with mathematical tasks and 

discussions of these actions between students and teacher. Specifically, the emergence of 

meaning is connected with students’ articulation of their own mathematical ideas about the 

tasks they are engaged with (Jackson, Garrison, Wilson, Gibbons, & Shahan, 2013; 

Moschkovich, 1999; Walkerdine, 1988).  
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All participants realized that they wanted and needed more professional development to be able 

to facilitate classroom dialogue for the purpose of eliciting student ideas and engaging students 

in mathematical reasoning. Tom said he wanted to see accomplished practitioners demonstrate 

how to teach math through inquiry in a real classroom. He and Sydney searched to find 

classrooms in their school district where student communication of mathematical ideas was 

successfully facilitated. Tom said it was hard to find any, while Sydney found one practitioner 

on-line who worked in another urban center hundreds of miles away.  

Anne and Roma were frustrated with the professional development activity they participated in 

because it stopped short of addressing their specific interests/concerns related to the facilitation 

of classroom dialogue. They wanted to talk about the details of eliciting student thinking: what 

language to use, and the specifics of questioning techniques that result in the student articulation 

of mathematical ideas. According to Anne, they had just gotten started on that conversation 

when time ran out.  

Three of the four participants either showed in their actions, or specifically stated, that they 

were more comfortable and more confident in facilitating student reasoning in non-math 

subjects. When asked to reflect upon the reason for this, two of them ascribed it to having a 

much clearer sense of the stages of student progress in literacy than in mathematics. They all 

said they needed more professional development to understand what was required of them and 

how to facilitate student reasoning and elicit student thinking in mathematics. To help 

participants see that they already use some working strategies in this area, I encouraged them 

to reflect on the strategies they employ in facilitating student reasoning and eliciting student 

thinking in non-math subjects. When asked to contrast their use of those strategies in 

mathematics, they seemed to get a clearer picture of what is missing or unsatisfactory to them 

in their mathematics practice. 

SUMMARY OF THE RESEARCH FINDINGS 

Based on the data collected in this study, the following findings emerged: 

 A description of the stages of student development in mathematics was identified by 

teachers as crucial pedagogical content knowledge they needed to have to teach 

mathematics with confidence. Two of the participants specifically attributed their 

lesser comfort level with teaching mathematics as opposed to teaching literacy, in 

large part, to the fact that they were much less clear on the stages of student 

development in mathematics than in literacy. Therefore the prompts for advancing 

children’s understanding available to them were much less accurate, and consequently, 

less targeted. There is a resource available that addresses this need: PRIME 

(Professional Resources and Instruction for Math Educators), offered by Nelson, 

Canada, is a series of courses on developmental learning in elementary mathematics 

developed by Dr. Marion Small. The course package offers maps of the stages of 

student development (referred to as phases), examples of teaching strategies and phase 

appropriate problems. There is also a pdf available on-line from Nelson which 

summarizes the research, theories and best practices in Math Education as of August 

2002; however, participants were unaware of these resources. 

  It is well documented in the literature that the articulation of mathematical ideas by 

students is crucial in the emergence of mathematical meaning (Boaler, 2002; Jackson 

et al., 2013; Moschkovich, 1999; Walkerdine, 1988). Tom and Anne both know that it 

is important to elicit students’ ideas during class discussions in math, and they believe 

they are working to facilitate the student articulation of ideas. Observation of their 

classes reveals, however, that their students rarely get a chance to articulate more than 

short responses to targeted teacher prompts. Anne routinely runs out of time for 
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eliciting students’ ideas and summarizes the important points of the lesson herself to 

ensure that they are voiced. She expresses feelings of guilt about not doing what she 

is supposed to but continues to run into the same problem. Tom feels the debriefing 

part of his lesson always goes on too long, and students lose interest. Observation of 

his classes reveals that students’ reasoning is only minimally engaged during whole-

class discussions. He usually requires students to give short answers to specific 

questions and proceeds to analyze and connect ideas in his own words.  

In trying to elicit student ideas through specific prompts or stating the main points 

instead of getting students to articulate them, these teachers show that they are 

committed to communicating the important ideas in their lessons. They apply the 

recommended strategies for eliciting students’ ideas and engaging students in 

reasoning practices as they understand them. However, both teachers have expressed 

the need for additional professional development to practice these strategies more 

successfully.  In allowing their classrooms to be observed, they have helped to identify 

the kinds of help they need.  They need to understand (i) the crucial importance of 

having students articulate their understandings so that meaning will emerge, and (ii) 

the importance of having students engage in reasoning so they will remain engaged in 

the discussions. 

 Roma’s solid understanding of math, and her well developed processes for making 

sense of mathematics allowed her to identify gaps in her student’s understanding. She 

was able to do this despite her inexperience with reform methods and her lack of 

familiarity with the stages of student development in mathematics. By reflecting on 

her own processes and contrasting them with her student’s observed behavior, she was 

able to identify the gap in the student’s process that hindered his understanding. 

Roma’s experience would suggest that having a good understanding of the 

mathematics he/she teaches allows a teacher to improve his/her teaching of 

mathematics because he/she can analyze his/her own processes in trying to understand 

students’ observed struggles. Through this type of reflection and contrast, there is a 

good chance the teacher can identify the problem and subsequently find ways to help 

the student over the conceptual hurdle.  

 Three of the participants reported that they wanted help in building their practice for 

promoting student reasoning and eliciting students’ ideas in mathematics. In observing 

their classes, I noticed that they routinely promoted student reasoning and the 

articulation of student ideas in reading and social studies. Therefore, I encouraged 

them to reflect on the teaching strategies they used in these non-math subjects and 

contrast them with strategies they used in teaching mathematics. This technique of 

contrasting helped them better identify areas of dissatisfaction with their math 

instruction, as well as, suggest possible teaching strategies to try in mathematics that 

they were already using in non-math subjects. 

 Contrasting the teaching strategies used in literacy with teaching strategies used in 

mathematics can prompt teachers to think about their goals in teaching the different 

subjects in more general terms. This kind of analysis may help to narrow the gap 

between their divergent perceptions on teaching these subjects. When Roma reflected 

on why she wanted students to know the word wall words without thinking about them, 

she was able to reframe her concept of them as letter patterns that are recurring, widely 

applicable units of literacy. Once she described them in this general way, it was not 

difficult for her to see a parallel between the role of word wall words in literacy and 

the role of number facts in mathematics.  

Teachers who are able to find this kind of bridging perspective between their practices 

have a better chance of lessening their fear of teaching mathematics. 

 Teaching mathematics through inquiry requires students to have a solid grounding in 

early literacy as well as early mathematics. Knowledge gaps in oral communication 

skills, for example, seriously hamper students in paying attention, understanding what 
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is being said and expressing their own ideas. All participants commented on the 

knowledge gaps students arrive with. By grade 3, the gaps can be so severe that 

learning math through inquiry is overwhelming for many students, and consequently 

teaching math through inquiry becomes very challenging for the teacher as well as 

students.   

  Two participants felt that reporting on student achievement strand by strand was 

counter- productive to teaching mathematics well. As experienced teachers, they felt 

that the strands should be integrated in teaching the curriculum and that would be the 

best way to achieve a unified knowledge structure in student understanding. However 

in order to comply with reporting requirements, they felt compelled to teach strand by 

strand. It can, of course, be argued that strand by strand reporting requirements ensure 

that teachers cover all the strands. Still, it has also been shown that an integrated strand 

approach is more efficient and builds better student understanding. Therefore, the work 

of teaching mathematics well would be better supported by reporting requirements that 

reflect student achievement when strands are integrated.  

CONCLUSION 

 Interviews that contrast sense-making teaching strategies can probe math reform 

efforts more deeply. 

 The realization that sense-making teaching strategies serve well in all subjects can 

improve teachers’ perceptions of teaching math and align perspectives. 

  Facilitated analysis of teaching strategies to identify parallel teaching objectives may 

help integrate math into the fabric of teachers’ practice. 

  Three barriers to teachers’ work in advancing reform practice must be addressed: 

a) Teachers need ready access to stages of student development in math and 

associated teaching prompts as an integral part of pre-service curriculum and in-

service professional development. 

b) When teachers use reform strategies in a mechanical way to train students to do 

certain things rather than engage students in reasoning practices, they are not 

developing mathematical understanding. Both students and teachers have to 

engage in reasoning practices to achieve mathematical understanding. Teachers 

who have a solid understanding of the mathematics they teach are in a better 

position to engage their own reasoning to help their students learn. 

c) Even experienced participants feel compelled to teach strand by strand due to 

reporting requirements. Therefore, the modification of reporting requirements to 

reflect student achievement in an integrated fashion would encourage teachers to 

deliver the mathematics curriculum more effectively. 
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In response to the call to support the growing number of college students who do not 

have the mathematical groundings to pursue math-related careers, I have 

conceptualized a mathematics intervention program called Reciprocal Partnership. It 

is proposed to enhance students’ mathematical learning while supporting their social 

development during their secondary-tertiary transition. This study investigates the 

impact of Reciprocal Partnership on the mathematics self-efficacy and achievement of 

first- and second-semester college students. It also examines the structure of Reciprocal 

Partnership to inform the design of effective intervention programs for mathematical 

learning. 

Quantitative results revealed significant effect of Reciprocal Partnership on the 

mathematics self-efficacy of only the first-semester college students but no significant 

effect on mathematics achievement for first- and second-semester students. However, 

qualitative results identified learning benefits for both groups of students such as gains 

in mathematical knowledge and skill, confidence, motivation, social connection, and 

comfort. Results from this study suggest that mathematics intervention programs should 

not focus mainly on the explanatory situation (tutoring) but also on the exploration 

situation (problem solving) and the extensional situation (comparing solution methods) 

to maximize learning outcomes. 

INTRODUCTION 

I define Reciprocal Partnership as the collaboration among dyads to engage in reciprocal 

learning and teaching under the influence of constructive and collaborative environments that 

are structured by the Three Learning Situations framework. Students are paired together to 

reciprocally ask one another questions on which they need assistance, and questions on which 

they can provide assistance. By raising these two types of questions, it is possible to create a 

learning situation where both students of the dyads have no understanding of the raised question 

(exploratory), where only one of the students has knowledge of the raised question 

(explanatory), and where both students have knowledge of the raised question (extensional). 

Reciprocal Partnership, therefore, follows the Three Learning Situations framework to generate 

all these situations and to engage the mental activities introduced by Carpenter and Lehrer 

(1999) as conducive to mathematical understanding 
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The Three Learning Situations framework, as I have outlined, illustrates that three learning 

situations can be created by the different states of understanding of a student dyad (one student 

possesses understanding, both possess understanding or both do not possess understanding). In 

each learning situation (exploratory, explanatory, and extensional), the student dyads engage in 

distinctive learning activities such as problem solving, tutoring, or comparing solution methods. 

These learning activities are proposed to capitalize on the social and cognitive benefits of 

collaborative learning (Johnson, Johnson, & Smith, 2007) and adhere to the tenets of 

constructivism (Thompson, 2013). They also engage some form or degree of the five mental 

activities introduced by Carpenter and Lehrer (1999): construct relationships; extend and apply 

mathematical knowledge; reflect about experiences; articulate what one knows; and make 

mathematical knowledge one’s own. 

 

Figure 1. The Three Learning Situations framework. 
Note. This figure illustrates the five mental activities as they fit into the Three Learning 

Situations framework. It displays “mathematical understanding” at the peak of the pyramid 
where it is supported by the three learning situations: extensional, exploratory, and 

extensional. The five mental activities are listed in all three learning situations and the focused 
mental activities of each situation are bolded. 

First, in the exploratory situation, problem solving allows learners to articulate their method 

approaches, justify their conjectures and describe their viewpoints. Through articulation, the 

learners are reflecting on relations among existing knowledge and the parameters of the 

mathematical problem. By analyzing, comparing and evaluating the parameters of the problem 

to arrive at the solution, the learners are applying and extending their mathematical knowledge 

(Carpenter & Lehrer, 1999). As the learners derive their own solution methods, they make 

mathematical learning their own.  
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Second, in the explanatory situation, when learners are providing explanations, they are 

generating explicit links among ideas in ways that make sense to others. In the process, the 

learners are also extending and applying knowledge by relating their existing knowledge to new 

knowledge, examining and re-constructing the relations (Carpenter & Lehrer, 1999). Carpenter 

and Lehrer (1999) describe articulation as an overt reflection and state that reflection “is 

inherently personal, and encouraging reflection is critical in helping students develop a sense 

of ownership of their knowledge” (p. 30).  

Finally, in the extensional situation, learners are acquiring a repertoire of strategies by 

comparing one another’s solution methods. This is a form of extending and applying knowledge 

because when learners are comparing solution methods they are constructing multiple 

connections among ideas and relating new ideas to what they already know. By articulating the 

similarities and differences among solution methods, they are also reflecting more on their own 

solutions (Carpenter et al., 1999).  In particular, when learners depend on one another to 

compare solution methods, they become more accountable for their own and other’s learning 

(Cockrell, Caplow, & Donaldson, 2000). 

It is an oversimplification to think that any one of the three learning situations alone can support 

all five mental activities introduced by Carpenter and Lehrer (1999). Likewise, it is improbable 

for any one learning situation to engage all five mental activities as each learning situation 

emphasizes some mental activities more than others. For example, an explanatory situation 

focuses more on reflection and articulation, but less on application. Therefore, when all three 

learning situations are applied, what is less emphasized in one learning situation can be 

complemented by another learning situation. Together the three learning situations can provide 

a complete support of mathematical understanding by complementarily engaging all five mental 

activities. Figure 1 is a visual representation of the five mental activities as they fit into the 

Three Learning Situations framework. 

STRUCTURE OF RECIPROCAL PARTNERSHIP 

  

Figure 2. Structure of Reciprocal Partnership. 
Note. This figure illustrates the structure of Reciprocal Partnership that combines both 

supplemental instruction and reciprocal peer tutoring to maximize the occurrences of all three 
learning situations. As displayed in the figure, supplemental instruction creates only the 

exploratory situation and explanatory situation, and reciprocal peer tutoring creates only the 
explanatory situation and extensional situation. Reciprocal Partnership is, therefore, a 

combination of both tutoring methods to create all three learning situations. 
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Since the five mental activities are best achieved through a combination of the three learning 

situations, Reciprocal Partnership is structured to make it possible for all three learning situation 

to occur. Hence, Reciprocal Partnership combines features of supplemental instruction and 

reciprocal peer tutoring. Supplemental instruction is a form of group tutoring in which students 

who are enrolled in ‘high risk courses’ raise questions to upper level students on areas that they 

need assistance (Arendale, 1998). Raising these types of questions creates only the explanatory 

and exploratory situations. On the other hand, reciprocal peer tutoring affords students the 

opportunity to enact the role of the tutor by raising questions on areas that they can provide 

assistance (Pigott, Fantuzzo, & Clement, 1986). Raising this type of questions creates only the 

explanatory and extensional situations.  

Reciprocal Partnership, therefore, allows student dyads to choose questions on areas that they 

need assistance (e.g., supplemental instruction) and generate questions to which they have full 

solutions as required in reciprocal peer tutoring. By allowing each member of the dyad to 

administer these two types of questions (without and with understanding) to his or her partner, 

all three learning situations can be created. Figure 2 is a visual representation of the Reciprocal 

Partnership structure that combines both supplemental instruction and reciprocal peer tutoring 

to maximize the occurrences of all three learning situations. 

METHODOLOGY 

The purpose of this study is to investigate the effects of Reciprocal Partnership on students’ 

mathematical achievement and self-efficacy during their secondary-tertiary transition. A mixed 

methods approach was employed to examine the following research questions: 1) What effects 

does Reciprocal Partnership have on the mathematics self-efficacy of first and second-semester 

college students? 2) What effects does Reciprocal Partnership have on the mathematics 

achievement of first and second-semester college students? 3) What insights does Reciprocal 

Partnership have to inform the design of effective intervention programs for mathematical 

learning?  

Quantitative and qualitative data were collected within the same timeframe. Final examination 

grades and semi-structured interviews were used to examine the academic impacts of 

Reciprocal Partnership on the participants; whereas, pre-and post-surveys on mathematics self-

efficacy and semi-structured interviews were used to examine impact of Reciprocal Partnership 

on participants’ self-efficacy. Although both qualitative and quantitative data were analyzed 

separately, they were converged at the discussion stage for the purpose of cross-validation. The 

intent was to combine the non-overlapping strength of the quantitative methods (generalization) 

and the qualitative methods (small group of participants, in-depth) to produce well-

substantiated conclusions. 

DISCUSSION 

All students revealed in their interview responses that they had gained confidence after 

participating in the Reciprocal Partnership workshops. The reasons for the gain included extra 

practice. The workshops allowed the students to spend time outside of the classroom to practice 

on their course materials. The extra time and effort spent on practicing the mathematical 

questions bolstered students’ confidence in their mathematical skills. The opportunity to teach 

one another also increased students’ confidence as they felt rewarded and happy helping one 

another. Especially during the occasion when first-semester students were able to teach the 

second-semester students, they became much more confident in their own mathematical 

knowledge. In addition, by working in pairs, students received help, encouragement, and 

alternative perspectives from their partner which they believed had helped them to solve 



Kerry Kwan  Reciprocal Partnership 

219 

difficult questions. By overcoming these challenging questions, students experienced greater 

self-efficacy.  

Furthermore, students mentioned an increase in motivation, social connection and comfort in 

their learning. Students were more motivated to work on the mathematical problems under the 

positive influence of other students. The workshops created opportunities for the students to 

meet other people and establish friendships with one another as they could reciprocate the help 

that they had received from their partner. When students felt more accepted and respected by 

other students through the friendship they had established with their partner, they had more 

comfort in their learning, and mathematical learning became enjoyable. In general, the students 

benefited from the inclusive and positive learning environment of the Reciprocal Partnership 

workshops. 

With regards to the academic impacts, students perceived achievement as gains in mathematical 

knowledge and skills rather than improved academic performance on tests and exams. They 

reported that they gained mathematical knowledge and skills through acquiring different 

method approaches because it helped them to use more effective methods to arrive at the 

solution and to identify their own mistakes. Solving problems with a partner was also an 

important avenue through which they gained mathematical knowledge and skills. They found 

it more valuable to work through the questions with a partner than having all the steps presented 

to them in a lecture. Another important avenue was the opportunity to reciprocally tutor one 

another. For example, second-semester students were able to review the mathematical materials 

from Math 1 by tutoring the first-semester students, and vice versa; the first-semester students 

consolidated their understanding of the course materials by providing explanations to the 

second-semester students.   

In contradiction, quantitative data revealed significant increase of mathematics self-efficacy 

only for students in the first semester. The increase in mathematics self-efficacy for students in 

the second semester was found to be insignificant, and this might be affected by a type II error 

such as ceiling effect. Ceiling effect was created as the second-semester students rated their 

pre-survey ratings very high which made it unlikely for significant increase in the post-survey 

ratings. In addition, quantitative data revealed insignificant gains in mathematics achievement 

for both first- and second-semester students even when all students’ interview responses 

revealed positive gains in their mathematical knowledge and skills. Reasons for this 

discrepancy might involve ineffectiveness of the final examination to detect learning gains of 

relevant incidental information (Rittschof & Griffin, 2001) and the insufficient amount of time 

for students to improve their mathematical skills and knowledge throughout the short duration 

of the intervention (Falchikov, 2001).  

Results from this research also revealed a noteworthy insight for effective mathematical 

interventions. Students reported gains in mathematical knowledge and skills during all three 

learning situations and most students preferred the exploratory and extensional situations over 

the explanatory situation in terms of learning gains. However, the explanatory situation is often 

emphasized in most if not all mathematical interventions. Therefore, this research suggests that 

effective mathematics intervention should emphasize all three learning situations and not only 

the explanatory (tutoring) situation since any one learning situation alone cannot completely 

support all mental activities that are conducive to mathematical understanding.     

CONCLUSION 

The challenge to mediate students’ secondary-tertiary transition and to enhance students’ 

mathematical learning has been growing with increasing diversity of college students as well 
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as widening gaps in their mathematical knowledge. This research supports the need for an 

effective intervention that responds to both academic and social needs of college students in 

their mathematical learning. Not only should it afford opportunities for engaging the five mental 

activities that support mathematical understanding (Carpenter & Lehrer, 1999), it should also 

provide social interactions for students to assimilate into their college community (Tinto, 2006). 

Reciprocal Partnership appears to be a viable intervention to address both academic and social 

needs of students in their mathematical learning.  

Reciprocal Partnership has demonstrated the potential to increase self-efficacy, improve 

mathematical knowledge and skills, create positive learning environments and motivate 

learners. These impacts of Reciprocal Partnership may have positive influence in diminishing 

mathematics anxiety, high failure rates, and large academic gaps in performance. It is hoped 

that further research can be conducted on Reciprocal Partnership to verify its potential to 

combat negative perceptions and academic difficulties associated with the learning of 

mathematics.    
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UNDERSTANDING THE INTERACTIONS WITHIN A NEW TEACHER 
LEARNING COMMUNITY COMPOSED OF FIRST TIME 

PARTICIPANTS AND A NOVICE FACILITATOR 

Terry Wan Jung Lin 

McGill University 

SUMMARY 

Recent efforts in improving the quality of mathematics instruction have oriented educators to 

teaching practices that are labeled as ‘ambitious’ because they aim to ensure accessibility of 

content to all students and to support students’ development of solid and durable understanding 

of mathematical ideas. The notion of a professional learning community (PLC) has been 

increasingly promoted as a structure to support changes in teaching practices. Most studies 

present well-established professional communities led by expert facilitators who are most often 

the researchers themselves. It was unclear what opportunities for learning ambitious teaching 

practices exist in new communities composed of first time participants and supported by 

facilitators who are novices in working in this context. 

This study sought to answer these two research questions 

 How do opportunities for teacher learning emerge from interactions within a new 

professional learning community composed of first time participants and led by a 

novice facilitator? 

 How and why do these interactions afford or constrain opportunities for developing 

ambitious mathematics teaching practices? 

Practices grounded in the cultural, historical, and institutional moors are tacit and stable and so 

provide challenges to researchers looking into improving teaching practices. Using the 

sociocultural constructs of cultural models and the figured world, I analyzed the dynamics 

shaping the interactions within a new PLC composed of six volunteer teachers and one 

facilitator during 22 sessions over the course of one school year. 

The results showed that a wide range of openings for opportunities to learn ambitious teaching 

practices arose from the conversations and that these provided windows into the teachers’ 

practice. However, most interactions following the openings, with the exception of a few 

episodes, constrained opportunities for learning because ambitious practices were raised but 

were never unpacked or reflected upon critically by the group. 

These constraining interactions were shaped by the participants’ cultural models relating to 1) 

their participation within the PLC and the purpose of the PLC, 2) their conception about 

teaching and learning mathematics, and 3) the pressure of teaching a program in a high-stakes 
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educational system. The facilitator’s and the teachers’ conceptions of these cultural models 

diverged significantly, thus creating tension and frustration within the PLC. How the teachers 

and the facilitator positioned themselves and each other influenced the ways in which they 

interacted within this context. The teachers’ perceptions on teaching and learning mathematics, 

especially at the grade 10 level where students are required to pass a standardized examination, 

strongly determined the value of some interventions in the conversations. 

The overall findings also supported the need to identify facilitation moves and to support the 

facilitators in understanding the teacher participants’ positions at the start of their work together. 

Skillful facilitation would be necessary to leverage the many openings to conversations about 

teaching practices and to encourage teachers to develop new patterns of interactions that would 

afford more productive conversations about these practices. Important aspects of effective 

facilitation are not only to understand the cultural models that powerfully shape how teachers 

participate in the PLC, but also to learn how to use these as a starting point to support their 

learning. 

RÉSUMÉ 

Les récents efforts pour améliorer la qualité de l’enseignement des mathématiques ont orienté 

les éducateurs aux pratiques d’enseignement décrites comme « ambitieuses ». Ces pratiques 

visent à assurer l’accessibilité du contenu à tous les élèves et de soutenir le développement 

d’une compréhension solide et durable des idées mathématiques chez les élèves. Plusieurs 

études ont montré le potentiel des communautés d’apprentissage professionnelles (CAP) pour 

soutenir les changements dans les pratiques d’enseignement. La plupart des études menées 

présente des communautés professionnelles bien établies et soutenues par des facilitateurs 

d’expérience qui sont souvent les chercheurs eux-mêmes. Cependant, la communauté 

scientifique en connait encore très peu sur le potentiel des pratiques ambitieuses dans une CAP 

composée d’enseignants et d’un facilitateur qui en sont à leur première participation. 

Cette étude cherchait à répondre aux questions de recherche suivantes 

 Comment les opportunités d’apprentissage pour les enseignants émergent-elles des 

interactions dans une nouvelle CAP composée d’enseignants et d’un facilitateur qui 

en sont à leur première participation ? 

 Comment et pourquoi les interactions offrent ou contraignent les opportunités de 

développer des pratiques d’enseignement qualifiées d’ambitieuses ? 

Les théories socioculturelles comme les modèles culturels et les mondes figurés ont guidé mon 

analyse des dynamiques qui façonnaient les interactions au sein d’une nouvelle CAP. Cette 

CAP était composée de six enseignants volontaires et d’une facilitatrice qui se sont rencontrés 

22 fois pendant une année scolaire. Cette perspective a été prise afin de comprendre les points 

de départ des enseignants et de la facilitatrice, afin d’informer les chercheurs et les dirigeants 

du perfectionnement professionnel sur les considérations importantes pour soutenir 

l’apprentissage des enseignants dans les CAP. 

Les résultats ont montré que de nombreuses possibilités ressortent des conversations. Une vaste 

gamme d’ouvertures au sein des interactions servait de fenêtres pour examiner les pratiques 

d’enseignants. Cependant, la plupart des interactions limitaient les possibilités d’apprentissage, 

car les pratiques d’enseignement ambitieuses y étaient mentionnées, mais jamais examinées de 

façon critique ou en tant qu’objet de réflexion par tout le groupe. 

Les résultats ont montré que ce monde figuré a été façonné par des modèles culturels conçus 

par les participants sur 1) la participation et le but de la CAP, 2) leurs conceptions de 
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l’enseignement et de l’apprentissage des mathématiques, et 3) la pression ressentie lorsqu’ils 

enseignent un programme dans un système éducatif aux enjeux élevés. Comment les 

enseignants et la facilitatrice se positionnaient eux-mêmes et positionnaient les autres a 

influencé la façon dont ils interagissaient dans ce contexte. Les perceptions des enseignants sur 

l’enseignement et l’apprentissage des mathématiques, en particulier au niveau de la 10e année 

où les étudiants sont tenus de passer un examen uniforme, ont fortement déterminé le mérite de 

certaines interventions dans les conversations. 

Les résultats généraux soutiennent aussi le besoin d’identifier les pratiques de facilitation et 

d’aider les facilitateurs à comprendre les positions des enseignants au tout début de leur travail 

ensemble. La facilitation des discussions demande une habileté particulière pour pouvoir tirer 

parti des nombreuses ouvertures lors des conversations, en plus de pouvoir amener les 

enseignants à développer de nouveaux modes d’interactions qui offriront des possibilités de 

conversations plus productives au sujet de ces pratiques. Comprendre les modèles culturels qui 

façonnent les façons dont les enseignants participant à une CAP est un des aspects importants 

d’une facilitation efficace, et apprendre à les utiliser comme point de départ pour soutenir leur 

apprentissage l’est tout autant. 
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VALUED KINDS OF KNOWLEDGE AND WAYS OF KNOWING 
INMATHEMATICS AND THE TEACHING AND LEARNING OF 

MATHEMATICS: A WORLDVIEW ANALYSIS 

Gale L. Russell 

University of Regina 

After almost a dozen years of working as the K-12 Mathematics Consultant in the Saskatchewan 

Ministry of Education (a.k.a SaskEd and Sask Learning), while taking one of the first courses 

in my PhD program (Decolonizing Aboriginal Education with Dr. Marie Battiste), I read Leroy 

Little Bear’s (2000) Jagged Worldviews Colliding and a whole new world of thinking and 

understanding started to emerge around me. It was in Little Bear’s work that I finally, after 

being asked to infuse Saskatchewan’s mathematics curricula with First Nations, Métis, and Inuit 

(FNMI) content, perspectives, and ways of knowing for a number of years prior, started to 

understand what this could mean beyond tokenism at best, and cultural appropriation, 

knowledge denial, and destruction at worst. After years of asking my Indigenous colleagues 

“what are FNMI ways of knowing mathematics” and receiving answers such as “I don’t know 

myself” or “that is your journey; you need to find the way”, I started to realize that I had been 

asking the wrong question and should have been asking instead “what are Indigenous ways of 

knowing” or more explicitly “what are the kinds of knowledge and ways of knowing that are 

valued within an Indigenous worldview?” It is very likely that over all those years, people had, 

in fact, provided me with the answer to this ‘new to me’ question but because it was not what I 

had asked I did not recognize the significance of their words. Why the stars aligned on that 

particular day as I read Little Bear’s chapter I do not know, but I do know that I have grown 

intellectually, emotionally, and spiritually because they did, and my journey still continues, 

although with renewed focus, enthusiasm, wonder, and hope. I am no longer focused on the 

singular question of infusing content, perspectives, and ways of knowing, but on the broader 

and complex question of how teaching, learning, and mathematics itself are informed by the 

kinds of knowledge and ways of knowing that are valued, and in so doing, how revisioning and 

reclaiming mathematics and the teaching and learning of mathematics can meaningfully 

happen.  

To set the backdrop for the results of my research, this paper will first give a description of 

what kinds of knowledge and ways of knowing are valued within what I have come to call ‘the 

Traditional Western worldview’ and ‘an Indigenous worldview’, the theoretical framework for 

my work, followed by a brief explanation of the methodological collage that I used within my 

analysis. The rest of the paper will focus on the results of analyses done on various sets of data 

and end with the proposal of a new theory and related philosophy of mathematics. 
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THEORETICAL FRAMEWORK: TWO WORLDVIEW LENSES 

Before entering into the specifics about the two worldviews that are central to my doctoral 

work, it is important to emphasize that although the worldviews have names that reference a 

particular culture or set of cultures, it should not be concluded that membership within either 

of these cultures implies a person holds that particular worldview. These worldviews are named 

in response to perceived trends and tendencies, but not expected norms. Moreover, these are 

only two of undoubtedly an infinite number of worldviews, and I have come to find, at least for 

myself, a kind of fluidity in my ‘worldview status’, moving back and forth between the 

worldviews. One might then question the validity or usefulness of such a framework; however, 

I argue that it allows us to consider what else might be possible and why we have or have not 

made certain changes or decisions. This framework is not rigid; rather, it is flexible and 

accepting and brings forward questions and ideas that might otherwise not have been 

considered.  

Given the limited number of pages allotted to this paper and the abundance of Indigenous and 

non-Indigenous scholars whose work has influenced my thinking on these worldviews I have 

chosen to reference all at once all those scholars whose work has influenced my thinking about 

these two worldviews. I do so now, with the understanding that what follows below is a 

composite of their wisdom, understanding, and thinking as I understand it: Aitken and Bruised 

Head (2008); Allen and Crawley (1998); Arviso Alvord and Cohen Van Peet (1999); Barnhart 

and Kawagley (2005); Battiste (2002); Ermine (1995); Graham (1988); Henderson (2000); 

Howard and Perry (2005); Irzik and Nola (2007); Kawasaki (2006); Kovach (2009); Malcolm, 

Sutherland, and Keane (2008); Mercer, Dominey-Howes, Kelman, and Lloyd (2007); Meyer 

(1998, 2003a, 2003b); Michell (2005); Nisbett (2003); Roy and Morgan (2008); Russell and 

Chernoff (2013); Schelbert (2003); Smith (1999); Snively and Corsiglia (2001); Sterenberg, 

Barrett, Blood, Glanfield, Lunney Borden, McDonnell, Nicol, and Weston (2010); and, Van 

Eiijck and Roth (2007). With the aforementioned in mind, I now provide a brief description of 

the Traditional Western worldview.  

THE TRADITIONAL WESTERN WORLDVIEW 

Central to the Traditional Western worldview is the belief in the existence and need for ultimate 

truths. Knowledge of value within this worldview is singular, linear in its development and 

progression, static in its existence, and above all abstract, compartmentalized, and isolated from 

human existence or interference (in the forms of number facts, formulas, procedures, proofs, 

and so on). These characteristics of knowledge of value naturally lead to a definitive 

dichotomization of knowledge: good and evil, true and false, black and white…. This linearity 

and dichotomization of knowledge ultimately leads to hierarchies of knowledge in which 

certain knowledges are considered higher-level, and thus more important, such as seen in the 

comparison of arithmetic to algebra and algebra to calculus. As the knowledge valued in the 

Traditional Western worldview falls into such hierarchies, then so to do the knowers of that 

knowledge become part of a hierarchy of knowing and specialization. Since more knowledge 

aligns with more authority and power within this worldview, the seeking of new knowledge is 

frequently done for the purpose of having more knowledge, and thereby moving up the 

hierarchies of knowledge and specialization. In the Traditional Western worldview, knowledge 

of value comes from rational ways of knowing with an emphasis on processes that are held to 

be objective, replicable and measureable, such as the scientific method and deductive proofs. 

Finally, because knowledge of value within this worldview is absolute and always true, written 

records of all knowledge are sought and valued because they preserve the truth of the knowledge 

for all times.  
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AN INDIGNEOUS WORLDVIEW 

Unlike the Traditional Western worldview’s emphasis upon facts and objectivity, central to an 

Indigenous worldview is relationships—relationship creation, strengthening, maintaining, and 

expanding drive the seeking of all knowledge.  Because of the centrality of relationships to this 

worldview, both objective and subjective knowledge are perceived as valuable.  Furthermore, 

since relationships go beyond the intellectual domain, diverse sources of knowledge are not 

only valued but sought. For example, within an Indigenous worldview emotional, experiential, 

spiritual, intuitional, traditional, and cultural knowledges are all considered equally valid 

sources of valuable knowledge. Moreover, since relationships are inherently grounded within 

the place and time of the relationship, place and time are also important parts of the knowledge. 

Thus, although abstract knowledge is not rejected within an Indigenous worldview as it would 

be recognized as being valuable in some circumstances, knowledge housed within place and 

context, with story embedded, is considered highly desirable. Diversity in ways of knowing and 

in the kinds of knowledge sought, shared, and produced are highly valued within an Indigenous 

worldview. Finally, since the value of knowledge is determined by the place and time in which 

it is to be used, oral knowledge is highly valued because it can be easily adjusted to meet the 

needs of the knowledge seeker in relation to their place and time.  

With these understandings of the theoretical framework comprised of these two worldviews, I 

next briefly introduce the methodological collage within which this framework was used as a 

tool for analysis. I choose to call this a collage, rather than a bricolage, as the latter implies a 

random collection of what is on hand; whereas, my methodological choices were both deliberate 

to the kind of analysis I wished to do and supportive of each other. 

METHODOLOGY 

The collage of methodologies I have alluded to is comprised of auto/ethnography (see, for 

example Roth, 2005), Gademarian hermeneutics (for more information see Gadamer, 1989), 

and grounded theory (see Corbin & Strauss, 1990 for further explanation). Due to the 

complexity of each of these methodologies, I have chosen to delineate my reasons for choosing 

each of the three within the collage and then explaining how I blended them throughout my 

analysis of the data.  

In auto/ethnography, the goal is for the author (and researcher) to reflect upon their personal 

experiences in relation to a particular culture in order to bring greater understanding of the 

culture in general. Within my research, there are two cultures that I am reflecting upon: 

mathematics and the teaching and learning of mathematics. In using this first methodological 

approach, I am attempting to both self-identify in relation to these two cultures and to highlight 

tensions and other points of interest that my past experiences draw my attention towards. 

In the analysis of my story, I wanted to analyze how my various experiences reflected what I 

valued in relation to kinds of mathematical knowledge and ways of knowing. Thus, I chose 

Gadamerian hermeneutics to engage in a discussion between my story and the two worldviews. 

I used the framework of the two worldviews to engage in metaphorical discussions between a 

person grounded within each of the worldviews and my story in order to suss out what kinds of 

knowledge and ways of knowing I was valuing during the various epiphanies of my story and 

how these two fictitious people, as representatives of the two worldviews, would respond to my 

story and what I was valuing within it. 

As expected, a number of points of tension and interest emerged from my analysis of the story, 

and using grounded theory to provide direction on my choices, I pursued each in turn through 

the collection of additional data and the resulting analysis. Grounded theory also guided my 
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identification of concepts throughout all of the data sets and helped me track which concepts 

continued to appear in my analysis of the data and whether those concepts were merging into a 

larger conceptual category and ultimately on to the proposal of a new theory.  

Thus, my data collection and analysis began with a personal focus which auto/ethnography 

supports. The Gademarian hermeneutics provided a method of engaging with my story from 

the perspective of the two worldviews, and grounded theory provided me the tools to identify 

conceptual labels emerging through the dialogues between the two worldviews and my story. 

In addition, grounded theory aided in the identification of particular points of tension which 

needed to be moved beyond my personal story for data collection, examination, and analysis. 

At that point, auto/ethnography moves to the side, as my research moves from the perspective 

of my personal experience to those bound within the broader contexts of the cultures of 

mathematics and the teaching and learning of mathematics.  

Explicitly, the analysis of data in my dissertation looped through the following steps: 

 presentation of the data,  

 identification of epiphanies within the data (points in the data in which conflict, 

tension, or even possibly significant change has occurred),  

 reflections upon and analysis of the epiphanies through the distinct lenses of the two 

worldviews, 

 coding and description of conceptual labels emerging through the worldview analyses 

as well as identification of emerging conceptual categories and saturation of the labels 

and categories, 

 identification of new data sets to be collected and analyzed, 

and ended when a single conceptual category that had become saturated and a new theory 

emerged. Beyond the variation to Gadamerian hermeneutics previously mentioned (that there 

were no ‘real’ people engaged in the discussion), my collage also varied from most grounded 

theory in that the identification of additional data sets happened at one time, in response to the 

analysis of my story, rather than emerging one after the other over time. 

The next section will briefly summarize the results of the analysis of my story and the additional 

data sets. After the analysis of my story, I will continue with analysis of the philosophies of 

mathematics, the math wars, the struggle of many Indigenous students with mathematics and 

the field of ethnomathematics, and risk education. 

ANALYSIS RESULTS 

My first data set, the story of mathematics and me, begins with my earliest memories of ‘doing’ 

and being aware of mathematics and ends with my aforementioned engagement with Little 

Bear’s text at the start of my PhD program.  Because the story captures numerous aspects and 

events with respect to my relationship with mathematics and the teaching and learning of 

mathematics and because that relationship is challenged and often revised throughout the story, 

I chose to analyze my story according to chronological sections: before starting school; in 

grades 1-8, my two undergraduate degrees; teaching high school mathematics, being a pilot 

teacher, implementation leader, and a master’s student; working at the Ministry of Education; 

and my PhD studies. Throughout these periods, I endeavoured to recall as many memories about 

mathematics and the teaching and learning of mathematics that I had. Using coding of the 

dialogues between the epiphanies found within my story and the two worldviews, I identified 

conceptual labels within each of the sections of my story. In the first section (before starting 

school), I identified the concepts of categorization and isolation, abstraction, singularity, 

relationship, context, and power and authority. In the next section, these same concepts also 
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emerged as did the concepts of hierarchy and specialization. All of these concepts continued to 

be present throughout the remainder of my story with no additional concepts emerging. 

Moreover, within each successive section of my story, more instances of the merging of various 

combinations of these concepts was occurring. As such, the concepts of hierarchy, 

specialization, singularity, categorization and isolation, relationship, power and authority, 

abstraction, and context became consistent in their defining with much saturation and merging 

within and amongst the categories.  

As a result of further application of grounded theory, four areas of tension and interest emerged:  

 how people view and think about what mathematics is (specifically, the philosophies 

of mathematics),  

 how it is believed that mathematics should be taught and learned (specifically, the 

math wars),  

 how mathematics relates to culture and individuals (specifically Indigenous students’ 

struggles with mathematics and implications of ethnomathematics), and  

 how curriculum represents mathematics content with an eye to emerging mathematics 

curricula content (in this case, risk education). (Russell, 2017, p. 122) 

In response to these four areas, I next collected data to better inform my understanding and 

thinking in relation to them, and then began the analysis cycle described above again working 

with each data set separately and then pulling the analyses together in the end. As I continued 

to analyze these new data sets, the same concepts (categorization and isolation, abstraction, 

singularity, relationship, context, power and authority, hierarchy, and specialization) continued 

to be present, and no additional concepts emerged. Moreover, the concepts themselves became 

heavily saturated with no new understandings related to them emerging, and the concepts 

ultimately merged together to form a single conceptual category of the attributes of mathematics 

and the teaching and learning of mathematics, which then led to my proposal of a new theory: 

the Transreform Approach to the teaching and learning of mathematics.  

TRANSREFORM APPROACH TO THE TEACHING AND LEARNING OF 
MATHEMATICS 

The conceptual category that emerged was consistently demonstrating an important relationship 

between the kinds of knowledge and ways of knowing that are valued (or not valued) from the 

perspectives of the two worldviews: where the Traditional Western worldview denied most of 

the knowledge and ways of knowing valued by an Indigenous worldview, an Indigenous 

worldview had space within it for the knowledge and ways of knowing valued by the 

Traditional Western worldview. Thus, this conceptual category and its associated 

understandings led me to propose that there exists an approach beyond the reform and 

traditional approaches that are the existing battlegrounds for the math wars. This approach, the 

Transreform Approach to the teaching and learning of mathematics, is the result of grounding 

the teaching and learning of mathematics (and how we think about mathematics in general) 

within an Indigenous worldview. In so doing, both the reform and traditional approaches and 

thinking about mathematics can co-exist, with the people, place, and time determining what 

kinds of knowledge and ways of knowing mathematics are of greatest value within that 

particular context for the person or people involved. Thus, what mathematical knowledge and 

ways of knowing are to be valued is responsive to the context in which they are being required. 

This approach however does not only serve to ‘house’ both traditional and reform approaches 

and understandings of mathematics, it also provides space for mathematics and the teaching 

and learning of mathematics in between the two approaches as well as beyond either one.  
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This theory then has many potential impacts related to the specific areas that my dissertation 

focused in on: 

 Because the Transreform Approach values diverse ways of knowing and kinds of 

knowledge, Indigenous and non-Indigenous students would be provided the 

opportunity to ‘find themselves’ within mathematics. The Transreform Approach 

would encourage students to bring to bear their stories, emotions, intuition, physical 

understandings, spiritual understandings, and even cultural or traditional 

understandings to the teaching and learning of mathematics, along with the 

intellectual, abstract and rational thinking that has traditionally been valued. 

 The Transreform Approach changes the boundaries of mathematics and the teaching 

and learning of mathematics without negating anything that existed within the previous 

boundaries; rather, it extends and creates new boundaries that allow previously 

unresolvable mathematical contexts and needs to be addressed in meaningful ways.  

 The Transreform Approach consequently can expand and strengthen mathematical 

understanding and ability, which is of advantage for everyone—traditionalist or 

reformer.  

 The Transreform Approach could eliminate the existence and even the perceived need 

for the math wars. 

 The Transreform Approach would work against the cultural biases and even non-

universality of mathematics as it exists in schools. 

In order for the Transreform Approach to come to fruition however, it quickly becomes 

apparent that none of the existing (documented) philosophies of mathematics can sufficiently 

support such an approach. Thus, I next propose a new philosophy of mathematics: transreform 

radical humanism.  

TRANSREFORM RADICAL HUMANISM 

In defining the mathematics philosophy of transreform radical humanism, I necessarily needed 

the philosophy to be similarly grounded within an Indigenous worldview. I also wanted, 

because of the categorization and understandings of existing philosophies of mathematics, to 

be sure that this philosophy was indeed seen as fallibilist or humanist; however, I also wanted 

to be sure that this philosophy was distinctly removed from the aspects of humanism which in 

the past had allowed for individuals and cultures to be segregated and devalued—othered—by 

the dominant culture. In the past, humanism relegated many people, including Indigenous 

peoples, to being less-than human, and consequently their knowledge and ways of knowing 

were deemed inferior at best. For this reason, I have chosen to speak in terms of ‘radical 

humanism’, in that I wish to radicalize the understanding and use of the term humanism in order 

to deny the othering of any person, group of people, or culture in ways that would deny 

significance for alternative ways of knowing and kinds of knowledge. This philosophy of 

mathematics contends that mathematics is a human endeavour in which there are a possibly 

unlimited number of ways of knowing and kinds of knowledge possible. Moreover, the value 

of any particular way of knowing and kind of mathematical knowledge is bound to the context 

in which it is sought and used. Mathematics is related to notions of quantity, space, movement, 

patterns, relationships, certainty, and uncertainty but how those ideas are represented, 

preserved, and applied is dependent upon the place and time of the knowers and seekers of the 

knowledge. There is no one best way to use mathematics, show mathematics, or preserve 

mathematics.  
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ON INCOMMENSURABILITY 

Stemming from this new theory and philosophy of mathematics, I include one last claim in my 

dissertation which counters that of Van Eiijck and Roth (2007) who stated that an Indigenous 

worldview and the Traditional Western worldview (my terms) are “are incommensurable with 

each other” (p. 935). If one looks through the lens of the Traditional Western worldview, the 

mathematics (and science) valued within an Indigenous worldview would seem insignificant 

and irrelevant (hence, incommensurable); however, if one looks through the lens of an 

Indigenous worldview, there is space for the mathematics (and science) that is valued within 

the Traditional Western worldview as well as all others. Thus, the Transreform approach, and 

its associated philosophy, open mathematics teaching and learning to commensurability 

between the mathematical knowledge and ways of knowing that are valued within both 

worldviews by choosing to position oneself within an Indigenous worldview’s set of values for 

mathematical ways of knowledge and kinds of knowledge. 
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OPENING SPACE: COMPLEXITY THINKING, CLASSROOM 
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MATHÉMATIQUES EN ÉCOLE ÉLÉMENTAIRE 
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Saint Francis Xavier University 

INTRODUCTION 

A TEACHER’S DILEMMA 

The genesis of this research began through observations made in my own classrooms across 

Canada and from the occasions I had to be part of the living systems that are elementary 

classrooms. My experiences as a teacher and as a teacher educator could best be described as a 

complex network of occurrences that hold more meaning for me as an interconnected web than 

if I considered each happening individually. A complex perspective provides valuable insights 

into the nature of living systems and how a collective may become greater than the sum of its 

parts through its interactions and web of connections. My personal teaching philosophy arose 

through observation of students’ interactions and their growth and learning made possible 

through collaboration and engagement. As a mathematics teacher, however, my observations 

are less about students engaging in meaningful conversation about their mathematical thinking 

and learning and more about their procedural practice of skills-oriented problems. The 

following key questions guide my teaching in the elementary mathematics classroom where I 

aim to create conditions for students learning through collaborative engagement and 

conversation. In short, how do I  

 Initiate and foster mathematical discourse in my classroom? 

 Engage my students in mathematical thinking and problem solving rather than 

problem practicing? 

 Promote and develop a complex mathematical learning community in my classroom? 

Recalling a specific classroom event that I experienced as a substitute teacher during a self-

imposed, mid-career sabbatical, I experienced a pedagogical shift in my teaching that would 

help me answer these questions. Faced with a seemingly unruly group of students one day, I 

recognized the futility in trying to ‘direct’ the energy in the classroom. What stands out for me 

now is the understanding that I could no more control the situation than I could the weather or 

the traffic. Instead, I invited the student body to reach some level of self-organized order by 
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choice. Rather than trying to manipulate the students to change who and what they were as 

individuals and as a group, I joined with them and proceeded to have my own interactions. I 

listened from the inside and created the space for the student body to adapt and self-organize. I 

recall their efforts to accommodate me as a new participant in what I would come to call a 

system: more a learning collective than a collection of learners, to paraphrase Davis and Simmt 

(2003). This experience prompted me to pursue more literature around complex systems and, 

most importantly, how I might create the conditions for complexity in my own classroom. My 

research emerges from one social meeting methodology, Open Space Technology (OST), that 

was designed to respond to these conditions. Through OST, I moved my thinking and 

instructional questions forward by finding connections among the threads of complexity 

thinking, classroom discourse and student engagement. 

THEORETICAL FRAMEWORK 

COMPLEXITY THINKING 

Complexity thinking provides a lens to describe complex adaptive systems, i.e., anthills, bird 

flocks, weather patterns, et cetera (Johnson, 2001). Complexity thinking clarifies not only the 

self-organizing, adaptive capabilities of systems, like a classroom, but also illuminates the 

emergent qualities of the ‘whole’ that is at once self-similar to, yet somehow ‘more than’, the 

simple combination of its agents. Emergence, as a phenomenon of complexity, speaks of how 

possibilities, new ideas and ways of being arise through engagement and, as connectivity 

strengthens, converges into a new order. Davis and Simmt (2003) describe minimum 

requirements (deep simplicity) to foster complex learning systems in mathematics classrooms: 

 Internal diversity 

 Redundancy 

 Self-organization 

 Decentralized control 

 Neighbor interactions 

As complexivists tend to think in terms of occasioning emergence; that is, providing the 

conditions necessary to sustain the complex system, these requirements provide such conditions 

and support emergence in the classroom. 

OPEN SPACE TECHNOLOGY: COMPLEXITY IN ACTION 

OST is a social technology for large-group facilitation that promotes meaningful conversation, 

allows for new ways of thinking, and generates creativity and change. OST principles create a 

‘space’ for learning where participants self-organize according to interests and needs around a 

common purpose (Owen, 1997).  

The OST principles are 

 Whoever comes is the right person—It is not necessary to have every person in the 

group join a conversation, just those people who care the most about that particular 

topic. If only one person comes, it might be a focused occasion for thinking and 

writing on the issue; 

 Whatever happens is the only thing that could have—Participants let go of 

expectations and work with whatever unfolds; 

 Whenever it starts is the right time—Creativity does not happen on a schedule. 

Everyone enjoys the flexibility of relaxed time constraints; 
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 When it is over, it is over—If a group finds a solution or reaches a conclusion in 20 

minutes, people move on to the next group. If it takes two hours, people keep talking 

as others join in and/or leave independently (Owen, 1997). 

One law, the Law of Mobility, reminds participants that if they are neither learning nor 

contributing to a group, they must leave and join a session in progress where they feel more 

useful and inspired or not (Owen, 1997). The Law of Mobility sits at the heart of OST: 

participants have full freedom of choice and accountability for their own contributions and can 

take responsibility for their own learning.  

The OST design has three phases. First, from an opening circle, individuals voluntarily create 

conversations by posting topics of concern or interest. Second, self-organization allows all 

participants to choose where they would most like to contribute, and the Law of Mobility allows 

them to switch to another conversation at any time. Participants who choose not to join a 

conversation immediately become, in Owen’s terms, Butterflies and Bumblebees. ‘Social’ 

butterflies may visit many small groups, choosing to remain on the periphery of the 

conversations and to make occasional contributions. Bumblebees, as their namesake in nature, 

are participants who move around, cross-pollinating ideas as they go. Finally, a closing circle 

concludes the session. Participants reconvene in the original opening circle formation to reflect 

on their involvement in the conversations. 

In mathematics, where thinking, or cognition, and communication necessarily go hand-in-hand 

(Sfard, 2007), it is vital that teachers and students find ways to participate meaningfully when 

they communicate understanding. OST offers a simple framework that could foster such 

communication thereby changing the quality of mathematics discourse and students’ take-up of 

it in significant ways.  

RESEARCH QUESTION  

The primary question guiding my research is 

What changes to students’ participation in learning communities and take up of the 

discourse of mathematics are brought about by the introduction of Open Space 

Technology in the mathematics classroom? 

OST provided those conditions necessary for participants to engage in meaningful exchanges 

that, over time, helped build connectivity among diverse participants and a space for complex 

emergence and convergence. 

METHODOLOGY 

ACTION RESEARCH  

Data were generated through five recursive action research cycles in which four OST sessions 

were held (See Figure 1). The research took place at an elementary school in Canada. 

Participants were 24 grade 6 students and one classroom teacher. Data sources included 

transcripts from audio and video recordings of the conventional mathematics classroom and of 

the OST sessions; student and teacher semi-structured interviews; field notes and observations; 

and student journals. An integrated approach to classroom discourse analysis (Cazden, 2001) 

used Sfard’s (2007) framework for mathematics discourse analysis and Gee’s (2011) identities 

building tool to hear more fully the students’ exchanges. I defined meaningful exchanges as 

interactive behaviors among semi-autonomous agents that were self-generated within the 

shared container of the classroom which included a common purpose, an open physical 

environment and mutual constraints. These behaviors could, in my analysis, lead first to 
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emergence in the form of shared mathematical information, ideas as well as insights and 

consequently, to convergence toward a new collective understanding, a new order, or change 

in how students understand numeracy. Three types of talk emerged from the data as student 

conversations showed sequences of such meaningful exchanges: (1) sharing information; (2) 

building knowledge; and (3) exploring possibilities.  

 

Figure 1. Recursive action research cycles. 

Complexity thinking: 

Characteristics and necessary 

minimum conditions 

Discourse focus: 

Structure and moves 

In mathematics classroom 

discourse, to what extent do we see, 

hear and/or experience: 

Internal diversity and 

redundancy 

Participant structure Whole class, small group, dyad, 

individual 

Decentralized control (Self-

organization) 

Discourse phase Univocal—transmitting, receiving 

Dialogic—generating, listening, 

questioning 

 Social talk Initiation, response, evaluation, 

teacher mimicry, illusory participation 

Organized Randomness 

(Liberating Constraints) 

Sequence development Adding on, complementing, 

challenging 

 Discourse function Asking, explaining, giving 

information, checking in, offering 

opinion, clarifying, observing, 

accepting, disagreeing, rejecting, 

blocking, re-voicing, summarizing 

Neighbor Interactions Sequence orienting 

 

Commenting, organizing, problem 

solving, reviewing 

 Forms of mathematical 

knowledge 

Procedures, concepts, strategies 

 Mathematical discourse 

use 

Mathematical words, narrative, 

routine, visual representations 

Emergence Types of talk Sharing (storytelling, commenting) 

Building (organizing, adding on) 

Exploring (testing ideas, playing with) 

 Blocking Interrupting, inhibiting, controlling 

space, telling more than listening to 

others 

Table 1. Complexity thinking analytic lens for classroom discourse: Third iteration. 

Plan

ActObserve

Reflect

  First                        
Iteration 
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ANALYTIC LENS 

My intention in developing the coding instrument for the data and building the complexity 

thinking analytic lens for classroom discourse was to illuminate, from the perspective of 

complexity thinking, the structure of discourse and account for the variety of discourse moves 

arising in the classroom (See Table 1). The coding, developed iteratively at each analysis phase, 

makes visible the students’ participation in the OST sessions (e.g., participants structure, social 

talk, blocking, etc.) and accounts for their take-up of the discourse (e.g., univocal, dialogic, 

discourse use, and types of talk including sharing, building, and exploring, etc.) all the while 

maintaining a complexivist view of the complex learning system and the minimum conditions 

that ensure its viability.  

FINDINGS  

SHARING  

As students began to self-organize into circle conversations, the most apparent instances of 

meaningful exchanges appeared as sharing opportunities with students offering insights and 

personal reflections and stories on a variety of topics as indicated in the diagram below. The 

contributions of each student as they shared in turn their ideas about patterns and their 

usefulness, served to create a common sense of awareness around their topic. As the discourse 

continued to develop among them, the significant examples of sharing among students set the 

stage for their mathematical thinking.   

 

Figure 2. Conversation circles. 

In some instances, exchanges became significant as students made connections to personal life 

experiences and used mathematical words to offer examples about the topic that were 

meaningful to them. Their examples showed understanding of mathematical concepts as 
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familiar routines in shared understanding of operations, such as the multiplication tables. 
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Engagement with the topic was clearly articulated with each contribution that the students 

shared. Students’ input propelled the conversation forward as students accepted each comment 

and often inspired others to make additional connections and share from their own perspective. 

Students often used the device of storytelling and the term ‘story’ to motivate the conversation 

and participate in the classroom discourse through sharing.  

BUILDING  

The OST sessions provided the space for students to choose freely their areas of interest and 

the manner of their contributions with the purpose of building knowledge together by 

conversing within a collaborative setting. From the Latin to work together, collaboration 

changed the nature of the work in this mathematics classroom and relocated the subject as the 

work of mathematicians who make and find patterns; rather than calculate answers to textbook 

problems and record solutions on the whiteboard. The experience of the circle conversations 

provided opportunities for students to think actively, to ‘own’ their work, and to take 

responsibility for completing it efficiently and accurately. Evidence of students questioning, 

elaborating on what others said and offering their own new perspective on issues became 

apparent through subsequent iterations of the complexity thinking analytic lens.  

 

Figure 3. Individual student movement. 

Taken together, students’ verbal explanations and visual representations of problems in their 

journals with the increased student movement through the open space of the classroom 

indicated efforts in the circle groups to clarify their mathematical thinking with each other via 

verbal and visual information and to build upon their mathematical knowledge through 

increased connectivity within the classroom network. As indicated in the diagrams of student 

movement, overall connectivity among the students increased through the iterations of the 

research cycles and strengthened meaningful exchanges as they were more often shared through 

the growing classroom network. 

EXPLORING 

Asking questions like, “What would happen if you multiplied an even number of odd numbers 

(e.g., 3 × 3 × 3 × 3) or an even number of even numbers (e.g., 2 × 2 × 2 × 2)?” or “What would 
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happen if you multiplied an odd number of odd numbers (e.g., 3 × 3 × 3) or an odd number of 

even numbers (e.g., 2 × 2 × 2)?” opened the door to a wider conversation that integrated 

patterning concepts naturally with multiplication concepts. Students began to consider these 

patterns from the level of multiplicative thinking rather than relying solely on earlier 

conceptions of multiplication as repeated addition or, perhaps, memorization of facts. A 

systematic investigation of such issues in number theory allowed students to consider what 

makes sense in any given situation, to deepen their understanding of number relationships and 

develop a broader sense of numeracy and confidence in problem solving. This example showed 

the extent to which the conversation among participants explored possibilities to obtain a new 

understanding.  

 

Figure 4. Whole class movement. 

This most complex level of classroom discourse emerged gradually through several iterations 

of the research cycle as students expressed new ways of thinking and openings for exploring 

and investigating new possibilities. Efforts to deviate from the otherwise monotonous task of 

completing basic facts or computation refocused students’ attention on deeper understandings 

of number relationships and created a broader sense of numeracy and confidence in problem 

solving. 
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sustained engagement through sharing became apparent in the early iterations of analysis as I 

considered data from the traditional classroom activities in contrast to data generated through 

the first iterations of OST. Students relocated consistently in the classroom space to engage in 

conversation as Bumblebees, successfully cross-pollinating information as they went. The 

contributions of disengaged learners in the classroom, rather than lost or ignored, were counted 
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a discursive space where they could build upon their ideas; and third, how the classroom 

discourse relocated toward a more dialogic space open to possibilities.  

FINDINGS II: MATHEMATICS DISCOURSE 

Subsequent findings focused on students’ take-up of the discourse of mathematics. Students 

relocated the subject into a discursive space, different from their traditional classroom, through 

building. In this way, doing mathematics became a new activity with students showing self-

directed responsibilities to engage in collaborative problem solving and accountability to 

communicate understanding with peers. Students empowered with freedom and choice to 

pursue meaningful exchanges where they could, increased student connectivity in the classroom 

and enriched the classroom network. Classroom discourse shifted from predominantly univocal 

toward a more dialogic space open to exploring possibilities. Close analysis of classroom 

discourse revealed students’ efforts to take up the features of discourse in meaningful ways 

through mathematical words, routines, narratives, and visual mediators.  

FINDINGS III: PARTICIPATION 

Additionally, findings were noted in the commitment to and sustainability of student 

participation in small-group learning communities around the open space of the classroom. 

Student interviews and journal records indicated that while OST was useful to students because 

many people could participate and they could get ideas from others; it was difficult as well 

because of the frustration felt when students could not be at every conversation. Evidence of 

the emergence of mathematics as a collaborative process of problem solving became apparent 

as students sustained meaningful conversations and, in some instances, proposed original 

strategies for problem solving. Significant obstacles to participation and more meaningful 

exchanges emerged through blocking as some students demonstrated antagonistic, heedless, 

and excessive methods for silencing and defying other students’ efforts to share or build 

knowledge together. 

EDUCATIONAL IMPLICATIONS 

MATHEMATICS EDUCATION AND STUDENTS 

OST offers teachers an effective methodology that they can incorporate in their approach to 

mathematics education. Firstly, it empowers students to become active participants in their own 

learning while the reduced role of authority, found traditionally in the teacher, becomes a shared 

responsibility among the students. Secondly, OST places the onus on students to self-organize 

around topics they feel are important to discuss, thereby warranting fuller and prolonged 

engagement. Thirdly, OST ensures that all students are given full choice over their actions and 

full accountability for their learning so the issue of student compliance becomes irrelevant as 

the system accommodates all degrees of participation. Therefore, there is no need to opt out or 

remove oneself entirely from the system. In general, the minimum conditions of complexity 

thinking as embodied in the principles of OST serve to occasion learning rather than cause it 

and may promote a more sustainable learning system. 

CLASSROOM DISCOURSE AND ANALYSIS 

OST provides opportunities for mixed-ability groupings and collaborative activity, thereby 

enriching classroom discourse. Critical, in this regard, is the teacher/facilitator’s role in 

supporting learners through the modeling of productive discourse and the holding open of space 

by acknowledging the self-organization of the complex learning system where possibilities 

might emerge for meaningful participation and fruitful conversations. 
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OST also opens the space for students to make choices, give and take feedback productively, 

and communicate their mathematical thinking in effective ways, thereby encouraging a growth 

mindset. The facilitation of OST in this classroom provides space and opportunities for all 

students to remain active participants in their mathematics learning. As such, this meeting 

methodology holds potential for teachers looking for ways to encourage choice, freedom, and 

accountability in their students. As the data indicated to me in many exchanges, students need 

to learn how to give and take feedback more productively to advance their thinking rather than 

inhibit themselves or others from building new understandings. Continuing to use OST 

regularly, along with skill development in creating and maintaining conversations through 

effective communication strategies and encouraging growth mindsets may be beneficial to 

many students. 

ACADEMIC RESEARCH 

Complexity thinking’s minimum conditions (self-organization, decentralized control, diversity, 

redundancy, neighbor interactions) ask researchers to view and design classroom research 

differently. My own observations and subsequent analysis, in this way, echo Owen’s (1997) 

proviso for OST participants: “Be prepared to be surprised” (p. 101). In complexity terms, the 

introduction of one small change may bring about unexpected transformation on a much larger 

scale. This, in many ways, was evident for me in the research and it is my hope that further 

research involving OST and mathematics might assist other teachers in experiencing their 

classroom differently as well.  

OST is complexity in action and opens a space for future possibilities to emerge. In concert 

with action research, teachers may find ways to illuminate student engagement and increase 

classroom connectivity with students as their knowledge network develops in an open space of 

learning. They may also embrace action research as a methodology to illuminate how students 

interact and communicate in an effort to acknowledge fully their complicity in the development 

of classroom discourse. Contributions to a growing body of classroom research in this way will 

inform and enrich their practice as well as the practice of others. 

CONCLUDING THOUGHTS 

When this research classroom met the minimum conditions of complexity thinking that 

generated self-organization, students increased their participation in mathematical activity and 

gained insights into their mathematics knowledge through sharing, building, and exploring. 

This was created through the intervention of OST as a social meeting methodology enabling 

more meaningful exchanges and collaboration among students. Promoting such opportunities 

for complexity in action and opening the classroom space so that these minimum conditions are 

met supports mathematical discourse and increases knowledge building and understanding for 

students.  

Many questions continued to arise for me as I considered the implications of the findings. For 

example, how best to support students in creating meaningful exchanges to build capacity for 

increased sharing, building, and exploring, and how best to assist students in the art of hosting 

a conversation? Could the sharing, building, and exploring increase by investing in the 

development of communication skills for participants specifically? As well, based on some 

students’ reflections after the OST sessions, I recognized their expression of enjoyment in a 

classroom where having fun is not always appreciated. Future questions then occurred to me 

including Is playfulness an avenue into deeper ‘exploring’ of mathematical concepts (e.g., 

patterns, multiplicative thinking)? And, is ‘having some fun’ (student journal) usurping the 

traditional importance of memory recall of facts (e.g., times tables drill) hence supporting 
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convergence and, specifically, numeracy? Investigating these and other questions yet to emerge 

now become the foci of subsequent iterations of my complexity thinking action research cycle. 
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INVESTIGATING MATHEMATICS TEACHERS’ KNOWLEDGE FOR 
TEACHING AND THEIR LEARNING TRAJECTORIES 

Zhaoyun Wang  

University of Toronto 

This study investigated three secondary mathematics teachers’ knowledge for teaching 

and their learning trajectories from their own schooling through their establishment as 

experienced teachers in their education system. Three case studies were conducted 

through semi-structured research instruments and interviews. Other data such as prior 

and current official curricula and materials related to teachers’ professional 

development were also collected. The findings indicate that there are five categories of 

professional knowledge for teachers: subject matter knowledge, curriculum knowledge, 

knowledge of students, mathematics pedagogy, and knowledge of professional 

development. Each has its subcategories. The categories and subcategories have their 

own characteristics and are connected with each other at some levels. The findings also 

indicate that the process of teacher professional development is complex. Teachers 

learn from various formal and informal sources. Teachers’ knowledge for teaching is 

not static but is dynamic. Their knowledge is shaped by changes in school curriculum 

and the teachers’ choice of approaches to and learning directions for their professional 

development. 

INTRODUCTION 

Over the last four decades, research has provided evidence that teachers’ professional 

knowledge is closely related to students’ achievement and quality of instruction (Baumert et 

al., 2010; Hill et al., 2008). Many researchers believe that content knowledge and pedagogical 

content knowledge are vital components of teachers’ knowledge that affect students’ 

achievement (Baumert et al., 2010; Kleickmann et al., 2013).  

Since Shulman (1986, 1987) developed a seminal model of teachers’ knowledge, many 

researchers have refined this model and investigated both teachers’ knowledge (e. g., Ball, 

Thames, & Phelps, 2008) and the development of their professional knowledge (Depaepe, 

Verschaffel, & Kelchtermans, 2013). In recent decades, researchers have focused on teachers’ 

subject matter knowledge and pedagogical content knowledge. They have designed various 

research instruments to measure teacher’s knowledge (e.g., Baumert et al., 2010; Krauss et al., 

2008). At present, there is no universally accepted way to measure teachers’ knowledge for 

teaching.   

Measuring mathematics teachers’ knowledge for teaching and understanding their process of 

knowledge growth is valuable for mathematics education. It would be helpful to determine what 

teachers need to know in order to teach elementary or secondary school mathematics. This 
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information could improve teachers’ programs and their professional development. Hence, this 

study investigated three secondary mathematics teachers’ knowledge in subject matter, official 

curriculum, students’ misconceptions, and pedagogical content knowledge and professional 

learning trajectories.  

LITERATURE REVIEW 

INFLUENTIAL MODELS OF TEACHERS’ KNOWLEDGE 

Since Shulman (1986, 1987) developed a model of teachers’ knowledge, educational 

researchers have refined and expanded the model to investigate mathematics teachers’ 

knowledge. In this section, I will explain Shulman’s model and a few other influential models 

that have been developed in recent decades.  

Shulman (1986) suggested that teacher knowledge consists of content knowledge, pedagogical 

content knowledge, and curricular knowledge. He defined content knowledge as 

the account and organization of knowledge per se in the mind of the teachers….To 

think properly about content knowledge requires going beyond knowledge of the facts 

or concepts of a domain. It requires understanding the structures of the subject matter. 

(p. 9) 

Subject matter knowledge includes substantive and syntactic structures:  

The substantive structures are the variety of ways in which the basic concepts and 

principles of the discipline are organized to incorporate its facts. The syntactic 

structure of a discipline is the set of ways in which truth or falsehood, validity or 

invalidity, are established. (p. 9) 

Pedagogical content knowledge is the “blending of content and pedagogy into an understanding 

of how particular topics, problems, or issues are organized, represented and adapted to the 

diverse interests and abilities of learners for instruction” (Shulman, 1987, p. 8). Teachers’ 

curriculum knowledge encompasses understanding the scope of programs designed for the 

teaching of particular subjects and topics at a certain level, and the variety of available 

instructional materials in the programs. Curriculum knowledge also includes knowledge of 

alternative curriculum materials for a given subject or topic in a grade. In addition, it includes 

lateral and vertical curriculum knowledge. Lateral curriculum knowledge “underlies the 

teacher’s ability to relate the content of a given course or lesson to topics or issues being 

discussed simultaneously in other classes” (Shulman, 1986, p. 10). Vertical curriculum 

knowledge “is familiarity with the topics and issues that have been and will be taught in the 

same subject area during the preceding and later years in school” (p. 10).  

Ball et al. (2008) refined Shulman’s (1986, 1987) model and its categories of mathematics 

teachers’ knowledge based on their empirical research. Their model includes two major 

categories: subject matter knowledge (SMK) and pedagogical content knowledge (PCK). Each 

consists of subcategories. SMK includes common content knowledge (CCK), horizon content 

knowledge (HCK), and specialized content knowledge (SCK). They defined CCK as “the 

mathematical knowledge and skill used in settings other than teaching” (p. 399). The SCK refers 

to “the mathematics knowledge and skills unique to teaching” (p. 400). HCK “is an awareness 

of how mathematical topics are related over the span of mathematics included in the 

curriculum…. It also includes the vision useful in seeing connections to much later mathematics 

ideas” (p. 403). PCK includes knowledge of content and students (KCS), knowledge of content 

and teaching (KCT), and knowledge of content and curriculum (KCC). KCS is knowledge that 

combines knowing about students and knowing about mathematics; KCT combines knowing 
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about teaching and about mathematics. They placed Shulman’s (1986) third category, 

curriculum knowledge, as KCC. 

The model of Fennema and Franke (1992) included four components of teachers’ knowledge: 

knowledge of mathematics, knowledge of learners’ cognition in mathematics, pedagogical 

knowledge, and beliefs. The content of mathematics is teachers’ knowledge of concepts, 

procedures, and problem-solving processes within related content domains. It includes 

knowledge of concepts underlying procedures, relationships between concepts, and knowledge 

organization. Pedagogical knowledge refers to teachers’ knowledge of teaching procedures, 

including planning, classroom routines, and general pedagogical strategies. Knowledge of 

learners’ cognition is defined as knowledge of how students think and learn, and how this 

happens within specific mathematics content. It also consists of knowing how students acquire 

mathematics knowledge, and understanding the processes students use and difficulties they may 

have (Fennema & Franke, 1992).     

Other researchers working in various countries around the world have also created models of 

mathematics teachers’ knowledge. German mathematics education scholars (Baumert et al., 

2010; Krauss et al., 2008) investigated pedagogical content knowledge (PCK) and mathematics 

content knowledge (CK) at the secondary school level. In their research, pedagogical content 

knowledge (PCK) is constructed of three components: mathematics tasks, student 

misconceptions and difficulties, and mathematics-specific instructional strategies; i.e., tasks, 

students, and instruction. The tasks dimension assesses teachers’ ability to identify multiple 

solution paths; the students dimension assesses teachers’ ability to recognize students’ 

misconceptions, difficulties, and solution strategies; and “the instruction dimension assesse[s] 

teachers’ knowledge of different representations and explanations of standard mathematics 

problems” (Baumert et al., 2010, p. 149). Mathematics content knowledge (CK) in these studies 

refers to in-depth background knowledge of the secondary school mathematics curriculum in 

Germany.  

Rowland and his colleagues (2005) created an empirically-based conceptual model called the 

“Knowledge Quartet” for observation and analysis of classroom teaching. It focuses on 

classroom application of teachers’ mathematics-related knowledge. It includes four 

dimensions: foundation, transformation, connection, and contingency. Each category is 

composed of a few subcategories. Foundation includes overt subject knowledge, use of 

textbooks, and reliance on procedures. Transformation comprises use of instructional materials, 

choice of examples, and presentation. Connection includes connections between procedures 

and concepts, decisions about sequencing, and recognition of conceptual appropriateness. 

Contingency comprises responding to students’ ideas and teacher insight.  

RESEARCH ON PROFESSIONAL DEVELOPMENT 

Teachers’ professional development takes place through both formal and informal learning. 

Formal learning refers to a structured and organized environment, while informal learning 

refers to activities in which a teacher participates in the workplace (Grosemans, Boon, 

Verclairen, Dochy, & Kyndt, 2015). Many educational scholars have proposed general ideas 

for teacher professional development. They have suggested: collaboration; collective 

participation; a focus on crucial problems of curriculum and instruction; continually gaining 

knowledge, professional habits and norms; providing opportunities for teaching and feedback; 

a focus on students’ learning; follow-up activities; long-term support; coaching teachers; peer 

observation; inquiry-oriented learning approaches; and school-based learning communities 

(Desimone, 2009; Hill, Beisiegel, & Jacob, 2013; Little, 2006).  
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However, because teacher education lacks a common theoretical, well-defined, and shared 

conception of the mathematical knowledge required for teaching, researchers have not reached 

an agreement on what SMK and PCK can be tailored for teaching (Hoover, Mosvold, Ball, & 

Lai, 2016). Researchers understand that effective research instruments are vital to measure 

teachers’ knowledge and further improve teachers’ programs and teaching. They have 

suggested the further investigation of teachers’ knowledge for teaching, including designing 

effective instruments to examine mathematics teachers’ content knowledge and pedagogical 

content knowledge (Blömeke & Delaney, 2012; Hoover et al., 2016).  

METHODOLOGY 

PARTICIPANTS  

The participants were selected from among Ontario mathematics teachers who worked in an 

urban metropolis. They were from three different schools and all three participants were male. 

In this study, they go by the pseudonyms of Ron, Alan, and Hardy. They were mathematics 

department heads. They studied under a five-year high school system when they were students 

themselves while the current Ontario high school system spans four years. Ron attained a 

bachelor’s degree in the mathematics teaching stream at the University of Waterloo, and a 

bachelor of education degree at the University of Western Ontario in 1993. He attained a 

masters’ degree in mathematics for teachers at the University of Waterloo in 2013. Alan’s 

majors were in applied mathematics and history at the University of Toronto. He attained a 

bachelor of education degree from the Ontario Institute for Studies in Education at the 

University of Toronto. He has been a teacher since 1993. Hardy’s major was bioscience at the 

University of Toronto. He earned a bachelor of education degree from Queen’s University. He 

had taught for 24 years when he was interviewed in 2014. At the time of the study, Ron taught 

in an independent school, and Alan and Hardy taught in public schools.   

DATA COLLECTION  

Data were collected through multiple resources: interviews, documents written by the 

participants, classroom observation, emails with participants, documents published on a 

participant’s website, and some documents related to participants’ knowledge, such as official 

curriculum (K-12) and textbooks recommended on official websites and used by participants. I 

also collected and examined first- and second-year undergraduate linear algebra and calculus 

courses and course outlines designed by undergraduate mathematics instructors. Moreover, I 

collected published articles about the changes in the Ontario secondary school education system 

and curricula and their impact on teaching and learning.   

DATA CODING AND ANALYSIS 

To derive evidence of mathematics teachers’ knowledge from the data, pattern-matching 

strategies (Creswell, 1998; Yin, 2014) were used for logic analysis. I designed categories and 

subcategories of participants’ professional development trajectories and four types of 

mathematics teachers’ knowledge based on the literature. When examining each case, a 

comparison method was used to analyze the data. Through the comparison of the three cases, 

the categories and subcategories of teachers’ knowledge were modified or changed.   

I used inductive reasoning to seek some unanticipated and core categories and subcategories 

for teachers’ knowledge. “Inductive analysis refers to approaches that primarily use detailed 

readings of raw data to derive concepts, themes, or a model through interpretations made from 

the raw data by an evaluator or researcher” (Thomas, 2006, p. 238). For each case, I also sought 

salient themes and foci on professional development and the participant’s knowledge for 
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teaching. Through cross-case analysis, I sought participants’ common concerns and foci in their 

knowledge and learning trajectories.    

FINDINGS 

TEACHERS’ LEARNING TRAJECTORIES: 

The three participants first ensured the proficiency of their mathematics content knowledge for 

teaching mathematics. Ron thought he was prepared with enough mathematics knowledge 

because his bachelor’s degree was in a mathematics department’s teaching stream. He was 

taught every subject related to secondary school mathematics. He believed that he did not need 

to upgrade his mathematics knowledge when he became a teacher. After some years of teaching, 

he felt bored with teaching the same content daily, and then earned a master’s degree in 

mathematics for teaching. As a result, he felt he had refreshed his mathematics knowledge for 

teaching. When Alan and Hardy became secondary school teachers, they upgraded their 

mathematics content knowledge. They made sure that they did not make mistakes when 

teaching. Alan felt that he had not understood a few concepts in depth, such as logarithms and 

operations. He upgraded these weaknesses for teaching. Because Hardy’s major was not in 

mathematics, he made up for some mathematics content he felt he needed to upgrade. Hardy 

and Alan also stated that, as novice teachers, they encountered challenges in that some students 

did not want to learn, or they did not know how to interpret mathematics content in classes. 

They took some time to make their teaching flexible and effective.  

They took various paths in their professional development. They learned from formal and 

informal activities. They learned from workshops and conferences organized by the Ministry 

of Education or their board of education. They learned from their own experience of teaching 

and learning, their secondary school and undergraduate teachers, their colleagues, their 

students, textbooks and curriculum materials, internet information, and self-directed learning. 

For example, when Hardy encountered a challenge that one of his students did not want to learn 

in classes, he asked his colleagues how to deal with this problem. When Ron’s students asked 

him how to solve difficult questions, he tried various ways to solve these problems. When he 

invigilated mathematics contests, he saw students’ answers and found good ways to solve 

problems. 

TEACHERS’ MATHEMATICS KNOWLEDGE 

The participants were asked to solve nine mathematics questions, which were related to the 

mathematics concepts of absolute value, trigonometric identity, quadratic equations and 

function transformation, simplifying rational expressions, and proof; these included one algebra 

question and one geometric question. They told me that the concepts of absolute value and 

radical equations had been removed from the official curriculum. They did very few proof 

questions. Alan said that he had last seen most of the questions they were asked to solve in this 

study 15 years ago. He had not seen them since he left university. When the three teachers 

solved an absolute value question: How many integers satisfy |2x – 5| < 9?, all of them drew 

graphs to get solutions first, and then they used the absolute value concept to solve the 

questions. When I asked them why they drew graphs first to solve this problem, they answered 

that students were used to using calculators and drawing graphs to solve problems.  

One algebraic proof question was used in this study:    

1. Proof: if a, b  ℝ, then a2 + b2 ≥ 2ab, if and only if when a = b, a2 + b2 = 2ab 

2. Suppose x + y = 7 (x, y  ℝ), what is the maximum value of xy? 
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Ron proved question 1) and solved 2) with quadratic function or derivative methods. He did not 

use the conclusion of 1) to solve 2). After I reminded him that he could do this, he said: “They 

[students] actually understand the tool. They know the square maximum area. So usually, when 

you do that, when a = b, ab gets maximum value”. Hardy and Alan solved question 2) with a 

derivative of a quadratic function. They did not prove question 1), and did not realize the 

relationship between questions 1) and 2). They told me that the curriculum had moved away 

from proof questions and inequality questions. 

PERSPECTIVES ON THE ONTARIO CURRICULUM 

The three participants thought that the official curriculum emphasized precalculus and the use 

of technology. The secondary school curriculum had moved away from or de-emphasized some 

important mathematics concepts. The participants also knew the changes in the elementary 

mathematics curriculum. Ron stated that “most of the high school math curriculum is pre-

calculus. There is a little bit of geometry and a little bit of statistics, but the vast bulk of it is for 

preparing students for calculus”. He reported that proofs were taken away from all the 

mathematics courses except for a little content. “The only good thing left was trigonometric 

identities. But it is downgraded. It is a small component for the grade 11 course and a little in 

the grade 12 course,” Ron said. Conic sections, axis rotation, polar coordinates and equations, 

complex numbers and inductive reasoning were also taken out of the high school curriculum. 

Combination and permutation content only appears in the Data Management course, which is 

taken by students who are not in the stream to pursue advanced mathematics. 

Alan believed that technology was good for showing and demonstrating mathematics content 

and ideas. However, as students were doing less abstract proving mentally with pencil and 

paper, they did not get a deep understanding and appreciation of mathematics. Hence, Alan 

thought, “the weakness of the curriculum is for the academic level [students], it is emphasizing 

technology too much for the academic level. It emphasizes on the technology at the expense of 

more abstract thinking”. He believed “if we were still doing the proofs and the technology 

added to that, that would be good. But because they do everything by technology now, they are 

missing an abstract appreciation for math”. 

Hardy worried about the official expectations for students in the content changes. He said, “I 

think that our expectations have changed in terms of what we expect. There is also content that 

we used to think was important, that I think now, at least at the provincial level, they do not 

think as important anymore”. 

When the participants chose curriculum materials, they used standard textbooks to make sure 

all students in their schools had the same learning progression. However, they might add some 

mathematics content that they had discussed with colleagues. They also provided proofs and 

reasoning for important content. They selected supplemental documents for students’ learning. 

They also selected internet materials or websites from which students could learn.  

IDENTIFYING STUDENTS’ MISCONCEPTIONS 

Five typical students’ wrong answers were provided to the three participants and they were 

asked to identify the students’ misconceptions. They identified reasons for the wrong answers 

from the perspectives of students’ understanding of the concepts, their prior learning in 

elementary mathematics, their behavior of learning, and teachers’ teaching methods. The 

participants pointed out which concepts students might not understand and how to address them. 

Hardy and Alan also stated that students might not do assignments and some brought 

misconceptions from elementary mathematics, which might lead to mistakes.  
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Ron recognized the student mistakes in the case of simplifying 

(xa  +  xb) / (x + xd) = (x2ab) / (x2d). Ron thought that, in this case, when students collected like 

terms, they had multiplied them. He believed that the students knew the difference between 

addition and multiplication. However, they might not know that addition was repeated 

multiplication, and essentially, these two operations are the same thing. They might think that, 

if there was an x and another x, then the result was x squared. He thought, in this situation, the 

students actually did not know that the meaning of x squared was x times x.  

When Alan was asked why students made mistakes such as 
𝑥

2𝑥+3
+

3𝑥+1

3𝑥+5
=

𝑥+3𝑥+1

2𝑥+3+3𝑥+5
=

4𝑥+1

5𝑥+8
 , 

he said that students’ skills in fractions were often very low, and they did not understand fraction 

operations because they had not done enough drills in this area. He said that, because students 

did not understand fraction operations, then they made mistakes when calculating rational 

expressions; he felt this was the source of the mistake above. Hardy thought because students 

memorize a lot of rules and their understanding is rule-based, they might mix up these rules 

unless they know them well and how to apply them. Hardy pointed out when students learned 

fraction operations, they did not understand the concept of a unit fraction. Hence, when they 

added two rational expressions, they made similar mistakes. He reminded students that 

“remember that you can only add and subtract things which are ‘alike’. These are not alike; 

you cannot add them”. 

PEDAGOGICAL CONTENT KNOWLEDGE 

In this study, teachers’ pedagogical content knowledge was tested, how teachers blended 

mathematics content knowledge, knowledge of students, knowledge of curriculum and 

pedagogy in teaching. Participants were asked about five topics related to teaching. The 

questions asked in this part of the study were about how the participants introduced variables, 

concepts of trigonometry, and polynomial division, how they used technology, and how they 

used analogies or metaphors in their teaching.     

When the participants taught, the curriculum materials they chose integrated students’ prior 

knowledge, new knowledge, the students’ familiar environment or life, analogy, metaphor, 

comparison and technology. In their teaching, they used mathematics teaching software, 

projects, and real-life materials to demonstrate mathematics content. They also considered the 

alignment of algorithms and fundamental ideas between elementary, secondary, and 

undergraduate mathematics. For example, when the three participants taught polynomial 

division, such as (6x2 + 5x + 6) / (2x + 3), they all refreshed the algorithm of long division. Each 

teacher also had his personal teaching characteristics. Ron said: 

When I teach polynomial division, I usually go back to long division. They learned 

long division, but they just learned it as algorithm, they did not learn why it works. So 

they just know steps. So I go back and do some long division and talk about why it 

works……I talk about counting systems in base 10, because we count in base 10, but 

students do not realize base 10 is just one base. There are bases—you can count in 

other bases if you want to. And I say, in my opinion, you count in base 10 because we 

have 10 fingers. If we had 8 fingers only, we would probably develop base 8 in our 

counting system. So we do division questions with base 8, we see the process is the 

same, and then we do division questions in base x, and you see the process is the same, 

and you see that is polynomial division.    

When Alan taught this topic, he asked students if they could do long division of integers. He 

found that his students did not remember the method of long division because they used 

calculators in elementary school. However, the textbook authors assumed students already 

knew long division when they were exposed to polynomial division. He said, “I do one with 

integers [division] on one side on the board, and I do the same thing with polynomial division 

on the other side. So they [the students] can see the same procedures”.  
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Before Hardy taught polynomial division such as (6x2 + 5x + 6) / (2x + 3), he reviewed how to 

turn improper fractions into mixed fractions. Then he reminded students that the methods and 

procedures of polynomial division were similar to improper fraction operations. He said that he 

encouraged students to do polynomial division in the same way that they used the algorithm for 

long division because this method was similar to what they were used to in terms of division. 

Of course, he also taught students the synthetic division method. 

CONCLUSIONS AND IMPLICATIONS 

In this section, I draw conclusions about the five aspects of teachers’ knowledge. First, teachers’ 

subject matter knowledge will concentrate on the requirements of the official curriculum. There 

is a positive association between the depth and breadth of teachers’ mathematics knowledge 

and the requirements of their school curriculum. If teachers are not prepared with enough 

mathematics knowledge as is required in the school curriculum before becoming teachers, they 

will make up for this knowledge when they are teachers. If they learned mathematics content 

that does not appear in the curriculum, this knowledge will fade gradually.  

Second, teachers can recognize the strengths and weaknesses of an official curriculum. Because 

of the strong mathematics knowledge and learning experience of the participants in this study, 

they provided supplementary materials to their students to make up for the weaknesses in the 

curriculum and ensure students’ learning continuity, especially for STEM major students. 

My third conclusion is about teachers’ identification of students’ misconceptions. Teachers can 

recognize which concepts students understand or are vague They also recognize the possible 

roles of misbehavior and motivation in learning.  

Fourth, teachers’ pedagogical content knowledge integrates mathematics content, curriculum, 

students’ prior knowledge and cognition, pedagogy, analogy, comparison, metaphor and 

technology together. Teachers teach flexibly. Each teacher may have different approaches to 

teaching, but the destination is the same: making students grasp mathematics content and 

fundamental ideas. Teachers’ enacted curriculum materials are based on the curriculum and 

textbooks, but are adjusted based on students’ situations.  

Finally, the process of teachers’ professional learning is complex. Teachers develop their 

professional knowledge through formal and informal activities: organized activities and 

workshops, self-selected activities, the influence of their own teachers, students’ challenges, 

colleagues, textbooks, and internet materials. Through comparing the content they teach, the 

challenges they receive from students, and their reflections on their own teaching, teachers 

make judgments about their knowledge deficiencies and seek approaches to upgrade their 

knowledge. Each teacher makes sure to teach correct mathematics content and uses proper ways 

to make content comprehensible to students. Their self-monitoring and self-motivation drive 

teachers to seek opportunities to upgrade their professional knowledge. Teachers’ knowledge 

is also shaped by changes in the school curriculum and their choice of approaches to and 

learning directions for their professional development. 

This study implies that educational organizations need to create opportunities for teachers, 

especially novice teachers, to upgrade their knowledge as needed. Preservice programs may 

evaluate student teachers’ mathematics content knowledge and add mathematics content that 

fosters teachers deeply understanding content, and add fundamental ideas that align elementary, 

secondary, and undergraduate mathematics. In-service teacher programs need to be tailored to 

teachers’ needs in teaching such as how to teach core mathematics concepts, how to identify 

students’ misconceptions, and how to use technology to enhance their teaching. Teacher 
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programs may refresh teachers’ subject matter knowledge after they have taught for some years. 

This study also implies that teacher programs may add content related to self-monitoring of 

one’s knowledge for teaching and ways to upgrade professional knowledge. Moreover, 

pedagogical content knowledge is the art of integrating or blending mathematics content, 

students’ cognition, curriculum, and pedagogy together. Different teachers with different 

students may have different ways to teach the same content. Hence, teacher programs may 

provide exemplary lessons for teachers’ observation, discussion, and imitation. This also 

implies that novice teachers should have confidence in themselves and seek opportunities to 

develop their professional knowledge.    
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WHAT/HOW CAN WE LEARN FROM THE DEAF MATHEMATICS 
CLASSROOM? 

Christina M. Krause 

University of Duisburg-Essen, Germany 

This ad hoc-session had its roots in the idea of looking from different perspectives and with 

entirely new eyes on a piece of data that has been gathered in the course of a larger project on 

deaf students’ learning and conceptualization of mathematics—and the ad hoc interest in 

participating in such a session expressed in conversations during the poster session. The video 

data (Krause, 2018) presented an episode from a grade 5 deaf geometry classroom to provide 

an insight into how mathematics is taught and learned in such a specific setting, serving as input 

for the discussion, especially for those who came to the session without any previous experience 

with deaf education. 

SOME SPONTANEOUS IMPRESSIONS 

A first spontaneous insight concerned the observation that when first encountering a 

mathematical idea through discourse, ‘everything’ has to be an action to make sense of the signs 

as means to communicate such that conceptual and referential understanding goes hand in hand. 

Moreover, mathematical experience might become more likely to be gathered by being the 

mathematical object, being put in the centre of the mathematical activity, in this case rotating a 

figure around a point for accessing the idea of point symmetry. While this action-based 

approach might be beneficial to provide concrete context to understand basic concepts that are 

accessible through perception, deriving at more complex and ‘abstract’ concepts that cannot be 

approached through action might become an issue. This sheds an interesting perspective on deaf 

students’ struggles with abstraction as reported by practitioners (e.g., Brinkley 2011). 

The discussion quickly moved away from the concrete case of deaf learners but towards finding 

similarities and differences in their way of learning to the case of others, e.g., the way dyslexic 

learners process information. One participant brought up that dyslexic learners process 

information holistically and struggle with a linear representation of information, just as deaf 

signers do. Insights on how mathematical knowledge is represented holistically through 

gestures or, more specifically, in sign language, and how this benefits the deaf learners might 

also become beneficial to support dyslexic learners. This potential interaction between two 

fields in special education that have not necessarily been seen as linked before provides an 

excellent example of how looking at a specific group of learners might provide a benefit 

beyond. But also much more in general, we agreed that we can learn a lot from “asking” 

different groups of learners, maybe also heading towards universal task and teaching design. 

However, an important methodological question with which we left the discussion is How we 

can become better able to come to understand the approaches of the special students? Certainly, 

this demands for combining a mixture of different methods of gathering and analysing data, 

both taking into account the specific background of the learners. Non-verbal expression might 

be taken into account through drawings to provide an additional resource, e.g., for the case of 

deaf or dyslexic learners, allowing them to fix their thoughts more holistically than possible 

through language.  
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THE MATHEMATICAL ASSOCIATION OF TANZANIA (MAT) 
EXPERIENCE IN CMESG CONFERENCE 

Said A. Sima 

University of Dar es Salaam 

It was a great pleasure for Mathematical Association of Tanzania (MAT/CHAHITA) to be 

represented by a chairperson of the association among the more than hundred participants of 

the 41st conference of Canadian Mathematics Education Study Group (CMESG), which took 

place at McGill University, Montréal from the 2nd to 6th June, 2017. The chair attended this 

conference under the full sponsorship of Capacity Development for Mathematics Teaching in 

Rural and Remote Communities in Tanzania simply known as in Tanzania as Hisabati ni 

Maisha. This project is of three universities which are University of Dodoma (Tanzania), 

University of Alberta and Brock University (Canada). MAT/CHAHITA would like to thank the 

project for sponsoring him to establish and strengthen the cooperation already in place. 

The MAT was established in January 1966 by a group of mathematicians at the Mathematics 

Department, University of Dar es salaam. The Department of Mathematics is the patron and 

also a Headquarter of the association. The association has been active since 1966. 

OBJECTIVES AND ACTIVITIES 

The main objective is to facilitate improvements in the teaching and learning of mathematics 

and its applications in primary, secondary and tertiary levels. The association is bridging these 

education levels. The MAT activities are publication of books, MAT Bulletins, organizing 

Mathematics contests for primary and secondary schools, conducting zonal and national 

mathematics seminars, Pi day celebrations, and other outreach activities. 

CHALLENGES 

The main challenges are an inadequate number of mathematics teachers particularly at 

secondary level. In 2016, there was a scarcity of more than 7,000 mathematics teachers in the 

country (Basic Education Statistics in Tanzania (BEST), 2016). Other challenges are few 

mathematics teachers, most of the teachers have low mathematical skills, lack of ICT teaching 

resources, and lack of funds for implementing MAT activities. These challenges are the main 

reason for the association to find means to alleviate or reduce poor performance of mathematics 

in national examinations results. For instance, the ordinary secondary level average pass rate in 

the national examinations from 2008 to 2017 is 17.46%. 

FUTURE PLANS 

Future plans include to reach more schools/teachers through cooperation with District councils, 

stimulate interests through seminars and Pi day celebrations, write new text books, booklets to 

facilitate teaching and learning and to attract funds from donors who are ready to help or work 

with the association on MAT activities. We also envisage initiating a teaching volunteer scheme 

through projects in order to reduce the scarcity of mathematics teachers. Furthermore, we need 

to educate the society to use ICT on teaching and learning mathematics. In these activities, we 

need partners that we can jointly write the projects. 



CMESG/GCEDM Proceedings 2017  Ad Hoc Session 

262  

REFERENCES 

The United Republic of Tanzania, President’s Office, Regional Administration and 

Local Government. (2016). Pre-primary, primary and secondary education 

statistics in brief. Retrieved from http://dc.sourceafrica.net/documents/118112-

Tanzania-Pre-Primary-Primary-and-Secondary.html  

 

http://dc.sourceafrica.net/documents/118112-Tanzania-Pre-Primary-Primary-and-Secondary.html
http://dc.sourceafrica.net/documents/118112-Tanzania-Pre-Primary-Primary-and-Secondary.html


 

 

Mathematics Gallery 
 

 
Gallérie Mathématique 





 

265 

TOWARD A HYBRID MODEL TO DESCRIBE CREATIVE ACTS IN 
MATHEMATICS LEARNING ENVIRONMENTS 

Ayman Aljarrah 

University of Calgary 

In my poster, I presented parts of the findings of a larger research study that explored collective 

creativity in elementary mathematics classroom settings. Two claims underlying the rationale 

of my research study are “in this changing world, those who understand and can do mathematics 

will have significantly enhanced opportunities and options for shaping their futures” (NCTM, 

2000, p. 5), and doing and understanding mathematics are creative processes (Martin, Towers, 

& Pirie, 2006) that should be fostered at both the individual and the collective levels. However, 

what does creativity look like in mathematics classroom settings? Scholars in pedagogy, 

mathematics education, and teacher education have generated a rich literature base promoting 

learning for fostering, and characterizing mathematical creativity. However, few of the current 

definitions for creativity are suited to the distributed and collective enterprise of the classroom. 

In my research study, I adopted a design-based research methodology (DBR) to explore 

mathematical creativity with(in) a collaborative problem-solving environment. I worked 

closely with participant teachers toward co-developing classroom tasks, and studying the 

design, implementation, and re-design of these tasks. I also collaborated with scholars in the 

field of mathematics education in designing worthwhile tasks and learning environments, 

developing theories of learning, and re-designing the tasks and the learning environments. 

Data analysis and interpretation revealed that creativity in mathematics classroom settings is a 

multifaceted phenomenon that is located in, and stems from, students’ (co)actions, and 

interactions. I suggested four metaphors (namely, overcoming obstacles, expanding 

possibilities, divergent thinking, and assembling things in new ways) to describe students’ 

creative acts while they are working on an engaging problematic situation. In addition, I have 

drawn on both the origins of the word creativity and the assumption that creativity is a social 

phenomenon to approximate a description of creativity as it emerges in classroom settings. In 

my description, I argue that creative acts are the (co)actions, and interactions, of a group of 

curious learners, while they are working collaboratively on an engaging problematic situation. 

Such acts, which may include (1) overcoming obstacles, (2) expanding possibilities, (3) 

divergent thinking, and (4) assembling things in new ways, trigger the new and the crucial to 

emerge and evolve. Thus, creativity, for me, is not the final end-product that results from 

students’ actions and doings, rather creativity is located in, and stems from, those actions and 

doings themselves that result in what might be considered as new and significant to, at least, 

the local classroom community. 
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PROBLEM DRIFT: IMAGING EMERGING CURRICULAR 
SIGNIFICANCE 

Nat Banting 

University of Alberta 

This poster depicted an example of problem drift, the method of analysis used in my master’s 

work that explored the implications for adopting an enactivist lens of cognition while teaching 

in a culture of curriculum (Banting, 2017). Through the enactivist tradition (Maturana & Varela, 

1987), as well as complexity theory as applied to education (Davis & Sumara, 2006), the 

classroom structure of the small group was conceptualized as a complex knowing system 

capable of maintaining coherence with(in) an environment by continually posing problems to 

coordinate the group’s knowing (Varela, Thompson, & Rosch, 1991). 

Attending to problem drift, then, is the process of observing the re-posing of the problem 

relevant to the group’s attention as they know—that is to say, act—together (Banting & Simmt, 

2017). For the teacher, the identification of problem drift creates the opportunity to observe the 

emergent character of the group’s cognition in relation to particular curriculum mandates. In 

this particular study, each observed shift in the problem coordinating knower and environment 

was coded to contain correlative strength with two anticipated curricular outcomes. Charting 

the problems in direct concert with curricular outcomes provided an image of the contexts (the 

relevant problems) in which curricular processes became known. 

Problem drift has pragmatic value as a method of analysis for teachers and researchers 

observing the knowing action of classroom groups. It stresses the processes through which the 

curriculum becomes known, thus providing information as to what perturbations may trigger 

further interaction with anticipated outcomes. Observing knowing is no longer accomplished 

by seeking answers to the question, “How did they solve the problem?”: this insinuates a static 

knower working on an external problem. Rather, problem drift orients the observer’s attention 

to the question, “What problem are they solving?” This shifts focus away from describing 

knowledge as held by human beings and toward observing the knowing actions of humans 

being.  
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INCORPORATING WRITING INTO THE UNDERGRADUATE 
MATHEMATICS CURRICULUM 

Lauren DeDieu 

University of Minnesota  

Writing is essential in almost all careers, subjects, and disciplines. Many mathematics 

instructors have been using writing extensively in their courses and researchers testify to its 

benefits. These benefits include facilitating deeper understanding, developing communication 

skills, and providing instructors with deeper insights into students’ learning and reasoning.  

Writing in the math classroom can take a variety of forms including reflective (students reflect 

on their personal thoughts, feelings, and experiences that relate to the content being learned), 

expository (students explain complex ideas to non-experts), and excogitative (students explain 

their mathematical thinking carefully and thoroughly, often coupled with a mathematical proof 

or computation). In my poster, I documented the writing projects I have tried in my university 

math classrooms and students’ reactions to them. 

In the summer of 2015, I taught a second-year differential equations class at McMaster 

University. Students were asked to use short narratives in a variety of ways on five written 

assignments, which emphasized writing quality over mathematical correctness.  

By analyzing students’ written assignments and the results of an administered survey, Miroslav 

Lovric and I (2017) found that students held a positive attitude towards the written assignments 

and appeared to view writing as an effective learning strategy (unified course concepts, pushed 

students to work harder, question their understanding, seek help). However, many students 

viewed writing and mathematics as distinct entities and did not tend to view the skills gained 

through mathematical writing as transferable.  

In the spring of 2017 I taught a Cryptology & Number Theory class at the University of 

Minnesota. Students kept a course journal and submitted a weekly response to a writing prompt 

(e.g., Did you have any ‘aha’ moments this semester?). Since many students are rather weak in 

the metacognitive processes of reflecting on their own approaches to learning, accurately 

accessing what they do and do not know, and modifying their behaviour as a result (Benassi, 

Overson, & Hakala, 2014), these prompts were designed to encourage self-reflection. Students 

were also asked to submit solutions to four Professional Problems, which were graded based 

on both mathematical correctness and quality of writing. In these problems, students were asked 

to write for a specified audience (e.g., client, community member). 

At the end of the course, the majority of students (24/39) claimed that journal-writing enhanced 

their experiences in the course. Almost all students (10/11) who did not see value in journal 

writing expressed that they did, however, find the Professional Problem writing valuable.  
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INFORMING LOCAL MATERIALS USED FOR CONCEPT-RICH 
INSTRUCTION PRACTICE IN MATHEMATICS CLASS WITH PRE-

SERVICE TEACHERS IN TANZANIAN CONTEXT 

Emmanuel Deogratias 

University of Alberta, Canada & University of Dodoma, Tanzania 

This paper addresses the local materials used during implementing concept-rich instruction 

(Ben-Hur, 2006) in a study of pi in a Tanzanian context. I designed and facilitated concept-rich 

instruction of pi with pre-service teachers for five day sessions. We used teaching and learning 

resources including local materials such as sunflower, coconut, pawpaw stem, stems of maize, 

stems of Cassava, and stems of sunflower. We used these local materials in the three 

components of the concept-rich instruction. The three elements include practice (for instance, 

during demonstration on how to find the value of pi using local materials); decontextualization 

(for example, during measuring the diameter and circumference of the circular local material in 

a group); and recontextualization (for instance, the applications of pi). These local materials 

helped a facilitator to engage university pre-service teachers in learning the concept of pi in the 

class of concept-rich instruction. This notion of using local materials to engage pre-service 

teachers in learning the concept of pi helped pre-service teachers to see the mathematics 

embedded in their life. In particular, pre-service teachers connected their mathematics teaching 

and learning the concept of pi with circular local materials available in their daily practice that 

are helpful to develop students understanding of pi as a concept in their classroom.  

The use of local materials in the class of concept-rich instruction of pi taught pre-service 

teachers to start using local materials for teaching and learning of the concept of pi in their 

classroom. For instance, in the last day sessions, pre-service teachers developed the lesson plan 

and performed a micro-teaching experience on how to teach pi using local materials as teaching 

and learning resources including using stems of pawpaw. They used these local materials in the 

class of concept-rich instruction of pi while performing their micro-teaching in finding the value 

of pi. They noticed that it was easy to build a better understanding of pi using local circular 

materials in the class. 

I engaged the pre-service teachers in a concept rich instruction of pi using local materials in 

learning the concept of pi. This engagement helped pre-service teachers to see other possible 

circular local materials as resources that they noticed to be promising for teaching and learning 

the concept of pi including one hundred coins (Tanzanian shillings), sugarcane, water lemon, 

and orange. 
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LES JEUX TECHNOLOGIQUES DANS LES COURS DE 
MATHÉMATIQUES AU SECONDAIRE 

Caitlin Furlong 

Université de Moncton 

Au secondaire, il semble y avoir un manque de motivation de la part des élèves dans les cours 

de mathématiques (Wigfield, 1994, cité par Chouinard, 2001), et ceci « correspond à un 

désengagement des apprentissages liés à ce domaine et bien entendu, des carrières qui y sont 

associées » (Leblond, 2012, p. 15). Certains auteurs affirment que les jeux représentent une 

bonne façon d’augmenter le niveau d’intérêt des jeunes envers les mathématiques (Sauvé, 

Renaud, & Gauvin, 2007). Les technologies de l’information et de la communication (TIC) sont 

aussi pertinentes pour motiver les jeunes, puisque leur utilisation permet un meilleur niveau 

d'engagement de la part des élèves et une meilleure compréhension du matériel à l'étude (Muir-

Herzig, 2004).  

Cette recherche vise à vérifier si les jeunes sont plus motivés à apprendre dans les cours de 

mathématiques au secondaire si les jeux technologiques sont intégrés aux activités de la salle 

de classe. Ce projet, encore en cours, est une étude de cas. Quatre jeux technologiques, incluant 

un jeu de Jeopardy et de Battleship Mathématique qui portent sur le programme d’études de 

mathématiques de 11e année, furent intégrés aux cours réguliers et les élèves furent observés à 

l’aide d’une liste de vérification, dans le but de vérifier si les indicateurs de motivation étaient 

présents chez ces derniers.  

Afin de nous permettre de mieux comprendre l’impact des jeux sur le niveau de motivation des 

élèves, cinq d’entre eux ont participé à des entrevues semi-dirigées à la fin de la période de 

quatre mois. De plus, l’enseignant fut questionné à la suite de l’intégration de chaque jeu. Les 

résultats recueillis nous permettent d’observer, notamment, le fait que les élèves sont engagés, 

demeurent à la tâche plus longtemps, ont hâte de venir au cours, ont du plaisir, démontrent des 

habiletés mathématiques et veulent explorer de nouveaux concepts pendant l’intégration du jeu. 
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DE JEUNES CHERCHEURS À LA RENCONTRE DE LA 
PHILOSOPHIE DES MATHÉMATIQUES 

Sabrina Héroux1, Sarah Mathieu-Soucy2 & Laura Broley2 

Université du Québec à Montréal1 and Université Concordia2 

Pour qui un cours de philosophie des mathématiques? Nous, trois étudiantes au doctorat en 

didactique des mathématiques, accompagné d’un professeur, nous sommes aventurés à 

développer nos idées quant à la nature des mathématiques et de l’activité mathématique. Les 

questions abordées nous ont forcées à sortir de notre zone de confort : philosophie des 

mathématiques (Tymoczko, 1998a), démonstrations (Tymoczko, 1998a), mathématiques pures 

et appliquées (Pincock, 2009), certitude, fondements et faillibilité (Tymoczko, 1998a), 

technologie (Tymoczko, 1998b), mathématiques de l’école (Watson, 2008), etc. 

Nos réactions face à ce cours sont variées. Nous avons découvert l’importance d’entrer dans les 

éléments philosophiques d’une discipline comme les mathématiques, qui peut sembler très 

rigide, et d’y découvrir l’envers du décor. Nous avons remis en question l’enseignement des 

mathématiques comme une série de vérités et de règles. Nous avons questionné la tendance à 

prendre « le mathématicien chercheur » comme point de référence pour définir ce que signifie 

« faire des mathématiques ». Nous en savons maintenant plus sur la diversité des conceptions 

qui existent et l'impact qu'elles peuvent avoir sur la façon dont nous interagissons les uns avec 

les autres. Pour nous, ce cours fut une étape importante dans notre parcours d’études 

supérieures, car elle nous a conduites à nous forger individuellement une vision des 

mathématiques en tant que futures chercheures; et elle nous a convaincues de l’intérêt pas 

seulement de développer une telle vision, mais aussi de la rendre plus explicite dans nos 

travaux. 

La possibilité d’expliciter nos conceptions et d’en débattre par des discussions nous fait croire 

que la philosophie des mathématiques devrait être abordée par tous les étudiants en didactique 

des mathématiques. Un cours de philosophie des mathématiques est une opportunité de réfléchir 

sur la discipline en donnant l’occasion de s’exprimer sur des idées fondamentales. C’est aussi 

en tant que (futurs) formateurs d’enseignants et de mathématiciens que nous avons trouvé 

essentiels de réfléchir à la place des mathématiques à l’école et à la manière de les y aborder.  
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EXAMINING PARENT PERSPECTIVES OF MULTIPLE 
STRATEGIES 

Jennifer Holm1, Lynn McGarvey2, Lixin Luo2, Janelle McFeetors2, Iris Yin2 

Wilfrid Laurier University1, University of Alberta2 

But the fact is there isn’t great research behind it. And the other fact is that […] 

students who are coming out of learning these strategies—the math scores have 

weakened. Because I’m all for doing a different strategy if you have proof that that 

strategy is even better than what we’ve been doing all along. However, at the end of 

the day the scores indicate that, no, it hasn’t been the best approach to teaching math. 

So like if they’re learning multiplication, they’ll show them all five different ways that 

you can come to the answer, which could be frustrating because like I had a 

conversation with [my daughter] where she knew the answer just by looking at it. But 

her teacher made her do this whole worksheet to find the answer and she’s like, “I 

already know it. Why would I do this whole thing?” But I get it that different strategies 

work for everybody and how can a child find the strategy that works best for them 

without trying them all? 

The two previous quotes show differing perspectives related to parents’ perceptions regarding 

the use of multiple strategies when teaching mathematics. The first quote shows an obvious 

tension with a parent and the second shows a concern but a belief that the idea is inherently 

positive. These differing beliefs of parents provide a potential obstacle when implementing 

multiple strategies in the classroom. When curricular goals support the use of multiple strategies 

(e.g. Alberta Education, 2016), considering the concerns of parents can be important when 

implementing these ideas in classrooms. The literature itself is not universally supportive of 

multiple strategies which compounds this tension for teachers implementing these skills. Some 

shows potential benefits, such as improve adaptivity and flexibility (e.g., Hatano, 2003); greater 

procedural flexibility and increased understanding (e.g., Verschaffel et al., 2009); cultivates 

appropriate attitudes and conceptions of mathematics (e.g., Verschaffel et al., 2009). Some 

researchers suggested that they are not appropriate for all students: may exacerbate the 

difficulties of low achieving students (e.g., Auer, Hickendorff, & Putten, 2016); flexibility 

needs a foundation of skills to build upon (e.g., Geary, 2003); and solving problems in more 

than one way is difficult to operationalize in classrooms (Silver et al., 2005). 

Using a qualitative thematic analysis (Braun & Clarke, 2006), we identified key assertions by 

parents with regard to their perceptions of multiple strategies from the ten focus groups and 

fifteen interviews that were conducted as data collection in this study. The overarching themes 

identified in the parents’ comments mirrored the research: adaptivity and flexibility of 

strategies, conceptual and procedural knowledge, disposition and identity, implementation of 

multiple strategies, and not effective for all students. 

Through this research we have noted that parents have varied perspectives related to the use of 

multiple strategies with their children. Many were able to provide concrete examples of their 

experiences of the use of multiple strategies with their children, and these examples could be 

positive or negative depending on their child’s situation or context. The counter-examples 

provided by the parents are important not to ignore in considering changes with the curriculum 

and classroom implementation. 
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LA DIALECTIQUE PERFECTION/IMPERFECTION : 
UNE NOUVELLE MANIÈRE DE PENSER L’ACTIVITE 

MATHEMATIQUE 

Marie-Line L. Lamarche, Université du Québec à Montréal 

Jean-François Maheux, Université du Québec à Montréal et University of Auckland 

Pour plusieurs, atteindre le vrai et pouvoir le démontrer est le propre des mathématiques. 

Pourtant, on trouve des exemples de différentes natures où l’on peut observer un côté plutôt 

imparfait des mathématiques. Je vous en présente quelques-uns. 

Certains philosophes ont parlé de la nature des mathématiques et de façon très différente; on 

connait la vision de Platon, selon laquelle les idées mathématiques sont l’idéal de la perfection. 

D’autres sont en contradiction avec ce dernier. Hersh (1998), par exemple, présente une 

perspective sur l’existence des objets mathématiques qui contraste avec cette « perfection ». 

Pour lui les objets mathématiques ne sont ni mentaux ni tangibles : ce sont des objets 

socioculturels et historiques. Les mathématiques n’auraient pas de réalité en dehors de la culture 

où elles existent. Cette existence, bien « imparfaite », ne serait « que » culturelle. Ensuite, un 

évènement marquant de l’histoire et de la philosophie des mathématiques est « la crise des 

fondements », dont le sommet est le théorème d’incomplétude de Gödel. Ce théorème démontre 

que dans un système cohérent, il y a toujours des énoncés mathématiques qui sont 

indémontrables, tandis que dans un système où tout serait démontrable, il y aurait 

nécessairement des incohérences. On doit donc faire un choix au niveau de l’im-perfection entre 

cohérence et démontrabilité. De plus, l’analyse de textes mathématiques montre des manières 

pour les mathématiques d’être à la fois parfaites et imparfaites. On voit que ce qui est 

conventionnel dans les mathématiques varie beaucoup. Le papyrus de Rhin par exemple montre 

que les nombres, les symboles et les algorithmes manipulés sont à la fois « parfaits » au sens 

où ils sont adoptés par tous et qu’ils font bien le travail, mais aussi « imparfaits », car pas du 

tout universels ou intemporels. Aussi, les textes mathématiques ne sont jamais vraiment 

« complets » : même aujourd’hui, l’auteur choisit les éléments qu’il présente (Livingston, 2015) 

et l’acceptation de nouveaux résultats est en partie une question de crédibilité. Par ailleurs, une 

analyse historique permet de voir comment des aller-retour entre la perfection et l’imperfection 

furent des moteurs importants de développement pour les mathématiques. Lakatos (1976) 

discute des exemples intéressants, comme des conjectures incorrectes et des résultats partiels 

ayant fait partie d’activités mathématiques fructueuses. 

Or, ce travail de perfectionnement n’est possible que si l’on se situe quelque part entre les deux 

pôles perfection-imperfection. Comment cette nouvelle manière de penser l’activité 

mathématique peut-elle être mise au service de l’activité mathématique des élèves ? Peut-on 

penser explorer certains de ces « malaises » mathématiques avec des élèves ? Nous croyons que 

oui, et dans ce projet de recherche nous travaillons présentement à la mise au point de situations 

pour la classe permettant de mettre en valeur ces aspects. 
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UNDERSTANDING SCHOOL LEADERS’ DISCOURSE IN REGARD 
TO MATHEMATICS ACHIEVEMENT 

Jhonel Morvan 

Brock University 

The notion of discourse in school mathematics has been of considerable interest to researchers. 

Scholars largely associate mathematical discourse to classroom practices (Moschkovich, 2007) 

and tend to overlook the political dimensions of discourse that are largely the prerogatives of 

school leaders. There is a significant body of literature pointing to the fact that school leaders 

are critical in supporting effective schools (Fullan, 2011). Further, school leadership is widely 

considered to impact student achievement and success (Leithwood, Patten, & Jantzi, 2010). 

Despite that evidence, not much attention seems to be given to school leaders’ discourse on 

math achievement even though it is well known that school leadership discourse impacts school 

culture (Webster, 2012).  

This poster presents findings from a pilot project involving 10 school administrators and 

systems leaders representing two different jurisdictions: five from the Northern Haiti and five 

from the French-language schools in Ontario. The participants from Haiti were from private 

schools (religious and secular), and the ones from Ontario were from both the catholic and 

public systems. The research examines school leaders’ discourse in the context of math 

achievement for all students. What are some of the commonalities of school leaders’ discourse 

when it comes to math achievement? What do these leaders perceive to be success factors, 

roadblocks and challenges to students’ math achievement? To what extent is their discourse a 

reflection of implicit inequities in school math? Do they allude to deficit assumptions in their 

understanding of math achievement for all students? 

Using primarily semi-structured interviews, this research used a qualitative framework to 

explore some of these questions. Early analysis of the transcripts yielded to several themes 

including the importance of teachers’ impact, the students’ and teachers’ attitudes effect, the 

fixed mindsets regarding math achievement, and the challenge to make math meaningful to 

students. These four themes are examined in light of literature arguing that “effective school 

leadership is needed to support the transformation of teaching practice and school culture” 

(Vale et al., 2010, p. 47). 

This research offers insights on school leaders’ discourse related to students’ math achievement 

and addresses a gap in the literature (Herbel-Eisenmann, Choppin, Wagner, & Pimm, 2011). 

This project initiates a framework for further studies on how school leaders’ discourse interplay 

with math achievement. As scholars examine equity issues in school math and as policymakers 

discuss ways to increase math achievement for all students, it is critical to also consider how 

school leaders can be supported in developing discourses compatible to more equity in school 

math. 
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I SEE WHAT YOU’RE SAYING: VISUALIZATION AND THE 
GROWTH OF MATHEMATICAL IMAGES 

Jennifer Plosz 

University of Calgary 

In this poster, I explored the interconnection between images and visualization, asking the 

question: What role might visualization play in the growth of mathematical images? This 

research is grounded in the theoretical framework of the Pirie-Kieren Dynamical Theory for the 

Growth of Mathematical Understanding (1994). The theory is an eight-levelled model of nested 

ovals, which characterizes growth as a dynamic, levelled but non-linear, transcendently 

recursive process (Pirie & Kieren, 1994). My research within this framework is focused on the 

preliminary process of transitioning from Image Making to Image Having (Pirie & Kieren, 

1994). This reference to having is not referring to a static state of completeness, for there is 

always movement, but rather one of usefulness in the absence of the perceived act. Husserl 

(1970) has made a set of distinctions which has offered direction to my understanding of this 

transition. He refers to three ways that an object can be presented—signitively, imaginatively, 

and perceptually. For instance, I can talk about a withering oak which I have never seen but 

have heard is standing in a nearby field (signitive); I can view a detailed drawing of the oak tree 

(imaginative); or I can perceive the oak tree myself by standing in front of it, hearing the rustle 

of its leaves, feeling the roughness of its bark, and seeing its arching branches overhead 

(perceptive). Husserl discusses these experiences as having different levels of perceptual 

offerings ranked from the least direct to the most direct. I describe these Husserlian ideas for I 

am interested in relating them to meaning rather than object. Within this reorientation, I suggest 

the signitive as being the linguistic form of mathematics which is unchanged from Husserl’s 

original intention, the oral discussion of mathematics and the written symbolic form, which is 

the most indirect and emptiest way of presenting the meaning within the mathematical idea. 

The imaginative as the utilization of our created images—the act of visualizing, just as a picture 

offers some level of meaning, so also does visualizing (Driskell, Copper, & Moran, 1994). The 

final category, perceptual, and the richest offering of meaning, I suggest can be found in the 

enactment of a mathematical idea (Maturana & Varela, 1987). It is within the enactment of a 

mathematical idea that meaning is offered in the most direct, original, and optimal way. The 

use of this leveled categorization of offerings is for the exploration of what I believe to be an 

often-ignored aspect of mathematics education—the growth of imagination and visualization.  

The data collection phase of this study will take place at a school for students with learning 

differences (LD). I believe this group will create a rich environment of observation, as there is 

some discussion about this group being more visual than ‘typical’ learners (West, 1991). 
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STUDENTS’ RELATIONSHIPS WITH MATHEMATICS REVEALED 
THROUGH DRAWINGS 

Jennifer Plosz, Jo Towers, Kori Czuy, Ayman Aljarrah, Andrew Vorhies, & Miwa Takeuchi 

University of Calgary 

In our poster, we presented examples of students’ images, as explored through the drawings 

they created in response to prompts about how they feel when doing mathematics. This research 

is grounded in the theoretical framework of enactivism, a theory of embodied cognition which 

explores the intertwining relationship of emotion and cognition (Colombetti, 2013). This 

theoretical context encouraged us to delve beneath the surface of students’ drawings to interpret 

the ways in which their experiences of doing mathematics in schools may have contributed to 

their relationships with mathematics. The use of drawings offers an unusual approach in 

mathematics education, and there are very few studies that have explored students’ drawings as 

a means to understand emotional relationships with mathematics (for one pertinent example see 

Perkkilä & Aarnos, 2009). Our initial analysis of interview transcripts revealed four broad 

categories of students’ relationships with mathematics: positive, negative, mixed, and 

changed/changing (Towers, Takeuchi, Hall, & Martin, 2017). We then studied the drawings 

contributed by the participants whose narratives had been categorized into these four domains. 

The drawings added further implicit messaging through the choice of subject matter, use of 

colour, et cetera. One such implicit message relates to the connection between students’ 

emotions and bodies (exemplified by a focus on heads, tears, steam coming out of the head, 

etc., in many of the drawings), which had not been obvious to us through transcript analysis. 

Another interesting element of the drawings was a noticeable absence of detail in many of the 

drawings in the positive category. Within this category, there were very few specifics given 

about what students enjoyed about mathematics and all that was typically offered for the 

drawing was a generic smiley face or the written word “happy”. On the contrary, within the 

negative category there seemed to be an explosion of detailed emotion, such as “I’m mad or 

I’m sad, I’m kind of both”, “I get really frustrated”, “It’s just like cutting my head in half”, or 

“[Math] wants to kill me” and drawings were more unique to the individual and often very 

detailed. In the mixed category, some students chose dramatic imagery (e.g., a heart split in 

two) to portray their conflicted relationship with math, while in the changed/changing category 

students often chose to represent their emotions through pairing a sad face with a smiley face. 

In this study, the activity of drawing provided a contextualized expression of the participants’ 

relationships with mathematics. Drawing seemed to stimulate, ripen, and occasionally 

contradict students’ verbal responses to interview questions. It appeared to act as a tool for the 

participants to “come to know […] through making” (Cain, 2010, p. 19), and as a means for us 

as researchers to gain access to students’ unspoken thoughts about learning mathematics. 
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TEACHER PROFESSIONAL LEARNING IN TANZANIA: 
EXPERIENCES OF MATHEMATICS TEACHER LEADERS 

 

Calvin Zakaria Swai 

University of Alberta 

This poster presents preliminary research findings of the study that explored the experiences of 

mathematics teacher leaders (MTLs) in leading the professional learning of primary school 

mathematics teachers in rural and remote communities in Tanzania. The study stems from my 

observation that teacher-led professional learning is ultimately effective in promoting 

professional growth of teachers, yet when it comes to locating it in schools, the education 

system often falls short. Given such a situation and the need to inform the transition to teacher-

led professional learning in Tanzanian schools, this study sought to develop an understanding 

of how MTLs experience their work of leading the professional learning of mathematics 

teachers in order to suggest ways to improve teacher professional learning in Tanzania. To 

achieve the aim, the study drew on symbolic interactionism, perspective consciousness, and 

Dewey’s notion of experience to develop in-depth insights related to MTLs’ leadership of 

teacher professional learning. It employed qualitative case study methodology (Yin, 2014) to 

gather experiences of eight MTLs from their real-life contexts with a range of sources, including 

an open-ended questionnaire, in-depth interviews, metaphors, and vignettes. The poster 

presents, amongst others, the perspectives on teacher-led professional learning; the influence of 

local leadership on teacher leadership; teachers’ perceptions of their leadership; and hopes, 

outcomes, and challenges of teacher leadership in rural schools in Tanzania. This study will 

expand the understanding of teacher-led professional learning of mathematics teachers. It 

should richly inform relevant teacher education and mathematics education research across 

Tanzania as well as similar educational developments in other parts of the world. 
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“PERIMETER IS EASIER TO WORK WITH THAN AREA”: 
STUDENTS’ LANGUAGE USE IN GROUP WORK 

Miwa Aoki Takeuchi 

University of Calgary 

Growing linguistic and ethnic diversity in the classroom has prompted us to better understand 

the characteristics of language in mathematics classrooms. Paying close attention to the 

language use is thus one of the important aspects of pedagogical design for mathematics classes. 

Linguistic complexity during students’ group work has been documented, especially in relation 

to its affordance for mathematics learning (Barwell, 2009; Takeuchi, 2016). The goal of this 

poster is to understand how students’ use of language influences opportunities to learn 

mathematics, by focusing on the context of group work. Language in this study is 

conceptualized from Vygotsky’s (1934/1986) theory of sense and meaning. Vygotsky 

distinguished the sense of a word from its meaning. The sense of a word develops and will be 

enriched; whereas, its meaning remains stable, as definitions presented in the dictionary. The 

data for this study were collected in two urban schools in Canada. Both schools were 

linguistically and ethnically diverse: More than 45 home languages of students were represented 

and more than 50% of the students were categorized as English language learners. The data 

used for this paper include video recordings of group work sessions and individual video-

mediated interviews. Mathematics problems were taken from the provincial standardized 

assessments. The research question addressed in this poster is: How do students make sense of 

words in mathematics problems? I employed a social semiotics approach to classroom discourse 

analysis (Lemke, 1990) that focuses on the web of semantic relationships. Many students got 

stuck with the presented mathematics problem because they did not make a meaningful 

connection among mathematically-related concepts (such as area and perimeter). For example, 

students defined area and perimeter with merely with numerical operation (e.g., “adding is 

perimeter and multiply is area”) or as interchangeable concepts (e.g., “I’ll just say perimeter is 

easier to work with than area. We’re working with outside not inside ‘cause inside will be harder 

so we’re going to work on the outside.”). This finding raises a concern about “verbalism” 

(Vygotsky, 1934/1986, p.148): Students knew the meaning of mathematical words but did not 

develop its sense. As previous research has identified, the relationships among key concepts are 

often implicit in mathematics classrooms (Herbel-Eisenmann & Otten, 2011). This poster 

suggests the significance of paying close attention to students’ sense-making in language in 

mathematics classrooms, especially for linguistically diverse learners.  
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TOWARD AN UNDERSTANDING OF MATHEMATICS TEACHERS’ 
PARTICIPATION IN PROFESSIONAL LEARNING NETWORKS 

Xiong Wang  

University of Alberta 

Nowadays, more and more mathematics teachers have extended their professional learning by 

participating in Professional Learning Networks (PLNs). However, few studies have been 

conducted on the exploration of understanding their doing in PLNs (Dash, de Kramer, 

O’Dwyer, Masters, & Russell, 2012). Thus, this study is intended to address the gap by 

investigating mathematics teachers’ learning processes through PLNs to seek to understand 

their learning actions as well as the phenomenon and nature of teachers’ engaging in PLNs.  

The research will be conducted under the umbrella of the theory of complexity systems and the 

methodology of interpretive inquiry. Complexity systems serve as the theoretical framework of 

the research based on the considerations that PLNs should be understood as a kind of 

complexity system according to Mitchell’s (2009) common properties and definition of 

complexity systems. An interpretive inquiry in the constructivist paradigm is used to approach 

the understanding of participants’ learning actions or expressions in a more intense, careful, 

and self-conscious way when their meanings or reasons are not clear (Smith, 1992).   

Four types of triangulated data will be collected from these two PLNs, including 1) archived 

documents such as logs, posts, comments, or responses; 2) online survey; 3) online open-ended 

interviews with related participants; and 4) my own reflections. The data analysis will be 

undertaken simultaneously with the collection of data by interpretive inquiry. 

Several data analysis techniques will be adopted to analyze the archived documents, online 

survey and open-ended interviews so as to provide “enough illustrative material(s)” (Ellis, 

1998, p. 32). The models such as 1) Knowledge of Mathematics for Teaching (KMT), 

Mathematics-for-Teaching(M4T), Entangled Dynamics, or Decentralized Networks will be 

applied to investigate interested topics, knowledge emergence, and idea interaction from 

archived documents. 2) Necessary Conditions for Complexity Systems will be employed to 

understand the rationale behind the emergence and the interaction. 3) Some statistical concepts 

will be adopted to examine the potential reasons of teachers’ participation in PLNs through the 

online survey. 4) Thematic analysis will be taken to make sense of the teachers’ experiences of 

participating in PLNs and the attached meaning to their professional learning, possibly 

revealing the depth of understanding mathematics teachers’ participation in PLNs. 

The results could help us understand what they possibly need in their professional learning, 

offer a valuable reference for improving the design of and evaluation on both online and even 

conventional professional development for teachers, and contribute to the rapidly increasing 

literature on teachers’ professional learning, particularly in an online learning community.  
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Appendix A / Annexe A 

WORKING GROUPS AT EACH ANNUAL MEETING / GROUPES DE 
TRAVAIL DES RENCONTRES ANNUELLES 

 

 

1977 Queen’s University, Kingston, Ontario 

 

 · Teacher education programmes 

 · Undergraduate mathematics programmes and prospective teachers 

 · Research and mathematics education 

 · Learning and teaching mathematics 

 

1978 Queen’s University, Kingston, Ontario 

 

 · Mathematics courses for prospective elementary teachers 

 · Mathematization 

 · Research in mathematics education 

 

1979 Queen’s University, Kingston, Ontario 

 

· Ratio and proportion: a study of a mathematical concept 

 · Minicalculators in the mathematics classroom 

 · Is there a mathematical method? 

 · Topics suitable for mathematics courses for elementary teachers 

 

1980 Université Laval, Québec, Québec 

 

 · The teaching of calculus and analysis 

 · Applications of mathematics for high school students 

 · Geometry in the elementary and junior high school curriculum 

 · The diagnosis and remediation of common mathematical errors 

 

1981 University of Alberta, Edmonton, Alberta 

 

 · Research and the classroom 

 · Computer education for teachers 

 · Issues in the teaching of calculus 

 · Revitalising mathematics in teacher education courses 
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1982 Queen’s University, Kingston, Ontario 

 

 · The influence of computer science on undergraduate mathematics education 

 · Applications of research in mathematics education to teacher training programmes 

· Problem solving in the curriculum 

 

1983 University of British Columbia, Vancouver, British Columbia 

 

 · Developing statistical thinking 

 · Training in diagnosis and remediation of teachers 

 · Mathematics and language 

 · The influence of computer science on the mathematics curriculum 

 

1984 University of Waterloo, Waterloo, Ontario 

 

 · Logo and the mathematics curriculum 

 · The impact of research and technology on school algebra 

 · Epistemology and mathematics 

 · Visual thinking in mathematics 

 

1985 Université Laval, Québec, Québec 

 

 · Lessons from research about students’ errors 

 · Logo activities for the high school 

 · Impact of symbolic manipulation software on the teaching of calculus 

 

1986 Memorial University of Newfoundland, St. John’s, Newfoundland 

 

 · The role of feelings in mathematics 

 · The problem of rigour in mathematics teaching 

 · Microcomputers in teacher education 

 · The role of microcomputers in developing statistical thinking 

 

1987 Queen’s University, Kingston, Ontario 

 

 · Methods courses for secondary teacher education 

 · The problem of formal reasoning in undergraduate programmes 

 · Small group work in the mathematics classroom 

 

1988 University of Manitoba, Winnipeg, Manitoba 

 

 · Teacher education: what could it be? 

 · Natural learning and mathematics 

· Using software for geometrical investigations 

 · A study of the remedial teaching of mathematics 

 

1989 Brock University, St. Catharines, Ontario 

 

 · Using computers to investigate work with teachers 

 · Computers in the undergraduate mathematics curriculum 

 · Natural language and mathematical language 

 · Research strategies for pupils’ conceptions in mathematics 
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1990 Simon Fraser University, Vancouver, British Columbia 

 

 · Reading and writing in the mathematics classroom 

 · The NCTM “Standards” and Canadian reality 

 · Explanatory models of children’s mathematics 

 · Chaos and fractal geometry for high school students 

 

1991 University of New Brunswick, Fredericton, New Brunswick 

 

 · Fractal geometry in the curriculum 

 · Socio-cultural aspects of mathematics 

 · Technology and understanding mathematics 

 · Constructivism: implications for teacher education in mathematics 

 

1992 ICME–7, Université Laval, Québec, Québec 

 

1993 York University, Toronto, Ontario 

 

 · Research in undergraduate teaching and learning of mathematics 

 · New ideas in assessment 

 · Computers in the classroom: mathematical and social implications 

 · Gender and mathematics 

 · Training pre-service teachers for creating mathematical communities in the 

classroom 

 

1994 University of Regina, Regina, Saskatchewan 

 

 · Theories of mathematics education 

 · Pre-service mathematics teachers as purposeful learners: issues of enculturation 

 · Popularizing mathematics 

 

1995 University of Western Ontario, London, Ontario 

 

· Autonomy and authority in the design and conduct of learning activity 

 · Expanding the conversation: trying to talk about what our theories don’t talk about 

 · Factors affecting the transition from high school to university mathematics 

 · Geometric proofs and knowledge without axioms 

 

1996 Mount Saint Vincent University, Halifax, Nova Scotia 

 

 · Teacher education: challenges, opportunities and innovations 

 · Formation à l’enseignement des mathématiques au secondaire: nouvelles 

perspectives et défis 

 · What is dynamic algebra? 

 · The role of proof in post-secondary education 

 

1997 Lakehead University, Thunder Bay, Ontario 

 

 · Awareness and expression of generality in teaching mathematics 

 · Communicating mathematics 

 · The crisis in school mathematics content 
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1998 University of British Columbia, Vancouver, British Columbia 

 

 · Assessing mathematical thinking 

 · From theory to observational data (and back again) 

 · Bringing Ethnomathematics into the classroom in a meaningful way 

 · Mathematical software for the undergraduate curriculum 

 

1999 Brock University, St. Catharines, Ontario 

 

 · Information technology and mathematics education: What’s out there and how can 

we use it? 

 · Applied mathematics in the secondary school curriculum 

 · Elementary mathematics 

 · Teaching practices and teacher education 

 

2000 Université du Québec à Montréal, Montréal, Québec  

 

 · Des cours de mathématiques pour les futurs enseignants et enseignantes du 

primaire/Mathematics courses for prospective elementary teachers 

· Crafting an algebraic mind: Intersections from history and the contemporary 

mathematics classroom 

· Mathematics education et didactique des mathématiques : y a-t-il une raison pour 

vivre des vies séparées?/Mathematics education et didactique des mathématiques: 

Is there a reason for living separate lives? 

· Teachers, technologies, and productive pedagogy 

 

2001 University of Alberta, Edmonton, Alberta 

 

 · Considering how linear algebra is taught and learned 

· Children’s proving 

· Inservice mathematics teacher education 

· Where is the mathematics? 

 

2002 Queen’s University, Kingston, Ontario 

 

 · Mathematics and the arts 

 · Philosophy for children on mathematics 

 · The arithmetic/algebra interface: Implications for primary and secondary 

mathematics / Articulation arithmétique/algèbre: Implications pour l’enseignement 

des mathématiques au primaire et au secondaire 

 · Mathematics, the written and the drawn 

 · Des cours de mathématiques pour les futurs (et actuels) maîtres au secondaire / 

Types and characteristics desired of courses in mathematics programs for future 

(and in-service) teachers 

 

2003 Acadia University, Wolfville, Nova Scotia 

 

 · L’histoire des mathématiques en tant que levier pédagogique au primaire et au 

secondaire / The history of mathematics as a pedagogic tool in Grades K–12 

 · Teacher research: An empowering practice? 

 · Images of undergraduate mathematics 

 · A mathematics curriculum manifesto 
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2004 Université Laval, Québec, Québec 

 

 · Learner generated examples as space for mathematical learning 

· Transition to university mathematics 

 · Integrating applications and modeling in secondary and post secondary mathematics 

 · Elementary teacher education – Defining the crucial experiences 

 · A critical look at the language and practice of mathematics education technology 

 

2005 University of Ottawa, Ottawa, Ontario 

 

 · Mathematics, education, society, and peace 

 · Learning mathematics in the early years (pre-K – 3) 

 · Discrete mathematics in secondary school curriculum 

 · Socio-cultural dimensions of mathematics learning 

 

2006 University of Calgary, Calgary, Alberta 

 

 · Secondary mathematics teacher development 

 · Developing links between statistical and probabilistic thinking in school 

mathematics education 

 · Developing trust and respect when working with teachers of mathematics 

 · The body, the sense, and mathematics learning 

 

2007 University of New Brunswick, New Brunswick 

 

 · Outreach in mathematics – Activities, engagement, & reflection 

 · Geometry, space, and technology: challenges for teachers and students 

 · The design and implementation of learning situations 

 · The multifaceted role of feedback in the teaching and learning of mathematics 

 

2008 Université de Sherbrooke, Sherbrooke, Québec 

 

 · Mathematical reasoning of young children 

 · Mathematics-in-and-for-teaching (MifT): the case of algebra 

 · Mathematics and human alienation 

 · Communication and mathematical technology use throughout the post-secondary 

curriculum / Utilisation de technologies dans l’enseignement mathématique 

postsecondaire 

 · Cultures of generality and their associated pedagogies 
 

2009 York University, Toronto, Ontario 

 

 · Mathematically gifted students / Les élèves doués et talentueux en mathématiques 

 · Mathematics and the life sciences 

 · Les méthodologies de recherches actuelles et émergentes en didactique des 

mathématiques / Contemporary and emergent research methodologies in 

mathematics education 

 · Reframing learning (mathematics) as collective action 

 · Étude des pratiques d’enseignement  

 · Mathematics as social (in)justice / Mathématiques citoyennes face à l’(in)justice 

sociale 
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2010 Simon Fraser University, Burnaby, British Columbia 

 

 · Teaching mathematics to special needs students:  Who is at-risk? 

 · Attending to data analysis and visualizing data 

 · Recruitment, attrition, and retention in post-secondary mathematics 

  Can we be thankful for mathematics?  Mathematical thinking and aboriginal peoples 

 · Beauty in applied mathematics  

 · Noticing and engaging the mathematicians in our classrooms 

 

2011 Memorial University of Newfoundland, St. John’s, Newfoundland 

 

 · Mathematics teaching and climate change 

 · Meaningful procedural knowledge in mathematics learning 

 · Emergent methods for mathematics education research: Using data to develop 

theory / Méthodes émergentes pour les recherches en didactique des mathématiques: 

partir des données pour développer des théories 

 · Using simulation to develop students’ mathematical competencies – Post secondary 

and teacher education 

 · Making art, doing mathematics / Créer de l’art; faire des maths 

 · Selecting tasks for future teachers in mathematics education 

 

2012 Université Laval, Québec City, Québec 

 

 · Numeracy: Goals, affordances, and challenges 

 · Diversities in mathematics and their relation to equity 

 · Technology and mathematics teachers (K-16) / La technologie et l’enseignant 

mathématique (K-16) 

 · La preuve en mathématiques et en classe / Proof in mathematics and in schools 

 · The role of text/books in the mathematics classroom / Le rôle des manuels scolaires 

dans la classe de mathématiques 

 · Preparing teachers for the development of algebraic thinking at elementary and 

secondary levels / Préparer les enseignants au développement de la pensée 

algébrique au primaire et au secondaire 

 

2013 Brock University, St. Catharines, Ontario 

 

 · MOOCs and online mathematics teaching and learning 

 · Exploring creativity: From the mathematics classroom to the mathematicians’ mind 

/ Explorer la créativité : de la classe de mathématiques à l’esprit des mathématiciens 

 · Mathematics of Planet Earth 2013: Education and communication / Mathématiques 

de la planète Terre 2013 : formation et communication (K-16) 

 · What does it mean to understand multiplicative ideas and processes? Designing 

strategies for teaching and learning 

 · Mathematics curriculum re-conceptualisation 

 

2014 University of Alberta, Edmonton, Alberta 

 

 · Mathematical habits of mind / Modes de pensée mathématiques 

 · Formative assessment in mathematics: Developing understandings, sharing 

practice, and confronting dilemmas 

 · Texter mathematique / Texting mathematics 

 · Complex dynamical systems 

 · Role-playing and script-writing in mathematics education practice and research 
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2015 Université de Moncton, Moncton, New Brunswick 

 

 · Task design and problem posing 

 · Indigenous ways of knowing in mathematics 

 · Theoretical frameworks in mathematics education research / Les cadres théoriques 

dans la recherche en didactictique des mathématiques 

 · Early years teaching, learning and research: Tensions in adult-child interactions 

around mathematics 

 · Innovations in tertiary mathematics teaching, learning and research / Innovations au 

post-secondaire pour l’enseignement, l’apprentissage et la recherche 

 

2016 Queen’s University, Kingston, Ontario 

 

 · Computational thinking and mathematics curriculum 

 · Mathematics in teacher education: What, how… and why / Les mathématiques dans 

la formation des enseignants : quoi, comment… et pourquoi  

 · Problem solving: Definition, role, and pedagogy / Résolution de problèmes : 

définition, rôle, et pédagogie associée 

 · Mathematics education and social justice: Learning to meet the others in the 

classroom / Éducation mathématique et justice sociale : apprendre à rencontrer les 

autres dans las classe  

 · Role of spatial reasoning in mathematics  

 · The public discourse about mathematics and mathematics education / Le discours 

public sur les mathématiques et l’enseignement des mathématiques  

 

2017 McGill University, Montréal, Québec 

 

 · Teaching First Year Mathematics Courses in Transition from Secondary to Tertiary 

 · L'anxiété mathématique chez les futurs enseignants du primaire : à la recherche de 

nouvelles réponses à des enjeux qui perdurent / Elementary Preservice Teachers and 

Mathematics Anxiety: Searching for New Responses to Enduring Issues  

 · Social Media and Mathematics Education 

 · Quantitative Reasoning in the Early Years / Le raisonnement quantitatif dans les 

premières années du parcours scolaire  

 · Social, Cultural, Historical and Philosophical Perspectives on Tools for 

Mathematics  

 · Compréhension approfondie des mathématiques scolaires / Deep Understanding of 

School Mathematics  
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Appendix B / Annexe B 

PLENARY LECTURES AT EACH ANNUAL MEETING / 
CONFÉRENCES PLÉNIÈRES DES RENCONTRES ANNUELLES 

 
 
 

 

 

1977 A.J. COLEMAN The objectives of mathematics education 

 C. GAULIN  Innovations in teacher education programmes 

 T.E. KIEREN  The state of research in mathematics education 

 

1978 G.R. RISING The mathematician’s contribution to curriculum 

development 

 A.I. WEINZWEIG  The mathematician’s contribution to pedagogy 

 

1979 J. AGASSI The Lakatosian revolution 

 J.A. EASLEY Formal and informal research methods and the cultural 

status of school mathematics 

 

1980 C. GATTEGNO Reflections on forty years of thinking about the teaching 

of mathematics 

 D. HAWKINS Understanding understanding mathematics 

 

1981 K. IVERSON Mathematics and computers 

 J. KILPATRICK The reasonable effectiveness of research in mathematics 

education 

 

1982 P.J. DAVIS Towards a philosophy of computation 

 G. VERGNAUD Cognitive and developmental psychology and research in 

mathematics education 

 

1983 S.I. BROWN The nature of problem generation and the mathematics 

curriculum 

 P.J. HILTON The nature of mathematics today and implications for 

mathematics teaching 
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1984 A.J. BISHOP The social construction of meaning: A significant 

development for mathematics education? 

 L. HENKIN  Linguistic aspects of mathematics and mathematics 

instruction 

 

1985 H. BAUERSFELD Contributions to a fundamental theory of mathematics 

learning and teaching 

 H.O. POLLAK On the relation between the applications of mathematics 

and the teaching of mathematics 

 

1986 R. FINNEY Professional applications of undergraduate mathematics 

 A.H. SCHOENFELD Confessions of an accidental theorist 

 

1987 P. NESHER Formulating instructional theory: the role of students’ 

misconceptions 

 H.S. WILF The calculator with a college education 

 

1988 C. KEITEL Mathematics education and technology 

 L.A. STEEN All one system 

 

1989 N. BALACHEFF Teaching mathematical proof: The relevance and 

complexity of a social approach 

 D. SCHATTSNEIDER Geometry is alive and well 

 

1990 U. D’AMBROSIO Values in mathematics education 

 A. SIERPINSKA On understanding mathematics 

 

1991 J .J. KAPUT Mathematics and technology: Multiple visions of multiple 

futures 

 C. LABORDE Approches théoriques et méthodologiques des recherches 

françaises en didactique des mathématiques 

 

1992 ICME-7 

 

1993 G.G. JOSEPH What is a square root? A study of geometrical 

representation in different mathematical traditions 

 J CONFREY Forging a revised theory of intellectual development: 

Piaget, Vygotsky and beyond 

 

1994 A. SFARD Understanding = Doing + Seeing ? 

 K. DEVLIN Mathematics for the twenty-first century 

 

1995 M. ARTIGUE The role of epistemological analysis in a didactic 

approach to the phenomenon of mathematics learning and 

teaching 

 K. MILLETT Teaching and making certain it counts 

 

1996 C. HOYLES Beyond the classroom: The curriculum as a key factor in 

students’ approaches to proof 

 D. HENDERSON Alive mathematical reasoning 
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1997 R. BORASSI What does it really mean to teach mathematics through 

inquiry? 

 P. TAYLOR The high school math curriculum 

 T. KIEREN Triple embodiment: Studies of mathematical 

understanding-in-interaction in my work and in the work 

of CMESG/GCEDM 
 

1998 J. MASON Structure of attention in teaching mathematics 

 K. HEINRICH Communicating mathematics or mathematics storytelling 
 

1999 J. BORWEIN The impact of technology on the doing of mathematics 

 W. WHITELEY The decline and rise of geometry in 20
th

 century North 

America 

 W. LANGFORD Industrial mathematics for the 21
st
 century 

 J. ADLER Learning to understand mathematics teacher development 

and change: Researching resource availability and use in 

the context of formalised INSET in South Africa 

 B. BARTON An archaeology of mathematical concepts: Sifting 

languages for mathematical meanings 
 

2000 G. LABELLE Manipulating combinatorial structures 

 M. B. BUSSI The theoretical dimension of mathematics: A challenge 

for didacticians 
 

2001 O. SKOVSMOSE Mathematics in action: A challenge for social theorising 

 C. ROUSSEAU Mathematics, a living discipline within science and 

technology 
 

2002 D. BALL & H. BASS Toward a practice-based theory of mathematical 

knowledge for teaching 

 J. BORWEIN The experimental mathematician: The pleasure of 

discovery and the role of proof 
 

2003 T. ARCHIBALD Using history of mathematics in the classroom: Prospects 

and problems 

 A. SIERPINSKA Research in mathematics education through a keyhole 
 

2004 C. MARGOLINAS La situation du professeur et les connaissances en jeu au 

cours de l’activité mathématique en classe 

 N. BOULEAU La personnalité d’Evariste Galois: le contexte 

psychologique d’un goût prononcé pour les mathématique 

abstraites 
 

2005 S. LERMAN Learning as developing identity in the mathematics 

classroom  

 J. TAYLOR Soap bubbles and crystals 
 

2006 B. JAWORSKI Developmental research in mathematics teaching and 

learning: Developing learning communities based on 

inquiry and design  

 E. DOOLITTLE Mathematics as medicine 
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2007 R. NÚÑEZ Understanding abstraction in mathematics education: 

Meaning, language, gesture, and the human brain 

 T. C. STEVENS Mathematics departments, new faculty, and the future of 

collegiate mathematics 

 
2008 A. DJEBBAR Art, culture et mathématiques en pays d’Islam (IXe-XVe s.) 

 A. WATSON Adolescent learning and secondary mathematics 

 

2009 M. BORBA Humans-with-media and the production of mathematical 

knowledge in online environments 

 G. de VRIES Mathematical biology: A case study in interdisciplinarity 

 

2010 W. BYERS Ambiguity and mathematical thinking 

 M. CIVIL Learning from and with parents:  Resources for equity in 

mathematics education 

 B. HODGSON Collaboration et échanges internationaux en éduction 

mathématique dans le cadre de la CIEM : regards selon 

une perspective canadienne / ICMI as a space for 

international collaboration and exchange in mathematics 

education:  Some views from a Canadian perspective 

 S. DAWSON My journey across, through, over, and around academia:  

“...a path laid while walking...” 

 

2011 C. K. PALMER Pattern composition: Beyond the basics 

 P. TSAMIR &  The Pair-Dialogue approach in mathematics teacher 

 D. TIROSH education 

 

2012 P. GERDES Old and new mathematical ideas from Africa: Challenges for 

reflection 

 M. WALSHAW  Towards an understanding of ethical practical action in 

mathematics education: Insights from contemporary 

inquiries 

 W. HIGGINSON Cooda, wooda, didda, shooda: Time series reflections on 

CMESG/GCEDM 

 

2013 R. LEIKIN On the relationships between mathematical creativity, 

excellence and giftedness 

 B. RALPH  Are we teaching Roman numerals in a digital age? 

 E. MULLER Through a CMESG looking glass 

 

2014 D. HEWITT The economic use of time and effort in the teaching and 

learning of mathematics 

 N. NIGAM Mathematics in industry, mathematics in the classroom: 

Analogy and metaphor 

 

2015 É. RODITI Diversité, variabilité et convergence des pratiques 

enseignantes / Diversity, variability, and commonalities 

among teaching practices 

 D. HUGHES HALLET Connections: Mathematical, interdisciplinary, electronic, and 

personal 
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2016 B. R. HODGSON Apport des mathématiciens à la formation des enseignants 

du primaire : regards sur le « modèle Laval » 

 C. KIERAN Task design in mathematics education: Frameworks and 

exemplars 

 E. MULLER A third pillar of scientific inquiry of complex systems—

Some implications for mathematics education in Canada 

 P. TAYLOR Structure—An allegory 

 

2017 Y. SAINT-AUBIN The most unglamorous job of all: Writing exercises 

 A. SELDEN 40+ years of teaching and thinking about university 

mathematics students, proofs, and proving: An abbreviated 

academic memoir 
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Appendix C / Annexe C 

PROCEEDINGS OF ANNUAL MEETINGS / ACTES DES 
RENCONTRES ANNUELLES 

 

 
Past proceedings of CMESG/GCEDM annual meetings have been deposited in the ERIC 

documentation system with call numbers as follows: 

 
Proceedings of the 1980 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 204120 

 
Proceedings of the 1981 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 234988 

 
Proceedings of the 1982 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 234989 

 
Proceedings of the 1983 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 243653 

 
Proceedings of the 1984 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 257640 

 
Proceedings of the 1985 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 277573 

 
Proceedings of the 1986 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 297966 

 
Proceedings of the 1987 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 295842 

 
Proceedings of the 1988 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 306259 

 
Proceedings of the 1989 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 319606 

 
Proceedings of the 1990 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 344746 

 
Proceedings of the 1991 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 350161 

 
Proceedings of the 1993 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 407243 

 
Proceedings of the 1994 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 407242 

 
Proceedings of the 1995 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 407241 
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Proceedings of the 1996 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 425054 

 
Proceedings of the 1997 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 423116 

 
Proceedings of the 1998 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 431624 

 
Proceedings of the 1999 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 445894 

 
Proceedings of the 2000 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 472094 

 
Proceedings of the 2001 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 472091 

 
Proceedings of the 2002 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 529557 

 
Proceedings of the 2003 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 529558 

 
Proceedings of the 2004 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 529563 
 
Proceedings of the 2005 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 529560 
 
Proceedings of the 2006 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 529562 
 
Proceedings of the 2007 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 529556 
 
Proceedings of the 2008 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 529561 
 
Proceedings of the 2009 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 529559 
 
Proceedings of the 2010 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 529564 
 
Proceedings of the 2011 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 547245 
 
Proceedings of the 2012 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 547246 
 

Proceedings of the 2013 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 547247 
 
Proceedings of the 2014 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 581042 
 
Proceedings of the 2015 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 581044 
 

Proceedings of the 2016 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 581045 
 

NOTE 

There was no Annual Meeting in 1992 because Canada hosted the Seventh International Conference on 

Mathematical Education that year.  
 


