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Canadian Mathematics FEducation Study Group/
Groupe canadien d'étude en didactique des mathématiques

1983 Mecting

The seventh annual meeting of the Study Group was held on the UBC

campus from June 8th to 12th. About 45 mathematicians and mathematics
educators met in working groups and plenary sessions, folloviug a

pattern established in earlier meetings. The Study Group continues

to fill a unique role, in at least two respects: it brings mathematicians
and mathematics educatore together where they can meet on equal terms,

and it allows time for topics to he followed threugh, both during each
meeting and from one meeting to the next.

The principal guests this year were Peter Hilton (Suny at Binghamton)

and Stephen Brown (SUNY at Buffale). The former spoke on "The nature

of mathematics today and implications for mathematics teaching', and

the latter on "The nature of problem generation and the mathematics
curriculum'". heir lectures were stimulating and provocative, but

perhaps cven wore significant were thelr individual contributions to

other parts of the programme and their public dialogues with cach other.
Scheduled lectures were given by Daniel Kahneman (UBC) on "Intuitions

and fallacies in reasoning about probability" and Thomas Kieren (Alberta)

on "Mathematics curriculum develepment in Canada: a projection for

the future"”, and ad hoc presentations were offered by Peter Taylor (Queen's)
on "Mathematics as poetry” and John Barry (Manitoba) on "Cross-cultural
aspects of teaching mathematics'.

This year's working groups took as their subjects "Developing statistical
thinking", "fraining in diagnosis and remediation for teachers", "Mathe-
matics and language' and "The influence of cowmputer science on the
undergraduate mathematics curriculum'. At least three of the four groups

plan to produce papers or short monographs on the basis of their discussions.

An afternocon was set aside for demonstrations of computer software.

There were slightly fewer participants this year than at the last three
meetings, perhaps because travelling expense support is less casy to come
by. Although mectings would lose their character if ‘the Study Group be-
came too iarge, it scems a pity that wmany mathematics departwents and
faculties of education in Canada were nct vepresented at all. Anyone want-
ing information about the Study Group may get in touch with the writer

or with B.R. Hodgson, Département de mathématiques, Université Laval,
Québec, Qué., GlK 7P4,

David Wheeler
Deparvtment of Mathemalics
Concordia University

EDITOR'S FORWARD

The 1983 CMESG/GCEDM meeting followed the same format
used for several years. The agenda included two lectures
presented by prominent persons; four working groups, cach
focusing on a new or continuing theme from previous confer-
ences; two topic groups and continuing groups. 1In addition,
the program included a computer workshop and opportunities
for ad hoc sessions.

The lectures were presented by Peter Hilton of the
State University of New York at Binghamton and Stephen
Brown of the State University of llew York at Buffalo. The
papers from both lectures are included in these proccedings
in. their entirety.

Reports from each of the working groups are included.

Tﬁe text of the Topic Group presented by Daniel
Kohneman entitled "Intentions and fallacies in reasoning
about probability" is not included. However, some refer-

ences which include related tectural material are included.

Charles Verhille
EDITOR
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CURRENT TRENDS [N MATHEMATICS
AND FUTURE TRENDS TN MATHEMATICS

EDUCATION

LECTURE 1 by ~

Peter Hilton »

I. Introduction
My intention in this talk is to study, grosso modo, the
dominant trends in present-day mathematics, and to draw from this

study principles that should govern the choice of content and

CURRENT TRENDS IN MATHEMATICS style in the teaching of mathematics at the secondary and elemen-
AND FUTURE TRENDS IN MATHEMATICS . ‘ tary levels. Some of these principles will be time-independent,
EDUCATION in the sense that they should always have bheen applied to the
teaching of mathematics; others will be of special application to
the needs of today's, and tomorrow's, students and will be, in that
BY sense, new. The principles will be illustrated by examples in

order to avoid the sort of frustrating vagueness which often

PETER HILTON

accompanies even the most respectable recommendations (thus,
DEPARTMENT OF MATHEMATICS

'problem solving [should] be the focus of school mathematics in the
STATE UNIVERSITY OF NEW YORK AT BINGHAMTON

1980's" {11). '
However, before embarking on a talk intended as a
contribution to the discussion of how to achieve a successtul *
mathematical education, it would be as well to make plain what
are our criteria of success. Indeed, it would be as wcll to be

clear what we understand by successful cduciation, since we would

then be able to derive the indicated critervia by specintization.
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Let us bepgin by agrecing that a successtul education is
one which conduces to a successtul life. However, there is a
pupular, persistent and paltry view of the successiul tife which
we must immediately repudiate.  This is the view that success in
life is measured by aliluence and is manifested by power and
inlTuence over others. It is very relevant to my theme to recall
that, when Queen Efizabeth was rvecently the vuest of President
and Mrs. Reagan in Calitornia, the 'successes' who were gathered
together to greet her were not Nobel prize-winners, of which
California wmay boast vemarkably many, but stars of screen and
television. As the London Times described the occasion, "Queen
dines with celluloid rovalty". 1t was apparentiv assumed that
the company of Frank Sinatra, embodving the concept of success
against which 1 am inveighing, would be cohviously preferable to
that of, say, Linus Pauling.

The Reaganist-Sinatrist vicw of success contribites a
rouf threat to the intepgrity ol cducation; for education should
certainly never be expected to conduce to that kind ot success.
At worst, this view lecads to a complete distortion ol the educa
tional process; at the very least, it allies education far too
closely to specific career objectives, an attiauce which unfortu
niately has the support of many parcnts naturally anxious for their
chitdren's success.

We would replace the view we are rejecting by ane which
cmphasizes the kind of activity in which an individoal indulges,
and the motivation for so indutging, rvather than his, or her,

accomplishment in that activity. The realization of the

- -

individual's potential is surely a wark of success in lifle.
Contrasting our view with that which we are attacking, we should
seckh power over ourselves, not over other people; we should seck
the knowledpge and understanding to pive us power and control over
things, not people.  We should want to be rich but in spiritual
rather than material resources.  We should want to inlluence
peopte, but by the persuasive force of our argument and example,
and not by the pressure we can exert by our control of their bives
and, cven more sinisterly, of their thoughts.

It is absolutely obvious that education can, and should,
lead to a successful tife, so definced. Morveover, mathematical
education is a particularly significant component of such an edu-
cation. ‘tThis is true for two reasons. On the one hand, T would
state dovmatically that mathematics is one of the human activities,
like art, literature, music, or the making of good shoes, which is

intrinsically worthwhile. On the other hand, mathematics is a key

element in science and technology and thus vital to the anderstand

ing, control and development of the resources of the world around
us. These two aspects of mathematics, often veferrved to as pure

mathematics and applied mathenatics, should both he present in oa

well-baltanced, snccvessiul mathematics education.

Let me end these introductory vemarks by referving to a

particutar aspect of the understanding and control to which mathe-

matics can contribute <o much.  Throueh vur education we hope to
giain knovledee.  We can only be said ta really know something it
we hnow that we know it. A sound cducation should enable us to

distinenrsh between what we know and what we do not Kknow, and it
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is a deplorabje fact that so many people todav, including large The increased variety of application shows itself in
aumbers of pseudosuccesses but also, let us admit, many members two wavs. On the one hand, arcas ol =cicence, hitherto remote

of our own academic community, seom not to be able to make the from or cven immme to mathematics, have become 'infected'.  This
distinction. 1t is of the essence of genuine mathematical educa- is conspicuousty tine of the socinl sciences, but is also

tion that it leads to understanding and skill; short cuts to the feature uf present-day theoretical biolosv. 1t iz notoworthy
acquisition of skill, withont understanding, are often favored by that it is not only statistics and probability which are nouw

self-conlident pundits of mathematical education, and the results applicd to the social sciences and biology; we are sceing the

of taking such short cuts are singularly unfortunate for the voung application of fairly sophisticated aveas of real analvsis. Lincar
. . o I N HE ST EI I St [ - et e . . . -
traveller. The victims, even if 'successful', are lelt precisely algebra and combinatorics, to name but three parts of mathemitics
in the position of not knowing mathematics and not knowing they involved in this process.
know no mathematics. For wmost, however, the skill evaporates or,

st another contributing factor to the increased

if it does mot, it h(‘comesj out-dated. No real ability to apply varviety of appiications is the conspicuous fact that areas of

quantitative reasoning to a changing world has heen learned, and mathematics, hitherto reparded as impregnably pure, are now being

the most frequent and natural result is the behaviour pattern applicd. Algehraic geometry is heing applicd to centrel theory
s e . I I et T N b .. sy - N . .
known as ‘'mathematics avoidance'. Thus does it tvanspire that and the study of barge-scale systems; combinatorics mmd graph theory

s0 many prominent citizens exhibit both mathematics avoidance and are applicd to economics: the theory of Cibre bundles is applicd

unawarencss of ignorance. ics: atgcehraic invariont theory is applied to the studyv of

to phy
Mhis then s my case for the vital role of a sound ’ crrov-corvecting codes.  Thas the distinction between puve and

mathematical education, and from these speculations I derive my applicd mathematics is seen now not to be hased on content hut on

criteria of success. the attitnde and motivation of the mathematician. Noolonger can

" . . = it be arpucd that cervtain mathematical topics can sately he
2. Irends in Mathcematics foday 1 ¢ \

0 A . . negtected by the student contemplating a caveer applving mathe-
The three principal broad trends in mathematics todav | )

miatios, I wonld go turther and argue that there should net be a

would characterize as (i) variety ol applications, {(ii) a ncw

B : . . A sharp distinerion between the methods of pure and applied wathe-
unity in the mathematical scicnces, and {iii) the ubiquitous

. : matics.  Certainly such a distinction should not consist of a
presence of the computer. Of course, these are not independent ’

i ; Le . grcater attention to pigour in the pure community, (or the appiied
phenomena, indeed they are strongly intervelated, bat it is casiest - : I

j i i mirthematician neceds to understand very well the domain of vatidity
to discuss them individually.
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of the methods being employed, and to be able to analyse how
stable the results are and the extent to which the methods may be
wodified to suit new situations.

These last points gain further significance if one looks
more carefully at what one means by 'applying mathematics'. No-
body would seriously suggest that a piece of mathematics be
stigmatized as inapplicable just because it happens not yet to
have been applied. Thus a fairer distinction than that between
}pure' and 'applied' mathematics would seem to he one between
'inapplicable' and 'applicable' mathematics, and our earlier
remarks suggest we should take the experimental view that the inter-
section of inapplicable mathematics and good mathematics is probabily
empty. However, this vieéw comes close to being a subjective cer-
tainty if one understands that applying wmathematics is very often
not a single-stage process. We wish to study a 'real world'
problem; we form a scientific model of the problem and ‘then con-
struct a mathematical model to reason about the scientific or
conceptual model (see [2]). However, to reason within the mathe-
matical model, we may well feel compelled to construct a new
mathematical model which embeds our original model in a more
abstract conceptual context; for example, we may study a particular
partial differential equation by bringing to bear a general theory
of elliptic differential operators. Now the process of modeling
a mathematical situation is a 'purely’ mathematicultprocess, but it
is apparently not confined to pure mathematics! Indeed, it may
well be empirically true that it is more oftén found in the study

of applied problems than in research in pure mathematics. Thus we

-8 -

see, first, that the concept of applicable mathematics needs to

be broad enough to include parts of mathematics applicable to some
area of mathematics which has already been applied; and, second,
that the methods of pure and applied mathematics have much more in
common than would be suppcsed by anycne listening to some of their
more vocilterous advocates. For our purposes now, the lessons for
mathematics education to be drawn from looking at this trend in
mathematics are twofold; first, the distinction between pure and

applied mathematics should not be emphasized in the tcaching of

mathematics, and, second, opportunities to present applications

should be taken wherever appropriate within the mathematics

curriculum.

The second trend we have identified is that of a new
unification of mathematics. This is discussed at some length in
[3}, so we will not go into great detail here. We would only wish
to add to the discussion in [3} the remark thﬂt this new unifica-
tion is clearly discernible within mathematical research itsclf.
Up to ten yecars ago the most characteristic feature of this research
was the 'vertical' development of autonomous disciplines, some of
which were of very recent origin. Thus the community of mathe-
maticians was partitioned into subcommunities united by a common and
rather exclusive interest in a fairly navrow area of mathematics
(algebraic geometry, algebraic topology, homological algebra,
category theory, commutative ring theory, real analvsis, complex
analysis, summability theory, set theorvy, etc., etc.). Indeed,
some would arvgune that no real community of mathematicians existed,

since specialists in distinct fields were barely able to communicate
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with each other. 1 do not impute any fault to the system which
prevailed in this period of remarkably vigorous mathematical
growth--indeed, 1 believe it was historically incvitable and thus
‘correct'--but it does appear that these autonomous disciplines
are now being linked together in such a way that mathematics is
being reunified. We may think of this development as 'horizontal',
as opposed to 'vertical' growth. Examples are the use of com-
mutative ring theory in combinatofics,the use of cohomology theory
in abstract algebra, algebraic geométry, functional analysis and
partial differential equations, and the use of Lie group theory

in many mathematical disciplines, in relativity theory and in
invariant gauge theory.

1 believe that the appropriate education of a contemporary
mathematician must be broad as well as deep, and that the lesson to
be drawn from the trend toward a new unification of mathematics
must involve a similar principle. We may so formulate it: we

must break down artificial barriers between mathematical topics

throughout the student's mathematical education.
g

The third trend to which 1 have drawn attention is that
of the general availability of the computer and its role in actually
changing the face of mathematics. The computer may eventually take
over our lives; this would be a disaster. Let us assume this dis-
aster can be avoided; in fact, let us assume f{urther, for the
purposes of this discussion at any rate, that the computer plays
an entirely constructive role in our lives and in the evolution of

our mathematics. What will then be the effects?,
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The computer is changing mathematics by bringing certain
topics into greater prominence--it is even causing mathematicians to
create new areas of mathematics (the theory of computational
complexity, the theory of automata, mathematical cryptology). At
the same time it is relieving us of certain tedious aspects of
traditional mathematical activity which it executes faster and
more accurately than we can. Tt makes it possible rapidly and
painlessly to carry out numerical work, so that we may accompany
our analysis of a given problem with the actual calculation of
numerical examples. However, when we use the computer, we must
be aware of certain risks to the validity of the solution obtained
due to such features as structural instability and round-off error.
The computer is especially adept at solving problems involving
jterated procedures, so that the method of successive approxima-
tions (iteration theory) takes on a new prominence. On the other
hand, the computer renders obsolete certain mathematical techniques
which have hitherto been prominent in the curriculum--a sufficient
example is furnished by the study of techniques of integration.

There is a great debate raging as to the impact which
the computer should have on the curriculum (see, for example,

161). Without taking sides in this debate, it is plain that there
should be a noticeable impact, and that every topic must be examined
to determine its likely usefulness in a computer age. It is also
plain that no curriculum today can be regarded as complete unless

it prepares the student to use the computer and to understand its

mode of operation. We should include in this understanding a

realization of its scope and its limitations; and we should abandon
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the fatuous idea, today so prevalent in educational thecory and
practice, that the principal purpose of mathematical education is
to enable the child to become an effective computer even if deprived
of all mechanical aids!

Let me elaborate this point with the following table of
comparisons. On the left I list human attributes and on the right
I list the contrasting attributes of a computer when used as a

calculating engine. I stress this point because 1 must empahsize

that I am not here thinking of the computer as a research tool in
the study of artificial intelligence. I should also add that I

am talking of contemporary human beings and contemporary computers.
Computers evolve very much faster than human beings so that their
characteristics may well undergo dramatic change in the span of a

human lifetime. With these caveats, let me display the table.

Humans ’ Computers

Compute slowly and inaccurately. Compute fast and accurately.

Get distracted. Are remorseless, relentless

and dedicated.

Are interested in many things at
the same time.

Always concentrate and cannot
be diverted.

Sometimes give up. Are incurably stubborn.

Are often intelligent and under- Are usually pedantic and
standing. rather stupid.

Have ideas and imagination, make Can execute 'IF..,.ELSE'

inspired guesses, think, © instructions.

.

Human and Computer Attributes

It is an irony that we seem to tcach mathematics as if

our objective were to replace each human attribute in the child by

- 12 -

thé corrcsponding computer attribute--and this is a society
nominally dedicated to the development of each human being's indi-
vidual capacities. Let us agrec to leave to the computer what the
computer does hest and to design the teaching of mathematics as a
generally human activity. This apparently obvious principle has
remavkably significant consequences for the design of the curriéu—

lum, the topic to which we now turn.

3. The Secondary Curriculum

Let us organize this discussion around the "In and Out'
principle. That is, we will 1ist the topics which should be 'In’
or strongly emphasized, and the topics which should be 'Out' or
very much underplayed. We will also be concerned to recommend or
castigate, as the case may be, certain teaching strategies and
styles. We do not claim that all our recommendations are strictly
contemporufy, in the sense that they are responses to the current
prevailing changes in mathematics and its uses; sowe, in perticular
those devoted to questions of teaching practice, are of a lasting
nature and should, in my judgment , have been adopted long since.

We will present a list of 'In' and 'Out' items, followed
by commentary. We begin with the 'Out' category, since this is
more likely to claim general nttoqtion: and within the 'Out’' cate-

gory we first consider pedagogical techniques.
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Out (Secondary level)

1. Teaching Strategies

Authoritarianism.
Orthodoxy.
Pointlessness.

Pie-in-the-sky motivation.

Tedious hand cacluations.

. Complicated trigonometry.
Learning geometrical proofs.
Artificial 'simplifications'.

Logarithms as calculating devices.

Commentary

There should be no need to say anything further about
the evils of authoritarianism and pointlessness in presenting
mathematics. They disfigure so many teaching situations and are
responsible for the common negative attitudes towards mathematics
which regard it as unpleasant and useless. By orthodoxy we intend
the magisterial attitiude which regards one 'answer' as correct and
all others as (equally) wrong. Such an attitude has been particu-
larly harmful in the teaching of geometry. Instead of being a
wonderful source of ideas and of questions, geowetry must appear
to the student required to set down a proof according to rigid
and immutable rules as a strange sort of theology, with prescribed

responses to virtually meaningless propositions.

. - 14 -

Pointlessness means unmotivated mathematical process.
By 'pie-in-the-sky' motivation we refler to a form of pseudomotiva-
tion in which the student is assured that, at some unspecified
futurc date, it will become clear why the current piece of mathe-
matics warrents learning. Thus we find much algebra done because
it will be useful in the future in studying the differential and
integral calculus--just as much strange arithmetic donc at the
elementary level can only be justified by the student's subsequent
exposure to algebra. One might perhaps also include here the habit
of presenting to the student applications of the mathematics being
learnt which could only interest the student at a later level of
maturity; obviously, if an application is to wotivate a student's
study of a mathématical topic, the application must be interesting.

With reégard to the expendable topics, tedious hand
calculations have obviously been rendered obsolete by the availa-
bility of hand-calculators and minicomputers. To retain these
appalling travesties of mathematics in the curriculum can be
explained only by inertia or sadism on the part of the teacher
and curriculum planner. It is important to retain thec trigono-
metric functions (especially as functions of real variables) and
their basic identities, but complicated identities should be e]iﬁ—
inated and tedious calculations reduced to a minimum. Understanding
geometric proofs is very important; inventing one's own is a
splendid cxperience for the student; but memorizing proofs is a
suitable occupation only for one contemplating a monastic life of
extreme asceticism. Much time is currently taken up with the

student processing a mathematical expression which came from
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nowhere, involving a combinaticn of parentheses, negatives, and
fractions, and reducing the expression to one more socially
acceptable. This is absurd; but, of course, the student must
learn how to -ubstitute numerical vaiues forv the variables appear-
ing in a natural mathematical expression.

Let us now turn to the positive side. Since, as our
first recommendation below indicates, we are proposing an inte-
grated approach to the curriculum, the topics we list are rather

of the form of modules than full-blown courses.
In (Secondary lLevel)

1. Teaching Strategies

An integrated approach to the curriculum, stressing
the interdependence of the various parts of mathematics.

Simple applications.
Historical references.
Flexibility.

Exploitation of computing availability.

2. Topics

Geometry and Algebra (e.g., linear and quadratic functions,
equations and inequalitics).

Probability and statistics.

Approximation and estimation, scientific notation.
Iterative procedures, successive approximation,
Rational numbers, ratios and rates.

Arithmetic mean and geometric mean (and harmonic wmean).
Etlementary number theory.

Paradoxes.

- 16 -

Commentary

With respect to feaching strategies, our most significant
recommendation is the first. (I do not say it is the most import-
and, but it is the most characteristic of the whole tenor of this
article.) Mathematics is a unity, albeit a remarkably subtie one,
and we must teach mathematics to stress this. It is not true, as
some claim, that all guod mathematics--or even all applicable mathe-

matics--has arisen in response to the stimulus of problems coming

from outside mathematics; but it is true that all good mathematics
has arisen from the then existing mathematics, frequently, of course,
under the impulse of a 'real world' probtem. Thus mathematics is
an interrelated and highly articulated discipline, and we do vio-
lence to its true nature by separating it--for teaching or research
purposes--into artificial watertight compartments. In particular,
geometry plays a special role in the history of human thoupght. [t
represents man's (and woman's!) primary attempt to reduce the com-
plexity of our three-deminsional ambience to one-dinensional
language. 1t thus reflects our natural interest in the world around
us, and its very existence testifies to our curiosity and our search
for patterns and order in apparent chaos. We conclude that geometry
is a natural conceptual framework for the formulation of questions
and the prescatation of results. [t is not, however, in itself a
method of answering questions and achieving results. This role is
preeminently ptayed by algebra. [f geometry is a source of ques-
tions and algebra a mecans of answering them, it is plainly
ridiculous to scparate them. How many students have suffered

through algebra courses, learning methods of solution of problems
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coming from nowhere? The result of such compartmentalized

instruction is, frequently and reasonably, -a sense of futility
and of the pointlessness of mathematics itself.

The good sense of including applications and, where
appropriate, references to the history of mathematics is surely
self-evident. Both these recommendations could be included in a
broader interpretation of the thrust toward an integrated curricu-
lum. The qualification that the applications should be simple is
intended to convey both that the applications should not involve
sophisticated scientific ideas not availaﬁ]e to the students--
this is a frequent defect of traditional 'applied mathematics'--
and that the applications should be of actual interest to the
student, and not merely important. The notion of flexibility with
regard to the curriculum is ipherent in an integrated approach;
it is obviously inherent in the concept of good teaching. Let
us admit, however, that it can only be achieved il the teacher is
confident in his, or her, mastery of the mathematical content.
Finally, we stress uas a teaching strategy the use of the hand-
calculator, the minicomputer 'and, where appropriate, the'computer,
not only to avoid tedions calculations hut also in very positive
ways. Certainly we include the opportunity thus provided for
doing actual numerical examples with real-life data, and the need

to re-examine the emphasis we give to various topics in the light

of computing availability. We mention here the matter of computer-

aided instruction, but we believe that the advantages of this use
i
of the computer depend very much on local circumstances, and are

more likely tu arise at the elementary level.

- 18 -

With regard to topics, we have already spoken about the

link betwcen geometry and algebra, a topic quite large enough to
merit a separate article. The next two items must be in the cur-
riculum simply because no member of a modern industrialized

soéiety can afford to be ignorant of these subjects, which con-
stitute our principal day-to-day means of bringing quantitative
reasoning to bear on the world around us. We point out, in
addition, that approximation and estimation techniques are essential
for checking and interpreting machine calculations.

It is my belief that much less attention should be paid
to general results on the convergence of sequences and serics, and
much more on questions related to the rapidity of convergence and
the stability of the limit. This applies even more to the tertiary
level. 1However, at the secondary level, we should be emphasizing
iterative procedures since these are so well adapted to.computer
programming. Perhaps the most important result--full of interest-

ing applications--is that a sequence [xnl , satisfying Xoowp =

ax + b, converges to T_ghﬁ if-ja} <1 and diverges if baf > 1.
(For one application see {4]). [Tt is probable that the whole
notion of proof and definition by induction should be recast in
'machine' language for today's student.

The next recommendation is integrative in nature, yet
it refers to a change which is long overdue. Fractions start life
as parts of wholes and, at a certain stage, come fn represent

amounts or measurements and therefore numbers. However, they are

not themsclves numbers; the numbers they represent arc rational
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numbers. Of course, one COmes to speak of them as numbers, bgt
this should only happen when one has earned qhe right to be sloppy
by understanding the precise nature of fractions (see {5}). If
rational numbers are explicitly introduced, then it becomes un-

necessary to treat ratios as new and distinct quantities. Rates

i i sional
also may then be understood in the context of ratios and dimensiond

analysis. However, there is a further aspect of the notion of
rate which it is important to include at the secondary level. 1
refer to average rate of change and, in particular, average speed.
The principles of grammatical construction suggest that, in order
to understand the composite term raverage speed' one must under-
stand the constituent terms ‘average' and tspeed’ This is quite
false; the term 'average speed' 1s much more elementary than either
of the terms 'average', 'speed', and is not, in fact, their compo-
site. A discussion of the abstractions ‘'average' and ‘'speed' at
the secondary level would be valuable in jtself and an excellent
preparation for the differential and integral calculus.

Related to ghe notion of average is, of course, that of
arithmetic mean. 1T strongly urge that there be, at the secondary
level, a very full discussion of the arithmetic, geometric and
harmonic means and of the relations between them. The fact that

i ities a e
the arithmetic mean of the non-negative quantities al, 27 ,

. , .
4 is never less than their geometric mean and rhat equality
n

i a, = a, = = ay be used to obtain
occurs precisely when a, = 4y Cee a, may

i : -adition: d as
many maximum or minimum results which are traditionally treate
i g e : ariables--
applications of the differential calculus of several variahl

a point made very effectively in a recent book by HLvan Niven.
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Traditionally, Buclidean geometry has been held to
justify its place in the secondary curriculum on the grounds that

it teaches the student logical reasoning. This may have been true

in some Platonic academy. What we can observe empirically today

is that 1t survives in our curriculum in virtually total isolation

from the rest of mathematics; that it is not pursued at the uni-

versity; and that it instils, in all but the very fcw, not a

flair for logical reasoning but distaste for geometvy, a feeling
of poilntlessness, and a familiarity with failure. Again, it would
take a separvate article (at the very least) to do justice to the
intricate question of the role of synthetic gcometry in the

curriculum .  HMHere, ! wish to propose that its hypotheticul role

can be assumed by a study of elementary number theory, where the
axiomatic system is so much less complex than that of plane
Suclidean geometry. Moreover, the integers are very 'real' to

he student and, potentially, fascinating. Results can be obtained

by disciplined thought, in a few lines, that no high-speed computer

could obtain, without the benefit of human analysis, in the

. 108 12 _ i
‘tudent's lifetime \ (7 )] = 1 mod 13). Of course, log.cal
easoning should also enter into other parts of the curriculum;
f course, too, synthetic proofs of geometrical propositions should

ontinue to play a part in the teaching of geometry, but not at

he expense of the principal role of geometry as a source of

ntuition and inspiration and as a means of interpreting and

nderstanding algebraic expressions.
My final recommendation is also directed to the need

v providing stimutus for thought. liere ! understand, hy a
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paradox, a result which conflicts with conventional thinking, not
a result which is self-contradictory. A consequence of an effect-
ive mathematical education should be the inculcation of a healthy
scepticism which protects the individual against the blandishments
of self-serving propagandists, be they purveyors of perfumes,
toothpastes, or politics. 1In this sense a consideration of
paradoxes fully deserves to be classified as applicable mathematics!
An example of a paradox would be the following: Students A and B
must submit to twenty tests during the school term. Up to half
term, student A had submitted to twelve tests and passed three,
while student B had submitted to six tests and passed one. Thus,
for the first half of the term, A's average was superior to B's. v
In the second half of the term, A passed all the remaining eight
tests, while B passed twelve of the remaining fourteen. Thus, for
the second half of the term, A's average was also superior to B's.
Over the whole term, A passed eleven tests out of twenty, while B
passed thirteen tests out of twenty, giving B a substantially bet-

ter average than A.

4. The Elementary Curriculum

This articlc (like the talk itself!) is already
inordinately long. Thus I will permit myself to be much briefer
with my commentary than in the discussion of the secondary curricu-
lum, believing that the rationale for my recommendations will be
clear in the light of the preceding discussion and the readef's own
experience. 1 will again organize the discussion on the basis of

the 'Iin' and 'Out” format beginning with the 'Out' list.

-9 -
Out (Elementary Level)

1. Teaching Strategies

Just as for the secondary level.

tmphasis on accuracy.

2. Topics
Emphasis on hand algorithms.
Emphasis on addition, subtraction, division and the
order relation with fractions.
improper work with decimals.
Commentary

The remarks about teaching strategies are, if anything,
even more important at the elementary level than the secondary level.
For the damage done by the adoption of ohjectionahle teaching
strategies at the elementary level is usually ineradicable, and
creates the mass phonomenon of 'math avoidance' so conspicuous in
present-day society. On the other hand, one might optimistically
hope that the student who has received an enlightened elementary
mathematical education and has an understanding and an experience
of what mathematics can and should be like may be better ahle to
survive the rigors of a traditional secondary instruction if
unfortunate enough to be called upon to do so, and realize that
it is not the hizarre nature of mathematics itself which is respon-
sible for his, or her, alienation from the subject as taught.

With regard to the topics, 1 draw attention to the
primacy of multiplication as the fundamental arithmetical operation

with fractions. For the notion of fractions is embedded in our
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language and thus leads naturally to that of a fraction of a fraction.

ut

i

‘the arithmetical operation which we perform to calculate, say,

7 ve define -to be the product of the fractions concerned. Some

work should be done with the addition of eltementary fractions, but
only with the beginning of a fairly systematic study of elementary
probability theory should addition be given much prominence.
Incidentaity, it is worth remarking that in the latter context, we
generally have to add fractions which have the samc denominator--
unless we have been conditioned by prior training mindlessly to
reduce any fraction which comes into our hands.

Improper work with decimals is of two kinds. First, I
deplore problems of the kind 13.7 + 6.83, which invite error by
misalignment. Dbecimals represent measurcments; if two measurements
are to be added, they must be in the same units, and the two
measurements would have been made to the same degree of accuracy.
Thus the proper problem would have been 13.70 + 6.83, and no dif-
ficulty would have been encounterved. Second, I deplore problems
of the kind 16.1 x 3.7, where the intended answer is 5§9.57. Ip
no reasonable circumstances can an answer to two places of decimals
be justilied; indeed all one can say is that the answer should be
between 58.58 and 60.56. Such spurious accuracy is misleading and
counterproductive. It is probably encouraged by the usual
algorithm given for muftiplying decimals (in particular, for
locating the decimal point by counting digits to the right of the
decimal point); it would be far better to place the decimal point

by estimation.
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Again, we turn to the positive side.
In (Elementary Level)

1. Teaching Stratepies
As for the secondary level.
Employment of confident, capable and enthusiastic
teachers.

z. Topics

Numbers for counting and mcasurement--the two
arithmetics.

Division as a mathematical model in various contexts.
Approximation and estimation.

Averages and statistics.

Practical, informal geometry.

Geometry and mensuration; geometry and probability
(Monte Carlo method).

Geometry and simple equations and inequalities.
Nepative numbers in measurement, vector addition.
Fractions and elementary probability theory.

Notion of finite algorithm and recursive definition
tinformal).

Commentary

Some may object to our inclusion of the tcacher require-
ment among the 'teaching strategies'--others may pevhaps object to
its omission at the secondary level! NWe find it appropriate,

indeed necessary, to include this desideratum, not only to stress
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how absolutely essential the good teacher is to success at the and should be linked with key parts ol elementary mathematics.
elementary level, but also to indicate our disagreement with the We recommend plenty of experience with actual materials (e.g.,
proposition, often propounded today, that it is possible, e.g. with folding strips of paper to make regular polygons and polyhedra},
computer-aided instruction, to design a 'teacher-proof' curriculum. but very little in the way of geometric proof. Hence we recommend
The good, capable teacher can never be replaced; unfortunately, practical, informal geometry, within an integrated curriculum.
certain certification procedures in the United States do not We claim it is easy and natural to introduce negative
reflect the prime importance of mathematical competence in the numbers, and to teach the addition and subtraction of integers--
armoury of the good elementary teacher. motivation abounds. The multiplication of negative numbers (like
We close with a few brief remarks on the topics listed. the addition of fractions) can and should be postponed.
It is an extraordinary triumph of human thought that the same As we have said, multiplication is the primary
system can be used for counting and measurement--but the two arith- arithmetical operation on fractions. The other operations should
matics diverge in essential respects--of course, in many problems be dealt with in context--and probability theory provides an
both arithmetics are involved. Measurements are inherently excellent context for the addition of fractions. [t is, however,
imprecise, so that the arithmetic of'measurement is the arithmetic not legitimate to drag a context in to give apparent justification
of approximation. Yes, 2+2 = 4 in éounting arithmetic; but 2 + 2 = for the inclusion, already decided en, of a given topic.
4 with a probability of % if we are dealing with measurement.¥ The idea of a finite algorithm, and that of a recursive
The separation of division from its context is an definition, are central to computer programming. Such ideas will
appalling feature of traditional drill arithmetic. This topic has i need to be clarified in the mathematics classroom, since nowhere
been discussed elsewhere {7]; here let it suffice that the solution else in the school will the responsibility be taken. However, it
to the division problem 1000 + 12 should depend on the context of is reasonable to hope that today's students will have become familiar
the problem and not the grade of the student. - with the conceptual aspects of the computer in their daily lives--
Geometry should be a thread running through the untess commercial interests succeed in presenting the microcomputer
student's entire mathematical education--we have stressed this at as primarily the source of arcade games. ‘
the 'secondary level. Here we show how geometry and graphing can But this is just one aspect of the generual malaise of

our contemporary society, and deserves a much more thorough treat-

ment than we can give it here. It is time to rest my case.
*If AB = 2 ins., and BC = 2 ins., each to the nearest inch, then
AC = 4 ins. to the ncarest inch with a probability of 3/4.
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‘fhe Nature of Problem Generation in the

Mathematics Curriculum¥*

Stephen I. Brown *
State University of New York at Bufﬁalo

1 - Some Personal Ruminations

As Peter Hilton indicated in his address two days ago, this group is
testimony to the fact that though endangered, “gmall®™ is not extinct. Tt
also ho;ever i{s testimony to something more precious-~to the fact that small
i{s not incompatible with diversity of point of view, and more jmportantly with
mutual respect for that diversity. What has been most refreshing to discover
is that there is greater within gzggn_diversity (among mathematicians, mathe—
matics educators, and school teachers) than between such groups.

1 suspect that this address will reveal yet another kind of diversity and
even incompatibility for which there may be slightly less tolerance: namely
inconsistencies within the individual. The problem (to use a word that will
invite you to view what I say recursively) 1s that [ have thought about the
subject matter of this talk for a long time. As a matter of fact, the first
article in which my colleague,'Harion Walter, and I vgntured into the territory
was published by David Wheeler when he was editing Mathematics Teaching. (Walter
and Brown, 1969) Furthermore, not only have [ recently published an article
with the same theme in FLM (Brown, 1981), but our thinking is about to culminate
in a book that draws together a decade and a half's worth of playing around with

the idea of problem generation (Brown and Walter, 1983).

*This paper is a modification of an address delivered on June 10, 1983 for the
Canadian Mathematics Education Study Group at the University of British Columbtia
in Vancouver, Canada.

I view my problem today as one of providing some novelty such that T will

not be bored by yet one more foray into a fleld that I have had a hand in

establishing over a considerable period of time. I could of course add a small

nitch to that already established tradition. After considerable reflection

however, I have decided to try something more personally challenging. I will

reconstruct for you a large portion of the entire terrain, but I will attempt

to do so through a new set of lenses., Though I will occasionally reproduce

rategory distinctions and examples I have previously devised,I will be approach-
ing much of what looks like repetition from a new enough perspective so that you
1111 have the opportunity to help unearth for me not only new potential, but ghe

xistence of inconsistencies I have alluded to earlier. For those of you who are

amiliar with what I have previously written and who wish to get on with thé

ystery, I recommend that you focus upon my comments dealing with morality and

ith the relationship of a problem to a situation.

IT - The Rhetoric of Problem Solving

Though it was not my original intention to Integrate this presentation with

ster Hilton's, it turns out that a couple of gratultous remarks on problem solving

: the end of his presentation provide a natural entree for much of what 1 have "

)y say.

To begin, he points out correctly that one doesn't merely solve problems

the abstract; rather one solves specific problems. His point then is that one

s to know things (and preferably a lot of things) before s/he can solve problems,
d that 1t is a mistake to engage people in problem solving behavior before they

ve acquired some healthy repertoire of knowledge. The implication is that we

zht be better advised to famlliarize students with a substantial amount of
:hepatics before we engage them Iin solving problems.

It appears to me that he has arrived at a non sequitor based upon a premise
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that 1s logically correct. That is, it certainly is true that one doesn't solve
preblems "in general.” It I ask you what problem you are trying to solve, and
you respond with, "I'm not trying to solve any specific problem at ali. I'm
just solving problems in general,” I might have good reason to doubt not that
you may be a go;d problem solver, but rather that you understand the meaning
of problem solving in the first place.

But to say that one solves problems by working on specific "things," does

" themselves are "acquired" totally independently of

not imply that those "things
problem solving, That is, the picture Peter Hilton has conveyed is that the

following are logically or temporally related from left to righe.

Being filled up
with knowledge '"““> problem solving

While it may be true that a "thing" (call it knowledge if you wish) is

needed as a prerequisite for solving problems, 1t is 1 believe a fundamental
pedagogical error to act as if those "things" can ever be acquired much as an
empty vessel can be filled up. "“Coming to know" anything is radically different
from being filled up and the former shares some important elements with the
activity of problem solving, While I will not be able to "prove" in what
‘follows that the diagram above 1s essentially wrong, I hope to suggest enough
through a combination of logical analysis and encouragement to join me in intro-
spection on past learning experiences so that one of us can eventually find a
careful way of accurately depicting the relationship, A pointing in that direc-
tion will furnish the background imsic for much of what 1 will be saying.

I find Peter Hilton's atber comment with regard to problem solving and the
curriculum more compatible with much of what I belleve to be the case, though
it also 1s in need of repair. He comments that a major dlfficulty with the

present educational interest in problem solving 1g that it focuses attention
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at the wrong spot with regard to inquiry. That is, it leads us to focus on
answers or solutions rather than upon questions. Though he may be correct in
terms of existing practice, and he does capture an important truth, the situ-
ation in terms of the logic and the potential practice of problem solving in
the curriculum requires considerably more "unpacking' than that brief rewmark
would seem to warrant. Much of what follows will be an effort to explore the
nature of the interrelationship and the independence of problem solving and
problem generating.
Iu preparation for providing such linkages, 1 would like to dwell a little
longer on problem solving per se. By the end of this section, the compelling
need to relate the two will begin to emerge.
A quarter of a century ago, C. P. Snow accurately pointed ocut how little
the two cultures—-roughly the sclences and the humanities--have learned to
understand each other and tb gain from the wisdom they each have to offer.
(Snow, 1959)
Between the two a gulf of mutual incomprehension-—sometimes . . .hostility
and dislike, but most of all lack of understanding [emerges}. They have
a curious distorted image of each other. . . .nun-scientists tend to
think of scientists as brash and boastful. . . .{They] have a rooted
impression that the scientists are shallowly optimistic, unavare of
man's condition. On the other hand, the scieatists belicve that the
literary intellectuals are totally lacking in foresight, peculiarly
unconcerned with their brother men, in a deep sense aati--Intellecrual,
anxious to restrict both art and thought to the existential moment. (p. 12)
Not only are their problem solving styles different, but more lmportantly
there are divergent views on what it means for something to be a problem in the
first place, as well as what it meang for something to be solved. We shall spell
out explicitly some of these differences later om, but for the moment, it is worth
observing that as a profession, mathematics educat{ion is almost by definition bound

to the schizophrenia state of searching for and creating the "Snow-capped” bridges;

for mathemattics s more closely aligned with the culture and world view of science
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and education with that of the humanities.

As we search for a better understanding of what problem solving might be
about, however we have not only neglected to build bridges, but we have tended
to ignore most non—mathgmatical educational terrain that might be worth connect~
ing in the first place,

In particular, we have overlooked those educational efforts in other fields
which have been concerned with problem solving but have indicated that concern
through a different language. Dewey's analysis of "reflective thought" and of
the concept of "intelligence" would seem to offer a rich compliment to much of

the problem solving rhetoric. The role of doubt, surprise and habit in problem

solving explored by Dewey would seem to compliment much of the influential work
of Polya, and would offer options we have not yet incorporated in much of our
thinking about problem solving in the curriculum. (Dewey, 1920, 1933)

We have much to learn about the role of dialogue in problem solving, something
we in mathematics education have tended to view In pale "discovery exercise" terms
at best, Yet the use and analysis of dialogue in educational settings has been
the hallmark hot only of English education, but of several curriculum progranms in’
other fields as well. '"Public controversy" in the social studies in the late 60's
and early 70's was a central theme around which students were taught not only to
carry on intelligent dialogue, but more ilmportantly to unearth and to discuss
controversial and sometimes incﬁmpacible points of view. (0Oliver and Newman,
1970). 1t would enrich considerably what it is we call problem solving in
mathematics, if we were to entertain the possibility that for logical as well as
pedagogical reasons, we might encourage not merely complementary, but incompatible
perspectives on a problem or a serles of problems. Furthermore such curriculum
in the social studies as well as in the newly emerging field of philosopgy for

children might enable us to help students appreclate irreconcilable differences
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rather than to resolve or dissolve them as we are prone to do in mathematics,

(Lipman, et al., 1977)

“Critical thinking is another "near relative' of problem solving that began
influencing the curriculum in scﬁools as far back as the progressive education
era, and there 1s a considerable history of efforts to iIntegrate different
disciplines throughlthe use of critical thought.(Taba, 1950) It is a history
that is worth understanding not only because of its connection with problem
solving, but because the theme is presently undergoing rejuvenation in the non-
scientific disciplines much as problem solving has re-emerged in mathematics
and science.

In closing this section, we turn towardg one area within which the tunes
of critical thinking have been re-sung recently--that of moral education. The
issues that emerge here and those that we develop in the next section are part
of the new (and not yet well integrated) backdrop mentioned in the first section.

First of all, we might ask why critical thinking and moral education have
been joined at all. To many people, they would seem to occupy different poles.
The connection hinges on our concern for the teaching of values in a pluralistic,
democratic society. How do we go about such education in a public school setting
without indoctrinating with regard to a particular religious or ethnic point of
view? Though we mighf argue over whether or not it is a set of values itself
and 1f so, why it is that such a collection is more neutral than any religious
or ethnic point of view, the liberal tradition of thinking critically about
whatever values one adopts does provide an entree for those concerned with
morality in a pluralistic society.

Though there are a number of different kinds of programs within which
moral education is taught (Lickona, 1976))must of them rely heavily upon contrived

or natural dilemmas as a starting point. Our focus here will be on Kohlberg's
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program of moral development and education. A typical dilemma he has used for
much of hils research and for his deliberate program of education as well is the
Heinz dilemma:
In Europe, a woman was near death from a rare form of cancer.
There was one drug that the doctors thought might save her, a
form of radium that a druggist in the same town had recently
discovered. The druggist was charging $2000, ten times what the
drug cost him to make. The sick woman's husband, lleinz, went
to everyone he knew to borrow the money, but he could only get
together about half of what the drug cost. He told the druggist
that his wife was dying and asked him to sell it cheaper or let
him pay late:., But the druggist said, "no." So Heinz got
desperate and broke into the man's store to steal the drug for
his wife. (Kohlberg, 1976, p. 42)

Should Heinz have stolen the drug? Based upun an analysis of longitudinal
case studies to answers of dilemmas of this sort, Kohlberg has created a scheme
of moral growth that he claims is developmental, Furthermore, he has created
not only a research tool but an educational program around such dilemmas. It
is through discussing and juscifying responses to such dilemmas that students
mature in their ablility to find good reasons for their choices.

It is not the specific value that one chooses (e.g., steal the drug vs.
allow the wife to die), but the reasons offered for the decision that places

.
people along a scale of nmoral development.

* At the lowest level of moral maturity, (pre-conventional) Kohiberg finds
that people argue primarily from an awareness of punishment and reward. Thus
someone at a lowest stage of development might claim that Heinz should not steal
the drug because he would be punished by beling sent to jail, or he might claim
that he should steal it because his wife might pay him well for doing so., It is
almost as If the punishment inheres in the action ftself. At a later stape
(conventional) people argue from the more abstract perspective of what is expected

of you and also from the point of view of the need to maintuain law and order.

At the highest or stage of principled morality, one argues on the basis not of
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rules that could concelvably change but with regard for abstract principles of
justice and respect for the dignity of human beings. Such principles single
out fairness and impartiality as part of the very definition of morality.

None of these structural arguments (e.g., punishment/reward, law and order,
justice) in themselves dictate what 1s a correct resolution of any dilemma.
Rather they form part of the web that is used to justify the decisions made,
and it 13 in listening to these reasons that Kohlberg and his followers are
capable of deciding upon one's level of moral development.

Despite the fact that Kohlberg's scheme for negotiating moral development
neglects to focus upon action, it is a refreshing counterpolnt to a program of
moral education which concelves of 1its role as one of inculcating specific
values in the absence of reason., Nevertheless, there has been some penetrating
criticism of hic scheme recently--a criticism which condemns much of Kohlberg's
work on grounds of sexism, That is, Kohlberg's research and ultimately his
scheme for what represents a correct hierarchy of development is based upon his
longitudinal resecrch only with males., Once the scheme was created and the
stages developmentally construed, Kohlberg interviewed females and concluded
that thelr deviation from the established hierarchical scheme implied an arrested
form of moral development.

Gilligan (1982) points out that the existence of a totally different cate-
zory scheme for men and women not only may be a consequence of different
»sychological dynamics, but rather than exhibiting a logically inferior mind
set, it suggests moral categories that are desperately in need of i{ncorporation
vith those already derived; Compare the following.two responses to the leinz
iilemma, one by .Jake, an eleven-year old boy and the second by Amy, an eleven-
rear old girl. Jake Is clear that leinz should steal the drug at the outset,

ind justifies his cholce as follows: '
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For one thing a human life is worth wore than money, and 1f the

druggist makes only $1000, he is still going to live, but 1f Heinz
doesn't steal the drug, his wife 1s going to die. (Why is life

worth more than money?) Because the druggist can ger a t?ousand
dollars later from rich people with cancer, hut Heinz can't get
his wife again. ~ (why not?) Because people are all different and
80 you couldn't get Heinz's wife again. (Gilligan, 1982, p. 26)

Amy on the other hand equivocates in responding to whether or not Heinz
should steal the drug:

Well, I don't think so, 1 think there might be other ways besides
stealing it, like if he could borrow the money or make a loan or
something, but he really shouldn't steal the drug--but his wife
shouldn't die either, If he stole the drug, he might save his
wife then, but if he did, he might have to gu»fo jail, and then
his wife might get sicker again, and he couldn't get more of the
drug, and it might not be good. So, they should really just talk
it out and find some other way to make the money. (p. 28)

Notice that Jake accepts the dilemma and begins to argue over the relation-
ship of property to life. Amy, on the other hand, 1s less interested in property
and focuses more on the interpersonal dynamics among the characters. More
importantly, Amy refuses to accept the dilemma as it is stated, but is searching
for some less polarized and less of a zero sum game.

Kohlberg's interpretation of such a response would imply that Amy does not
have a mature understanding of the nature of the moral issue involved--that she
neglects to appreciate that this hypothetical case 1Is attempting to test the sense
in which the subject appreciates that in a moral scheme life takes precedence
over property. Gilligan on the other hand in analyzing a large number of such
responses has concluded not that the females are arrested in thelr ability to
move through his developmental scheme, but that they tend to abide by a system
which is orthogonal to that developed by Kohlberg--a system within which the
concepts of caring and responsibility rather than justice and rights ripen over

time.

Gilligan (1982) comments with regard to Amy's response:
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Her world is a world of relationships and psychological fruths

where an awareness of the connection between people gives rise
to a recognition of responsibility for one another, a perception
of the need for response. Seen in this light, her understanding
of morality as arising from the recognition of relationship,
) her belief in communication as the mode of conflict resolution,
. and her conviction that the solution of the dilemma will follow

from its compelling representation seeu far from naive or cognitive-
ly {mmature. (p. 30)

. The difference between a "Kohlbergian" and a "Gilliganish" conception of

morality 1s well captured by two different adult responses to the question,

"what does morality mean to you?". (Lyons, 1983) A man interviewed comments:
Morality is basically having a reason for doing what's right, what
one ought to do; and, when you are put in a situation where you have
to choose from amongst alternatives, being able to recognize when
there is an issue of "ought" at stake and when there is not; and
then. . .having some reason for choosing among alternatives.(p. 125)

A woman interviewed on the same question comments:

Morality 1s a type of consciousness, I guess a sensitivity to
humanity, that you can affect someone else's I1ife. You can affect
your own life and you have the responsibility not to endanger
other people's lives or to hurt other people. So morality is
complex. Morality is realizing that there 1s a play between self
and others and that you are golng to have to take responsibility

for both of them. It's sort of a consciousness of your influence
over what's going on.(p. 125)

While Gilligan and her assoclates do not claim that development is sex
bound in such a way that the two systems are tightly partitioned according to
gender, they do claim to have located a scheme that tends to be associated more
readily with a female than a male voice. Behind the female voice of respopsi-

bility and caring, some of the following characteristics appear to me to surface:

1. A countext boundedness,

2. A disinclination to set general principles to be used In Future cases,
3. A concern with connectedness among people,

Though not all of these characteristics are exhibited in Amy's response,

they do appear in interviews with mature women. Context boundedness represents

i plea for move i{nformation that takes the form not only of requesting more
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details (e.g., what is the relationship between husband and wife?) but of
searching for a way of locating the eplsode within a broader context.l Thus
unlike men, mature women might tend to respond not by trying to resolve the
dilemma, but by exhibiting a sense of indignation that such a situation as the
Reinz dilemma might arise In the first place. 5uch a response might take the
following form: The question you should be asking me is 'What aie the horren-
dous clrcumstances th;t cansed our soclely to evelve in such a way that dilemmas
of this sort could even arise-~that people have learned to miscommunicate 80
poorly'?" .

The second characterfstic I have Isolated above, i9 an effort to attempt
to understand each sltuation in a fresh light, racther than in a Jegalistic
way-—~l.e., in terme of already established precedent. Connected with context
boundedness it is the desire to see the fullness of "this" situation in order
to see how 1t might be different from (and thus require new insight) rather than
compatible with one that has already been settled.

With regard to the third chavacteristic, conflict {is less a logical puzzle
to be resolved but rather an indication of an unfortunate fracture In human
relationships--something to be "mended" rather than an invitation for some
Judgement.

In the next section we turn towards a consideration, in a rather global
way, of how it is that a Gilliganisk perspective of morality might impinge on
the study of mathematics. While we have not yet drawn any explicit links,
it is not difficult to intuit not only that it threatens the status quo but
that it sets a possible foundation for the relationship of problem generation
to problem solving. Though we‘shall focus upon the findings from the field

of moral education, we do not wish to lose sight of some of the other humanistic

of areas of curriculum from which mathematics education might derive enlightenment.
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Some of what we have alluded to earlier in this section will form the background
music for what follows:

111 - Kohlberg vs. Gilligan: The fransition from Solving to Posing

It surely appears that problewm solving in mathematics education has been
dominated by a Kohlbergian rather than a Gilliganish one, Gilligan herself
has an intuition for such a proposition, when she comments with regard to
Jake's response to the Heinz dilemma:

Fascinared by the power of logic, this eleven-year old boy locates
truth in math, which he says is "the only thing that is totally
logical." Considering the moral dilemma to be "sort of like a
miath problem with humans," he sets it up as an equation and
proceeds to work out the solution. Since his solution is
raticnally devived, he assumes that anyone following reason would
arrive at rhe same concluafon and thus rthat a judge would consider
stealing to be the right thing for Heinz to do. (p. 26,7)

The set of problems to be solved as well as the axioms and definit{ong

to be woven into prouvfs are part of "the gilven'"-~the taken~for-granted reality

"
upon which students are to operate. It is not only that the curriculum is "de-peopled

in that contexts and concepts are for the most part presented ahlsLoricnliy and
unproblematically, but as it is presently constituted the curriculum offers no
encouragement for students to in a respectable way move beyond merely accepting
the non-purposeful tasks.

) Furthermore, rather than being encouraged to try to capture what may be
unique and urv2lated to previous established precedent in a given mathematical
activity (the legalistic mode of thought we referred to as the second character-
istic behind Gilllgan's analysis of morality as responsibility and caring),
much of the curriculum is presented as an "unfolding' so that one is “supposed"
to see simflarity rather than difference with past experlence. It 1s conmonplace
surely in word problems to tell people to ignore rather than to embellish
matters of detall on the ground that ene 1s after the underlying structure and

not the "noise’ that inheres in the problem.



-4 -

In so focusing on essential isomorphic features of structures, the

curriculum tends not only to threaten a Gilliganish perspective, but as
importantly, it supports only one half of what I percelve much of mathematics
to be about. That is mathematics not only is a search for what is essentially
common among ostensibly different structures, but is as much an effort to
reveal essential differences among structures that appear to be similar.

(See Brown, 1982a)
With regard to context boundedness, there is essentially no curriculum

that would encourage students to explicitly ask questions like:

*What purpose is served by my solving this problem or this
set of problems?

*Why am I being asked to engage in this activity as this time?

*What am I finding out about myself and others as a result of
participating in this task?

*How 1s the relationship of mathematics to socilety and culture
illuminated by my studying how I or other people in the history
of the discipline have viewed this phenomenon?

Elsewhere (Brown 1973, 1982) I have discussed how I first began to incor-
porate such reflection as part of my own mathematics teaching, and I shall have
other illustrations of so doing in this paper. There are a number of serious
questions that must be thought through, however, before one feels comfortable
in encouraging the generation and reflection of the kinds of questions indicated
above., We need to be asking ourselves whether or not that kind of reflection
Tepresents respectable mathematical thinking, 1In addition we ought to be
concerned about the ability of students to handle that thinking in their early
stages of mathematical development. .

It is interesting to observe that though the wedge {s beilng provided to
integrate mathematics with other fields, the '"real world” applications seem to

be narrowly defined in terms of the scientific rather than the humanistic
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disciplines, In particular questions of value or ethics are essentially non-

existent, That is particularly surprising in light of the fact that a major
rationale for relating mathematics to other flelds seems to be that such
activity may enable students to better solve '"real world" problems that they
encounter on their own. I know of essentially no "real world" problems that
one decides to engage in for which there is not embedded some value implications.
McGinty and Meyerson (1980) suggest some steps one might want to take to
develop curriculum for which value judgements are an explicit component, They
begin with a problem like the following:

Suppose a bag of grass seed covers 400 square feet. How many bags
would be needed to uniformly cover 1850 square feet? (p. 501)

So far so dull., It is not only that for many students the above would
not constitute a problem (in the sense of answering the question), but more
importantly it lacks any reasonable conception of context boundedness. The
authors, however, go on to suggest inquiry that is more "real worldish" than
most of the word problems students encounter. They ask:

‘ Should the person buy 5 bags and save the leftover—-figuring prices
will rise next yéar? Buy 5 bags and spread it thicker? Buy 4 bags
and spread it thinner? (p. 502)

Once we become aware of ethical/value questions as a central component of
decision making, 1t is clear that there is much more we might do in the way of
generating problems for students as well as encouraging them to do so on their
own. One of the au courant curriculum areas is probability and statistics.

As a profession, we correctly appreciate that we need to do more to prepare
students to operate in an uncertain world, wherein one's fate is not sown with
the kind of exactitude that much of the earlier curriculum has implied. In
creating such a curriculum, however, we continue to give the false 1llusion that
mathematical competence 1s all that is required to decide wisely. Compare any

probability problem (selected at random of course) from any curriculum in



- 43 -

mathematics with the followlng probability problem:
A close relative of yours has been hit by an automobile. He has
been unconsclous for one month. The doctors have told you that
unless he is operated upon, he will live but remain a vegetable
for the rest of his life. They can perform an operation which,
1f successful, would restore his consciousness, They have deter-
mined, however, that the probability of being successful is .05,
and if they fail in their effort to restore consciousness, he
will certailnly die.

What counsel would you glve the doctors? One could clearly embed the above
problem in a more challenging mathematical setting, for example, setting up the
conditions that would have enabled one to arrive at the .05 probability (or
perhaps modifying it so that outer limits are set on the probability of sur-
vival) but nevertheless, 1t is such ethical questions in many different forms
that plague most thinking people as they go through life making decisions.

Is such problem generation on the part of the teacher or student an ingred-
ient of mathematical thought? 1 do not think the answer 1s clear. There 1s nothing
god-given and written in stone that establishes what 1is and is not part of the
domain of mathematics, and clearly what has constituted legitimate thinking in
the discipline has changed considerably over time. I am unot familiar emough with
the sociology of knowledge to know what kinds of forces other than logical ones
have been responsible for driving people to reconceptualize the discipline of
mathematics, but even if questions of the kind we have been raising in this section
would move us in directions that are at odds wlth the dominant and respectable
mode of mathematical thought, it 1s worth appreciating that as educators we have
a responsibility to future citizens that trapscends our passing aleng only mathe-
matical thought., The latter appears to me to be a very narrow view of what it
means to educate. In realiziug that only a very small percentage of our students

will be mathematicians, we have not adequately explored our obligation to those

who will not expand the fileld per _se. We have mistakenly identified our task
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for the majority as one of "softening' an otherwise rigorous curriculum. What
may be called for is an ever more intellectually demanding curriculum, but oune
in which mathematics is embedded in a web of concerns that are more "real world"
oriented than any of us have begun to imagine.

Is 1s worth observing that such complications of mathematical thinking may
in fact pose a major threat to a concept that we have begun in recent years to
revere-—~that of mathematization. In attempting to find reason to believe that
children can lndeed function as wathematicians (as opposed to exhibiting routine
imitative skills), David Wheeler (1982) looks towards exceptional cases of mathe-
matical precocity. He comments:

1 don't see children however exceptional function as historians, or
as lavyers, or as psychologists, for instance, since these are
extremely complex functionings that involve subtle relationships
between (sic) several frames of reference. But I would hypothesize
that mathematics belongs with art, music, writing and possibly
science, as one of a class of activities that require only a
particular kind of response to be made by an individual to his
immediate, direct experience. (p. 45)

While [ would certainly not wish to pit mathematization, as Vheeler describes
it, against the mindless symbol pushing that iepresents its polar oppesite, T
believe that as educators we are obligated to push the bounds of complicating

that discipline in an effort to engage the minds of students in directions that

define their humanity,

IV ~ Down From A Crescendo

How do we descend from the heights and perhaps the overinflated language
which concluded the previous section? Perhaps one way is to take stock of
where we have been led-and to try to sharpen the implications that might follow.
The confrontation between Kohlberg and Gilligan bas served two purposes that
appear on the surface to be very different. First of all, we have used the

challenge of Gilligan's research to point out that chere is a world view that
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has achieved empirical expression with regard to issues of morality but which

is worth taking seriously in other domains as well. Moving beneath the concepts
of caring and responsibility established by Gilligan, we find dimensions that
are not strictly moral im character but which deal with purpose, situation

specificity (a non-legalistic mode) and people connectedness. We have suggested

that very little of the existing mathematics curriculum caters to those character-
istics, and in fact the dominant mode caters to their opposite.

Secondly, we have not only used Gilligan iIn contrast to Kohlberg to establish
broad categories within which the present curriculum is deficient, but we have
pointed out that what the two perspectives have in common--namely a concern with
morality—-represents a field of inquiry that may be as important to integrate
with mathematical thinking as are the more standard disciplines that form the
backbone of more conventional applications,

Both of these perspectives have potentially revolutionary implications. They
not only suggest the need for both teacher and student to incorporate a more
serious problem generating perspective (including the broad types of questioné
raised at the beginning of the previous section) as an essential ingredient of
problem solving, but they have the potential to infect every aspect of mathematics
education from drill and practice, to an understanding of underlying mathematical
structures.

Our goal for the remainder of this paper.will be the more modest one of making
a case for the inclusion of problem generatiné strategies within the curriculum,

1 will for the most part be drawing upon and integrating ideas that I have previous-
ly developed. While T will make minimal explicit reference to the Gilligan per-
spective, T believe it is possible to view much of what follows as being derived
from what I have referred to as the underlying components of caring and being
respousible. The joining of llqks explicitly in other mathematics education areas

is a task to be left for another time (and perhaps another person).
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V - Our Knee-Jerk Solving Mentality

Any field of inquiry establishes a common language among its investigators.
The same kind of phenomenon is exhibited among friends, lovers and members of a
family. It Is frequently possible to determine the extent to which you are in
fact an "outsider" by the degree to which you are incapable of understanding
the short-circuiting of language among participants. There is certainly good
reason for members of an "in-group" to engage In such short-circuiting behavior,
In aédition to merely increasing efficiency of communication, there are fmportant
psychological and sociological bonds established through such bhehavior.

Nevertheless, we sometimes pay a price for the common language we establish.
That is, in focusing on common understanding, we not only leave out other per-
spectives, but we may be unaware of what we are leaving out. The spedialization
that results from such behavior not only may leave us unaware of what we have
left out, but worse than that, we may even lose our ability to incorporate those
awarenesses within our world view even when they are pointed out to ug.

,AS educators, 1t is worth taking stock every so often to examine explicitly
what we are leaving out in the common language we are establishing with our
students. Such an instance occurred a number of years ago at which point Marion
Walter and 1 were team teaching a course on problem solving. We were doing work
in number theory, and were hoping to derive a formula to generate primitive
Pythagorean triplets. We began the lesson by asking:

x2 + y2 = Zz. What are some auswers?

Responses began to flow, and students responded with:
3, 4, 5
5, 12, 13
8, 15, 17

After a while, a smile broke out on the face of a student who gave us:

1, 1,12



A few more “courageous" and humorous responses then were sugpested like:

-1, -l.ﬁ

Maricn and I then jokingly reprimanded the "devianrs,"

and proceeded to
explore what we were about in the first place--a search for a generating formula,
After class, however; we began to talk to each other about the incident., It

hit us very hard that the "deviants’ were beginning®to appreciate something that
Las occupled a considerable part of our collective energy for the past fifteen
years,

What struck us was that:

x2 +y = 22. What are some answers?
has a kind of foolishness about it that derives from the closed position of a
common language with its unspoken but built in assumptions. Notice that
x2 + y2 = 22 is not even a question. How can one come up with answers?

Yet the students dutifully did come up with answers, because they carried
along a host of assumptions that we in fact have trained (implicitly) them to accept.
They assumed (at least at the beginning) that the symbolism had connoted that the
domaiﬁ was natural numbers. Furthermore they assumed that the symbolism was
calling for something algebraic; and within that context they assumed that we were
searching for Instances that would make an open sentence true,

As soon as we began to appreclate that "the deviants" had begun to appreciate
something we had not seen, we realized that there was a whole new ball game at
stake., We had not realized at the time that In expanding this concept ftor this
class, we were opening Pandora's box.

In realizing that we had 1mp]icit1y assumeh that the domain was natural
numbers, we encouraged students to ask such new questions as:

¥or what rational numbers x, y, # is it true that x2 + y2 = &7
racionaZ

[

- 48 -

Realizing that we had implicitly assumed that we were searching for true
instances of the open sentence, we encouraged students to ask such new questions
as:

For what vatural numbere is it true that x2 + y2 = Zz is "almost"

true? (e.g., 4, 7, 8 misses the equality by 1),
Realizing that we had fmplicitly assumed that the question was algebraic,
the students began to ask a host of geometric questions that derived from connota-
tions of the algebraic form.

What followed {mmediately was one of the most intellectually stimulating units

“that either of us had previously expevienced with our students, and what dawned

eventually on all of us was something that has had a lasting effect.

First of all, we began to appreclate that such deviations from standard cur-
riculum are not mere frills., That is, in exploring such questions as the "almost"
primitive Pythagorean triplet question, all of us gained a much clearer under-
standing of what the actual primitive Pythagorean triplet question was in fact
about--not only from the point of view of statement but of proof as well.

Secondly, and more importantly, we began to realize that an implicit part
of the common language we share with students is one which focuses upon and points
80 strongly towards the search for solutions and answers, that we continue to
search for answers even when no question is asked at all! We were thus launched
on our journey to try to understand the role of problem generation is the doing
of mathematics,

VI - Posing and Deposing: A First Step

I am beginning to appreciate an important aspect of what is behind an under-
standing of the role of posing problems that I have not seen before,'desplte
the fact that I have referred in much of my writing to exumples'within which this

issue is embedded. For a number of years, educators have appreciated that there
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might be considerable value in giving students not problems to solve but

sltuations to investigate. Higginson (1973), for example, locates a number of
characteristics of what he refers to as "potentially rich situations."
Situations are much "looser" than problems, and situations themselves do not
ask built-in questions. It is the job of the student to create a quéstion or
pose a problem, Geoboards, Culsenaire Rods, polyominols are all examples of
situations, but situations need not be concrete materials; they can be ahstrac-
tions as well,

What I have recent1§ (in preparing for this talk) began to appreclate is
that the pedagogical issue is much deeper and more interesting than that of
merely creating rich situations to investigate. The lssue 1is even more complicated
than providing both mechanisms and an atmosphere within, which problems might be
isolated from sttuations. Rather the pedagogical task 1is one of enabling all of
us to appreciate the differences between a problem and a situation, and of finding
ways to move from one to the other.

The task of so moving is neilther mechanical nor easy. That 1t sometimes
takes a very long time to appreclate that a situation implies a problem is
something that most parents experience through much of their child rearing. That
problems can be neutralized (or de-posed as the title of this section playfully
suggests) 1s something that may be equally difficult to appreciate. Those of us
who realize that we have been asking the wrong questions realize implicitly
the need to move from a problem to a situation before re-posing the problem,

Consider the example of a "female response" to the lleinz dilemma which
asserts with indignation that the problem is not one of stealing or not stealing
the drug, but rather one of figuring out how we even evolved as a society such
that such choices would have to be made (and one of figuring out how to recon-

struct society). MHere is a clear case of first neutralizing a problem before

"re-posing it. It was necessary to delete the question (Should Heinz steal the

drug?) before moving towards a re-posing of the problem,

It is not only that there is value Ia having students actually move in
both direciions——from situations to posing and from posing to de-posing--but it
i1s also worth designing curriculum which exhibits the difficulties people had
in waking such moves on their own in the history of the discipline. We have the
potential to learn a great deal about the relationship of a discipline to the
culture from which it emerges as we study those problems that could not be
perceived as situations.

An obvious example in the history of mathematics 1is that of efforts over
several ceunturies to try to prove the parallel postulate, Consider the following
formulation of the quéstion:

How can you prove the parallel postulate from the other postulates
of Euclidean geometry?

We know now that a great deal of the history of mathematics was written as
nineteenth century mathematicians began to appreciate that the difficulty in
solving the problem was that a wrong questlon was being posed. In some ;mpllcit
sense, Lobachevsky and his colleagues at the time had in fact to "neutralize”
the problem enough first to get clearly at the situation from which it derived
(the postulates of Euclidean geometry) and then to reformulate the question so
as to delete the deceptively innocent word "How" in the posing of the problem.

The need to re~pose a problem by first neutralizing it is not only revealed
thruugh frustrated efforts at solving problems, but 1s an aesthetic issue as
well, and an issue that is worth incorporating explicitly in currlculum within
which the Cllliganish concept of context boundedness is taken seriously. Con-
sider the case of efforts to prove the four color conjecture--roughly that for

any conventional map, four is a sufficient number of colors to establish and
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to appropriately demarcate boundaries, Unttl recently the problem was "merely”

to prove or disprove that conjecture. Only after a cowputer proof was produced
which featured a very large aumber of gpecial cases did mathematicilans begin

to realize that they had not adequately posed the problem, Feeling that a
computer proof was blind to underlying structure and in fact {lluminated very
little of "the mathematical essence" of the problem, many mathematicians realized
the need to state the problem in such a way that "ugly" proofs would not count

as sulutions.

Such re-posing of the four color problem reveals something not only about
the present attitude of many mathematicians with regard to the computer, but
just as importantly, it unearths some fundamental epistemol&glcal 1ssues--issues
that more clearly locate knowledge within an aesthetic realm.

From a pedagogical point of view, it is particularly enlightening to engage
students in a discussion of the relationship of a situation to a problem. 1
have a modest example. Several years ago my son, Jordan, came to me to tell me
that he did not understand the "ambiguous case" in trigonometry, i.e., those
circumstances under which a triangle is determined by an angle, another angle and
a side not included between the angles.

I bepan my discussion with him by asking him to recall how in geometry, he
had investigated those condirions under which a triangle was determined. Jordan
looked very puzzled and told me that I was mistaken; they had never investigated
the determination of a triaugle. Instead they had proven things about two »
triangles being congruent if A.S.A. = A,S,A. and so forth.

What was taking place here is very interesting from the point of view of
relating a problem to a situation. Jordan had in fact viewed an entire unit of
work more as a gitvation, while I had viewed it as a problewm. That is, though

he had an arsenal of congruence theorems at his disposal to respond to any

_52-

request to prove two triangles congruent, he did not see this ammunition as
providing answers to what I saw to be the fundamental problem of discovering
those conditions under which a triangle is determined. As I reviewed hisg

text, I understood why he saw‘a situation in what T saw to be a problem. The
book had 1n fact never distinguished between an underlying problem (determining
a triangle) and a collection of exercises to give one experieuce in handling

a problem that had been solved by the famous congruence theorem. TIn fact, the
practice exerclses had become the fundamental concept--a phenomenon I am

beginning to belleve 1s more widespread than 1 had thought, and a consequence

most 1likely of the essentially plaglaristic spirit that goverus text book writing,

The interesting irony in this case is that the difference between my per-
ception and Jordan's regarding what those congruence theorems were all about,
was not revealed In Jordan's performance in geometry at all. One can frequently
accurately answer questions and even solve difficult problems without seeing
the context within which those problems are embedded,

Thus, it would seem to be a very wise pedagogical ploy ro move not only
from situation to problem and back for topiecs that are relatively small (e.g.,
de-pose a theorem such as "The base angles of an i{sosceles trlangle are con-
gruengs, but to do so for entire units as well. ‘Tecachers as well as stude&ts
would find it eulightening to discover the arcas of agreement and divergence
of opinion regarding the problem/situation status of a unit or perhaps even of
a course.

Tn closing this section, T would like to comment on an interesting potential
difficulty relating situation to problem that Peter Hilton alluded to in his
talk. lle mentioned that proper selection of problems is critical In designing
curriculum for cue does net want to give problems to students that they are not

prepared to handle. Ilis comment appears on the surface to be a threat to the
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activity of posing and de-posing problems. That is, what happens 1f in the

creation of a problem from a situation, a student defines a problem that we
know is beyond his/her ability to handle?

There are some iInteresting assumptions embedded in the above question.
First of all, it 1s not necessarily the case that students need to try to solve
problems they pose. The activity of posing itself in the absence of efforts
to solve may be illuminating both to students and teachers. 1In a sense we find
out as much of value about ourselves by attending to the kinds of questlons we
ask as we do by the solutions we attempt.

Secondly, 1if we thlng of an entire class as a unit, for the kinds of
activities suggestgd in this section, it is not necessarily the case that the
same person who poses a problem need be obligated to try to solve it. 1In fact
we may discover the potential for unexpected collaboration among those who pose
and those who attempt solutions. We do not know very much at all about the
relationship of the talent of posing and solving, but it perhaps 1s worth taking
a clue from the work of Getzels and Jackson (1961) in which they find reason
to conclude that beyond a certain point, ilntelligence and creativity may not be
as closely related as one might suppose,

But there is another consideration that cuts deeper than those we have
mentioned so far. That 1is, what does Hilton imply students are expected to do
who are prematurely challenged? It appears that they may be incapable of solving
problems that either we (as teachers) or they pose. Such an expectation may be
a short-sighted one from an educational point of view however. Along with our
newly discovered appreciation for the role of approximation and estimation,
ought to come an appreciation for partial solutions as a respectable activity,
We need not necessarily expect a complete solution for every problem investigated.
In additioen, I am not clear on what it is that is lost if students attempt to

solve a problem and cannot even come up with partial solutions. Suppose they
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cannot even identify or isolate lemmas that might help them along the way, 1

can imagine a great deal of valuable personal and intellectual insight that
mwight emerge through a discussion of what may account for imability of students
at a particular point in time to make headway in solving particular problems.

A teacher who keeps an ear to the ground might possibly even learn something

of the students conception of the subject matter, proof, mathematics and the
relationship of mathematics to culture by listening carefully to what counts

as a reason for failure to make headway.

VII - The Act of Posing: Logic and Pedagogy

In relating problem poéing to the creation of situations, we have, beneath
the surface bumped up against the relationship of problem posing to problem
solving., After all, 1t was dve to an inability to solve the parallel postulate
problem that a situation was revealed which was in need of reformulation. Problem
generation and problem solving are intimately connected, howvever, even when
things do not go awry. Below we discuss their intimate logical connection. In
the two subsections that follow the one below we shall look more closely at
pedagoglcal strategies for engaging in problem poging--one mild and the other
radical. Much of what I will be analyzing in this section has appeared in
disparate sources, and I view the task here as one primarily of consolidating
that material. For that reason this section will be briefer than the others
(thank Godl) and the reader's attention will be drawn to relevant references
for expansion of the points alluded to.

Logical Connections With Solving: Being Gracious and Accepting

Consider the following two problems:

(1) A fly and train are 15 km. apart. The train travels towards
the fly at a rate of 3 km/hr. The fly travels towards the train
at a rate of 7 km/hr, After hitting the train, it heads back
to its starting point. After hitting the starting point, it
once' more heads back toward the train until they meet, The
process continues. What is the total distance this fly travels?



(2) Given two equilaterial triangles, find the side of a third one
vhose area is equal to that of the sum of the other two.

The first problem reveals in a drumatic way something that is true but
less obvious in the solution of any problem, If you have not seen this problem
before, let it sit for awhile, or perhaps share it with a fifth'grader., If the
wind is blowing properly, you will come upon an insight that will most likelf
jar and inspire you. Without giving the ball game away completely, let me suggest
that an insightful and non-technical solution depends upon your asking a question
that has not been asked in the problem at all, Though there are many different
ways of asking the question as well as many questions to ask, something 1like
the following will mdst 1likely be revealing:

What do I uotice if 1 focus not on the fly as requested, but on
the train instead?

What is needed in the solution of this problem is some effort at posing a
new problem within the context of accepting and trylng to solve a given problem.
Whether or not such problem posing is always needed in the solution of a problem
is an interesting and debatable question, I believe that such problem generation
1s always needed, buf I alsc believe that the 2nalysls of the assertion very much
hinges on how it is that one defines a problem in the first place. (See Brown,
1981a; Brown and Walter, 1983 for additional discussion of this point)

The second problem reveals another interesting iatlmate counectioé between
problem solving and problem generating. Tie solution depends (an illustration
of what we have said above) upon how it is that the problem itself is re-defined.
If, however, you assume that sides and their lgugths can be distinguished from

each other (something that is not necessary in.the solution of the problem),

then {f the lengths of the sides of the first two triangles are a and b respective-

ly, we can prove without too much fanfare that the length of the third side c

is equal to Y 32+ b2 .
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Now in one sense we have solved the original problem. 1In another sense,

however, we have only begun to solve it. Most people who come upon the solution,

. c VJZE—:‘hZ are taken aback. The point is that it smells as if this is an interest—

ing and unexpected connection (as a matter of fact one which now enables one to
solve the prablem without associating the sides with their lengths). The fact
that the relationship i{s a Pythagorean one, indlicates that we can find the third

side as suggested below:

Most mathematicians who have not seen this problem before find themselves
headed in an almost compulsive search for what is happening. They are driven by
some variation of the question:

T know areas are additive for the squares on the sides of a right
trianple, but why are they additive for equilateral triangles as
well.

What this example illustrates very nicely is that a proof or a solutiou in
itself does not always reveal why things operate as they do. Something more
is needed, and in this case that something more bepins with a questjon.’

Though it is surely the case tnat the alleged solution of any problem always
has further implications that one may assert as a problem or a question, one 1is
not necessarily driven to do so in all problems with the same kind of fervor as
in this case. (See Walter and Brown, 1977 and Brown and Walter, 1983 for an
elaboration of this discussion)

There are pedagogical implications that flow from these relationships between
posing and solving problems. Students atve.not always aware of the questions they
may have implicitly asked themselves in coming up with the solution to a problem,
and there mipght be value in encouraging them to explicitly sce what they have
done. At the other end of the spectrum, students may not at all be aware of

additional questions they '"need to" or might ask after they have supposedly
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solved a problem,

On Strategies For Posing: An Accepting Mode

It is one thing to suggest that problem posing is worthwhile, or even nec-
essary; it is another to be able to do so. We shall in this subsection suggest
several strategies for posing problems, some of which are well discussed in the
literature, and some of which represent new directions. In this subsection and
the next, we shall look at the activity of problem generhtiun in a mode that

is somewhat isolated from that of solving a problem that has already been stated.

In so doing, we return to situations as a starting point. Much of what we do
here might be appropriate to.apply to the activity of solving an already stated
problem as well. (See Brown and Walter, 1983 for an elaboration of these two
subsections)

What are the "things' that situations are made of? Among possible candidates
are the following:

1. concrete objects like Cuisenaire Rods and the Tower of Hanoi

2. abstract "things" 1like
(a) Isosceles Triangles

or

(b) Nine Supreme Court Justices each shaking hands with each other

3. data like
(a) Primitive Pythagorean Triplets generated by the relationships
x2 + y2 = Zz (like: 3,4,5: 5,12,135 7,24,25)
or

(b) 5,12,19,26,33. . .

4. theorems or postulates like the Fundamental Theorem of Arithmetic
(every number can be expressed uniquely as a product of primes)

There are surely more kinds of "things"

that one might use as a starting situ-
ation, but the above should serve the purpose of enabling to see how the directions

we might look towards in generating questions.

(1) Estimation/Approximation
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Here Is a category with which we are all familiar, though we tend not to

make as much use of 1t in practice as we might. Given phenomenon 2(b) for
example, most people with a little knowledge will ask: How many handshakes
are there? Of course it is just as illuminating (for some purposes) a question

to ask: About how many handshakes are there?

(i1) Internal and External Views of a Thing:

Given situation 2(a), most people will ask the rather familiar question:
What can you say about the base angles? Some people might extend the base
and ask about the external angles. Compare those kinds of questions with one
liké:

How many isosceles triangles can you join to form the hub for
a bicycle wheel?

How does the above question differ from the other isosceles triangle questions?

It is worth pointing out that while the first set focuses on the internal workings
of the phenomenon, the one dealing with the hub takes the isosceles triangle in
its entirety and relates it to something else, Much of our standard curriculum

is focused on an internal view of objects and relatively little takes as its
sta}ting point the quect as a whole.

(iti) }he Particular and the Speciflgv

Here is a theme that 1s particularly salient in terms of a Gilligan perspec-
tive. Take a look at 3 above and pose some problems.

Our enchantment with abstraction and generalizability frequently blinds us
from seeing the uniqueness of what is before us. Most people shown 3(a) and (b)
will pose a problem that attewpts to reveal some covering law that will generate
all the terms. A careful look at data, however, frequently suggests that there
is more to see that might be equally as appealing. Consider the following for

example with repard to 3(a):
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Each triplet has at least one memﬁer divisible by 3, by 4, and
by 5. Will that hold in geaeral?

The above is clearly not a ques
the more abstract Pythagorean relat
Take another look at 3(b).
data beyond a search

do-History

(iv) On Pseu

Many teachers wish they knew more about the history of

they might be better able to motivate the subject.

however,

fro

call pseudo-history (Brown, 1978 as well as Brown and Walter, 1983).

example, consider the following kind of

What questions arise from a caveful

tion that would avise 1f our focus we

ionship.

for some general algebraic generating formula?

is that a great deal of {ntellectually stimulating thought can

in
m an effort on the part of students as well as teachers to engage

What wight have been responsible for getting people to look at

products of primes?
We can, for example, imagine a

on expressing any given number as

mathematics community that focused orfginally

re upon

look at the

mathematics so that

What is not well appreciated,

flow

what I

As an

question conceivably generated by 4.

the sum of other numbers. What might have

moved them to look at products instead?

These are surely not the only

the same time maintaining an accepting
They do, however, represent a start,
to be given much curriculum consideration.
to expand both the list of "¢hings" upon which one might generate

well as the categories oue might look towards in the gener

categories for generating problems while at

Posing As An Adolescent

in this subsectlon we further

selecting a situation in a mode that is more rem

than is the previous subsection.

expaud the concept of problem genera

iniscent of adolescent

Though perhaps the most intriguing,

view towards the beginning situation.
and with the exception of (i) tend not
[t would be a valuable contribution
questions as

ation of questions.

tion by
rebellion

this is the
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aspect of problem posing that Marion Walter and T have written more about than
any other, and 1 therefore will restrain my natural tendency towards verbosfity--

with the suggestion that you refer to relevant pleces cited if you wish further

elaboration.

The concept of challenge, threat or adolescent rebellion is well captured

by Hofstadter {(1982) when he comments:

George Bernard Shaw once wrote (in Back to Methuselah): "You see
things; and you say 'Why?' But I dream things that never were; and
I say 'Why not?'” When I first heard this euphuism, 1t made a
lasting impression on me., To "dream things that never were"--this is
uot just a poetic phrase but a truth about human nature. Even the
dullest of us is endowed with this strange ability to construct
counterfactual worlds and to dream. Why do we have 1t?7 What sense
does it make? How can one dream or even "see" what is visibly not
there?. . .Making variations on a theme is really the crux of
creativity. On the face of it the thesls is crazy, How can it
possibly be true? Aren't varlations simply derivative notions,
never truly original creations? (p. 20) . . .Careful analysis leads
one to see that what we choose to call a new theme is itself alwvays
some kind of variation, on a deep level of earlier themes (p. 29).

One can start with a definition, a theorem, a councrete materfal, data, or
any other phenomenon and instead of accepting it as the given to be explored,
>ne can challenge it and in the act create a new "it."

Consider for example the definition of a prime number:
A natural number is prime 1f it has exactly two different divisors.®

Now the "natural"™ inclination of the standard rurriculum Is to use that
1t of Ianformation to prove or show all kinds of things. An adolescent rebellion
n the other hand might generate a host of questions like:

‘What 's so special about numbers that have exactly two different
divisors? What kinds of numbers have exactly three divisors?

*Why do we focus on divisor? Can we find numbers that have exactly

two different elenents to form a sum?

*Why are we focusing on different divisors? Can numbers have the
same divisor twice?

*Why do we focus on natural numbers? Suppose we look fnstead at
fractions or the set of odd intesers.
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I shall not continue with the list of such questions that can be generated

to challenge rather than accept the concept of prime number. (See Brown, 1978,
1981 for a thorough development especially of the last question) Let me merely
indicate that such activity has a built-in kind of iromy, for it is in the act

of "rebellion" that one comes to better understand the "thing" against which one
rebels, - In that sense challenging "the given" as a strategy for problem generating
has the potential to be viewed as a less radical departure from standard curriculum
than one might otherwise believe,

Marion Walter and I have taken the insight of challenging the given and created
a scheme which we call "what-if-not."” A number of people both within the CMESG group
and outside of 1it, have derived some fascinating and imaginative concepts by employ-
ing the scheme. Though it is possible to approach that scheme in an overly mechanistic
manner, 1t is also something that can be done with taste.

Suppose one wishes to do a "what-if-not" on the Fibonaccl sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55,. . .
For the first stage of the scheme, one lists the attributes of "the thing," without
worrying about such matters as completeness, repetitioh, elegance of statement,
independence of statements and so forth. Thus we might list among the attributes:

1. The sequence begins with the same first number.

2. The first two numbers are 1,

3. If we do something to any two successive terms, we get the next

number in the sequence.

4, The something we do 1s add.

At the second stage, we do a "what-if-not" (hence the name of the scheme) on
one of the attributes, For example, suppose we do a "what-if-not" on number 2 above;
if 1t 1s not the case that the first two numbers are 1, we ask what they might be?
Obviously we could select many alternatives to 1 and 1 as the starting numbers,
Suppose we chose 3 and 7.

At the next stage, we ask some new set of questions about the modified phenom-

"enon. Suppose we begin by asking what the new sequence would look like. To continue
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the process, we finally engage in the kind of activity which most people incorrectly

assume is the essence of mathematics--namely we analyze or try to answer the question.
Thus, if we malntain the essential definition of the original sequence (something
we need not necessarily feel obligated to do), we would get:
3, 7, 10, 17, 27, 44, 71, . . .
Moving back to the stage of asking some new set of questions, we might ask:
*Is there an explicit formula to generate the nth term of the sequence?

*How do properties of this sequence compare with those of the qriginal
one?

An analysis of these questions reveals some very fascinating jewels. People
who are familiar with properties of the original Fibonacci sequence, in analyzing
the second question above; most likely would look (among other things) at ratios
of succeeding terms., Choosing smaller to larger adjacent terms, we would get:

.42, .70, .588, .708, .614, .62,

Something smells (as In the equilateral triangle example In the previous
subsection) peculiar. We are arriving at ratios that appear to be very close to
the "golden ratio" (approximately .618)--something we expect from the original
Fibonaccl sequence, Why is that happening?

In analyzing the question above, one is thrown back towards an analysis of
the original phenomenon--as we indicated above.

We have barely begun to see the wealth of surprising results in making use
>f the "what-1f-not" strategy on the Fibonaccl sequence. (See Brown, 1976 and
3rown ;nd Walter, 198) for a more detailed discussion) In this brief sketch,
rwowever, we implied the value both of carefully employing the varlous stages of
:he "what-if-not" strategy and of iInterrelating them as well,

In closing, it is worth pointing out that despite efforts to mechanize the
stages, the process tends to elude a computerized mentality, for it is frequently
:he case that in the absence of an essentially human activity one may never even

'see" some of the attributed to vary in the first place, Elsewhere (Brown, 1971,
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1974, 1975, 1981) I have shown how it is that use of poetic devices such as
wetaphor and imagery, and such human qualities as finding surprise and flipping
figure and ground frequently account for our ability to see what it is that is

sﬁpposedly staring us in the face all along.

- Bl -
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CANADIAN MATHEMATICS EDUCATION STUDY GROUP
JUNE 1983 MEETING (VANCOUVER)

Report of Working Group A

Developing Statistical Thinking for A1l

by Claude Gaulin and Jim Swift, Co-chairmen

The Working Group set as its aim the development of a set of guidelines for the
introduction of work on statistical thinking into the core curriculum. The con-
centration on STATISTICAL thinking was deliberate. The group recognized the im-.
portance of also including PROBABILISTIC thinking in the core curriculum, but in
the limited time available for discussion, it was judged preferable to concentrate
on the area of developing statistical thinking for all.

A pre/corequisite of the development of statistical thinking is a SENSE OF NUMBER,
which must be an important objective of the mathematics core curriculum. Number
sense is understood to include such concepts as estimation, accuracy and size, and
such skills as rounding and making approximations.

GOALS FOR THE DEVELOPMENT OF STATISTICAL THINKING FOR ALL

1. To develop critical attitudes towards conclusions based on éonnmn]y
used statistical arguments.

2. To develop those skills of data exploration hecessary for achieving
the first goal.

3. To develop an awareness of the uses of statistical arguments.

APPROPRIATE STATISTICAL TOPICS FOR THE CORE CURRICULUM
The topics fall into two broad areas:
(A) The tools of data analysis

(a) Numenieal Summaries

Collecting data and presenting them in the form of tables, averages,
percentages, proportions, etc.

Interpreting information presented in the forms mentioned above.
Using averages and measures of variability to illuminate data.
Detecting patterns in data.

Recognizing appropriate and inappropriate use of numerical summaries.
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(b) Graphical sunmaries

Collecting data and presenting them in graphical form. Appropriate
forms include: circle charts, scatter plots in one and two variables,
box and whisker plots, stem and leaf plots, bar graphs, etc.

Interpreting information presented in the graphical forms mentioned above.
Using a variety of plots to illuminate a collection of data.

Detecting hidden patterns in data.

Investigating values that appear "different" (outliers).

Making comparisons between collections of data presented in graphical

form (e.g. comparing box and whisker plots of two sets of heights).

Emphasis and methodology

The emphasis should be towards providing ways of overcoming the mistakes of
Judyement that so often arise when data are examined. The work of Kahneman
and Tversky {11 has clearly shown some of the kinds of mistakes that can oc-
cur in this context.

. Students should be encouraged to develop their own interests by collecting

and examining data from any subject that attracts them. Project work, invol-
ving the planning and execution of an experiment that includes the collection
and interpretation of data, is also a most worthwhile activity. Much attention
could also be given to the compilation of a collection of interesting activi-
ties, data examples from newspapers, case studies from practicing statisti-
cians, etc, that will illuminate the teaching of statistics. {2}

The computer and the calculator offer considerable opportunities for enhancing
the development of statistical thinking. Students can concentrate on the use
of the tools of data analysis, not as ends in themselves, but as a way of ex-
tracting information from ar interesting data set. The ccmputer also facili-
tates the exchange of data sets in a format that allows students a convenient
form of access.

Statistica) thinking is not confined to the mathematics curriculum. Teachers
are strongly encouraged to look for applications of statistics in other subject

" areas. In addition, the developwent of statistical thinking involves the use
of many mathematical skills and techniques, e.g. work on ratios, proportions,
graphs and number sense. Such reinforcement is a positive feature of a stronger
emphasis on statistical thinking.

{B) Sample surveys and their interpretation

{a) Developing an understanding of, and a critical attitude towards, sta-
tements made about surveys.

{b) Recognizing misleading interpretations of survey data. (for example,
such statements as "the Liberals have increased their share of the po-
pular vote by 2 %" are misleading when the poll is only accurate to 4
percentage points.)
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(c) Developing an intuitive understanding of how a sample can give in-
formation about a population. R.J. MacKay *
(d) Using elementary methods of obtaining a sample from a population. University of Waterloo

Emphasis and methodology

. The purpose of this note is to outline the major problems of
The emphasis should be towards those activities that develop an INTUITIVE un-

derstanding of the uses and limitations of surveys. Methods that use tech- including “respectable statistics" in the schoel curriculum. By

nical jargon and emphasize probability models are not considered appropriate L . ) . .

for the core curriculum. One successful approach has been to observe the ) specifying these problems, I think we can direct our energics uscfully

variability that occurs when samples are taken from a YES/NO population and . R N R L

to summarize data from 100 such samples in a box and whisker plot. 3] This and not waste a large amount of time discussing irretevancics.

approach does not involve the use of probability statements connected with sur- B o . . .

veys. In its deliberations about methodology, the group was very conscious of My first point is that there is no nced to decide what the important

the importance of dealing with misconceptions concerning surveys 1ike those . ] . . . L

shown in the work of Kahneman and Tversky [11. A valuable goal in teaphing topics are. The list given below can be generated using many different

this topic is to aim at overcoming such misconceptions as occur at a very basic . . . . . .

Tevel. : criteria, but I believe in the end that the list produced will look much

Students should continually challenged to ASK questions and be critical about like the one I'm giving. The criteria I've used to select these concepts

a survey. Appropriate questions might include: how were the data collected?

Q;d ever{ ?emaer 2£ the p?pulation h:V:_thg pgis‘bigit% of bi:"Q included :" : are first that the topic should lead to the understanding of a frequently
e sample as the sample representative c. Such questions are a valua-

:lﬁdﬁg:;geizfolﬁz:nlgg;sz:rfacgagr:%hgg?"cﬂggléﬁgu;o t?ﬁe::r¥§y:otggEt:iew:;ten encountered concept. The topic should be "vivid and exciting” and

oflre;e$ling theT;im;Fation? off57;ve¥ techn;q?es :han b{ being ag%:ve:y :@' \ further tcachers should be able to link the topic to other parts of

volved in one. e discussion following such involvement can be uminating.

The area of ‘sample surveys is one of the most frequently reported areas of sta- a mathematics/computer science curriculum.

tistical thinking. There should be no difficulty in including a strong empha- . . . )

sis on the use of newspaper sources when this topic is being taught. The first critcrion is one of relevancy. The second is usetul

: in considering how a topic is to be presented. The third criterion is
{11 D. Kahneman, P. Slovic & A. Tversky Judgment under uncertainty: heuristics

and biases. Cambridge University Press, 1982. . pragmatic, and recognizes that statistical ideas will be presented by
[21 cf. StatistiC? Teacher Network, edited by Prof. Ann Watkins, Dept. of Maths., non-specialists in a mathematics or computer science setting. For the
Los Angeles Pierce College, 6201 Winnetka Ave., Woodland Hills, CA 91371,
{31 . Schaeffer & J. Swift Information from Samples. (To be published by the teachers'sake, the statistical ideas must be tied to their own discipline.
ASA/NCTM Joint Committee on the Curriculum in Statistics and Probability) . , .
Note: a YES/NO population is one to which the words YES or NO can be attached The topics given below can be presented at many levels. 1 hope my
to each member of the population (example: a population of black and i . . . .
white balls in a sampling box). brief examples will give you the flavour that [ feel is required.

*The ideas on this note arosc from discussions with Jim Swift, Roger
Purves, Brian Graham, A1f Waterman, Ted Benttery, Jim Nakamoto and others.

APPENDICES

Appendix 1 Statistics in the School Curriculum, by R.J. MacKay
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Potential_Topics
(iii)} topics can be introduced as part of a computer sciecnce
A. Number sense ’ exercise.
(a) softening big and small numbers "if a super computer (iv) statistical ideas can be embedded in a mathematics problem.
can perform 50 million calculations per sccond, and eg. Given five observations plus an unknown sixth
150 mathematicians can perform the same calculations value x , plot the mean and the median of the data as
in a week, how many calculations does each mathematician x varies.

make per second?"

{b} Probability has been excluded from the list except for the notion
of chance variation. I think probability can be included in the
school curriculum but it should be separated from statistical ideas.

(Victoria Times-Colonist, April 24, 1983).

(b} biogiaphy of a number

122000 fewer claims needed” . L i i
(c) Formal statistical procedures should not be included in the school

(Victoria Times-Colonist, February 7, 1983). curriculum. ‘Tthese methods are irrelevant for most students,

B. Sample surveys Problems

(a) Mrepresentative samples” Meve is a 1ist of problems which I think can be addressed by this
workshop using the given topics as a reference set.
(b) from sample to population
1. identification of source wmaterials(:xamples, potential projects,
(c) sampling variability classroom experimcuts, test/homework problems, computer
software etc.)
{(d) non-sampling errors.
2. development of a delivery system to make these materials
C. Statistical relationships and causation available to practising teachers

(a) it looks like a pattern but it's only chance variation. 3. development of source materials with Canadian content (or
. better, of interest to Canadian students)
{b) it looks like chance variation but therc is a pattern.
4. creation of ideas for linking statistical concepts to mathematics
{c) making comparisions in a ron-deterministic setting. and computer science curricula.

D. Data analysis tools 5. teacher training/re-training.
(a) numerical sumiaries (eg. averages, percentages, tables).
(b) graphical summaries (eg. scatter plots, box and whisker plot etc.)
Notes
(a) To make these topics vivid, there are several possibilities:
(i) the topics can be used to motivate mathematical ideas,
for example using scatter plots of real data to introduce
cartesian coordinates.
(ii) the topics can be introduced by way of a "story" or classroom

experiment in which the questions of interest are asked
first.
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REPORT TO CANADIAN MATHEMATICS EDUCATION STUDY GROUP

Re: Working Group B: Training in diagnosis and remediation for teachers.
June 8 to 12, 1983

In recent years there has been considerable emphasis on diagnostic-
prescriptive teaching. In mathematics education this has taken the form of
analyzing computational strategies used by children and then recommending
appropriate reteaching of ilncorrect procedures. Assoclated with this concern,

a few educators have prepared mathematics diagnostic inventories useful in the
assessment process, Further, several institutions have established mathematics
clinics. Some clinics offer a diagnostic service only; others offer an
associated remedial component. These clinics are usually justified to the
parent institution in that they provide a service to the community, offer a
research setting for their faculty, and can be used to train teachers. Occasion-
ally a course is offered 16 ""diagnosis and remediation in mathematics™ utiliz-
ing the clinic facilities. Typlcally these courses are avallable to graduates
or senior undergraduates. A student who elects to take only the regular intro-
ductory mathematics methods course would likely have very little exposure to the

"diagnostic and remedial" concepts.

The purpose of this Working Group is to examine more closely a recommend-
ation that all teachers be trafucd to handle diagnosis and remediation in the
regnlar classroom and what form this might take. To facilitate discusslon,
selected membcrs.would be asked to prepare papers which summarize diagnostic
and clinic models, both for preservice and inservice situations, and raise

questions which focus on this training.
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REPORT OF WORKING GROUP B: Training in diagnosis and remediation for teachers.

LEADERS: Douglas R.M. Edge, University of British Columbla
David F. Robitallle, University of British Columhia

Tn the past several years working groups of the Canadian Mathematics
fducaters Study Group have cencentrated on various aspects of diagnosis and
remediation. This year tie working group focussed on what training, 1f any,
teachers should be glven to develop thelr mathematics-relared diagnostic and

remedfal abilities. Discussion was divided 1nto three areas:

* regular education undergraduate students
* speclal education

¢ graduate students and research

The outline of this report parallels that division. Key points are

noted along with resuiilng suggestions and recommendations.

1. Regular undergraduate teacher preparation:

a) It was acknowledged that many student teachers have great difficulty
with elementary mathematics concepts. Although several approaches
to thils problem were considered, one was presented in some detail,
All students enrolled in an elementary mathematics methods course
were tested for functional numeracy on content typlcally found in
grade seven and elght mathematics textbooks. Students who did not
achleve a particular score were then asked to report to a dlagnostic
centre for further testing. These students were then directed toward

appropriaste reference material. Nec specific remediatlon was provided.

b)

<)
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Several 1ssues were raised which result in the need for further
study. What constitutes functional numeracy? How can it be
measured? What role should the university play in providing the

needed remediation?

When student teachers are introduced to the concept of diagnosis
and remediation it appears that the wathematics content is heavily
biased 1n favour of arithmetic. Diagnosis rarely involves geowetry,
problem solving or estimation. Remediation tends to emphasize
basic facts, place value and algorithms. Several educators maia-
tained that the schools had obligations to teacher all children
certain "basics" including the basic facts and relevant algorithms.
Others noted that with the availability of hand held calculators

the extent of this obligatfon had to be reevaluated.

It was noted that until recently in special education, diagnosis
typically concentrated on fdentifying perceptual deflcits, such
as auditory or visual perception dysfunctions, of non-achieving
students. In mathematics education, the diagnosis was much more
task-analytic orlented. That is, there was more of an attempt to

identify specific content objectives where remedial work was needed.

It was recognized that the current trend toward the integration
of both approaches is desirable. Further study is needed on the
extent of the integration and on the emphasis the perceptual

deficit couponent should have in a wathematics methods course.
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Iin terms of what to expect in a regular mathematics methods course,
the point was made that as good teaching would routinely involve
diagnosing students' strengths and weaknesses, it is difficult to
differentiate between "diagnostic-remedial methodology” and
"traditional classroom methodology". It was suggested that a
methodology course would include the teaching of certaln principles
such as:

* Introduce new concepts using materials then move toward

a symbolic level

+ use a four~step procedure to illustrate how to appro-
priately transfer from the use of concrete devices to a

symbolic level; and

» utilize a teaching model that incorporates exploratory,

understanding, consolidating and problem solving levels.

It was recommended that this introductory methods course not
concentrate on formal diagnosis, such as the use of standardized
tests, but rather on the preparation and uses of Informal tests.
Although there was some concern expressed about the value of error
pattern analysis due to an inability to classify and describe all
errors, there was a strong feellng that student teachers should be
exposed to the concept. It would serve to sensitize the student
teachers to the kinds of errors children can make and as a result

would help them bring a preventative focus to their teaching.
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2. Special education undergraduate training:

aj)

Of the several programs discussed, it appears that special education
students are required to take courses that fall broadly into three
categories. Firstly, they take some courses that are in common with
regular education students such as reading and mathematics methods.
Secondly, they take special education-specific courses such as
introduction to the mentally retarded or the learning disabled.
These courses may or may not include components related to testing
(standardized or informal), to developing diagnostic skills and to
teaching/reteaching techniques. Thirdly, special education students
generally select courses from an optional list which, although vary—
ing greatly from institution to institution, often does include a

course in diagnosis and remediation of mathematics learning problems.

In this latter regard, that is the aspect of an optional diagnosis
and remediation course in mathematics learning, some concern was
expressed in that many graduates of these programs will work as
resource personnel in learning assistance or resource room centres.
Given that, in addition to reading and language arts, much of the
work of a learning assistance centre is focussed on mathematics, a
course in corrective mathematics techniques should be viewed as
compu]sory to the training of the specialist. It was noted that
imless these teachers are given training in diagnosis and remedia-
tion they are likely to utilize such standardized tests as the
Wide Range Achievement Test (WRAT) or the KeyMath and make
specific instructional recommendations in spite of the survey

nature of the tests.
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Several members of the group also expressed the opinion that the
training of special education teachers at the Jndergraduate level
should be reviewed. These members indicated that the skiils
required of a competent remedfal teacher could be obtalned only by
first working with children in regular classroom settings for
several years and then hy taking specialized training in dlagnostic-

prescriptive techniques, likely at a graduate level.

Clinical programs were reported to have varying degrees of success.
Some clinics are assoclated with the teaching of a particular

course. Although this provides some hands-on experience, diffi-
;ulties with long range planniaug, following-up remediation, biased
referring population, and travelling time limit practical experience
for the student teacher. Other clinics are operated independent of
course teaching. 1In this case the remediation does not have to be
tied to the semester system and it does permit working with a child
for a longer period but 1t invelves other problems such as the paying

and supervising of qualified tutors.

Clinics operating during the summer session syare some of the same
features as clinics held daring the fall or winter but they have
two major advantages. Children can spend more hours per day study-
ing mathematics. And, children are more likely to participate in

instructional sessions on problem solving, measurement and geometry.

No specific recommendatlons or suggestions were forthcoming.

c)
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The issue of tralning special educatton teachers for the secondary
level was briefly discussed. There do not seem to be any currently
exlstlng:iA”Canada. The situation is critical and requlres immediate
attention. Needs were ldentified for the development of an appro-
priate‘content taxonomy as well as for useful diagnostic instruments.
Further information is also needed on remedial teclniques. Are
techniques that are routinely recommended for use with elementary
school children applicable to students in secondary school? Should

instruction for meaning always precede drill? Which topics must be

taught initially using concrete matertials?

3. Graduate programs and research:

a)

A proposal for a Master of Education degree program in mathematics
education with a focus on diagnosis and remediation was presented.
This proposal, presented in Appendix A, suggested that courses in
mathematics education (foundations, advanced methods), educational
foundations (learning theory, human development), research and
measurement, and field experience all be required components. It
was also suggested that students be given opportunities to select
from a serles of optional courses which would ineclude mathematics,

special education, and reading education,
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Although there appeared to be general support for the proposal,
two additional recommendations were made. Firstly, a course in
standardized testing should be required. And secondly, some

attention should be given to the preparation of an integrated

Masters of Education program in dlagnosis and remediation. For
example, joint programs in mathematics and reading, mathematics
and early childhood or wmathematics and special education should

be proposed and implemented.

Conducting research in diagnostic-remedial settings has presented
special problems. It has been difficult to carry out experimental
studies using large sample sizes given that clinical programs

often contain too few subjects. Hence, researchers tend to rely

on methods which use case study approaches. One concern related to
the use of case study research was expressed. This research tends
to be hypothesis - generating in nature rather than leading to
specific or "practioner-oriented" concluslons. But, it was noted
that currently more research is utilizing case study methodology.
This is likely dueto the respect accorded to some high quality,

insightful reporting based on these procedures.

Rather than make specific suggestions or recommendations relating
to diagnostic-remedial research, the group focussed on past and
current studies. Error pattern analysls was discussed. Results
are often difficult to classify and this led to some consideration

of the value of pursuing this line of study.
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Clinics were seen as good settings to examine various pedagogical
models and remedial techniques: models such as teaching cycles
or transferring from concrete to symbol, and remedial techniques
such as the use of contrasting algorithms or of specific manipu-
lative materials., The extent of computer use in remediation was

mentioned and appears to require much further investigation.

An additional area that recelved consideration was the development

of diagnostic instruments. Examples given included the U.B.C.

MEDIC Checklist and the Maryland Diagnostic Aritlmetic Test.

Carryl Koe (U.B:C.) discussed her current research which involves

the development of a diagnostic checklist for solving linear algebraic

equations.

SUMMARY

Throughout the several days of discussion several major themes appeared
to recur. Firstly, diagnosis 1s an essential component of all good teaching and
hence must not only be considered for that group of children identified as in
need of special help. Consequently all pre-service teachers need training in
this area. This training should include experience in the preparation and inter-
pretation of informal testing procedures and with the development and implementation

of appropriate remedial techniques.
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Secondly, much more extenslve use must be made of the hand held cal-

culator. This is imperative when working with older children who may have been

struggling unsuccessfully for several years with particular facts and algorithms.

It was not as clear that the computer should receive the same emphasis. More

study of the role of the computer in diagnosis and prescription is needed,

Thirdly, special educatlion students require much more expertise related
to diagnosis and remediation of mathematics learning. When these students
become teachers they are typlcally expected to have a high level of ability in
working with children who have mathematics learning difficulties yet it appears

that, at best, courses which would prepare them for this task are optional.

Other themes were also apparent. There is no intention to suggest that
these are less important. 1t is stimply that they received less attention than

the first three themes noted above.

Firstly, Master's level graduate degree programs need be prepared.
Courses should maintain a focus on mathematics learning, but need to address
diagnostic and remedial concerns in related flelds, such as reading and special
eudcation. It is also possible that this kind of graduate program should come
to be seen as the way to traim "special educators", rather than undergraduate

degree programs.

Secondly, vastly more interest needs to be shown toward the learning
problems of adolescents at the secondary school level., The direction for this

interest certainly must be directed toward diagnostic and remedial issues but
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must also include the development of relevant, application-oriented courses.

Watered-down versions of existing courses must be avoided.

The worklng group addressed numerous issuves. In some cases the making
of specific suggestions seemed appropriate. TIn other cases, It was recognized
that further st;dy of a toplc was required before vecommendations should be
made. It is hoped that future working groups would be organized to examine

in some detail one or more of these 1ssues.
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APPENDIX A

PROPOSAL FOR A MATHEMATICS EDUCATION PROGRAM FOCUSSING ON DIAGNOSIS AND
REMEDIATION IN MATHEMATICS,

PREREQUISITE: Mathematics methods and content (369 or 40&2*

Introduction to Diagnosis and Remediation (471)
SUGGESTED COURSES: UNITS
1. Math Ed: Diagnosis and Remediation (56D 3.0 WORKING GROURVC
Foundations (545) 1.5 v—' T
Math Teaching: Elementary (547) i.5
or
Math Teaching: Secondary (548)
MATHEMATICS AND LANGUAGE
2. Foundations: Learning Theory (501) 1.5
Human Development (505) 1.5
3. Research and Measurement: Research in Education 1.5
Methodology (508) *
4, Practicum: Field Experience (598) 3.0
OPTIONAL COURSES: Selected from following - 4,5
History of Mathematics (485) +18.0

Mathematics Education: Elementary (488)
Mathematics Education: Secondary (549)
Remedial Reading (476)

Introduction to Research (481)
Introduction to Statistics (482)
Behaviour Disorders (515)

Learning Disabilities (526) .
Hearing Impaired (530)

Multiple Handicapped (537)

Early Childhood

Testing

Adult Education

Education for the Gifted

* Numbers refer to U.B.C, course numbers.
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Muhematies and banguage,

t am lmpressed by the inadequacy of Lanpuage to express
our conscious thought, and by the inadequacy of our .
consclous Lhought to express our nubconselous. The
cursc of philosophy has been Lhe supposltion that lang-
wape {8 mi exact medium, I'hllosophers verbalise and
then suppose that the tdea i stated for all time,
Fvon 4f 1t were stated, 1t wonld need to he restated
for every century, perhaps every peneration. Plato is
the only one who knew better and did nol fall fanto
s trap, WHhen ordinacy ncthods fadted him, he pave
us o myth, which does oot challeoge exact ftute but
exvites reverle. Mathematics s morae nenrly preclae,
and comes nearer to the trath, In a thousand years
Lt may be aa commonly usced as 8 speeeh today.
‘ - AN, Whitchead

What I8 o satisfactory definteion?  For the phtlosopher
or the schotar, o definition is satisfartory tf 4t appl-
{en to thase and only Lhese things that are belug definedy
this is what lopic demands. But in ceachlag, this will
pot doj  a definltion is satisfactory only {f the stadents
understand {t.

- Ii;_Poin.

There is no more reason why a person who uses a word
correctly should be able to tell what it means than there
is why a planet which is moving correctly should know
Keplar®s laws.
v - B. Russell

In spite of the prefatory quotations, this is not lntended to be a well-
arened,  through-composed paper, but only a ramhle throuph some small

ptits of the tercltory., The hope §s that the vemarks may trigper

thaughts that are worth pucsuing, The area ta vast and mainly unexplored.

1 shall keep well avay frﬁm the replon signposted Mathematics 1s a
Lmgnage. 1 belleve it to be uninhablted.

Two papers which atteapt some coverage of the ground for the mathematics
cducator are Aiken (1972) and Austin and Howson (1979). Nelther secems
to me to be very satisfactory, though the second is much more useful
than the first. Both supgest that comprehcunsive surveys ate really

cut of the question - there is too much to cover. lore practical, and
more useful, would Le a map (graph, {low-chart, diagram) of the whole
area supplemented by surveys of particular localities.

For this paper [ consider three chunks.
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Mathematles an_an outcome of language

When we teach a banguage (native or forelpn) we usually assume that'
the students already have oxperiences that they can talk and write
about {n the Jonpuage,  Uhen we teach mathematics we uavally assume
that we lave Lo teach the language of mathemat les and, simultancously,
what the students may may and weite ia it, (Sinelair, 1990)

But the students learning mathematical lanpuage already posscss
functional, pnd essentially prammatical, speechi that s, they can,
without knowing what they are called, operate correctly with the
various "parts of speech”, TDach part of speech Is assoclated with
certain avarencsses that appear to be mathematical, For examplet

Knowing how to_use ... requives the mearcuess of

verhs
nd]ortlvvn}
ndverbn

founs } classes (of objects, actlons)

faternret ton/faclusion of
classen

pronounn substitut fon

preposti tons relation

Lensed transformal fon

Again, anyone who can use the following statements equivalently has
a grasp of an "atgebra’ of language:

Je donne mon canif 3 elle 11 donne son canifl 3 mot
Je lui donne mon caulf 11 we donne son canif
Ja le lui donnew Il ire le donne*

(* aad Is aware that the alpebra may eccasfonally be distucbed by
other demands - for euphony, for {nstance).

So in a certain sense some mathematical awvarenesses precede (or
accompany) the acqulsitfon of speech, How, then, does ouy assompt fon
arise that mathemat fes can only follow an induction into dts special
lanpuage? T

We might obtatin some further illumination by lookinp at “pathologlcal”
cases.  Can deaf children, without normal specch. learn mathemoatics?
(A short classic paper by Wertheimer and studies by lMans Furth look

at this.) Can children brought up fn a totally different culture
learn mathematics as we know {t? A paper by Gay (1974) suggests that
all known languapges have the basie structural elements of conjunction,
negation and quantification and that thesc are sufficient for the
development of mathematics.

The evidence is overvhelming that there Is wore to mathematles than

its special lanpuage. However stifled and stunted mathematical develop-
ment would be without the language, It {s the "more” that glves meaning
to the words and the signs and the Yingulstic conventions.

T omit here the camplex aml fascinating matter of the velat{onshipa
between mathemat feal and "natural™ Yahpuape.
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Characteristics of mathematical language

Following Whitehead, we may see mathematical language as more precise
than ordinary language. But there are at least two qualifications we
may make. One is that even when used by mathematicians the language
is not precise in the sense of "free from ambiguity”. Par un abus de
langage is a common bridging phrase in the writings of some French
mathematicians, who care about these things. The other is that mathe-
matical language is not precise in the sense of "being clear’. Ve
have only to consider legal language to see that the claims of clarity
and exactness are not always compatible. (Teachers seem more prone
than lawyers to confuse the two qualities.)

How do we learn, say, the word "rectangle”? To give it an initial

meaning we distinguish the object described from objects described
by “square", "parallelogram", etc. But in order to give a definition,
one of the properties is dropped (‘'two long sides and two short sides'):

This enables us to say, for example, ,

"a square is a rectangle’
"a rectangle is a parallelogram'

These statements have the same formal structure as "a rose is a flower"”
(the class of roses is included in the class of flowers). But we do
not first encounter the word "flower" by distinguishing the thing it
describes from the thing described by 'rose", or vice-versa.

We write, say, 2< 5 and speak "two is less than five". 1s 2 less than

5 because the former is the cardinal number of a proper subset of the
set of which the latter is the cardinal number? Or because 2 occurs
before 5 in the counting order? If we substitute the criterion of a
positive difference (a<b 1f b - a>0) we find ourselves writing
-5<2, for instance. Is -5 less than 2? In either of the above senses?
See Pimm's paper (1980) to see how words and symbols defined in certain
situation are applied as metaphors in different sitvations. "Morphisms
preserve structure but do not preserve meaning." Structure-equivalents
are not necessarily meaning-equivalents.

In an interesting paper, Kaput (1979) takes two "axioms" - mathematics
is a formal structure, and mathematics 1s based on experience. He
suggests that mathematical notation lies on the border of the two
zones. Notation which cannot be related in some way to experience

is (literally) nonsense. But formal mathematics is atemporal whereas
experience is always in time. So to tie notation to experience is to
see it arising from a process (in time) whereas as a feature of the
formal structure it is also a product (timeless). In his terms, to
make sense of mathematical notation we must "anthropomorphise it".

Mathematical language has a history - it is a sort of historical sedi-

ment. Knowing the history may at times illuminate, at others exasperate.

{(Why, oh why, should we have to bear with the clumsiness of the radical
sigun, and why cannot we write our numerals so that the place value
increases from left to right?)

The power of mathematical language is undeniable, but perfect it is not.
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Language use in the mathematics classroom

A number of assorted aspects occur to me.

What proportions of classroom time are spent (by the teacher) in the
four modes of listening, speaking, reading and writing? lNow do these
compare with other subjects, or with the work of a (non-teaching)
mathematician? Why is there so little class or group discussion in
mathematics classrooms? Whatever one's views on the discussability
of mathematics per se, there is always the possibility of discussing
alternative solutions to a problem, variations in algoritlms, con-
trasting proofs.

But discussion has other uses. It {s perhaps the principal method

we have for negotiating the meaniungs of words and the validity of
arguments. A good discussion is, for the participants, a process

of "becoming clear". lLakatos (1975) casts his thesis in the form

of a guided discussion to show that mathematics, too, requires negoti-
ation and an evolving clarity.

Definitions are not devices for making things clear. They enable
thought and argument to be exact, but that is not (I think) their
principal function. A definition flags an idea, a perception, an
awareness, and says of it that it has a future, that the jdea will
be productive. The form of a definition may vary, as we know, to
satisfy criteria of convenience or elegance, but these are subordin-
ate to the criterion of significance. e tend to think of an organ-
ised part of mathematics as a collection of theorems, but it is

the definitions that power the development. Unfortunately very few
classrooms give students even a glimpse of this process,

Why are "word problems" such a bugbear for mathematics students

and teachers? 1In other subjects all the problems are word problems!
Part of the difficulty lies in the fact that students (Lorenz, 1980)
and teachers (Nesher and Taubel, 1975) are all the time colluding

to convert word problems into algorithmic exerclises.

Lorenz also points out (quoting Bauersfeld) that in no other subject
does the teacher tend to fdentify the answers to questions by their
form rather than their content, even to the extent of rejecting
correct answers not given in the prescribed form. Questioning is
not, in any case, a skill that mathematics teachers are generally
good at. (I have no hard evidence for this.) It is too easy to
formulate apparently straightforward questions, perhaps. T think
that to ask "What do we mean by fraction?” isas difficult to answer
as "What do we mean by justice?" Teachers, and mathematics teachovs
in particular, tend to forget that Socrates spent most of his life
demonstrating that what we incontrovertibly know we cannot necessarily
tell.

David Wheeler
‘May 26, 1983
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Language Usage in Mathematics APPENDIX 2

Reterences

L.R. Aitken, Language factors in learning mathematics. Mathematics
Educat fon Reports, Oct. 1972

Mathematics educators and others versed in the use of sophis-
ticated mathematics are sometimes unaware of the difficulties

J.L. Austin and A.G. Howson, "Language and mathematical education™. ' learners might encounter'as a result of the language USEd.“\ the

Educational Studies in Mathematics 10, 2 (May 1979):161-177 presentation and discussion of mathematics. Inaccurate, inappro-
priate, or ineffective use of lTanguage is often a contributing

J. Gay, Mathematics, ianguage and effective iearning. UNESCO, 1974 factor in many learners' conception of mathematics as "something

} you do, but not something you understand.”
J. Kaput, "Mathematics and learning: roots of epistemotogical status'.

In: J. Lochhead and J. Clement (eds.) Cognitive process instruction. During the past several months, by attempting to listen

Franklin Institute Press, 1979 carefully to myself and to my students, I have found that diffi-
- culties in Janguage usage in mathematics seem to fall into one of

1. Lakatos, Proofs and refutations. Cambridge University Press, 1976 the following categories:

J.G. Lorenz, "Teacher~student interactions in the mathematics classroom: 1. Situations where language is constrained by stan-

a review'. Ulor the Learning of Mathematics !,2: 14-19 dard usage.

P. Nesher and E. Teubal, "“Verbal clues as an interfering factor In ]
verbal problem solving”. Fducaitlonal Studies in Mathemacis 6, 1 I1. Situations where better alternatives are available.
(July 1975): 41-51

: ITT. Situations exemplified by careless or incorrect
H. Otte, "Textual strategies'. Tor the Learning of lathematics 3, 3:15-28 usage.

D. Pimm, "Metaphor and analogy in mathematics'. For the Learning of An important example from the first of these categories is
Mathematics 1, 3: 47-50 the naming of the "teens". Irregularities in the words used,
the word order, and the spellings are all present. In this situ-
H. Sinclair, Language and mathematics in acquisition. Address to ation there appears to be no immediate remedy except for the teacher
ICME-IV Congress, Berkeley, 1980 to be aware of the inherent difficulties and to be sensitive to
. problems they may cause in the classroom. Some other examples
M. Wertheiner, Productive thinking. Harper, 1959 from this category are:

1. "Reduced" fractions: Does reducing a fraction make it
smaller?

2, "Like" terms: 2xy and 3xy are “like" terms.
xy and 3Ky are "tike" terms.
P¥y and fixy are not "like" terms. )
3. "Variable": How variable is the "variable" in the equation
2x+1=52

4. In writing an expression for "the square _root of seven more
than a number", should one write JJ+x or 7+x?

The second category, situations where better alternatives
are available, appears to be the richest, both from the viewpoint
of the number of examples available, and the decisive role that the
teacher can play in alleviating the difficulty. An elementary level
example of this type occurs in the language used to introduce
multiplication and division. “Two threes are six" and "How many
threes in six?" seem preferable to "Two times three 1s six" and
"lfow much is six divided by three?" for two important reasons.
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First, the former use language already available to the students,

and second, they do not obscure the relationship between the
operations. Some other examples in this categary are:

1. Names of decimals: .17 should be read “seventeen hundredths"
rather than "point seventeen". The latter
obscures meaning and makes other connec-
tions more difficult.

2. Names of polynomials: x* should be read "x to the second
power", not "x squared”, unless a
model for the latter has already
been developed. A similar argument
holds for .

3. Classification of equations: "First degree, second degree,
third degree" is probably a more
meaningful sequence than "linear,
quadratic, cubic".

4. Subtraction: Using "difference" rather than "take away"
is suggested by certain manipulative models
(e.g. Cuisenaire rods) and more easily leads
to transformations useful in rapid computation.

5. Bases of numeration: Using the traditional language when
working in other bases of numeration
is cumbersome and obscures algebraic
relationships. For a further discus-
sion of this topic, see the 1980 (Laval)
Proceedings of CMESG. Also refer to
Trivett and Gattegno (see bibliography).

The third category is characterized by careless or incorrect
language usage, and can be eliminated by the careful teacher.
Some examples from this category are:

1. Names of fractions: % should be read "one fourth", not "one
over four". The latter is devoid of
meaning and can lead to serious problems
in computations with fractions.

2. Reading and writing large numbers: Place value names are.of
little use in learning to read and write
- large numbers. A more effective approach
is to “read"” the commas (Gattegno).

3. Time and numbers: “One twenty five" is a reading of 1:25 and
refers to time. "“One hundred twenty five"
is a reading of the number 125.

- 03 .

I do not take the preceeding categorizations to be definitive

or the Tists of examples to be exhaustive, however [ believe that
this or a similar exercise can be of value to classroom teachers
and teacher trainers. It has led me to consider the following
criteria for making chéices about what language to use:

1. Use language that emphasizes, or at least does not obscure,
mathematical structures.

2. Use "ayaiIab1e" language, i.e., language brought to the
sfituation by the students or suggested by manipulative
models in use.

3. Choose clarity over precision.

4. Use language in a consistent manner.

Martin Hoffman 7/83
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Components of
A "Grammar" of Elementary Algebra Symbol Manipulation
David Kirshner

University of British Columbia

The Study of Algebra may be pursued in three very
different schools, the Practical, the
Philological, or the Theoretical, according as
Algebra itself is accounted an Instrument, or a
Language, or a Contemplation; according as ease of
operation, or symmetry of expression, or clearness
of thought, (the agere, the fari, or the sapere,)
is eminently prized and sought for.

(William Rowan Hamilton, 1837)

That mathematics can be regarded as a language has been
noted by many authors (see Aiken 1972 for references). More
recently, educators have begun to question either the validity,

or more probably the utility, of that connection:

It has frequently been pointed out that mathematics
itself is a formalized language and it has been
suggested that it should he taught as such ...

Such statements possess a degree of validity, but
would appear to be somewhat dangerous and potentially
confusing. Mathematics is not a language - a means of
communication - but an activity and a treasure house of
knowledge acquired over many centuries. (Austin &
Howson, 1979, p.176) .

Indeed several of the previous speakers of this working group

have expressed a similar point of view.
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Attempts in the past at drawing the connection have
generally focussed on identifying structures of languade in
mathematics or vice versa. In my current research, mathematics
is regarded as a language not so that knowledge of language may
be applied to mathematics, but rather so that the techniques
designed for the study of language may be applied the the study
of mathematics., 1Indeed, in the narrow sense by which linguists
define the term, mathematics is unequivocally a language:

From now on I will consider a language to be a set

(finite or infinite) of sentences, each finite in length

-and constructed out of a finite set of elements. All
natural languages in their spoken or written form are
languages in this sense, since each natural language has
a finite number of phonemes.... Similarly, the set of
'sentences’ of some formalized system of mathematics can
be considered a language. (Chomsky, 1957, p.2)

It is not possible for me, in the short time available
today, to outline in any detail the linguists' methods, or to
elaborate on the way in which I have adapted those methods for
the study of algebra. A few words, however, are needed to define
exactly what is meant by a "sentence" of elemenfary algebra and
to identify the basic elements of which sentences are comprised.

I interpret the term sentence in linguistics to refer to the
smallest unit of discourse which will normally be uttered by a
speaker who is being attended by listeners. In natural language

study, then, sentences correspond to the statements, qguestions

and exclamations of normal speech. By analogy, sentences of

-algebraic manipulation refers to equation solving (or system of



equations solving) and to the simplification of algebraic
expressions. These are the minimal acts which will be
accomplished by one who has embarked upon the manipulation of
algebraic symbols. The basic elements of which theses sentences
are comprised are the usual algebraic symbols
a,b,c,x,y,2,1,2,3,...,+,-,(,),=,etc.

The linguistic program is the development of a grammar which
can be loosely described as a set of rules which formally operate
upon the basic elements to produce the sentences of the language.
In my study, the simplification of algebr?ic expressions h&s been
selected as the subset of sentences of interest.

A grammar, as a mechanism for the production of sentences,
can be regarded as a cognitive theory. The devices employed by
the grammar are postulated to be the same ones employed by the
competent manipulator of algebraic symbols, Alternative grammars
may be formulated representing alternative cognitive theories.
Psycholinguistics offers various paradigms for the selection of a
grammar from amongst alternatives on the basis of competing
psychological claims.

In the case of natural language, linguistics involves
analysis at a variety of levels (phonemic, morphemié, phrase
structure, semantic, etc). A grammar of algebraic manipulation
likewise involves various levels of analysis. These will be

outlined during the remainder of my talk,
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1. Classification of Basic Eleuents. The first stage is
the identificaticn of the basic elements and their assignment to
various classes (eg. operators, quantity symbols, and grouping
symbols). As an example, the /~ symbol is interpreted as a
conjunction of two symbols: o/, and  , belonging to the operator

and grouping symbol categories respectively.

2, Expressions. Having established the basic elements of
the theory and their classification, the next step is to
rigorously define which strings of symbols will be considered as

"algebraic expressions" (eg. 5x{x + y~2)?, not S5x(y* "’ ).

3. Parsing. This component determines the parse of well
formed expressions. For example, it is necessary to define 3x?

as representing 3(x?) rather than (3x)2.

4. Transformations. The fourth stage is concerned with
the properties of real numbers which are used in the generation
of one algebraic expression from another. These include
arithmetic transformations, the standard "field axioms" of
algebra, and any other number properties which a competent
manipulator of algebraic symbols may bring to bear on one

expression in the derivation of another.
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5. Application Component. This penultimate level deals that this is true (and to the extent that the rules specified
with the actual application of real number properties to within each component correspond to cognitive structures) many
syntactically determined expressions., This component specifies a important implications to algebraic curriculum may be derived.
decision procedure to determine whether a particular To the extent that these claims are false, the linguistic
transformation is applicable to a given algebraic expression. paradigm, in algebra as in natural lanquage, challenges

researchers to devise a more adequate grammar.

6. Semantic Component. Thus far the levels of analysis

defined allow for the production of strings such as References
T 4x? - 12x - 16 = 4(x? - 3x - 4) = 4(x'"*' -y +y - 3x -5 + 1) as

well as 4x% - 12x - 16 = 4(x? - 3x - 4) = 4(x - 4)(x + 1),
Aiken, L. R. Lanaguage factors in learning mathematics.

Both of these involve the correct application of correct real Mathematics Education Reports, October 1972, (ERIC
Document Reproduction Service No. ED 068 340)
number properties. It is necessary, however, to exclude Austin, J. L., & Howson, A. G. Language and mathematical
: education. Educational Studies in Mathematics, 1979,
sentences of the former sort which are in some sense 10, 161-197,
Chomsky, Noam, Syntactic structures. The Hague: Mouton &
algebraically "meaningless". The semantic component consists of Co., 1957.
Hamilton, W, R. Theory of conjugate functions, or algebraic
a classification of sentence types according to the purposes couples ; with a preliminary and elementary essay on
algebra as the science of pure time. Transactions of
vhich are normally associated with expression simplification such the Royal Irish Academy, 1837, XVII, 293-422,

as factoring, reducing fractional expressions, rationalizing
radical denominators, etc. In each of these cases it is
necessary to delineate the initial configurations required and
the sequence of transformations to be applied. (1 have not yet

constructed the semantic component).

It is postulated that these six components of the algebraic
grammar represent the areas of skill and knowledge required for

successful manipulation of algebraic expressions. To the extent



- 102 -

THE INFLUENCE OF COMPUTER
SCIENCE ON THE UNDERGRADUATE
MATHEMATICS CURRICULUM
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WORKING GROUP D

The Influence of Computer Science on Undergraduate
Mathematics Education

John Poland

List of participants: Bernard R. HODGSON (Laval)
John POLAND (Carleton)
Yvan ROUX (U.Q. a Rimouski)

This working group was a continuation of one on the
same topic the year before, and had been advertised as
having the aim of producing working documents for
publication on this topic using the fertile production of
the working group in 1982, Yvan Roux attended only the
first meeting where he raised the general question of what
changes influenced by computer science would be appropriate
in undergraduate mathematics education to meet society's
needs, and after the discussion he preferred to spend his
time at the meeting reading the background material to be in
a better position to participate in concrete changes he
anticipates in his own department in the coming year. The
second meeting was a discussion of the issues with Peter
Hilton. The final meeting produced a draft for the article
in the appendix.
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REVAMPING THE MATHEMATICS CURRICULUM:

THE INFLUENCE OF COMPUTERS
by Bernard R. Hodgson and John Poland++

Almost every mathematics department in Canada has
experienced a drop in the number of students graduating with a
mathematics degree at the bachelor's level; in many cases, to an
unhealthy level. This phenomenon has occurred in many other
countries too, and it is clear that the attractiveness of a career
in our sister subject, computing, is a major factor. Computing is
the new, challenging and prestigious frontier. But there are a
number of key factors in this computer revolution that we feel will
compel specific changes in undergraduate mathematics education.

Let us spell out what we see as these key factors, the problems to

which they give rise and scenarios of probable reactions and

solutions.

Most important, in the next few years we can expect to see
large numbers of freshmen in our mathematics classes with a
substantial experience with microcomputers and their programming
packages. Many provinces are committed to extensive distribution
of these facilities to secondary schools and many students are
eager to learn. At the undergraduate level we will see more
disciplines using increasingly sophisticated computer techniques

** This article is the outcome of a working group of the Canadian
Mathematics Education Study Group (CMESG) meeting in June, 1983, a
-meeting made possible through a SSHRC grant. We express our
indebtgdness to the lively contributions of the members of the 1982
CMESG meeting on this topic too.
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and backup mathematics. Of course, computer programs will continue
to grow in their ability to do arduous multiprecision calculations
and carry out our standard numerical algorithms (like Simpson's
rule or row reduction of matrices), as well as grow in the ahility
to do routine algebraic manipulations (1like techniques of
indefinite integration or solving equations for specified
variables). And the increasing ability of computer programs to
carry out routine undergraduate mathematics also comes with a
growth of the new area of modern applied mathematics: mathematical
computer science (from computational complexity and probabilistic

- algorithms to formal languages and cryptanalysis).

Does mathematics as we teach it now really address these
changes? We feel that most of the undergraduate introductory
mathematics courses in calculus, linear algebra and abstract
algebra are presented in the classroom as though computers do not
exist. How can we expect to be considered as teaching to our
students when for example we present the traditional techniques of
integration (e.q. partial fractions) and our students know that
already there are packages to do these symbolic algebraic
manipulations on the computer, and in any case computer programs
exist to evaluate definite integrals without using anti-
derivatives? This illustrates that some of the content of these
courses needs to be deemphasized, especially as it relates to the
actual passage to and evaluation of solutions that computers can
obtain (c.f. P.J. Hilton in [CMESG 831). But the more we use
computers for these processes, the more we will need to emphasize
checking and validation. The question is that thorny one of
relevance. How relevant is our approach to the calculus or
algebra? How relevant is the actual content of our courses? Are
there other topics we should be introgucing to the students? And
how relevant does mathematics seem to them as a way of solving
questions with which they are or expect to be concerned? wWhat we
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wish most to share here is our feeling that the attitudes and
expectations of the majority of our freshmen who have some interest
in mathematics is and will continue to be for some time that the
most challenging and meaningful problems have to do with computers.
And this must be acknowledged in our methods of motivating our
students, and students from other disciplines taking our courses.

In what reasonable ways might we modify the content and
style of our undergraduate mathematics teaching? It seems useful
to point out that this situation can be addressed at different
levels. Right in the classroom we can make use of handheld
calculators or a microcomputer with a number of display units to
painlessly collect empirical data as grounds for hypotheses and as
a source of problems, or simply as a means of easily and
effectively illustrating results. Outside the classroom,
assignments to the students can involve similar computer-related
methods and can incorporate experience with existing computer
packages, such as LINPACK in linear algebra. Here we see the
computer as a very powerful tool. Next, as we have argued above,
the existence of these computer programs allows us to shift our
viewpoint when we come to teach varions methods of calculation.
Approximation, estimation and optimization will gain in emphasis
(including at the secondary school level). Algorithms are central
to computing. We can expect an alqorithmic way of thinking toc grow
in mathematics. 1t will stress recursion, iteration and induction
as its tools, and routinely include such topics as computational
effort when an algorithm is introduced, including the necessity of
formalizing algorithms in order to analyze them. To meet this
perspective, we could use more algorithmic, constructive methods of
proof where appropriate. At the same time, we should not forget

the appropriateness of many areas of mathematics to the study of
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exactly these new aspects, which brings us to the next level of

possible modification.

For the content of our courses, the demand for an
introduction to the material of mathematical computer science is
clear. The more advanced of these, on discrete structures or the
design and analysis of algorithms or finite automata théory, are
appearing in most undergraduate mathematics calendars and their
adoption is generally not problematic. But the most elementary of
these, under the umbrella title of Discrete Mathematics, is
currently the subject of a debate, based in the United States, on
whether éo offer such a course as an alternative to the calculus in
the freshmen year [RALSTON 81 and FUTURE 83]}. 1In summary of the
debate, the concensus seems to be that no satisfactory textbook
(and hence no satisfactory. syllabus?) for such a Discrete
Mathematics course yet exists; and the calculus may be a more
effective vehicle for teacﬁing mathematical maturity, by virtue of
its own maturity, depth and wide applicability. Let us look at
these two points.

Frequently the proposed curriculum for the freshmen
Discrete Mathematics course is a collection of traditional
mathematical results, similar to present Finite Mathematics
courses: Boolean algebra, combinatorics, induction and recursion,
graphs. Ts this a satisfactory and relevant approach to the
problem, or is it disjcinted, superficial and trivial? wWhat is our
purpose with such a course: to introduce the student to a language
and some elementary results useful in studying computer science?
Or can we go further and show the power of mathematical thinking?
Research in modern applied mathematics shows us the relevance to

the discussion and solution of major computer science
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problems. Can we convey this to our students convincingly? One
approach might be a course on congruences over the integers, finite
fields, polynomials and coding theory. Another, on the
combinatorial analysis of algorithms, was outlined by H. Wilf in
[FUTURE 83, p. 38} and is similar to Chapters 2 and 3 of the
successful upper-level text [DESIGN 741 by Aho, Hopcroft and
Ullman.

What is the basic perspective we should retain when
considering these changes, what is our overall goal? The major
recommendation of [CUPM 81)] was to capture the students' interest
and lead them to develop both the ability for rigorous mathematical
reasoning and the ability to generalize from the particular to the
abstract. 1In this context it should be recalled that the Science
Council study of mathematical sciences in Canada [COLEMAN 76] found
"almost all mathematics professors allege that *their highest
ambition in undergraduate teaching is to convey not specific
content but rather a way of thinking", a way of thinking that even
our colleagues in other disciplines consider important and wish
their students to undergo when taking our courses. It is so easy
when teaching specific content to-forget that our subject matter,
mathematics, is one of the greatest intellectual achievements of
mankind. True, many introductory calculus courses are presented as
mere exposition-regurgitation, but how much greater is the
possibility that the original proposals of a Discrete Mathematics
course degenerate into meaningless junk? Can we offer our students
courses in which the power of mathematics can be demonstrated in
computer science and the value of the computer in mathematics can

be appreciated in its proper role?
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Perhaps the most attractive option is to blend the new
approach in mathematics outlined previously, with the traditional
values of calculus-analysis-differential equations courses.
Examples of such integrated courses can be found through our
bibliography (E. Barbeau in [CMESG 82], [CRICISAM 68], F.S. Roberts
in {FUTURE 83], P.J. Taylor in [CMESG 82]), [WONNACOTT 771), and we
would éppteciate hearing of others. Students graduating with such
a modified undergraduate mathematics education would be better
prepared for future changes and to use the full range of their
mathematical training in their work. A model that appeals to us is
that of someone beginning with a large database, taking the limit
to obtain a continuous function incorporating this data, perhaps as
the solution of a differential equation, and then solving a
discrete approximation to this continuum formulation, for example

using the finite element method and linear algebra.

Before you decide on the nature and details of the changes
you would like to see in undergraduate mathematics education in
your university, do read the well considered proposals of [CUPM
811, the many sources and ideas in [CMESG 82) and our annotated
bibliography. If you begin with small changes in your courses,
these will probably be mainly in style, and you should collect
resources, including texts that incorporate this style in their
presentation (e.g. [STRANG 80} in linear algebra; [WONNACOTT 77] in

calculus). For larger, "curricula",changes you will need to
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convince your colleaqgues, both within your department and those in
other disciplines, of the value and necessity af your suggested
changes. A description of both the new content and style is
necessary so that the spirit of the change is clearly perceived.
Problems in coordinating your proposed changes with other

departments are discussed by L.K. Barrett in [FUTURE 83]).

We raised the question of the relevance of mathematics
courses, taught in the traditional form, for students arriving at
the university with a wide computer background, as many of our
students will. We argued for the retention of presenting the
mathematical way of thinking and showing the students the power of
such ways of thought.. We argued against simply replacing
traditional courses with a scattered introduction to the language
and background of mathematical computer science. We offered a
rnumber of suggestions on ways of producing more convincing
introductions, and more important we suggested ways of making
adjustments in existing courses to meet with the increasing use of
computers by our students. Our emphasis was on the fruitfulness of
the interaction between mathematices and computer science, and the
reasonable modifications we can attempt in our courses so our

students have a deeper, wider and more meaningful education in

mathematics.

Bernard R. Hodgson John Poland

pDépartement de mathématiques Department of Mathematics and
Université Laval Statistics

Québec GlK 7P4 Carleton University

Ottawa, K1S 5B6
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CAPPLICATIONS 791 Applications of Linear Algebra, nd edition,

C. Rorres and H. Anton, Wiley, 1979.

Good (inexpensive) supplement to any standard sopho-
more-level textbook. Includes topics from a wide va-
riety of fields (business, economics, engineering,
physics, genetics ,computer science ,geometry, etc.).
Chapters are independent and are rated according to
;heir difficulty.

[APPLICATIONS 801 Applications for Elementary Linear Algebra, S.I.

rossman, wadsworth, 1880,

Somewhat similar to [APPLICATIONS 793, but with
less coverage. ‘

[BIRKHOFF 723 "The impact of computers on undergraduate mathematical educa-

tion in 1984", G. Birkhoff, American Mathematical }
79(1972) 648-657. ematical Monthly

Supports use of computers for study of the limit concept,
rates of convergence, equation-solving, formula manipula-
tion,etc. 'New courses, to be widely taught by 1984": dis-
crete mathematics, numerical mathematics".

Proceedings of the 1982 Annual Heetihg of the

Canadian Mathematics Education Study Group, ed. D.R.
Drost, 1982. (Available from Educational Resources
Information Center (ERIC), Ohio State University,
Columbus, Ohio.)

Pages 51-95 give the report of the vorking group on
the influence of computer science on undergraduate
wathematics education, including appendices by eight
of the one doxen participants. A lively, multifaceted
set of articles, more positive in spirit than [FUTURE
83}, vith wany concrete suggestions.
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[COLEMAR 76]

{CRICISAM 68)
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Proceedinges of the 1983 Annual Meetiog of the
Canadian Mathematics Educatiom Study Group, ed. C.
Verhille, to appear, 1983, :

Of particular interest is the address by P.J. Hilton
ou “The pature of mathematics today and implicactions
for mathematics teaching” which gives both general
principles and specific instances of vhat he would
like to see taken out and put in to mathematics
education at a1l levels.

Mathematical Sciences in Cansda: Science Council of
Cavada Background Study 37, A.J. Coleman et al.,
Science Council of Canada, Ottava, 1976.

Chapter four is particularly relevant to undergraduate

mathematics teaching and curriculum development.
Their philosophy is very close to [CUPM 81]):

increased emphasis on teaching the origin and methods
of solution of problems in the mathematical sciences
and the ability to communicate with other disciplines.

Calculus: a computer oriented approach, W.

Steinberg and R.J. Walker, Center for Research ia
College Ipstruction of Science and Mathematics
(CRICISAM), Florida State University, 1968,

An experiwentsl textbook, that begins with
approximating solutions of equations, convergence,
finding areas and volumes by

approximating and veing limit theorems, leading into
integration and differentiation with many numerical
and algorithmic ideas. Read the reasons offered for
its lack of success in {FUTURE 83}, p.225.

fcupy 81)

[FUTURE 83)

[(GORDON 79al
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Recommendations for a General Mathematical Sciences

Program, Report of the Committee on the Undergraduate
Program in Mathemstics (CUPM), ed. A.C. Tucker,
Mathematical Associstion of America, Washington, 1981.

A very vell considered set of proposals about the
undergraduate teaching of mathematics in general,
Chapter one makes many valuable points and is worth
reading in September every yesr.

The Future of College Mathematics, ed. A. Ralston
and G.S. Young, Springer-Verlag, Nev York, 1983.

A collection of invited papers for a Sloan Foundation
conference in 1982 with brief reports on the
discussion of these papers and three vorkshops. Host
of the pspers centre about the question of replacing
introductory calculus by a discrete mathematice
course, raised by [RALSTOR 81]. Unfortunately wmost
curriculun development is either too general in
principle to see how it would be implemented or toa
specific in contents to catch a glimmer of the
spirit. Course descriptions by H.S. Wilf (p.38) and
F.S. Roberts (p.126) are the exceptions.

"A discrete approach to‘comquter-oriented calculus",
S.P. Gordon, American Mathematical Monthly 86 (1979) 386-391.

Describes an approach to calculus which incorporates the
computer "'in a particularly natural way'': finite differences
and sums are used 'to motivate the infinitesimal calculus and
to provide the appropriate setting for solving 'real" problems
using discrete appraximations”. (It is claimed in [RALSTON 811]
that the computer should influence the mathematics curriculum
more profoundly than such local uses.) Contains a good biblio-
graphy of articles about incorporating computing in the calcu-
1lus sequence.
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(GORDON 79b]  "A discrete approach to the calaulus, S.P. Gordon,

Int. J. Math, Educ. Sci. Technol.10 (1979) 21-31. [HILTON 82)

“The emphasis on applied mathematics today and its impli-
cations for the mathematics curriculum', P.J, Hilton, in:
New Directions in Applied Mathanatics, ed. P.J, Hilton and

.9. Young, Springer-Verlag, 2, pp. 155-163.

By the chatrman of the 'Hilten panel" responsible for the
report (HILTON 79), As in the talk presented in [OM€SG 83),
promotes the unity of the mathematical sciences. ‘Might the
sterile antegonism which one sometimes finds today between
[ GREENSPAN 80) Aritlmetic Applied Mathematics, D, Greenspan, Pergamon Press, ‘ pure and applied mathematics-and pure and apglied mathema-
TU8T, . ticiang-be eliminated by abandoning those I18bels and rever-
ting to the notjon of a single indivisible dis¢ipline,
mathematics,"

Similar to [GORDON 7%9a), but with less mathematical contents
and a more general discussion. Contains an anglysis of ex-
perimental lmplemetations of this approach.

How finite techniques and the computer can replace much of
what is done in contimuous spplied mathematics. From the
preface: "In this hook we will develop 2 computer, rather
than a continuum, approach to the deteneinistic theories of
raticle mechanics. (...) At those points where HNewton,
eibniz, and Einstein found it necessary to apply the analy-
tical puwer of the calculus, we shall, instead, apply the
computational power of modern digital computers. (...) The
price we pay for [the mathematical simplicity of our ap-
proach] is that we must do cur arithmetic at }dgh speeds,"
(See also the author's Discrete Models, Addison-Wesley, 1973.)

'Cemputer science and its relation to n;athcmatics". D.E.
kwth, American Mathematical Monthly 81 (1974) 323-343.

[XNUTH 74)

A personal view of the interactions between computer science
ahd mathcmatics. Discussion of a "typical camputer science
problem'(hashing) to jllustrate the simllarities and diffe-
rences between the two fields. Describes camputer science
as "the study of algorithms",

{HEMRICI 77} Computational Analysis with the HP-25 Pocket Calculator , P,
Fenrici, Wiley, 1977

(lAX ET AL. 765 Calculus with Applications and Cawputing, Volume 1, P,
) Lax, $. Birstein and A, Lax, Springer-Verlag, 1976.

Programs by the author implementing algorithms in number
theory ,equation solving,ntimerical integration, evaluation

of special functions. Intcresting in the way he uses many
areas of mathematics to produce algorithms that are fast
enough to run on a programmsble pocket calculator.

In (NOTICES 831, the first author supports the view that °
calculus shrwld remain the centerpiece of mathematics educa-
tion in the first two years of college. BRut it is essential,
he adds, the modify the way it is taught according to the

‘wodern spirit" , for example by taking into account the

impact of computing. His conceptions can be found in this inspiring
text which emphasizes the relation of calculus to science. .
Nmerical methods are presented as organic parts of caloulus,

not mere appendices, while change of variables or intezration

by parts serve to get new integrals easier to approximate mi-
merically. A must read !

{HILTON 79] The Role of Applications in the Undergraduate Mathematics
Curriculum, Cosmittee on Applied Mathematics Training
(P.J. Uilton, chairman), Assembly of Hathematical and

Physical Sclences, National Research Council, Washingtom, 1979.

.

Report of a committee foimed by the NRC to comsider the problem
of rvesbaping the tzaching of mathematics to meet the needs and
purposes of todsy's students. Similar‘'in spiric to [CUMM 81],
vith a grester strecs on "the restoration of the role of dif- .
ferent1al equations in the core curriculum", Advocsates cloajng
the gap betwecn abarxact snd applied ucthewatics and cresting ¢
broad major in the mathematicol eciences. ldentifies the
principal problem ss being one of attitude,
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[McCARTY 75] Calculator Calculus, G. McCarty, Page-Ficklin, 1975,

[MIEL 80]

[MILES 71]

[MODELS 73]

A workbook to accompany a conventional calculus text.
Uses the pocket calculator to illustrate the theory.

Each chapter contains several examples with detailed

discussions and complete solutions,easy exercices and
more difficult problems. Most important theorems are
usually cited explicitly.

"Calculator calculus and roundoff errors', G. Miel,
American Mathematical Monthly 87 (1980) 243-253.

Although the calculator can reinforce understanding of
calculus notions, indiscriminate use of it or lack of
awareness of the effects of roundoff errors can lead to
mistaken interpretations of results. Nicely illustra-
tes the point with many examples, for instance Zeno's
paradox seen in the context of roundoff errors. Exten-
sive bibliography.

"Calculus and the computer, the CRICISAM calculus pro-
ject - Past, present and portent", E.P. Miles, Jr.,
American Mathematical Monthly 78 (1971) 284-291.

On the history of the CRICISAM calculus project. (In-
formations on CRICISAM can also be found in Miles' paper
in the book [TOMORROW 811].)

Mathematical Models and Applications. D.P. Maki and M.
Thompson, Prentice-Hall, 1973,

Intended for junior and senior students. Topics covered
include Markov chains, linear optimization, graphs and

growth processes (both by means of diffential and finite
difference equations). Each chapter has exercises, practical
projects and a good bibliography. Authors suggest a variety
of courses that can be taught from the book: survey, in-depth,
teacher preparation.

[MODELS 77}

[NOTICES 83}

[RALSTON 81)}
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Mathematical Models, R. Haberman, Prentice-Hall, 1977,

Intended for the junior-senior level. Three long
chapters (over 100 pages each) on mechanical vibrations,
population dynamics and traffic flow. Pleasant to read,
a very good text foranundergraduate introduction to tech-
niques of applied mathematics. Chapter on population
dynamics uses both a discrete and a continuous approach,

"Freshman Mathematics™ Notices of the American
Mathewmatical Society 30, 1983, pp. 166-171.
Transcript of a panel discussion on thie topic at the

Aonual Meeting io Denver in 1983, vith speakers

A. Raleton, P.D, Lax, G.S. Young, and R,0. Wells Jr.
Notevorthy is Ralston's remark that "we need an
alteroative to freshman calculus which is Dot a
revolution but an evolution,” and Lax's rebutal to the
discrete mathematics suggestions.

'"Computer science, mathematics and the undergraduate cur-
ricula in hoth," A. Ralston, American Mathematical
Monthly 88, 1981, pp. 472-485.

The article that provoked the conference (FUTURE 837,
arguing for the consideration of a separate mathematics
curriculum for computer science undergraduates, begin-
ning with a discrete mathematics course rather than cal-
culus. A well-argued introduction to the topic which notes
that, however desirable and valuable, the use of computers
in the calculus and other courses is not sufficient .
"There has been little realization that the advent of com-
puters and computer science might suggest some fundamen-
tale changes in the [mathematics) undergraduate curriculum ."
(See also the longer technical report, with the same title,
on which this paper is based: Technical report 161, Dept.
of Computer Science, SUNY at Buffalo, 1980.)
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"Mathematics courses in 1984", J.B. Rosser, Amer. Math.
Monthly 79 (1972) 635-648.

“Unless we revise the calculus course, and the differential
equations course, and probably the linear algebra course

and I do not know what other courses, so as to embody much use

of camputers, most of the clientele for these courses will
instead be taking computer courses in 1984."

"] believe [the average student] would be letter offlearning
the algorithms in a mathematical course, if they are pro-
perty taught there. If they are property taught!

Linear Algebra and ite Applications (Second

Edition), G. Strang, Academic Prees,; New York, 1980.
An exciting read in applied linear algebdra, vith
cowputational discussions including the stability sod
efficiency of the algorithms, and notes on LINPATK.
Well-designed from the view point of numerical linear
algebra, but weak on the concept and use of linear
transformations.

| SUPPLEMERT 79 )Pocket Calculator Supplement for Calculus, J.B.

Bosser and C. de Boor, Addison Wesley, New Yurk, 1979.
Inexpensive soft cover edition, can be used in
conjunction with any calculus text.

[TOMORROW 81}

[WILF 82]

[WoRNACOTT 77)
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Mathematics Tomorrow,

ed. L.A. Steen, Springer-Verlag,
1981,

A collection of essays, some of which are related to mathe-
matics curriculum, applications and the influence of compu-
ters. For example, the essays by J.P. King ("But I ask a
favor, let one course,just one, remain pure. And let it

be begimning calculus."), A. Tucker(same spirit as Chapter I
of [CUPM 81)) and W.F. lucas ("(The mathematics community]
must act quickly and in a meaningful way. There exists
many good strategies. The question is whether we will select
one and implement it in time, or whether we will follow phi-
losophy's decline into prestigious isolation and irrele-
vance.").

*The disk with the college education', H.S. Wilf, American
Mathematical Monthly 89 (1983) 4-8.

mMATH is comming! muMATH is coming! (The impact of
the availability of symbolic manipulation on personal com-
puters is also discussed in the author's paper in [FUTURE
833, where it is stressed that "it can be very unsettling
to realize that what we previously thought was a very human
ability (...) can actually be better done by "machines.')

Calculus: an Applied Approach, T.B. Womnmacott,
Wiley, New York, 1977.

Begine vith spproximatisg and defining e snd has much
interplay betveen the differencing situations ("finite
calculus™) and differentiation situation
("infinitedmal calculus™). His teaching ability shows
in this readable text.
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