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INTRODUCTION 

Th""" Pro""edlngs are a partial record of the fifth annual meeting of 
the Canadian Mathematics Education Study Group. They are intended 
ltrimarily as a reminder and a resource for those who participated in 
the meeting, but they may nevertheless contain material which will 
speak to people who were not there. 

A lot is missing, of course, since the Study Group's work does not 
consist entirely, or even mainly, in listening to prepared present
ations. Presentations are much easier to record and pass along than 
the lively, unpredictable discussions that take place, particularly 
in the Working Groups. Yet it is the latter that indicate that people 
are really working and generating new insights and new ideas. The 
writers of some sections of these Proceedings have tried to convey 
a sense of this mental activity, but inevitably with only very modest 
success. 

The Study Group manages to hold together, better than some other 
collections of people who meet to talk about the teaching of mathe
matics, the essential strands of mathematics education. Whatever 
else it concerns itself with, mathematics education must attend to. 

(i) psychological matters, such as the cognitive and affective 
aspects of human learning, thinking and problem solving; 

(ii) mathematical matters, such as the content of mathematical 
knowledge, the historical and cultural aspects of mathe
matics, and the nature of mathematics as a human activity; 

(iii) epistemological matters, such as how particular mathematical 
concepts and skills are generated and apprehended. 

No doubt the Study Group has so far only managed to keep these three 
axes in view rather than integrate then into a solid structure, but 
it is certainly moving in a direction towards this difficult, and 
perhaps distant, goal. Any advance will strengthen discourse and 
research in the field of mathematics education immeasurably. Whether 
.there will be any impact on the practices of mathematics teaching is 
more speculative. It is doubtful if anyone anywhere really knows 
how to bring about intended changes in our classrooms. 

(iv) 

David Wheeler 

Chairman. C!'IESG 



EDITOR'S FORWARD 

The organization of these proceedings reflects the organization 
of the meeting itself. The agenda included two lectures, four 
working groups, three special groups, and two panel groups, as 
well as the possibility of production/ad hoc groups. The pro
ceedings are organized around the contributions of these groups. 

The two lectures were given by Kenneth Iverson and Jeremy 
Kilpatrick. Dr. Kilpatrick's lecture is presented in its 
entirity, however Dr. Iverson's lecture consisted mainly of a 
demonstration of the use of the computer language APL via a 
computer terminal and was therefore not available as a paper. 
A brief comment by Dr. Iverson is included in the proceedings 
and the reader is directed to the references included with that 
comment for further information on his views. 

Each of the various group leaders was asked to provide a short 
summary of his/her sessions and these are included in the 
appropriate sections of the proceedings. Reports were available 
for all of the groups with the exception of the special group 
on the art of solving and posing problems. In addition to the 
short summaries, the working group and panel group leaders 
submitted various contributions made by individual members of 
their groups. These contributions are not included in the body 
of the proceedings, however are included in the appendices. 

Finally, two production/ad hoc groups were formed and the 
presentations are included in Appendix G. 

-( v) 

Dale R. Drost 
Editor 

SUMMARY OF THE CONFERENCE 
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C;llladian }fathemaljc~; F.duc.:1l.io!l Sluuy Grou(1 

Groupe canadien d'etudC' l'll didacliqllc tIL'S milth0m£ltiquC's 

The fifth ,:mnu,'ll Hceting of tile C~1ESG/GCEJ)H took pl.'lct' at the Univcrsity of 

Alberta from June 5th to 9th, 1981. Approx_imal('ly SO l)('oplc (lttenued, most 

of them matllematicians and m£lthematics edllcators witll positi(lnS in Canadian 

universites, and from every province eXCl'llt PEl. 

The guest speakers tllis year were Dr. Kcnlleth Iverson (I.P. Stlarp Associates), 

who challenged the Heeting with lLis view that existing computer langua.ges are 

not mathematically equivalent alternatives, and that both mathematicians and 

educators will live to regret the pervasive effccts of BASIC and otll~r limiled 

languages, and Dr. Jeremy Kilpatrick (University of Cl'orgia), who C'xamined the 

theoretical and methodological reasons l.vhy rcsC';'lrch in m,'lthema.tics educa.tion 

has so far made little imract on classrooms. Other speakers were Dr. Hurray 

Klamkin (University of Alberta), who shared some of his insights into the 

art of posing and solving problems. and Professor Ferllntld Lemay (Universit0 

Laval), who successfully undertook the unusunl and difficult task of showing 

in an hour the stages of development of awarenpss in his cOllqUl'st of Rubik's 

Cube. 

Two p,'lnels of speakers introduced discussions of II~bthematics and language ll 

and liThe relation between the history and the pedagogy of matilcmatics ll • 

Groups discJssed the teaching of geometry in elementary schools, the char.1ctl'r 

of mathematics and education in China, lcwking ahC';ld to ICHE-V, [lnd possible 

cooperation with the Science Council's project in science education. 

This Heeting, follov . .'ing the precedent of other yeafs, gnvc C'c'ntral importance 

to the Working Groups. The topics stucilf'd this YC;lr .... 'erC' (1) ~lathE'matics 

education rese.1.rch and the classroom, (2) Computer t'ducatiol1 for teachers, 

(3) Issues in till' tl';lclJing of c:dcull1~, nlld (I,) 1\I'vit;lli~jllg mathelllatics in 

tcaclH'r cduc.1.t ill[\ progr<lmllll's. Each me'mlll'!" of tilt' c()!lfprt'llce chose 011(' Grollp 

;]nd worked in it [or ~ tot,d of 9 hOllrs. Till' ~izc of llH' Groups f'nsures that 

everyone can ilctivcly partici,pate, and till' limp ;'lllntpd is enough [or c[lch Group 

to go beyond tile obvious first stages in a topic ~lld llegin to work at tile harder 

questions. There is no doubt that this ft'atllre contributes a great deal to the 
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generation of the atmospilC'rc of seriolls and friendly cooper<1tion which 

characterises tllCSC Mcctil1gS. 

Anyone wishing further information about this or fUtl"Il-C Heetings may write 

to Joel Hillel, Dep;]rtment of Hathem;]tics, COllcordi<1 University, 7141 

Sherbrooke Street Hest, Hontreal, Quebec 114B IR6. 

David \.JhL'clcr 

3 



LECTURE I 

MATHEMATICS AND COMPUTERS 

DR. KENNETH IVERSON 

4 

APL AS A MATHEMATICAL NOTATION 

Kenneth E. I ve rson 
I.P. Sharp Associates 

Toronto, Canada 

The Speaker's remarks were based largely upon his Notation 
as a Tool for Thought ll.l, and are perhaps best summarized in 
the following excerpt from the introduction to that paper. 

The im[1ortance of nomenclature, notation, and lrln~luaqe 

as tools for thought has long been recognized. In chemistry 
and in botany, for example, the establishment of systems 
of nomenclature by Lavoisier and Lin~Jus did much to stimulate 
and to channel later investiqation. Concerning language, 
George Boole in his Laws of Thought [1, p.241 ~sserted 
I'That language is an instrument of hUnlc1n reason, and not 
merely a medium for the expression of thought. is a truth 
generally admitted." 

Mathematical notation provides perhaps the best-known 
and best-developed example of language used consciously as a 
tool of thought. Recognition of the important role of 
notation in mathematics is clear from the quotations from 
mathematicians given in Cajari IS A History of i~athemdticJl 
Notations [2, pp.332,3311. They are well worth reading in 
full, but the following excerpts suggest the tone: 

By rei ieving the brain of all unnecessary \'Iork, Cl good 
notation sets it free to concentrate on marl" <ldv,ltlCcd 
problems, and in effect incre<3ses the mental rOI"er of the 
race. 

II.N. Whitehead 

The quantity of meaning compressed 1nto small space by 
algebraic signs, is another circumstance that faci litates 
the reasonings we are accustomed to carryon by their aid. 

Charles 8abbage 

Nevertheless, mathematical notation has serious deficiencies. 
In particular, it lacks universality, and must be interpreted 
differently according to the topic, according to the author, and 
even according to the immediate context. Programming languages, 
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because they were designed for the purpose of directing computers, 
offer important advantages as tools for thought. Not only are they 
universal (general-purpose), but they are also executable and 
unambiguous. Executabi lity makes it possible to use computers to 
perform extensive experiments on ideas expressed in a programming 
language and the lack of ambiguity makes possible precise thought 
experiments. In other respects, however, most programming languages 
are decidedly inferior to mathematical notation and are little used 
as tools of thought in ways that would be considered significant 
by, say, an applied mathematician. 

The thesis of the present paper is that the advantages of 
executability and universality found in programming languages can 
be effectively combined, in a single, coherent language, with the 
advantages offered by mathematical notation. 

The cited paper is also avai lable in A Source Book in APL [2l, 
which includes other relevant material. Interested readers may wish 
to consult not only the cited paper, but "Algebra as a Language" 
(pages 35-45), the discussion of the mathematical roots of programming 
languages in the conclusion to "The Evolution of APL" (pages 70-74), 
the discussion of conventions governing the order of evaluation in 
mathematics (pages 29-34), and the discussion of the inductive method 
of teaching (pages 131-139). 

Refe rences 

1. Iverson, K.E., "Notation as a Tool of Thought", CACM 23, 
August 1980, Copyright 1980, Association for Computing 
Machinery, Inc. 

1. Boole, G. "An Investigation of the Laws of Thought". 
Dover Publications, NY 1951. Originally published 
by Walton and Maberly, London, in 1954, and by MacMillan 
and Co., Cambridge. 

2. Cajori, F. "A History of Mathematical Notations", Volume II 
Open Court Publ ishing Co., La Salle, III inois, 1929. 

2. Falkoff, A.D. and Iverson, K.E., "A Source Book in APL", APL PRESS, 
Palo Alto, (Suite 201,220 California Ave., Palo Alto, CA 94306), 
1981. 
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LECTURE II 

THE REASONABLE INEFFECTIVENESS OF 
RESEARCH IN MATHEMATICS EDUCATION 

DR. JEREMY KILPATRICK 
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The Reasonable Ineffectiveness of Research in Mathematics Education 

Jeremy Kilpatrick 

University of Georgia 

You may recognize the title above ae- '" play on the tit lp of an 

article by Richard W. Hamming, liThe Unreasonable Effectiveness of 

Mathem~tics," which appeared in the emerican Mathematical Monthlv ,n 

February 1980. In his article, Hamming ask" the question, "Why IS 

mathematics so unreasonably effective?" He offers some partial 

explanations but ends by saying that these pxplanat.ions ,3re (:,·0 1n<.ld· 

ficient "as to leave the question essentjally unanswered" (pu !·l~). 

am going to fo.low the same strategy but w.th a different questIon. 

My question is, "Why is research in mathematics education so in~t 

fective?" I shall offer somE' tentat,ve thoughts on th.s qur'· t Inn, "it 

you will soon discern that I, too, mllst. iedve my question "e~::':;F'nt1dll". 

u nan sw(~ red ... In addressing my question, shall malcp two cl~Lmr": 

much of the ineffectiveness of research in mathematics educa1ion 1 e , 

more perceived than rp~l, and (2) most of the percelv£!d ~nvf

fectivenes~ is reasonable. 

The Ef"t"ect iveness of F~eSp.f3rr::h '1 n Fdl.lc.3t ion 

(I) 

BE'fore asking whether research in mathematics education is reallj 

ineffective, I should like to broaden the context and ask whether 

research in education is, or has been, effective. 

In 1978, the National Academy of Education publ1shed a thick 

r)ositivp cla~ms that ar(~ made in its pages: 

Educat.ion: The book contains nine stllclles that 

purport to show how educational research has contributed to school 

practice. Scriven (1980) has argued that the book does not address 

the J'pay-offs" from educational research; it 

turns out to be • • concerned with such 

questions as whether the results af basic research 

in psychology and the social sciences trickle down 

to the educational research journals (which, you 

will not be surprised to hear, they do). That 

does not show that educational research bpnptittp~ 

from that other rpsearch and, more :i.mpor't~";:lnt.ly~ it 

does not show that educational research brnefttteri 

anything else. (p. 10, italics in original) 

Whether or not you agree with Scriven's analysis, the somewhat 

defensive tone Suppes adopts in the book's preface makes it clp~r t.tl~t 

pvpn in his view the effects of" educational resflc::lrch havp not bpl")n 

oVE'rwhelm.ng: 

I like to think o"r thp Cj:~If-~e c:)tud.L(··)f:; pr'pc;,(\ntp(j h(·;)rp 

as representing only a sampling of the beginning 

of educational research in its early years of 

development. What the future holds should be 

brighter and better, because it will bE' able to 

build on the kind of work reported in this volume 

and, as that building takps place, the impact on 

practice should become more marked. (p. XVi) 

Some of the difference of opinion between Scriven and Suppes 
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concerns whether one should talk about effects (impact) or henet.ts. 

Scriven is pushing a much more demanding criterion than 15 Suppps. 

But even if one 11mits the question to effectiveness, one has only to 

glance at the pages of journals such as the Educational Resparcher 

over the past cDu,)le of years or attend some of the sessions at the 

annual meetings of the American Educational Research Assoc1at10n to 

sense that there is a cr1sis of fa1th 1n educational research. Have 

we been doing the wrong things? Have we failed to make contact w1th 

school practice? Who, if anyone, 1S listening to what we have to say? 

Is it all an empty exercise? These are the kinds of quest10ns one 

senses are below the surface of the articles and talks. Many of these 

same questions undoubtedly occur to researchers in mathematiCS 

education, but we do not seem to be addressing them in even ttl€' 

ob11que fashion of our colleagues in educational psychology. 

The issue of whether or not educational research 1S effect1ve 

seems to get tangled up, in some people's minds, with the d1stinct10n 

between pure and applied research. What is the difference between 

pure research and applied research In education? Which is more likely 

to have a greater impact on educational practice? Two models seem to 

bp lInplirit whpn ppoplf~ m,lkp n,P dl',tlllctlun b ... >tw ... >" pIli'" ""d 'lI)1' 1 1,,<1 

research. 

The first model 1S hierarchical. Basic rpsearch IS at the top--

50 high in status that it is often seen as IIUp in the clouds." 

it is applied research, and below that somewhere is the mundane world 

of practical affairs. The simplest version of this model is what 

Greeno (1978) calls "the p1pe-line model": 

According to this model, fundamental knowledge and 

theories are 11ke crude oil, which gets pumped out 

of the ground in basic research. BaSIC knowled~e 

is shipped to appl1ed research settings where it 

is transformed into something more useful; this is 

like shipping crude oil to refineries, and 

transforming the product into llseable forms. 

Finally, results of applied research are shipped 

to developers and disseminators who use the 

knowledge in making products for use in school and 

send the stuff around to school users. This is 

analogous to send1ng refined gasoline to filling 

stations, where customers can drive up and fill 

their tanks. (pp. 7-8) 
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Greeno argues that this model is at best a weak reflection of the 

relation between science and technology in any field, and that it 1S 

grossly misleading in education. He argues that basic and applied 

research are not hierarchical; they overlap substant1ally, each 

cont.ributi.ng to t.he other, and the significant research qupc;t :Lnn', ,'lrp 

both basic and applied. shall return to this argument after further 

consideration of the hierarchical model. 

Ppoplp who do not C'Jdhpr'f\ to th[~ Dvpr'<:)unpllf I,pd pipp11lH~ mc)(.1r'1 m':·:1Y 

still view basic research as higher in st.atlls because it is theory

oriented and because it aims at generalization, whereas applied 

research, with its lack of theory and specificity, is necessarily 

lower in status. Suppes (1967), 1n an article written for a booklet 

that was the forerunner of the Journal for Research 1n Mathemat1cs 

Education, seemed to adopt this hierarchical V1ew. He argued that 

basic research could have a direct impact on practice, that we needed 

more basic research in mathematics education, and that we needed both 
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theoretical and empirical basic resear~h. ~ie seemed to be s\_lqqestln0 

that basic research in our field should be largely concerned w,th hoc 

students learn mathematics, that applied problems in our field include 

more effective ways of organizing the curriculum, and that bastc 

research will necessarily be more helpful than applied research in 

addressing such curriculum questions. 

that this is a somewhat restricted View. 

should not have to pOint out 

Tyler (1981) seemed to assume the same sort of hierarchy betwpen 

basic and applied research recently when he spoke to some directors of 

projects sponsored by the National SCience Foundation. Whf~rp he use~::. 

"science educatiOn., II one Ci::1n read Umathematics education": 

Research needed in science edtJcation is not only 

basic research which results in widely 

generalizable conrepts and principles but also 

applied rec.;;.ear'ch, thc"1t i5~ tnqulrlo::-> f'ofu<:,pcl on 

particular situatioT15 and particular kiT;ds of 

students, teachc:-rs., and institutions, t.,lhjch 

furnishes information of lmportaTlce 1n lmprov:Ln0 

science education in the particular circumstanCES 

whpr'e p+{nrt~) to tmpr'ovr ':,C1pnC[' pdUCi:-'lt I nn ,~jrp 

being mddf? (p. (;) 

Again, one has the connection between t)3sic/general and !~pp

lied/specific and, it seems to me, an 1mr)iied status differential. 

The other dominant model for thinking about baSiC and appliPd 

research might be callE'd the complpmpntaritz modpl: the two types of 

research are seen as complemen-tary, parh with it~; ()wn ('!oln~Ln and its 

own agenda, and equal (supposedly) in status. When ono sees baSl.C 

research characterized as I'conclusion-oriented" and applied research 
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as I'decision-oriented," one can be fairly sure these types of resPArc:h 

are being viewed as separate but equally valld--for their own domain 

of relevance. Other ways to assert their complementarity are to 

characterize basic research as descriptive and applied research as 

prescriptive, or basic research as being concerned with learning and 

applied research with teaching. 

Adherents of the complementarity View (Gelbach, 1979; Greeno, 

1978) seem agreed that the distinction between the two types of 

research has become increasingly blurred in recent year's. Gelbach 

argues that "it is now almost impossible to discriminate '! (p. 9) 

between basic and applied research because of: 

in research methodology (such as multivariate statistical mpthcJds) and 

design that permit the investigation of practical instructional 

problems in natural classroom settings with the same 1I~,cient:l.+ic,::l! I.y 

respectable levels of precision" (p. 9) that one has in .nvestlgat.ng 

basic research problems; and (2) important argtJments recently advancerl 

by pe(Jple such as Glaser, who claim that Ollr theory--bllildl1}g shGtJLd be 

prescriptive, not descriptive. Snow has argtJed that we should Ob~lnd(:)n 

attempts at general theory construction in favor of less ambltlollS, 

hut mor'p achi0v.--]hle, II lOCi'"l.t II thf'(")I'lf'!-,; tor' PX,-lTlIP.lP, Uthr.nrtp<, th,lt 

apply to the teaching of arithmetiC in grades 1-2-3 in Washin~ton and 

Lincoln schools in Little City, but perhaps not to the two other 

elementary schools in that town" (Snow, quotE'd by C;"lb.3ch, 1'1/'1, p. 

'1). Gelbach criticizes th.s view, saying that "local theory 

dE'velopment should be our last resort rather than our next move" (p. 

9, italics in original). Certainly, Snow's position implies a 

convergence between basic and applied research. 

I propose a third model for the difference between baSiC and app-
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lied research that can be used to address the question of the ef-

fectiveness of research. Although it may appear to conflict with the 

other two models, I think it is equally valid. Recall the story of 

the married couple who went to the rabbi to help resolve their quar

rel. The wife went in to the rabbi and told her story, wherpupon thp 

rabbi nodded and said, "You are right." Then the husband told his 

side of the story to the rabbi, who nodded and said, "You are right." 

After the couple had gone on their way, the rabbi's wife, who had 

heard both exchanges, said to her husband, "They cannot both be 

right." And the rabbi nodded and said, "You are right." It is in 

this sense that I claim my model is right. 

When people talk about research as being "basic" or "applied," 

"conclusion-oriented" or IIdec1sion-oriented,1/ udescriptive" or 

"prescriptive," and so forth, they are referring not to anything ttlat 

can be considered an intrinsic quality of the research study itself, 

but rather to either the researcher's purpose in conducting the ~tudy 

or the uses to which the study is put~ In other words, the same study 

can be either basic or applied, depending on who is dOing the labeling 

and for what purpose. BaSiC research is not defined by whether it is 

cOllductp(j 1n d J..lhor"'lttll"Y 1'.lthelr' 1h,)1l d (,(IIOIIJ, nor' i':> It tj(-'!lllt'd til' 

whether analysis of variance is used rather than chi-square. One can

not unambiguously label a piece of research as either baSiC or app

lied; one can only ask what connection the research study appears to 

have to theory and what connection to practice. Both of these, to a 

large extent, are in the eye of the beholder. 

Consider a hypothetical situation: a researcher conducts a study 

and then writes a report. Her purpose may have been to understand and 

explain some phenomenon that has to do with the learning of 
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mathematics .. She may hope to derive some generalization from the 

results. Her purpose is basic researct)--conclusion-oriented research. 

That is her purpose, but that does not mean the study was basic 

research in some intrinsic sense. We are speaking only of her 

purpose. When the report is written, of course, her view will be 

woven, more or less explicitly, into the account. A reader of her 

report brings his own frame of reference to it. Although it is 

important to distinguish between a research study and the report of 

the study, especially when writing about one's own work, there is a 

sense in which, for the reader, the study ~ the report. The reader 

ordinarily has no firsthand knowledge of a study other than what is 

contained in the report. More preCisely, for the reader, the study 

consists of the report plus the frame of reference in which he embeds 

it. A given reader may see our researcher'S study as applied 

research, despite her avowed purpose. She may have failed to make a 

clear link with theory, even though she intended to do so. The read"r 

may have a practical problem to solve and may be able to use the 

results of the study to help solve it. 

With respect to a particular piece of research, which can only be 

knuwn to a puhlic: thr'ollqh bOTllP l'I"pur't, thp cJ.cl~:)('->if'ici;:ltion of hd t:,1( 

versus applied depends upon the perspective of the reader of the 

report. This model might be called a lens model--a study may be baSIC 

or applied depending upon the lens you use in reading a report of it. 

This lens ought to be understood as incorporating your purposes and 

intentions in extracting information from the report. If the report 

helps you formulate a theory, then the study is functioning as baSiC 

research, regardless of the author's intentions. If the study helps 

you solve a practical problem, then the study, for you, has been app 



lied research~ 

'This p01,nt of View has imr)'I.lcAtiollS for the effpctiv~ncss of 

in particular. From thiS point of view~ effectl\/enes~.~ tc.o~ is 

relative. It is relative to both the criterion lJsed and the pprson 

using the criterion. Consider the argument presented by Getzels 

(1978) for the effectiveness of basic research in education. 

characterizes basic research as fo:llows: 

He 

Basic research comprises studies in Wtl1f.h the 

investigator formulates his own problem regarding 

a phenomenon or issue, and his aiTIl is primarily to 

conceptualjze and understand the chosen phenomenon 

or issue and only ~)ec()ndarily, if at all, to do 

anything about it. rhe work 1S theory orlpnt.pd 

rather than action orieTlted. Although thE> 

distinction here is not foolproof~ In thIS View 

basic research (like fine art) deals With 

I'discovered problems" and applied research (like 

commerCial art) deals With "presented problems." 

(p. 4flO) 
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This is a nice formlliation, but it hinges on the "Qim," the :~ntent.lon, 

of the investigator. It characterizes the research study as sr·pn by 

the investigator, but not necessarily as seen by others. 

continues as follows: 

Despite the belief that baSiC or theory-oriented 

research has little offect on practice--a bpiiof 

on WhiCh the sacr~fice of basic research for other 

activities is founded--the facl is that baSiC 
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research can have powerful effects on practice. 

(p. 480) 

Getzels then gives several specific examples of s~Jch effects. 

How is it that someone like Getzels can so confidently as'-ert 

that b~sic resparch can have powerful pffects ()n pr,3c·ticp, wt)('Tl ("'tJr' 

own experience as practitioners has suggested to most of U5 that such 

effects are rare, if not unknown? Is it a difference between 

mathematics education and the rest of edlJCation? Or is it a dif

ference attributable to our perspective, as opposed to Getzels'? 

Here, too, I shall argue that both are right. 

·fhe Ineffectiveness of Research in Mathplnatics Ed~Jcation 

Let us turn to research in mathematics education and ask why 1t 

appears, to mar.y, to be ineffective. One reason may be that, de!~p1.tp 

what apppars to be a flood of research in our field, we ac:tuiJl.ly havf' 

very little in the way of research to go on 1n drawing Imp:Lications 

for prC":Kt. ice. As many observers (e.q.~ Greeno, 1978) havp nG·ted~ th~ 

~mount of money spent on resear'ch in edllcation by ·the federAl 

government in the United States i5 a small fraction of that spent on 

nt.hpl~ i:]r··p,l~} of r'p!:;PE3r'ch (:illctl '.:l e , n'··.lt tun,.!! d(·'t('n';f', j·,pdC(-, ('P' \·',11'( h'l nr' 

atom1C pner'gy. Mor'eovpr, the ,:·:·Imuunt '::'jient on rf'r:;.pi:":"Ir'ch 1n (-lill(·''-·It l()n 

compared to the amount spent on edlJCation in general is an even (:,m~l

ler ff'action; one estimate is that it 1S less th,,'"3n O.AI.: (Gptzf·!ls9 

19/fl, p. 478). Mathematics education, although it has dono 

comparatively well, has shared in this dearth of funding. Aqainy it 

is a matter of perspective. Viewed one way, a lot of money has been 

spent by the US federal government over the last decade or so to Sup-

port research in mathematics education. Viewed another way, howevor, 
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the funds have not been nearly enough to do the job properly. 

We face another paradox, too. It sometimes seems as though, amid 

the frantic activity of research in mathematics education, we must 

have rnc)rp than enough data to answer important ql,lestic)llS tt)at face ll';. 

Beqle (1979) surely had thiS impression as he undprtnok thf:~ m")':;<:,tVt·, 

research synthesiS that resulted in hiS book, Critical Var1alJles ~,n 

Mathematics Education. Yet one can convincingly argue that we do not 

have enough data--certainly not enough of the right sort of data. As 

Bauersfeld (1979) noted: "We have a shortage in the midst of 

abundance" (p. 210). Sanders (1981), speaking of educational research 

as a whole, recently argued that we lack 

a body of systematically observed, factual 

knowledge about the way education operates in its 

natural settings. Despite rampant 

empiricism, there is no extensive ·'fj.quration of 

facts" • • observed regularities of the 

empirical world WhiCh must be accounted for by 

scientific explanations. Although we have large 

quantities of census-type data, achievement and 

o t. h p r t (:-: s t d I'd. a , t h fI r f' 1 ~:. V (} r' y 1 itt I p t r'lJ '., t w () r thy 

data represent1ng the facts of the educating 

process .. (p. 9) 

Sanders calls for more case studies and natl!ralistic invest1gaticns 

"to redress this weakness" (p. 9). His argument applies as well to 

research in mathematics education as to educational research in 

general. 

Another partial explanation for the apparent ineffectiveness of 

research in mathematics education has to do with our lack of what 
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Bauersfeld (1979) termed our "self-concept." Re~E'archer(; in 

mathematics education do not c()nstltute a trlJE' community_ In North 

America, we t'Bve the Canadian Mathematics Edllcation StLldy Group, the 

Special Interest Group for Research in Mathematics Education, the 

North American branch of the International Group for the Psychology nf 

Mathematics Education, the Research Council for Diagnostic and 

Prescriptive Mathematics, the informal networks spawned by the Georgia 

Center for the Study of Learning and Teaching Mathematics, the 

research sessions at the meetings of ttlE National COllnril of Tearhprs 

of Mathematics, the JOLlrnal for Research in Mathematic~ Edt_lcation, and 

so on. Despite all of these actlvities--and perhaps because of all of 

them--we lack a strong common identity; we are not truly a community. 

You have undoubtedly heard the refrain that most of the resoal'ch 

studies in our field are conducted as part of the requirpment for' a 

doctorate and that most of these are done by people who Will never do 

another piece of research. It is an old refrain, but unfortunately it 

seems to be as true today as it ever was. fhe annlla:L surveys of 

r'psearch that have been published in the Journal for F~espar'rt\ 1n 

Mathematics Education during the last decade show that, althou~h the 

qrnwth in thp numbpr' of dt',':iprtatl()l)c:) Cited m.]y hdV(·: l,::lqqt"(j ,1 1.1tt.tP 

behind the growth in the nlJrnber of journal articles, there are 51.1]1 

something like two dissertations for every artic:Le .. Further', it ap-

pears that the overwhelming majority of the dissprtatj,ons rlo not come 

from departments of mathematics education, nor are they conducted 

under the supervision of people who are recognized researchers in 

mathematics education. They may be good dissertations, and they may 

come from worthy programs in worthy institutions. [<ut they do not 

arise from what one might call "the research community in mathematiCS 



education.1I They do llot partake of 1SSlJ2S that concern this CClm--

munity; they do not arise from comTnon concerns, shAred knowJpd~p, 

mutual interaction. 

add up to very much? 

Is it any wonder that collectively they do not 
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Insufficient funds, insufficient support, insufficient knowJ.ertQP, 

insufficient collegiality--are these not good reasons for the 

perception of research in mathematics edl,lcation as ineffective') Is 1t 

not reasonable that research cnndLlcted undpr SI,ICh conditions w(:Jllld 

fail to infllJenCe school practice'~ '-here"are two addltl(Jnal reasoTls, 

however, that appear most compelling of all: (11 Dur lack of at--

tent Ion to theory, and (2) our failure to involve teachers as 

participants in our research. 

Attention to Theory 

recently pxam:ined the 3S (out of 3U) art.iclf-'s 1n t.hp tE'n lc;~~'UC"-:; 

of the Journal for Research in MathpTI1Atlcs Edurat:i.on from July 19/9 to 

May 1981 whose authors had affiliations With US institutions only. 

looked at each article to see if an attempt had been made to Itnk thp 

question under investigation to some theoretical context. For 20 of 

thp i-H'ticlcl;i, J could ftnil no I,ll( h ,Jtt('l!lpt~ J TIl,)Y tl,'IVC' hr't'n 1 (10 h,)r",li 

in some of my judgment<:)r and I may hi.-jVP been sompwhrit hi::lst.y, hIlt thl 

and other observations conVince me that a lack of attention to thp()ry 

is characteristic of US researc:h 1n mathematiCs edlJCation. fh t <::"" 

conclusion may not apply to research done in some other countries~ bl.:t 

the problem is not uniqup to thp United States. 

Why is this lack of attention to theory such a serious problem'? 

contend that it is only through a theoretical context that empirical 

research procedures and findings can be applied. Each empirical 
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re~,e2lrch study in mathematics pducation deals with a Unl(}UP, Ilmitpd, 

multi-dimensional situation, and any attempt to link the situation 

considered in the study with one's own 11practical " situation reqllj,res 

~n act of extrapolation. Extrapolation requires, hawevpr, ttlat (')Tlf\ 

embed the two situations in a common theoretical framework so that one 

can judge their similarity in various respects .. As the old adage has 

it, "There is nothing so practical as a good theory .. I, ~(erlingpr 

(1977) has argued that "the basic purpose of scientific research is 

theory" (p. 5) and that "there is little direct connection betwppn 

research and educational practice" (p. 5). The effect of research on 

educational practice is indirect; it is mediated through theory. 

Kerlinger points out, two factors that in the long run hinder the pf

fectiveness of educational research are the twin demands for payo'ff 

and rele-vancp. Such demands short-circuit the theory-bujldln~ 

p roc P!:')S .. 

l,.et us consider some exaTnp'Les of how theory has, or has nt)t~ (Ii 

fected practice in mattlemat1cs education .. 

(eronbach 8< Suppes, 196',1; Resnick &. Ford, 1'181) is E. L. Thor'!Hlike's 

influence on the teaching of arithmetic during the early years of thiS 

century. There is no doubt that 'lhDrnrlik(-:-l~ through h:l.~:J r'f::.~::(-?,-]r'ch¥ tl1' 

te~ching, and, most especially, hiS analysis of the psyct,o,Lo~y of 

arIthmetic, sllbstantially influenced the teaching of schoo:L arithmetic 

1n the United Statps. He was one of the few educational theorists t.o 

be actively concerned with the nuts and bolts of curriculum bUilding. 

His theoretical ideas had an impact in the classroom largely because 

he himself (and his students) analyzed textbooks in the light of hiS 

theory and made concrete suggestions for changes. His theory was hi~ 

hammer; he looked around and saw the arithmetic curriculum as 
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something to pound. One should pC'rhap~> notp 1 !'I~_l' :-i P I rl nn~ h·-,.v!"", Til!!rh 

competition at the t.ime <:-=lnd that he was extr'(·~rd.l}/ enf"rCjc"t ( :in t"IJ J 

efforts to apply his theoretical ideas. 

speak:1 ng., a mathemat:i.e s educator., an d his re,,: 0:, J!~C!l, ~~t:':: c t J Y <;;pc[~'d-(.1 nq. 

was not research in mathematics education, bu-\ WE.' put. it. therE' ql.li'tf" 

happily. He is a notable exception to the charge that researchers do 

not influence practice in our field. 

A second example is Piaget, also--needl 

mathematics educator. Groen (1978) has ,3S::,pc; c1d thp 1mp,]ct of 

Piagetls theoretical ideas on edlJCational prac'tlce, anrl he devot 

section of his assessment to mathematicsM 

"the hard core of Piagetian theory is replete wtth m~them~t1(~a:l 

analogies!' (p. 299), and consequently, "it is llot ~.IJr'pris1ng t~)at 

there are many parallels between mathem,]tjc.~) r:ci{:c.-d1nn ,1Tl(j F'1('Jqpt"';, 

own ideas" (p. 299). 

influencing the teaching of mathpmat1cs, it We':-' the' uth(::'r' \..,I21Y r'Clllnd 

mathematics influenced Piaget's thinking. 

nTl e 

of discovery learning and argues-----w1th consl(ic;.'I-,:lb IF Ju::~i If iC(:':lt1 ()T1-". 

that on this issue the influential theorist h.,,'1'; bC!PTl nor r-'j.:3qoi"y blJt 

Pn.lya. 

mathematical competence underlytnq the 'new Tn':'lthl CUf"i"1CU.l,-;-)" \1:"._ ,~OO), 

the applied research done under the f~iagetian jl1{llJenCp (jO.3Jt With 

highly specific problems and was difficult te, 1Je'],pr',3Iup Irmo. 

concludes with an analysis of Copeland's book to, ("'J'mr'nt r'j sch(·c,1 

teachers on the teaching of mathematics. He c]iJ:tm c , Cc.'pc-:,-Iand f]:L\)P<:=: ,i 

one-sided view of Piagetian theory that emphds lPS iis st~ltiC aSpf'rts 

and that tends to confuse mathematical structure wjth r"laget's more 

dynamic view of structure. 

1-(1 

cJl..f+ cul-! lr~ r;i~:,c(' 

,:~, !.!EII't ()f th~:·: 

[ultllre 1n which they live~ (j] tt)Duqh C· ()('P ,:.lp 

mllch of ,,?in ()VPf,t ~'ii::iqf-:t_i,3n infllJencE' 01: -:fldt 

:tnf )upncc bee!) 5lJbstantial~ 

t_l-,~ i,nfl::c'ni f' \.i"1(-- nn 

teachillg for the NatiulldJ 

found ,::! TiumhC-'l' c'j ~')C:":: rj,C'ii'Y '::C)-'UD:! HI,'::" wI": ( .{ + r 

I n Cj : h (., 1 f' ~: \) i.-, 

., 1 can t r, t to \il1ilk ii)(]:1Cdl.ly o'l[)uut 

fJ f' () b 1 (.:.; m ' j II the', 

dn(j fJ '-_,-:ll"l 

I, __ J( 

o 1,..1 ( -I- u i 

p. 
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the lack of transfer of the disclpllnes--lf indeed they had over heard 

of th£"::~e findings-'-'and had adopted a view that has pchuP':; of f,':ICU Lt.}' 

pc,ycholoqy. Presumably this View was not domln~nt in thetr pr'c'SerVl(':p 

edllcation prograTn, which doubtless gave them IDIJch sOLlnder, more 

scientific justifications for the teaching of mathematics. These 

justifications either had not survived or had never been accepted~ 

The educational psychology textbooks are fairly clear on thiS iSSue: 

one cannot train logical reasoning ability through specific school 

subjects like mathematics. This 1S part of the rece:Lved wisdom of the 

school-af-education culture, and these teachers must have been taught 

it. We have here a case in which current theories have not had much 

impact on teachers' thinking, and presumably their practice. 

These three examples are intended to illustrate some of the 

varioul" c"1nd perhaps perver'.:.'f~ WElyS in which theory .tnf luencc·s pr,·:H ttC( 

in mathematics education. As Kerlinger and others have Tloted, ttlF 

influence is primarily indirect .. Un:Less someone forceful and dominant 

such as Thorndike acts on the system, one must look hard to detect how 

the influence is occurring. A common procedure is for the theorist to 

set forth his views and then for a transmj.tter, such as (~opeland, to 

provide .:""3 r:,implifipd~ c"Jnd ror'hdP~ ~)nmf'wh"Jt <)<.':lrh1 \::·d., vpr'C,l.nT) for' ;:·1 

larger public Of. teachers. The trl:lfI<C,ITIi<.::.SiDn network, hOI.JE-,',)pr··., 1.,:: 

complex. A Piaget introduces a new idea, which resonate~; for someone 

else, who incorporates it into a talk, paper, or book, and other 

mathematics educators begin to use it in their speaking or wr1tinQ. 

Gradually, the idea comes into the culture of mathematics education 

and is picked up by teachers in practice. Sometimes the idea is ban-' 

ned from colleges of educatl0n--like faculty psychology--but lurks In 

the culture like a virus to strike down the receptive practitioner. 
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Sometimes the force of theory is felt merely by providing a namE 

for a construct that people have been grappling with but have not 

ar't iculated. Attribution theory and expectation theory seem thus far 

to have contributed to mathematics education in this fashion; 

r'esearchers in mathpmatics education are intrigllod by the C011strLtcts, 

but they have not been much concerned with following out the 

ramifications of the theories. 

as Adam must have discovered. 

Naming, however, is a pO\.Jerful force, 

Hadamard (1947), in discussing Newton's 

contributions to the calculus, said it aptly: 

The creation of a word or a notation for a class 

of ideas may be, and often 1S~ a ~clentific fact 

of very great importance, because it means connecting 

these ideas together in our subsequent thought. 

(p. 3B) 

F'imm (1981, p .. '+8) quotes H:i.gg·inson~s anagram, IIre-·namf~ing :1.'-: r'p-

meE:lning," from which it follows that " nam (e)ing is meaning .. " 

the constructs and networks of ttleory to help us think abo\.lt ttll.n~i· 

~bout the phenomena we confront as mathematics educators. We·, ought to 

be giving more seriOUS attention to the theoretical underpinning_ ot 

our' wOf'k., Ilflli W(.I IltlPt.! to m,llle' JlH)t'f~ pxp II( It ,\TId l.(dl('I·!'lll 111(' ,I' 

sumptions we are making, the point of View we are adopt1ng, ~nd ttlP 

frame of reference that surrounds the picture we are trYing to paint. 

As long as we ignore the theoretical contexts of OIJr research work 1n 

mathematics education, it will remain lifeless and ineffective. 

Teachers as Participants in Research 

Consider now the teacher's role in research. First, we should 

quickly note that "research" should be given the broadest possible 
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connotation; we should not limit tt to controlled Pxpp!'Jmpn-t::)tlon c,r 

even to emp1rical resparch~ as 1S often done. Research 1n m;J-th{·:·'mi'ltl.CS 

education should include historical studies, philosophical StUdlP~, 

and analyses of curriculum topics~ as well as surveys, case stl!dleS~ 

clinical studies, and the like. What makes a study research is not 

the methodology but the attempt to be systematic and to put the study 

in a larger context of theory, if possible. (This is true evpn for 

what some would term "applied research.") "Disciplined inquiry" 1S 

perhaps a better term in some respects than "research" since it 

emphasizes the process and not just the form. 

From this perspective, one can see that much of what mathematics 

teachers do every day comes close to being research; it is j\Jst not 

quite so deliberate, systematic, or reflective. As Alan 8ishop elY}}) 

;,as pointed out, teachers can borrow three th.inq~; from rf-~<:,E'ar'chers: 

their procedures, their data, and their constructs. What do 

researchers do when they do research'? If they are COndl!cting an 

empirical study, they might observe, formulate hypotheses, observe 

some more, and try to test their hypotheses. If possible, they try to 

vary the Situation systematically to see what the effects of variation 

might be.. They formulate con<:.t rllr-t c) t.::lnrl mndp] c, of hOl') ttn:-'':,(-;\ 

constructs might be related, and then they gathpr data to test the 

constructs and models. They develop instruments to help them gather 

data. These are activities that teachers can do. They can borruw 

these procedures and use them to study their own teaching. They can 

also borrow researchers' data. As 8ishop points out~ YOll do not have 

to gather data yourself for them to be of value to you. The value of 

data is in the process of understanding and interpreting them. 

Teachers can interpret the data from a research study in the light of 
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l-eacher~; can also tlorrow a researcher's [(Instruct! all(j "ttlr' ~c 

cc)mpanying models and theories. [<ishop refor::, to the wor'k of (.corqf' 

A~ ~(f.-~lly, the developer of the psychology of personal constrtlcts~ 

which is a theory of personality functioning. In ~(elly/s theof'Yy WP 

are all researchers, creating constructs as interpretations of our 

world and testing the predictive validity of these constructs. When 

we teach, we are concerned with the students we are teaching and with 

the ideas we are trying to teach them. Our behavior 1S shaped by t~lP 

constructs we have about the students and the ideas. 

turn, have their own constructs about us and about the 1deas as thGY 

understand them. Kelly sees behavior as an experiment. To undf:."",I~stc·jnd 

a child's behavior, says Kelly, try to figure out what quest~on she .is 

asking of the world. What hypothesis is she attempting to test? 1D 

change the child's behavior, try to figure out ways of getting her to 

fnr'm new constructs. To change one~s own behavior as a tp~rhpr, try 

to create alternative constructs for interpreting the world. If you 

cannot create such constructs, try borrowing some. The great va:lue of 

the work of theorists such as Piaget, Dienes, and Gagne is in the 

1nterpr'et.1V£.l lenses thpy \JivEI u~;, fur' lonklnq at f;'·lml11.)f' plipnnmeTld iTi 

new ways. 

faD mc:lny mathem'::ltic'.:; educators have the wrong ldf:-:d ,'·,)bout 

rpt::,earch .. They give most of their attention to the results. They 

think it is primarily important for teachers to know the results of 

the research on a given topic. They gj,ve a high priority to sum-

marizing and disseminating research results so that te~chprs can 

understand them. In a nontrivial sense, however, the reslJLts are thp 

least important aspect of a research study. Note that 8ishop dirl no't 
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include results among the things to be borrowed from researchers. 

The most important aspect of a research study is the constructs 

and theories used to interpret the data. A landmark research study 15 

one that confronts us with data analyzed and organized so as to shake 

our preconceptions and force us to consider new conceptions. 

researcher makes a contribution to our field by providing us with 

alternative constructs to work with that illuminate our world in a new 

way, and not simply by piling up a mass of data and results. 

This view suggests why teachers should be active researchers, why 

they should develop a research attitude. Teachers should not stop at 

being borrowers; they should become collaborators. Research is not 

something to be left to people who understand randomized block designs 

and analysis of covariance. Research in our field is disciplined 

inquiry directed at mathematics teaching and learning. 

out of the stream of daily classroom experience and stopping to 

reflect on it. It is becoming conSC10US of the constrlJcts we are 

using and then trying other constructs on for size. 

Research in mathematics education has increaSingly been moving 

out into the classroom. ThiS has been, in general, a healthy move. 

It would be better, however', 1+ tp,Jctiprc:;) Wf'f'C wOf'k tnq mOf'p c lo':;{';-:.!.; 

with researchers in formulating their problems and lnterpret1.ng their 

findings and not Simply in helping them gather data. fhe teachers 

would benefit, with respect to both their profeSSional attitudes and 

their effectiveness, and so would the researchers. 

Sanders (1981) has suggested that in no other profeSSion is the 

community of researchers more sharply differentiated from the com-

munity of practitioners than in education. Researchers tend to 

identify with, and publish for, communities that do not include 
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practitioners, and vice versa. The self-correcting mechanisms of 

science, however, require that the knowledge it claims is reliable be 

presented to a community of peers for review and correction. If 

incorrect or incomplete theories become institutionalized, asks 

Sanders, where will the impulse for correcting them come from? At 

present, the theory builders in OUr field, such as they are, do not 

see the consequences of their ideas in practice; and the teachers y ~ho 

have been trained to depend on experts for answers, have little 

impetus to correct these ideas and improve their own understanding. 

Certainly the interests of the teacher and the researcher are not 

necessarily congruent. Neither one should expect too much from the 

other (Phillips, 1980), but this by no means invalidates the argument 

that each can profit from a closer associatjon with the othpr. 

A Contrast between Mathematics and Research in MathematICs Eduration 

Hamming (1980) offers four partial explanations for the ef

fectiveness of mathematics that may help to explain further the inef

fectiveness of research in mathematics education~ Hamming argues, 

first, that we see what we look for; "we approach situations 

with an intellectllal apparatus !~O th'~lt WE! can only fiTlrl wh~t WP rln lTl 

many cases" (pp. 88-89). fhe phenomena we see arise from the tools we 

use, and mathematics has been highly creative in inventing tools. 

Research in mathematics education, on the other hand, has not. Ham--

ming relates a parable he attributes to Eddington: Some men went 

fishing in the sea with a net and, upon examining what they caught, 

found that there was a minimum size to the fish in the sea. In 

research in mathematics education, our nets have been rather coarse; 

our instruments, rather blunt. 
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Second, we select thp kind of mathematIcs to use, and" tt 1'; 

simply not true that the same mathematics works every pl~'-:e" (p. 89). 

When the mathematics we have does not work~ we ~,nvent someth~.ng ne~ 

Hamming gives the illustration of how, when scalars did not wor'k for 

representing forces, vectors were invented, followed by tens()r';. 

research in mathematics education, we have not shown the same 

ingenuity in adapting our tools to our problems. 

Third, science in fact answers comparatively few question~. 

In 

"When you consider how much SCience has not answered then you see that 

our successes are not so impressive as they might otherWIse appear" 

(p. 89). If one considers the questions associated with truth y 

bedlJty, or justice that mathematics cannot answer, says HaTnm1nq, one 

sees that almost none of our experiences fall under the domain of 

,na t h ema tic s • npplying this same argument to the realm of re~earch in 

mathematics education, one concludes that perhaps mathematj.cs 

educators have not recognized the limits in the classroom to the kinds 

of questions that research might be able to answer. F'el~haps one 

reason for the perceived ineffectiveness of research in mathemat.ics 

education is that too much has been expected of it. 

Fourth, tiamming contend~) ttl~t ttlP 0V(liut.l()n of marl h0c~ r)r8Vl(!(~l! 

the model for mathematics by selecting for "the obility to crp~te Qnd 

follow long chains of close re.3soning" (p. 89). We have been, to some 

extent, selected according to the models of reality in our minds. For 

example, we think very well about problems pertaining to things that 

are about our size, says Hamming, but we tend to have trouble if the 

problems concern very large or very small things. Jllst as there are 

some light waves we cannot see and some sounds we cannot hear, perhaps 

there are some thoughts we cannot think. Although evolution hos not 
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had much chance to operate ov~r the few generations of scientist~ in 

the history of science, perhaps there has been some select inn for the 

ability to follow chains of reasoning. The history of rescar'ch 1n 

mattlematics education is ml!ch shorter, and evollJtion has not t)ad t1nlC"' 

to select for a research attitl.lde. Many people who do res(~ar'ch 1n 

mathematics education have, in fact, been "selected"--or have sp"!ected 

themselves--because of the~r mathematica:L abilities. ThesE' e:lbilltl£'':., 

may not be, and probably are not, the same abilities that are needed 

for effective research in mathematics education. 

Davis and Hersh (1981) argue that the F'latonist, formalist~ and 

c:onstrlJctivist ViEWS of math~matics are no more than differcTlt W,:lYS (J/ 

looking at the same thing. They use the analogy of how one can ~it at 

the console of an interactive graphics system and learn about a 

hypercube by looking at pictures of the hypercube, rotating .t so a. 
to see how one view transforms into another. The viewer gradtJally 

hui Ids up a comprehensive View of the thing it~-)elf out of thp ,/,:)1" Ln',) 

~)artial views displayedM Similarly, one can bllild up a pictt.II~P of 

mathematics itself by integrating the variolls pictures of it that. ~~re 

offered by the various philosophies of mathematics. Research in 

that we are just beginning to note various views of it. Partial Views 

are offered in several recent sources such as 8egle (1979) and Shumway 

(1980), but a comprehensive image remains elusive. 

The parallel between mathematiCs and research in mathematiCs 

education ought not to be pushed too far, however. ApplYing 

educational research to mathematics teaching practice is not an 

engineering problem like applying mathematics to a pract1cal 

situation. For too long researchers have been misled by this 
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engineering metaphor. "fhe improvement of mathematics te~ctltn~ is not 

a technologica.L r)roblem; it 15 a hllman problem. 

writing about the inability of the reforms of the 1960s to have much 

impact on the educational process~ put it this way: 

There are some who will say that this state of 

affairs merely shows how obstinately conservative 

our Ileducational establishment l' is. I think th.s 

misses the paint. When there is so much Will to 

change, so much dedication to effecting change, 

and so little effectual change, the more 

reasonable conclusion is that we are dealing With 

a network of human relationships that does 

satisfy, if only in a minimal way, certain basic 

societal needs, even if we don/t quite know why or 

how it does. That this should surprise us 

indicates how deeply our thinking about all 

subjects has been suffused with the technoloQical 

mystique. We are inclined to believe that our 

power over nature and humanity is, or Ollght to be, 

limitless. We tend to assume that the Will to 

transform our human condition is a sufficient 

condition for stIch a transformation to OCCIJr. 

Everywhere, we hear the refra~n: "We can go to 

the moon, can't we? Well, why can't we do 

something equally marvelous about the ghettos or 

education or whatever?" 

The answer is, of course, that going to the moon 

is easy whereas improving our system of educat.on 

is hard. The one is nothing but a technolog1cal 

problem, the other is everything but a 

technological problem. Doing something about 

education means doing something about people-

teachers, students, parents, politicians--and 

people are just not that manipulable. They are 

what they are and do not become new people to suit 

any new ideas we might have. (p. 62) 

JJ 

If researchers in mathematics education are to become effectivE 

in improving the practice of mathematics teaching, they should: (1) 

develop a stronger sense of community, which would include pract.c>ng 

teachers as collaborators in research; (2) create their own 

theoretical coostructs for viewing their work; and (3) recognize the 

limits of their domain as well as its complexity. 
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RESEARCH AND THE CLASSROOM 

A Report of the CMESG/GCEDM Research Working People 

Thomas E. Kieren 
University of Alberta 

Shirley McNicol 
McGill University 

The title of the group suggests a number of possible connotations: 

what is true both in research and practice? 
what is the bridge(s) from research to practice 
or vice versa? 
what are implications of research for practice 
or vice versa? 
*what are ways in which research interests can be 
projected to the classroom? 

It is this latter question, inspired by a presentation at the 1979 

CMESG/GCEDM meeting by Jack Easley, which provided a focus for the group. 

Because of the nature of the group, some 19 university persons 

interested and active in mathematics education research, such a question 

is both appropriate and well within the scope of such persons' responsibility 

and perview. 

The indicated question above leads to a variety of sub-questions 

examples of which are: 

a) what are "spin-offs" from research useful in 
classrooms? 

b) how can teachers be involved and interested 
in research? 

c) how might research work effect various aspects 
of teacher education? 

d) what are the researcher's responsibilities in 
relating his/her work to practice? 

All of these questions are obviously related to the general topic 
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and like it have "direct" and "indirec.t" components. That is, in each case 

one can ask "is the impact or projection directly on to an aspect of practice 

or indirect, requiring further interpretation and elaboration? 

In its deliberations, the working group focussed mainly on the indirect 

aspects of questions a,b, and c above. There were a considerable number of 

comments on question d; this will be addressed later. The working style of the 

group was to address these questions by looking at five examples of recent 

Canadian mathemRtics education research, each presented by one of the group 

members who had worked on it. 

Kieren gave the example of the Rational Number Thinking Test as a research 

tool which teachers might use. This test is based on previous work by Gerald 

Noelting as well as Kieren, Nelson and Southwell, (which had been discussed at 

previous CMESG/GCEDM meetings in 1978, 1979 and 1980). The test contains four 

parts based on different mathematical interpretations of rational numbers. With-

in parts the questions or tasks represent a heirarchy of thinking. Research 

evidence based on use with over 1500 children and young adults indicates that the 

test might allow a teacher to observe the thinking tools that a student uses with 

respect to rational numbers, to see her/his differential reaction to various 

mathematical situations, and to see the interaction of language use and problem 

setting. In addition, according to Brindley's work in Calgary, the test can be 

used to classify students as concrete, transitional or formal with respect to 

rational numbers. 
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The group's discussion of this "spin-off ll of research for practice 

revolved around three points. The first was how this test could be used 

in classrooms. The second was should it be used. That is, is such a test 

sufficiently related to a teacher's or a student's work to prove useful. 

Third, what messages from research are contained in such a "spin-off" test. 

With regard to this latter question, Gaulin made several stimulating 

observations. The first was that the test is in itself a reflection of both 

theoretical and empirical research and in that sense carried research ideas 

to the teacher. Second, the test above, with documentation of uses and results 

could inform practice in an indirect way. Third, the content and structure of 

the test contained a "hidden message ll about how the curriculum for rational 

numbers might be organized. Thus an instrument or curriculum piece which comes 

from research and is used in practice might represent a projection at three levels: 

the theory behind the material is carried by the 
material itself, 
the results of research use could be projected 
to further use in the classroom. 
the material might be prototypic for other 
curriculum ideas. 

Harrison's presentation of the Calgary Junior Mathematics Project focussed 

the group's attention on how teachers can stimulate and participate in research. 

This project had its theoretical underpinnings in the work of Piaget, Bruner and 

Skemp and the curriculum research of Bell. Harrison had a research group of 

teachers who both studied prepared process oriented materials and developed process 

oriented techniques which they would use in the research in their classrooms. 

Following his carefully prepared summary of the development and 

implementation of the Project, discussion centred on the ways in which 

this research can be projected in the classroom. The group concurred 

with Harrison's response that the Project allowed for a) teacher involve-

rnent in the orientation and workshop sessions (where over 200 teachers 

shared materials), b) spin-off benefits to school colleagues and pupils, 

c) the dissemination of results at conferences in Berkeley, St-Louis and 

Grenoble. 

The third example of research considered by the group was that of 

David Wheeler on problem solving, specifically "an investigation of the 

mental operations of high school students in solving mathematical 

problems". In his report on the uncompleted Project, Wheeler stressed: 

a) 

b) 

c) 

difficulties involved in identifying "mental operations" -
preferring instead to use the term "strategies", though with 
less satisfying results. 

difficulties in identifying and analysing appropriate 
protocols & preferring to use lIep isodes" rather than each 
spoken contribution. 

benefits of the "clinical interview" techniques especially 
when the interviewer takes a positive role in the situation. 

In the brief discussion which followed, the group attempted to 
answer the question of how this research can contribute to mathematics 
teaching in the classroom. In addition to the obvious valup to the 
teachers involved, as evidenced by their surprise at studen~f responses, 
it was generally agreed that this type of research is of greater interest 
to the constituency of researchers. (A more detailed account of Wheeler's 
Proj ec t is included in Appendix A ). 
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The fourth research example took the form of video-taped interviews 

of children relating number ideas to a series of geometric tasks. This 

research done by Lunkenbein and presented by him was considered by the 

group for its implications for teacher education as well as implications 

for elementary school curriculum. The video tape itself shows a way in which 

teachers might use research. In a classroom setting a teacher rarely has the 

chance to observe individual students in a detailed or elaborate way. Such a 
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video tape represents a controlled way for a teacher to get an opportunity to 

observe children doing mathematics. This control stems from the fact that the 

mathematics, the task, and the protocol have been predetermined by the researcher. 

The teacher should be able to find out the researcher's assumptions, but then 

observe the child for their own purposes; that is the teacher can predict behaviors 

of children and then test those ideas through observations. The group also saw 

such video tapes and related materials as a way of injecting a research objective 

or a sampling of functioning in a research made into the teacher education 

curriculum. Use of tapes would allow a person to get an image of the theory of 

the researcher, and to observe the materials and techniques which could be modified 

for informal use in the classroom. 

Gaulin presented a longitudinal study of the use of calculators in upper 

elementary school mathematics. The group's discussion touched on a wide variety 

of questions related to research and the classroom. Gaulin continued to remind 

the group of the many audiences for research projections or implications. 
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Thus, for example research might have a "political!! implication for provincial 

education authorities. In the case of the research example, research results 

comparing calculator and non-calculator groups on a number of dimensions of 

achievement. Thus, while the researcher might be interested in the more 

phenomenological aspects of calculator use, he or she reasonably may be obligated 

to collect information for particular constituents or funding bodies. 

In the area of "spin-off", Gaulin reported that teachers were very interested 

in the collection of problems for calculator solution. While these were used in 

research to provide children with potentially rich settings for calculator use, 

the teachers saw them as useful in the curriculum in a more general way. 

Conclusions 

As a group, a main conclusion from our work was that we did not get very 

far in an effort to relate research and practice. Yet a number of useful 

observations did arise out of our sessions: 

1. Spin-off materials tests, curriculum pieces, techniques - bear (or should) 

information about research and theory for their users. 

2. 

3. 

Most research materials contain messages about potential change in the 

curriculum or in the actions of teachers or children. These could be 

made more explicit than is currently done. 

Teachers involved as research colleagues help define research in 

"practical" terms. Such teacher/researchers can conununicate the 

particular research in which they are involved to others as well as 

helping develop a research "face" in other teachers. 



4. The fact that much current research involves detailed observations 

of children and young adults in mathematical settings, can be used 

to great advantage in teacher education. 

S. There are many constituencies for research projections. The 

researcher must be alert to the possible interests these various 

practitioners might have. 

6. Mathematics education researchers can interpret the mathematical 

relevance and implications of their work to others. 

7. The example studies presented were alert to the interests of the child 

and seemed to engage children in activities in which they partook 

willingly and from which they profited in some direct way. 

These observations should be tempered by the observations of the group 

(some of which are in the attached material) on the researcher's responsibility 

in making the projects of his/her work. Some were: 

a) What are the researchers' responsibilities to the users of his/her work? 

This entails both the "selling" of her/his ideas and alerting users to 

limitations or misapplications. 

b) Researchers' need to make their reasons for doing the research and their 

assumptions in its doing clear to others. 

c) Research should (a value judgment) aim to improve practice. Things one 

knows should be clearly and directly presented to teachers. 

d) What are the ways and ethics of presenting research results so as to 

appropriately impact practice? 
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These questions indicate that deep issues remain to be explored in 

this area of research and the classroom. Yet the group, despite the 

disappointment in not atleast partly resolving such issues, felt that the 

time was well spent in relating the S example studies to the issues at hand. 

In addition, most liked the opportunity to discuss in detail the variety of 

interesting research which is ongoing in Canada today. 
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COMPUTER EDUCATION FOR (MATHEMATICS) TEACHERS: 

A Statement for the Working Group 
on Computers in Mathematics Education 

J. Dale Burnett 

The form of this report reflects a desire to encourage 

exploration rather than to achieve closure. Many of the points 

made in our discussion were as valuable for the questions they 

raised as for any solutions that were offered. Hence many of the 

"phrases" are only partially completed, simply that they may be 

placed on the table (or in the reader's consciousness). 

The following questions and points specific to the 

confluence of computer technology and mathematics education were 

noted at various points in the CMESG proceedings (on the plane to 

Edmonton, at the actual working group session, or in informal 

get-togethers) • 

1. Computer technology permits the display of data structures, 

both arithmetically (i.e. matrices) and graphically (tradi-

tional plus newer techniques such as Tukey's Exploratory Data 

Analysis) • 

2. Glass boxes. An idea championed by Howard Peelle (University 

of Massachusetts) - essentially the opposite of a black box -

manifested by a program or an algorithm that easily reveals 

the nature of the procedure. 
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3. Student and teacher manipulation of simulation and game models 

Not only by specifying parameters and observing the results 

but also by modifying the model itself. 

4. Debriefing sessions. Particularly valuable after students 

have had an opportunity to run a simulation. Is likely to be 

of value at the conclusion of any (programming or mathematics) 

assignment that permits alternative approaches or answers. 
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5. Interactive graphics. Simple examples could include the student 

specifying a, band c and having an immediate display of the 

corresponding quadratic graph. A number of such displays 

could be superimposed on one another to facilitate comparis-

ons. A more sophisticated (technologically) example coul.d 

involve the simple placing or deleting of points on a scat-

ter-plot (using a touch sensitive surface, or even games 

paddles) and having the resulting correlation coefficient 

displayed after each alteration. 

6. Video-disc technology will soon be available on computer systems. 

7. To what extent does familiarity with a computer language 

facilitate the learning of a natural language (or a second 

language)? 

8. What are some of the important features (from the point of 

view of computing science, mathematics, linguistics, psycho

logy, education, •.. ) of various languages such as BASIC, 

PASCAL, APL, LOGO, LISP ••• ? 

9. What are some of the important technological features of 

emerging computer systems (colour, sound, graphics tablets, 

touch sensitive surfaces, joysticks, music boards, high 

resolution graphics, ••• )? 

10. What are some of the underlying educational philosophies of 

different technological approaches? 

11. What are the important elements in the mathematics curriculum 

that could be enhanced by utilization of computer technology? 

12. We appear to be improving our authoring languages (NATAL, 

PILOT ••• ) for tutorial programming. We also need to improve 

our usage languages (APL, LOGO, ••• ). 

13. What is an appropriate role for computers in (mathematics) 

testing? (e.g. sophisticated drill and practice based on an 

analysis of previous performance, item banking, branching 

tests, •.• ) • 

14. What features of a computer-managed-instruction (CMI) system 

are suitable for a school system? (See paper by M. Westrom 

for an explanation of CM!.) 

15. What types of resource centres and clearing-houses for 

computer-based materials are needed? 

16. One should not forget about the adjunct use of other non

computer-based materials (course manuals, worksheets, photo

graphs, handouts, ••• ) while using a computer. Even within a 

specific task, some components may be better handled in other 

ways. 



17. There should be structure in the (mathematics) curriculum at 

the molar level but choice (student and teacher) at the micro 

level. 

18. Teacher receptiven~s to atypical uses of a particular program 

may open new avenues. For example, even a simple game such 

as brick-out (a computerized form of solitaire ping-pong) can 

lead to the exploration of various strategies and an analysis 

of why some strategies should work better than others. 
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19. Development of interesting environments for student exploration: 

- let student input any figure (using a graphics tablet, games 

paddle or a light pen). Have computer keep track of the 

relationship between area and perimeter. 

- see point #5 for other examples using interactive graphics. 

- Logo (turtle geometry) 

- APL 

- billiard ball math from Jacob's book, Mathematics: A Human 

Endeavour. 

20. Dr. Gerald N11ting, at a previousCMESG meeting in Kingston 

presented a paper on the use of different proportions of 

orange juice and water for studying students' understanding 

of fractions. A natural extension of this idea to computer

-ized screen displays, where the student alters the parameters 

and the shade of the resultant mixture is adjusted accordingly 

on the screen. Dr. Kieren indicated they are already work

ing on this at the University of Alberta. 

21. Various games are now being placed on the computer (chess, 

checkers, backgammon, go, tic-tac,toe, Rubiks cube, ••• ). 

However the real trick is to have this set up to facilitate 

the writing of "strategies" for playing these games. 

22. In addition to numeric manipulation, computer usage can 

increase the need for symbolic manipulation (e.g. algebra) 

and graphic manipulation (e.g. use of colour within group 

theory) • 

23. Odometer displays for different bases. 

24. We need software to display program execution one step at a 
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time (e.g. displays highlighting, perhaps by flashing or reverse 

video, both the line of code being executed and the change 

to any data structure). 

25. The introduction of this technology should require mathematics 

educators to identify the key concepts within the curriculum. 

26. Use of computer generated films to show complex mathematics 

phenomena (e.g. turning a sphere inside-out). 

27. To date, most mathematics has been "static", in the sense 

that it represents only snapshots, not motion. We are now on the 

verge of having a genuine "dynamic" mathematics environment 

involving motion on a screen. 

28. It should be fun. We want people to enjoy mathematics. 

29. Just because computers are in the classroom, is this a prima

facae reason that they should be extensively used? 



30. Some uses of computers may actually be retrogressive (e.g. 

some languages {Basic?} may be so discordant with actual 

thought as to interfere with the key conceptual processes in 

question - for example, matrix multiplication) • 

31. A distinction should be made between computing science and 

computers augmenting mathematics. 

32. What components of the mathematics curriculum become tri

vialized? What areas become accessible (with the advent of 

computer technology)? 

33. We need to develop our abilities to explore. 

34. There is a perceived need for guidance on how to evaluate 

software. 

35. Attention needs to be directed to the level of the classroom 

teacher. How does one use a micro in today's math class? 

36. We need some exemplary demonstration programs. 

37. We must be careful not to limit ourselves to today's 

technology. 
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ISSUES IN THE TEACHING OF CALCULUS 

RALPH STALL 
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CMESG GROUP C 1981 

REPORT 

Attendance at the Group C sessions rapidly stabilized to become the following 

group of contributors. 

Robert R. Christian 

H.N. Gupta 

Bikkar Lalli 

Ian McDonald 

Ralph Staal (Chairman) 

Hugh Thurs ton 

Yvan Roux 

All participated in the discussions. The papers referred to in this report 

were written by the leaders of the related discussions and are included in 
Appendix C. 
I. Agenda Possibilities 

The chairman opened the proceedings with the presentation of Paper #1 (Agenda 

Possibilities), the contents of which had previously been available to registrants. 

It was not expected that all 15 suggested topics would be discussed, and they 

were not, but nearly all were at least touched on, sometimes as side comments 

to a major i tern. 

In this report, we will treat the topics mainly in the order in which they 

appear in Paper #1: chronologically, there was quite a bit of back-tracking as 

given issues were returned to when they interacted with each other. 

II. Is Calculus the same as Introductory Analysis? 

It was agreed that the answer to this (admittedly somewhat rhetorical) 

question should be NO. Much of the material may be the same, but the focus 
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emphasis and motivation are different. The break-up of the (at one time) closely 

knit package of mathematics and science has been associated with greater 

compartmentalization. Mathematics has often been left standing more by itself, 

with a resulting shift toward Introductory Analysis which is premature, inadequately 

motivated, and, in spite of its intentions, not really very strong theoretically. 

Calculus, in contrast with Introductory Analysis, is by its very nature 

heavily involved wi th appl ications - they are part of it. The value of the 

applications here is not "practical" (in the usual sense); rather it lies in 

aiding the mathematical understanding and in generating (not just applying) 

the mathematical ideas. 

One should speak of Itinteractions" rather than "applications", as this 

would suggest more strongly a reciprocating, or symmetric, relationship between 

the mathematics and the areas of "application ll , 

See also R.R. Christian's Paper #7, item 8. 

R.R. Christian (see Paper #7, pp. 1,2) answered the question with a firm 

I'No!" and suggested replacing rigor by honesty. 

Il.N. Gupta (see Paper #6, p.6), in the matter of rigor counselled waiting 

for an appropriate time, referring to the quotation '. 

"Give them chastity anu continence, only not yet" 

III. What should be done about Differentials? 

This question precipitated extensive discussion. First, it had to be 

sharpened by distinguishing between the differential notation and its various 

interpretations, and by treating it in different contexts. 



The chairman presented three brief papers [#2, #.3, and #4J. 112, titled 

"Logarentials" was a satirical (with apologies) account of how some of the 

perplexities assocjated with most "standard" accounts of the differential 

notation and concept can be transferred, by a reasonable analogy, to the 

subject of logarithms - the point being that the unnecessary confusion inherent 

in the original would (it was claimedJ be more easily seen in this way. 

#4, titled "By Parts", was intended to indicate by examples (the full story 

presumably being familiar to the Group membersJ that the message implied by 

many textbooks that integration by parts involves differentials in an essential 

way is entirely false, both theoretically and in terms of convenient manipulation. 

#3, titled !1S etting up Integrals", compared two popular ways of arriving at 

the integral for an area under a curve. The case was put that the method 

which referred to 6x's and to forming a limit of a sum was, although incomplete, 

a clear indication of the nature of the process involved, whereas the "differen-

tial" approach was confusing. 

H. TIlUrston responded to the question with a substantial presentation which 

in expanded form, appears in Paper #5,"111C I.eibniz. Notation". R. Staal responded 

in part, by claiming that the difficulties which Professor TI,urston resolved 

by using the definitioll 

dx(a,Tl = x' (aJ hl 

could all be resolved equally well, in his opinion, without any such definition 

of dx in isolation, 

rather than the parts 

provided 

nIb" and 
a 

one interprets only the whole of "Jb 
... dx," 

a 

"dx" separately, 

In Paper #6, pp. 3- 5, II. N. Gupta viewed the use of differential s from 

another point of view - as tools of approximation and discovery - and urged 

that they not be banished from introductory Calculus. TIlis was not actually 

in conflict with Professor Staal's point of view, as the latter's comments 

were in a different context. The use of finite (not "infinitesimal") approxi-

mations to finite increments, followed by a limiting process was not what 

Professor Staal was proscribing. His concern was essentially wi th those uses 

of di fferentials which appeared to avoid limi ting processes. 

In Paper #7, item 3, R.R. Christian distinguished between the differential 

(manipulativeJ and the infinitesimal (little bit ofJ aspects of differentials. 

He emphasized the importance of honesty, heuristics and usefulness (e.g. as 

mnemonics) . 

On the whole, there was agreement that many, or most, current standard 

treatments of differentials at thc elementary level were notably unsatisfactory 

but there was more to the issue than this. 

IV. liow should.l'n x be introduced? 

R.R. Christian, (see Paper #8 for a detailed account) pointed out the 

advantages of approaching 

.I'(a) = 

logari thms 

. ah_l 
bm -h--' 
h+O 

by means of the function 

This approach was not generally familiar to the Group members, but Professor 

Gupta commented (Paper #6, pp. 1,2,3) that it resembled the treatment given 

by De Morgan in 1842, and elaborated on the history of the topic, and on 

the desirability of making this history more widely known among our students. 

Professor Christian, on subsequently referring to De ~Iorgan' s work (see 

Paper il7, pp.lJ found some overlap with his own approach, but also some 

considerable differences. (See paper #9, for the relevant parts of De Morgan's 

paper). 
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V. How should one sketch Polar Graphs? 

R.A. Staal raised the issue of sketching polar graphs as one which normally 

fi ts into an introductory Cal cui us cours e and which, although perhaps mathe

matically trivial, leads to the important question "Why do we drill students 

in graphing, and then ignore good opportunities to use these graphs?" He 

outlined a method which invoved 

(a) sketching the (usually familiar) Cartesian graph of r = f(8), 

or perhaps a familiar related graph on which the values of 

f(8) could be easily read. 

(b) plotting the Polar graph of r = I f(8) I, but dotting the portions 

of the curve on which f(8) was negative. 

(c) reflecting the dotted portions of the graph in (b) in the origin. 

(This method has been outlined, with illustrations, in the Ontario Secondary 

Schools Mathematics Bulletin, V. 17 No.3, Sept. 1981, pp. 5,6). 

H. Thurston (see Paper #10) has since added a note on the use of this 

method in suggesting where a polar graph might involve a change in concavity. 

VI. What role should historical matters play? 

The main responses to this question were the following: 

H.N. Gupta, in Paper #6, already referred to, exemplified the historical 

approach to logarithms. 

Y. Roux, in Paper #11 (written jointly with M. Lavoie) presented the 

chairman with a paper which, although written in another context, overlapped 

significantly the concerns of the Group. This paper emphasized the importance 

of having two points of view. 
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Ca) the mathematical: dealing with internal subtleties and logical 

aspects 

(b) the historical: emphasizing the genesis of ideas and the influence 

of history on teaching. 

59 



VII Why is Calculus an Important Subject? 

A member of the group asked for a response to students who asked why 

they spent so much time on Calculus. Why, if at all, does it have a special 

value? 

The response was that, in addition to more obvious reasons, Calculus 

brings together in an interesting way nearly all the mathematics to which 

the student has already been exposed, and its benefits are accordingly 

very broad. It is also a particularly powerful tool, covering a wide 

range of applications. 

The students should be asking "Why do we spend so little time on Calculus? 

It was pointed out that a very large portion of the time given to 

lecturing in Calculus is in fact devoted to matters algebraic, geometric, 

etc. 

~lathematics teachers were urged to keep educational and mathematical 

matters uppermost, and to resist pressure to give courses on IICalculus 

for Chemists'!, "Calculus for Accountants" "Calculus for Economists" and 

others which are designed merely for training students in specialized 

applications. If given at all, such courses should be handled by 

Chemists, Accountants, Economists, etc. 
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WORKING GROUP D 

REVITALISING MATHEMATICS IN 
TEACHER EDUCATION COURSES 

HUGH ALLEN 
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Revitalalising Mathematics in Teacher Education Courses 

Report of Working Group 'D' 
H.A.J.Allen 

Faculty of Education 
Queen's University 

~orking.group 'D' met to discuss ways of overcoming the 
negatlve attltudes towards mathematics of many teacher education 
stu~ents. Several participants had brought along examples of 
tOP1CS and/or approaches that they had found to be effective in 
reducing students' anxiety, Through seeing some of these examples 
and ~hrough the subsequent discussion, the group was able to ' 
clarlfy t~e framework within which constructive examples might 
apply. ThlS report attempts to summarize the discussion that 
took place within the working group. 

One aim of teacher education courses is to produce teachers 
who have ~p rea~onable c,:mfidence in themselves and in subject 
matt;r, (11) an lntere~t ln the subject matter, and (iii) the 
co~fldence to try ~ew ld;as, both mathematical and pedagogical. 
Whlle some of our lnserVlce and pre service candidates do possess 
these characteristics, most do not, and those that do not can be 
classifi;d into two main types according to their attitude toward 
mathematlcs; namely apprehension or complacency. 

.Students whose attitu~e toward mathematics is one of appre
h;nslon (or fear, or sometlmes outright rejection) have had very 
llttle mathematics in their academic background (often as little 
as grade. 10 math~matics) and have little incentive to do any 
mathematlcs. Typlcally, these students are preservice or inservice 
elementary school teachers, and they are usually women. 

The other type of student (the complacent ones) usually 
have a grea~ deal.of mathematic~ in their academic bacground
freq~ently l~cludlng several unlversity level courses in math
em~tlcs. Thelr "know-it all" attitude toward elementary mathem
atlcs makes them reluctant to try any new mathematics. They are 
products of the system, and the system rarely asked them to 
think. Typically, these students are secondary school teachers 
(practicing or intending). 

To accomplish the three aims discussed earlier in this 
report it may be necessary to treat the apprehensive student 
differently from the complacent student. We want both students 
to do mathematics and to see mathematics as process. With the 
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apprehensive student it is important to reduce hiS/her anxiety 
and to have the student experience lots of success, On the other 
hand, with the complacent student it may be necessary to increase 
anxiety ini tally and to have the student experience some lack of 
success before he/she is willing to do any new mathematics. With 
both types of students we are attempting to change attitudes to
ward mathematics, 

Itm the opinion of the working group that changes in attit
udes are most likely to be achieved by engaging in activities 
that (a) provide insight into a mathematical topic, content, or 
procedure that was not previously understood, (b) promote a diff
erent view of mathematics - one in which mathematics is seen as 
"process" rather than a set of results, and (c) provide an oppor
tunity for the teacher to behave in such a way as to make the 
student (in this case the pre service or inservice teacher) more 
comfortable with the material. These, then are desirable char
acteristics in an activity and hence are to be considered in 
choosing the kind of activity to be used with teachers. 

In addition to considering the kind of activity, it is most 
important to consi1er the content of the activity and in part
icular, what can be"With this in teacher education. In mathem
atics courses, one teaches mathematics. That is the sole content. 
By contrast, in teacher education one teaches both mathematics 
and the vehicles for teaching mathematics; i.e.,pedagogy. In 
addition, the teaching involves an examination of the teaching by 
instructor and students. This examination includes a look at 
the teacher's attitude toward the subject matter, toward the 
learner, and toward himself. In teacher education one also 
examines the learning that has taken place with particular ref
erence to how the learning took place and to the feelings of the 
learners. So, in attempting to change teacher's attitudes to
ward mathematics, we seek activities that maximize the potential 
to change attitudes (as described in the previous paragraph), and 
that maximize the kinds of things we can and should do in teacher 
education (as described in this paragraph). 

The participants in this working group tend to favor the 
"investigation" acti vi ty and particularly those investigations 
that are reasonably open, since these activities seem to provide 
the maximum opportunity to (i) view mathematics in a different 
light, (ii) see the possibility of the teachers behaving in a 
less authoritarian manner and more as a learner and a resource 
person, and (iii) examine one's attitude toward the teaching 
that has taken place. 
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Several investigations and other activities were discussed 
by the working group. Some of these activities appear 'non
mathematical' (i.e., devoid of number) and are designed to dem
onstrate some of the processes of mathematics in a non-threatening 
form. Examples are "word chains" (described in Appendix A of the 
Report of Working Group 'A', CMESG conference Proceedings, 
Kingston, 1978), and the example "Animals" in Appendix D of this 
report. Other examples considered by this group are also 
included in Appendix D of this report. 
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THE PLACE OF GEOMETRY IN 
THE ELEMENTARY SCHOOL 

DIETER LUNKENBEIN 



Canadian Mathematics Education Study Group (CMESG) 

Groupe Canadien d'Etude en Didactique de Mathematique (GCEDM) 

1981 Meeting 

University of Alberta, Edmonton 

June 5-9, 1981 

Special group P: The place of geometry in the elementary school 

(D. Lunkenbein) 

"Geometry at the present time does not seem to be an important 

part of mathematics teaching. Is plays a minor role in official 

curricula and an even smaller role in most classrooms. This 

situation seems to be in sharp contrast to the intrinsic worth 

attributed to geometry teaching, on the one hand, and to the 

potential of informal geometry as a valuable vehicle for 

arousing the interest and strengthening the confidence of both 

teachers and children, an the other hand".l Many reasons may 

be given for such a situation. Certainly, the clear distinction 

between arithmetical and geometrical activities made in 

mathematics teaching from the very beginning on is one of the 

most important reasons for such a misconception of geometry in 

school curricula. Arithmetical and geometrical activities are 

but two different ways of approaching mathematical phenomena or 

problems and, in most cases, both types of activities are 

inseparable. In the course of acquiring elementary mathematical 

knowledge, arithmetical representations of geometry and 

geometrical representations of arithmetic go hand in hand 

and, from this point of view, the separate programming of 

geometrical and arithmetical activities appears the be rather 

artificial and prejudicial for the learning of mathematics. 
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1. Geometry in the Elementary and Junior High School Curriculum, 
Report of WorkIng group C, Proceed,ngs of the 1980 MeetIng 
of the CMESG at Laval University, CMESG, Montrfial, March 1981, 
page 74. 

For a balanced mathematical education at the primary level, it 

seems to be of great importance, that such historical, 

epistemological and conceptual links between geometry and 

arithmetic be made explicit particularly to the teacher, so 

that they may be taken into account in classroom activities. 

It was the aim of this group to investigate the possibility to 

communicate such links directly to the teacher in order to 

motivate him/her to integrate geometrical activities in 

day-to-day classroom work. Based an the outcomes of last 

year's meeting (Report of Working Group C, Proceedings of 

the 1980 - meeting), the original production or the new 

presentation of teaching material was to be considered in view 

of such genetic links between geometry and arithmetic with 

the intention to produce an appropriate document which would 

be accessible for and attractive to elementary or junior 
high school teachers. 

Initially, the discussion centered around an exploratory 

activity concerning polygonal shapes composed of congruent 

equilateral triangles l The example was intended to show 

a possibility of the gradual unfolding of a conceptual context 

by both geometrical and arithmetical means through continuous 

investigations over several years of schooling. Among the 

topics discussed were the nature and originality of possible 

themes, types of activities that would be most suitable for 

the purpose, general goals of such activities and possible 

formats of presentation. It was generally felt that there is 

no shortage of examplary subject matters or themes for such 

an entreprise, but that the most difficult task lies in the 

way of communicating the important ideas to the teacher. Such 

communication would be the most effective if presented in a 

ready-to-teach form and well commented as to the investigative 

1. D. Lunkenbein, Deltagons: Shapes and Numbers, Departement 
de mathfimatiques et d'lnformatique, UnIversIte de Sherbrooke, 
Sherbrooke, Quebec, mai 1981. 



character of the activity, the nature of the links between 

geometry and arithmetic, the possible insertions of the activity 

into current curricula and the general goals to be attained. 

The format of presentation may vary a great deal; the teacher's 

guides of the South Nottinghamshire Project l were mentioned 

as possible examples. 

These discussions did seem to stimulate the enthusiasm and 

the creativity of the participants to a point that we agreed 

to give it a try and to work on it during the coming year. 

For this purpose, first-draft papers would be sent to the 

group coordinator by the end of July 1981 who would then in turn 

circulate these papers among participating authors in order 

to stimulate the discussion. Hopefully, we will be able to 

finalize these papers at the next CMESG - meeting and to 

publish them for wider circulation. 

List of participants or persons interested in the study: 

Dieter Lunkenbein (group coordinator) 
Dept. de mathematiques et d'informatique 
Universite de Sherbrooke 
Sherbrooke, Quebec, JlK 2Rl 

Bruce Bany 
College of Education 
University of Saskatchewan 
Saskatoon, Sask. 

Tom Bates 
Dept. of Mathematics and Science 
Faculty of Education 
University of British Columbia 
Vancouver, B.C. V6T lZ5 

1. Bell, A., Wigley, A., Rook, D., Journey into Maths, 
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Teacher's Guides 1 and 2, (The South Nottlnghamshlre Project). 
Blshopbrlggs, Glasgow: Blackie and Son, 1978, 1979. 

Alberta Boswall 
Mathematics Department 
Concordia University 
Loyola Campus 
7141 Sherbrooke Street West 
Montreal, Que. H4B lR6 

Roger Bourgeois 
Faculte des Sciences de l'Education 
Universite de Moncton 
Moncton, N.B., 

Dale Drost 
Dept of Curro and Inst. 
Memorial University 
St. John's, Nfld. AlB 3X8 

Claude Gaulin 
Faculte des Sciences de l'Education 
Universite de Laval 
Quebec, Que. 

Bruce Harrison 
EDT 532 
University of Calgary 
Calgary, Alberta, T2N lN4 

Martin Hoffman 
Queens College 
Mathematics Dept. 
Hushing, New York 11367 

Tom Kieren 
Dept. of Secondary Education 
University of Alberta 
Edmonton, Alberta, T6G 2Gl 

Fernand Lemay 
Faculte des Sciences de l'Education 
Universit6 Laval 
Quebec, Que. 

Al Olson 
Dept. of Secondary Education 
University of Alberta 
Edmonton, Alberta T6G 2Gl 



Arthur Powell 
572 Washington Avenue 
Brooklyn, New York, 11238 

Medhat H. Rahim 
Mathematics Department 
University of Alberta 
Edmonton, Alberta, T6G 2Gl 
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CANADIAN MATHEMATICS EDUCATION STUDY GROUP 

UNIVERSITY OF ALBERTA, EDMONTON 

(June, 5-9, 1981) 

AN EXAMPLE OF MATHEMATISATION: THE RUBIK CUBE P.Lemay 

(Outline of Edmonton's Talk) 

THE CUBE.-

Rubik's cube appears to be a clever setting of 27 

smaller cubes or "elements" (or is it 26, since the interior 
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one is never to be seen?) whose visible faces borrow their co

lors to the 6 faces of the main cube (in its natural homogeneous 

form) and whose 9 "slices" can be rotated globaly and indepen

dantly 

thus giving rise to an incredible collection of multicolop forms. 

THE PROBLEM.-

The problem? Of course to find its way back out this 

labyrinth from any multi color form or, conversely, to reach any 

pattern that might be proposed. 

Or, if some multicolor forms are out of reach, to invent 

accessibility cpitepia. To determine the opbit of any form, that 

is the set of all its accessible forms. To describe ways of con

necting any two forms. 

To find didactical applications. To gather eventually 

algebraic subproducts. 

To proceed to an epistomological prospection. 

Etc. 
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SOME NOTATIONS.-

The structure of the cube does not allow the small 

central squares of any of the 6 faces of the main cube to leave 

their positions; therefore their constellation of colors acts 

as a reference and coordinates system for all elements of the 

cube: those lying at the vertex (veptex elements) shall be de

termined by 3 colors, those lying at the middle of edges (mid

dle elements) by two, and of course the central elements of 

various faces by one only. 

For a given element, the position is determined by 

that of any of its particular faces. Twenty-four positions can 

thus be assigned to a vertex element and twenty-four others to 

a middle element. Let's index these two sets of positions arbi

trarily by giving ourselves a "monitop" 

All mobile elements of the cube then also acquire an index; 

that associated with their natural position. The set of vertex 

elements can then be written (t) 

So = {1,2,3,4,5,6,7,8} 

and the set of middle elements as 

Ao = {1,2,3,4,5,6,?,8,9,lO,11,12} 

Other vertex positions derive from these by rotations of one 

third of a turn ("screwing in" the cube) thus leading to the 

set of "polapized positions" 

S = {l,l',l", ... 8,8',8"} 

Similarly the set of all possible positions of middle elements 

shall be denoted 

(t) S and A being the initial letteps of the porresponding 
f~~nch wopds "sommet" and "ap€te". 
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INVENTORY OF ACTIONS.--

In order to generate all multicolor forms, only the 

9 rotations of the 9 slices are available; but these reduce 

essentially to the 6 rotations of the external faces since the 

rotation of a central slice is equivalent to rotations (in oppo

site directions) of the two parallel slices. The rotations of 

these external faces (quarter of a turn, screwing in the cube) 

shall be named after the characteristic colors of the external 

faces. 

'" eve<, <ep~o"o Ch"' Co"ov 

x, y, z shall always denote rotations of the left, of the upper 

and of the right faces respectively, while x', y', z' shall refer 

to the opposite faces. Finally the inverse of a rotation x, shall 

be denoted simply x. 

TRANSITIVITY IN 5 AND A.-

Our six rotations allow any vertex element to move 

freely about the cube, but once an element has reached its target, 

the three colors liable to push it further have to be "confiscated". 

Taking this strong constraint under consideration, it will not be 

possible, in general, to assure more than the "3-transitivity" 

(that is the transitivity of triples of vertex elements in the set 

of all polarized positions) which, as experience proves, is far 

from our objectives. 

Perhaps should we have started by carrying the middle 

elements first? This time we would reach 3-transitivity in Ao 

but not in the polarized set A. 

COMPLEX ACTIONS.-

We might conjecture that all accessible multicolor 

forms must remain !twithin ~-transitivity", but once again expe

riments shall very soon destroy that conjecture. 

Solutions seem out of reach! 
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While nothing else than our six rotations is available, 

we must become aware of the fact that a "chain of rotations" can 

be seen as a new complex action having eventually new properties. 

Thus the composites of two "adjacent" rotations, or of the three 

rotations "around a vertex", or of the four rotations "around the 

walls ll 

xz xyz ~ =."CZ'X'2 

give rise to new cycles, and the actions reSUlting from "conflicts" 

between rotations and these 

y, ~ y.§ 
finally provide us with the means to realize complete transitivity 

in 50 (that is 8-transitivity on the set of vertex elements, ne

glecting polarization). 

GYRATORS. DIPOLES.-

A more detailed description of a=xyz, for instance, 

reveals that, while 4 elements circulate through 4 stations, 

3 others "spin" on the spot; consequently by iterating properly 

that action, we can 

(B indicates a spin of one third of a turn). 
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Now combining this gyrator with its inverse, one gets 

a "dIpole" /----------
l--crl 
$~·6/ 

which has a less extended effect. 

It is now possible to control the polarization of all 

but one vertex and to stand with the firm conjecture that it is 

impossIble to rotate a single vertex ~ithout affecting others. 

CATASTROPHE.-

We could expect the structure of the cube to be so 

strong that the complete relocation of all vertex elements would 

necessarily carry the intermediate or middle elements back to 

their natural positions; but experience denies such a conjecture 

and we are confronted with the problem of acting on these inter

mediate elements ~hile leaving the vertex absolutely inert. 

THE DISCOVERY OF MALLEABILITY.-

Having gradually modified the underlying substance of 

our investigations from cubic elements to rotations, to complex 

actions, ... we still must go one step further toward a new vision 

and elect a new underlying "matter" on which to act. 

The cyclic paths followed by the various elements of 

the cube are also "objects", complex objects, which can be submit

ted to our actions and ,,,hich will thus reveal their "ma lleabi li ty". 

If a cycle C for instance undergoes a transformation f 

then there will result a new cycle 

C f = fCf (read from left). 
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In particular the rotation z, transformed twice by 

the action xz, becomes the rotation x, so that a "conflict" bet

ween them 
x. (zxz)xz 

shall neutralise their mutual effects on S while it will continue 

to act 

giving rise to a circular permutation of three middle elements. 

A "UNIVERSAL" MAP.-

Taking malleability into account this last cycle enables 

us now to move freely on the "universal map" connecting all mid

dle elements 

and to execute any eVen permutations of Ao that we might wish to 

realise. 

As for the polarization of middle elements, malleability 

also enables us to transform the preeceding cycle in a similar one 

r«n~ ~~ 
from which a "conflict" develops giving rise to an "alternator". 

6) 
We therefore have gained control over all permutations 



in ~" over all eVen pel'muta-tions in 110 and over the polaY'ization 

of all elements but Olla veptex and one middZe el~mcnts. 

From this we can deduce the existence of at least 

ix12!x8!x211xJ7 = 43 .... x l0 18 

accessible multicolor forms. 

CONFIRMATION OF THE CONJECTURES.-
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Any multicolor form exhibits a particular transformation 

of the original cube and they therefore determine a certain subgroup 

'G' c G(;lx5) 

of the group of permutations of ;lxS which I shall call the "group 

of polor'ized pel"mutations of the cube" (t). 

Among these "targets", only those are accessible which 

belong to the subgroup generated by our six rotations 

C'i = <x~y"z"x'"y'"z') 
The action of this group can be "transferred" to any target; which 

amounts to say that it is "tra1l8portable" or, technically, that 

Ot. is a normal subgroup of ~. The quotient group 'C/O! then repre

sents the class of orbits of the various multicolor forms. In other 

words, accessibility or reducibility from one form f to another g, 

is expressed algebraically by 

f'" g (mod Of. ) 

Our proposition is the following: 

Theorem.- t:/Di '" Z2xZ,xZ3 

In order to prove this, let us construct an homomorphism 

1': 'C ---> Z2xZ2xZ3 

(which we shall call the characteristic of Ir.ulticolor forms) defi

ned in the following way (with respect to an arbitrary monitor). 

(t) Consisting essentially in a pair of permutations of Ao and 

of 80 coupled respectively with two maps (the "alternance" and 

the "gyration") 

1 «:A o --> {O,1} 

~ 'Y :So ~~ {O-,l., 2} 

expressing the eventual reorientation of the amallep cubes. 
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lJefinihon.- For' any multicolo,' rOY'1Il fEY'?, rr shall 

be the p01'it-y of the multicolO1' rorm, that 1:$ the 

parity of thc pel"mutaL-ion induced by r on ;lou (5 0 +12) (+) 

Secondly 8 shall be the sum mod 2 of the values of 

the function a. FinaZly B shall be the sum mod 3 of 

thc values of the function "Y. The character'is tic is 

then dcfined by 1'= (11,0,"'). 

One shows first that I' is independant of the particular 

monitor that we have chosen and that it is an homomorphism 

r(fg) = r(f") + I' (g) . 

The rest of the proof amounts to showing that the kernel of r 
is Qt. 

SOME COROLLARIES.-

The computation of r is very simple and permits us to for

mUlate a certain number of corollaries: 

1) There exists an "auto-dual quantum", ultimate germ 

of all actions (a double transposition acting on a pair of vertex 

elements on one hand, and on a pair of middle elements on the 

other hand). 

2) The simplest of "pure cycles" are permutations on 

three elements of one kind. 

3) The shortest gyrator is a dipole. 

4) The shortest alternator acts on a pair of middle 

elements. 

5) There exists a "universal cycle" involving all elements 

(that is a double cyclic permutation of the 8 vertex and of the 12 

middle elements respectively). 

6) For any sequences of distinct vertex elements and of 

distinct middle elements, there exists a double cyclic permutation 

of these sequences at the sole condition that the total number of 

elements in these sequences be even. 

(t) The use of 8 0 +12 amounts to reindexing temporarily the set S. 

in order to eliminate overlappings between Ao and So' 
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FISSION.-

As an illustration, let us observe the striking "explo

sion" of the rotation y under the action of ~y 2 ~, (where ~ refers 

to the rotation of the central slice which parallels 2, -) 

~ 
leading to the fission of y into two disjunct rotations in A and S. 

THE AUTO-DUAL QUANTUM.-

The occurrence of this first fission into nduaZ actions n 

is the starting point for the search of other actions acting nsym

metricaZlyN in both A and S. and leading to the discovery of a 

nquantumn of action 

whose orbit generates all accessible multicolor forms. 

ULTHlATE GERM OF ACTION.-

Finally by observing the fission of the rotation y more 

carefully, one is lead to the discovery of an other quantum acting 

in Ko~AouSo: 
zx' z' 

(y. y ). y 
The orbit of v has the most interesting property of pro

ducing all accessible permutations of Ao and So. all gyrators and 

.ll ·,,""""'""'tlJ to tS) 
v • 

v 6 

We have thus obtained a basis for a ndual treatment n of the mathe

matics associated with the Rubik's cube. 

Laval University. Quebec . 

• Tune 1981. 

PANEL GROUP X 

MATHEMATICS AND LANGUAGE 

MARTIN HOFFMAN 
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.fanel members: 0.. J. .tJCiwson 

',I. C. higginson 

Iv,. 1(. l1offm",n 

Tne stated purpose of the ranel \.iroups WdS "to present 

themes which, if there is enough interest, m",y become the 

subject of VlorKing uroups at subsequent confprences". ,:mel 

Group A, ~ttendea oy upproxlmately 25 C~_SG members, consisted 

of presentCitions oy the panel members, followprt by Questions 

and comments 0" those in ,.Jttendance.l'nis report will briefly 

highlight the main themes of each present~tion and the follow-

ing discussion o .l-3.pers prep:: red oy the 'J'-::nel lflernoers G.,p:/ec,r 

in the appendix of these proceedings, ~nd should be consulted 

by those interested in 'pursuing these top.ics in greater depth. 

Bill Higginson's presen ta tion, en ti tIed "!. ,rgumen ts for 

the Consideration of .L2.nguage by rlesee.rchers in lli8them2.tics", 

after offering severCl.I interpretations of "X", offered an 

overview of several areas for further study: ~he relationship 

of mathematics and language with respect to context, comrr;u::ica-

tion, content and cognition. Each aspect was briefly discussed 

and supported with eX8mples and relevant bibliogr~phy. 

Sandy ilawson's presentCl.tion, entitled "Words triggered 

by Images, Images triggered by "ords", focused on one aspect 

(imagery) of one of the areas (cognition) of possible study 

noted by Bill Higginson. The crucial role of images in the 

learning of mathematics was discussed. It was argued that 
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teachers must work with the images possessed by their students 

before the words of the teachers can be used to reliably 

transmit images to them. 

At this point the entire group was engaged in an image 

making activity led by .tJawson. They were Cl.sked to imagine a 

lemon and then to perform various manipulations on it. fhe 

discussion which followed indicated the wide range of images 

generated by the single set of instructions. 

~everal well-considered points were made during the 

discussion following the two presentations. "mong those 

concerned with the question of extending the fanel Group to 

a future oorking Group were the following: 

1. For the purposes of CMESG Morking Groups, visual imagery 

and language lin the general sense of riigginson's presen

tation) should be separated due to time considerations. 

2. The general considerations presented by Higginson would 

need more focus to fit the restrictions of the ~orking 

3. 

4. 

Group format. 

The potential for group participation (as in Dawson's pre

sentation) was favorably noted. 

The need to have working mathematicians attend these 

(projected) Norking Groups was expressed. 

5. It was hoped that one of the future invited speakers would 

6. 

focus on these topics, 

Several participants suggested that, if such a v'lorking 

r.roup is established, sufficient lead time be given by the 

,Iorking Uroup leaders to allow prospective participants to 

read relevant articles and to gather examples from their 

own teaching experiences for presentation in the group. 

83 



PANEL GROUP Y 

LES RELATIONS ENTRE L'HISTOIRE ET 
LA DIDACTIQUE DES MATHEMATIQUES 
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Groupe de discussion Y. 

LES RELATIONS ENTRE L'HISTOIRE ET 

LA DIDACTIQUE DES ~~THEMATIQUES. 

Bernard R. Hodgson 
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Certains aspects des relations existant entre l'his

toire des math€matiques et la didactiqu~ des math€matiques ont 

€t€ pr€sent€s par les trois invites. Leurs texte~ figurent en 

appendice. Louis Charbonneau (Universit€ du Qu€bec a Montr€al) 

s'y questionne sur les le~ons que l'€tude du d€veloppement his

torique des math€matiques nous fournit a propos des strategies 

d'apprentissage avec les enfants; un parall€lisme y est fait, 

par exemple, entre certaines conclusions tir€es d'une exp€ri

mentation avec les enfants a propos de la numeration et une 

etude historique de ce meme sujet. Hara Gauri Gupta (Univer

sity of Regina) propose qu'a l'instar des €tudiants en philo

sophie, histoire ou litt€rature, les €tudiants en math€mati

ques devraient, eux aussi, avoir l'occasion de remonter aux 

sources et de "lire les classiques". David Wheeler (Concor

dia University) pr€sente une s€rie de commentaires sur certains 

aspects g€n€raux du lien histoire-didactique. II conclut en 

soulignant que non seulement une demarche didactique peut ti

rer profit d'une vision historique, mais €galement, de fa~on 

inverse, Ie travail de l'historien peut etre enrichi par les 

interrogations presentees par Ie didacticien. 
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Les trois presentations ont ete suivies d'un echan

ge de vues avec les participants. On y a fait ressortir di

vers avantages d'une connaissance de l'histoire pour l'ensei-

gnant. Par exemple, l'histoire des mathematiques permet 

de voir celles-ci comme une science en evolution et non pas 

comme une science achevee. Une telle perception aide l'en

seignant a voir les mathematiques de fa~on dynamique et Ie 

rend sensible aux besoins pedagogiques des etudiants quant a 

l'importance de creer les math6matiques pour eux-memes. Cet 

acte de creation est souvent l' objet de nombreux echecs par

tiels; mais ces difficultes de parcours trouvent leur pendant 

dans la demarche meme des grands mathematiciens d'autrefois 

et fait partie integrante du processus de decouverte des ma

thematiques. Les enseignants de tout niveau, meme du primai

re, peuvent "humaniser" l'enseignement des mathematiques en 

introduisant judicieusement certaines parenth~ses historiques 

ou,a tout Ie moins, certains elements faisant partie du bagage 

culture 1 et ''folklorique'' de notre civilisation: division de 

l'heure en 60 minutes, de l'annee en 12 mois, etc. 

Plus d'une douzaine de participants ont pris part 

au groupe de discussion. 

LIST OF PARTICIPANTS 
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