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INTRODUCTION

These Proceedings are a partial record of the fifth annual meeting of
the Canadian Mathematics Education Study Group. They are intended
primarily as a reminder and a resource for those who participated in
the meeting, but they may nevertheless contain material which will
speak to people who were not there.

A lot is missing, of course, slince the Study Group’'s work does not
conslst entirely, or even mainly, in listening to prepared present-
ations. Presentations are much easier to record and pass along than
the lively, unpredictable discussions that take place, particularly

in the Working Groups. Yet it is the latter that indicate that people
are really working and generating new insights and new ldeas. The
writers of some sections of these Proceedings have tried to convey

a sense of this mental activity, but inevitably with only very modest
success.

The Study Group manages to hold together, better than some other
collections of people who meet to talk about the teaching of mathe-
matics, the essential strands of mathematics education. Whatever
else 1t concerns itself with, mathematics education must attend tot

(1) psychological matters, such as the cognitive and affective
aspects of human learning, thinking and problem solving;

(11) mathematical matters, such as the content of mathematical
knowledge, the historical and cultural aspects of mathe-
matics, and the nature of mathematics as a human actlvity:

(1i1) epistemological matters, such as how particular mathematical
concepts and skllls are generated and apprehended,

No doubt the Study Group has so far only managed t0 keep these three
axes in view rather than integrate then into a solid structure, but
it is certainly moving in a direction towards this difficult, and
perhaps distant, goal, Any advance will strengthen discourse and
research in the field of mathematics education immeasurably. Whether

there will be any impact on the practices of mathematics teaching is

more speculative, It is doubtful if anyone anywhere really knows
how to bring about intended changes in our classrooms.

David Wheeler
Chairmant CMESG



EDITOR'S FORWARD

The organization of these proceedings reflects the organization
of the meeting itself. The agenda included two lectures, four
working groups, three special groups, and two panel groups, as
well as the possibility of production/ad hoc groups. The pro-
ceedings are organized around the contributions of these groups.

The two lectures were given by Kenneth Iverson and Jeremy
Kilpatrick., Dr, Kilpatrick's lecture is presented in its
entirity, however Dr. Iverson's lecture consisted mainly of a
demonstration of the use of the computer language APL via a
computer terminal and was therefore not available as a paper.

A brief comment by Dr. Iverson is included in the proceedings
and the reader is directed to the references included with that
comment for further information on his views.

Each of the various group leaders was asked to provide a short
summary of his/her sessions and these are included in the
appropriate sections of the proceedings. Reporis were available
for all of the groups with the exception of the special group

on the art of solving and posing problems. In addition to the
short summaries, the working group and panel group leaders
submitted various contributions made by individual members of
their groups. These contributions are not included in the body
of the proceedings, however are included in the appendices,

Finally, two production/ad hoc groups were formed and the
presentations are included in Appendix G.

Dale R, Drost
Editor

{v)

SUMMARY OF THE CONFERENCE



Canadian Mathematics Fducation Study Group

Groupe canadien d'étude en didactique des mathématiques

The fifth annual Mceting of the CMESG/GCEDM took place at the University of
Alberta from June 5th to 9th, 1981. Approximately 50 people attended, most
of them mathematicians and mathematics educatoers with positions in Canadian

universites, and from cvery province except PEI.

The guest speakers this ycar were Dr. Kenueth Iverson (I.P. Sharp Associates),
who challenged the Meeting with.his view that existing computer languages are
not mathematically equivalent alternatives, and that both mathematicians and
educators will live to regret the pervasive cffects of BASIC and other limited
languages, and Dr. Jeremy Kilpatrick (University of Georgia), who examined the
theoretical and methodological reasons why research in mathematics cducation
has so far made little impact on classrooms. Other speakers were Dr. Murray
Klamkin (University of Alberta), who shared some of his insights into the

art of posing and solving problems, and Professor Fernand Lemay (Universitd
Laval), who successfully undertook the unusual and difficult task of showing
in an hour the stages of development of awarcuess in his conquest of Rubik's

Cube.

Two panels of speakers introduced discussions of "Mathematics and language"
and "The relation between the history and the pedagogy of mathematics'.

Groups discussed the tcaching of geometry in elementary schools, the character
of mathematics and education in China, looking ahcad to ICME-V, and possible

cooperation with the Science Council's project in science education.

This Meeting, following thce precedent of other years, gave central importance

to the Working Groups. The topics studied this vear were (1) Mathematics
education research and the classroom, (2) Computer education for teachers,

(3) Issues in the teaching of caleulus, and (4) Revitatising mathematics in
teacher education programmes.  EFach member of the conference chose once Group

and worked in it for a total of 9 hours. The size of the Groups ensures that
everyone can actively participate, aund the time alloted is enough for each Group
to go beyond the obvious first stages in a topic and begin to work at the harder
questions. There is no doubt that this feature contributes a great deal to the
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generation of the atmospliere of serious and friendly cooperation which

characterises these Meectings.

Anyone wishing further information about this or futire Mectings may write
to Joel Hillel, Department of Mathematics, Concordia University, 7141

Sherbrooke Street West, Montreal, Quebec H4B 1RG.

David Wheeloer



LECTURE I

MATHEMATICS AND COMPUTERS

DR. KENNETH IVERSON

APL AS A MATHEMATICAL NOTATION
Kenneth E. lverson

I.P. Sharp Associates
Toronto, Canada

The Speaker's remarks were based largely upon his Notation

as_a Tool for Thought (1], and are perhaps best summarized in

the following excerpt from the introduction to that paper.

The importance of nomenclature, notation, and lanauage
as tools for thought has long been recognized. In chemistry
and in botany, for example, the establishment of systems
of nomenclature by Lavoisier and Linngdus did much to stimulate
and to channel later investigation. Concerning language,
George Boole in his Laws of Thought 11, p.24] asserted
'"That language is an instrument of human reason, and not
merely a medium for the expression of thought, is a truth
generally admitted."

Mathematical notation provides perhaps the best-known
and best-developed example of language used consciously as a
tool of thought. Recognition of the important role of
notation in mathematics is clear from the quotations from
mathematicians given in Cajori's A History of Mathematical
Notations [ 2, pp.332,3311. They are well worth reading in
full, but the following excerpts suggest the tone:

By relieving the brain of all unnecessary work, a good
notation scts it free to concentrate on more advanced
problems, and in effect increases the mental power of the
race.

AN. Whitehead

The quantity of meaning compressed into small space by

algebraic signs, is another circumstance that facilitates

the reasonings we are accustomed to carry on by their aid.
Charles Babbage

Nevertheless, mathematical notation has serious deficiencies.
In particular, it tacks universality, and must be interprected
differently according to the topic, according to the author, and
even according to the immediate context. Programming languages,



because they were designed for the purpose of directing computers,
offer important advantages as tools for thought. HNot only are they
universal {general-purpose), but they are also executable and
unambiguous. Executability makes it possible to use computers to
perform extensive experiments on ideas expressed in a programming
Janguage and the lack of ambiguity makes possible precise thought
experiments. |In other respects, however, most programming languages
are decidedly inferior to mathematical notation and are little used
as tools of thought in ways that would be considered significant

by, say, an applied mathematician.

The thesis of the present paper is that the advantages of
executability and universality found in programming languages can
be effectively combined, in a single, coherent language, with the LECTURE II
advantages offered b th tical tation.
9 y methematicar notatlo THE REASONABLE INEFFECTIVENESS OF

RESEARCH IN MATHEMATICS EDUCATION

The cited paper is also available in A Source Book in APL {27,
which includes other relevant material. Interested readers may wish DR. JEREMY KILPATRICK
to consult not only the cited paper, but '"'Algebra as a Language'
(pages 35-45), the discussion of the mathematical roots of programming
languages in the conclusion to 'The Evolution of APL' (pages 70-74),
the discussion of conventions governing the order of evaluation in
mathematics (pages 29-34), and the discussion of the inductive method
of teaching (pages 131-139).

References

1. lverson, K.E., ""Notation as a Tool of Thought'', CACM 23,
August 1980, Copyright 1980, Association for Computing
Machinery, Inc.

1. Boole, G. '"An investigation of the taws of Thought''.
Dover Publications, NY 1951. Originally published
by Walton and Maberly, tondon, in 1954, and by MacMillan
and Co., Cambridge.

2. Cajori, F. "A History of Mathematical Notations', Volume 11|
Open Court Publishing Co., La Salle, I1linois, 1929.

2. Ffalkoff, A.D. and iverson, K.E., "A Source Book in APL', APL PRESS,
Palo Alto, (Suite 201, 220 California Ave., Palo Alto, CA 94306) ,
1981,



The Keasonable Ineffectiveness of Research in Mathematics Education
Jeremy Kilpatrick

University of Georgia

You may recognize the title above as & play on the titie ot an
article by Richard W. Hamming, “The Unreaccnable Effectiveness of

Mathemét1c5," which appeared in the American Mathematical Monthiv sn

Febhruary 1980. In his article, Hamming aske the question, “Why 1
mathematics so unreasonably effective?” He offers some partial
explanations but ends by saying that these explanations are <o inaut
ficient "as to leave the question essentially unanswered" (p. 2. |
am going to fo.low the same strategy but with a ditferent auestion.

My question is, “Why is research in mathematics educatiaon so 1inct
fective?” I shall offer some tentative thoughts on this quection, .t
you will soon discern that I, too, must leave my question "ecsentiali-~
unanswered.,” In addressing my quection, 1 shall make two clavme: ()
much of the ineffectiveness of research in mathematics education i«
more perceived than real, and (2) most of the percetved inet-

fectiveness is reasonable.

The Effectiveness of Research in bducation

Before asking whether research in mathematics education 1s really
ineffective, I should like to broaden the context and ask whether
research in education is, or has been, effective.

In 1978, the National Academy of Education published a thick

9
book--&72 pages-—edited hy Suppes (19/4), whoce title cuggecta the
pasitive claims that are made itn 1ts pages: fapact of Recearch an
Education: Some Case Studies. The book contains nine studies that

purport to show how educational research has contributed to school
practice. Scriven (1980) has arqgued that the book does not address
the "pay-offs" from educational research; it
turns out to he . . . concerned with such
questions as whether the results of basic research
in psychology and the social sctences trickle down
to the educational research journals (which, vou
will not be surpriced to bear, they do). That
dces not show that educational research benetitted
frem that other research and, more importantly, it
does not show that educational research benefitied
anything else. (p. 10, italics in ariginal)
Whether or not you agree with Scriven’s analysis, the somewhat
defensive tone Suppes adopts in the book’s preface makes it clear that
even in his view the effects of educational research have not beon
overwhelming:
I like to think of the case studies preconted here
as representing only @ sampling of the beginning
of educational research in its early years of
development. What the future holds should be
brighter and better, because it will he able to
build on the kind of work reported in this volume
and, as that building takes place, the impact on
practice should become more marked. (p. xvi)

Some of the difterence of opinion between Scriven and Suppes
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concerns whether one should talk about effects (impact) or bhenefits.
Scriven is pushing a much more demanding criterion than is Suppes.
Rut even if one limits the question to effectiveness, one has only to

glance at the pages of journals such as the Educational Researcher

over the past couple of years or attend some of the sessions at the
annual meetings of the American Educational Research Association to
sense that there is a crisis of faith in educational research. Have
we been doing the wrong things? Have we failed to make contact with
school practice? Who, if anyone, is listening to what we have to say?
Is it all an empty exercise? These are the kinds of questions one
senses are below the surface of the articles and talks. Many of these
same questions undoubtedly occur to recearchers in mathematics
education, but we do not seem to be addressing them in even the
oblique fashior of our colieaques in educational psychology.

The issue of whether or not educational research 1s effective
seems to get tangled up, in some people’s minds, with the distinction
between pure and applied research. What is the difference between
pure research and applied research in education? Which is more likely
to have a greater impact on educational practice? Two models seem to
be 1mplicit when people wmake the distinction between puce and applied
research.

The first model is h1erarch1c@l. Rasic research is at the top--
so high in status that it is often seen as "up in the clouds." Relow
it is applied research, and below that somewhere is the mundane world
of practical affairs. The simplest version of this model is what
Greeno (1978) calls "the pipe-line model":

According to this model, fundamental knowledge and

theories are like crude o0il, which gets pumped out
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of the ground in basic research. Basic knowledge
is shipped to applied research settings where it
is transformed into something more useful; this 1s
like shipping crude oil to refineries, and
transforming the product into useable farms.
Finally, results of applied research are shipped
to developers and disseminators who use the
knowledge in making products for use in school and
send the stuff around to school users. This is
analogous to sending refined gasoline to filling
stations, where customers can drive up and fill
their tanks. (pp. 7-8)

Greeno arques that this model is at best a weak reflection of the
relation between science and technology in any field, and that it is
grossly misleading in education. He argues that basic and applied
research are not hierarchical; they overlap substantially, each
contributing to the other, and the significant research guestions are
both basic and applied. I shall return to this argument after further
consideration of the hierarchical model.

Feople who do not adhere to the oversimplified pipeline wmodel may
5t1l1] view basic research as higher in status because it is theory-
oriented and because it aims at generalization, whereas applied
research, with its lack of theory and speciticity, is necessarily
lower in status. Suppes (1947), in an article written for a bocklet

that was the forerunner of the Journal for Research in Mathematics

Education, seemed to adopt this hierarchical view. He argued that
basic research could have a direct impact on practice, that we needed

more basic research in mathematics education, and that we needed both
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theoretical and empirical basic research. He seemed to be suggesting
that basic research in our field should be largely concerned with how
students learn mathematics, that applied problems in our field include
more effective ways of organizing the curriculum, and that basic
research will necessarily be more helpful than applied research in
addressing such curriculum questions. I should not have to point out
that this is a somewhat restricted view.
Tyler (1981) cseemed to assume the same sort of hierarchy hetween
basic and applied research recently when he spoke to some directors of
projects sponsored by the National Science Foundation. Where he uses
"science education," one can read "mathematics education”
Research needed in science education is not only
basic research which recults in uwidely
generalizable concepts and principles but also
applied research, that is, inquiries focused on
particular situations and particular kinde of
students, teachers, and institutions, which
furnishes information of importance in improving
science education in the particular circumstances
where efforts to improve science education are
being made. (p. &)

Again, one has the connection between basic/general and app-

lied/specific and, it seems to me, an implied status differential.

The other dominant model tor thinking about basic and applied
research might be called the complementarity model: the two types of
research are seen as complementary, each with its ouwn dowmatn and its
own agenda, and equal (supposedly) in status. When one sees basic

research characterized as "conclusion-oriented" and applied research
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as "decision-oriented," one can be fairly sure these types of research
are being viewed as separate but equally valid--for their own domain
of relevance. Other ways to assert their complementarity are to
characterize basic research as descriptive and applied research as
prescriptive, or basic research as being concerned with learning and
applied research with teaching.

Adherents of the complementarity view (Gelbach, 1979, Greeno,
1978) seem agreed that the distinction between the two types of
research has become increasingly blurred in recent year<. Gelbach
argues that "it is now almost impossible to discriminate" {(p.
between basic and applied research because of: (1) new capabilities
in recearch methodology (such as multivariate statistical methods) and
dezign that permit the investigation of practical instructional
problems in natural classroom settings with the same “scientifically
respectable levels of precision" (p. 9) that one has in investigating
basic research problems; and (2) important arguments recently advanced
by people such as Glaser, who claim that our theory-building should he
prescriptive, not descriptive. $now has argued that we should abandon
attempts at general theory construction in faver of less ambitious,
but more achievable, ®local® theories; for exanple, “theorites that
apply to the teaching of arithmetic in grades 1-2-3 in Washington and
llincoln schools in Little (City, but perhaps not to the two other
elementary schools in that town" (Snow, quoted by Gelbach, 19Y79, p.
?). Gelbach criticizes this view, saying that "local theory
development should be our last resart rather than our next move® (p.
?, italics in original). Certainly, Snow’s position implies a
convergence between basic and applied research.

I propose a third model for the difference between basic and app-
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lied research that can be used to address the gquestion of the ef-
fectiveness of research. Although it may appear to conflict with the
other two models, I think it is equally valid. Recall the story of
the married couple who went to the rabbi to help resolve their quar-
rel. The wife went in to the rabbi and told her story, whereupon the
rabbi nodded and said, "You are right." Then the husband told his
side of the story to the rabbi, who nodded and said, "You are right.*®
After the couple had gone on their way, the rabbi‘s wife, who had
heard both exchanges, said to her husband, “They cannot both be
right." And the rabbi nodded and said, "You are right." It is in
this sense that I claim my model is right.

When people talk about research as being “"basic" or “applied,"
"conclusion-oriented” or “decision-oriented," “descriptive" or
"prescriptive,”" and so forth, they are referring not teo anything that
can be considered an intrinsic quality of the research study itself,
but rather to either the researcher’s purpose in conducting the study
or the uses to which the study is put. In other words, the same study
can be either basic or applied, depending on who is doing the labeling
and for what purpose. Rasic research is not defined by whether it is
conducted 1n o laboratory rather than o cchool, nor 18 1t defined by
whether analysis of variance is used rather than chi-square. One can-
not unambiquously label a piece of research as either basic or app-
lied; one can only ask what caonnection the research study appears to
have to theory and what connection to practice. [Roth of thecse, to a
large extent, are in the eye of the beholder.

Consider a hypothetical situation! &a researcher conducts a study

and then writes a report. Her purpose may have been to understand and

explain some phenomenon that has to do with the learning of

mathematics. She may hope to derive some generalization from the
results. Her purpose is basic research--conclusion-oriented research.
That is her purpose, but that does not mean the study was basic
research in some intrinsic sense. We are speaking only of her
purpose. When the report is written, of course, her view will be
woven, more or less explicitly, into the account. A reader of her
report brings his own frame of reference to it. Although it is
important to distinquish between a research study and the report of
the study, especially when writing about one’s own work, there is a
sense in which, for the reader, the study is the report. The reader
ordinarily has no firsthand knowledge of a study other than what is
contained in the report. More precisely, for the reader, the cstudy
consists of the report plus the frame of reference in which he embeds
it. A given reader may see our researcher’s study as applied
research, despite her avowed purpose. $She may have failed to make a
clear link with theory, even though she intended to do so. The reader
may have a practical problem to solve and may be able to use the
results of the study to help solve it.

With respect to a particular piece of research, which can only be
known to a public through some report, the classitication of basic
versus applied depends upon the perspective of the reader of the
report. This model might be called a lens model--a study may be basic
or applied depending upon the lens you use in reading a report of it.
This lens ought to be understood as incorporating your purposes and
intentions in extracting information from the report. If the report
helps you formulate a theory, then the study is functioning as basic
research, regardless of the author’s intentians. If the study helps

you solve a practical problem, then the study, for you, has been app
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lied research.

This posnt of view has implications for the effectivenens of
educational research in general and research in mathematics education
in particular. From this point of view, effectiveness, tco, is
relative. It is relative to both the criterion used and the person
using the critericn. (onsider the arqument presented by Getrzels
(1978) for the effectiveness of basic research in education. He
characterizes basic research as follows!

Fasic research comprises studies in which the
investigator formulates his own problem regarding
a phenomenon or issue, and his aim is primarily to
conceptualize and understand the chosen phenomenon
or issue and only secondarily, if at all, to do
anything about 1t. The work 1s theory oriented
rather than action oriented. Although the
distinction here 4is not foolproof, 4in this view
basic research (like fine art) deals with
"discovered problems" and applied research (like
commercial art) deals with "presented problems.”
(p. 480)
This is a nice formulation, but i1t hinges on the “"aim,” the intention,
of the investigator. It characterizes the research study as seen by
the investigator, but not necessarily &s seen by others. (Getrels
continues as follows
Despite the belief that basic or theory-oriented
research has little effect on practice--a belief
on which the cacrifice of basic research for other

activities is founded--the fact is that basic
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research can have powerful effects on practice.
(p. 480)
Getzels then gives several specific examples éf such effects.

How is it that someone like Getzels can so confidently assert
that basic research can have powerful effects on practice, when our
own experience as practitioners has suggested to most of us that such
effects are rare, if not unknown? 1Is it a5 difference between
mathematics education and the rest of education? Or 15 it a dif-

ference attributable to our perspective, as opposed to Getzels’?

Here, too, I shall arque that both are right.

The Ineffectiveness of Kecearch in Mathematics Education

Let us turn to research in mathematics education and ask why it
appears, to mary, to be ineffective. Une reason may be that, despite
what appears to be a flood of research in our field, we actually have
very little in the way of research to go on in drawing tmplications
for practice. As many observers f(e.g., Greeno, 1978) have noated, the
amount of money spent on research in education by the {federal
government in the United States is & small fraction of that spent on
other areas of research such as national detense, opace reweacch, or
atomic energy. Moreover, the amcunt spent on resedarch 1n educat con
compared to the amount spent on education in general is an even «amal-
ler fraction; one estimate is that it is less than 0.4% (Getzels,
1978, p. 478). Mathematics education, although it hac done
comparatively well, has shared in this dearth of funding. Again, it
is a matter of perspective. Viewed one way, @ lot of money has been
spent by the US federal government over the last decade or sa to sup-

port research in mathematics education. Viewed another way, however,
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the funds have not been nearly enough to do the job properly.

We face another paradox, too. It sometimes seems as though, amid
the frantic activity of research in mathematics education, we must
have more than enough date to answer important questions that face us.
tegle (1979) surely had this impression as he undertook the massive

research synthesis that resulted in his book, Critical Variables in

HMathematics Education. Yet one can convincingly arque that we do not

have enough data--certainly not enough of the right sort of data. As
Rauersfeld (1979) noted: *We have a chortage in the midst of
abundance" (p. 210). Sanders (1981), speaking of educational research
as a whole, recently argued that we lack
a tody of systematically observed, factuasl
knawledge about the way education cperates in its
natural settings. . . . Despite rampant
empiricism, there is no extensive "figuration of
facts" . . . observed regularities of the
empirical world which must be accounted tor by
scientific explanations. Although we have large
quantities of census—type data, achievement and
other test data, there 16 very little truastworthy
data representing the facts of the educating
process. (p. 97
Sanders calls for more case studies and naturalistic investigatiens
*{o redress this weakness" (p. 9). His argument applies as well to
research in mathematics education as to educational research in
general.
Another partial explanation for the apparent ineffectiveness of

esearch in mathematics education has to do with our lack of what
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Rauersfeld (1979) termed our "celf-concept." Recsearchers in
mathematics education do not constitute a true community. In North
America, we have the Canadian Mathematics Education Study Group, the
Special Interest Group for Research in Mathematics Education, the
North American branch of the International Group for the Fsychology ot
Mathematics Education, the Research Council for Diagnostic and
Frescriptive Mathematics, the informal networks spawned by the (Georgia
Center for the Study of Learning and Teaching Mathematics, the
research sessions at the meetings of the National Council of Teachers

of Mathematics, the Journal for Research in Mathematice Education, and

so on. Despite all of these activities—-and perhaps because of all of
them—--we lack a strong common identity; we are not truly a community.

You have undoubtedly heard the refrain that most of the rescarch
studies in our field are conducted as part of the requirement for a
doctorate and that most of these are done by people who will never dc
another piece of research. It is an old refrain, but unfortunately it
seems to be as true today as it ever was. The annual surveys of

research that have been published in the Journal for Kesearch an

Mathematics Education during the last decade show that, although the

growth in the number of dicsertations cited may have lagged a littie
behind the growth in the number of journal articles, there are still
something like two dissertations for every article. Further, 1t ap-
pears that the overwhelming majority of the dissertations do not come
from departments of mathematics education, nor are they conducted
under the supervision of people who are recognized researchers in
mathematics education. They may be good dissertations, and they may
come from worthy programs in worthy institutions. [Rut they do not

arise from what one might call "the research community in mathematics
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education.” They do not partake of issues that concern this com-
munity; they do not arise from common concerns, shared knowledge,
mutual interaction. Is i1t any wonder that collectively they do not
add up to very much?

Insufficient funds, incufficient support, insufticient knouwledge,
insufficient collegiality--are these not good reasans for the
perception of research in mathematics education as ineffective? ls it
not reasonable that research conducted under such conditions would
fail to influence school practice? There are two additional reasons,
however, that appear most compelling of all: (1) our lack of at-
tention to theory, and (2) our failure to involve teachers as

participants in our research.

Attention to Theory
I recently examined the 35 (out of 38) articles in the ten i1&aues

of the Journal for Research in Mathematics Fducation from July 1979 to

May 1981 whose authors had affiliations with US institutions only. 1
looked at each article to see 1t an attempt had been made to link the
question under investigation to some theoretical context. For 20 of
the articles, 1 could find no cuch attoempt. 1 may have been too hacoh
in some of my judgments, and I may have been somewhat hasty, but this
and other observations convince me that a lack of attention to theory
is characteristic of US research in mathematics education. This
conclusion may not apply to research done in some other countries, but
the problem is not unique to the United States.

Why is this lack of attentien to theory such a serious problem?
I contend that it is only through a theoretical context that empirical

research procedures and findings can be applied. Each empirical
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recearch study in mathematics education deals with a unique, limited,
multi~-dimensional situation, and any attempt to link the =ituation
considered in the study with one’s own "practical" situation requires
an act of extrapolation., Extrapolation requires, however, that one
embed the two situations in a common theoretical framework sa that one
can judge their similarity in various respects. As the old adage has
it, "There is nothing so practical as a good theory."” Kerlinger
(1977) has argued that "the basic purpose of scientific research 1s
theory” (p. 5§) and that "there is little direct connection bhetween
research and educational practice® (p. 5). The effect of research on
educational practice is indirect; it is mediated through theary. aAs
Kerlinger points cut, two factors that in the long run hinder the ef-
fectiveness of educational research are the twin demands for payoff
and relevance. Such demands short-circuit the theory-building
Process.

Let us consider some examples of how theory has, or has not, af
tected practice in mathematics education. A frequently cited example
(Cronbach & Suppes, 196%; Resnick & Ford, 1981) is E. L. Thorndike’'s
influence on the teaching of arithmetic during the early years ot this
century. There is no doubt that Thorndike, through his recearch, hie
teaching, and, most especially, his analysis of the psychology ot
arithmetic, substantially influenced the teaching of school arithmetic
in the United States. He was one of the few educational theorists to
he actively concerned with the nuts and holts of curriculum hutlding.
His theoretical ideas had an impact in the classroom largely because
he himself (and his students) analyzed textbooks in the light of his
theory and made concrete suggestions for changes. His theory was his

hammer; he looked around and saw the arithmetic curriculum as
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the lack of transfer of the disciplines——1f indeed they had ever heard
of these findings--and had adopted a view that has echoes of faculty
psychology. Fresumably this view was not dominant in thetr preservice
education program, which doubtless gave them much sounder, more
scientific justifications for the teaching of mathematics. These
justifications either had not survived or had never been accepted.

The educational psychology textbooks are fairly clear on this aissue;
one cannot train logical reasoning ability through specific school
subjects like mathematics. This 1s part of the received wisdom of the
school-of-education culture, and these teachers must have heen taught
it. We have here a case in which current theories have not had much
impact on teachers’ thinking, and presumably their practice.

These three examples are intended to illustrate some of the
various and perhaps perverse ways in which theory intluences practice
in mathematics education. As Kerlinger and others have noted, the
influence is primarily indirect. Unless someone forceful and dominant
such as Thorndike acts on the system, one must look hard to detect hauw
the influence is occurring. A common procedure is for the theorist to
set forth his views and then for a transmitter, such as Caopeland, to
provide a simplified, and perhaps somewhot garhlod, version for a
larger public of teachers. The transmission network, however, 16
complex. A Fiaget introduces a new idea, which reconates for someone
else, who incorporates it into a talk, paper, or book, and other
mathematics educators begin to use it in their speaking or writing.
Gradually, the idea comes into the culture of mathematics education
and is picked up by teachers in practice. Sometimes the idea i1s ban-
ned from colleges of education--like faculty psychology--but lurks in

the culture like a virus to strike down the receptive practitioner.
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Sometimes the force of theory is felt merely by providing a namz
tfor a construct that pecple have been grappling with but have not
articulated. Attribution theory and expectation theory seem thus far
to have contributed to mathematics education in this fashion;
researchers in mathematics education are intrigued by the constructs,
but they have not been much concerned with following out the
ramifications of the theories. Naming, however, is a powerful force,
as Adam must have discovered. Hadamard (1947), in discussing Newtonrn’s
contributions to the calculus, said it aptly:

The creation of a word or a notation for a class
of ideas may be, and often i35, @ scientific fact
of very great importance, because it means connecting

these ideas together in our subsequent thought.

(p. 33
Fimm (1981, p. 48) quotes Higginson’s anagram, “re-nameing 1% re-—
meaning, " from which it follows that "namf{el)ing is meaning.” Ue need

the constructs and networks of theory to help us think about thinqge
about the phenomena we confront as mathematics educators. We ought to
be giving more serious attention to the thecretical underpinnings of
our work, and we need to make more explrort oand coherent the a-
sumptions we are making, the point of view we are adopting, and the
frame of reference that surrounds the picture we are trying to pasint.
As long as we ignore the theoretical contexts of our research work in

mathematics education, it will remain lifeless and ineffective.

Teachers as Participants in Research
Consider now the teacher’s role in research. First, we should

quickly note that “research" should be given the broadest possible
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connotation; we should not limit 1t to controlled expersimentation or
even to empirical research, as 15 otften done. Research in mathematics
education should include historical studies, philosophical studies,
and analyses of curriculum topics, as well as surveys, case studies,
clinical studies, and the like. UWhat makes a study research is not
the methodology but the attempt to be systematic and to put the study
in a larger context of theory, if poscible. (This 1s true even for
what some would term “"applied research.") "Disciplined inquiry" is
perhaps & better term in some respects than “"research" since it
emphasizes the process and not just the form.

From this perspective, one can see that much of what mathematics
teachers do every day comes close to being research; it is juct not
quite so deliberate, systematic, or reflective. As aAlan Rishap (19773
nas pointed out, teachers can borrow three things from researchers:
their procedures, their data, a@nd their constructis. What do
researchers do when they do research? If they are conducting an
empirical study, they might observe, formulate hypotheces, observe
some more, and try to test their hypotheses. It possible, they try to
vary the situation systematically to see what the effects of variation
might be. They formulate constructs and models of how thewne
constructs might be related, and then they gather data to test the
constructs and models. They develop instruments to help them gather
data. These are activities that teachers can do. They can haorrow
these procedures and use them to study their own teaching. They can
also borrow researchers’ data. As Rishop points out, you do not have
to gather data yourself for them to be of value to you. The value ot
data is in the process of understanding and interpreting them.

Teachers can interpret the data from a research study in the light of

‘
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their own situation and experience.

Teachers can also borrow a researcher’s constructe and the ac-
companying models and theories. Kishop refers to the work of Leorge
A. Kelly, the developer of the psychology of personal constructs,
which 15 a theory of personality functioning. In Kelly’s theory, we
are all researchers, creating constructs as interpretations of our
world and testing the predictive validity of these constructs. When
we teach, we are concerned with the students we are teaching and with
the ideas we are trying to teach them.:. Qur behavicr 15 shaped by the
constructs we have about the students and the i1deas. The students, 1
turn, have their own constructs about us and about the ideas as they
understand them. lelly sees behavior as an experiment. 7To understand
a child’s behavior, says Kelly, try to figure out what question she is
asking of the world. What hypothesis is she attempting to test? To
change the child‘s behavior, try to figure out ways of getting her to
form new constructs. To change one’s own behavior as a teacher, try
to create alternative constructs for interpreting the world. 1+ you
cannot create such constructs, try borrowing some. The greal value of
the work of theorists such as Fiaget, Dienes, and (agne is in the
interpretive lenses they give us for looking at familior phenomena in
new Ways.

Too many mathematics educators have the wrong idea about
recearch. They give most of their attention to the results. They
think it is primarily important for teachers to know the results of
the research on a given topic. They give a high priority to cum-
marizing and disseminating research results so that teachers can
understand them. In a nontrivial sense, hawever, the results are the

least important aspect of a research study. Note that DBishop did nat
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include results among the things to be borrowed from researchers.

The most important aspect of a research study is the constructs
and theories used to interpret the data. A landmark research study is
one that confronts us with data analyzed and organized so as to shake
our preconceptions and force us to consider new conceptions. A
researcher makes a contribution to our field by providing us with
alternative constructs to work with that illuminate our world in a new
way, and not simply by piling up & mass of data and resulte.

This view suggests why teachers should be active researchers, why
they should develop & research attitude. Teachers should not staop at
being borrowers; they should become collabcrators. Research is not
something to be left to people who understand randomized block designs
and analysis of covariance. Research in our field is disciplined
inquiry directed at mathematics teaching and learning. It is stepping
out of the stream of daily classroom experience and stopping to
reflect on it. It is becoming conscicus of the constructs we are
using and then trying other constructs on for size.

Research in mathematics education has increasingly been moving
out into the classroom. This has been, in general, a healthy move.

It would be better, however, 1t teachers were working more closely
with researchers in formulating their problems and interpreting their
findings and not simply in helping them gather data. The teachers
would benefit, with respect to both their professional attitudes and
their effectiveness, and so would the researchers.

Sanders (1981) has suggested that in no other profession 1s the
community of researchers more sharply differentiated from the com-
munity of practitioners than in education. Researchers tend to

identify with, and publish for, communities that do not include

v
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practitioners, and vice versa. The self-correcting mechanisms of
science, however, require that the knowledge it claims is reliable be
presented to @ community of peers for review and correction. If
incorrect or incomplete theories become institutionalized, asks
SYanders, where will the impulse for correcting them come from?” At
present, the theory builders in our field, such as they are, do not
see the consequences of their ideas in practice; and the teachers, who
have been trained to depend on experts for answers, have little
impetus to correct these ideas and improve their own understanding.
Certainly the interests of the teacher and the researcher are not
necessarily congruent. Neither one should expect toc much from the
other (Fhillips, 1980), but this by no means invalidates the argument

that each can profit from a closer association with the other.

A Contrast between Mathematics and Research in Mathematics Education

Hamming (1980) offers four partial explanations for the ef-
fectiveness of mathematics that may help to explain further the inef~
fectiveness of research in mathematics education. Hamming argues,
first, that we see what we look for; "“we approach . . . situations
with an intellectual apparatus s0 that we can only find what we do in
many cases" (pp. 88-89). The phenomena we see arise from the tools we
use, and mathematics has been highly creative in inventing toois.
Research in mathematics education, on the other hand, has not. Ham-
ming relates a parable he attributes to Eddington: GSome men went
fishing in the sea with a net and, upon examining what they caught,
found that there was a minimum size to the fish in the sea. In
research in mathematics education, our nets have been rather coarse;

our instruments, rather blunt.
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Second, we select the kind of mathematics to use, and "it i3
simply not true that the same mathematics works every place" (p. B9).
dhen the mathematics we have does not work, we invent saomething nev.
Hamming gives the illustration of how, when scalars did not work +or
representing forces, vectors were invented, followed by tensors., In

esearch in mathematics education, we have not shown the same
ingenuity in adapting our tools to our problems.

Third, science in fact answers comparatively few questions.

"When you consider how much science has not answered then you see that
our succecses are not so impressive as they might otherwise appear"
(p. 89). If one considers the questions associated with truth,
beauty, or justice that mathematics cannot answer, says Hamming, one
sees that almost none of our experiences fall under the domain of
mathematics. Applying this same argument to the realm of recearch irn
mathematics education, one concludes that perhaps mathematics
educators have not recognized the limits in the classrcom to the kinds
of questions that research might be able to answer. Fferhaps one
reason for the perceived ineffectiveness of research in mathematics
education is that too much has been expected of it.

Fourth, Hamming contends that the evolution of man has peovided
the model for mathematics by selecting for “the ability to create and
follow long chains of close reasoning”" (p. 89). We have been, to scme
extent, selected according to the models of reality in our minds. For
example, we think very well about problems pertaining to things that
are about our size, says Hamming, but we tend to have trouble if the
problems concern very large or very small things. Just as there are
some light waves we cannot see and some sounds we cannot hear, perhaps

there are some thoughts we canncot think. Although evolutien has not

had much chance to operate over the few generations of scientiste 4n
the history of science, perhaps there has been come selection faor the
ability to follow chains of reasoning. The history of research n
mathematics education is much shorter, and evolution has not had time
to select for a research attitude. Many people who do resecarch in
mathematics education have, in fact, been "selected"--or have selected
themselves—-because of their mathematical abilities. These abilities
may not be, and probably are not, the same abtilities that are needed
for effective research in mathematics education.

Davis and Hersh (1981) argue that the flatonist, formalist, and
constructivist views of mathematics are no more than different waye of
looking at the same thing. They use the analeogy of how one can =it at
the consocle of an interactive graphics system and learn about &
hypercube by lcoking at pictures of the hypercube, rotating it so as
to see how one view transforms into another. The viewer gradualtly
builds up & comprehensive view of the thing itself out of the wvarious
partial views displayed. Similarly, one can build up a picture of
mathematics itself by integrating the variocus pictures of it that are
offered by the various philosophies of mathematics. Research in
mathematics education may also be something like the hypercube, excepl
that we are just beginning to note various views of it. Fartial views
are offered in several recent sources such as Reqgle (1979) and Yhumway
(1980), but a comprehensive image remains elusive.

The parallel between mathematics and research in mathematics
education ought not to be pushed too far, however. Applying
educational research to mathematics teaching practice is not an
engineering problem like applying mathematics to a practical

situation. For too long researchers have been misled by this
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engineering metaphor. The improvement of mathematics teaching is not
a technological problem; it is & human problem. Kristol (1974),
writing about the inability of the reforms of the 19605 to have wmuch
impact on the educational process, put it this way:
There are some who will say that this state of
affairs merely shows how obstinately conservative
our "educational establishment"” is. I think this
misses the point. When there is so much will to
change, so much dedication to effecting change,
and so little effectual change, the more
reasonable conclusion is that we are dealing with
a network of human relaticnships that does
satisfy, if only in a minimal way, certain basic
societal needs, even if we don’t quite know why or
how it does. . . . That this should surprise us
indicates how deeply our thinking about all
subjects has been suffused with the technological
mystique. We are inclined to believe that our
power over nature and humanity is, or ought to be,
limitless. We tend to assume that the will to
transtform our human condition is a sufficient
candition for such a transformation to occur.
Everywhere, we hear the refrain: "We can go to
the moon, can’t we? Well, why can’t we do
something equally marvelous about the ghettos or

education or whatever?"

The answer is, of course, that going to the moon

33

is easy whereas improving our system of education
is hard. The one is nothing but a technological
problem, the other is everything but a
technological problem. Doing something about
education means doing something about people--
teachers, students, parents, politicians—-—-and
people are just not that manipulable. They are
what they are and do not become new people to suit
any new ideas we might have. (p. 62)

If researchers in mathematics education are to become effective
in improving the practice of mathematics teaching, they should: (1>
develop a stronger sense of community, which would include practicing
teachers as collaborators in research; (2) create their oun
theoretical ccrnstructs for viewing their work; and (3) recognize the

limits of their domain as well as its complexity.
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RESEARCH AND THE CLASSROOM
A Report of the CMESG/GCEDM Research Working People
Thomas E. Kieren
University of Alberta
Shirley McNicol
McGill University
The title of the group suggests a number of possible connotations:
- what is true both in research and practice?
- what is the bridge(s) from research to practice
or vice versa?
- what are implications of research for practice
or vice versa?

- *what are ways in which research interests can be
projected to the classroom?

It is this latter question, inspired by a presentation at the 1979

CMESG/GCEDM meeting by Jack Easley, which provided a focus for the group.

Because of the nature of the group, some 19 university persons
interested and active in mathematics education research, such a question
is both appropriate and well within the scope of such persons' responsibility

and perview.

The indicated question above leads to a variety of sub-questions

examples of which are:

a) what are "spin-offs" from research useful in
classrooms?

b) how can teachers be involved and interested
in research?

c) how might research work effect various aspects
of teacher education?

d) what are the researcher's responsibilities in
relating his/her work to practice?

All of these questions are obviously related to the general topic
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and like it have "direct' and '"indirect" components. That is, in each case
one can ask "is the impact or projection directly on to an aspect of practice

or indirect, requiring further interpretation and elaboration?

In its deliberations, the working group focussed mainly on the indirect
aspects of questions a,b, and c¢ above. There were a considerable number of
comments on question d; this will be addressed later. The working style of the
group was to address these questions by looking at five examples of recent
Canadian mathematics education research, each presented by one of the group

members who had worked on it.

Kieren gave the example of the Rational Number Thinking Test as a research
tool which teachers might use. This test is based on previous work by Gerald
Noelting as well as Kieren, Nelson and Southwell, (which had been discussed at
previous CMESG/GCEDM meetings in 1978, 1979 and 1980). The test contains four
parts based on different mathematical interpretations of rational numbers. With-~
in parts the questions or tasks represent a heirarchy of thinking. Research
evidence based on use with ever 1500 children and young adults indicates that the
test might allow a teacher to observe the thinking tools that a student uses with
respect to rational numbers, to see her/his differential reaction to various
mathematical situations, and to see the interaction of language use and problem
setting. In addition, according to Brindley's work in Calgary, the test can be
used to classify students as concrete, transitional or formal with respect to

rational numbers.
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The group's discussion of this "spin-off" of research for practice
revolved around three points. The first was how this test could be used
in classrooms. The second was should it be used. That is, is such a test
sufficiently related to a teacher's or a student's work to prove useful.
Third, what messages from research are contained in such a "spin-off" test.
With regard to this latter question, Gaulin made several stimulating
observations. The first was that the test is in itself a reflection of both
theoretical and empirical research and in that sense carried research ideas
to the teacher. Second, the test above, with documentation of uses and results
could inform practice in an indirect way. Third, the content and structure of
the test contained a "hidden message' about how the curriculum for rational
numbers might be organized. Thus an instrument or curriculum piece which comes

from research and is used in practice might represent a projection at three levels:

- the theory behind the material is carried by the

material itself,

- the results of research use could be projected

to further use in the classroom,

- the material might be prototypic for other

curriculum ideas.

Harrison's presentation of the Calgary Junior Mathematics Project focussed
the group's attention on how teachers can stimulate and participate in research.
This project had its theoretical underpinnings in the work of Piaget, Bruner and
Skemp and the curriculum research of Bell. Harrison had a research group of

teachers who both studied prepared process oriented materials and developed process

oriented techniques which they would use in the research in their classrooms.

Following his carefully prepared summary of the development and
implementation of the Project, discussion centred on the ways in which
this research can be projected in the classroom. The group concurred
with Harrison's response that the Project allowed for a) teacher involve-
ment in the orientation and workshop sessions (where over 200 teachers
shared materials), b) spin-off benefits to school colleagues and pupils,
¢) the dissemination of results at conferences in Berkeley, St-Louis and

Grenoble.

The third example of research considered by the group was that of
David Wheeler on problem solving, specifically "an investigation of the
mental operations of high school students in solving mathematical

problems”. 1In his report on the uncompleted Project, Wheeler stressed:

a) difficulties involved in identifying '"mental operations' -
preferring instead to use the term "strategies', though with
less satisfying results.

b) difficulties in identifying and analysing appropriate
protocols & preferring to use "episodes' rather than each
spoken contribution.

c) benefits of the "clinical interview' techniques especially
when the interviewer takes a positive role in the situation.

In the brief discussion which followed, the group attempted to
answer the question of how this research can contribute to mathematics
teaching in the classroom. In addition to the obvious value to the
teachers involved, as evidenced by their surprise at studenls’ responses,
it was generally agreed that this type of research is of greater interest
to the constituency of researchers. ( A more detailed account of Wheeler's
Project is included in Appendix A ).
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The fourth research example took the form of video-taped interviews
of children relating number ideas to a series of geometric tasks. This
research done by Lunkenbein and presented by him was considered by the
group for 1ts implications for teacher education as well as implications
for elementary school curriculum. The video tape itself shows a way in which
teachers might use research. In a classroom setting a teacher rarely has the
chance to observe individual students in a detailed or elaborate way. Such a
video tape represents a controlled way for a teacher to get an opportunity to
observe children doing mathematics. This control stems from the fact that the
mathematics, the task, and the protocol have been predetermined by the researcher.
The teacher should be able to find out the researcher's assumptions, but then
observe the child for their own purposes; that is the teacher can predict behaviors
of children and then test those ideas through observations. The group also saw
such video tapes and related materials as a way of injecting a research objective
or a sampling of functioning in a research made into the teacher education
curriculum, Use of tapes would allow a person to get an image of the theory of
the researcher, and to observe the materials and techniques which could be modified

for informal use in the classroom.

Gaulin presented a longitudinal study of the use of calculators in upper
elementary school mathematics. The group's discussion touched on a wide variety
of questions related to research and the classroom. Gaulin continued to remind

the group of the many audiences for research projections or implications.
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Thus, for example research might have a

'political™ implication for provincial
education authorities. In the case of the research example, research results
comparing calculator and non-calculator groups on a number of dimensions of
achievement. Thus, while the researcher might be interested in the more

phenomenological aspects of calculator use, he or she reasonably may be obligated

to collect information for particular constituents or funding bodies.

In the area of "spin-off", Gaulin reported that teachers were very interested
in the collection of problems for calculator solution. While these were used in
research to provide children with potentially rich settings for calculator use,

the teachers saw them as useful in the curriculum in a more general way.

Conclusions

As a group, a main conclusion from our work was that we did not get very
far in an effort to relate research and practice. Yet a number of useful
observations did arise out of our sessions:

1. Spin-off materials tests, curriculum pieces, techniques - bear (or should)

information about research and theory for their users.

2. Most research materials contain messages about potential change in the
curriculum or in the actions of teachers or children. These could be

made more explicit than is currently done.

3. Teachers involved as research colleagues help define research in
“practical” terms. Such teacher/researchers can communicate the
particular research in which they are involved to others as well as

helping develop a research "face" in other teachers.



The fact that much current research involves detailed observations

of children and young adults in mathematical settings, can be used

to great advantage in teacher education.

There are many constituencies for research projections. The
researcher must be alert to the possible interests these various
practitioners might have.

Mathematics education researchers can interpret the mathematical
relevance and implications of their work to others.

The example studies presented were alert to the interests of the child
and seemed to engage children in activities in which they partook

willingly and from which they profited in some direct way.

These observations should be tempered by the observations of the group

(some of which are in the attached material) on the researcher's responsibiliry

in making the projects of his/her work. Some were:

a)

b)

c)

d)

What are the researchers' responsibilities to the users of his/her work?
This entails both the "selling" of her/his ideas and alerting users to
limitations or misapplications.

Researchers' need to make their reasons for doing the research and their
assumptions in its doing clear to others.

Research should (a value judgment) aim to improve practice. Things one
knows should be clearly and directly presented to teachers.

What are the ways and ethics of presenting research results so as to

appropriately impact practice?

bs

These questions indicate that deep issues remain to be explored in
this area of research and the classroom., Yet the group, despite the
disappointment in not atleast partly resolving such issues, felt that the
time was well spent in relating the 5 example studies to the issues at hand.
In addition, most liked the opportunity to discuss in detail the variety of

interesting research which is ongoing in Canada today.
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COMPUTER EDUCATION FOR (MATHEMATICS) TEACHERS:

A Statement for the Working Group
on Computers in Mathematics Education

J. Dale Burnett

The form of this report reflects a desire to encourage
exploration rather than to achieve closure, Many of the points
made in our discussion were as valuable for the questions they
raised as for any solutions that were offered. Hence many of the
"phrases" are only partially completed, simply that they may be
placed on the table (or in the reader's consciousness).

The following questions and points specific to the
confluence of computer technology and mathematics education were
noted at various points in the CMESG proceedings (on the plane to
Edmonton, at the actual working group session, or in informal
get-togethers).

1. Computer technology permits the display of data structures,
both arithmetically (i.e. matrices) and graphically (tradi-
tional plus newer techniques such as Tukey's Exploratory Data
Analysis) .

2. Glass boxes. An idea championed by Howard Peelle (University
of Massachusetts) - essentially the opposite of a black box -~
manifested by a program or an algorithm that easily reveals

the nature of the procedure.
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Student and teacher manipulation of simulation and game models
Not only by specifying parameters and observing the results
but also by modifying the model itself.

Debriefing sessions. Particularly valuable after students
have had an opportunity to run a simulation. 1Is likely to be
of value at the conclusion of any (programming or mathematics)
assignment that permits alternative approaches or answers.
Interactive graphics. Simple examples could include the student
specifying a, b and ¢ and having an immediate display of the
corresponding quadratic graph. A number of such displays
could be superimposed on one another to facilitate comparis-
ons. A more sophisticated (technologically) example couid
involve the simple placing or deleting of points on a scat-
ter-plot (using a touch sensitive surface, or even games
paddles) and having the resulting correlation coefficient
displayed after each alteration.

Video-disc technology will soon be available on computer systems.
To what extent does familiarity with a computer language
facilitate the learning of a natural language (or a second
language)?

What are some of the important features (from the point of
view of computing science, mathematics, linguistics, psycho-
logy, education,...) of various languages such as BASIC,

PASCAL, APL, LOGO, LISP...?

10.

11.

12,

13.

14.

15.

16.

What are some of the important technological features of
emerging computer systems (colour, sound, graphics tablets,
touch sensitive surfaces, joysticks, music boards, high
resolution graphics,...)?

What are some of the underlying educational philosophies of
different technological approaches?

What are the important elements in the mathematics curriculum
that could be enhanced by utilization of computer technology?
We appear to be improving our authoring languages (NATAL,
PILOT...) for tutorial programming. We also need to improve
our usage languages (APL, LOGO,...).

What is an appropriate role for computers in (mathematics)
testing? (e.g. sophisticated drill and practice based on an
analysis of previous performance, item banking, branching
tests,...).

What features of a computer-managed-instruction (CMI) system

are suitable for a school system? (See paper by M. Westrom

for an explanation of CMI.)

What types of resource centres and clearing-houses for
computer-based materials are needed?

One should not forget about the adjunct use of other non-
computer-based materials (course manuals, worksheets, photo-
graphs, handouts,...) while using a computer. Even within a
specific task, some components may be better handled in other

ways.

ko



17. There should be structure in the (mathematics) curriculum at
the molar level but choice (student and teacher) at the micro
level.

18. Teacher receptiveﬁés to atypical uses of a particular program
may open new avenues. For example, even a simple game such
as brick-out (a computerized form of solitaire ping-pong) can
lead to the exploration of various strategies and an analysis

of why some strategies should work better than others.
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19. Development of interesting environments for student exploration:

- let student input any figure (using a graphics tablet, games
paddle or a light pen). Have computer keep track of the
relationship between area and perimeter.

- see point $5 for other examples using interactive graphics.

- Logo (turtle geometry)

-~ APL

- billiard ball math from Jacob's book, Mathematics: A Human
Endeavour.

20. Dr. Gerald Nélting, at a previousCMESG meeting in Kingston
presented a paper on the use of different proportions of
orange juice and water for studying students' understanding
of fractions. A natural extension of this idea to computer-
“ized screen displays, where the student alters the paraﬁeters
and the shade of the resultant mixture is adjusted accordingly
on the screen. Dr. Kieren indicated they are already work-

ing on this at the University of Alberta.

21.

22.

23.

24,

25.

26.

27.

28.

29,
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Various games are now being placed on the computer (chess,
checkers, backgammon, go, tic-tac,toe, Rubiks cube,...}.
However the real trick is to have this set up to facilitate
the writing of "strategies" for playing these games.

In addition to numeric manipulation, computer usage can
increase the need for symbolic manipulation (e.g. algebra)
and graphic manipulation (e.g. use of colour within group
theory).

Odometer displays for different bases.

We need software to display program execution one step at a
time (e.g. displays highlighting, perhaps by flashing or reverse
video, both the line of code being executed and the change

to any data structure).

The introduction of this technology should require mathematics
educators to identify the key concepts within the curriculum.
Use of computer generated films to show complex mathematics
phenomena (e.g. turning a sphere inside-out}).

To date, most mathematics has been "static”, in the sense

that it represents only snapshots, not motion. We are now on the
verge of having a genuine "dynamic" mathematics environment
involving motion on a screen.

It should be fun. We want people to enjoy mathematics.

Just because computers are in the classroom, is this a prima-~

facae reason that they should be extensively used?



30.

31.

32.

33.

34,

35,

36.

37.
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Some uses of computers may actually be retrogressive (e.q.
some languages {Basic?} may be so discordant with actual
thought as to interfere with the key conceptual processes in
question - for example, matrix multiplication).

A distinction should be made between computing science and
computers augmenting mathematics.

What components of the mathematics curriculum become tri-
vialized? What areas become accessible (with the advent of
computer technology)?

We need to develop our abilities to explore.

There is a perceived need for guidance on how to evaluate
software.

Attention needs to be directed to the level of the classroom
teacher, How does one use a micro in today's math class?

We need some exemplary demonstration programs.

We must be careful not to limit ourselves to today's

technology.

WORKING GROUP C

ISSUES IN THE TEACHING OF CALCULUS

RALPH STALL

53



54

CMESG GROUP C 1981

REPORT

Attendance at the Group C sessions rapidly stabilized to become the following
group of contributors.
Robert R. Christian
H.N. Gupta
Bikkar Lalli
Ian McDonald
Ralph Staal (Chairman)
Hugh Thurston

Yvan Roux

All participated in the discussions. The papers referred to in this report

were written by the leaders of the related discussions and are included in
A ppendix C.
1. Agenda Possibilities

The chairman opened the proceedings with the presentation of Paper #1 (Agenda
Possibilities), the contents of which had previously been available to registrants.
It was not expected that all 15 suggested topics would be discussed, and they
were not, but nearly all were at least touched on, sometimes as side comments
to a major item.

In this report, we will treat the topics mainly in the order in which they
appear in Paper #1: chronologically, there was quite a bit of back-tracking as

given issues were returned to when they interacted with each other.

I1I. 1s Calculus the same as Introductory Analysis?

1t was agreed that the answer to this (admittedly somewhat rhetorical)

question should be NO. Much of the material may be the same, but the focus

n
N

emphasis and motivation are different. The break-up of the (at one time) closely
knit package of mathematics and science has been associated with greater
compartmentalization. Mathematics has often been left standing more by itself,
with a resulting shift toward Introductory Analysis which is premature, inadequately
motivated, and, in spite of its intentions, not really very strong theoretically.

Calculus, in contrast with Introductory Analysis, is by its very nature
heavily involved with applications - they are part of it. The value of the
applications here is not ''practical" (in the usual sense); rather it lies in
aiding the mathematical understanding and in generating (not just applying)
the mathematical ideas.

One should speak of "interactions' rather than "applications', as this
would suggest more strongly a reciprocating, or symmetric, relationship between
the mathematics and the areas of "application'.

See also R.R. Christian's Paper #7, item 8.

R.R. Christian (see Paper #7, pp. 1,2) answered the question with a firm
'No!'" and suggested replacing rigor by honesty.

H#.N. Gupta (see Paper #6, p.6)}, in the matter of rigor counselled waiting
for an appropriate time, referring to the quotation:

"Cive them chastity and continence, only not yet

II1I. What should be done about Differentials?

This question precipitated extensive discussion. First, it had to be
sharpened by distinguishing between the differential notation and its various

interpretations, and by treating it in different contexts.
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The chairman presented three brief papers (#2, #3, and #4). #2, titled
"Logarentials'm was a satirical (with apologies) account of how somec of the
perplexities assocjated with most "standard" accounts of the differential
notation and concept can be transferred, by a reasonable analogy, to the
subject of logarithms - the point being that the unnecessary confusion inherent

in the original would (it was claimed) be more easily seen in this way.

#4, titled "By Parts', was intended to indicate by examples (the full story
presumably being familiar to the Group members) that the message implied by
many textbooks that integration by parts involves differentials in an essential

way is entirely false, both theoretically and in terms of convenient manipulation.

#3, titled "Setting up Integrals', compared two popular ways of arriving at
the integral for an area under a curve. The case was put that the method
which referred to 4x's and to forming a limit of a sum was, although incomplete,
a clear indication of the nature of the process involved, whereas the "differen-
tial'' approach was confusing.

H. Thurston responded to the question with a substantial presentation which
in expanded form, appears in Paper #5,"The Leibniz Notation". R. Staal responded
in part, by claiming that the difficulties which Professor Thurston resolved
by using the definition

dx{a,7) = x'(a) (1)

could all be resolved equally well, in his opinion, without any such definition
(b

of dx 1in isolation, provided one interprets only the whole of ”Ja dx, "

b
rather than the parts ”Ja” and "dx" separately,

In Paper #6, pp.3-5, H.N. Gupta viewed the use of differentials from

another point of view - as tools of approximation and discovery - and urged
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that they not be banished from introductory Calculus. This was not actually
in conflict with Professor Staal's point of view, as the latter's comments
were in a different context. The use of finite (not "infinitesimal'} approxi-
mations to finite increments, followed by a limiting process was not what
Professor Staal was proscribing. His concern was essentially with those uses
of differentials which appeared to avoid limiting processes.

In Paper #7, item 3, R.R. Christian distinguished between the differential
(manipulative) and the infinitesimal (little bit of) aspects of differentials.
He emphasized the importance of honesty, heuristics and usefulness (e.g. as
mnemonics).

On the whole, there was agreement that many, or most, current standard
treatments of differentials at the elementary level were notably unsatisfactory

but there was more to the issue than this.

1V. How should £n x be introduced?

R.R. Christian, (see Paper #8 for a detailed account) pointed out the

advantages of approaching logarithms by means of the function
h

£(a) = 1im & _l.

h-+0

h

This approach was not generally familiar to the Group members, but Professor

Gupta commented (Paper #6, pp. 1,2,3) that it resembled the treatment given

by De Morgan in 1842, and elaborated on the history of the topic, and on

the desirability of making this history more widely known among our students.
Professor Christian, on subsequently referring to De Morgan's work (sce

Paper #7, pp.1) found some overlap with his own approach, but also some

considerable differences. (See paper #9, for the relevant parts of De Morgan's

paper) .
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V. How should one sketch Polar Graphs?

R.A. Staal raised the issue of sketching polar graphs as one which normally
fits into an introductory Calculus course and which, although perhaps mathe-
matically trivial, leads to the important question '"Why do we drill students
in graphing, and then ignore good opportunities to use these graphs?" He

outlined a method which invoved

(a) sketching the (usually familiar) Cartesian graph of r = f(0),
or perhaps a familiar related graph on which the values of
£{8) could be easily read.

(b) plotting the Polar graph of r = |f(8)|, but dotting the portions
of the curve on which £(8) was negative.

(¢c) reflecting the dotted portions of the graph in (b) in the origin.

(This method has been outlined, with illustrations, in the Ontario Secondary
Schools Mathematics Bulletin, V. 17 No. 3, Sept. 1981, pp. 5,6).
H. Thurston (see Paper #10) has since added a note on the use of this

method in suggesting where a polar graph might involve a change in concavity.

VI. What role should historical matters play?

The main responses to this question were the following:

H.N. Gupta, in Paper #6, already referred to, exemplified the historical
approach to logarithms.

Y. Roux, in Paper #11 (written jointly with M. Lavoie) presented the
chairman with a paper which, although written in another context, overlapped
significantly the concerns of the Group. This paper emphasized the importance

of having two points of view.

(a)

(b)

the mathematical: dealing with internal subtleties and logical

aspects

the historical: emphasizing the genesis of ideas and the influence

of history on teaching.
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VIT Why is Calculus an Important Subject?

A member of the group asked for a response to students who asked why
they spent so much time on Calculus. Why, if at all, does it have a special
value?

The response was that, in addition to more obvious reasons, Calculus
brings together in an interesting way nearly all the mathematics to which
the student has already been exposed, and its benefits are accordingly
very broad. It is also a particularly powerful tool, covering a wide
range of applications.

The students should be asking "Why do we spend so little time on Calculus?

It was pointed out that a very large portion of the time given to
lecturing in Calculus is in fact devoted to matters algebraic, geometric,

etc.

Mathematics teachers were urged to keep educational and mathematical
matters uppermost, and to resist pressure to give courses on '"Calculus
for Chemists', "Calculus for Accountants' "Calculus for Economists' and
others which are designed merely for training students in specialized
applications. 1f given at all, such courses should be handied by

Chemists, Accountants, Economists, etc.

WORKING GROUP D

REVITALISING MATHEMATICS IN
TEACHER EDUCATION COURSES

HUGH ALLEN
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Revitalalising Mathematics in Teacher Education Courses
Report of Working Group °'D'
H.A.J.Allen
Faculty of Education
Queen's University

Working group 'D' met to discuss ways of overcoming the
negative attitudes towards mathematics of many teacher education
stu@ents. Several participants had brought along examples of
toplc§ and/or approaches that they had found to be effective in
reducing students' anxiety. Through seeing some of these examples,
and through the subsequent discussion, the group was able to
clarify tpe framework within which constructive examples might
apply. This report attempts to summarize the discussion that
took place within the working group.

One a;m of teacher education courses is to produce teachers
who have (}) reasonable confidence in themselves and 1n subject
matter, (ii) an interest in the subject matter, and (iii) the
confidence to try new ideas, both mathematical and pedagogical.
While some of our inservice and preservice candidates do possess
these‘c@aragteristics, most do not, and those that do not can be
classified into two main fypes according to thelr attitude toward
mathematics; namely apprehension or complacency.

.Students whose attitude toward mathematics is one of appre-
hension (or fear, or sometimes outright rejection) have had very
little mathematics in their academic background (often as little
as grade 10 math?matics) and have little incentive to do any
mathematics. Typically, these students are preservice or inservice
elementary school teachers, and they are usually women.,

The other type of student (the complacent ones) usually
have a great deal of mathematics in thelr academic bacground-
frequently including several university level courses in math-
ematics. Their "know-it all" attitude toward elemenbary mathem-
atics makes them reluctant to try any new mathematics. They are
pr9ducts of the system, and the system rarely asked them to
think. Typically, these students are secondary school teachers
(practicing or intending).

To.accomplish the three aims discussed earlier in this
rgport it may be necessary to treat the apprehensive student
differently from the complacent student. We want both students
to do mathematics and to see mathematics as process. With the
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apprehensive student it is important to reduce his/her anxiety
and to have the student experience lots of success. On the other
hand, with the complacent student it may be necessary to increase
anxiety initally and to have the student experience some lack of
success before he/she is willing to do any new mathematics. With
both types of students we are attempting to change attitudes to-
ward mathematics.

It is the opinion of the working group that changes in attit-
udes are most likely to be achieved by engaging in activities
that (a) provide insight into a mathematical topic, content, or
procedure that was not previously understood, (b) promote a diff-
erent view of mathematics - one in which mathematics is seen as
"process" rather than a set of results, and (c) provide an oppor-
tunity for the teacher to behave in such a way as to make the
student (in this case the preservice or inservice teacher) more
comfortable with the material. These, then are desirable char-
acteristics in an activity and hence are to be considered in
choosing the kind of activity to be used with teachers.

In addition to considering the kind of activity, it is most
important to consi%gr the content of the activity and in part-
icular, what can bd°¥With this in teacher education. In mathem-
atics courses, one teaches mathematics. That is the sole content.
By contrast, in teacher education one teaches both mathematics
and the vehicles for teaching mathematics; i.e.,pedagogy. In
addition, the teaching involves an examination of the teaching by
instructor and students. This examination includes a look at
the teacher's attitude toward the subject matter, toward the
learner, and toward himself. In teacher education one also
examines the learning that has taken place with particular ref-
erence to how the learning took place and %o the feelings of the
learners. So, in attempting to change teacher's attitudes to-
ward mathematics, we seek activities that maximize the potential
to change attitudes (as described in the previous paragraph), and
that maximize the kinds of things we can and should do in teacher
education (as described in this paragraph).

The participants in this working group tend to favor the
"investigation” activity and particularly those investigations
that are reasonably open, since these activities seem to provide
the maximum opportunity to (i) view mathematics in a different
light, (ii) see the possibility of the teachers behaving in a
less authoritarian manner and more as a learner and a resource
person, and (iii) examine one's attitude toward the teaching
that has taken place.
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Several investigations and other activities were discussed
by the working group. Some of these activities appear 'non-
mathematical' (i.e., devoid of number) and are designed to dem-
onstrate some of the processes of mathematics in a non-threatening
form, Examples are "word chains" (described in Appendix A of the
Report of Working Group 'A', CMESG conference Proceedings,
Kingston, 1978), and the example "Animals" in Appendix D of this
report. Other examples considered by this group are also
included in Appendix D of this report,.

SPECIAL GROUP P

THE PLACE OF GEOMETRY IN
THE ELEMENTARY SCHOOL

DIETER LUNKENBEIN
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Canadian Mathematics Education Study Group (CMESG)
Groupe Canadien d'Etude en Didactique de Mathematique (GCEDM)
1981 Meeting

University of Alberta, Edmonton
June 5-9, 1981

Special group P: The place of geometry in the elementary school
(D. Lunkenbein)

"Geometry at the present time does not seem to be an important
part of mathematics teaching. Is plays a minor role in official
curricula and an even smaller role in most classrooms. This
situation seems to be in sharp contrast to the intrinsic worth
attributed to geometry teaching, on the one hand, and to the
potential of informal geometry as a valuable vehicle for
arousing the interest and strengthening the confidence of both
teachers and children, an the other hand”.1 Many reasons may

be given for such a situation. Certainly, the clear distinction
between arithmetical and geometrical activities made in
mathematics teaching from the very beginning on is one of the
most important reasons for such a misconception of geometry in
school curricula. Arithmetical and geometrical activities are
but two different ways of approaching mathematical phenomena or
problems and, in most cases, both types of activities are
inseparable. 1In the course of acquiring elementary mathematical
knowledge, arithmetical representations of geometry and
geometrical representations of arithmetic go hand in hand

and, from this point of view, the separate programming of
geometrical and arithmetical activities appears the be rather

artificial and prejudicial for the learning of mathematics.

T. Ceometry in the Elementary and Junior High School Curriculum,
Report of Working group C, Proceedings of the 1980 Meeting
of the CMESG at Laval University, CMESG, Montréal, March 1981,
page 74.

For a balanced mathematical education at the primary level, it
seems to be of grcat importance, that such historical,
epistemological and conceptual 1inks betwcen gcometry and
arithmetic be made explicit particularly to the teacher, so

that they may be taken into account in classroom activities.

It was the aim of this group to investigate the possibility to
communicate such links directly to the teacher in order to
motivate him/her to integrate geometrical activities in
day-to-day classroom work. Based an the outcomes of last
year's meeting (Report of Working Group C, Proceedings of

the 1980 - meeting), the original production or the new
presentation of teaching material was to be considered in view
of such genetic links between geometry and arithmetic with

the intention to produce an appropriate document which would
be accessible for and attractive to elementary or junior

high school teachers.

Initially, the discussion centered around an exploratory
activity concerning polygonal shapes composed of congruent
equilateral triangles1 The example was intended to show

a possibility of the gradual unfolding of a conceptual context
by both geometrical and arithmetical means through continuous
investigations over several years of schooling. Among the
topics discussed were the nature and originality of possible
themes, types of activities that would be most suitable for
the purpose, general goals of such activities and possible
formats of presentation. It was generally felt that there is
no shortage of examplary subject matters or themes for such

an entreprise, but that the most difficult task lies in the
way of communicating the important ideas to the teacher. Such
communication would be the most effective if presented in a

ready-to-teach form and well commented as to the investigative

1.7 D. Lunkenbein, Deltagons: Shapes and Numbers, Département
de mathématiques et dTinformatique, Université de Sherbrooke,
Sherbrooke, Québec, mai 1981.
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character of the activity, the nature of the links bctween
geometry and arithmetic, the possible insertions of the activity
into current curricula and the general goals to be attained.

The format of presentation may vary a great deal; the teacher's
guides of the South Nottinghamshire Project1 were mentioned

as possible examples.

These discussions did seem to stimulate the enthusiasm and

the creativity of the participants to a point that we agreed

to give it a try and to work on it during the coming year.

For this purpose, first-draft papers would be sent to the

group coordinator by the end of July 1981 who would then in turn
circulate these papers among participating authors in order

to stimulate the discussion. Hopefully, we will be able to
finalize these papers at the next CMESG - meeting and to

publish them for wider circulation.

List of participants or persons interested in the study:

Dieter Lunkenbein (group coordinator)
Dépt. de mathématiques et d'informatique
Université de Sherbrooke

Sherbrooke, Québec, J1K 2R1

Bruce Bany

College of Education
University of Saskatchewan
Saskatoon, Sask.

Tom Bates

Dept. of Mathematics and Science
Faculty of Education

University of British Columbia
Vancouver, B.C. V6T 175

T. Bell, A., Wigley, A., Rook, D., Journey into Maths,
Teacher's Guides 1 and 2, (The South Nottinghamshire Project).
Bishopbriggs, Glasgow: Blackie and Son, 1978, 1979,

Alberta Boswall

Mathematics Department
Concordia University

Loyola Campus

7141 Sherbrooke Street West
Montreal, Qué. H4B 1R6

Roger Bourgeois

Faculté des Sciences de 1'Education
Université de Moncton

Moncton, N.B., :

Dale Drost

Dept of Curr. and Inst.
Memorial University

St. John's, Nfld. AlB 3X8

Claude Gaulin

Faculté des Sciences de 1'Education
Université de Laval

Québec, Qué.

Bruce Harrison

EDT 532

University of Calgary
Calgary, Alberta, T2N 1N4

Martin Hoffman

Queens College
Mathematics Dept.
Hushing, New York 11367

Tom Kieren

Dept. of Secondary Education
University of Alberta
Edmonton, Alberta, T6G 2G1

Fernand Lemay

Faculté des Sciences de 1'Education
Université Laval

Québec, Qué.

Al Olson

Dept. of Secondary Education
University of Alberta
Edmonton, Alberta T6G 2G1
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Arthur Powell
572 Washington Avcnue
Brooklyn, New York, 11238

Medhat H. Rahim

Mathematics Department
University of Alberta
Edmonton, Alberta, T6G 2Gl
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PANEL GROUP R

AN EXAMPLE OF MATHEMATISATION:
THE RUBIK CUBE

FERNAND LeMAY
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CANADIAN MATHEMATICS EDUCATION STUDY GROUP
UNIVERSITY OF ALBERTA, EDMONTON

(June, 5-9, 1981)

AN EXAMPLE OF MATHEMATISATION: THE RUBIK CUBE F.Lemay

(Outline of Edmonton's Talk)
THE CUBE.—

Rubik's cube appears to be a clever setting of 27
smaller cubes or "elements” {(or is it 26, since the interior
one is never to be seen?) whose visible faces borrow their co-
lors to the 6 faces of the main cube (in its natural homogeneous
form) and whose 9 "slices" can be rotated globaly and indepen-
dantly

thus giving rise to an incredible collection of multicolor forms.

THE PROBLEM.—

The problem? Of course to find its way back out this
labyrinth from any multicolor form or, conversely, to reach any

pattern that might be proposed.

Or, if some multicolor forms are out of reach, to invent

accessibility criteria. To determine the ordit of any form, that
is the set of all its accessible forms. To describe ways of con-
necting any two forms.

To find didactical applications. To gather eventually
algebraic subproducts.

To proceed to an epistomological prospection.

Etc.
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SOME NOTATIONS.—

The structure of the cube does not allow the small
central squares of any of the 6 faces of the main cube to leave
their positions; therefore their constellation of colors acts
as a reference and coordinates system for all elements of the
cube: those lying at the vertex (vertex elements) shall be de-
termined by 3 colors, those lying at the middle of edges (mid-
dle elements) by two, and of course the central elements of
various faces by one only.

For a given element, the position is determined by
that of any of its particular faces. Twenty-four positions can
thus be assigned to a vertex element and twenty-four others to
a middle element. Let's index these two sets of positions arbi-

trarily by giving ourselves a "monitor"

o>
<27

All mobile elements of the cube then also acquire an index:

that associated with their natural position. The set of vertex
elements can then be written (%)
S, = {1,2,3,4,5,6,7,8}
and the set of middle elements as
a, = {1,2,3,4,5,6,7,8,9,10,11,12}

Other vertex positions derive from these by rotations of one
third of a turn ("screwing in" the cube) thus leading to the
set of "polarized positions”

s = {1,1',1", .. 8,8",8"})
Similarly the set of all possible positions of middle elements
shall be denoted

A = {1,17,2,27, .. 12,12"}

(t) S and A being the initial letters of the corresponding
french words "sommet" and "aréte”.
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INVENTORY OF ACTIONS.--

In order to generate all multicolor forms, only the
9 rotations of the ¢ slices are available; but these reduce
essentially to the 6§ rotations of the external faces since the
rotation of a central slice is equivalent to rotations (in oppo-
site directions) of the two parallel slices. The rotations of
these external faces (quarter of a turn, screwing in the cube)
shall be named after the characteristic colors of the external
faces.

In every representations that follow

v

x, y, 2 shall always denote rotations of the left, of the upper
and of the right faces respectively, while =', y', z' shall reéfer
to the opposite faces. Finally the inverse of a rotation z, shall

be denoted simply z.

TRANSITIVITY IN S AND A.—

Our six rotations allow any vertex element to move

freely about the cube, but once an element has reached its target,

the three colors liable to push it further have to be "confiscated”.

Taking this strong constraint under consideration, it will not be
possible, in general, to assure more than the "3-transitivity”
(that is the transitivity of triples of vertex elements in the set
of all polarized positions) which, as experience proves, is far
from our objectives.

Perhaps should we have started by carrying the middle
elements first? This time we would reach 3-transitivity in 4,

but not in the polarized set /.
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COMPLEX ACTIONS.-—

We might conjecture that all accessible multicolor
forms must remain "within s-transitivity"”, but once again expe-
riments shall very soon destroy that conjecture.

solutions seem out of reach!

While nothing else than our six rotations is available,
we must become aware of the fact that a "chain of rotations" can
be seen as a new complexz action having eventually new properties.

Thus the composites of two "adjacent" rotations, or of the three

rotations "around a vertex", or of the four rotations "around the
walls"” @ /
= \
3 Ty 2 xz) =xz'z’z

give rise to new cycles, and the actions resulting from "conflicts"

“between rotations and these

finally provide us with the means to realize complete transitivity
in §, (that is g-transitivity on the set of vertex elements, ne-

glecting polarization).

GYRATORS. DIPOLES.-—

A more detailed description of a=xyz, for instance,
reveals that, while ¢ elements circulate through ¢ stations,
2 others "spin" on the spot; consequently by iterating properly

”

that action, we can retain the "gyrator”

T

(¢ indicates a spin of one third of a turn).
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Now combining this gyrator with its inverse, one gets

a "dipole” //\\\\\ ///\\\\

O s/

1
eﬁh;;ﬁé//
which has a less extended effect.
It is now possible to control the polarization of all
but one vertex and to stand with the firm conjecture that <t Zs

impossible to rotate a single vertex without affecting others.

CATASTROPHE . —

We could expect the structure of the cube to be so
strong that the complete relocation of all vertex elements would
necessarily carry the intermediate or middle elements back to
their natural positions; but experience denies such a conjecture
and we are confronted with the problem of acting on these inter-

mediate elements while leaving the vertex absolutely inert.

THE DISCOVERY OF MALLEABILITY.-—

Having gradually modified the underlying substance of
our investigations from cubic elements to rotations, to complex
actions, .. we still must go one step further toward a new vision
and elect a new underlying "matter” on which to act.

The cyclic paths followed by the various elements of

the cube are also "objects", complex objects, which can be submit-

ted to our actions and which will thus reveal their "malleability’.

If a cycle ¢ for instance undergoes a transformation f

¢ /\”7\

g
4 F

N\

¢’

then there will result a new cycle

cf = Fcr  (read from left).
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In particular the rotation z, transformed twice by
the action xz, becomes the rotation x, so that a "conflict" bet-
ween them
- rz, Tz
z- (277)
shall neutralise their mutual effects on § while it will continue

to act on 4
—
C~—

/\
giving rise to a ecircular permutation of three middle elements.

A "UNIVERSAL" MAP.—

Taking malleability into account this last cycle enables

us now to move freely on the "universal map" connecting all mid-
s~
P

dle elements

and to execute any even permutations of 4, that we might wish to
realise.
As for the polarization of middle elements, malleability

also enables us to transform the preeceding cycle in a similar one
/////\\\
&
// /
from which a "conflict" develops giving rise to an "alternator”

Q)

e

We therefore have gained control over all permutations
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in S, over all even permutations in A and over the polarization
of all elements bul onc vertex and one middie elements.
From this we can deduce the existence of at least
x12/x81x2" ' x37 = 43..x101°

accessible multicolor forms.

CONFIRMATION OF THE CONJECTURES.—

Any multicolor form exhibits a particular transformation
of the original cube and they therefore determine a certain subgroup
T« &axs)
of the group of permutations of AxS which I shall call the "group
of polarized permutations of the cube” (f).
Among these "targets", only those are accessible which
belong to the subgroup generated by our six rotations
Ol = (a,y,z,x",y",2"
The action of this group can be "transferred" to any target; which
amounts to say that it is "trausportable' or, technically, that
Ot is a normal subgroup of €. The quotient group ¥/Ct then repre-
sents the c¢lass of orbits of the various multicolor forms. In other
words, accessibility or reducibility from one form f to another g,
is expressed algebraically by
f=g (mod GL)

Our proposition is the following:
Theorem.— € /01 ~ Z,xZ,xZ,
In order to prove this, let us construct an homomorphism
D@ — 2,x2,x7,
(which we shall call the characteristic of multicolor forms) defi-

ned in the following way (with respect to an arbitrary maenitor).

(t) Consisting essentially in a pair of permutations of A, and
of So coupled respectively with two maps (the "alternance” and
the "gyration')

athy — 10,1}

v:8, — 10,1,2)

expressing the eventual reorientation of the smaller cubes.
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Definition.— For any multicolor form fe®@, n shall

be the parity of the multicolor form, that is the

parity of the permutation induced by f on A ju(S,+12) (%)

Secondly © shall be the sum mod 2 of the values of

the function o. Fiwnally © shall be the sum mod 3 of

the values of the function y. The characteristic is
then defined by T=(n,0,0).

One shows first that I is independant of the particular

monitor that we have chosen and that it is an homomorphism

T{fg) = T + T(g).

The rest of the proof amounts to showing that the kernel of I

is O,

SOME COROLLARIES.-

The computation of T' is very simple and permits us to for-
mulate a certain number of corollaries:

1) There exists an "auto-dual quantum”, ultimate germ
of all actions (a double transposition acting on a pair of vertex
elements on one hand, and on a pair of middle elements on the
other hand).

2) The simplest of "pure cycles'" are permutations on
three elements of one kind.

3) The shortest gyrator is a dipole.

4) The shortest alternator acts on a pair of middle
elements.

5) There exists a "universal cyecle” involving all elements
(that is a double cyclic permutation of the 8 vertex and of the 12
middle elements respectively).

6) For any sequences of distinct vertex elements and of
distinct middle elements, there exists a double cyclic permutation
of these sequences at the sole condition that the total number of

elements in these sequences be even.

(t) The use of S,+12 amounts to reindexing temporarily the set S,

in order to eliminate overlappings between A, and S§,.
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FISSION.-—

As an illustration, let us observe the striking "explo-
sion" of the rotation y under the action of 2;22' (where 7 refers

to the rotation of the central slice which parallels z, ..}

\\\\~>

leading to the fission of y into two disjunct rotations in A and S.

THE AUTO-DUAL QUANTUM.-—

The occurrence of this first fission into "dual actions”

is the starting point for the search of other actions acting "sym-

metrically" in both A and S, and leading to the discovery of a
"quantum” of action «_,:;/'

|

whose orbit generates all accessible multicolor forms.

ULTIMATE GERM OF ACTION.—

Finally by observing the fission of the rotation y more
carefully, one is lead to the discovery of an other guantum acting
in Ky=A4uS,:

7

xl
o= (yey TR
The orbit of v has the most interesting property of pro-
ducing all accessible permutations of 4, and S,, all gyrators and

all alternators.

_@__

—
M LY .
We have thus obtained a basis for a "dual treatment' of the mathe-

matics associated with the Rubik's cube.

Laval University, Quebec.

June 1981.

PANEL GROUP X

MATHEMATICS AND LANGUAGE

MARTIN HOFFMAN
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Punel Group X: wathematics ond Language

ranel members: .. J. Dawson
W, C. higginson

Mmoderator: ko K. Hoffmun

Tne stated purpose of the runel Groups was "to present
themes which, if there is enough interest, mey become the
subject of working Groups st subsequent conferences". sanel
Group a, attended by wpproximately 25 Cu.SG members, consisted
of presentations vy the panel members, followed by cuestions
and comments o, those in sttendence. 1his report will briefly
highlight the main tnemes of each presentution znd the follow-
ing discussion. Llapers prep:red vy the uwnel mempers apoesr
in the appendix of tnese proceedings, =nd should be consulted
by those interested in -pursuing these topics in greater depth.

8il1l Higginson's presentation, entitled "4 .rguments for
the Consideratien of Langusge by Researchers in hathematics",
after offering several interpretations of "x", offered an
overview of several areas for further study: ‘he relationship
of mathematics and language with respect to context, communica-
tion, content and cegnition, Eath aspect was briefly discussed
and supported witn examples and relevant bibliography.

Sandy Dawson's presentation, entitled "Words triggered
by Images, lmages triggered by words", focused on one aspect
(imagery) of one of the areas (cognition) of possible study
noted by Bill Higginson. The crucial role of images in the

learning of mathematics was discussed. 1t was argued that
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teachers must work with the images possessed by their students

before the words of the teuchers can be used to reliably

transmit imuges to them:
4t this point the entire group was engaged in an image

making activity led by vawson. They were asked to imagine a

lemon and then to perform various manipulations on it. fThe

discussion which followed indicated the wide range of images
generated by the single set of instructions.

several well-considered points were made during the
discussion following the two presentations. among those
concerned with the question of extending the Panel Group to

a future working Group were the following:

1. ©For the purposes of CMESG WNorking Groups, visual imagery
and language (in the general sense of Higginson's presen-
tation) should be separated due to time considerations,

2. 'fhe general considerations presented by Higginson would
need more foeus to fit the restrictioas of the vworking
Group format.

3. The petential for group participation (as in Lawson's pre-
sentation) was favorably noted.

4, The need to have working mathematicians attend these
(projected) wWorking Groups was expressed.

5. 1t was hoped that one of the future invited speakers would
focus on these topics.

6, Several participants suggested that, if such a Working
Group is established, sufficient lead time be given by the
sorking Group leaders to allow prospective participants to
read relevant articles and to gather examples from their

own teaching experiences for presentation in the group.



PANEL GROUP Y

LES RELATIONS ENTRE L'HISTOIRE ET
LA DIDACTIQUE DES MATHEMATIQUES

BERNARD HODGSON

8k
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Groupe de discussion Y.

LES RELATIONS ENTRE L'HISTOIRE ET
LA DIDACTIQUE DES MATHEMATIQUES.

Bernard R. Hodgson

Certains aspects des relations existant entre 1'his-
toire des mathématiques et la didactique des mathématiques ont
8té présentés par les trois invités. Leurs textes figurent en
appendice. Louis Charbonneau (Université du Québec & Montréal)
s'y questionne sur les legons que 1'étude du développement his-
torique des mathématiques nous fournit & propos des stratégies
d'apprentissage avec les enfants; un parallélisme y est fait,
par exemple, entre certaines conclusions tirées d'une expéri-
mentation avec les enfants & propos de la numération et une
gtude historique de ce méme sujet. Hara Gauri Gupta (Univer-

P A

sity of Regina) propose qu'a l'instar des étudiants en philo-
sophie, histoire ou littérature, les &tudiants en mathémati-
ques devraient, eux aussi, avoir l'occasion de remonter aux
sources et de "lire les classiques'. David Wheeler (Concor-
dia University) présente une série de commentaires sur certains
aspects généraux du lien histoire-didactique. Il conclut en
soulignant que non seulement une démarche didactique peut ti-
rer profit d'une vision historique, mais également, de fagon
inverse, le travail de 1l'historien peut &tre enrichi par les

interrogations présentées par le didacticien.
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Les trois présentations ont &té suivies d'un &chan-
ge de vues avec les participants. On y a fait ressortir di-
vers avantages d'une connaissance de 1'histoire pour 1l'ensei-
gnant. Par exemple, l'histoire des mathématiques permet
de voir celles-ci comme une science en évolution et non pas
comme une science achevée. Une telle perception aide 1l'en-
seignant 4 voir les mathématiques de facon dynamique et le
rend sensible aux besoins pédagogiques des &tudiants quant a
1'importance de créer les mathématiques pour eux-mémes. Cet
acte de création est souvent l'cbjet de nombreux échecs par-
tiels; mais ces difficultés de parcours trouvent leur pendant
dans la démarche méme des grands mathématiciens d'autrefois
et fait partie intégrante du processus de découverte des ma-
thématiques. Les enseignants de tout niveau, méme du primai-
re, peuvent "humaniser'" l'enseignement des mathématiques en
introduisant judicieusement certaines parenthéses historiques
ou,a tout le moins, certains éléments faisant partie du bagage
culturel et 'folklorique' de notre civilisation: division de

1'heure en 60 minutes, de 1'année en 12 mois, etc.

Plus d'une douzaine de participants ont pris part
au groupe de discussion.

LIST OF PARTICIPANTS
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