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Editors foreward

The proceedings for the 1985 CMESG/GCEDM meeting have been
delayed for a long time. It was necessary to wait until a major
contribution was received, otherwise the proceedings would have
been most inadeguate.

The proceedings, following the format of previous years, include
the major lectures presented by Heinrich Bauersfeld and Henry
Pollak followed by working group and topic group contributions
in reduced format. This meeting represented our first effort to
plan a Jjoint speaker with the CMS - a group with whom we have
many interests in common.

This represents our second meeting at Laval. The University 1in
particular as well as Quebec City in general provide pleasant
surroundings tor such a gathering. We are especially

appreciative to Claude Gaulin and Bernara Hodgson for making the
local arrangements.

Charles Verhille
Editor
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Canadian Mathematics Education Study Group
Groupe canadien d'étude en didactique des mathématiques

1985 Meeting

The ninth annual meeting of the Study Group was held at Laval University,
June 7 to 11, 1985. Fifty mathematics educators and mathematicans met
in"plenary sessions and working groups. This year the canference was
deliberately arranged to follow immediately on the CMS Summer Meeting

and the first of the two guest lectures, by Henry Pollak (Bell Cammunications
Research, was planned in collaboration with the OMS Education Committee.

Dr. Pollak spoke "On the relations between the application of mathematics
and the teaching of mathematics"”. He identified four different meanings
camenly attached to the words "applied mathematics”, and considered

the implicaticns of each for curriculum and for pedagogy. Also co—-spanscored
by OMS Education Committee was a session, led by Peter Taylor (Queen's),

an "Exploratory problem solving in the mathematics classroom”. .

The second quest speaker was Heinrich Bauversfeld (IIM, Bielefeld) who made
"Contributions to a fundamental theory of mathematics learning and teach-
ing". Setting out to answer the question: BHow do we manage to retrieve
what we require and adapt it to a new situation?, Professor Bauersfeld
wove an intriguing account of constructivist theories.

Cther lectures were given by Fernand Lemay (lLaval), who presented a master-
ly sweep through the historical developments of analytic and synthetic
gecretry, and by Jacques Désautels (Laval), who applied the epistemological
theories of Gaston Bachelard to the learning of science. Three accounts

of specific researches cn teaching, gender and mathematics were given by
Roberta Mura (lLaval), Gila Hanna (OISE) and Erika Kuendiger (Windsor).

The working groups at this conference focused on a positive view of students’
errors, a group led by Stanley Erlwanger (Concordia) and Dieter Lunkenbein
(Sherbrooke) ; on more advanced activities with LOGO, a group led by Joel
Hillel (Concordia). A third group investigated the possibilities of symbolic
manipulation software, led by Bernard Hodgson (laval) and Eric Muller
(Brock); the fourth tackled feelings and mathematics, led by Fran Rosa-

mond (San Diego) and John Poland (Carleton).

Thisbald sumary may indicate the scope of the conference but may not make
clear the special characteristics of its style. Most conferences of

. camparable length offer participants many more lectures and paper pre-
sentations. The result, as everyone knows, is that participants at con-
venticnal conferences are selective in their attendance at sessions; no

one can sit through continuocus periods of being talked at. Participants

at Study Group meetings, where ample time is allowed for ccoperative work
and discussion, tend to follow the whole programme. This generates more

of a sense of common interest, a bridging of differences rather than an
accentuaticon of them.

David wheeler
Concordia University
Mcntreal
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IN MEMORIAM DIETER LUNKENBEIN

The mathematics education community has been deeply shocked
to hear bout the sudden death of our colleague Dieter Lunkenbein,
on September 11, 1985, at 48 years of age.

Born and educated in Germany, he had come to Canada in 1968
to work as a research assistant for Dr. Zoltan P. Dienes at
the Centre de Recherche en Psycho-mathematique in Sherbrooke.
He subsequently got a Ph.D. in mathematics education at

Laval University and he bacame a regular faculty member of
Université de Sherbrooke, where he has displayed strong
leadership in teacher education as well as in research and
development in mathematics education.

In 1982 he was awarded the "Abel Gauthier Prize" by the
Association Mathématique du Québec in recognition for his
significant and exceptional contribution to mathematics
education in Québec. At the Canadian level, he has been
very active in the annual meetings of the Canadian
Mathematics Education Study Group, particularly in working
groups about teacher education and about the field of
mathematics education, and as a leader of many groups on
geometry educatlon -- an area for which he was a recognized
expert.

Dieter 1is the author of more than 70 scientific lectures or
papers, including articles in Educational Studies in Mathematics,
For the Learning of Mathematics, Bulletin de 1"A.M.Q., etc.
At the international level, he has been involved in many
conferences and for about ten years he has been very active
as a coopted member of the Commission Internationale pour
1'Etude et 1'Amélioration de 1'Enseignement des Mathématiques
(CIEAEM), of which he was the President from 1982 to 1984.

For the mathematics education community, the death of Dieter
Lunkenbein constitutes a great loss. Everyone will long
remember his work and dedication to our field as well as his
impressive human qualities.
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Contributions to a fundamental theory of mathematics learning

and teaching

HEINRICH BAUERSFELD

IDM (Institute for Mathematics Education), Universitat

Bielefeld, FRG
"Perhaps the greatest of all
pedagogical fallacies is the notion
that a person learns only the
particular thing he is studying at the
time. C(Collateral learning in the way
of formation of enduring attitudes, of
likes and dislikes, may be and often
is much more important than the
spelling lesson or lesson in geography
that is learned. For these‘attitudes
are what fundamentally count in the
future." JOHN DEWEY (1938)

1. A theory gap in school practice

A few years ago the report of an outstanding piece of research
appeared: it is D.HOPF's investigation on the teaching of
mathematics in grade 7 of the Gymnasiuml) (D.HOPF 1980). The
study analyses data from 14 000 students, their teachers and
parents, at 417 Gymnasien in the area of West Germany including
West Berlin, and it is a representative sample. Detailed
gquestionnaires were used in order to find out about the

"social, cognitive, and motivational conditions under which
learning outcomes and credits" are produced in mathematics

lessons. 1In our view the most interesting results are:

* There is an overwhelming dominance of direct instruction, in
particular the well-known game of teacher’s questioning and
student ‘s response as well as teacher s monologues
(lecturing) and similar types of instruction: and

* it is not possible to identify "any more general structure”
in the extremely rich data base "which would indicate the

existence of overall concepts for the orientation of method
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and teachingﬁ. Clearly, this came out quite contrary to the
researcher ‘s expectation, that "at least some of the concepts
which were under discussion in mathematics education for methods
and teaching would appear more often than in single specific
phases of the lessons only." (D.HOPF 1980, p. 192)

The lack of explicit theory in everyday school practice could
prove to be a surface phencmenon: Perhaps teachers do not talk
about theoretical backgrounds, but they may follow recipes for
action rather consistently, which are based upon certain
theoretical concepts. One might expect, therefore, that careful
analyses could lead to reconstructions of a hidden though

theory-based grammar of teacher s decisions.

Reviewing various well-kncown concepts of mathematics education,
the researcher thought about such analyses,but "found no reason
for establishing a search for interpretations which could be
traced back to more general concepts." (D.HOPF 1980, p.l91).
That is to say, the researchers found continuities and
regularities in the processes of the mathematics classroom -
e.g. the preference for direct instruction - but they could not
find any relation with the concepts that appear in the

theoretical debates of the mathematics education community. .

Now we can ask more generally: If not through theoretical
reflection, how then do the often documented and criticized
patterns of teaching and learning in mathematics classrooms come
into being (see the "recitation game", HOETKER and AHLBRAND
1969)? On the one hand the available theories obviocusly do not
cover the practitioner’s needs; the theories do not have
sufficient explanatory power. The hidden regularities of
everyday classroom practice on the other hand function as if
they arose from the subjective thecries of the participants
(teachers and students). So probably these hidden regularities
are the outcomes of covert processes of optimization, that is,
they may represent a bearable balance between the given actual,

societal, instituticnal, and micro-scocioclogical forces in the




classroom (where bearable means: bearable for the
participants). Provided this is an adequate description, then
the hidden gensis of the regularities would explain the

product ‘s tenacity and resistance against every reform.

The following remarks are grouped into three chapters. The main
part, chapter 3, presents theoretical considerations from the
many micro-analyses of teaching-learning situations in
mathematics conducted by a research group at the IDM Bielefeld
(BAUERSFELD, KRUMMHEUER, VOIGT). The thesis of the
domain-specific orientation of a peron’s action leads to new
views on (and descriptions of) abstraction/generalization,

representation/embodiment of concepts, and learning.

The preceding chapter 2 can just as well be read after chapter
3, since the remarks on deficiencies and paradigms in theories
of mathematics education may then be more understandable. It is
meant as an introduction as presented here. The concluding
chapter 4 relates the theoretical discussion to certain recent
issues in problem solving. The application gives support to the
thesis of the preceding chapter.

2. The paradigms of theories of mathematics education

The usual set of didactical questions: What is the nature of the
subject? How is it learned? and How should we teach 1it?
reproduces in itself disciplinary boundaries. Theories of
mathematics education tend therefore to stress the relation
either to the acting persons or to the subject matter of
mathematics. Thus we receive psychological or
mathematical-philosophical answers, such as student-centered
"theories of learning” and teacher-centered "theories of
instruction"” or as subject-matter-centered theories of
knowledge, of curriculum, of task analysis, of
AI-simulations?) etc. Until very recently, linguistics,
sociology, etc., were not disciplines to which the math ed

community referred.



Both theoretical mainstreams use the stages metaphor when
characterizing developmental aspects. Psychological approaches
arrive at stages based on classes - or more precisely at
progressive class-inclusions - of abilities (e.g. KRUTETSKII
1976), or of operations (e.g. PIAGET 1971), at levels of
learning (e.g. VAN HIELE 1959) etc. Since mathematical
abilities as well as the success of learning mathematics are
described or measured through the quality of solving certain
mathematical tasks, it becomes inevitable that the hierarchies
of psychological constructs map subject-matter structures. They
duplicate mathematical hierarchies, but do not create genuine
psychological descriptions of the related actions. The
subject-matter-centered theories on the other hand use
mathematical structures directly for the modeling of stages. We
can state therefore, that in both theocretical mainstreams the

description of the field is dominated by mathematical means.3

But math educators will have to extend their fundamental
theoretical questions, if at least a reasonable subset of
classroom processes follows hidden regulations. The more since
the regulations develop interactively rather than directly
through the participant’s intentions, and with effects often
incensistent 1if not conflicting with the official aims. Then we
will have to take into account not only that teachers and
students enter and leave the classroom with certain individual
dispositions, intentions, and expectations - which we do in
order to draw inferences from the difference between the two
cross-sections, but we will also have to ask what they’make of
it in a concrete situation, how they actually employ available
states of knowledge, and when they activate and how they use
schemata (and not only which cnes, as is usually done). Cross-
section analyses of input and output states with inferences
about the process in between are no longer sufficient for an
adequate understanding. If, as becomes evident, knowledge
develops together with and as part of the knowledge, then this
calls in question the process-product metaphor.
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Furthermore the ongoing vivid interation in the classroom
indeed leads to very personal (subjective) interpretations and
constructions of meaning. But socially shared meanings and norms
of content-processing are produced as well. And these are not
just taken over like ready-made rules, rather they are
constituted through the interaction, they become reality via the
mutual processes of construction and negotiation. That 1is to
say, we have to discriminate individual structures of
potentially available knowledge from the interactional
structuring of the actual actions. And on a social level we
have to discriminate (so-called) objective subject-matter
structures from the related meanings, norms, and claims for
validity, as they are constituted in the course of the
interaction in the classrcom. This of course makes cause-effect
analyses haphazard, because attributing cause to a single

person’s action may become difficult.

There is a remarkable convergence in recent developments in
mathematics and in cognitive science as well as psycholegy that
supports the scepticism advocated here. 1In the view of
cognitive psychologists the When and the -How, as mentioned
above, are mainly organized on metacognitive levels. The
classical problem solving strategy from AI-developments -
building up a hierarchy of operations or organizing control con a
superordinate level =~ recurs here and has been the subject of
intensive discussicn in cognitive psychology recently (see

ANN L. BROWN, J.C. CAMPIONE, and M.T.H.CHI in WEINERT 1984)
under the name "metacognition". Investigations begin to focus
on "dynamic learning situations” and on "interactive processes"
(J.V. WERTSCH 1978, 1984; and A.L. BROWN in WEINERT 1984,
p-101/102. One of the "many largely unsolved problems" in
developing advanced intelligent computer systems for educational
purposes that TIM O SHEA has named is that "not enough thought
has been given to represent inexpert reasoning". He has also

pointed at the crucial role of "using natural language" (1984,
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p.266). Interestinély the attack comes from non-human
information processing research, human understanding, learning,

and reasoning in general and of mathematics in particular.4)

Even mathematics itself has been challenged from within the

community, as by LAKATOS  concept of "informal, quasi-empirical

mathematics", an image of the discipline which he holds out
against the counterpart of "authoritative, infallible,
irrefutable mathematics"3) (1976, p.5). FREUDENTHAL has long

since argued against the same enemy: "True mathematics is a
meaningful activity in an open domain." (1983, p.39).

"Why, come to think of it, do we have
so few good ideas and theories about
the mind? I propose the following
answer to this question:
1. It may be the most difficult
question Science ever asked.
2. It is made even harder because
our first theories have led us
in the wrong direction."
MARVIN MINSKY (1982, p.35)

3. "Domains of Subijective Experience"” and "Society of Mind"

In our research process the adoption of sociological methods and
concepts has turned into a process of adapting the means to the
end. Since we are interested in learning and teaching
mathematics rather than in general social structures, as
identified by sociclogists across subject-matter, our analyses
are focussed on the relations between the subject-matter
aspects, as thematized by the participants, and the
predominantly social nature of classroom processes and their
conditions. This, we think, describes an important weakness in
the dominating psychological and subject-matter-oriented
theories.

Our micro-analyses of video-taped teaching-learning situations

at different schools and with different ages have led to three

A Bm B WE NN NE BN W B S5 Ey g G mn Oy Aaw om ay 0w
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related theoretical elements. GOTZ KRUMMHEUER has adapted
GOFFMAN 'S "frame analysis" in order to describe the

participants “(teacher and students) definitions of situations -
"frames" - and their stratified changes - "keyings" - in the
flow of interactions. Complementary to these actual activities,

my concept of "domains of subijective experience (DSE)" aims at

the description of the sources and the organization of memory
and of the related long-term effects called learning. These
respresentations function as relatively stable dispositions and
as the potential from which the individual’s actual orientation
and action is coined and formed. JORG VOIGT has investigated
the hidden regulations of classroom procedure as they are
constituted among the participants. He describes "patterns of

social interaction" and their relation to "moves under duress"”

and to (DSE-rooted) individual "routines". (See KRUMMHEUER 1983
and 1984, BAUERSFELD 1980, 1983 and 1985, and VOIGT 1984 and
1985.)

In the following I shall restrict myself to discussing the main
aspects of the DSE-metaphor. It should be noticed that we offer
alternative interpretations but 4o not claim to describe "the”
reality. The theoretical elements offer a well-founded
perspective on classroom processes among other theoretical
perspectives, with which it competes. The theses and their
substained connections are the products of "abductions” (C.S.
PEIRCE 1965, J.VOIGT 1984a). Thus a specific understanding of
the genesis of theories as well as of theory itself is

functional in our approcach.

l. Thesis All subjective experience is domain-specific.
Therefore all experiences of a person (subject)

are organized in Domains of Subijective

Experiences (DSE).®%)

wWwhenever I have experiences, that is: I learn, actively and/or
passively, this occurs in a concrete situation, something which

I realize as context. Thus learning is situation specific, is
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learniné-in-context. Learning is not limited to cognitive
dimensions. Since I cannot switch off one or the other of my
senses deliberately, all of my senses are involved, particularly
the genetically older organs like the mid-brain (emotions) and

the cerebellum (motor functioning). The stronger the

accompanying emotions, the more distinct and richer are certain™
details and circumstances in the recollection. We therefore

speak of the totality of experiences and learning.

Learning is also multidimensional: I learn how to do things,
and along with that, though mostly indirectly, I learn about the
when and the why. At all times I learn about myself and about
others.

The specificity to situation, the totality, and the
multidimensionality, give good reasons for the conjecture that
all experiences of a person are stored in memory in disparate
domains according to the related situations. Each DSE encloses
all of the aspects and ascribed meanings which appeared to be
relevant for the perscon who was acting within the situation.
Encountering the same situation repeatedly contributes to the
consolidation of the related DSE, but as well to its isolation
from other DSE’'s. When entering a specific known situation a

person immediately ‘knows®~ very much, due to the activated DSE.

An example: More than 25 years ago during teaching practice
with student teachers in the country, I visited a little
nongraded school of some twenty pupils ranging in age from 7
to l4. The teacher opened the first lesson with a series of
spectacular actions. He called on the attention of the few
11 and 12 year olds and made the others work silently. Then
he ostentatiously dropped a plate which burst into pieces.

A defective teapot followed, and finally he broke a few wood
sticks into pieces. His hand waved over the scene
accompanied by the key question: "What is this?!" And a
nice little girl answered: "It is the introduction to

fractions!"
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Apparently she had experienced this happening repeatedly in
her earlier school years and she knew it would end up with
naming and calculating with fractions. From that she gave a
clear definition of the situation.
Under a phylogenetic perspective the immediate availability of
an adequate DSE guarantees survival. The complex nature of the
DSE “s enables the activation of a specific one just through a
smell, a touch, a word, a picture, an action etc., and in such a
way provides for the instantaneous identification of a dangerous
situation for quick and appropriate (re-)actions, and for a
certain coping with possible consequences. Obviously many of
the students reactions in mathematics lessons are examples of
such direct and prompt concatenation, ensuring survival in the

classroom and saving unpleasant effort and reasoning.

The ideals of mathematizing, on the other hand, are clearly
related to critical distance, to analytic decomposition and
reflected construction, and to operations with symbols and
models. These arts do not develop along the
elicitation~reaction line. .In order to overcome the troublesome
phylogenetic conditions (which we cannot change nor deny),
instructional situations should therefore give more attention tco
indirect learning on higher levels rather than to behavioral
responses/evoking through invitations on the bottom level of
direct action and reaction only.

2.  Thesis The domains of subjective experiences (DSE) are
stored in memory in a non-hierarchically ordered
accumulation, following M.MINSKY ‘s idea of a
"society of mind" (1982). In a given situation the
DSE’s function in competition for activation,
independently from each other, and this the more
intensively they have been built up initially.

The model represents a powerful description for a functioning
organisation of the isolated DSE’s. According to the flow of
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personal impfessions and activities the "society of mind" is
under continuous change and development. Permanent and lifelong

new DSE’s are formed’), older DSE’s are changing. The gradual
fading away of DSE’s, not activated for a long time, diminishes
the growing burden, the more, the lower, the emotional status

and the frequency of activation of the DSE are.

Every activation produces change: Often activated DSE’s pass
through many transformations: the meaning, the relations, and
the importance of their elements may shift, the characteristics
of the situations become less specific (they allow more
variance, 1.e. they generalize), and a hard core of routines, of
easy meanings, and of preferred verbal or pictorial
presentations is shaped. 1In an actual situation these
well-developed DSE’'s obtrude themselves through their smooth
perspectives and therefore have the best chance to win the
competition for reactivation. Thus success has stablizing and
tracking effects, though not necessarily for optimal solutions,
as an observer may note rather than relative persocnal optima.
But since every situation is new in a certain sense, there is an
opportunity for younger and less elaborated DSE’s ("soft state")
as well as for easy and robust older DSE’'s. There is no
preference in principle in the activation game as the phencmenon
of regression demonstrates: The relapse into certain pattern of
understanding and action under stress, which are older and less
adequate or less differentiated, but are functioning more
quickly and more reliably, receives a simple explanaticn from
within the "society of mind" model.

The model, by the way, leaves no room for an independent or
superordinate authority in the "society", a "demon" or something
similar, who selects and decidedly activates DSE’'s. Clearly we
can exercise a limited influence on our internal retrieval
processes, but we are not in command of cur memory as the many

failures of mnemonics show. An idea suggests itself - or not.

Through microethnographical analyses a surprisingly high degree

\
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of separation between single DSE’s has been demonstrated (LAWLER
1979, Bauersfeld 1982). Outcomes from quantitative-experimental
research work gives support also. Recently E.FISCHBEIN et. al.
(1985) have investigated the solving of verbal problems in
multiplication and division with 623 Italian pupils in grades 5,
7, and 9. They focussed their attention on the role of
"implicit, unconscious, and primitive intuitive models." Such
models, so goes their hypothesis, might mediate "the
identification of the operation needed to solve a problem” and
thus "impose their own constraints on the search process."
(FISCHBEIN et.al. 1985, p.4). The authors arrive at the
unexpected profoundness of the expected effects, which they

describe as "a fundamental dilemma" for the teacher:

"The initial didactical models seem to become so deeply
rooted in the learner’s mind that they continue to exert an
unconscious control over mental behavior even after the
learner has acquired formal mathematical notions that are
solid and correct."(p.l6).

The authors identify two sources for the genesis of such
personal (subjective) models. One is the direct relation to the
concept and the operation as it was initially taught in school.
As the other, they found a natural tendancy to produce
subjective regularities and use them intuitively through
continucous activities "beyond any formal rules one has learned"
(p.15) and though they hight be "formally meaningless and
algorithmically incorrect" (p.l4). This represents an example
of the genesis of a DSE, pointing at the specifity of

situation as well as at the totality and multidimensionality of
subjective experience as stated above.

The rigid disparity of two DSE’'s which from a teacher s
perspective should be extensively interrelated (as e.g.
experiences with a special case and the general rule)

characterizes not only the phase of initial development in the
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subject. Agéinst the expectations of a natural growing together
of separately-gained pieces of knowledge through repeated
practice, the persistent subordination of knowledge to specific
DSE ‘s remains effective and dominates the subject’s actions.
The supposition that cognitive networks develop
quasi-automatically through an adaptation to the- logics of
subject matters appears as an illusion. The "society of mind"
model with its independently competing DSE’s allows a simple
explanation for the persistence of disparate DSE’s for the
"same" situation. This can happen even in cases where a DSE’s
concepts and procedures are stored but not used though they are
superior or more general in an observer’s view, because they do
not cover the "same" problem under the subject’s perspectives.
Even so-called general concepts stored in memory are inevitably
related to the subject’s perception of the situation in which
the concepts were built. And therefore ascertaining the )
"sameness" of two cases affords a comparing of elements from at
least two different DSE’s (see thesis 4). Each activation from
memory on the other side reinforces the activated DSE, but not
an abstract- relation to other DSE’'s.

3. Thesis The activities of the subject and the related
subjective constructions of meaning and sense, as
these develop through social interaction, are the
descisive fundamentals for the formation of DSE.

In mathematics education, in particular, the subjectively

relevant activities are bound to the offered mediatization of

the matter taught, to what is really done. Teacher and students
act in relation to some matter meant, usually a mathematical
structure as embodied or modelled by concrete.action with
physical means and signs. But neither the model, nor the
teaching aids, nor the action, nocr the signs are the matter
meant by the teacher. What he/she tries to teach cannot be
mapped, is not just visible, or readable, or otherwise easily
decodable. There is access only via the subject’s active
internal construction mingled with these activities. This is

the beginning of a delicate process of negotiation about
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acceptance and rejection. That is why the production of meaning
is intimately and interactively related to the subjective
interpretation of both the subject’s own actions as well as the
teacher s and the peer’s perceived actions in specific
situations. Via these processes the (social) norms of
mathematical action are also constituted in the classroom,
covertly, regarding acceptability, validity, completeness,
relevance, and so on.

The doctoral thesis of G.FELLER 1984) gives an idea of how
important the activities with embodiments and physical means
(teaching aids) are for the formation of mathematical
experiences. She tested mathematical achievement at the end of
grade 2 in Berlin in order to find out the extent to which the
aims of the mathematics curriculum had been attained. As a by-—
product the author was "startled by the strong impact cf the
manner of representation”. Her final assessment:
"The outcomes indicate that the acgquisition of each
different type of representation requires the learner’s
explicit endeavour and connected rehearsal, an effort which
is not less than is usually required for the learning of
mathematical matter itself (like addition or subtraction).”
(G.FELLER 1984, p.67).
In our terminology this would mean that, for many children,
experiences with a new representation of subject matter, though
perhaps well-known from other situations, lead to a new DSE,
stored separately in memory and with weak if any relations to
the older experiences.

A new DSE can also develop through the explicit connecting of
elements from different older and available DSE’s. The "Aha"
insight, flashing up suddenly while acting within the horizon of
an activated DSE and producing the idea of essentially "doing

the same" as in another context (DSE), is the announcement of a
birth, for the person as well as an observer. But the "Aha"
alone does not produce by magic a fully developed network of
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relations here and now. It takes time and continual activities
to elaborate the new DSE. An "Aha" insight, not elaborated
after the first appearance, can fade away in the continuous flow
and only light up again much later accompanied by the feeling-

that something like that was known already.

DSE 's disappear only (and slowly too) if they do not receive
reactivation. Growing interrelations and even integration are
not necessarily weakening effects. "The mind never subtracts"
(M.MINSKY, 1981). As is the case with regression very old DSE’s
can prevail in the competition for activation under stress
against younger DSE’ s where so-called "higher”,

"super-ordinate", "more sophisticated" knowledge is stored.

In the mathematics classroom students are often asked to
identify common characteristics between two events or cases,
which in the view of the teacher appear to.be two models for the
very same mathematical structure. This is the task of producing
a generalizing abstraction from different embodiments upon
request. In our view the student then has to compare elements
which are rooted in two different DSE 's; in other words: which
are incorporated in two different contexts. What can form the
basis of the required ccmparing acti?ities?

Usually the perspectives of the separate DSE’'s themselves do not
cover such operations, due to the specificity of actions,
language and meaning. So where do the aims come from? Which
kind of similarity or commonness do I have to search for? The
adequate basis has to be a third DSE, the elements of which are
the means for compariscn and the possible aims. Comparing
common characteristics by abstracting and neglecting other ones
is a complex and highly constructive activity. Without an
orientation, at least a diffuse image of the potential results
and of the relevant characteristics, as well as an idea of the
adequate means, there is no reasonable chance for the student’s

success.
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An example may demonstrate the difficulties. Wwhat do the
following three situations have in common?

a) You plunge your hand into a paper bag three times and take
out two eggs each time.

b) You see three blocks of houses with two houses in each
block.

c) Three boys and two girls dance. How many different pairs
are possible? (old-fashioned style: one girl one boy per

pair!)

The question can also be put this way: For which more
general issue can these three situations serve as models?
Is it enough to answer - like fourth graders perhaps would
do - "It s always six!" or "All are three times two" or "It
is multiplication!” or ...? What is the meaning of the
concept "multiplication of natural number"? How may it be

explained?

The critical step is the crossing of the borderlines of the
three related DSE’'s. The interesting commonness is not with the
same twos, threes, and sixes in each situation. What are the
conditions for seeing the well-known elements differently, to
dissociate them from narrow concreteness, to attach another
meaning, another relation, a more general relation, to them?
Obviously, we can get hold of what we call a common structure
only by means of a model, of a certain description; no matter
how concrete or illustrative this model might be, provided that
it can work for us as the more general model, which we can
identify in (map onto) each of the three situations given.

For the above example a possible fourth model can be

d) Three parallel lines are cut by two other parallel lines.

The first three lines can then represent the 1., 2., and 3.

selection or house-per-block or boy. The second two lines

represent the 1. and 2. egg per selection or block or girl.

And the intersections (modes) stand for the six eggs or

houses or pairs in total.
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Clearly the learner either has to reconstruct from related help
and hints or he/she has to construct such a model on his/her
own. It should be clear, too, that this construction is not by
nature an integrated part of any one of the three situations.
It is not part of the experiences within the three related DSE’s
it 1s a new perspective.
From another point of view the geometrical configuration d)
is nothing else than just another (specific) model for the
multiplication of natural numbers. Under this view there
are many more adequate models or descriptions, e.g. e) A
table with three columns and two rows, including the three
initial ones (more in H.RADATZ/W.SCHIPPER 1983, p.73).
From a developed understanding of the concept, each of the
models can serve as description of "the" general structure of
multiplication of natural number, at least potentially, and
realizable through one-to-one coordination. Thinking abcut
the available modes and possibilities for the representation and
any structures at all, we might find that we cannot overcome the
force of the use of models in communication. In principle there
is no transgression. This brings us nearer to the relativity of
so—-called general concepts (see T.B.SEILER 1973). At this
point, on the other hand, the common statement about "the best

learning is learning by example" sounds somewhat tautological.

4. Thesis In terms of memory there are no general or abstract
- i.e. context-free - concepts, strategies, cr
procedures. The person can think (produce)
relative generality in a given situation. But the
products are not retrievable from memory in the
same generality or abstractness, that is, they are
not activatable independently of the related DSE’'s.

Wwith advancing years the development of the "society of mind"

leads to an accumulation of DSE’s and also to a growing network .

of relations among their elements through even the relations are

realized and retrievable only in specific domains. Their
genesis is bound to the considerable constructive activities of

the person as well as to the situations of practice and to the
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qualities of social interaction. The perspective of a certain
DSE may become integrated into a new DSE, together with elements
from other DSE’s. In the perspectives of the new DSE the '
integrated older experiences may appear as subordinate and
hierarchically lower elements. But in spite of that the older
DSE still can compete for activation with the new DSE. R.LAWLER
therefore speaks of a "structure of a mixed form, basically
competitive but hierarchical at need” (1981, p.20), more
precisely perhaps: hierarchically through special activation.
General knowledge is available through special activation only,
this is the meaning of thesis 4.

The disparity of the DSE’s marks not only the phase of their
initial formation but also the later phases when detailed or
more general knowledge has been required, which of course is
stored in different DSE’ s because of the differences in
situation, as the investigations of FISCHBEIN et al. (1985)
show. Microethnographical studies at preschool and early school
ages substantiate the extent to which the ability for
identifying two events as being "the same case" depends upon
previous learning experiences and upon the subjective perception
and definition of the actual situation. In several long-term
studies R.LAWLER has documented and analyzed the encountersuof
his children with computers, arithmetic and geometry (1979,
1981, 1985). His early concept of "microworlds" is the
cognitive shadow of the domains of subjective experience (DSE)
as defined here (and elsewhere, BAUERSFELD 1982, 1983).
LAWLER s daughter Miriam e.g. has solved tasks of the type
75 + 26 = ? according to the specificities cf presentation
in at least three different and for long incompatible

microworlds.

If the task appears as "75 cents plus 26 cents” Miriam
calculates the solution via her activated "Money world”,
like: "That’'s three quarters, four and a penny, cne-oh-one!"
The presentation of "seventy-five plus twenty-six equals..."”
she solves in her "Serial world" like: "seven plus two,
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nine, niﬁety—six, ninety-seven, ninety-eight, ninety-nine,

hundred, one-oh-one!"

And if it is written as a vertical sum, Miriam adds up the

columns and carries the tens (R.W.LAWLER 1981, H.BAUERSFELD

1983).
The "identical" arithmetical task, as a teacher would name it,
is thus solved according to the activated special DSE using
related but completely different procedures. For the child,
obviously, the different presentations are perceived as
different and independent tasks. The rigid disparity remains in
effect even when all three representation are given
consecutively. It is much later that through spectacular "Aha"
events certain relations are produced.
The studies support the supposition that, in particular, the use
of language is specific to the situation and hence to the
activated DSE. In LAWLER ‘s protocols Miriam uses the
phonetically same words "six", "seventy", "plus", etc. across
the different situations, whilst her concrete actions indicate
different specific meanings in correspondence with the different
activated microworlds. For an observer therefore it is
impossible to interpret an utterance without adequate
reconstruction of the related subjective definition of the
situation (DSE). Likewise it is impossible for Miriam to take a
distancing and critical perspective against her specific
procedures and intérpretations from within the activated DSE.
Evidently this is impossible in general - without having
developed the distancing and critical perspective as an
integrated habitual activity within the DSE. That is why a
teacher s urging'for comparing, for controlling, for locking
closer etc. has no effect when these activities are not
developed in relation to the activated narrow DSE.

There is by the way good reason for the development of

disparate DSE’'s because of the strikingly different sensual

characteristics of the concrete activities.

Miriam’s "Money world" is built upon her intensive

experiences with her pocket meoney, with buying and change.

What mathematicians call the operations of addition and
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subtraction is here embedded in a world with its own
specific sensuality: c¢olour, and coinage etc. and with
specific non-number names like penny, nickel, dime etc. (see
H.RUMPF 1981).
In contrast to that her "Counting world" is ruled mainly by
word sequences which obey certain rules of construction
("twenty, twenty-one,...") and which are produced through
one-to-one procedures of speaking and touching the objects
to be counted.
The Paper-sums werld" is a medium of quite another type of
sensuality: Writing symbols on paper using a pencil (with
the typical fine-motoric muscle tensions), reading, and
operating with the symbols (see H.BROGELMANN 1983).
So we can state that meaning is attached tec a word through
certain activities in a certain situation but a word has no
definite meaning per se. This is true with speaking, hearing,
reading, and writing. Likewise we interpret a word heard in a
concrete situation within the range of the actually activated
DSE. There is no other chance for understanding without
additional effort, e.g. the activation of other DSE’'s. 1In this
sense even the so-called universal language of mathematics is
not universally available (retrievable) for a person. .
Theories become helpful models for realities when and inscfar as
they generate constructive orientation. So more interesting
than the disparity of DSE’s and the unthinkable purity of
context-free concepts, perhaps, are both the teotality and the
principle of multidimensionality of learning in social

interaction:

5. Thesis Whenever we learn, all of the channels of human

perception are involved; i.e. we learn with all
senses, learning is total. And: simultanecusly we
learn on all dimensions and levels of human
activities, at least potentially; i.e. learning is

multidimensional.
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A smell therefore can activate a certain DSE later on, as can a
pattern of motion or a sophisticated metaphor. 1In a given
situation we not only learn about the subject matter, directly
and attentively, the what-to-do - e.g. the theme, facts and
procedure (declarative and procedural knowledge) - we also
learn, more covertly, about the how and the when to do it - e.g.
orientations of acticn, strategies, the fit and the adequacy of
situations - we also learn about the why to do it - e.g. sense,
reasons, attached values - we learn about ocurselves - e.g.
anxiety and motivation, personal identity - and we learn about
the others and how they see us - e.g. social norms, the person’s
social identify. The listing is far from complete. We also
develop routines and pattern of habitual activities in all
dimensions.

JOHN DEWEY alreédy formulated this idea in 19387):

"Perhaps the greatest of all pedagogical fallacies is the

notion that a person learns only the particulaf thing he is

studying at the time. Collateral learning in the way of

formation of enduring attitudes, of likes and dislikes, may

be and often is much more important than the spelling lesson

or lesson in geography that is learned. For these attitudes

are what fundamentally count in-the future.”
The continuous flow of conscious production only marks the
surface of a much deeper stream of experiences which form the
ocrientation of a person’s future actions. As DEWEY stated, the
most important things are learned collaterally, across many
activities and preconscicusly, in a FREUDian sense. So what is
learned beyond the official theme, this major and more powerful
pertion of learning appears as a core problem of classroom
teaching. AUSUBEL’'s classical and often quoted words may now be
read with a somewhat more differentiated understanding:

"If I had to reduce all of educational psychology to just

one principle, I would say this: The most important single

factor influencing learning is what the learner already

knows. Assertain this and teach him accordingly” (1968)
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Notes

1) In West Germany (FRG) after four years in primary school
about 25-40% of the 10-11 years old students enter a Gymnasium,
where they normally pass grades 5-13 and end up

with the Abitur, at age 19. The Abitur exam is the general
pre-requisite for university entrance. The majority of the
students enter grade 5 of Hauptschule, Realschule cr
Gesammtschule, the other types in the secondary school system.
2) These include not only direct simulations of mathematical
content on the computer screen, but also simulations of the
learning process, of the learner’s previous knowledge and
strategies, because all this information is processed in the
form of mathematical or logical rules and with unambiguous
ascriptions (meaning).

3) This, clearly, requires more detailed discussion, which
cannot be done here. My interest is to point out the
limitations which are carried by the unreflective use of my
categories or descriptors. They seem to be "at hand" (like
metonymies) for. what we think we see. But we usually do not
reflect upon their origin or their context, which leads to
covert, narrow pursuii, and not to novel ideas. As operations
in context, describing and interpreting are dependent on the
gqualities of these bases of the teaching-learning processes.
4) T.O SHEA. stated that often "the attempt to automate an
activity forces a better ﬁnderstanding of the activity

itself" (O SHEA/SELF /1983, p.267). And he ends his diagnosis
by saying: "...it 1is easier to let children try to learn BASIC
than to develop learning environments which facilitate
intellectual discoveries; it 1is easier to write programs which
treat students uniformly than to write programs which try to
take account of an individual student’'s interests, errors and
aptitudes" (ibid., p.268).

5) Analysing the role of example and counterexample in "proofs
and refutations" LAKATOS said: "...we may have two statements
that are consistent in (a given language )Lj, but we switch to
(a new language) Lo in which they are inconsistent. Or we may
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have two statements that are inconsistent in Lji, but we switch
to Ly in which they are consistent. As knowledge grows,

languages change.

‘Every periocd of creation is at the same time a period in which
the language changes.  (FELIX) The growth of language cannot be
modelled in any given language." (I.LAKATOS 1976, p.93;
brackets added from context, H.B.). LAKATOS identifies the
change of language as "concept-stretching”" (p. 93 £.). But
"concept-stretching will refute any statement, and will leave no
true statement whatsoever." (p.99) Indeed he denies the
existence of "inelastic, exact concepts" as bases for
rationality (p.102). There is no eternal truth, there is only
"guessing" (p.76 f£.) and "the incessant improvement of guesses"
(p.5). D.SPALT (1985) discusses in detail the failure of
LAKATOS *~ solution to this fundamental problem: "mitigation" of
concept-stretching (LAKATOS 1976, p.l02 £.).

6) The notion of "subjective" experiences rather than
"personal" experiences (which might be nearer to colloguial
English) follows etymolcgical considerations. The Latin origin,
the verb "subjicere", means in the transitive sense that the
person (the subject) actively subjugates something, makes it the
person’s own through action. This of course describes the
functioning of "subjective experiences”. The active parts are
at least the continuous constructions of meaning and the
selecting and focussing in our changing definitions of the

actual situation.

7) For this quotation I am indepted to HARRIET K. CUFFARO’s
article in the Columbia Teachers College Record, summer
1984, p. 567, which interestingly critizes the present use
of computers in schools.

The vigilant reader will find that chapter 4 as promised at the

bottom of page 2 is missing here. The chapter will have to be
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added later on.
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ON THE RELATIONSHIP BETWEEN APPLICATIONS OF
MATHEMATICS AND THE TEACHING OF MATHEMATICS

INTRODUCTION

Most mathematics educators believe in the importance of
applications, but it is nevertheless very difficult to
get applications into the curriculum. Why? One
possible reason appears to be that there is no agreement
on what 1s meant by applied mathematics. In the
following we shall explore four different definitions,
and their consequences both for the mathematlcs subject
matter and for pedagogy.

1  THE DEFINITION OF APPLIED MATHEMATICS AND ITS VISUALIZATION

In discussions of apphed mathematics, a large amount of unnecessary difficulty is sometimes
created by differences in perception of the appropriate definition. These differences have come
about quite naturally in recent years, since the variety of mathematics which has significant
practical applications, the number of fields to which mathematics is appiied, and the modes of
applications have all undergone very rapid change. It is useful to think in terms of four different

definitions.

* Dr. Pollak's lecture followed closely parts of the text
of his paper "The interaction between mathematics and
other school subjects', Volume 4, UNESCO. The appropriate
parts of the text are reprinted here by permission of
the author and UNESCO.
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Mathematics and other subjects

Applied mathematics means classical applied mathematics; that is, the classical branches of
analysis, including calculus, ordinary and partial differential equations, integral equations,
the theory of functions as well as a number of related areas. It is sometimes convenient to
annex those aspects of secondary mathematics which are essential-prerequisites to calculus,
in particular algebra, trigonometry and various versions of geometry. The fact that these
branches of mathematics are the ones most applicable to classical physics is usually under-
stood as part of this definition, but no actual connection with physical problems is implied.

Applied mathematics means all mathematics that has significant practical application. This
greatly enlarges the collection of mathematical disciplines included under (1). All the topics
that have been considered world-wide for inclusion in the elementary and secondary school
have significant practical applications — including sets and logic, functions, inequalities,
linear algebra, modern aigebra, probability, statistics and computing. Almost all the mathe-
matics taught at the tertiary level (the undergraduate level at many universities) as well as
much graduate mathematics are also included. In the views of many people, the most
important areas of mathematics that are included in (2) but not in (1) are statistics,
probability, linear algebra and computer science. There are many who feel that these topics
are as important as classical analysis. Fields of potential applicability include more than
physics, but, once again, only the mathematics itself is being considered.

Applied mathematics means beginning with a situation in some other field or in real life,

making a mathematical interpretation or model, doing mathematical work within that-
meodel, and applying the resuits to the original situation. Note that the other fieid is by no

means restricted to lie in the physical sciences. In particular, applications in the biological

sciences, the social sciences, and the management sciences have become extremely active.

Many other areas of applications will also be considered.

Applied mathematics means what people who apply mathematics in their livelihood actually
do. This is like (3) but usuaily involves going around the loop between the rest of the world
and the mathematics many times. An excellent example of the process involved in this
definition of applied mathematics may be found in a report of the workings of the Oxford
Seminar in the United Kingdom (Oxford, 1972).

A convenient aid in visualizing these four definitions is seen below:

In this picture the left-hand side shows mathematics as a whole, which contains two intersecting
subsets we have called classical applied mathematics and applicable mathematics. Classical applied
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mathematics represents definition (1) and applicable mathematics, definition (2). Why doesn’t
(2) contain all of (1)? The overlap between these is great, but it is not true that all of classical
applied mathematics is currently applicable mathematics. There is much work in the theory of
ordinary and partial differential equations, for example, which is of great theoretical interest but
has no applications which are visible at the moment. Such work is included in definition (1) as
classical applied mathematics, since this contains all work in differential equations; on the other
hand, if it is not currently applicable, it does not belong in definition (2).

The rest of the world includes all other disciplines of human endeavour as well as everyday life.
An effort beginning in the rest of the world, going into mathematics and coming back again to
the outside discipline belongs in definition (3). Definition (4) involves, as will be seen, going
around the loop many times.

Other categorizations of applied mathematics have also been considered and can be examined
in terms of the diagram. Typically, they involve a more detailed study of the process within
mathematics itself than we shall undertake here. For example, applications of mathematics may
consist of routine uses of mathematics, of mathematical reasoning as opposed to direct
calculation, and of the building of models of various sizes going from smalil models through full
mathematization of real situations to truly large-scale theories. Another very interesting way of
slicing the pie may be found in Felix Browder (1976) “The relevance of mathematics”. His
categories consist of: (a) practical mathematics, that is mathematical practice in the common life
of mankind in civilized societies; (b) technical mathematics, that is the use of mathematical
techniques and concepts to formulate and solve problems in other intellectual disciplines; (c)

mathematical research, that is the investigation of concepts, methods and problems of various-

mathematical disciplines including applied ones; and (d) mathematics as a universal pattern of
knowledge, which means the science of significant form. His essay is highly recommended.

2 - ADETAILED STUDY OF THE VARIOUS DEFINITIONS

2.1 The mathematics side of the diagram .

The mathematical content of classical applied mathematics (definition (1)) and of applicable
mathematics (definition (2)) have aiready been discussed. One recent trend has been the pub-
lication of books and articles showing the applicability of many of the mathematical disciplines
which are not included in definition (1). To name just a few examples, Hans Freudenthal (1973)
as well as M. Glaymann and Tamas Varga (1973) have written recent books on the applicability
of probability; Tanur, Mosteller, Kruskal, Link, Pieters and Rising (1972) have edited a volume
showing the great diversity of applications of statistics; R. H. Atkin (1974) in his book has
included applications of topology, and Fred Roberts (1976) has devoted much space to appli-
cations of graphs and Markov chains. Journal articles are even more numerous; a few samples of
" particular interest follow — without the slightest pretence of coverage. Thus F. W. Sinden (1966)
and Uwe Beck (1974) have shown some applications of topology; M. Dumont (1973) has
discussed some uses of Boolean functions and J. H. Durran (1973) some applications of Markov
chains. Recent applications of combinatorics and graph theory are examined, for example, by
John Niman (1975), J. N. Kapur (1970) and W. F. Lunnon (1969).

A significant feature of applications of mathematics is that mathematical concepts and
structures have important usefuiness, not just mathematical technique. An interesting discussion
of this point is given by H. G. Flegg (1974). Furthermore, since the relationship between mathe-
matics and its applications is forever changing, there is a dynamic effect on mathematics itseif.
It has happened many times that areas of mathematics which were originally considered quite
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pure, and were developed with no thought of applications whatever, have turned out to be
significantly useful. On the other hand, areas of mathematics which were invented only for
application, with no thought of their possible contribution to core mathematics, have turned
out to have an impact on pure mathematical disciplines. As an example of the former, the theory
of_entire functions has given notable insights in electrical communications; ideas of information
theory, on the other hand, have been useful in such diverse fields as measure-preserving trans-
formations and the theory of finite groups.

2.2 The rest of the world

Perhaps the outstanding feature of applications of mathematics in recent years is that the areas to
which mathematics is applied have been increasing in number so rapidly. It is fair to say that no
area of human endeavour is cumrently immune from quantitative reasoning or mathematical
modelling. Besides the traditional physical sciences and engineering, the biological sciences, the
social sciences, the management sciences, the humanities and everyday life are all arenas for inter-
action with mathematics. This is not meant to imply that mathematics is taking over all these
other fields, but there are many interesting applications.

Perhaps the most extensive literature in recent years on applied mathematics from the point of
view of the other disciplines has come in the biological sciences. An exceilent overall survey
appears in the book by J. Maynard Smith (1968). Books dealing with specific areas within the
biological sciences include Victor Twersky (1967) on growth, decay and competition and R. M.
May (1973) on the stability of ecosystems. Among the articles too numerous to summarize we
note S. Karlin (1972a,b, the former jointly with M. Feldman) on genetics, S. P. Hastings (1975)
on neurobiology, Arthur Engel (1971, 1975) and Beck (1975) on population modeis, W. D.
Hamilton (1971) on the geometry of group behaviour, and several articles in “Computers in
Higher Education” (1974) on the use of computers in biology. Not that new books and articles
on mathematics in science have been lacking: We note particularly a little known volume by
George Polya Mathematical Methods in Science (1963) as well as another portion of Victor
Twersky (1967). Recent articles on mathematics in science include J. B. Griffiths (1976) on
modei building and mechanics, the conference report on ““Modern Mathematics and the Teaching
of Science” (1975), and the previously mentioned computer survey “Computers in Higher
Education™ (1974).

Another field which has recently flourished is the interaction of mathematics with the social
sciences. Information on computers and statistics in the social sciences generally may be found
in (Computers ..., 1974) and (Teaching of statistics ..., 1973); a fascinating and somewhat
different viewpoint is represented in the article by H. R. Alker, Jr., “Computer simulations:
Inelegant mathematics and worse social science?” (1974). The Source book on Applications of
Undergraduate Mathematics to the Social Sciences (1977) contains descriptions of detailed
mathematizations in many fields of the social sciences. To go on with specific fields, economics is
extremely active for interactions with mathematics, aithough good expositions of the problems
of model building in economics are not common. One nice example is “On the theory of
interest” by David Gale (1973). Mathematical work in geography has also been quite popular in
recent years, particularly in the United Kingdom. Again there are significant contributions in
(Computess ..., 1974) and (Source Book ..., 1977), and an elementary treatment of weather
forecasting in Durran (1973); see also King (1970). Mathematical psychology is represented by
two recent survey articles by Anatol Rapoport (1976); Source Book ... (1977) also contains
extensive references to recent work. Besides their appearance in overall summaries, anthropology
is represented by example in the book by L. Pospisil (1963) and the traditional mathematical
theory of warfare by Arthur Engel in (1971). A magnificent example of mathematics applied to
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political science may be found in M. L. Balinski and H. P. Young (1975) “The quota method of
apportionment”. Mayer (1971) and Coxon (1970), for example, represent mathematical
sociology. -

The very large field of mathematical models in the management sciences including the entire
area of operations research hardly needs description here. Sample articles of particular interest in
recent years include those by F. J. Fay (1972), J. C. Herz (1973) and the delightful piece on
mathematics applied to college presidency by J. G. Kemeny (1973). Mathematical models in
medicine has been an increasingly active field; there is an excellent survey by J. S. Rustagi
“Mathematical models in medicine” (1971). Mathematical linguistics has similarly become a
major accepted field. Interesting particular articles appear, for example, as parts of Engel (1971)
and Source Book . . . (1977), with Sankoff (1973) as another good source.

The penetration of mathematics into the humanities, including statistical and computer
models, is a fairly recent event. Perhaps furthest advanced are mathematical analyses of art. We
note, for example, A. V. Subnikov and V. A. Koptsik (1974) and a very valuable British summary
of mathematical ideas and concepts in art by Beryl Fletcher (1976a). Mathematics applied to
architecture is discussed by R. Fischler (1976) as well as in the summary work ‘“Computers in
Higher Education” (1974). Some examples of mathematical ideas in hobbies and handicrafts are
given in Beryl Fletcher (1976b). Mathematical strategies for certain games such as NIM and the
towers of Hanoi have long been familiar to, and enjoyed by, mathematicians. In recent years,
there has been a great upswing in the discovery of optimal strategies for much more intricate
games, and this has even provided one of the early applications of ideas from nonstandard
analysis. We particularly note the work of E. R. Berlekamp and J. H. Conway, partly reported in
Conway (1976). A nice example of optimal strategy for poker is given by W. H. Cutler (1975).
Cryptanalysis has often been treated — see e.g. Sinkov (1968); for mathematics in sports see
Klein (1972).

Besides the above-mentioned books and articles more or less devoted to specific areas of
applications, there has been a trend in recent years towards the publication of excellent
collections of articles and symposium reports which cover a broader spectrum. One of the earliest
but still of great interest is the Utrecht colloquium “How to Teach Mathematics so as to be

Useful” (Freudenthal, 1968). This was followed by the Echternach symposium “New Aspects of

Mathematical Applications to School Level” (Echternach, 1973) and the Lyon seminar “Goals
and Means Regarding Applied Mathematics in School Teaching” (Goals and Means. .., 1974).
Other noteworthy volumes of this kind include Notes of Lectures on Mathematics in the
Behavorial Sciences edited by H. A. Selby (1973), Topics in Behavorial Mathernatics by T. L.
Saaty (1973), A Source Book for Teachers and Students on Some Uses of Mathematics, Max Bell
(1967, A Conference on the Applications of Undergraduate Mathematics . . . (Knopp and Meyer,
1973) and La Mathématique et ses Applications by E. Galion (1972). ‘

The preceding list well illustrates the curmrent diversity of applications of mathematics in
contrast with the historical monolith of applications to physics. It should not be assumed,
however, that the arguments between those who stress the great variety of applications in recent
years and those who feel that their total impact cannot compare to the 2000-year accumulation
of success in mathematical physics have died down. In fact, this difference of instinctive value
judgement underlies many of the arguments about mathematics education to which we will
return later. '

2.3 The model building process
When mathematics is actually applied to a situation in some other field, there are typically a
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number of distinguishable steps in the process. These consist of a recognition that a situation
needs understanding, an attempt to formulate the situation in precise mathematical terms,
mathematical work on the derived model, (frequently) numerical work to gain further insight
into the results, and an evaluation of what has been learned in terms of the original external
situation. This picture of the model building process has been widely accepted and there are
many papers which elucidate the details from various points of view. Overall descriptions appear,
for example, in the papers by M. S. Klamkin (1971), H. O. Pollak (1970) and P. L. Bhatnagar
(1974). The same pattern, but applied specifically to operations research, appears in the paper by
Gordon Raisbeck (1975) “Mathematicians in the practice of operations research”; its application
to engineering may be found in A.C. Bajpai, L. R. Mustoe and D. Walker (1975), and again in the
paper by H. G. Flegg (1974). M. E. Rayner (1973) in her paper ‘“Mathematical applications in
science” in the Echternach report describes in detail some of the difficulties in problem form-
ulation. A quotation she gives from Eddington is particularly worth repeating, ‘“The initial
formulation of the problem is the most difficult part, as it is necessary to use one’s brains all the
time; afterwards, you can use mathematics instead”. A proposal for better model building in
mechanics is aiso given by J. B. Griffiths (1976). See also Wilder (1973).

The model building process has a number of interesting properties as well as pitfalls which
we shall examine. A good model is one which is to some extent successful in expiaining, or
even predicting, external reality. If it fails to have this explanatory power then, no matter how
satisfactory the mathematics itself, the model is not good applied mathematics and must be
changed. This process can be quite painful for the mathematician but real progress in inter-
disciplinary efforts is often made through successive changes in the model. This is one of the
reasons why definition (4) of applied mathematics involves going around the loop many times.
Another phenomenon which sometimes happens is that a mathematical model predicts too much
rather than too little. It may happen that phenomena observed in the other field are indeed
explained satisfactorily, but that further logical implications of the model are not acceptablie.
For example, in the mathematics of communication a model of a signal which is of finite
duration in time is very realistic. Similarly, a model of a communication signal using finite band-
width comes up in many situations and gives quite satisfactory engineering results. Unfortunately,
the two are contradictory and cannot be used at the same time in the same problem; models
which do so unwittingly will lead to nonsense. On the other hand, attempts to understand this
difficult situation fully have led to very interesting advances, see e.g. D. Slepian (1976).

Another feature of the model building process is that the purposes for which a mathematical
model is created are also quite varied. In the physical sciences and engineering, the purpose is
frequently very precise understanding which will in turn lead to action. In the social sciences,
on the other hand, the purpose is often one of insight; you want to know whether a certain set
of hypotheses could account for a particular observed phenomenon. It is often assumed, although
not necessarily true, that these associations are in fact one-to-one correspondences. Physical
models of why rivers meander, or why a rapidly slurped pice of spaghetti comes up and hits your
nose, are not necessarily used for scientific decisions. On the other hand, mathematical models of
shortest connecting networks and optimal pricing are often used for management action.

The overall picture of applications of mathematics would not be complete without a discussion
of truly interdisciplinary activity. Much of the most exciting current work is in fact on the
borderline between several fields, one of which being in the mathematical sciences. The above
references will lead the reader to many examples of current interdisciplinary work.
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3 EFFECTS OF APPLIED MATHEMATICS ON MATHEMATICS EDUCATION

3.1 Problems.and problem solving in the schools

A framework for understanding the meaning of applied mathematics has now been established,
and a number of ramifications of the various definitions have been examined. A look at effects
of applied mathematics on education follows. It must be emphasized that many of the topics in
this chapter represent ideas and experiments in various countries which cannot claim to be
adopted on any large scale. Discussions at the Karisruhe Congress did not bring forth any data
which would substantiate broad use of applied mathematics in the schools.

Traditionailly most of what was considered applied mathematics in the schools has been found
under headings such as “word problems”, “problem solving’, etc. (This does not mean the
“word problem” in the sense of modern algebra.) The meaning of such problem solving has been
examined in a number of projects and articles in recent years. For example, the work of IOWO in
the Netherlands is of particular importance. IOWOQO has also paid special attention to the
differences in abstraction and precision between mathematical language and everyday language.
The detailed meaning of problem solving is examined in papers by H. G. Flegg (1974), Beryl
Fletcher (1976c) and H. O. Pollak (1969). Genuine applications of mathematics to other fields
and to everyday life should ideally be in the character of definitions (3) and (4). It is often
argued that a full presentation in the spirit of even definition (3) represents too large a project
and takes too much time. In that case, the actual situation and numbers used in the word
problem should at least be genuine extractions from an honest problem formulation. For
example, estimates of crop yields and of times to complete a task should not be made to five
significant figures, for this will never happen in real life. Too many plumbers in one room get in
each other’s way, and jobs are not always divisible. A current joint project of the National
Council of Teachers of Mathematics and the Mathematical Association of America in the United
States is producing a Source Book (1978) of hundreds of simple problems which are intended to
be genuine in the above sense.

The opposite phenomenon is that the facts alleged in the statement of a problem are some-
times totaily unreal. Problems which use wrong linguistics or impossible engineering or incorrect
meteorology just to have some words from another discipline should be avoided. In this case,
intent can nevertheless be important. Sometimes problems are clothed in a mantle of external
vocabulary only for amusement, and the pretended application is not meant to be taken seriously.
We shall call such problems whimsical problems. A strong argument in favor of such problems is
made for example by Arthur Engel (1969) “Some examples are artificial, like fables. But just
like fables, they have a moral, i.e., they facilitate insights into things that appear in the real
world”. For example, it can be quite effective to begin with an unsatisfactory oversimplification
of a real situation, and to approach a genuine application in the sense of definition (4) through a
series of increasingly realistic problems. Thus whimsical and unreal problems are not necessarily
devoid of pedagogic value. However, if they are perceived as stupid, they may well be counter-
productive. Similar discussions of real and unreal problems may be found in two particularly
interesting papers by Margaret Brown (1972, 1973) and Mary Williams (1971). In particular, Mary
Williams points out that the same difficulty of unreal models happens at a very advanced level as
well as at the school level. See also section 1.1.5 of Chapter IV.

The increased awareness in many countries of the importance of teaching the applicability of
mathematics has led to a number of very interesting attempts to collect real problems at various
levels, and from various disciplines, and to make them available for teaching purposes. One
collection at the school level (Source Book ... Secondary School, 1978) has already been
mentioned. Other general collections have been made by Max Bell (1972), Ben Noble (1967),

a
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D. A. Quadling (1975), and C. W. Sloyer (1974). Collections devoted to particular disciplines,
mainly at the university level, include the series on statistics by example (Mosteller et al., 1973),
the social sciences problem book (Source Book . . . Social Sciences, 1977) and the collection of
mathematical models in biology (Thrall et al., 1967), ailthough the realism of problems in the
latter collection varies. Another text in the same-spirit, although it is organized is an actual
course in engineering concepts, is The Man Made Worid (1971). It can be expected that very
interesting collections of real problems in the above spirit will also be appearing in China. One
such example of which we are aware contains, among other things, a number of excellent
geometric problems from industry and agricuiture (Applications..., 1975).

3.2 Mathematical subject matter in the schools

The diversity of applicable mathematics (definition (2)) which has emerged in recent years has
greatly complicated the task of designing curricula for elementary and secondary schools. The
traditional goals of preparing students for either shopkeeping or calculus (associated with
definition (1)) cease to be uniquely valid when so many more areas in the mathematical sciences
are of undeniabje importance to so many of the world’s people. As the number of reasonable
choices increases, so does the difficulty of designing a curriculum. [t has been argued by many
that, for example, probability, statistics and computer science are as important for applications
as the calculus. School materials for applications to many different discipiines have become
available in recent years. Collections of materials involving applications to many different.fields
may be found, for example, in Crossing Subject Boundaries (Schools Council, 1970) and the
materials from the Minnesota School Mathematics Center (Rosenbloom, 1963). The Chelsea
Centre for Science Education project, “Science Uses Mathematics™ (Chelsea) contains interesting
applications to science which can be used in an interdisciplinary way, although this is not always
done. Applied Mathematics in the High School by Max Schiffer (1963) also gives excellent
examples of the relationship of mathematics and scientific applications from the point of view of
the schools. A collection of examples which turn the tables and use physics to do mathematics.
has been made by Uspenskii (1961).

A major work examining curricular goals and pedagogy in the framework of an application to
economics may be found in Damerow, Elwitz, Keitel, and Zimmer (1974). Biological applications
may be found in Gibbons and Blofield (1971), and applications to geography in the materials by
IOWO, in New Ways in Geography by J. P. Cole and N. J. Beynon (1968) and alsc in B. Fletcher
(1976c). Applications to geography are aiso featured in the Travaux d’Oriéans (Les
Mathématiques dans I’Enseignement ..., 1975), which in fact contains many other fascinating
applications to a variety of fields throughout the curriculum, including economics, technology
and medicine. This work also features references to recent work on applications in France and
interesting philosophy on the usefulness of mathematics. An interesting application to political
science may be found in Steiner (1966); environmental applications occur in the work of IOWO
and in the book by Fred Roberts (1976). As we look at applications organized from the
mathematical point of view, a superb collection of applications of linear algebra may be found in
T. J. Fletcher (1972), and of statistics and probability in the work of Arthur Engei, e.g. (1970,
1973) and in The Teaching of Probability and Statistics edited by Ride (1970). Mathematics
Applicable by the Schools Council (1975) also motivates much secondary mathematics through
examples; the volume entitled Logarithmic/Exponential is a particularly interesting sample.

This great diversity of possible applications of mathematics, and of elementary branches of
mathematics with significant applicability, has made the curriculum design problem very difficult.
For example, topic A deserves to precede topic B in the curriculum if topic A is socially more
important at this particular time, or if topic A is a prerequisite to topic B at this particular time.
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As technology and social goals change, so should the ordering of importance. As available tools
for teaching change, so will the order of prerequisites. These orderings will differ also from
country to country. These facts make it even more difficult than it has been in the past to export
curricula from one part of the world to another. Since an imported curriculum incorporates
problems, situations and values which make no sense in a new country, this was probably never
desirable, but is is even more questionable now.

3.3 The possible effect of applications on pedagogy

An appreciation for the different forms of applications of mathematics should affect not only the
curriculum materials of the schools but also the pedagogy. If you examine even relatively simple
uses of mathematics, you find that it is necessary to understand when and how and why the
mathematics works in order to apply it correctly. There are several reasons for this. One is that
mathematics which has been understood will be remembered better. Another more fundamental
reason is the danger that mathematics which has been memorized without understanding will be
misapplied. It is necessary to know where a particular method or formula comes from, exactly
what kind of problem it will handle, and when and how it works in order to be sure that it will
apply to a new situation. Curriculum reform in many countries has emphasized the “why” of
mathematics in recent years on the grounds that it is essential for proper teaching of
mathematics. What we see is that “why” is just as important for interactions of mathematics
with other disciplines as it is for mathematics itself. The natural desire of mathematics teachers
to emphasize understanding as well as technique is reinforced, not contradicted, by applications.

The model building process as developed through definitions (3) and (4) of applied
mathematics interacts with mathematical pedagogy in a still deeper sense. Model building requires
an understanding of the situation outside mathematics and of the process of mathematization as
well as of the mathematics itself. You cannot hope to mathematize a situation without under-
standing it. Here we have yet another way in which “applied” problems which do nothing more
than mouth words from another discipline are likely to mislead the student. A: great weakness
of some courses with titles like ‘““Methods of Applied Mathematics™ is that no attempt is made to
provide an opportunity for the student to understand the situation and the mathematization
process. This point has been particularly emphasized by H. G. Flegg (1974) and is further
substantiated, especially from the point of view of future employment, in R. R. McLone (1973).
Some of the college-evel collections of real problems mentioned previously, for example Noble
(1967) and Source Book ... Social Sciences (1977), take particular pains towards the under-
standing of the situation in the real worid.

Another pedagogic implication of the interaction between mathematics and other disciplines as
it is described in definition (4) is that such interactions are clearly open-ended. Open-ended
teaching of mathematics itseif has long been recommended by mathematics educators in many
countries, although adoption is rare. What does “open-ended’ mean in this context? Besides the
usual activities of soiving problems and proving theorems, students should have the experience
of finding their own problems to solve and their own theorems to prove. Such experience is an
important factor in the mathematical development of the student But exactly the same
argument hoids in the context of applications. It is very valuable for the student to have open-
ended modelling experience, which besides its great pedagogic value is an accurate foretaste of
mathematical “applications in the real world. Experiments in open-ended discovery teaching of
mathematical applications, many in the form of truly interdisciplinary materials, are under way
in surprisingly many countries. An outstanding example is certainly China, where a major
practical problem will be used for reference and inspiration throughout a course in calculus or
linear algebra. There are many other examples of open-ended and truly interdisciplinary activities
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at the tertiary level, represented, for example, by the Case Studies in Applied Mathematics
(1976), the books by T. J. Fletcher (1972), Maki and Thompson (1973) and Roberts (1976).
At the elementary level, an outstanding example is provided by the USMES project in the United
States (Lomon et al.,, 1975) in which students attack a series of action-oriented challenges by
appropriate combinations of mathematics, science and social science. Truly -open-ended
applications are particularly difficult to introducé at the secondary level, and corresponding
materials are very scarce.

3.4 Applications and teacher training

As mathematics teaching changes in the light of the increasing applicability of the subject, so
should teacher training. Teachers should become familiar with the new fields of applicable
mathematics, with the process of model building, and with the associated pedagogic emphases
on understanding and open-endedness. There is a general tendency world-wide to reverse certain
recent trends and to include more experiences involving applications in the training of
prospective teachers. Perhaps the most exciting development in this direction is the pattern
pioneered in the United Kingdom and now aiso spreading, for example, to Australia (Fensham
and Davison, 1972), i.e. to make an internship in industry part of the training of a mathematics.
teacher. In this way, it is possible for the teacher to learn something of how the mathematical
sciences are really applied. Practising teachers also sometimes help with the preparation of new
interdisciplinary, open-ended materials (see e.g. Case Studies..., 1976). Especially in those
countries in which there is currently an ample supply of teachers, those prepared in the broader
mathematical sciences and familiar with applications of mathematics enjoy a stronger position in
looking for employment. In other countries, applied mathematics in the sense of definition (1)
has always been a strong component in teacher training, but experience with applications in the
sense of definitions (3) and (4) has been missing. Once again, ma;or industrial or agricultural
experience has become part of teacher training in China.

3.5 Vocational education

A further educational effect of applications of mathematics is in vocational education. As the
importance of the mathematical sciences increases for many disciplines, so does the need the
workers and technicians in these disciplines to learn the most appropriate mathematical
techniques. Noteworthy vocational materials in a variety of technical fields have been developed
in a number of countries. For example, of the order of a dozen volumes of applications of
mathematics in different technologies (clothing, carpentry, metal work, etc.) have been produced
in Hungary. A different development in the same spirit is the increasing popularity of special
curricula for technicians in computer science and data analysis. These have become particularly
prevalent, for example, in the United States.

3.6 The implications of truly interdisciplinary teaching

Teaching which is truly multidisciplinary is very difficuit to achieve at any Ievel, but perhaps
nearest to reality in the elementary school, where — in many countries — a single teacher
normally handles most if not all subjects. The evidence for this may be found in the many multi-
disciplinary materials for the elementary school which have been mentioned. Such activities,
when actually carried out in the schools, are especially satisfactory for students because they
strengthen the relationship between school and real life. Students are not always satisfied with
the promise of future gratification inherent in such statements as “you will find out why this is
useful later on”, and are pleased with the applicability of mathematics to probiems in which they
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are interested. This is particularly stressed, for example, by IOWO and USMES (Education
Development Center, 1974, 1975). However, if the time during the school day is apportioned
according to disciplines, it is necessary that the time for multidisciplinary activities be
contributed by the various disciplines involved. This implies, at a minimum, that muiti-
disciplinary projects must state what responsibility they will take for specific topics in the several
disciplines. Appropriate teacher training at the elementary level is very necessary. On the
secondary level, the implications for the structure of the educational system are much more
severe. If a single unit involves mathematics, science, social science and language arts all in a
significant way, who is going to teach the material, who will contribute the time, how should the
school be organized? These problems have not been solved, although team teaching is one possi-
bility; see also Rao (1975). They are discussed particularly in section 3.7 of Chapter III and in the
Report of the Memphis Conference (Education Development Center, 1974). At the university
level, multidisciplinary educational activities may take the form, for example, of genuine model
building courses discussed previously, or of team teaching by faculty from mathematics and from
a field of application of sections in basic courses such as calculus, linear algebra, and statistics.
An example of a master’s programme with multidisciplinary experience is Hunter Coilege (1974).
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WORKING GROUP A |

LESSONS FROM RESEARCH ABOUT STUDENTS' ERRORS
by S.H. Erlwanger

PARTICIPANTS OF WORKING GROUP A

LESSONS FROM RESEARCH i, foerated, 0. S, V. By, o B, 8 Getber, b

0. Mohammed, A. Powell, J. Vervoort, S. Erlwanger.

"Students’ errors in mathematics learning have often been
approached from a pathological point of view. In such an
HBDUT STUDEHT’S ERRDRS approach, the study of errors or error patterns is conceived
as the study of the symptoms of same disease for which a cur e
has to be found or discovered. In other relatively recent
studies, the phenomencn of errors in mathematics learning has
been approached fram a more developmental, cognitive point of
view. In this latter approach, students' errors are seen
nore as signs of progress in learning, which may indicate an-

GROUP LEADERS: inconpleted process, a deviation fram an expected development

or even a misconception but which essentially is a phenamenon
of a cognitive process called learning. In this perspective,

STANLEY ERLWANGER B ] S TR

ment.
DIETER LUNKENBEIN e Shenantne of orros i mathEIos by ok the. Tacter
perspective.

1. by looking at same récent publications or research in
this field;

2. by indicating the impact of particular results on the
canception and description of models of the learning
process;

3. by identifying sawe areas of research, where the described
approach ocould be of particular interest.®

The Working Group consisted of a diverse set of individuals with intexr-
ests ranging fram the elementary school to the university level.

1. Publications and Research

Several publications were on display for the group. Some of these

are listed in the Appendix. In addition, several copies of

reports and examples of students work were made available to

menmbers. There was unfortunately, not a wide enough range of material.
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2. hAreas of research identjfied as of interest were in the articles
an display, especially two by Ginsberg which are discussed be-

low. The following points of interest emerged from the discussions.

A. Error Analysis for Cognitive Purposes

There was sare discussion as well as general agreement an the idea of
using errors and error analysis to study cognitive processes. The
article, "Cognitive Diagnosis of Children's Arithmetic® by Ginsburg
was discussed as a good exanple of one application of error analysis.
It was felt that Ginsburg’sclassificationof cognitive purpose and
integrative purpose was a useful way of cansidering error analysis.

Same of the members here felt that such analysis could be useful for
"theory building while others were nore interested in using such
analysis for remediation. These differences reflected individual
members interest and experiences in the area of diagnosis.

One of the participants, H. Gerber, has aptly observed that “the
session got off to a ponderously slow beginning. Perhaps it was due
to the heterogeniocus nature of the groups, or the variety of biases,
expectations, and concerns, that the first three hours were, to me at
least, a waste of time. The meeting came alive at the start of the
first session with your (Erlwanger) exanples, confiming the theory
that - we should introduce a topic with a problem that interests the
audience.” The point being made is an important one in that it re-
flects the state of the art regarding error analysis in mathematics.
The article by Ginsburg was a beginning attempt towards same sort of
theory. However, it became clearer over the three days that we were
all easily motivated by anecdotal exanples and subsequent discussians
remained at the descriptive level and led to different interpretations
by individuals. '

Over the remaining two days we attempted to follow a plan to discuss,
Procedural Errors, Conceptual Errors and finally errors in Problem’
Solving.

B. Procedural and Conceptual Errors

A distinction was made between these two types of errors by V. Byers.
The former were errors in the steps of an algorithmand the latter were
oconcerned with concepts. The discussion on procedural errors led to
the following points:

(i) The article, “Cognitive Analysis of Children's Mathematics Diffi-
culties” by Russelland Ginsberg was introduced by Byers as an exanple
to illustrate procedural errors as specific defective procedures when
executing a written algorithm. Members did not have enough time

to digest the article. It was also felt that the paper summarized re-
sults rather than described individual children. However, the results
did indicate that fourth graders with leaming difficulties made a
greater number of errors than their peers.
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(ii) T™wo examples of children's work were shown by Erlwanger

ne
exanple showed a boy who made procedural errors with an algorithm

Were used to suggest that

by both good and poor students it i
s but it is only the latter who
.often unable to use standard algorithm that are taught at Schogf

A set of exanples by Erlwanger of chi i Spon;

) ldren's interview
ﬁlgsui::ltgils tx;l:o;t;i the equal sign_was distributed. The e:rc:nple:e y
st ‘ .ldren gave their own (different) interpretations

equal sign in examples such as 2+3=5, 33 and 5+3=3+5,

There was not enough time to consider these exanples or any others further.

C. Errors in Problem Solving

'Iherewasnotinetodiscussthisareaatall.

D.

1.

3.

Othe
raspectsthatwamtomhedu;nnbutnotdiscussedatlengﬂzhere:

Articles by Byers and Erlwan i
: . 2 ger. One article on "Conten Form
in Mathemat':lcs" raised the question whether errors shoul:i: !?e‘d attri-

msmrgsupportedsateoft:heobservatmxs' .
made by the.gyoup,'nanaly.: children with mathematics difficulties

how to use errors as the ist studen eamming
S occur to i
mathematics wasg proposedyby M. Hoff::rs\mt s il

Locking at errors from a broad text in which errors emerge
ad con in
anly ane aspect of the totality of that student. (H.rls;auersfelcai)s

The notian that errors are subj . spec
ject matter ifi i
content as well as its form, (Byers and Erlwangézf-;c and reflect ita

The development approach in Geame considered
velc try where erro i

"I:l.;i be indicators of the level of development ofr;:?;ed:en (D. Lunkenbein

S raised the question that we speak of children's ez"mr; fre- :
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7. Most discussions on errors remained at the descriptive level
and did not lead to any theory. (D. Kirshner)

To sumarize, the working group demonstrated once again that our know-
ledge regarding the learning of mathematics and the causes and nature
of errors is still incamplete, fragmentary and far from a theory.
Thus when the group met initially a great deal of time was spent in
trying to evaluate each others views. It would probably have been ad-
vantages to have focussed on introducing each aspect by means of
examples. But it turns out that finding exanples to cover different
levels e.g. elementary, secondary, ocollege and university is quite
difficult. ,

Individual conments by participants:

(a) E. Kuendiger

*I appreciated very much, that during discussions a variety of differ-
ent views came up, as to how an exrror can be defined and what role
it plays in the learning process. Depending on the chosen conceptual
franework different aspects came to the fore.

I remember three different approaches, that partly are overlaﬁping,
partly exclusive,

(a) Staniey gave exanples of a student, who could solve an addition
sentence mentally in a non-school enviromment and could not do it
when at school, neither mentally nor by using the standard algorithm.
Looking back, I think Heinrich's damains of learning are very suitable
to describe these difficulties: A cognitive structure is built up

in one damain and by this is related to this domain and is not necessarily

taken over as a successful strategy into another domain.

In this situation the tasks of the teacher would be to recognise suit-
able strategies a student posseses already, to enable the student to
transfer this strategy into another domain and to demonstrate the
relationship between strategies (standard algoritim - others).

There is another reason why I like the above mentioned example given
by stanley: it demonstrates the relevance of the affective part of the
leaming process. This affective aspect is ~ as to my opinion -~ one
of the most important characteristics of a damain, e.g. if a learning
environment is supportive in a way that a student ventures to think,
transfer of cognitive structures fram another domain is more likely.

(b) Another aspect came in to the fore in Dieker's approach, that
is the developmental one. Taking geametrical oconcepts as an exanple
the development of a cognitive structure could be described. In this
conceptual framework an error can be looked upon as indicator of the
stage of develomment. By choosing appropriate tasks the teacher is
able to suppart the development of the cognitive structure.

{c} The above, shortly described approaches camplement cne another, -
the third one, introduced by David Kirshner is - as to my opinion -
not conpatible with the others. Frankly, I do not agree with David,

I perceive his framework as too static: an error is defined as
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deviation of a well defined norm system. Moreover the occurrence of
errors has to be avoided. If this is not possible, the teacher -
by intervening - has or will lead to the right way more or less
inmediately.

This approach makes it easy to identify'ermrs and to classify them;
but I think it is far from school learning or learning in geperal.”

(b) D. Kirshner

*In this report, I focus on my own prix)cipal mtervenuon in the
Error Analysis Working Group, cancerning the relat.wxshlp of compe-
tence models to error analysis. The thesis consists of the following
canponents:

1. Data available on students' errors are (u§ua1:ly and appropriately)
analysed through camparison to, or as deviations fram, campetent

2. Error pattems are less uniform and "§tab1e" than campetence
patterns, both within and between sx.zbject.:s,'because the class
of deviations from a procedure is (in principle and practis:)
broader than the procedure itself. Also, errors may present an
intermediate stage in the acquisition of conpetence. The latter
is therefore an 'end point' of a developmental process.

3. The greater stability of campetence data permits, in principle,
more systematic and rigorous analysis of campetence patterns than
is possible, independently, of error or acquision pattemns. The
dominant paradigms in the psychology of mathematical skill (e.g.
Information Processing) do not exploit this potential, but, model
campetence and error using the same tools and ascribing equivalent
status to theories of error and theories of carpetence. The re-
sult is that "in most (IP) analyses there has been considerable
obsaxrityint!‘ebomdarybetueenmtisneanttobetnnofa%l
subjects, and what is meant to be true of a particular subject.
(VanLehn, Brown, & Greeno, 1984, p.236)

4. More productive error analysis (i.e. more genralizable analyses)
may have to attend the more rigomusnodellinqcm?eterm. In
that case, error analysis may serve a new, subservient rola directed
to the evaluation and verification of campetence models.®

() H. Gerber

The canference wms an excellent one, well-organized and with outstanding-

speakers. However, the session got off to a ponderously slow begining.
Perhaps it was due to the heterogeneous pature of the groups, or to
the variety of biases, expectations, and concems, that the first
three hours were, to me at least, a waste of time.



5
0 51

5. Matz, M., 1980, 'Towards a Carputaticnal Theory of Algebraic

The meeting came alive at the start of the second session with your Campetence, The Journal of Mathematical Behavmpr, Vol.3, No.l,
exanples, canfiming the theory that we should introduce a topic pp. 93-165. . 1

with a problem that interests the audience. Fram that moment, and , .
the time when the francophones began to speak, our session was first- 1. Byers, V. and Erlwanger, S.H., 1984, Content and Form in Mathematics',
rate. Educational Studies in Mathematics 15, 259-275.

For ne, the sessions opened a whole new aspect of teaching. I began 2. Byers, V. and Erlwanger, S.H., 1985, 'Memory in Mathematical

to understand the problems, the terminology, and the present limita- Understanding’, Educational Studies in Mathematics 16, 259-28l.
tions on our understanding of errors. Moreover, I now have a biblio- . . )

graphy on which to begin. The pext time I see you, I intend to 3. Davis, R.B. et al., 1982, The Roles of "Understanding" in the
participate in such a meeting in a more intelligent fashion. ' learning of Mathematics. Part 1I of the Final Report of the

National Science Foundation, April 1982.

. You wanted an example. Let me remind you of the one I gave. The

average of the examination scores 22/30, 15/20, and 5/8, on tests

is now calculated as (22+15+5)/(30+20+8)=42/58. My son thought that (b) Assortment of books.

this was the same as the old percentage average. In that case the

average of 60%, 70%, and 80% is (60+70+80)/(100+100+100)=210/300=

70/100=70%. This confusion led him to believe that if his cum~-

lative average after 3 months was 60%, and he got 70% on his next

exanination his new average would be 65%. He was bright enough to

see his error as soon as I pointed it out to him."

{d) S. Erlwanger

"This is the second working group in five years that I have attended
on the subject of errors. The first ane in 1980 focussed an results
based on tests and exanples of remediation, This time we tried to
focuss an the value of errors in cognitive analysis. I note that in
each case the groups got offto a very slow start. This is probably
a reflection of the different biases and interests of individuals.

Although the discussions did not go very far, I think they did reflect
some development in this area that ought to be pursued by furture
working groups - I hope in less than five years time.

I would suggest though that in future an attempt should be made to
get members to contact each other before the conference. I think

this is absolutely essential so that the group leaders can get some
idea of the interests of the participants and perhaps arrange that
participants bring one or nore examples of errors for discussian."

APPENDIX

(a) Articles

4. Ginsburg, H.P., 1983, 'Cognitive Diagnosis of Children's Arithmetic',
in J. C. Bergeron and N. Herscovics (eds): Proceedings of the

Fifth Annual Meeting of the International Group for the
" Psychology of Mathematics Education, pp. 247-54.

6. Russell, R.L. and Ginsburg, H.P., 1984, 'Cognitive Analysis of
Children's Mathematics Difficulties’, Cognition and Instruction 1(2),
pp. 217-244.
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Appendix

This appendix contains three examples of LOGO-Telated
activities for the math classroom. The first activity
relates to the topic of Pattern and can be used at
varying levels of sophistication through the grades
(elementary and secondary). The second activity relates
to the topic of Least Common Multiple and can be used

in late junior and intermediate level math classes.

The third activity, relates to teaching about

and the circumference of a circle (intermediate grades).
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Report of Working Group 'B': LOGD

The Group spent most of itstjneinexaminingandevaluating
several LOGQ inspired jpvestigative situations which had strong
links to the math curriculun. This was a follow up to last year's
group (Warking Group A: LOGO and the math-curriculum) in which the
consensus emerged that the availability of such explicit 'microworlds
represents the best strategy for having 0G0 accepted and used by
nmost teachers. It is an approach taking the path of 'minimal re-
sistance' since it calls on no special programming expertise by the
teacher, nor does it require a major perturbation of the existing
classroam setup or the existing curriculum. This is not an argument
against other possible inplementations of LOGO in'the school, includ-
ing a more inclusive Papertian vision of a fully inplemented LOGO
curriculum. Rather, it is based on the pragmatic realisation that
the acceptability of LOGO to most teachers will be based, rightly or
wrongly, on their perception of its relevance to what is currently
taugllat.

Aside from an emphasis on specific math ocontent, last year's
group enployed other criteria which were intendad to reflect the ad-
vantages of LOGO-based environments. These included:; modifiability,
extensibility, the possibility of users writing their own procedures
and following several lines of inquiry, etc. (see last year's report).
At the risk of an oversimplification, we can say that two general
types of situations were examined during the three days. The first
type camprised those situations created specifically to enhance a topic
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within the existing math: curriculum. The second type comprised sit-
uations whose underlying math - concepts are not traditionally taught,
but yet seem accessible to students because of the graphical capabili-
ties afforded by the computer.

Gary Flewelling of the Wellington County Board of Education pro-
duced many examples in which LOGO was used to generate "investigative
situations" connected to topics in the math curriculum. These
included investigations involving fractions, vectors, notion and
acceleration, trig functions and statistics (see the appendices for
same examples). These were viewed by the group, which discussed how
they could be modified, or extended to allow the user more control.

Denis Therrien of Université Laval also demonstrated some software
packages which dealt with number concepts such as divisors, prime,
carposite, odd/even numbers, etc.

A. Senteni of U.Q.A.M. demonstrated a non-turtle LOGO microworld -
that of variations on Conway's Game of LIfe (designed by B. Silvemman
of L.C.S.I.). Here members of the group discussed briefly whether
this kind of situation is only for 'buffs' or whether such an investi-
gation could be used to launch into same important math. concepts
such as 'state', 'action on states', ‘'stability', finite and infinite
‘orbits', etc.

Finally, the possibility of using LOGO to investigate limiting
processes was discussed. Here the group thougth out several types of
limiting behaviour which ocould be exhibited geametrically: limiting
shapes (e.g. circle as a limit of n—gons), limiting points and lines
of inspirals, numerical limits (e.g. ratio of perimeter to diameter of

n—gon) and fractals using recursive procedures.
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of the group:

Blake (U.N.B.)
Flewelling (Wellington County Board)
Giraxd (U.Q.A.C.)
Hillel (Concordia)
Kastner (S.F.U.)
Kayler (.U.Q.A.M.)
Kieren (U. of Alberta)
Iepage (U.Q.A.R.)
Senteni (U.Q.A.M.}
Therrien (Laval)
Verhille (U.N.B.)
Wheeler (Concordia)
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DESIGNS FROM LETTER PATTERNS

(Using LOGO procedures)

Developed by

Gary Flewelling
Mathematics Consultant
Wellington County Board of Education
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DESIGNS FROM LETTER PATTERNS
More complicated designs result from using two or more letters.

' LOGO MATH
NONE Letter ?atterns ABABABABABABAB
Properties of 2D
Designs

START UP INSTRUCTIONS

1. Load LOGO into your computer (see pin up card #1)
2. With Flewelling disk in drive, type

READ “LETTERS . If a key is hit in error and you wish to remove that letter
3. when the LETTERS file has been read in, type from your design, just hit the [=] key. If you want to undo
several letters, hit the [=] key several times.
LETTERS
YOU WILL BE ASKED TO RESPOND TO ONE OR TWO INSTRUCTIONS. . tIlF 50; an rﬁason you want to blow up or shrink a design, just
it the ey.
You will be asked, "What scale factor?" If you wanted to double
) ) its dimension, for example, respond by typing [2] [RETURN].
. After you have responded to the instructions on the screen, Had you warted to shrink it to half size you would have responded
the alphabet keys you asked for will be activated. by typing [::]IEETQRN]
As each letter is typed in, it will appear in the upper To get back to original deSi‘i‘;jslliﬁze ou must hit the [/] key and
left portion of the screen. respond with a scale factor [RETURN].

. , ] Below is the 'ABABAB' design blown up using a scale factor of 3.
. In addition, a larger version of the letter will appear at es1g P g

midscreen. (see below)

L1~ F T
LT U TFARSTLSN
79 O/

ABABABABABABABABABABABAB

Each additional letter begins to be drawn where the previous
letter stops being drawn. This gives rise to a large number
of letter designs.

Even very simple single-letter patterns will generate designs.
{see below)

]
ARG BBB

‘ {::5 . Hit the [¥] key to erase the screen and start over again.




60

e.g. 2

e.g. 1

EMEIEIEE N

Letter patterns need not be set out on just one line as above
A 2 dimensional array of letter patterns can also be created.
Thia in achieved by premsing the kay at the end of aach
line of letters in the array.

Keying ARTIARTIARTIART? for example, would give the letter

pattern and design shown below.

Designs can be printed onto paper following the instructions

on 'pin up card #9°'.
A few sample print outs are shown on the next page.

BOBBOEBOBEOBBOBBOBBOBBOBBOBEOBBOBEOB
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SN ENNEENN
Eszgﬁﬁgggs

b
#

3

See the supplement 'WHAT C '
)y AN I DO WITH TH
for ideas on how to utilize these deSigns? PRETTY PICTURES?'

NOTE:

Should something go wron '

g, for whatev
:ant to start over again, éold the Eﬁfgi:ﬁ:sons,kand you
own, together, and type in LETTERS | RETURN] s
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LEAST COMMON MULTIPLE

LOGO MATH

NONE Multiples
Least Common Multiple
Lowest Common Denominators
Common Factors
Coprime #'s .
Composite #'s
LCM Properties of 2D designs
as gear ratios

(Using LOGO procedures)

START UP INSTRUCTIONS
1. Load LOGO (see pin up card #1)

2. With Flewelling disk in disk drive, type,
READ “LCM
=~ 3. when LCM file is loaded, type,

/ BEGIN |RETURN

You are first asked to type in the -coordinates of the centre
and radius for each of two circles.
I would suggest, in the beginning, typing,

0 0 [RETORN] and

y
. 125 |RETURN 125
N .
g, for the first circle, and
/ \\ : 0 o [RETURN x

- [} 50
-150 (0,0) 15 screen

60 |RETURN

for the second circle. 125

Developed by
Gary Flewelling (Keep the circles within the screen dimension shown above.)
Mathematics Consultant

Wellington County Board of Education You are then asked to input two natural numbers. Initially, you

should consider using one digit numbers. Had you typed, for

. example, 8 and then 6 you would see, on the
screen, eight points on a large out circle and six points on
an inner circle. (fig 1)

fig 1
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The procedures will cause the first point of circle one (C1)
to be joined to the first point on circle two (C2), then the
second point on C} to be joined to the second point on C2,
etc. Two coloured disks will appear on the points being
joined. (fig 2 & fig 3)

L
- ’/.

8 ¢t ;
L3 . o
fig 2 b 2 fig 3 . el
1 " 3 t ¢ -
- - \, 3 "\
S t
. & * A N \-
. ’ 4 e
Ky R
. '\cl

You can control the action on the screen (type (S| [RETURN])
or let the procedure run continuously(type tﬁ] RETURN]) .

Keying [S] ana [RETURN] will activate the [¥] key. Each time
the [%] is pressed another pair of points will be joined.
(fig 3 shows result of pressing [*]} five times)

In the above example, it will be noticed that the design
won't be complete (fig 4) until 24 pairs of peints have been
joined. 1In this time, the disk on C1 will have made 3 trips
arcund C! and the disk on C2 will have made 4 trips around
C2. {i.e. 3 sets of B8 points were_ joined to 4 sets of 6
points)’. )

fig 4

Had the action been run continuously, you would see the two
disks run around their circular tracks, with the disk on C! com-
pleting 3 laps in the time that the disk on C2 completed four.
(each touching 24 points)

This hints loudly of the following
1 Vo 4x! Ix! _ 4 3

LA R A A TRE TR

e.g. 2 a gear with 8 teeth turning a gear with 6 teeth

Here 24 is the "least common multiple” of 6 and 8,
LCM concepts can be introduced with this package.
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Student§ should be able to predict screen behaviors and out-~
comes given any two inputs. ’

e.qg.

! Cl: 8 points and C2: 5 points (fig 6)
2 Ci: 8 points and C2: 4 points (fig 7)

e.g. 3 Cl: 8 points and C2: 8 points (fig 8)
f

ig 6 : fig 7

Natural numbers up to 100 can be entered (too large a number
will result in an "out of memory" error).

To print completed designs (fig 9-13) from to screen to paper
follow these instructions.

1. Have Flewelling disk in disk drive and printer 'ON'.

2. Stop LCM procedures with [CTRL] and [G] keys held down
together.

3. press [P] key and the [RETURN] key.

(Figures 9-13 had both circles centred at (0,0),

of the screen.) the centre

fig 10 Ci: 67 £ig 11 Ci1:
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fig 1 : i . . . .
912 g; ?? fig 13 g;gg . 'Things other than LCM's and gear ratios can be investigated.

Ql. How do successive segments vary in length? (could directly
measure each off screen and plot a graph, pair #
v.s. length in mn)

Q2. Can you predict design characteristics given values of
inputs? (e.g. Cl:16 and C2:12)

—,
‘ / Q3. Given design, can you determine input values?
B Lo
y \\\'\\ Q4. Are there characteristic differences in designs where
T \:. ©inputs:
N S a) are a multiple of the other (e.g. C1:24 and C2:8)
WS b) share a common factor (e.g. C1:24 and C2:8)
c) coprime (no common factors) (e.g. Cl:7 and C2:5)
fig 15 - Q5. Arc there characteristic differcences betweon design
£ig 14 Ci: (0,50) «r=75 Cl:a, C2:b and Cl:b, C2:a?
9 _ c2: (0,-50) r=75
Ci: (0,50) r=60 8's—Z% and 72
(l:?s gg,;gg):‘pso NOTE 1: prolonged use of the E] key to step out a design will

result in an “out of memory" error. At this point the
design can be completed by typing DESIGN *

NOTE 2: The procedure is not self-stopping. You must hold the
and [G] keys down to stop the drawing action.

NOTE 3: To enter two new numbers without changing the size or
position of the two circles, type,

LCM

NOTE 4: To start with two new circles, type,

INFO

NOTE 5: Should anything gowrong, for whatever reason, hold
down the [CTRL] and [G] key then type, BEGIN

Make sure the Flewelling diek is in the disk drive.

fig 16
Cl: {(0,50) r=50
C2: (0,-50) r=50
#'s 80 and 40
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CIRCLE ACTIVITIES o
e T MATH
Actavity TO, REPEAT, Activity |} cérclcs
i, 2, 3 FD, KT, LT Activity 2 circle desiqns
. dilatatioas
Activicy + @ Activity 3 circular arcs
L] designs
Activity 4 <

Qircumforanoca

ACTIVITY 4 ¢ 41 AND THE CIRCUMFERENCE FORMULA)

This actsvity does three things,

3) Gives meaning to W ,
b} ives the user a way @
c) 2xves the user a mathod for warking out a ¢

file that draws regular

i AV ,and
£ approximating a ircle's circumferenca.

8 ) 82 is a procedure from the [ 33 t J ar
:21::039 :ust liks the POLY) procedure used 1n‘kc;:::;y lﬁe The
only difference hera is that once the po)yqog 8 tu‘;s he s
turtle moves to the centre oi_che last side rawn;l
hy 90", and pulses the direction it is.pointing .

) i 5 etc.) and hit
1{ you now enter a command like ¥0 2 {or 1 of ) A ire
kays repeatedly until you gat to e opposi
:tx\:e@ qony,, youpuu}. tha measured the‘polygog‘(z v‘udtl\
INE you count the number of steps taken x2 lor 1 oF

Investigate how the width of a specific regular polygon
compares Lo its perameter.

Example

— - ~y, ,/1"‘““
.‘., < ﬂ".' ”; /,4 ., \\
| . {__—-———l
‘ L)
\
')

N

hY

P
‘l
\\
r)
n«\
.0
LY
o
(w

" o Spegreznt
Each reqular polygaon {(regardless of size) has its own peculiar
constant (arrived at be dividing its perimeter by its width}.

Constant

Polygon Perimeter wWidch P/v

Squace 4

Pentagon

Haexagon

7-GON

Octagon

Cisale

(Use computer te do arithmetic calculation, just enter
perimeter/width [RETURN]) !

This means that the perimater of a regular polygon can be
found simply by working out the answer to
width of polygon x polygon conatant

This is & weird way of calculating a perimeter. Normally,

you would just take the length of one side and multiply by

the number of sides. And yet, it is a way of working out .
perimeter thats worth getting used tol

, ,wnen the reqular polygon becomes a circle, you have no
""choice but to use
width x circle constant 1}
vin are more familiar with the usual way of writing this formula.
cirgunfegence of a circle = diameter x pi
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Impact of Symbolic Manipulation Software on the teaching of Calculus

71

. . Leaders: Bernard Hodgson (Université Laval
Influence des Logiciels a Calculs Symboliques sur L‘Enseignement du - te Lava )
Calcul Differentiel et Integral Eric Muiler (Brock University)
Working Group C
Participants: Dave Alexander (0 io Mini
Content: ntario Ministry of Educatio
n Page Tgs?ula Berggren (Simon Fraser University) "
Participants and Acknowledgements 2 gi?aangﬁngOISCIa1r Eg?gg? Montmorency) -
_ Charles Latour (Cégep F.-X. G
Repart Eric Muller 3 Eemand Cemay (Un?vgrsité La:;t]u;au)
Annotated Bibliography - Bernard Hodgson 7 G::sﬁ:?zpsoy %ﬁﬁ?ig:g::éufizgsiity)
Appendix 1 - Gi;:gat Morin - A useful introduction to 15§ %g?ﬁ;:dssgl{rugghe Enzgczrgzlésgg :"‘z:rsgty)
m . oncton
. Edgar Williams (Memorial University)
Appendix 2 - Charles Latour - Part A - an excellent 20
. description on how muMATH was used to
;:;zga:hse%g:¥:§:;e-°;allggt-ngglﬁgség Acknowledgements: The leaders wish to thank Professors Dickey, Geddes
the inportance “du calcul® or “general and Wainwright from the University of Waterloo. These three individuals
computational skills® in mathematics. spent considerable time explaining the Maple System, its first use in
the introductory calculus course and the use of computers in the intro-
Appendix 3 _ Noelange Boisclair - raises some general 29 ductory Linear Algebra course. The warm welcome to the University of
questions regarding the use of computers Waterloo znd generous contribution of their time is much appreciated
in calculus courses. The group expresses its thanks to Gilbert Morin, an undergraduate at.the
Universite Laval, for preparing documentation on the use of muMATH.
Appendix 4 - Edgar Williams - provides an extensive ‘32
list of potential benefits which one
can gain by using asymbolic manipulation
software in teaching mathematics.
Appendix 5 - Dave Alexander - raises a number of 35

questions and suggests a sequence for
teaching differentiation with Symbolic
Manipulation Software.

— i - - i
] :
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Report

(In this report the terms Symbolic Manipulation Software (SMS)
and Computer Algebra Software (CAS) are assumed equivalent.
They refer to software which manipulates algebraic systems,
uses rational arithmetic and can perform calculus operations.)

The group started by spending three hours obtaining first hand
experience of the muMATH software in the Laval Mathematics Department's
Microcomputer laboratory. The group followed a set of instructions
developed by Gilbert Morin - a mathematics undergraduate at the
Universite Laval (see Appendix 1).

A large number of shertcomings were found during this three hour
session, the most serious of these being that wrong and incomplete
answers were produced on the screen without comment. The general concerns
of the group is that this particular software is not yet in a form
sufficiently consistent and correct to be used in or with a first year
class. The group is aware that such software as MAPLE and MACSYMA have
been far more widely used and tested and that they do not contain some
of the shortcomings of the muMATH. At present both MACSYMA and MAPLE
require larger computer systems to operate. Nevertheless it is the opinion
of workers in the field that both MAPLE and MACSYMA will be available on
extended micros very soon. The group therefore was looking ahead to times
when tested and powerful (computer algebra) symbolic manipulation systems
will be readily available. Part A of Appendix 2, by Charles Latour, is a
particularly good description of the experiences of an individual using
MmuMATH for the first time to solve a specific problem.

At the end of the first session participants were asked to think .
about the impact of such systems on mathematics and to prepare a list of
topics, concerns, etc., which could be studied and developed by the group.

The following 1ist was drawn up at the beginning of the second session:

(topics not in order of importance)

1. Develop problems {examples) particularly suited to solution using
symbolic manipulation software.

2. Develop guidelines for the use of SMS systems as a check to one's
work.

[$%)

Determine whether an SMS system permits the introduction of more
advanced ideas at an earlier stage, i.e. order within curriculum
when SMS system is used .

4. Discuss the use of such systems for non-university bound students.
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5. Identify either

a) ‘“routine" parts of the curriculum which can be undertaken
by the SMS system and which have in themselves no value
towards achieving the aims of the course

ar

b) isolate the important parts of the curriculum which can be
enhanced by, but not replaced by, the use of an SMS system.

6. Guidelines on how to use the SMS systems as a means for the
exploratory development of mathematics

7. lsolate those skills which are necessary for using the system
sensibly:-

(a) Estimation

(b) Sense of reasonableness

{c) Knowledge of concepts

(d) Are the procedures used in testing algorithms useful in
testing solutions from an SMS package?

(e) Use of graphical techniques as a check of reasonableness.

8. How much should one know about the algorithms and the computer
language used in such packages? Do these algorithms and
languages give any insight into the the mathematics?

9. MWhat properties should an SMS system have in order for it to be
useful in education {as opposed to a pure research tool) eg.
capability te show intermediate steps etc.

The group then decided to isolate one topic within the differential

and integral calculus and to discuss the use of SMS systems in the teaching
of that concept. Without making any statement as to when or where within

a calculus curriculum "1imits" should be taught the group decided to look

at the possible impact of SMS systems on the teaching and learning of limits.
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{a) SMS systems and the teaching of Limits

SMS systems do not provide a rich environment for the teaching of
the concept of limits. These systems can be used to simplify complicated
algebraic expressions but generally numerical procedures provide a
better medium to motiyate intuitive ideas of limit concepts in calculus,
which is of the type 2 . A useful numerical software package would have

a split screen displaying graphical values on one side and algebraic
representations on the other. The platting of function values should be
dynamic so that subsequent values appear one at a time. It should be
simple. to enlarge any interval of values so that intervals which initially
are very small could be enlarged to fill the whole graphical portion of the
screen. Such software would be used to present simple cases in class and
would allow students to explore many different functions which are normalily
not accessible because either the student lacks the algebraic techniques,
or the computations are extremely tedious.

Once the concept of limit is understood SMS systems should be used
to motivate the laws of differentiation. Every effort should be made to
present the derivative as a dynamic concept and not a numerical one. SMS
software allows quick access to more meaningful applications and to the
introduction of differential equations which provide life to the derivative.

(b} SMS systems and the teaching of Integration

When discussing integration techniques -- algebraic integration
procedures -- two disparate points of view are expressed:

(a) Too much time is spent on integration techniques both in class
and student assignments. These techniques tend to dominate the
use of the student's time and mastery of these techniques does
not translate into a better understanding of integration. Some
argue that we can now dispense completely with integration
techniques as they are largely algebraic manipulations which
shed no new light or insight on the concept of integration.

(b) Integration techniques are a necessary part of any calculus course.
A student faced with a particular integral is forced to consider
alternative procedures for solving it. There is therefore a
certain openess or trial and error situation. It is one of the few
areas where students apply the algebraic skills they have acquired
in school mathematics. ;

The group believes that the following points are sufficiently significant
that they can form the basis of further thought and study in the use of
SMS software in calculus courses.

When technology is available, course content, lecture presentation

and student activities should shift to higher mental activities.

Can calculus courses learn from the statistics experience? Initially
statistics courses spent many hours on simplification of expressions
involving sums of squares and cross product expressions. This was
"good" for the students as they obtained experience using the Sigma
notation and manipulation of indices to change the conceptual
definition to the efficiently calculable form. This is rarely done
now and more time is spent on the statistical concept and the where,
when and how to apply it. Is the calculus curriculum so well
established that it no longer has any flexibility for change? One

way to review the Calculus curriculum is to firstly isolate those
concepts which are essential to calculus and secondly to structure a
curricuium with supporting activities restricted to those which reinforce
the concepts and give a deeper understanding of calculus. It is likely
that SMS software will play a major role in such supporting activities.
Many students presently complete a calculus course and are unaware of
integral tables. They have a very limited experience of integration
techniques and many are unaware that the integral of the majority of
functions do not have closed analytical forms. Hopefully SMS soft-
ware will change this situation and will place students in a more
experimental situation.

A reduced emphasis on algebraic manipulation in calculus courses should
have a major impact on school mathematics courses as much of the school
algebra is directed towards preparation for calculus courses.

It is clear that unviersity mathematics professors involved with first
year calculus and linear algebra courses have a lot ta learn regarding the
use of SMS software in these courses. [t is imperative that those who
are experimenting with the use of such software in their courses communicate
their findings. It is important that experimental use of such systems be
well documented so that others can repeat these experiments in different
seftings. Either one of the leaders of this working group would welcome
receiviag such information and to circulate it to interested individuals.
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