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Edit;oc~s focewocd 

Never has the CHESS ventured so far east. Never before has the CHESS 
left the mainland. And never have we had a meeting more memorable than 
our visit to Memorial University in St. John's. Newfoundland. Special touches 
of Newfoundland hospitality have indelibly influenced those who were 
ritually initiated as honorary "SCREECHERS·. 

We are especially appreciative for the excellent representation on our 
behal f by Ed Williams. As our local organizer. Ed was instrumental in 
arranging the most en.joyable social agenda as well as the facilities for 
our professional agenda at Memorial University. 

David Wheeler, one of the group instrumental in founding the CHESS, 
announced that he was stepping down as chairman of the CMESS. David has 
agreed to join the executive as past chairman in order that we may 
continue to benefit from his advice and interest in the group. 

The major lectures were presented by Ross Finney and Alan Schoenf eld. 
Ross Finney kindly offered to present a lecture when the previously 
arranged speaker withdrew at the last minute. Alan Schoenf'eld delivered a 
joint lecture to the CMS· and the CMES6. 

Charles Uerhille 
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Preface 
Canadian Mathematics Education Study Group 

Groupe canadien d'etude en didactique des mathematiques 

The Study Group held its tenth annual meeting at Memorial 
University from June 8 to 12, 1986. Travelling distance and CAUT 
censure made this much the smallest of the Study Group's 
meetings. But the thirty-one participants managed to assemble a 
lively programme and to generate a comfortable working 
atmosphere. 

Working Groups, as always the mainstay of the programme, 
this year covered Affective aspects of problem solving (led by 
Frances Rosamond, San Diego, and Peter Taylor, Queen's). The 
problem of rigour in mathematics teaching (led by Gila Hanna, 
OISE, and Lars Jansson, Manitoba), Microcomputers in teacher 
education (led by Charles Verhille. UNB) and The role of the 
microcomputer in promoting statistical thinking (led by Claude 
Gaulin, Laval and Lionel Mendoza, Memorial). In spite of the 
small numbers, each group managed to funcation and, miraculously, 
to flourish. It is worth repeating here, though it has been said 
in reports of earlier meetings, that the opportunity for a group 
to work for 9 hours on a single topic contributes powerfully to 
the productivity of the meetings and to the atmosphere of 
collaboration rather than competition that prevades them. 

The principal guest speaker, Alan Schoenfeld (Bsrkley), 
threw himself into all aspects of the conference and delivered a 
dynamic address under the modest title of Some thought on problem 
solving. The lecture, jointly sponsored by the CMS Education 
Committee, gave extremely good value, being full of practical 
commonsense, critical analyses, cogent research results, and 
provocative speculation. Ross Finney (MIT), generously stepping 
in at the last minute to replace an advertised speaker, gave 
particpants several glimpses of the material collected by UMAP 
and COMAP, Harold Paddock (Memorial) refreshed the meeting with a 
witty and wide-ranging talk given from the prospective of a 
linguist and a poet on Natural language and mathematics in human 
evolution. 

Other sessions included reports on the Second International 
Mathematics Study and the ICMI study on the impact of computers 
and informatics on the teaching of mathematics. Claude Janvier 
(UQAM) reviewed some of the research on representation, untaken 
by him and his colleagues. Several members gave brief surveys of 
the research activity in mathematics education in their 
provinces, and the final evening was rounded off with a 
dramatised reading of extracts from Lakatos' Proofs and 
refutations. 

The local organizer, Ed Williams, by adding a banquet, a bus 
trip and (opportunistically) a run up Signal Hill, ensured that 
all the participants came away with pleasant memories of the host 
province, its capital, and its university. 

David Wheeler 
Chairman 
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IN MEMORIAM DIETER LUNIENBEIN 

I would like us to use this opportunity to pause for a few 
minutes in order to pay tribute to one of our very dear 
colleagues: Dieter Lunkenbein, who was still among us at our 
conference last year and who died on last September 11th. 

I had the chance to know Dieter and to start working with 
him shortly after his arrival to Canada in 1968, at the time he 
accepted a position as a research assistant to Professor Zoltan 
P. Dienes in Sherbrooke, Que. He was initially supposed to stay 
a few years in our country and then to return to Germany, his 
native land. But what happened is that he and his family decided 
to stay and live in Sherbrooke, where he had spent the last 17 
years of his life. After taking his Ph.D. in mathematics 
education at Laval in the early 70s, he became the inspiring 
leader of a group of mathematics educators at the University of 
Sherbrooke, as well as a very active collaborator to the Quebec 
Ministry of Education and to the three major Quebec mathematics 
teachers associations. 

In 1977, Dieter Lunkenbein was present at Kingston, Ontario, 
when the meeting that led to the creation of our Study Group took 
place. Since then he has been a regular participant to our 
meetings, making a remarkable contribution as a leader or a 
collaborator of many groups, particularly those on the 
development of geometrical thinking at the Elementary level, on 
research in mathematics education and on children's "errors" in 
mathematics. 

In 1979, Dieter received the "Abel Gauthier Prize" in 
recognition for his exceptional contribution to mathematics 
education in Quebec. Besides his involvement in Canada, Dieter 
has also been quite active at the international level during the 
1 a s t ten y ear s . In 1 9 8 2 , he was e 1 e c ted Pre si d en t 0 f the 
"Commission Internationale pour l'Etude et I' Amelioration de 
l'Enseignement de la Mathematique" in Europe. But unfortunately, 
he had to resign from that position before the end of his 
mandate, after having gone through a heart operation. 

Last year, Dieter had apparently recovered so well that in 
June he accepted a position as assistant dean of the Faculty of 
Education at the University of Sherbrooke, and that in July he 
participated in an international conference in Bielefeld, 
Germany. But two months later, alas, we heard the tragic news of 
his death at 48 years of age, at an age he still had so much to 
offer and to contribute. 

To all those who have known Dieter Lunkenbein, his death 
means a great loss. On the one hand, we have lost a man with a 
rich personality and with. remarkable human qualities: Dieter was 
friendly, generous, modest, and he had a great respect for 
others. On the other hand, we have lost a colleague with 
outstanding professional qualities: Dieter was a hard worker, 

wi t h hi g h standards of rigor and in tegri ty, ever searching for 
truth and strongly dedicated to his work in mathematics 
education. Let us have good thoughts for him! 

Claude Gaulin 
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Confessions of an Accidental Theorist 

David Wheeler had both theoretical and pragmatic reasons for inviting 

me to write this article. On the theoretical side, he noted that my ideas on 

"understanding and teaching the nature of mathematical thinking" have taken 

some curious twists and turns over the past decade. Originally inspired by 

P6lya's ideas and intrigued by the potential for implementing them using the 

tools of artificial intelligence and information-processing psychology, I set out to 

develop prescriptive models of heuristic problem solving -- models that included 

descriptions of how, and when, to use P6lya's strategies. (In moments of verbal 

excess I was heard to say that my research plan was to "understand how 

competent problem solvers solve problems, and then find a way to cram that 

knowledge down students' throats.") Catch me talking today, and you'll hear 

me throwing about terms like metacognition, belief systems, and "culture as the 

growth medium for cognition;" there's little or no mention of prescriptive models. 

What happened in between? How were various ideas conceived, developed, 

modified, adapted, abandoned, and sometimes reborn? It might be of interest, 

suggested David, to see where the ideas came from. With regard to pragmatic 

issues, David was blunt. Over the past decade I've said a lot of stupid things. 

To help keep others from re-inventing square theoretical or pedagogical 

wheels, or to keep people from trying to ride some of the square wheels I've 

developed, he suggested, it might help if I recanted in public. So here goes ... 

The story begins in 1974, when I tripped over P61ya's marvelous little 

volume How to Solve It. The book was a tour de force, a charming exposition 

of the problem solving introspections of one of the century's foremost 



4 

Confessions, 

mathematicians. (If you don't own a copy, you should.) In the spirit of 

Descartes, who had, three hundred years earlier, attempted a similar feat in the 

Rules for the Direction of the Mind, P61ya examined his own thoughts to find 

useful patterns of problem solving b€havior. The result was a general 

description of problem solving processes: a four-phase model of problem 

solving (understanding the problem, devising a plan, carrying out the plan, 

looking back), the details of which included a range of problem solving 

heuristics, or rules of thumb for making progress on difficult problems. The book 

and P6lya's subsequent elaborations of the heuristic theme (in Mathematics 

and Plausible Reasoning, and Mathematical Discovery) are brilliant pieces of 

insight and mathematical exposition. 

A young mathematician only a few years out of graduate school, I was 

completely bowled over by the book. Page after page, P61ya described the 

problem solving techniques that he used. Though I hadn't been taught them, I 

too used those techniques; I'd picked them up then pretty much by accident, by 

virtue of having solved thousands of problems during my mathematical career 

(That is, I'd been "trained" by the discipline, picking up bits and pieces of 

mathematical thinking as I developed). My experience was hardly unique, of 

course. In my excitement I joined thousands of mathematicians who, in reading 

P6lya's works, had the same thrill of recognition. In spirit I enlisted in the army 

of teachers who, inspired by P6lya's vision, decided to focus on teaching their 

students to think mathematically instead of focusing merely on the mastery of 

mathematical subject matter. 

To be more accurate, I thought about enlisting in that army. Excited by 

my readings, I sought out some problem-solving experts, mathematics faculty 
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who coached students for the Putnam exam or for various Olympiads. Their 

verdict was unanimous and unequivocal: P61ya was of no use for budding 

young problem-solvers. Students don't learn to solve problems by reading 

P61ya's books, they said. In their experience, students learned to solve 

problems by (starting with raw talent and) solving lots of problems. This was 

troubling, so I looked elsewhere for (either positive or negative) evidence. As 

noted above, I was hardly the first P61ya enthusiast: By the time I read How to 

Solve It the math-ed literature was chock full of studies designed to teach 

problem-solving via heuristics. Unfortunately, the results -- whether in first 

grade, algebra, calculus, or number theory, to name a few -- were all 

depressingly the same, and confirmed the statements of the Putnam and 

Olympiad trainers. Study after study produced "promising" results, where 

teacher and students alike were happy with the instruction (a typical 

phenomenon when teachers have a vested interest in a new program) but 

where there was at best marginal evidence (if any!) of improved problem 

solving performance. Despite all the enthusiasm for the approach, there was no 

clear evidence that the students had actually learned more as a result of their 

heuristic instruction, or that they had learned any general problem solving skills 

that transferred to novel situations. 

Intrigued by the contradiction -- my gut reaction was still that P61ya was 

on to something significant -- I decided to trade in my mathematician's cap for a 

mathematics educator's and explore the issue. Well, not exactly a straight 

mathematics educator's; as I said above, math ed had not produced much that 

was encouraging on the problem solving front. I turned to a different field, in the 

hope of blending its insights with P61ya's and those of mathematics educators. 
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The first task I faced was to figure out why P61ya's strategies didn't work. 

If I succeeded in that, the next task was to make them work -- to characterize the 

strategies so that students could learn to use them. The approach I took was 

inspired by classic problem solving work in cognitive science and artificial 

intelligence, typified by Newell and Simon's (1972) Human Problem Solving. In 

the book Newell and Simon describe the genesis of a computer program called 

General Problem Solver (GPS), which was developed to solve problems in 

symbolic logic, chess, and "cryptarithmetic" (a puzzle domain similar to 

cryptograms, but with letters standing for numbers instead of letters). GPS 

played a decent game of chess, solved cryptarithmetic problems fairly well, and 

managed to prove almost all of the first 50 theorems in Russell and Whitehead's 

Principia Mathematica -- all in all, rather convincing evidence that its problem 

solving strategies were pretty solid. 

Where did those strategies come from? In short, they came from detailed 

observations of people solving problems. Newell, Simon, and colleagues 

recorded many people's attempts to solve problems in chess, cryptarithmetic, 

and symbolic logic. They then explored those attempts in detail, looking for 

uniformities in the problem solvers' behavior. If they could find those 

regularities in people's behavior, describe those regularities precisely (i.e. as 

computer programs), and get the programs to work (i.e. to solve problems) then 

they had pretty good evidence that the strategies they had characterized were 

useful. As noted above, they succeeded. Similar techniques had been used in 

other areas: for example, a rather simple program called SAINT (for Symbolic 

Automatic lliIegrator) solved indefinite integrals with better facility than most 

M.I.T. freshmen. In all such cases, AI produced a set of prescriptive procedures 
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-- problem solving methods described in such detail that a machine, following 

their instructions, could obtain pretty spectacular results. 

It is ironic that no one had thought to do something similar for human 

problem solving. The point is that one could turn the man-machine metaphor 

back on itself. Why not make detailed observations of expert human problem 

solvers, with an eye towards abstracting regularities in their behavior -­

regularities that could be COdified as prescriptive guides to human problem 

solving? No slight to students was intended by this approach, nor was there 

any thought of students as problem solving machines. Rather, the idea was to 

pose the problem from a cognitive science perspective: "What level of detail is 

needed so that students can actually use the strategies one believes to be 

useful?" Methodologies for dealing with this question were suggested by the 

methodologies used in artificial intelligence. One could make detailed 

observations of individuals solving problems, seek regularities in their problem 

solving behavior, and try to characterize those regularities with enough 

precision, and in enough detail, so that students could take those­

characterizations as guidelines for problem solving. That's what I set out to do. 

The detailed studies of problem solving behavior turned up some results 

pretty fast. In particular, they quickly revealed one reason that attempts to teach 

problem solving via heuristics had failed. The reason is that P61ya's heuristic 

strategies weren't really coherent strategies at all. P6lya's characterizations 

were broad and descriptive, rather than prescriptive. Professional 

mathematicians could indeed recognize them (because they knew them, albeit 

implicitly), but novice problem solvers could hardly use them as guides to 

productive problem solving behavior. In short, P6lya's characterizations were 
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labels under which families of related strategies were subsumed. There isn't 

much room for exposition here, but one example will give the flavor of the 

analysis. The basic idea is that when you look closely at any single heuristic 

"strategy," it explodes into a dozen or more similar, but fundamentally different, 

problem-solving techniques. Consider a typical strategy, "examining special 

cases:" 

To better understand an unfamiliar problem, you may wish to 

exemplify the problem by considering various special cases. This 

may suggest the direction of, of perhaps the plausibility of, a 

solution. 

Now consider the solutions to the following three problems. 

Problem 1. Determine a formula in closed form for the series 

n 

L k/(k+1)! 
i=1 

Problem 2. Let P(x) and Q(x) be polynomials whose coefficients are the 

same but in "backwards order:" 

P(x) = aO + a1 x + a2x2 + .,. anxn , and 

Q(x) = an + an-1 x + an_2x2 + ... aOxn. 

What is the relationship between the roots of P(x) and Q(x)? Prove your 

answer. 
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Problem 3. Let the real numbers aO and a 1 be given. Define the 

sequence {an} by 

an = 1/2 (an-2 + an-1) for each n ~ 2. 

Does the sequence {an} converge? If so, to what value? 

I'll leave the details of the solutions to you. However, the following 

observations are important. For problem 1, the special cases that help are 

examining what happens when where the integer parameter n takes on the 

values 1, 2, 3, ... in sequence; this suggests a general pattern that can be 

confirmed by induction. Yet if you try to use special cases in the same way on 

the second problem, you may get into trouble: Looking at values n=1, 2, 3, ... 

can lead to a wild goose chase. It turns out that the right special cases of P(x) 

and Q(x) you to look at for problem 2 are easily factorable polynomials. If, for 

example, you consider 

P(x) = (2x + 1) (x + 4) (3x - 2), 

you will discover that its "reverse," Q, is easily factorable. The roots of the P and 

Q are easy to compare, and the result (which is best proved another way) is 

obvious. And again, the special cases that simplify the third problem are 

different in nature. If you choose the values ao=O and a1 =1, you can see what 

happens for that particular sequence. The pattern in that case suggests what 

happens in general, and (especially if you draw the right picture!) leads to a 

solution of the original problem. 

Each of these problems typifies a large class of problems, and 

exemplifies a different special cases strategy. We have: 
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Strategy 1, When dealing with problems in which an integer parameter n 

plays a prominent role, it may be of use to examine values of "=1, 2,3, .. 

, in sequence, in search of a pattern, 

Strategy 2, When dealing with problems that concern the roots of 

polynomials, it may be of use to look at easily factorable polynomials. 

Strategy 3. When dealing with problems that concern sequences or 

series that are constructed recursively, it may be of use to try initial values 

of 0 and 1 -- if such choices don't destroy the generality of the processes 

under investigation, 

Needless to say, these three strategies hardly exhaust "special cases." 

At this level of analysis -- the level of analysis necessary for implementi ng the 

strategies -- one could find a dozen more, This is the case for almost all of 

P6lya's strategies. In consequence the two dozen or so "powerful strategies" in 

How to Solve It are, in actuality, a collection of two or three hundred less 

"powerful," but actually usable strategies, The task of teaching problem solving 

via heuristics -- my original goal --thus expanded to (1) explicitly identifying the 

most frequently used techniques from this long list, (2) characterizing them in 

sufficient detail so that students could use them, and (3) providing the 

appropriate amount and degree of training, 

[Warning: It is easy to underestimate both the amount of detail and 

training that are necessary. For example, to execute a moderately complex 

"strategy" like "exploit an easier related problem" with success, you have to (a) 

think to use the strategy (non-trivial!); (b) know which version of the strategy to 
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use; (c) generate appropriate and potentially useful easier related problems; 

(d) make the right choice of related problem; (e) solve the problem; and (f) find a 

way to exploit its solution to help solve the original problem. Students need 

instruction in all of these.] 

Well, this approach made progress, but it wasn't good enough. Fleshing 

out P6lya's strategies did make them implementable, but it revealed a new 

problem. An arsenal of a dozen or so powerful techniques may be manageable 

in problem solving. But with all the new detail, our arsenal comprised a couple 

of hundred problem solving techniques. This caused a new problem, which I'll 

introduce with an analogy. 

A number of years ago, I deliberately put the problem 

(~ 
J x2 - 9 

as the first problem on a test, to give my students a boost as they began the 

exam. After all, a quick look at the fraction suggests the substitution u= x2 - 9, 

and this substitution knocks the problem off in just a few seconds. 178 students 

took the exam. About half used the right substitution and got off to a good start. 

as I intended. However, 44 of the students, noting the factorable denominator in 

the integrand, used partial fractions to express xlx2-9 in the form [A/x-3 + B/x+3] 

-- correct but quite time-consuming. They didn't do too well on the exam. And 

17 students, noting the (u2 - a2) form of the denominator, worked the problem 

using the substitution x = 3sin8. This too yields the right answer -- but it was 

even more time-consuming, and the students wound up so far behind that they 

bombed the exam. 
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Doing well, then, is based on more than "knowing the subject matter;" it's 

based on knowing which techniques to use and when. If your strategy choice 

isn't good, you're in trouble. That's the case in techniques of integration, when 

there are only a dozen techniques and they're all algorithmic. As we've seen, 

heuristic techniques are anything but algorithmic, and they're much harder to 

master. In addition, there are hundreds of them -- so strategy selection 

becomes even more important a factor in success. My pOint was this. Knowing 

the strategies isn't enough. You've got to know when to use which strategies. 

As you might expect by now, the AI metaphor provided the basic 

approach. I observed good problem solvers with an eye towards replicating 

their heuristic strategy selection. Generalizing what they did, I came up with a 

prescriptive scheme for picking heuristics, called a "managerial strategy." It told 

the student which strategies to use, and when (unless the student was sure he 

had a better idea). Now again, this approach is not quite as silly as it sounds. 

Indeed, the seeds of it are in P61ya ("First. You have to understand the 

problem."). The students weren't forced to follow the managerial strategy like 

little automata. But the strategy suggested that heuristic techniques for 

understanding the problem should be used first, planning heuristics next, 

exploration heuristics in a particular order (the metric was that the further the 

exploration took you from the original problem, the later you should consider it), 

and so on. In class we talked about which heuristic technique we might use at 

any time, and why. Was the approach reductive? Maybe so. But the bottom line 

is that this combination of making the heuristics explicit, and providing a 

managerial strategy for students, was gloriously successful. 
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The final examinations for my problem solving courses had three parts. 

Part 1 had problems similar to problems we had worked in the course. Part 2 

had problems that could be solved by the methods we had studied, but the 

problems did not resemble ones we had worked. Part 3 consisted of problems 

that had stumped me. I had looked through contest problem books, and as 

soon as I found a problem that baffled me, I put it on the exam! The students did 

quite well even on part 3; some solved problems on which I had not made 

progress, in the same amount of time. 

Thus ended Phase I of my work. At that point -- the late 1970's to 1980 -­

I was pretty happy with the instruction, and was gettrng pretty good results. 

Then something happened that shook me up quite a bit. Thanks to a National 

Science Foundation grant I got a videotape machine, and actually looked at 

students' problem solving behavior. What I saw was frightening. 

Even discounting possible hyperbole in the last sentence, one statement 

in the previous paragraph sounds pretty strange. I'd been teaching for more 

than a decade and doing research on problem solving for about half that time. 

How can I suggest that, with all of that experience, I had never really looked at 

students' problem solving behavior? 

With the videotape equipment, I brought students into my office, gave 

them problems (before, after, and completely independently of my problem 

solving courses), and had them work on the problems at length. Then, at 

leisure, I looked at the videotapes and examined, in detail, what the students 

actually did while they worked on the problems. What I saw was nothing like 

what I expected, and nothing like what I saw as a teacher. That's because as 
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teachers (and often as researchers) we look at a very narrow spectrum of 

student behavior. Generally speaking, we only see what students produce on 

tests; that's the product, but focusing on the product leaves the process by 

which it evolved largely invisible. (There's a substantial difference between 

watching a 20-minute videotape of a student working a problem and reading 

the page or two of "solution" that student produced in those 20 minutes. The 

difference can be mind boggling.) In class, or in office hours, we have 

conversations with the students, but the conversations are directed toward a 

goal -- explaining something the student comes prepared to understand, and 

knows is coming. The student is primed for what we have to say. And that's the 

point. When we give students a calculus test and there's a max-min problem in 

it, students know it's a max-min problem. They've just finished a unit on max­

min problems, and they expect to see a max-min problem on the exam. In other 

words, the context tells the students what mathematics to use. We get to see 

them at their very best, because (a) they're prepared, and (b) the general 

context puts them in the right ballpark and tells them what procedures to use. 

By way of analogy, you don't discover whether kids can speak grammatically (or 

think on their feet) when you given them a spelling test, after they've been given 

the list of words they'll be tested on. (Even when I taught the problem solving 

class, I was showing students techniques that they knew were to be used in the 

context of the problem solving class. Hence they came to my final prepared to 

use those techniques.) 

In my office, problems come out of the blue and the context doesn't tell 

students what methods are appropriate. The result is that I get to see a very 

different kind of behavior. One problem used in my research, for example, is the 

following: 
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Problem 4. Three points are chosen on the circumference of a circle of 

radius R, and the triangle with those points as vertices is drawn. What 

choice of points results in the triangle with largest possible area? Justify 

your answer as well as you can. 

Though there are clever solutions to this problem (see below), the fact is 

that you can approach it as a standard multivariate max-min problem. Virtually 

none of my students (who had finished 3rd-semester calculus, and who knew 

more than enough mathematics to knock the problem off) approached it that 

way. One particular pair of students had just gotten A's in their 3rd-semester 

calculus class, and each had gotten full credit on a comparably difficult problem 

on their exam. Yet when they worked on this problem they jumped into another 

(and to me, clearly irrelevant) approach altogether, and perSisted at it for the full 

amount of allotted time. When they ran out of time, I asked them where they 

were going with that approach and how it might help them. They couldn't tell 

me. That solution attempt is best described as a twenty-minute wild goose 

chase. 

Most of my videotapes showed students working on problems that they 

"knew" enough mathematics to solve. Yet time and time again, students never 

got to use their knowledge. They read the problem, picked a direction (often in 

just a second or two), and persevered in that direction no matter what. Almost 

sixty percent of my tapes are of that nature. But perhaps the most embarrassing 

of the tapes is one in which I recorded a student who had taken my problem 

solving course the year before. 
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There is an elegant solution to Problem 4, which goes as follows. 

Suppose the three vertices are A, B, and C. Hold A and B fixed, and ask what 

choice of C gives the largest area. It's clearly when the height of the triangle is 

maximized -- when the triangle is isosceles. So the largest triangle must be 

isosceles. Now you can either maximize isosceles triangles (a one-variable 

calculus problem), or finish the argument by contradiction. Suppose the largest 

triangle, ABC, isn't equilateral. Then two sides are unequal; say AC ;.: BC. If 

that's the case, however, the isosceles triangle with base AB is larger than ABC 

-- a contradiction. So ABC must be equilateral. 

The student sat down to work the problem. He remembered that we'd 

worked it in class the previous year, and that there was an elegant solution. As 

a result, he approached the problem by trying to so something clever. In an 

attempt to exploit symmetry he changed the problem he was working on 

(without acknowledging that this might have serious consequences). Then, 

pursuing the goal of a slick solution he missed leads that clearly pOinted to a 

straightforward solution. He also gave up potentially fruitful approaches that 

were cumbersome because "there must be an easier way." In short, a cynic 

would argue that he was worse off after my course than before. (That's how I felt 

that afternoon.) 

In any case, I drew two morals from this kind of experience. The first is 

that my course, broad as it was, suffered from the kind of insularity I discussed 

above. Despite the fact that I was teaching "general problem solving 

strategies," I was getting good results partly because I had narrowed the 

context: students knew they were supposed to be using the strategies in class, 

and on my tests. If I wanted to affect the students' behavior in a lasting way, 
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outside of my classroom, I would have to do something different. [Note: I had 

plenty of testimonials from students that my course had "made me a much better 

problem solver," "helped me do much better in all of my other courses," and 

"changed my life." I'm not really sanguine about any of that.] Second and more 

important, I realized that there was a fundamental mistake in the approach I had 

taken to teaching problem solving -- the idea that I could, as I put it so 

indelicately in the first paragraph of this paper, cram problem solving 

knowledge down my students' throats. 

That kind of approach makes a naive and very dangerous assumption 

about students and learning. It assumes, in essence, that each student comes 

to you as a tabula rasa, that you can write you problem solving "message" upon 

that blank slate, and that the message will "take." And it just ain't so. The 

students in my problem solving classes were the successes of our system. 

They were at Hamilton College, at Rochester, or at Berkeley because they were 

good students; they were in a problem solving class (which was known as a 

killer) because they liked mathematics and did pretty well at it. They come to 

the class with well engrained habits -- the very habits that have gotten them to 

the class in the first place, and accounted for their success. I ignore all of that 

(well, not really; but a brief caricature is all I've got room for) and show them 

"how to do it right." And when they leave the classroom and are on their own ... 

well, let's be realistic. How could a semester's worth of training stack up against 

an academic lifetime's worth of experience, especially if the course ignores that 

experience? (Think of what it takes to retrain a self-taught musician or tennis 

player, rather than than teach one from scratch. Old habits die very very hard, if 

they die at all.) 
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Well, the point is clear. If you're going to try to affect students' 

mathematical problem solving behavior, you'd better understand that behavior. 

That effort was the main thrust of what (linear type that I am) I'll call phase 2. 

Instead of trying to do things to (and with) students, the idea was to understand 

what went on in their heads when they tried to do mathematics. Roughly 

speaking, the idea was this. Suppose I ask someone to solve some 

mathematics problems for me. For the sake of a permanent record, I videotape 

the problem solving session (and the person talks out loud as he or she works, 

giving me a verbal "trace" as well.). My goal is to understand what the person 

did, why he or she did it, and how those actions contributed to his or her 

success or failure at solving the problem. Along the way I'm at liberty to ask any 

questions I want, give any tests that seem relevant, and perform any 

(reasonable) experiments. What do I have to look at, to be reasonably confident 

that I've focused on the main determinant of behavior, and on what caused 

success or failure? 

The details of my answer are xvi+409 pages long. The masochistic 

reader may find them, as well as the details of the brief anecdotes sketched 

above, in my (1985) Mathematical Problem Solving. In brief, the book 

suggested that if you're going to try to make sense of what people do when they 

do mathematics, you'd better look at: 

A. "Cognitive resources," one's basic knowledge of mathematical facts 

and procedures stored in L TM (long term memory.) Most of modern 

psychology, which studies what's in a person's head and how that 

knowledge is accessed, is relevant here. 
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B. Problem solving strategies or heuristics. I've said enough about these. 

C. Executive or "Control" behavior. [For the record, this behavior is often 

referred to as "metacognition."] I discussed this above as well. It's not 

just what you know (A+B above), it's how you use it. The issue in the 

book was how to make sense of such things. It's tricky, for the most 

important thing in a problem solving session may be something that 

doesn't take place -- asking yourself if it's really reasonable to do 

something, and thereby forestalling a wild goose chase. 

D. Belief systems. I haven't mentioned these yet, but I will now. 

Beliefs have to do with your mathematical weltanschauung, or world 

view. The idea is that your sense of what mathematics is all about will 

determine how you approach mathematical problems. At the joint CMS/CMESG 

meetings in June 1986, Ed Williams told me a story that illustrates this category. 

Williams was one of the organizers of a problem solving contest which 

contained the following problem: 

"Which fits better, a square peg in a round hole or a round peg in a 

square hole?" 

Since the peg-to-hole ratio is 2hr (about .64) in the former case and 1t/4 

(about .79) in the latter, the answer is "the round peg." (Since the tangents line 

up in that case and not in the other, there's double reason to choose that 

answer.) It seems obvious that you have to answer the question by invoking a 
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computation. How else, except with analytic support, can you defend your 

claim? 

It may be obvious to us that an analytic answer is called for, but it's not at 

all obvious to students. More than 300 students -- the cream of the crop -­

worked the problem. Most got the right answer, justifying it on the basis of a 

rough sketch. Only four students out of more than 300 justified their answer by 

comparing areas. (I can imagine a student saying "you just said to say which fit 

better. You didn't say to prove it.") Why? I'm sure the students could have 

done the calculations. They didn't think to, because they didn't realize that 

justifying one's answer is a necessary part of doing mathematics (from the 

mathematician's point of view). 

For the sake of argument, I'm going to state the students' point of view (as 

described in the previous paragraph) in more provocative form, as a belief: 

Belief 1: If you're asked your opinion about a mathematical question, it 

suffices to give your opinion, although you might back it up with evidence 

if that evidence is readily available. Formal proofs or justifications aren't 

necessary, unless you're specifically asked for them -- and that's only 

because you have to play by the rules of the game. 

We've seen the behavioral corollary of this belief, as Williams described it. 

Unfortunately, this belief has lots of company. Here are two of its friends, and 

their behavioral corollaries. 
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Belief 2: All mathematics problems can be solved in ten minutes or less, if 

you understand the material. Corollary: students give up after ten minutes 

of work on a "problem.") 

Belief 3: Only geniuses are capable of discovering, creating, and 

understanding mathematics. Corollary: students expect to take their 

mathematics passively, memorizing without hope or expectation of 

understanding. 

An anecdote introduces one last belief. A while ago I gave a talk 

describing my research on problem solving to a group of very talented 

undergraduate science majors at Rochester. I asked the students to solve 

Problem 5, given in Fig. 1. The students, working as a group, generated a 

correct proof. I wrote the proof (Fig. 2) on the board. A few minutes later I gave 

the students Problem 6, given in Fig. 3. 
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In the figure below, the circle with center C is 
tangent to the top and bottom lines at the points 
P and 0 respectively. 

a. Prove that PV = av. 

Confessions, 

b. Prove that the line segment CV bisects angle PVO. 

-- Fig. 1 --
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Proof: 

Draw in the line segments CP, CQ, and CV. Since CP and CQ are 
radii of circle C, they are equal; since P and Q are points of tangency, 
angles CPV and CQV are right angles. Finally since CV=CV, triangles 

. CPV and CQV are congruent. 

a. Corresponding parts of congruent triangles are congruent, so 
PV = QV. 

b. Corresponding parts of congruent triangles are congruent, so 
angle PVC = angle QVC. Thus CV bisects angle PVQ. 

-- Fig. 2 --
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You are given two intersecting straight lines and 
a point P marked on one of them, as in the figure 
below. Show how to construct, using straightedge 
and compass, a circle that is tangent to both lines 
and that has the point P as its point of tangency to 
the top line. 

-- Fig. 3 --
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Students came to be board and made the following conjectures,in order: 

a. Let Q be the paint on the bottom line such that QV = PV. The center of 

the desired circle is the midpoint of line segment PO. (Fig. 4a). 

b. Let A be the segment of the arc with vertex V, passing through P, and 

bounded by the two lines. The center of the desired circle is the 

midpoint of the arc A. (Fig. 4b). 

c. Let R be the point on the bottom line that intersects the line segment 

perpendicular to the top line at P. The center of the desired circle is the 

midpoint of line segment PRo (Fig. 4c). 

d. Let L1 be the line segment perpendicular to the top line at P, and L2 

the bisector of the angle at V. The center of the desired circle is the 

point of intersection of L1 and L2. (Fig. 4d). 



(a) 

(c) 
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_ Fig. 4--

Students' conjectured solutions 
(Short horizontal lines denote midpoints.) 

(b) 

(d) 

The proof that the students had generated -- which both provides the 

answer and rules out conjectures a, b, and c -- was still on the board. Despite 

this. they argued for more than ten minutes about which construction was right. 

The argument was on purely empirical grounds (that is, on the grounds of which 

construction looked right), and it was not resolved. How could they have this 

argument, with the proof still on the board? I believe that this scene could only 

take place if the students simply didn't see the proof problem as being relevant 

to the construction problem. Or again in provocative form. 
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Belief 4: Formal mathematics, and proof, have nothing to do with 

discovery or invention. Corollary: the results of formal mathematics are 

ignored when students work discovery problems. 

Since we're in "brief survey mode," I don't want to spend too much time 

on beliefs per se. I think the point is clear. If you want to understand students' 

mathematical behavior, you have to know more than what they "know." These 

students "knew" plane geometry, and how to write proofs; yet they ignored that 

knowledge when working construction problems. Understanding what went on . 

in their heads was (and is) tricky business. As I said, that was the main thrust of 

phase 2. 

But enough of that; we're confronted with a real dilemma. The behavior I 

just described turns out to be almost universat. Undergraduates at Hamilton 

College, Rochester, and Berkeley all have much the same mathemcrucaJ world 

view, and the (U.S.) National Assessments of Educational Progress indicate 

that the same holds for high school students around the country. How in the 

world did those students develop their bizarre sense of what mathematics is all 

about? 

The answer, of course, lies in the students' histories. Beliefs about 

mathematics, like beliefs about anything else -- race, sex, and politics, to name 

a few -- are shaped by one's environment. Your develop your sense of what 

something is all about (be that something mathematics, race, sex, or politics) by 

virtue of your experiences with it, within the context of your social environment. 

You may pick up your culture's values, or rebel against them -- but you're 

shaped by them just the same. 
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Mathematics is a formal discipline, to which you're exposed mostly in 

schools. So if you want to see where kids' views about mathematics are 

shaped, the first place to go is into mathematics classrooms. I packed up my 

videotape equipment, and off I went. Some of the details of what I saw, and 

how I interpreted it, are given in the in-press articles cited in the references. A 

thumbnail sketch of some of the ideas follows. 

Borrowing a term from anthropologists, what I observed in mathematics 

classes was the practice of schooling -- the day-to-day rituals and interactions 

that take place in mathematics classes, and (de facto) define what it is to do 

mathematics" One set of practices has to do with homework and testing. The 

name of the game in school mathematics is "mastery:" Students are supposed 

to get their facts and procedures down cold. That means that most homework 

problems are trivial variants of things the students have already learned. For 

example, one "required" construction in plane geometry (which students 

memorize) it to construct a line through a given point, parallel to a given line. A 

homework assignment given a few days later contained the following problem: 

Given a point on a side of a triangle, construct a line through that point parallel 

to the base of the triangle. This isn't a problem; it's an exercise. It was one of 

27 "problems" given that night; the three previous assignments had contained 

28, 45, and 18 problems respectively. The test on locus and constructions 

contained 25 problems, and the students were expected to finish (and check!) 

the test in 54 minutes -- an average of two minutes and ten seconds per 

problem. Is it any wonder that students come to believe that any problem can 

be solved in ten minutes or less? 
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I also note that the teacher was quite explicit about how the students 

should prepare for the test. His advice -- we" intentioned -- to the students 

when they asked about the exam was as follows: "You'll have to know a" your 

constructions cold so that you don't spend a lot of time thinking about them." In 

fact, he's right. Certain skills should be automatic, and you shouldn't have to 

think about them. But when this is the primary if not the only message that 

students get, they abstract it as a belief: mathematics is mostly, if not all, 

memorizing. 

Other aspects of what I'll call the "culture of schooling" shape students' 

view of what mathematics is a" about. Though there is now a small movement 

toward group problem solving in the schools, mathematics for the most part is a 

solitary endeavor, with individual students working alone at their desks. The 

message they get is that mathematics is a solitary activity. 

They also get a variety of messages about the nature of the mathematics 

itself. Many word problems in school tell a story that requires a straightforward 

calculation (for example, "John had twenty-eight candy bars in seven boxes. If 

each box contained the same number of candy bars, how many candy bars are 

there in each box?"). The students learn to read the story, figure out which 

calculation is appropriate, do the calculation, and write the answer. An oft­

quoted problem on the third National Assessment of Educational Progress 

(secondary school mathematics) points to the dangers of this approach. It 

asked how many buses were needed to carry 1128 soldiers to their training site, 

if each bus holds 36 soldiers. The most frequent response was "31 remainder 

12" -- an answer that you get if you follow the practice for word problems just 
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described, and ignore the fact that the story (ostensibly) refers to a "real world" 

situation. 

Even when students deal with "applied" problems, the mathematics that 

they learn is generally clean, stripped of the complexities of the real world. 

Such problems are usually cleaned up in advance -- simplified and presented 

in such a way that the techniques the students have just studied in class will 

provide a "solution." The result is that the students don't learn the delicate art of 

mathematizing -- of taking complex situations, figuring out how to simplify them, 

and choosing the relevant mathematics to do the task. Is it any surprise that 

students aren't good at this, and that they don't "think mathematically" in. real 

world situations for which mathematics would be useful? 

I'm proposing here that thorny issues like the "transfer problem" (why 

students don't transfer skills they've learned in one context and use them in 

other, apparently related ones) and the failure of a whole slew of curriculum 

reform movements (e.g. the "applications" movement a few years back) have, at 

least in part, cultural explanations. Suppose we accept that there is such a 

thing as school culture, and it operates in ways like those described above. 

Curricular reform, then, means taking new curricula (or new ideas, or ... ) and 

shaping them so that they fit into the school culture. In the case of 

"applications," it means cleaning problems up so that they're trivial little 

exercises -- and when you do that, you lose both the power, and the potential 

transfer, of the applications. In that sense, the culture of schooling stands as an 

obstacle to school reform. Real curricular reform, must in part involve a reform 

of school culture. Otherwise it doesn't stand a chance. 
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Well, here I am arguing away in the midst of -- as though you haven't 

guessed -- phase 3. There are two main differences from phase 2. The first is 

that I've moved from taking snapshot views of students (characterizing what's in 

a student's head when the student sits down to work some problems) to taking a 

motion picture. The question I'm exploring now is: how did what's in the 

student's head evolve the way it did? The second is that the explanatory 

framework has grown larger. Though I still worry about "what's going on in the 

kid's head," I look outside for some explanations -- in particular, for cultural 

ones. 

And yet plus 9a change, plus 9a reste Ie meme. I got into this business 

because, in Halmos's phrase, I thought of problem solving as "the heart of 

mathematics" -- and I wanted students to have access to it. As often happens, I 

discovered that things were far more complex than I imagined. At the micro­

level, explorations of students' thought processes have turned out to be much 

more detailed (and interesting!) than I might have expected. I expect to spend a 

substantial part of the next few years looking at videotapes of students learning 

about the properties of graphs. Just how do they make sense of mathematical 

ideas? Bits and pieces of "the fine structure of cognition" will help me to 

understand students' mathematical understandings. At the macro-level, I'm 

now much more aware of knowledge acquisition as a function of cultural 

context. That means that I get to play the role of amateur anthropologist -- and 

that in addition to collaborating with mathematicians, mathematics educators, AI 

researchers, and cognitive scientists, I now get to collaborate with 

anthropologists and social theorists. That's part of the fun, of course. And that's 

only phase 3. I can't tell you what phase 4 will be like, but there's a good 

chance there will be one. Like the ones that preceded it, it will be based in the 
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wish to understand and teach mathematical thinking. It will involve learning 

new things, and new colleagues from other disciplines. And it's almost certain 

to be stimulated by my discovery that there's something not right about the way 

I've been looking at things. 

Are there any morals to this story -- besides the obvious one, that I've 

been wrong so often in that past that you should be very skeptical about what 

I'm writing now? I think there's one. My work has taken some curious twists 

and turns, but there has been a strong thread of continuity in its development; in 

many ways, each (so-called) phase enveloped the previous ones. What 

caused the transitions? Luck, in part. I saw new things, and pursued them. But 

I saw them because they were there to be seen. Human problem solving 

behavior is extraordinarily rich, complex, and fascinating -- and we only 

understand very little of it. It's a vast territory waiting to be explored, and we've 

only explored the tiniest part of that territory. Each of my "phase shifts" was 

precipitated by observations of students (and, at times, their teachers) in the 

process of grappling with mathematics. I assume that's how phase 4 will come 

about, for I'm convinced that -- putting theories and methodologies, and tests, 

and just about everything else aside -- if you just keep your eyes open and take 

a close look at what people do when they try to solve problems, you're almost 

guaranteed to see something of interest. 
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Applications of Undergraduate Mathematics 

Ross L. Fillney 

In recent years there has heen a phenomenal growth in the proressional use 
of matbematics. a growth so rapid that it has outstripped the capacity of 
many courses in our schools and colleges to train people ror the mathemati­
cal tasks that are expected of thelll when they take employment. Pel'ple 
who take johs with the civilian government. the military, or industry. or 
who enter quantitative rields as graduate students or raculty, discover with 
increasing frequency these days that they lack acquaintance with important 
mathematical models and experience in modeling. Many or them also rind 
to their distress that they have not been trained to he self-educating in the 
application or mathematics. 

This discovery. perhaps I should say predicament. is not the exclusive 
domain of people who enter fields that depend ror their progress upon 
advanced mathematics. In Louisville. Kentucky, the proression or interior 
decorating is highly competitive. To stay in business, a decorator must be 
able to make accurate cost estimates. To do so without delay requires 
facility with decimal arithmetic, fractions, and area formulas. People hired 
as stenographers by The First National Dank of Doston discover that the 
work is done not on typewriters but on computer-driven word processors. 
Many stores now use their cash registers for inventory control. The keys on 
business machines have multiple runctions. and the runctions must be 

Ron L. n""e" is currenlly Se/ll'" I.eclurer al MIT IIml I'rnjcci Directur of Ihe Umlerglalluale 
Malhemalics Applicaliuns I'wjcci al Etlucallunal Dcvelupmenl ('enler. Inc. lie was a 
Fulhrighl Schular al Ihe l'uinCillc Inslilllie in l'arlS. france. in t'J55. anll earnell a l'h.D. in 

mathematics hllm the IlniversilY III Midligan in 19b2. lie has laught at ('rinrelon University 
and at the lJni"ersity olllli"ois al tJrlm"a·(,hallll'aign hom 1962 III 19711 I'inney c,""irell an 
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perrormed in the right order. As these examples suggest, almost every 
proressional field now uses mathematics of some kind. 

Since 1976 the U,S. National Science Foundation has provided support 
for a unique multi·disciplinary response to the need for instruction in 
applied mathematics: the Undergraduate Mathematics Applications Pro­
ject. UMAJl. as the Project is called. produces lesson-length modules. case 
sludies, and monographs rrom which readers can learn how to use the 
mathematical sciences to solve prohlems that arise in other rields. The 
applications presented by UMAP cover a hroad range rcom chemistry, 
engineering and physics. to hiomedical sciences. psychology, sociology, 
economics, policy analysis. harvesting, international relations, earth sci­
ences. navigation, and business and vocational pursuits, 

UMAP modules are self-contained, in the sense that anyone who has 
rulfilled the prere4uisiles listed inside the rront covers can reasonahly 
expect to read the modules and solve the prohlems without help. They 
cover ahout as much material as a teacher would put into an hour's lecture. 
There are exercises, model exams keyed to ohjectives, and answers. The 
modules are reviewed thoroughly by teachers as well as by professionals in 
the fields or application, revised, tested in classrooms throughout the world, 
reviewed hy individual students to be sure Ihey are as self-contained as they 
should be, and revised again hefore publication. 

The modules are used for individual study, to supplement standard 
courses, and in com hi nation to provide complete text coverage for courses 
devoted to applications of the mathematical sciences. These sciences, which 
I shall simply call mathematics, include probahility and statistics, opera­
tions research, computer science and numerical methods as well as the 
elementary and advanced aspects of analysis, algebra and geometry. 

UMAP case studies are not intended to he as self-contained as are the 
modules. The studies contain data and hack ground information for a 
mathematical modeling problem as a field professional would collect it, but 
readers are asked to develop their own models ror solving the problems. 
The data are real, the plOhlems current. Teachers are given the solutions or 
the prohlems as they were originally worked out by the professional applied 
mathematicians who furnished the pHlblems to the project. Each study has 
a teacher's guide developed through classroom use. The case studies are 
used in mathematical modeling courses, and may take several weeks to 
complete, One of their striking reatures is that, like the UMAP modules, 
they expect no previous experience with mathematical modeling on the part 
of either instructor or student. Nor do they require any previous knowledge 

of the applied field, Anyone with the right mathematical background can 
work Ihrough them successr ully. 

lJMAI"s expository monographs are works of eighty pages or more that 
make availahle to sllillenls ill upper level courses, allli III faculty in divelse 

fields, signiricanl applicaliolls Ihal are nol ill COlli lIlercia I lexls. They also 
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. 
give users of standard texts al:l:ess to additional and l:olllplelllentary profes-
sional methods. like all UMAP malerials, the lIIollOgraphs are wrillen for 
students to read. and l:ontain exercises wilh answers. 

Although UMAP modules, case sludies and monographs are similar to 
traditional texts in that they provide instnll.:tion for studenls with suitable 
examples and exercises. they differ dramalically in their objectives: a 
UMAP unit follows the logic of the praclitioner, nol the syllabus of a 
course; it presents mathematics as a natural conslituent of a whole prob­
lem, not as a defined niche in a planned curriwlum. Because of Ihdr 
allegiance to diverse masters, UMAP curricululII materials reflel:t bOlh the 
excitement and disarray of current practice rather than the artificial order 
of Iraditional textbooks. They provide an entree 10 till: useful mathematics 
of the next decade. lIere: are some examples. taken from UMAP modules. 

Measuring cardiac output 

Drindel lIorelick and Sinan Koont wrote MetlSJlrilJg Curt/illc Olllplll to 
teach an application of numerical integralion in medicine. 

Your cardiac output is the amount of blood your hearl pumps in one 
minute. It is usually measured in liters per minute. A person awake but at 
rest, perhaps reading. might have a cardiac oUlput of five or six liters a 
minute. A marathon runner might have a cardiac output of more than 
thirty liters a minute. 

A change in cardiac output may be a symptom or a conselluence of 
disease, and doctors occasionally want to measure it. One technique for 
doing so, one that works when the heart's output is fairly constant, calls for 
injecting a small amount of dye in a main vein near Ihe heart. Five or ten 
milligrams will do. The dye is drawn into the heart and pumped through 
the lungs and into Ihe aorta. where its concenlration is measured as the 
blood flows past a Swan-Ganz catheler. figure I shows a typical set of 
readings in milligrams per liter, taken every second for about twenty-five 
seconds. 

You will notice in figure I Ihal Ihe concentration Slays at 0 for the first 
few seconds. It takes that long for the first of the dye to pass through Ihe 
heart and lungs. The concenlration Ihen begins to rise. It reaches a peak at 
about 12 seconds, then declines steadily for another seven seconds. 'nstead 
of tapering to 0 OIl that point, however, the concenlration rises slighlly and 
holus steady. Some of the dye that went Ihrough first has begun to 
reappear. 

The determination of the patient'S cardiac output requires calculating 
the area under the curve Ihat gives the colH:entration of the firsHiJlle­
through dye. To find this curve, or at least to make a satisfactory version of 

ii, olle has 10 replace the real ,Iilla poillts fIJi the last few secolllb by 
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fignre I. lypiLal readings of dyc LOnLcnlralinn in Ihc aurla whcn 5 mg ul dye are 
injt"Llcd inlu a milill vein ne'lI Ihe hcarl al I = 0 SCLOIHJS. 

ficlicious ones, as shown in Figure 2. The chosen poinls cOJllinue the 
downward trend of the points Ihat precede them. The estimates involved in 
selecting the fklicious poinls scem reasonable, and any errors introduced 
by the replacement are likely to be small in comparison with other 
uncertainties in measurement. 

The concent.-atilln curve can now be sketchell, but Ihere is no formula 
for it that can be integ.-aled. This is often the case wilh data generated in 
the laboralory or collecled in the field and there are siandard ways to cope. 
On the dala here there IS no reason to use anything more sophisticated than 
Simpson's rule or the trapezoidal rule, which is precisely what lIorelick and 
Koolil prol:eed 10 do. The palienl's cardiac outpul is Ihen calculaled by 
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Figure 1. The nllve shown hClc IS filled 10 Ihe real illid adJllsll'Il liata puinls. lis 
heigh I .. hove Ihe hOliwlllill aXI, ilJlJllllXilllillcS Ihe Ltllll'Clillilliun ,,( II,e iujcl.:h:ll dye 
pa"illg Ihc lllOnilll! illg plliHI III lliis palienl's 'W! la fUI Ihe fil'l 1I1I1l:. 
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dividing the estimate obtained for the integml (expressed in nulligram 
minutes per liter) into the number of milligmlll!l of dye originally injedel.l. 

The result: 6.8 liters per minute. 

Chemistry 

Ralph Grimaldi's module, Balancing Chemical Reactiolls with Matrix Meth­
ods and Computer Assistallce, shows how matrix methods may be used to 
balance chemical reactions. The unit gives a conuete selling for the 
concepts of linear independence and depenJence in vector spaces of 

dimension four or more. 
In the reaction 

Pb(N]h + CR( MnO.)2= CR20] + Mn02 + Pb j 0 4 + NO, 

which takes place in a basic solution, the atoms from lead azide and 
chromium permanganate combine into four other products: chromium 
oxide, manganese dioxide, trilead tetroxide, and nitric oxide. To find how 
much of each of the original reactants has to be present to produce how 
much of each of the products, we "balance" the reaction. That is, we find 
integers u, v, w, x,y, and z, with the property that u molecules of lead azide 
plus v molecules of chromium pennanganate produce exactly II' molecules 
of chromium oxide, x molecules of manganese dioxide, y molecules {If 
trilead tetroxide, and z molecules of nitric oxide. Schematically, 

u PB(N])2 + v CR(MnO.)2= II' CR20 j + x Mn02 + y 1'8)04 + Z NO. 

The numbers u, v, w, x, y, and z are integers chosen to make the number of 
atoms of each element the same on each side of the reaction. To balance 

the reaction, we balance the atoms. 
To balance the atoms, we assign a basic unit vector to each element. II 

does not mailer which vector we assign to which element, as long as WI: 

assign one apiece and keep track of the assignment. The assignment 

Pb = ( I, 0, 0, 0, 0) 

N = (0, 1,0, 0, 0) 

Cr = (0, 0, I, 0, 0) 

Mn = (0,0,0, 1,0) 

° = (0, 0, 0, 0, I) 

will do as well as any. We use five-dimensional vectors because there are. 

five elements. 
We then replace the chemical reaction with the vedOl' equation 

II( I, 6, 0, n, 0) + .)(11, II, I, 1,8) = 11'(11,0,1,0,1)'1 \ (0,0,0, I, 2) 

I I'n, II. 0, 0, .1\ + .q II, I, II, II, 1\. 
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You can see where the vedOl' entries come from. For every II lead atoms in 
lead azide, I'b( N j)1' there arc 611 nitrogen atoms; hence the III I, 6, 0, 0, 0) 
in the vector equalion. For every II chromium atoms on the lert side of the 
reaction, there are also l.) manganese atoms and 8" oKygen atoms. And so , ' 
on for the other four integers, 11', X,I', and z. 

The idea now is to solve the vector equation for the integers II, ll, 11', x,y, 
and z,' To do so we rewrite the equation as a system of five linear equations 
in six variables. SiK variables are too many for a unitlue solution, but we 
can arbitrarily assign the value I to the variable II to match the number of 
unknowns to the number of equations. We may want to change the value 
assigned to II later, bUI 1/ = I will do for now. The resulting system in 
matriK form is 

OOO)O[lljl 000011\16 
--llOOO x=O 
-- 2 0 I 0 0 y 0 
-8 ) 2 4 I z 0 

This system of equations can be solved by a short computer program 
listed in Grimaldi's module. The solution given by the computer when 
II = I is 

l) = 2.9)))), II' = 1.40667, x = 5.86667,), = 0.))))), z = 6. 

These values are not the integers we seek because they are not all integers. 
Once we notice that O.O))ll is about 1/)0 and 0.06667 about 2/)0, 
however, we know enough to scale everything by taking II equal to )0 

instead of I. The resulting solution is 

II = )0, V = 88, 1\' = 44, x = 176,1' = 10, z = 180. 

The module discusses what to do if at first you do not recognize the 
integer solution that underlies the computer's decimal solution. It also 
discusses an eKample in which reducing the number of variables to match 
the number of equations does not seem to work. The difficulty is traced to 
the fact that the reaction heing halanced consists of two reactions that take 
place simultaneously, independently of each other. Each must he analyzed 
apart from the other. 

Scheduling prison guards 

James M. Maynard's A Lillear Prograllllllillg Model for Schedlilillg Pri.wlI 
Gllards describes a linear program that Maynard developed for the Pennsyl­

vania Siale Bureau of Coneclions. As Ihe newspaper clippings reproduced 
in Figures 3 anti 4 show, Ihe Bureau was com:erned in the middle 1970's 
ahout the incrcasing cost of payillg pri~on guards to WOlk IIvertime. In the 
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51." Wrll« 

A IICI-liodlll& lour by m.m­
bers 01 Ihe Sllle S."ole Pm­
on Inquiry Commluee yesler­
day .1 Ille SI.le Correclional 
In.lllulion II Ca",;> UIII 
,eemed more Il~e a whirl­
wind campaign ""'inc ",ilh S<R­

Ilors ,haking ha"ds a"d .Ii· 
citinl! opinions from prisoners 
and guards 

But in Ian .• he wlorm,lIion 
,ou(,hl by four 6tall! 6encUors 
on Ill. ai,lh lour 01 Ille eiGhl 
Ilate pflsons Yielded llllolllla· 

COllrt esy of the 
Harrisburg Patriot. 

11011 lhal may • .-iot Ihe 6pe· 
nal (ommill~e in dulling 
prison'relaled I.gld.llon. 

SeQ. Fr •• m.n llankln'. D.-
1'1lJ1.d<lphi., com mit lee 
ch.irmln; Sen. Mllo1l1o Mur­
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I.,,~ er Allell T .. p. in a II,,",,· 
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the 'ollowll1g tnforrnallOn. 

- The prison paid i351,1II"l 
In o\lerllme to Au.rds last 
ytJr Ind eXfle~1S 10 pay 
5-161.1100 in ovenime Ill," j·ear. 
1 he pr;'on n~tds "" .ddilio,,· 
al 6; guards 10 reduce Ihe 
Amount 01 owtrtllne 'lay. 

Guards sought for Graterford 
By Th. "WKlaled Pren Ihe ~dded CUald. would (011 

lh. ~,.d 01 Ih .... Ie [or- $:;00 1100 onnually 
rrfllOOS Rure .. u says (JoW' The e)CU~ men (ould cut 
Sh;IPP .llId the I t'~:,da.ture ,1"wlI on ovrrtime pilymenU 
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"0 10 Ion I:U.If,h 11 Iht (.nt r U 11 n I n ~ ahlllll S21l.0CMl • 
erford SI.tt>! PU'iHn lHoluh 

Ibe lnue", Ie wIJull1 raise 10 
.. ~ Ihe numher 0' Ku.uds al 
Ihe Monlgomery CounlJ jhlS­

on. 
Corn.:UOtl. Commluloner 

51 ....... r1 Werner eslimtleoJ 

• #I • 
G,.lerlo,d. Ih. 1,,~ul ot 

Ihe .lIla', elaht cornellon,1 
insllluUona. hu aboul 1.600 
Inm.lts, aboul 100 below ca· 
PlfIlY· 

(:0111 I t",y ul the J\sst}clalpd Pll'S!;. 

Figurc 4. 
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year ending June 30, 1975. fill" e)(alllple. Ihe Bureau paid lIearly four million 
dollars in overtllne pay, $750,OOU 1II00e than it had paid for overtime work 
the year before. Some overtime work is to he e)(peded, Ilf course. II is 
e)(pensive to keep a full-time staff large enough to cover peak loads, for a 
'slaff this large is likely to be underemployed much of the time. On the 
other hand, a staff so small that regularly scheduled guards have: to work so 
many overtime hours that they somelime:s double their salaries is also 
e)(pensive, as the: Bureau was finding out. Unde:rstaffing can be: e:xpensive 
in other ways, too, for fatigue: and high inmate-to-guard ratios create: 
dangerous te:nsions. 

Legislators and other officials thought Ihe State: might save: money by 
increasing the size of its regular prison staff. Maynard was hire:d to 
determine the size of the least e:)(pensive overall wmk force. 

The goals of Maynard's investigation we:re to minimize: the total cost of 
paying prison guards, while reducing the: overtime work and establishing 
uniform work schedules in all prisons. lie was able to meet the goals 
successfully with a linear program, the one described in his UMAP module. 

Table I shows two work schedules for one of the Bureau's prisons, 
referred to here as Prison G. Gne schedule has pare:ntheses, the other does 
nol. The numbers with parentheses are the numbers of guards recom­
mended by the linear program. The numbers without parentheses show 
how many guards were on duty at Prison G during the week ending 
September 30, 1973. 

The schedules are weekly schedules divided into twenty-one periods, 
three shifts a day for seven days. Each bo)( in the table show~ the: nUlllbe:rs 
of guards working at three different pay levels during the given shift: 
regular, time-and-a-half, and double time. The two numbers in the top line 
in each box are the numbers of guards working the shift as pari of their 
regular weekly work schedule. The two numbers next in line are the 
numbers of guards working the shift at time:-and-a-half. The last two 
numbers are the numbers of guards working at double time. 

For example, Monday morning, September 24th was worked by 94 
guards on regular schedules, 19 guards at time-and-a-half, 3 guards at 
double time. On Tuesday afternoon more than half of the 146 guards 
present were working overtime. 

The numbers in parentheses proposed by the linear program are strik­
ingly different from the 1973 figures. On Monday morning the model 
covers the work load with 111 regularly schedulc:d guards; where once there 
had been 22 overtime guards, now there are none. On Tuesday afternoon 
there are only 9 overtime guards where once there had be:en 16. The: new 
work schedule is more equitable and less fatiguing than the old one. II is 

also more economical. If regular pay is calculated al $4 an hour, for 

inslance, Ihe new schedule for fir/SOU G saves 111i: Siale $5,216 a week. 
Readers of Maynard's module ale given illi 0ppollullity to follow the 

developmcnl of the linear program. 10 ,ce Ihe dfcds of VilllOUS scheduling 
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Table I Dala alill Rc;,ulls flOm I'risoll (j for Ihe Week Ending Seplcmbcl" 30. 1973 

--.-----~ r---~---~-

Day Shih 
--~-----

Mornillg Ahernoon Nighl 
~------. -

94 (117) 70 (131) 38 (74) 
19 (0) 61 (0) 40 (4) 

Monday 3 (0) 0 (0) 0 (0) 
- -- - -- - -
116 (117) 131 (131) 78 (78) 

--
94 (126) 70 (137) 36 (74) 
17 (0) 62 (9) 38 (0) 

Tuesday 15 (0) 14 (0) 0 (0) 
---- -~ ~ -- - -
126 (126) 146 (146) 74 (74) 

97 ( 116) 69 (137) 36 (74) 
19 (0) 68 (0) 27 (I) 

Wedn~sday 0 (0) 0 (0) 12 (0) 
- -- ~ -- - -
116 . (116) 137 ( 137) 75 (75) 

94 (128) 63 (98) 37 (74) 
41 (21) 24 (2) 34 (7) 

Thursday 14 (0) 13 (0) 10 (0) 
-- -- ~ -- - -
149 (149) 100 (100) 81 (81) 

------- -
74 (97) 45 (89) ]7 (39) 
20 (0) 16 (0) 2 (0) 

Friday 2 (0) 0 (0) 0 (0) 
- -- - -- - -

96 (97) 61 (89) 39 (39) 
-----_. 

57 (43) 37 (45) 26 (0) 
15 (33) 14 (6) J (29) " 

Salurday 4 (0) 0 (0) 0 (0) 
- -- - -- - -

76 (76) 51 (51 ) 29 (29) 
--.---~--

53 (63) 36 (48) 25 (35) 

7 (0) 12 (0) ] (0) 
Sunday 3 (0) 0 (0) 2 (0) 

- -- - -- - -
63 (63) 48 (48) 30 (30) 

-_ .. __ ... __ .. _---- - ---

assumptions, and 10 develop a small-scale program of their own. As in the 
Grimaldi chemistry module, the program does not at first yield inleger 
solutions, but by rounding the numbers of guards given by the computer to 
integer values and rerunning the program to de:termine the values of the 

remaining variables, one oblains a feasible solution thai is close enough. II 
is nol necessary 10 prove Ihal Ihe inleger solulion found Ihis way is oplimal. 
Olle call test ils utility hy e:vllluating the ohjective function, which gives the 
lolal amount of IIIIHley paid to prisoll guards. If the value of Ihe fUIll:tioli 
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for Ihe integer solution is close to the value of the hllKtion for the miginal 
nOI-necessarily-integer solution. then the integer solulion is good. 

Continuous service in legislatures 

Once a group of people has heen elected to a legislature, the number of 
them who serve continuously fmm that time onward will normally decrease 
exponentially with each passing election. 

The elections for the Senate of the United States are held in the fall of 
every even-numbered year. The senators, elected fVr six-year terms, take 
office the following January. Figure 5 shows the proportion of the 1801 
Senate Ihal remained in office arler successive elections. They were all gone 
hy 1811. The data are fitted nicely by the curve 

y = e 0029,. 

where t is measured in months heginning in January 1801 with t = O. 
Thomas W. Cassteven's module. Expollelltial Models of Legi.rlative TII"'­

over. shows how exponential curves can be used to forecast election results, 
to speculate convincingly ahout what would have happened if a postponed 
election had been held on time, and to disclose suppressed data. 

0> 
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Dale lak ing allice 

I 

tB09 1BII 

figure 5. The proportion of Ihe U.S. Senators laking office in ISOI who contillued 
in onice throllgh slIhseqllent lerllls. The p"llern shown here, of t1isCicle election 
data filled hy all e~pollelilial curve, is typit:al of Icgi~lali\'c IIIIIIOVCI. The tlala 10 he 
lilled may he eilher raw (as in Figure t,) or pWI'OIlillllal (as ill Ihe figule above). 
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One of Cassteven's many inleresting examples is the turnover in the 
membership of the Central Commillee of the COlllmunist Party of the 
Soviet Union. In 1957, first Secretary Nikita Khruschev. in some semi­
secret infighting, succeeded in removing a number of his opponents from 
the Committee. Their identity was not made public, nor was their total 
number. Their number can be estimated, however, by a calculation hased 
on election data from nearby years. There were elections in Fehruary 1956. 
October 1961. March 1966, and March 1971. from these one can calculate 
the exponential llecay conslant for the Central Committee's normal turn­
over. One can then cakulate how llIany of the Fehruary 1956 cohort should 
have heen present after Ihe 1961 election. It turns out Ihallhere were about 
12 too few of them thele. At least a dozen full members were removed in 
Khruschev's purge. 

It is intersting to note that the decay wnstants for the U.S. Senate and 
the Central COllllllittee of the COllllllunist Party of the Soviet Union have 
been nearly equal in recent decades. for the data shown in Figure 6, the 
best fitting values of Ihe decay constants are about 0.0079 (Senate) and 
0.0073 (CC/CPSU). If the twelve members purged hy Khruschev in 1957 
are added back in, the match is even closer. 

160 
• CC/CPSU 0; Feb. 1956 241; Minch 1976 

140--
• U.S. Senale 0; Jan_ 1957 240 = Jan. 1977 
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figure 6. A comparison of conlinuous service in Ihe U.S. Senate and the Ccntral 
('ollllllillee or the COlli III II lIist Party or Ihe Soviet Union. The exponential decay 
constants or these two kgislalive hodies have heen nearly elillal in reeeilt years. 
MClllhcrsllip in these IWII legislalures hlls heen tlllllllig over <II "hullt Ihe SlIlIIe laic. 
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Mercator's world map 

Anyone who has ever wondered what the integral of the secant function is 
good for can find a satisfying answer in Philip Tuchinsky's UMAP module, 
Mercator's World Mop /I/ld the C/llel/llu. The unil explains how the integral 
of the secant determines the spacing of the lines of latitude on maps used 

for compass navigation. 
The easiest compass course 'or a navigator to steer is one whose compass 

heading is constant. This might be a course 0' 45° (northeasl), 'or example, 
or a course of 225° (southwest), or whatever heading is re4uired to reach 
the navigator's destination without bumping things on the way. Such a 
course will lie along a spiral that winds awund the globe toward one of the 
poles (Figure 7), unless the course runs due north or south or lies parallel to 

the e4uator. 

- ~ 
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figure 7. A nighl wilh a 1:0llslalli hc,lIl11g of 45° I;asl of N.lIlh hom Ihc (ialapaglls 
Islands in Ihe Pacific III halll Josef I.all<l ill Ihc Aldie (kcan. 
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In 1569 Gerhard K ramer, a Flemish surveyor and geographer known to 
us by his Latinized last name, Mercator, made a world map on which all 
spirals of constant compass heading appeared as straight lines. This fantas­
tic achievement met what must have been one of Ihe most pressing 
navigational needs 0' all time. For 'rom Mercator's map (Figure 8) a sailor 
could read the compass heading 'or a voyage between any two points from 
the direction of a straight line connecting them. 

Figure 9 shows a modern Mercator map. If you look closely at it you 
will see that the vertical lines 0' longitude, whil:h meet at the poles on the 
globe, have been sp.-ead apart to lie parallel on the map. The horizontal 
lines of latitude that are shown every 10° are parallel also, as they are on 
the globe, but they are not evenly spaced. The spacing between them 
increases toward the poles. 

The secant function plays a role in determining the correct spacing 0' all 
these lines. The scaling 'actor by which horizontal distances from the globe 
are increased at a fixed latitude T to spread the lines 0' longitude to fil on 
the map is precisely sec T. There is no spread at the equator, where 
sec T = I. At lalitude )0° north or south, the sp.-eading is accomplished by 
multiplying all horizontal distances by the factor sec 30°, which is about 
1.15. At 60° the factor is sec 60° = 2. The closer to the poles the longitudes 
are, thi: more they have to be spread. 

The lines of latitude are spread apart toward the poles to match the 
spreading of the longitudes, bUI the formulation of the spreading is compli­
cated by the fael that the scaling factor sec T increases with the latitude T. 

~L_!!!: __ .,.;J" ~_ !~ " o· ..u. •. J_2. ltv *' I 

hg,urc B. t\ sk\:ll:h 0' ~lcrullol's l\Iap 01 1569. 
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figure 9. The llighl IIf figure 7 Irllced lin II nllule", Mell:alnr map. Cnurses ;., 
CIIlIs11I1I1 compaS5 heading aJlpear a5 slraiglll lille palhs nil a Merclliur IIIIIJl. They 
lire ellsily conslrucled. measured. and fllUllwed. 

The faclor 10 he used rur stretching an interval of latitude is not a constant 
on the interval. This C11l11plicatilln is overCIIllle hy integralion. If R is the 
radius of the glohe heing IIIl1tleled. then the distance IJ hetween the lines 
drawn on the map to show the equator and the latitude a O is R times the 
integral of the secant hom zew to a: 

D= R("secTdT. 
lu 

The distance on Ihe lIIap hetween two lilies or nmlh latihltle. say fwm aO 

lip to 1,°, is 

L" 1'/ j'h D = R sec T dT .- R sec T dT = r sec T dr. 
u II .. 

Suppose. for example. Ihat the elluatnriallenglh or a Mercator map just 
matches the equalor of a glohe of rallius 25clII. Then the spacing on the 
map hetween the ellualur and latitude 20° north is 

i
2U 

25 sec T (iT ~ 9 clll, 
u 

whereas the spacing hclwecn latihllies 600 nmlh alill 8UO IIl11lh, is 

[

HII 
25 secT.lr ~ 28 UII 

.Mf .. .... .. .. - .. - .. 
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The vertical dislance on the lIIafl hetween latitude 6()O and lalilUde 80° is 
mClfe Ihan three times the verlical distance hetween latitude 0° and latitude 
20°. The navigational proper lies or a Mercator nHlp are achieved at the 
eJlpense of a considerahle distortion ()f distance . 

Concluding thoughts 

Mathemalical reasoning penetrates scientific pruhlellls in numerous alld 
significallt ways. If the secret of technology, as c.r. Snow said. is that il is 
possible. then the secret uf mathematical modelling is thai it works. 
1I1Iwever, t'le prucess of developing and employing a malhematical model 
is both more suhtle and mClfe cllmplell thall is the traditional solutioll of 
mathematics textbook problems. Real mudels frequently have to be COII­

structed in the presence of lIIore data thall can be taken illto account; their 
conclusions are orten drawn rrom calculations in which good approllima­
tions play a greater f(lie than do ellact solutiuns; very orten there are 
cunrlkling standards by which solutions can be judged, so whatever an­
swers emerge can Ullly rarely he labelled as righl (If wrong. Students using 
UMAr modules, case studies, or monographs experience mathematics ill its 
scientific con ted, and leave the classroom heller equipped to face real 
demands of mathemalicalmodelling ill business, research. and government 
work. 

- .. .. - .. .. .. .. -
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ASPECTS OF CURRENT RESEARCH IN MATHEMATICS EDUCATION* 

Carolyn Kieran 

Universlte du Quebec a Montreal 

The sessIOn devoted to "Aspects of Current Research In MathematIcs 

Education" at the 1986 meetIng of CMESG included reports of research beIng 

carrIed out in BrItish Columbia, Alberta, OntarIo, Quebec, and 

Newfoundland, with a specIal report being given by J6rg VOIgt on his 

research in Bielefeld, West Germany. These reports were not meant to be a 

comprehensive survey of the mathematics educatIon resarch beIng engaged in 

throughout the country, but were intended to give an idea of some of the 

main themes of current Interest to researchers and to provide pOInters to 

some of the work which is going on. More detaIls can be had by 

corresponding directly wIth the researcher(s) involved. This article 

briefly summarizes those reports. 

BritIsh ColumbIa 

David Kirshner reported on the research projects of three col leagues, 

as well as his own work. There is no sIngle theme whIch characterIzes 

these proJects. One study (D. Owens) involves intensIve work with a smal I 

number of sixth grade pupils to see if meaningful understandIng of decImal 

concepts can be achIeved at that grade level. Another project (~. Szetela) 

* Thank you to all who contributed both to the session and to this article: 
David Kirshner (B.C.), Tom Kieren (Alta.), William Higginson (Ont.), Erika 
Kuendiger (Ont.), Claude Gaulin (Que.), Joel Hil lei (Que.), Lionel Mendoza 
(Nfld.), and Jorg Voigt (Bielefeld, West Germany). Our apologies for 
mIsrepresenting anyone's research and for not beIng able to Include mention 
of everyone's work. 
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deals with problem solving. more specifically. the Improvement of teacher 

reliability ratings in the evaluation of students' protocols. Szetela is 

also carrying out a cross-cultural problem-solving study (Canada and 

Poland) involving 11- and 13-year-olds. The third stUdy (D. Robitail Ie and 

G. Spitler) focuses on developing teaching materials and providing 

In-service training at the Junior secondary level In the Dominican 

Republ iC. Kirshner's research in algebra is based on the assumption that 

symbol skill relies on procedures which are not related to mathematical 

theory. but rather to generative linguistics. 

Alberta 

Although Tom Kieren was not able to attend the meeting this year. he 

. * prepared a report for this session. The thrust of the research being 

carried out in Alberta can be captured in the questions: How do persons 

build mathematical ideas? What curricular/instructional actions affect 

(positively and negatively) this knowledge building? A recently completed 

study in Calgary (L. Marchand. M. Bye. B. Harrison. T. Schroeder) looked at 

the match of school demands and knowledge building levels of pupils in 

elementary schools (1767 pupils). A "match' with student levels and 

demands. was found for 64% of the cases. but there were significant 

divergences at the grade 5 level where the curriculum appeared to be rather 

forma I. An Edmonton group of researchers (Y. Pothier and D. Sawada) is 

investigating partitioning and fractional numbers. Another team (T. 

Kleren, D. Sawada. B. Wales) has been looking at an image of mathematical 

Kieren, T. 'Mathematical Knowledge Building in the Classroom: A Report of 
Recent Mathematics Education Research and Development in Alberta". Copies 
of this report are available from T. Kieren. University of Alberta. 
Edmonton, Alberta, T6G 2G5 
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knowledge building and uSing it to Interpret the fractional comparison 

abilities of young children (ages 6-8). Researchers (D. Sawada and A. 

Olson) are also involved with uSing the concept of autO-poelsls as 

developed by Maturana to explain how a person's mathematical knowledge 

system evolves. 

As well. there has been considerable work on Logo and mathematics in 

Edmonton: Cathcart has looked at debugging strategies; Kieren and Olson 

have developed a theoretical model relating van Hiele geometry leveis. 

levels of Logo use. and levels of language use from Frye; Ludwig and Kieren 

have tested this theory and used It to explain results in a Turtle Geometry 

.development project involving transformational geometry with seventh 

grader.s; Dobson and Richardson have developed extensive curriculum 

materials on Logo and problem solving for preliminary elementary aged 

chi ldren. 

Finally, there has been an interest in expert systems and mathematics. 

Balding has designed a system which al lows teachers to analyze the ratio 

work of a consistent student work simulator and. thus. to Identify aspects 

of student thinking patterns. Moreno IS developing a problem solving 

helper which will use expert knowledge/strategies In a computer advisor to 

beginning calculus students. 

0niill.9. 
Some of the recent mathematics education research in OntariO has 

focused on interpreting the results of the Second International MathematiCs 

Study (SIMS). For example. E. Kuendiger and G. Hanna have analyzed SIMS 

data according to sex differences. Another related area of research 

Interest is Women and Mathematics (E. Kuendiger. G. Hanna. P. Rogers). 

- .. .. - .. .. ... .. .. 
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Kuendlger has developed a theoretical model accounting for sex differences 

in achievement and course-taking behavior. A current project (E. 

Kuendiger) examines relationships between preservlce student teachers' 

perceptions of mathematics and their mathematics teaching. Another study 

(G. Hanna) focuses on instruction and achievement In eighth grade 

mathematics classrooms. Another project which is currently In progress (N. 

Hutchinson) involves the teaching of representation and methods of solution 

of algebra word problems. 

A large number of Logo studies were incorporated into the "Creative 

Use of Microcomputers by Elementary School Children" Project (W. Higginson, 

D. Burnett, H. Carmichael, and others). Though the learning ot mathematics 

was not the major focus of this proJect, the final report does provide 

several insights into children's geometry activity in various Turtle 

Geometry environments. 

Quebec 

Much of the research taking place in Quebec can be characterized as 

the study of the cognitive processes involved in learning mathematics. 

Many of these cognltively-orfented studies investigate different 

aspects of mathematical learning within a Logo environement. One research 

team (J. Hillel, C. Kieran, S. Erlwanger, J.-L. Gurtner) is examining the 

use of visual and analytical schemas by sixth graders in the solVing ot 

selected Turtle Geometry tasks. Another group (H. Kayler, T. Lemerise, B. 

Cote) is investigating the evolution ot logical-mathematical thinking among 

10- to 12-year-olds in a Logo environment. A third study (R. Pal lascio and 

R. Allaire) is focusing on the development ot spatial-Visualization skll Is 

by fourth graders using Logo-like computer activities involVing polyhedra. 

In another study (E. Lepage), a modified version of Logo for the very young 

- ---,-. - --- - - - -
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~erVe5 <15 the '3ettlng for re5e<lrchlng the learning of early number 

concepts. An Object-Logo computer programming environment is used by 

another researcher (G. Lemoyne) to examine the knowledge schema5 used by 9-

to 12-year-olds in their production of mathematical expressions. 

Other studies use non-Logo computer settings for their Investigations. 

One project (A. Taurisson) involves researcher-designed programs to be used 

as tools by elementary school children in order to develop their problem 

solVing abilities. Another team (A. BOileau, M. Garan~on, C. Kieran) IS 

examining the use ot computer tools and methods as a semantic support tor 

learning high school algebra. A group ot researchers (J.C. Morand and C. 

Janvier) is investigating the evolution of students' primitive conceptions 

ot Circles. Another study (C. Janvier and M. Garanyon) is looking at the 

understanding of functions and feedback systems using microcomputers. 

Other researchers (M. Belanger and J.-B. Lapalme) are creating exploratory 

computer learning environments in which children can develop problem 

solving strategies. 

Other stUdies with a cognitive emphasis which are currently being 

carried out (or have only recently been completed) include the work of: 

N. Herscovics and J. Bergeron who are investigating the acquiSition of the 

concepts of early nUmber among kindergartners and ot unit-traction among 

older children; D. Wheeler and L. Lee on high school students' 

understanding ot generalized algebraiC statements; L. Chaloux on sixth and 

seventh graders' construction ot meaning tor algebraic expressions; B. 

Janvier on the use of dynamic representations in the learning of early 

arithmetic; N. Bednarz who is comparing constructivist and traditional 

approaches to the teaching ot numeration; C. Glrardon on contlictual 

conceptions of transformations; A. BOisset on the difficulties which 

college level students experience With calculus; B. Heraud on the concept 
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of area among a-year-olds; C. Gaulin and R. Mura on the effects of 

calculators on the achievement of fifth and sixth graders; C. Gaulin. E. 

Puchalska. and G. Noelting on students' understanding of the representation 

of 3-D geometrical shapes by means of orthogonal cOding; N. Nantais on the 

evaluation of children's mathematical understanding by means of the 

mIni-interview. 

Another group of studies exists where the focus is on attitudes 

towards mathematics: J. Dionne has analyzed teachers' perceptions of 

mathematics and of mathematics learnIng; L. Legault is lookIng at the 

affective factors influencing mathematical diffIcultIes; L. Gattuso and R. 

Lacasse are investigatIng mathematical anxiety at the col lege level. 

Several related studies have recently been carried out by R. Mura and her 

colleagues on Women and Mathematics. 

l::Iewtoundland 

The mathematics education research which IS presently underway In 

Newfoundland includes the work of L. Mendoza. E. Wi I Iiams. and M. Kavanagh. 

L. Mendoza is Involved in a study of error patterns aSSOCiated with 

combining monomials. He is examining both the error patterns and the 

underlying rationale for these errors by means of wrItten testing and 

In-depth interviews. M. Kavanagh is studying grade 12 students' 

perceptions of mathematics. comparing those of students from ail maie. all 

female. and co-educational schools. E. WII Iiams' focus is the study of 

students writing mathematics competitions such as the Canadian Mathematics 

Olympiad. more speCIfically. the investigation of heuristic and executIve 

strategies used by 'good' mathematical problem solvers. 

.. - ' . .. .. .. .. ~ .. 

58 

SQecial Report 

The CMESG research information session in St. John's also inciuded a 

special report by Jorg Voigt of Bielefeld on his own research. He provld~d 

us with a brief summary of his presentation which is reproduced here: 

Patterns and Routines in Classroom interactIon: 
A Microethnographicai Study in Mathematics Education * 

Jiirg Voigt 
Universitit Bieiefeld. West Germany 

Often the question-response teaching in mathematics classrooms IS seen 
by the teacher as being a I iberal discourse in which the students actively 
participate. in opposition to the teacher's view, microanalyses of the 
discourse processes point to concealed and stereotyped patterns of 
interaction and routines. Certain patterns and routines lead to 
misunderstanding of the teacher's intentions. On the one hand. the 
patterns and routines facilitate the 'smooth' functioning of the ciassroom 
discourse; while, on the other hand. they produce undesirabie effects on 
the students' learning. 

For instance, the fol lowing pattern has been reconstructed across 
several videotaped situations. The teachers attempted to activate the 
students' everyday experiences as a starting-point for introducing a new 
mathematical content. 

The teacher asks an open, ambiguous question hoping to elicit the 
students' non-academic ideas. 
The students refer to their own subjective experiences from 
everyday life. 
The teacher rejects 
tactical routines. 
wisdom, the teacher 
suggestive hints in 
answer. 

the students' ("deviant') everyday Idea using 
Although the students' idea could be a woridly 
wants a different specific idea. He uses 
order to make the students give the expected 

In effect, the students iearn to isoiate the mathematical concept 
in the classroom from their "truths' in everyday i ife. 

While the teacher thinks that he used the students' experiences as a 
starting point, the opposite happened. The teacher and the students seem 
to be so skilled in how to deai with each other that the teacher does not 
become aware of the gap between his intentions and the routines taken for 
granted. Because of the iatency of the routines, it would be helpful to 
develop the teacher's awareness of such microprocesses as they occur in 
these social interactions. 

* A ful ier version of this study IS reported in: 
Voigt, J. 'Patterns and routines in classroom interaction'. 

en Didactigue des Mathematigues , Vol. 6, No. I, 1985. 

'. .. - .. .. .. .. 
Recherchel3 
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This Study Group derives much of its excitement and cohesiveness from 
bringing together individuals who have long been concerned with topics 
involving affective aspects of mathematics education, but who have 
been developing their ideas almost in isolation. For me it meant 
reconnecting with two excellent foci: the positive part of affec­
tivity, and the community in the classroom which sets the stage for 
these positive feelings through its cooperative organization. As we 
headed into our final hour, Peter Taylor summarized most beautifully 
our collected anecdotes in the following framework: 

* Our belief in the sharing of goals; e.g. by the teacher, 
openly and honestly, with full frontal explicitness, reducing 
hidden agendas, 

* Our belief in the sharing of our joy in doing math, 

* Our caring for the people in the class and in the mathematics 
being done, and 

* Our promotion of cooperative small group work. 

John Poland 

The Working Group focussed on two activities. We did much prob~em 
solving in pairs in an effort to identify and explore the emotions in­
volved in problem solving. This activity is described and the find­
ings are discussed in the appended paper. 

Our second major activity was to share teChniques for implementing the 
framework summarized above. The following paragraphs list some of the 
many creative techniques that have been devised and used by various 
members of the Working Group. 

-The use of a monthly newsletter talking about the course, test 
results, who the teachers are as people, the positive aspects of doing 
.mathematics, and where to get help. 

-Taking small group or individual pictures at the beginning of the 
course and posting them (perhaps take them at an early informal 
gather ing) • 

-Make a list of names and phone numbers of class members and get 
everyone a copy. 

-In some way convey expilicitly to the students that they are a spe­
cial group, perhaps breaking ground through some teaching or cur­
riculum innovation you are sharing with them. 

62 

-Build in fun with math learning. Use Math games. Decorate the room. 
Use flowers, music and movement. 

-Control the lighting. Some teachers turn off fluorescent 14ghting 
and use candles or lamps instead. 

-Interview the physics, chemistry, etc. professors and put on big 
cardboard their answer to the question, "What I want students to know 
when they come into my course". 

-"Algebra Arcade" (Wadsworth Electronic Publishers, 8 Davis Dr., Bel­
mont CA 94002) was suggested for a first algebra course for groups of 
3 or 4 students to work at a time or for one large demonstration 
screen. 

-Allow students to suggest how they will be evaluated in the course. 
They must come to consensus. The discussion can extend over several 
days. 

-Spend teacher energy on the positive. 
achieve and their accomplishments. 

Emphasize the students who do 

-Talk about what understanding proofs does for them as people, that 
they can handle and generate arguments. Have positive expectations. 

-Use ice-breaking techniques that help students learn the correct lan­
guage and notation of mathematics. For example, put 4-5 students on a 
team to try to communicate to another team (without showing any 
writing) a given collection of math symbols. 

-Seriously address the idea of math anxiety. The teacher can talk 
about his or her own feelings about mathematics. Alert students to 
use positive self-statements and other means to prevent emotions from 
overwhelming short term memory. Evaluating an emotion can take up so 
much student memory that little is left for mathematics decisions. 
Math thinking becomes confused with thinking about math. 

We came up with many areas to explore further. We would like to know 
which ways of organizing classrooms and tests encourage students into 
good study, classroom and exam habits. How should we sequence ques­
tions, sets of problems that will provoke students to "review" as in 
Polya? How should small groups best be utilized? What is best size? 
How can writing be used in math classrooms? 

We decided to ask colleagues to describe techniques they have used 
successfully. We plan to compile these anecdotes together with a bib­
liography of appropriate readings and disseminate the information in a 
fuure CMESG Newsletter • 
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AUTHORITY IN THE CLASSROOM 

1 should like to see the locus of authority in the classroom 
shift away from the teacher and the material (these should be 
regarded as resources - a less threatening category) and toward 
more inwardly generated forces such as beauty, excitement, 
challenge, communication. 

Let me explain the difference. When consulting a resource, 
Y2ll are the boss, when consulting an authority, the ~uthority is 
the boss. Alternatively, from a resource you take what you want, 
from an authority, you take .hat i! wants. Early in the learning 
game, teachers have to be authoritative. But part of their 
purpose must be to gradually change themselves into resources (by 
changing the student) and substitute instead the criteria which 
guide active scholars through the question of whether they are 
working in the right things: is it beautiful? does it exciteme, 
challenge me? does it lead to fruitful communication with my 
colleagues? 

If we relate this to problem-solving, one thing we see is 
that the problems the student works on should much more often be 
generated within himself and the various sources of inward 
suthority I listed above should increasingly be used to guide him 
on the questions of what time he should spend on the problem, and 
whether certain avenues should be pursued. 

~ 
~<1 
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COMPETITION AND COOPERATION 

When one studies a community, there are two types of forces 
one looks for: competitive or disruptive forces and cooperative 
or supportive forces. The mathematics classroom is a community 
in which often too much of the action is really of a competitive 
nature, either student against student, or student against a 
teacher's expectations, and the effect of this must often be to 
increase student anxiety. 

We felt that such anxiety was not beneficial to the student. 
While it might enhance certain aspects of the student's 
performance, we felt it was not likely to increase his 
problem-solving abilities, and would certainly dampen the 
feelings of joy he might have when searching for the solution. 

We made a number of suggestions for enhancing the 
cooperative atmosphere of the classroom, in short, the feeling 
that we're all on the same side. First it is important that the 
teacher be open and as explicit as possible: about the goals of 
the course, about his views on the subject matter, and about his 
own feelings about the class. It is important that the teacher 
care both about the subject and about the students, and be 
clearly enjoying the eeaching experience. Second, the nature of 
and rationale behind, the methods of testing and evaluation, 
should be thoroughly aired. Thirdly the students should know and 
work with one anotheri often this can be facilitated with small 
group work. Other devices such as classroom games, attention to 
physical character of the room (lighting, decoration), and a 
monthly newsletter, were mentioned. It was suggested that 
experimental programmes often generate a very positive feeling of 
shared community. Perhaps we should more often be experimentali 
even if we have little flexibility in the content of the 
curriculum, we can experiment with style. 

~ 

~<il. 
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July 20,1986. 

fhe "affect" workshop took place six weeks ago and even if some of the details 
have slipped away (thanks for the reminders Fran), I am still feeling the after­
affects of having been with a group of student-centered math teachers who are 
interested in exploring affective elements in themselves and their students. 
Although I have thought a lot (and talked a lot) about this theme, I feel that 
the workshop broke my isolation. 

The experience of doing individual problem solving in teacher-teacher pairs 
was new to me. I have done some introspective work, interviewed about a hundred 
students, and given the introspective problem solving exercise to many adults. 
It was interesting to see that as teachers and mathematicians we are not so 
very different from our students in affect during problem solving. Another 
memory of that experience is of several people indicating that their problem 
solving behavior was in some way indicative of their behavior in non-mathematic'al 
situations: "That's the story of my life." If this is so, it certainly would 
be worth exploring further. 

Although not everything has been said about affect in individual problem solving, 
I feel I would like to move on to an exploration of group problem solving. In 
the workshop we all seemed to be interested in promoting cooperative models and 
group work in our classrooms. Yet problem solving in groups is much more 
complicated than individual work. Group dynamics and the politics of the class­
room come into play. I, for one, feel a little insecure in initiating group 
work - which maybe why I rarely "find timEl" for it. I think that the affect 
workshop, because of its secure and supportive atmosphere, would be the least 
scarey place to start looking at group problem solving. 

For this I'd even go to Kingston! 

4 L 
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PATTERNS OF EMOTION WITHIN MATHEMATICS PROBLEM-SOLVING 

Frances A. Rosamond 

Department of Mathematics 

National University 

----------
Paper prepared for the Panel on "Mathematics as a Humanistic 
Discipline" presented at the Joint Meetings of the Mathematical 
Association of America and the American Mathematical Society, 
San Antonio, Texas, January 1987. 
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like the clever twists of logic that turn a two 
page proof into a one-half page proof. There are 
lots of clever little insights. There's something 
very satisfying about a nice tight argument that no 
one can doubt is correct ••• I've worked on a research 
problem for over six months with no results ••• now I'm 
starting to dream about it and that's too much •• the 
mathematics is taking too much control over me. 
(Angrily.) (Rosamond, 1982) 

Mathematics often is viewed as the ideal discip­
line-pure rational thought dealing with ideal objects 
to produce irrefutable arguments, not coloured by any 
emotion. Training in mathematics is seen as 
producing students capable of such clear thinking in 
all disciplines. So why don't all mathematics 
teachers present mathematics in the ultimate, 
Bourbaki style? To mathematize is supposedly part of 
the human condition, so how can there be such a thing 
as math anxiety, when feelings should clearly not be 
a part of learning in mathematics? 

Or does mathematic arouse emotion because it was 
conceived out of emotion in the first place? •• Wh~t 
is the link between the affective and the cognitive? 

(CMESG Announcement, 1985) 

PATTERNS OF EMOTION IN MATHEMATICS PROBLEM-SOLVING 

In an effort to understand and explicate the feelings of 
satisfaction and anger expresssed by the mathematics graduate 
student in the first quotation, a Workshop on the Role of 
Feelings in Learning Mathematics was held during the Canadian 
Mathematics Education Study Group annual meetings of 1985 and 
1986. We engaged in a problem-solving exercise that also was 
given to six mathematics education graduate students at a State 
college and on two occasions to six people who met in a private 
home. 

We are all (with the exception of two people) involved in 
mathematics as professional mathematicians, as teachers, as 
graduate students or as people who use mathematics in our work. 
We believe that thinking, feeling and acting work together, that 
true understanding implies feeling the significance of an idea, 
and that our experiences are not far from that of our students. 
We decided to examine our own feelings in depth in hopes of 
finding outstanding commonalities that could be used to improve 
classroom teaching. 

Studies on cognitive science (Davis, 1984. Papert, 1980), 
problem-solving (Silver, 1985), metacognition (Schoenfeld, 1983) 

~-- - ~ 
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and belief systems (Perry, 1970) offer some insight into the role 
of emotions in problem-solving but only indirectly. We are not 
sure we have even a vocabulary with which to describe feelings at 
a specific moment as a function of many variables. 

To begin with, we made a list of 'relevant positive ana 
negative emotion descriptors (see appendix). This list was 
adjusted by the results of the exercise. The exercise is a 
simple one. We went in pairs to different parts of the room 
where one person agreed to be the problem-solver and the other 
the observer. The rules were 1) The solver do his or her best to 
provide a running commentary on feelings. 2) The observer keep 
quiet, pay attention, take notes. 

After a fixed amount of time (15 minutes, in later sessions 
changed to 30 minutes) all gathered and each observer reported on 
What the solver had done, focussing on the feelings. The solver 
also reported. 

The roles were then switched, observer became solver. 
Solver became observer. Another problem was presented and the 
observation and reporting process repeated. 

We feel many positive emotions (challenge, hope, zest, 
satisfaction, etc.) when doing mathematics and wish to promote 
these in our students. Lazarus is a noted psychologist at 
University of California at Berkeley who has done extensive 
analysis of the theory of emotions. In his paper, "Emotions: a 
Cognitive - Phenomenological Analysis", he describes some of the 
contributions positive emotions make to coping. Before 
describing our exercise and the implications that we found for 
teaching, I will briefly outline some of Lazarus' position and 
make some connections to mathematics. 

LAZARUS ON POSITIVE EMOTIONS 

Lazarus points out that negative emotions have been studied 
almost exclusively. Some reasons for this are that emotions have 
been studied as evolutionary and that negative emotions such as 
fear or stress influence our capacity to survive. Another reason 
is that emotion is studied by therapists who may view emotion as 
pathological. In this case happiness may be seen as hysteria, 
concern as paranoia and hugs as evidence of nymphomania. A third 
reason is that it is more difficult to measure arousal for joy, 
delight, and feelings of peace than it is for rage, disgust or 
anxiety. 

Because we are trying to promote good problem-solving, we 
feel it is appropriate to focus on the positive feelings 
associated with our goal: on hope rather than hopelessness, 
challenge rather than threat, zest rather than dispair although 
negative emotions do need to be recognized. 

Positive emotions tend to be frowned upon or viewed as 
"childish." Not many people exhort optimism like Ray Bradbury 
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does: "We are matter and force turning into imagination and will! 
I am the center of a miracle! Out of the things I am crazy about 
I've made a life! .•• Be proud of what you're in love with. Be 
proud of what you're passionate about! (Bradbury, 1986) It is 
even hard to hear people shout gladly onto the Lord; but we were 
just trying to hear people shout gladly about mathematics. People 
who exhibit positive emotions often are accused of playing, of 
not being serious. 

Yet playing with ideas is inherent in mathematics problem­
solving. what emotions should we expect to feel when engaging in 
problem-solving? Lazarus answers this by saying that the essence 
of play is that it is highly stimUlating. It is accompanied by 
pleasurable emotions such as joy, a sense of thrill, curiosity, 
surprise, wonder, emotions exploratory in nature. We recognize 
that we do experience these positive toned emotions when doing 
mathematics. 

As educators we wish to know the optimum conditions ~hat 
encourage problem-solving. Lazarus says, " ••• exploratory 
activity ocurs more readily in a biologically sated, comfortble 
and secure animal than in one greatly aroused by a homeostatic 
crisis. The human infant will not venture far from a parent 
u.nless it is feeling secure, at which poin~ it will play and 
explore, venturing farther and farther away but returning 
speedily if threatened or called by the mother." As shall be 
discussed in more detail in the next section, mathematics 
problem-solving requires playing in an almost "other-world" of 
intense concentration. Insecuiities in terms of math ability or 
other issues (world peace) inhibits problem-solving by 
interferring with the level of concentration. 

USES OF POSITIVE EMOTIONS 

Lazarus sees at least three ways in which a person uses 
positive emotions: as "breathers" from stress, to sustain 
coping, and to act as restorers to facilitate recovery from harm 
or loss. Lazarus' discussion may be interpreted with mathematics 
in mind. 

BREATHERS OR TIMES OF INCUBATION 

"Breathers" are times when positive emotion occurs as during 
vacations, coffee breaks or school recess. They can also be 
thought of as times of incubation. 

Lazarus quotes the noted mathematician Poincare to suggest 
that it may be the good feelings themselves that allow a solution 
to emerge from the subconscious to the conscious. 

Poincare made the surprising comment that 
creative mathematical ideas "are those which, 

.. .. ' .. - .. .. .. 
unconscious 

directly or 
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indirectly, affect most profoundly our emotional sensibility." 
By this he meant that, since creative thoughts are aesthetically 
pleasing, the strong, positive emotional reaction to such ideas 
provides an opening through which they are ushered into 
consciousness. 

Lazarus reminds us of another relevant description of a 
"breather" made by the great German physicist Helmholtz: 

He (Helmholtz) said that after previous investigations 
of the problem "in all directions ••• happy ideas come 
unexpectedly without effort, like an inspiration. So far as 
I am concerned, they have never come to me when my mind was 
fatigued, or when I was at my working table ••• They came 
particularly readily during the slow ascent of wooded hills 
on a sunny day." 

The acceptance of the role of a breather is reflected in the 
usual advice given by teachers to their students: "Concentrate 
long enough to get the problem firmly in your mind and to try 
several approaches. But then take a walk or do some pleasant 
activity and let your mind work on the problem for you." 

SUSTAINERS OR MOTIVATORS 

Positive emotions act to sustain problem-solving in the 
sense that good feelings build on good feelings. Mathematics and 
the word "challenge" often are linked together as in "The problem 
is a challenge." A challenge can be viewed as a threat and in 
our exercise, problem-solvers were momentarily worried about 
failure in front of an observer. However, in challenge, a 
person}s thoughts can center on the potential for mastery or 
gain. This challenge is accompanied by excitement, hope, 
eagerness, and the "joy of battle." All these positive emotions 
were mentioned by problem-solvers. One solver summarized the 
feeling as "the joy of mental engagement and the bringing of all 
mental force to bear in a cohesive way." Solvers who perceived 
their problem as too easy felt disappointment even before they 
began to work on the problem. Those who felt the problem worth 
working felt an immediate joy even before proceeding. This joy 
was a signal to bring all mental force to bear on the problem, 
which in itself produced pleasure and therefore motivation to 
continue. 

Lazarus describes "flow" ,an extremely pleasant, sustaining 
emotion, as in the case of the basketball player who is "hot" or 
the inspired performance of a musician.Lazarus claims flow arises 
when one is totally immersed in an activity and is utilizing 
one's resources at peak efficiency. Mathematical problem-solving 
requires total immersion and we found that a comfort with 
notation was important in maintaining this flow. Comfort with 
notation will be discussed later in this paper. 

.. 
The pos i ti ve emotion of hope also provides motivativil 
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keep going. Occasionally during a problem-solving episode the 
solver lost control of the problem. Solvers said, "I've lost 
control of the problem." or "This is too complicated, too many 
angles to label." or "I feel this is getting a little out of 
hand. This one and that one cancel out and I haven't used fact 
that it's a prime." Hope, the belief that there is even a slim 
chance things will work out, helps one continue. Ambibuity 
nurishes hope. One cannot be hopeful when the outcome is 
certain. We would like to know how ambiguity can serve classroom 
mathematics. The emotions of challenge and hope are powerful 
motivations in problem-solving and deserve further research. 

A more obvious way in which emotions sustain actions is in 
terms of longer range goals. The student who has a positive 
feeling solving one math problem is more likely to try another. 
The confidence that comes from understanding mathematics empowers 
the student to attempt new ventures also, as in the case of a 
geometry student who attributes his decision to help in crime 
prevention directly to his success in his geometry class. 

RESTORERS 

Lazarus off~rs a third function of positively toned 
emotions, that of restorer. Lazarus' descriptions of recovery 
from depression or restorations of self-esteem might be useful ~o 
the teacher dealing with math-anxious students. Lazarus quotes 
Klinger: 

At some time during clinical depression patients become 
unusually responsive to small successes. For instance, 
depressed patients working on small laboratory tasks try 
harder after successfully completing a task than after 
failing one, which is a pattern opposite to that of 
nondepressed individuals, who try harder after failure. 

It would be worthwhile for the classroom teacher to know when 
small successes are more likely to evoke positive emotions. 
Offering a small task to a math anxious student may foster 
optimism and incentive while the same problem may seem trivial to 
a non-anxious student and provoke anger or disappointment. This 
is an area for more research. 

Much of the information on emotion in problem-solving is 
obtained by having students fill out questionnaires. While the 
information is useful, a rating on a scale from one to five of 
confidence in doing math, liking for math, or usefulness of math 
is very general. Questionnaries also are remote from the actual 
process of problem-solving. Recollections of feelings might not 
be quite the same as the feelings at the time. Also, 
mathematical problem-solving requires intense attention to the 
problem. It is likely that without some help a solver will not 

even be aware of his or her emotions. The above reasons together 
with the belief that our own feelings when doing mathematics are 
the same as those of our students prompted us to do an exercise 
utilizing a close observer and introspection. 
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OBSERVATIONS FROM THE EXERCISE 

Altogether the exercise of observing, reporting, solving, 
reporting was done by 19 pairs. Problems initially were of 'the 
puzzle variety (Gardiner,1967, 1979. Mott-Smith, 1954) but in 
later sessions more substantial problems were chosen from 
Honsberger. One person kept track of time for the whole group. A 
group of six people (three pairs) seems the best size. We 
posture ••• laughter ••• intent stillness" but that description is 
not used in this paper. 
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EMBARKING ON THE PROBLEM-SOLVING 

Solvers accepted their problems with curiosity and positive 
people who did 

anticipation. These were 
formal mathematics frequently. Two 
formal math recently reported terror. 

people who had not done 

The initial reading of the problem provoked a reaction to 
its type followed by a sense of its difficulty. "I anticipate I 
will enjoy this problem but may not make much progress." or ·1 
loathe this type of problem. It is do-able but will require a 
big effort. I think I will have to go through many tedius 
decompositions.· 

The word "do-able" was used often and meant either that the 
problem was solvable or that progress could be made in 
understanding the question. For one of the people who reported 
terror, a person who rarely uses formal mathematics rarely and 
who was talked into coming to the workshop, considerable time was 
spent blocking the reading of the problem. Emotion can be 
regulated by avoidance or denial. This person acknowledged 
feeling bad but then felt bad about feeling bad so that "Even if 
I could do it I couldn't." Considerable time was spent recallipg 
past history of problem solving failures all the while avoiding 
(somewhat consciously) making the decision to try to do the 
problem. Another solver also reported ·1 felt unhappy and then 
felt unhappy about feeling unhappy." Emotions tend to feed on 
and reinforce each other. The math oriented solvers were 
predisposed to extend effort on the problem. They had much more 
commitment to do math. 

After reading the problem, all began to develop a notation, 
to draw a diagram or to write some hypothesis. This was the 
beginning of a cycle of attention on problem - attention on self 
or distraction by environment - attack on problem - attention to 
self or environment - problem - self - problem - self, etc. 

When preparing to choose a method of attack, there was 
considerable emotion tied in with "not cheating." Each person 
placed the problem in a certain context and at a certain level of 
difficulty and felt it would be cheating, bad sport, to use a 
technique that was too powerful. One solver says, ·Can I use 
fancy stuff? •• Then I'll use Jordan Curve Theorem •••• lau9hs ". 
Backtracks. "Maybe an easier way." Another solver resisted but 
finally made a grudging commitment to using calculus for a problem 
entitled, "An Obvious Maximization." 

Using brute force was considered almost as bad as using a 
too powerful method. ·I'm annoyed because I can't see any other 
way than brute force and that would not yield for me any 
understanding of the problem ••• there must be an easier way." 
Solvers wanted to find solutions that were generalizable. using 
a too powerful method, brute force, or an "obvious method" 
brought forth comments of feeling embarrassed or annoyed. 

- .. .. - -- ' .. .. .. ' .. 
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A less conscious resistance to cheating was the seen in the 
imposition of ridiculous restrictions on oneself. For example, 
one solver had Honsberger's book in hand and was to "Use the 
'Method of Reflection' to ••• •• (Honsberger, p.70). The solver's 
reaction was, ·1 understand the problem but don't know this 
method ••• I wish I could read the chapter ••• •• Instead of simply 
reading the chapter, the solver tries to invent a plausible 
'Method of Reflection'. 

Another solver spent long moments seemingly aimless. "I'm 
feeling a little out of control of the problem ••• lots of 
parameters ••• seems to be a lot of ways to define this 
problem ••• I'd like to clarify the problem by asking whoever wrote 
it." Finally with a forced air, "I could break it up into cases 
myself and come to grips on my own terms and get partial 
solutions ••• got control back." 

Self imposed restrictions would slow a solver down until 
there were reports of, "I'm squandering time. I really haven't 
done anything." Then there would be a squaring of the shoulders 
and a businesslike assertion to " ••• take a stand and try to prove 
it ••• " even though this might mean grinding out a meaningless, 
albeit correct, solution. 

INVOLVEMENT WITH THE PROBLEM 

Once commitment was made to attempt the problem, there was 
a lorelai seductiveness about it, a delicious slipping off into 
another world. Solver became oblivious to self, observer, or 
environment. This total immersion was a wonderful release from 
daily life. Poland (CMESG, 1985) used mathematics to help him 
ignore the pain of an illness. Some people use the other-world 
quality of doing mathematics to avoid interaction with peers. 
Mathema"tics can help with depression as the famous mathematician 
Kovalevskaya said in a letter: "I am too depressed ••• in such 
moments, mathematics comes in handy, and one enjoys the existence 
of a world completely outside of oneself." (Knopp, 1985). 

Mingled with the charm of seduction there was a dangerous 
quality, a frightening isolation if one stayed immersed too long. 
Rosamond (1982) gives examples in which the solver feels consumed 
by a too dominating mathematics. As one mathematics graduate 
student said with tears in his eyes, "What do you do if you are 
80 - 9o, mathematics? If you've let yourself become consumed by 
mathematics so that that is what you are. And then you want to 
let someone get to know you. What do you do when you can't 
explain that much of yourself to them?" The presence of the 
observer comforted the solver and lessened the dangerous quality 
in the isolation. 

There was a letdown feeling of disapointment if the solution 
came so easily that little emotion needed to be invested in in 
the problem. Typical is the remark, "The problem ~ust have been 
too easy, I got it. So what's the big deal? I feel let down." 

iii ... - .. ' .. .. ' - _\~ .. 
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or "It was fun but not intense because not a challenge. feel 
let down because I didn't spend a lot of emotion." The 
complexity of the problem came like a revelation to one solver 
who then responded with a BIG smile. Overall, the amount of 
satisfaction with the problem correlated directly with the 
intensity of concentration. The perceived level of difficulty of 
the problem also influenced satisfaction and this will be 
discussed later. 

However, one cannot maintain a constant level of intensity 
throughout the solving of a problem. The use of notation in a 
rltuoll.tlc monnor ~r~vldod 0 "br.othor" or momont. of rolaxation 
while allowing the solver to remain in the "other-world". When 
no progress was being made on a problem, the solver remained in 
the intense state by writing out some formal routine. Some 
solvers would rewrite the definition of the variable. One solver 
began, "There are two cases: a) the problem is solveable and b) 
the problem is not solveable." Almost everyone used x's and y's 
at one time and then decided to switch to a's and b's (or vice 
versa). Some would say, "I'm going to try induction." and then 
write out the induction hypotheses. The rote writing out of 
hypotheses or the rote switching of variables afforded a lull 
within the other-world state and continued the flow. The 
importance of these rituals was to help focus on the problem. To 
sit too long without progress or a ritual meant the solver would 
think about self again. 

Other pauses also bump one out of concentration. When the 
solver paused overlong in appreciation of some success, then 
attention tended to turn to self or environment. The jolt of 
finding a counterexample to a hoped-f~r truth caused one to 
notice the ticking of the clock or the coldness of the room. 
Extended frustration of method caused recall of poor geometric 
visualization in the past and then embarrassment. Attention was 
diverted from the problem to the self. This usually was for a 
brief amount of time, less than a minute. Solvers would look 
around, sigh, stroke the pen, scratch, talk a little and then go 
back into the problem. 

Most solvers were engrossed in the problem when ti'me was 
called and these people were irritated at being interrupted. 
They almost all mumbled "I'll continue later." Solvers who were 
in an attention-outward part of the problem-solving cycle just 
prior to time being called generally sat back and waited out the 
time. They did not work on the problem further while waiting but 
mentioned that they would return to it later. There was 
reluctance to allow oneself to get lost in a train of thought and 
then yanked out of it. 

-.-.- '- - .- ~ ~ - -. ----
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IMPLICATIONS FOR THE CLASSROOM: 
VARIABLES THAT INFLUENCE ENGAGEMENT 

The primary goal of our exercise is to improve classroom 
teaching. It would be useful for a teacher to know what a 
particular emotion looks like. For example, a teacher who knows 
that yawning is a release of nervous tension and not an 
indication of boredom have an immediate and obvious clue that a 
student needs help. (And the teacher knows not to get personally 
insulted by the yawn.) In the opposite direction, the teacher 
who wants to indicate positive emotions to the students would 
know how to do it because he or she would know what they look 
like. 

To this end we took notice of some physiological indications 
of emotive arousal (flushed face, sweaty palms, muscle tension, 
etc.) and. of body movement (twitching, sighing, laughing, etc.) 
but more work should be done here and these indications are not 
elaborated on in this paper. 

We found that overall satisfaction in problem solving ia 
directly related to the intensity of engagement with the problem. 
The engagement is influenced by several variables: the nature of 
the problem, the perceived usefulness of mathematics, the role 
of the observer, the use of mathematics rituals, and the testing 
situation. Each of these variables will be discussed along with 

·their implications for the classroom. 

NATURE OF THE PROBLEM 

All solvers were more encouraged by harder problems than by 
ones marked "obvious" or ones perceived as easy. There had to be 
a sense of value of the problem, not that it must be directly 
applicable to daily life, but rather that one needed to think in 
order to understand the problem. If one could get the answer 
just by asking someone else or by looking it up then that made 
the problem artificial and was almost an affront to the solver. 

Surprisingly, solvers felt threatened whenever they saw the 
words, "Clearly", "It is easy.", or "Obviously". Most felt that 
teachers should not say, "This is easy." and that textbooks 
should not indicate the easy exercises. Solvers sometimes 
worried that the problem looked so simple. They felt they were 
missing the point and that their solution was not elegant enough. 
One solver found three solutions by varying the constraints and 
then felt less humiliated. 

-
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One solver exhibited obvious arousal with eyes wide open, 

clear face and a slight laugh. "Hey, there's an infinite 
process ••• " Exploration didn't bear out infinite process and then 
there was "That was neat. What was the problem?" together with a 
clear drop of interest and rather emotionless settling again into 
the problem. The challange of the infinite process 
stimulated playing around in the "math-world." 

The math-world is a mental out-of-body arena of intense 
concentration in which a person can play with ideas. Trivial 
problems do not make good play-mates. One solver's most 
satisfactory experience of problem-solving came after having 
spent a week on a problem only to have the professor tell the 
class that the problem was not solveable. 

Solvers felt initial relief at seeing an easy problem but 
were quickly bored, disappointed or insulted. The classroom 
teacher must pay careful attention to the quality of problems 
offered and should not label them easy or difficult. 

USEFULNESS OF MATHEMATICS 

Doing mathematics is seductive but one must allow oneself to 
be seducedo Three different participants at three different 
sessions (all women) felt that going off and doing mathematics 
was a luxury. A teacher of older women said she had to convince 
her students that they were not squandering time while problem 
solving. Women are always productive. They even knit while 
watching TV. She got around her students' hesitancy by saying, 
"I'm going to show you some games to teach your kids and improve 
their math." 

The notion of usefulness was mentioned by only three women 
but it is a construct that has been singled out as the most 
important attitudinal factor in decisions to take math classes 
(Sherman and Fennema, 1977.) 

Usefulness was elaborated on at length by one solver waho 
was able to solve the assigned problem in a short time and with 
no intense engagement. The solver was disappointed and felt 
letdown. It was not clear if the following remarks would have 
been made had the solver been given a more engaging problem. I 
asked at the time but the solver was very agitated and insisted 
that another problem would have made no difference. 

"What would have beeen a meaningful problem? 
How come I'm not satisfied? I had an expectation 
about solving that problem that did not get fulfilled. 
It didn't make me happy. There were some moments of 
tension and some of excitement but not intense. It was 
entertaining like a grade C movie. 
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"Math has no social relevance to me ••. I am willing 

to solve math problems, even ready but it feels 
completely disjoint from what interests me. I still 
love it (This solver has a Masters degree in ~ath and 
is an active MD.) but its importance seems miniscule 
compared to world problems .•• beautiful but frivolous to 
use my mind in this way." (It would be useful for 
other people to do math but there were more pressing 
issues for this particular solver.) 

Usefulness of mathematics in terms of careers or its 
sometimes theraputic value as a means of escape is an affective 
variable that may be easy for teachers to influence. Teachers 
can present information about the mathematics required by various 
careers as well as the mathematics courses that should be taken 
to keep options open in the future. 

THE USE OF RITUALS 

The use of formal routines that keep one's attention on task 
while providing a sort of restful interlude speaks directly to 
the classroom teacher. Students must have a comfort with 
notation not only becausd the notation itself sometimes points 
to the solution but because that comfort sustains concentration. 

ROLE OF OBSERVER 

Contrary to almost everyone's expectation, having someone 
observe while working the mathematics was positive. At first, 
some solvers felt less inclined to free associate with ideas in 
front of an observer who might have the problem already all 
figured out or the solver sometimes felt that the observer must 
be bored. Some solvers wanted to talk things over with their 
observer or would look up at the observer hoping for 
confirmation. 

It turned out that the presence of the observer was an 
impetus to persistence in doing the problem. This is a very 
important point. Liking the problem was directly and positively 
related to the amount of time spent working on it. Almost 
everyone liked their problem more the longer they worked. Those 
that did not like their problem initially began to like it after 
all and to get interested in it. Without an observer, those 
solvers might have quit. 

Being observed evoked other feelings. As noted earlier, the 
presence of an observer reduced the feeling of danger in 
isolation that lengthy immersion in the problem sometimes 
brought. There was a feeling of honor. "I felt honored that 
another peson was taking the time to observe me." Another 
feeling was intimacy. "It felt intimate to have someone commited 
to watch the workings of my mind." 

While more emotion seemed to come from being watched, ft was 
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also important to be the watcher. Watching seemed to take away 
some of the secret charge of the observer's own problem-solving 
anxieties. The observer could recognize his or her own feelings 
in the other person and see how the feelings influenced their 
actions. Watching another person struggle with anxieties made 
the solver think, "Why don't they just get on with it." 

of the 
did not 

response I 
intellectual 
This cut it 

One participant reported, "The most poignant part 
exercise was hearing the observer say what I'd done. 
feel intimidated. I didn't get any of the bad 
expected. The observer demystified my emotional and 
engagement by simply listing what I did: 1, 2, 3, 4. 
down to size, gave it true proportion." 

This exercise of being observer then reporter, then switching 
to being solver then recipient of report should be explored as a 
means of eliminating math anxieties in our students. The real key 
is the SWitching. This exposes and throws out the power of 
negative feelings while encouraging positive ones. 

It should be noted that no one argued 
A few points of clarification were made 
misinterpretations. It is possible that 
other categories of feelings can be made, 
correspondence within our vocabulary. 

THE TESTING SITUATION 

with their observer. 
but there were no 

finer gradations or 
but there was good 

Concern about the nature of the problem carries over into 
the testing situation. One solver commented on the problems 
found on math tests. "A test is an almost random set of narrow 
problems where one thing must trigger another. It is not about 
figuring things out. Test questions do not show that math is a 
process." This solver had as a partner a professional research 
mathematician. The solver was not intimidated by being observed 
even though the problem was not solved because "The observer 
could hear that I have math training. He could see how my math 
mind works, how I assimilate information, manipulate, and use an 
asrsenal of strategies. This is so much different from taking a 
math test where I am not tested on how my mind works. On a math 
test, I could expect not to be able to show what I know. I would 
feel shame." 

Part of almost any testing situation is a time constraint. 
Having only 15 or 38 minutes annoyed and inhibited these solvers. 
Some reported feeling "hemmed in.~.I do best by playing 
around ••• ordinarily would draw pictures and really 
understand ••• build up a pattern." Another felt pressure to 
categorize a solution method quickly. "Without a time constraint 
I probably would have been more impulsive .•• would have guessed 
and then worked backward. I felt forced to be more systematic, 
meticulous, more step-by-step and mechanical. I think I could 
have solved this in a shorter amount of time if there had been no 
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time limit." 

When the timing in itself counts, it is as though what tpe 
problem means in itself is not enough. Perhaps the discomfort pf 
a time constraint forces one's attention to be divided between 
the math-world and present time. Not only are different methods 
of solution chosen at the onset of the process, but also the 
total immersion into the problem-world is not as possible or .a 
deep. 

CONCLUSION 

It is important to state that a basic assumption of this 
experiment is that we professional teachers and mathematicians 
have at least the same feelings that students have. We may 
experience a difference in intensity (less anxiety, more 
confidence) or have other feelings in addition (sense of 
commitment) but overall how we respond gives an indication of how 
our students respond. A mathematics educator refused to 
participate in our exercise saying that it might be worthwhile 
for "personal growth" but that it would give no insight into how 
students feel. He believes that teacher feelings are completely 
different from student feelings. 

But imagine your feelings if the Chair of your Math 
Department suddenly announced that you must take a test. If you 
have not taught a particular course in the past two years you 
must pass a test before you can teach it. What course are you 
scheduled to teach that you have not taught recently? What is 
your reaction to your Chair's announcement? You are not being 
tested on how well you review the materal during the semester or 
on how carefully you prepare your lessons. You are not being 
asked to share ideas with a colleague. You are being evaluated 
on questions someone else has chosen and already knows the 
ans.wers to. I think your reaction to this thought-experiment may 
show that seasoned teachers can feel anxiety in a test situation 
similar to what their students feel in their test situations. 

The act of knowing is not antiseptic; rather it is wrapped 
in feelings. It is the engagement of feelings. The primary goal 
of our work is to improve classroom teaching. This paper 
indicated only a few of the emotions inseparately connected 
within mathematical activity and specifically calls the 
classroom teacher's attention to the nature of the problems, the 
perceived usefulness of mathematics, the role of observer, the 
use of mathematics rituals and the testing situation. 
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REPORT OF WORKING GROUP B Lar~ Jan~~on & Gila Hanna 

THE PR(lBLE~l OF R I G')R IN MATHE~lA TI C:: EDIJCA T UIN 

Funk and Wagnall's Standard Dlctionar~ (1980) gives the 
following definitions for the term "rigor:" 

1) The condition of being stiff or rigid; 

2) stiffness of opinion or temper. harshness; 

3) exactness without allowance or indulgence. 
inflexibilit~. ~trictness. 

These dictionar~ definitions of "rigor" notwithstanding, 
the group did not seem to have a clear idea of what the term 
means. although it was evident that we wished to avoid its 
association with mortis. In order to focus our discussions we 
attempted to follow an outline which directed us to 1) the 
nature and function of rigor in mathematics. and 2) the place 
of rigor and proof in teaching. 

As an exercise to be completed before the second session, 
each member of the group was asked to rank order four different 
proofs* of Pythagoras' theorem with respect to three criteria: 

i) Which is the most rigorous? 
ii) Which is the most convincing (to you)? 

iii) Which one would you use to convince a nonmathematical 
friend of the truth of the theorem? 

It turned out to be very difficult, if not impossible to 
reach any consensus on a rank ordering of these proofs in terms 
of how rigorous they were. This led to a discussion of what 
one means by the term (in the context of our deliberation~ the 
term "rigor" referred to rigorous proof). Rigorous proof is 
the procedure used in an a::iomatic s~stem to demonstrate the 
truth of a theorem in that system. The s~stem should comprise: 

1) a number of axioms 
2) rules of inference 
3) theorems (derived truths). 

It was immediately recognized that this ideal can rarely 
be reached in practice with respect to major branches of 
mathematics in their entirety. Rigorous axiomatic 
presentations of small systems, e.g., games, were, however, 
recognized in subsequent discussion as being more easily 
attainable. We thought it important to spea~ not of bsolute 
rigor as the property of activities within a well def ned 
system, but of degrees of rigor withIn a ~~stem that 5 not 
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completely defined. There were suggestions for definitions of 
"more or less rigorous:" 

1. An argument is more or less rigorous to the degree to 
which it is free of unstated assumptions. The more it uses 
unstated assumptions the less rigorous it is. 

2. A purported proof is rigorous if it is free of holes 
and it cannot be attacked, I.e., if nothing can be added to the 
chain of reasoning to improve it and if all of the analytical 
steps have been made e::plicit and are correct. It is "less" 
rigorous to the extent that these conditions are not met. 

J. When the context of the proof is not analytical, e.g., 
proofs without words, the concept of more or less rigorous is 
not relevant. (Some group members viewed such a "proof" as only 
a schematic outline which could be expanded into a proof in 
various ways and of variou~ degrees of rigor). 

In the course of the deliberations we found out that 

_ Some of us are "unconcerned with rigor" in the teaching 
of mathematics--and unapologetically so. 

- The authority of known mathematicians and of respectable 
textbooks or publications playa large part in our acceptance 
(although not in an absolute sense) of proofs, even in the 
absence of all of the analytical steps. 

_ A detailed and more rigorous proof may enhance the 
understanding of a theorem, but it also may hinder 'or 
contribute nothing to understanding. 

_ The degree of rigor desired seems to be a matter of 
taste and judgment depending on context and content. Demands 
for rigor rise and fall in history and depend in part on the 
function of the proof: ritual, validation, convincement. 

_ Th~ fact that mathematics is a social activity occurring 
in a social context and the need to communicate mathematics are 
very important to the notion of a desired degree of rigor. 

_ rigorous argument may exist in other disciplines--it is 
not peculiar to mathematics. 

The group moved in the second session to a discussion of 
reasonable expectations of high school graduates regarding 
their knowledge of proof and rigor. Some expectations were: 
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- the realization that conclusions must be justifiEd land 
that this is part and parcel of mathematical activity); 

- a knowledge of the role and function of axioms, 
definitions, theorems, proofs, and conjectures, ~nd the ability 
to use these properly in a chain of r~asoning; 

- the ability to develop and sketch an argument/proof and 
the ability to defend or attack an argument/proof; 

- some sense of the social conventIons surrounding proof 
and rigor, e.g., the ability to distinguish between what 
constitutes a plausible argument and what constitutes a proof; 

- we should be more concerned with rigorous thought and 
argumentation than with stylized written proof. 

With regard to developing the above abilities and 
attitudes in stUdents, some felt that 

- mathematics which is exclusively content Cas opposed to 
process) oriented is of limited value; 

- that in order to develop the notions of proof and rigor 
a teacher may well have to rely on traditional content as a 
vehicle; 

- a useful pedagogical technique is to 

convince yourself 
- convince a friend 

convince an enemy. 

The final session focussed on what we could say to 
teachers' groups or curriculum committees regarding rigor. 
There was general agreement that teachers should: 

1) emphasize the need for justification in drawing 
conclusions; 

2) teach proof procedures in context rather than in 
abstr~ct form; 

J) provide students with opportunities to work on problems 
and situations which lead to observation of patterns. 
conjecture, justification, and looking back. 
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4) tr!ol to adjust the level of rigor (or of soptdstication 
of the proof?) to the mathematical abilit!ol of the 
students. 

Discussion on the content vehicle revealed that most 
mathematical topics were suitable for obtaining these four 
objectives. (There were a number of a number of pleas for 
geometry at the junior or senior high school level.) 

----------------------------------------------------------------

A number of short readings were distributed and/or recommended 
during the sessions of the working group. Those that are 
available in other sources appear in the attached reading list. 
Post-conference comments on rigour are provided by David 
Wheeler. Ralph Staal. and J~rg Voigt. 

*The proofs were 

1) the standard proof given in Euclid 
2) the Chinese ·proof without words· 
J) a proof using the inner product of vectors 
4) the proof using the altitude to the h!olpotenuse and 

similar triangles. 
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POST-CONFERENCE COMMENTS ON RIGOR 

b~ David Wheeler 

Much of the discussion I found interesting, stimulating and 
helpful, ~et I am left with a feeling that perhaps it was a pit~ 

that the focus of the group was on rigour rather than on, say, 
proof, mathematical reasoning, or some other more general 
conception. Rigour in mathematics seems such a specialised 
notion, far from what appears to me to be m~ central concerns 
about mathematics or mathematics teaching. 

Probabl~ the difficulty for me is that ri90ur in mathematics 
is essentially a technical matter. There is the formal apparatus 
of axiom. postulates. definitions and theorems. all embedded in a 
particular mode of deductive logiC. Now I would grant that this 
apparatus has had two general consequences within mathematics: it 
has (1) encouraged some mathematicians to work on a clarification 
of the foundations (Peano is a good case in point) and (2) 
generated considerable activity in this century ~round the 
powerful concept of mathematical structures (Bourbaki and so on). 
Even so. the majority of professional mathematicians proceed on 
their ways ignoring the matter of rigour. and I am forced to 
wonder what possible application this technical stuff can have in 
the education of stUdents. of novices. of people whose principal 
concern should be with knowing how to mathematize. 

The pity of it is that the very special methods of ensuring 
(or approaching) mathematical rigour actually tend to reduce the 
attention educators give to rigour in its more general sense. that 
of "close reasoning". We can speak of rational arguments in an~ 
field as being more or less rigorous, and we sometimes refer to 
particular persons as "rigorous thinkers" (Qr not. as the case may 
be). This general appreciation of the value of rigour is very 
important. it seems to me. It gives a high valuation to such 
things as weighing evidence, being clear about one's,assumptions, 
being careful about the validity of the steps in an argument, 
explicating the consequences of an argument even where these are 
not the ones hoped for, and so on. Some competence in this 
difficult art would serve any adult. I emphasize the word "art" to 
indicate that close reasoning is (in the present state of our 
knowledge. at least) something only a pe~son can produce. The 
slight amount of evidence that computers can presently generate 
rigorous proofs in fact disma~s me because it tells me that 
important ingredients of the process are being ignored. 

It has often been claimed that exposure to mathematics helps 
students acquire general thinking skills. I believe that it could, 
but it hardly ever does. M~thematics is still largely taught, in 
spite of centuries of advice to the contrar~, as a body of skills 
that can be imitate~ without understanding. Taught this way it 
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actually damages stUdents' thinking powers (as can be seen in the 
substantial number of students who have become convinced that the~ 
are mathematically stupid). There is no doubt that mathematics 
could be used as a medium for encouraging careful thought. But how 
often in traditional classrooms does one hear teachers make 
interventions that promote attention and foster careful argument? 

- Look at what ~ou have done' 

- Listen to what ~ou are saying' 

- Is she right? How do ~ou know] 

- Are not "this" and "that" contradictory? 

- Would what you have said still be true if you 
substituted "this" for "that"? 

- What have you forgotten? 

- Can you convince John yoU are right? 

Do you need to use so much energy? Find a simpler wa~. 

- Do not tell him! He can decide that for himself. 

Mathematics is a ver~ suitable medium to use in encouraging 
stUdents to exerci~e reason since it relies very little on mature 
interpersonal experiences or sophisticated intellectual concepts, 
which students don't have, but a lot on immediate perceptions and 
fundamental mental operations, which the~ do. (How else could 
there be prodigies?) Once the habit of reasoning in mathematics 
lessons has been taught, arguments can be scrutinised and revised 
and made more rigorous. Eventually the students will come to see 
what a proof is. But this is a developmental process that takes a 
number of years. To offer the model of mathematical rigour 
enshrined in the axiomatic approach to school students is totall~ 
inappropriate. 

-- (- .. - .. IiiiI .. ',.. -
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by Jorg Voigt 

I enjoyed the working group and found the sessions 
quite interesting, especially because I was forced to think about 
the connections between rigor in mathematics and rigor in 
mathematics instruction. I agree with the report and will try to 
sun, LIP my ideas of rigor. 

think that rigor in the presentation of mathemati~s should 
have little relevance to mathematics education, but rigor should 
be important for the discourse processes in the mathematics 
classroom. There rigor could be an implicit element of the 
discussions. Somewhere Hans Freudenthal wrote: "When does 
reasoning begin with the pupil? Before it is termed as proof or 
the like." 

With regard to Vygotsky, Wittgenstein and others the 
development of mathematical thinking depends on the experiences 
gained by the pupils in the social interactions between the 
teacher and the pupils. One task of the teacher is to organize 
mathematics instruction in such a way that the processes of 
arguing interactively constituted are preliminaries of individual 
rigorous thinking. Surely, the teacher should have some knowledge 
of logic, but the problem is to see the lines of argumentation in 
the classroom processes and to organize them. The problem is the 
connection of the knowledge of logic with the practice of teaching 
in a specific context. 

I have similar findings in mathematics classrooms to that of 
Thomas Russell in science classrooms (J. of Research in Science 
Teaching, 1983, v. 20. n.1): ')ften the dynamic of the social 
interaction replaces the rationality of argumentation. In 
classrooms the teacher's authority was established for the social 
organisation of teaching and learning, but it is at the same time 
a menace to the learning process. 

If I had to work with mathematics teachers in this context, 
would 

- make them solve mathematical problems in little groups 
- videotape the group work, and 
- let the teachers reconstruct the lines of their 

argumentation. 

In this case, the teachers could notice that it is important and 
very difficult to do mathematics rigorously with other persons. 

I concede that mathematics instruction could and should be 
not an image of the ideal practice of reasoning in the discipline. 

But the teacher's authority should not be a substitute for the 
rigor of mathematical rationality. 

- =- - -==-
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by Ralph Staal 

found much of the discussion confUSing, because although 
the chairman began by pointing out that "rigor" is a relative 
term, some partiCipants continued to use it apparently in an 
abuolute sense. as in "I don't believe in rigor at this level." 
This absoluteness could be an acceptable convention. except for 
the fact that it wasn't said what this absolute sense was. An 
analogy would be when someone sa~s "r don't have an~ temperature 
in lI,y office." 

Another example of ambiguous terminology was the failure to 
distinguish between: 

1. The degree of rigor of a proof that P implies Q 

2. The degree of rigor of a proof of Q -- this proof using P, 
where P i tsel f has been establ ished on ei tt7er more or less 
rigorous grounds. 

The difference is that in (1) the degree of certainty of our 
knOwing that P is true is irrelevant, whereas in (2) it isn't. 
This makes a great difference in talking about rigor in 
mathematics. Unfortunately, it takes a good deal of persistent 
effort to maintain the distinction. 

With this much variation in meaning, it was not surpriSing 
that there was no consensus as to the ranking of four proofs of 
Pythagoras' theorem with respect to the three levels of rigor. 

In our discussions, there seemed to be a strong undercurrent 
(hard to point to, but felt to be there) of wanting to show that 
the association of mathematics with rigor (presumably meaning 
"being very rigorous") was naive and was in need of correction. 
In my OPinion, this point of view is often the result of "put-down 
through imperfections" by which one can show that there is no such 
thing as truth, or beauty, or objectivity. or justice, or 
virtually anything worth talking about. The study of fOUndations 
of mathematics does make one aware of the elusiveness of absolute 
Dr perfect rigor. but a thOUghtful perspective on this matter 
nevertheless puts emphasis where emphasis is due, namely on the 
extremely (perhaps even Uniquely) high degree of rigor with which 
mathematics can be pursued. 

With this perspectiVe as a guide, I can see no reason to 
modify the role of mathematics in education as stemming to a la~ge 
degree from its association with a relatively high degree of 
rigor. (The work of Lakatos, so often misapplied, in my opinion, 
does not change this one bit--rather it shows how the search for 
greater rigor leads one to more and more rigorous definitions of 
concepts. ) 

~ 
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The main speakers at the meeting. Ross Finney and Alan Schoenfeld, 
each joined the working group for one of the sessions. 

REPORT 

Initially the group discussed personal experiences. direct and 
indirect, they had with teaching mathematics using computers and 
software. The following points gradually emerged from the 
conversation of the first evening. 

Careful selection of software is necessary' because: 

a) there is a lot of expensive software that has little educational 
value; 

b) of the current curriculum. At this early stage in utilizing 
computer as classroom teaching/learning tools, it must fit the 
existing curriculum. 

Even good and powerful software does not necessarily lead to 
effective use. Teachers, both pre and in-service. need to devote 
considerable thought in preparing to use computers to help in the 
teaching of mathematics. Our discussion suggested that there is a 
growing body of evidence supporting the computer as a valuable 
teaching resource yet it is difficult to assess its potential during 
whaL is perceived to be an early stage in the development of the 
technology. Not only is the computer hardware undergoing continuous 
and rapid changes, but the development of software with exemplary 
features is slow. In a recent article published by members of the 
Shell Center for Mathematical Education at the University of 
Nottingham, a research study over three school terms in a secondary 
school indicated the following: 

- - ,wg - - .. .. - .-J .. 
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1) computer aided teaching will be successfully adopted if necessary 
resources are available, and 

b) computers seem to be very versatile teaching aids and there are 
no grounds (at this time) for strongly recommending any 
particular style of use. 

These suggestions as well as the developing nature of the entire 
field of computer use in education give negligable guidance and 
rtirection for microcomputer use in teacher education. The use of 
exemplary material in the average classroom with the average teacher 
was briefly considered. Several group members described sessions 
they had observed using the Geometric Supposer, a piece of software 
they considered exemplary. In each instance it was suggested that 
the scenario did not typify the average mathematics ~lassroom with 
the average mathematics teacher. The developers and users of this 
software in these situations perceived that, because of its power and 
versatility, students could be successfully drawn ~nto an inductive 
exploration or search for geometric truths, after which they would 
concern themselves with developing convincing deductive arguments 
(proof). They were behaving as geometers. Because of the features 
of the Supposers, in that one has a drawing and measuring tool which 
permits the operator to quickly and accurately produce, measure and 
alter geometric constructions, much of the drudgery and inaccuracy 
related to ruler and compass constructions is avoidable. Equally as 
powerful is the ability of this software to "remember" the current 
construction and repeatedly repeat it upon request. This potential 
permits geometric exploration and pedagogical approaches for teaching 
geometry that were previously imaginary. Unfortunately many of the 
seemingly best mathematically qualified, based on the amount of 
mathematics studied, mathematics teachers have never personally 
experienced learning mathematics in this way and thus fail to 
appreciate exciting new possibilities. 

As a result of the initial general discussion we decided to begin by 
examining some of the software material available to the group. We 
ended up devoting the rest of the working group sessions to a 
discussion of the following software packages: 

Apple Logo (Apple) 
Algebra Arcade (Wadsworth) 
Interpreting Graphs (Conduit and Sunburst) 
Geometric Sup poser ~ Triangles (Sunburst) 
Calculus Student's Toolkit (Addison-Wesley) 
Graphical Adventure (Saga Software) 

- ..... - - -
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, 
Graphical Adventure is available only for Commadore 64's while the 
others were all Apple lIe packages (although some may be available 
for other microcomputers). 

-

It was noted that to examine a software package as well as discuss it 
in some depth is deceptive. This working group found its time 
quickly spent in the process. The group did not deliberately proceed 
linearly through each package. We compared and contrasted features 
as the discussion proceeded. The software that invariably drew the 
greatest attention contained what the group considered to be powerful 
features. Invariably these necessitated a high, active participation 
rate with the operator in control. For example, the geometric 
supposers are able to draw, measure and repeat constructions only 
under the direction of the operator. Without these directions it 
will not do anything and the potential of this type of software can 
only be explored if the operator is able to interact with it to take 
advantage of these features. 

During' one of the sessions Ross Finney demonstrated the Calculus 
Student's Toolkit, a software package that he was involved in 
developing. 

Sr. Rosalita Furey familiarized the group with the Graphical 
Adventure which seemed to have considerable potential for the 
secondary curriculum (particularly at $14.95). Unfortunately it is 
only available for the Commodore 64. 
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WORIING GROUP C 

Appendix I 

SOFTWARE INFORMATION 

1. Apple Logo 

2. Algebra Arcade 

3. Interpreting Graphs 

4. Graphing Equation: 
(includes green globs) 

5. Geometric Supposer 
(These are triangles, 
quadrilateral and circle 
versions as well as a 
pre-supposer) 

6. Calculus Student's 
Toolkit 

7. Graphical Adventure 

Apple Canada 

Wadsworth Publishing 
Co. 
8 Davis Drive 
~elmont, California 
94002 

Conduit 
The University of 
Iowa 
Oakdale Campus 
Iowa City 
Iowa 52242 

Conduit 

Sunburst 
P.O. Box 3240 
Station F 
Scarborough, Onto 
MIW 9Z9 

Addison-Wesley 

Saga Software 
418 Gowland Cres. 
Milton, Ontario 
L9T 4E4 

$ 150.00 

34.45 

45.00 (US) 

45.00 (US) 

45.00 (US) 

99.00 (US) 
132.00 (CON) 

? 

14.95 (CON) 
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Appendix 2 

Geometry via the Computer 

Lesson X by Roland Eddy 

The Mediums of a Triangle A 

1. 

2. 

3. 

B l " I 'c 

The medium AD bisects BC. 

Calculate the areas of ABD and ADC. 
Conclusion? (Equal) 

Construct several triangles and their three mediums. 
Conclusion? 

A 

k" ' B 1\ c: 

4. Measure AG, CD, etc. Conclusion? 
. (AG = 2/3 AD, etc.) 

-

5. Calculate the areas of AGB, GEC, GCA. Conclusion? 
(All equal) 

6. 

(3 

Construct the triangle with sides AD, BE, CF and 
construct its mediums. Verify that their measures 
are 3/4 AB, 3/4 BC, 3/4 CA. 

A 

~S) 

8'; 

.. - - - - - - -
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A 

(3 
a, c 

Heron's formula: 

a+b+c 
s= --2-Area = vs(s-a) (s-b) (s-c), 

Verify the corresponding formula 

-

Area 4/V s(s-m a ) (s-mb) (s-mc ) 
s= ma+mb+mc 

Verify: m 2 
a 

2 
+ lfib 

c -

2 

2 
+ Inc 3/4 (a 2 + b

2 
+ c

2
) 

, where R,r rna + mb + m <­
represent the circumradius and ~nradius respectively. 
When does equality occur? 

- - - - - - - -
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COMPUTERS IN MATHEMATICS EDUCATION 
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~ANADIAN MATHEHATICS EDUCATION STUDY GROUP 

JUNE 1986 MEETING (ST. JOHN'S) 

Report of Working Group D 

The role of the microcomputer in developing 

statistical thinking 

by Claude Gaulin and Lionel Hendoza 

104 

The group was a follow-up to a working group in Vancouver in 1983, 

which had focussed its discussion on "the goal of developing 

statistical thinking for all" as well as on appropriate topics and 

methodology for a core curriculum. The report of the Vancouver 

working group can be found in the proceedings of the 1983 meeting 

of CHESG. 

The objective of Working Group D in St. John's was to investigate 

the issue of how microcomputers could be used for developing 

statistical thinking. Among the aspects initially proposed for 

discussion were: software for teaching statistics,; graphical 

representationa of statistical distributions; simulations of 

random experiments; and learning probabilistic and statistical 

concepts through programming. The preliminary discussion on the 

first evening enabled the group to determine the focus for the 

three three-hour sessions that followed. 

The work and conclusions of the group can best be summarized by 

dividing it into three phases. 

Phase 1 

This phase raised the difficult question of what was meant by 

"statistical thinking". While no attempt was made to develop a 

formal definition, the group agreed that the core idea of 

statistical thinking was a comprehension of the nature of 

representations, distributions, and inferential statistic, as 

opposed to the ability to draw graphs or undertake statistical 
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tes ts. per se. Also, at this stage it was decided to focus on the 

role of the computer as a teaching aid, and not as a computational 

aid (as epitomized by statistical packages). It also became 

apparent in the discussion that the members of the group were not 

aware of software specifically designed to develop statistical 

thinking. 

Phase 2 

In this phase the role of the computer was explored. 
The group 

mostly discussed how it could be used to VISUALIZE statistical 

ideas and processes. 

(A) VISUALIZATION IN DESCRIPTIVE STATISTICS AND 

EXPLORATORY DATA ANALYSIS. 

Utilizing the computer here involves displaying a 

variety of graphical representations (e.g. bar 

graphs, pie charts, stem-and-leaf plots) on the 

8.creen. A particularly effective use of 

visualization is having different data sets 

SIMULTANEOUSLY DISPLAYED on the screen, enabling 

students to interpret, discuss, and compare the 

data. Alternatively, displaying the same data in 

different ways develops an awarenes of the 

advantages and limitations of different displays 

and helps students to select the most convenient 

best illustrative representation from among many 

possibilities. 

- - - - - - -
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ANIMATION can be an effective aid for descriptive 

NOTE: 

statistics and exploratory data analysis. The 

ability of the computer to build up successive 

representations as the data is entered [either from 

pre-set data sets or student-collected data sets) 

gives students a visual image for comprehending the 

nature of the data. 

(B) VISUALIZATION IN "INFERENTIAL STATISTICS". 

Animation can also be used in developing 

inferential statistics, an intuitive understanding 

of hypothesis testing, and the notion of confidence 

intervals. An example would be using the computer 

to select samples of a given size and building up 

the distribution obtained by repeated sampling. By 

varying sample size and the number of samples, 

students can obtain a feel for the nature of 

distributions and later on apply this to the 

distribution for a test statistic. 

Whether the computer is used to visualize ideas and 

proceases in descriptive or inferential statistics, the group 

insisted that software should be INTERACTIVE, and not merely 

DEMONSTRATIVE. It should allow the user to ask questions and 

indicate displays that he or she would like to see. Thus, the 

interactive nature of the software requires a flexibility of 

choice, beyond that of merely allowing the user to choose from a 

- - - - - - - - -
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limited selection of options. It is important to stress that it 

is the INTERACTIVE nature of the software and the DISCUSSION of 

ideas generated by the display that leads to statistical thinking. 

Phase 3 

During the last working session. the group discussed the structure 

of an introductory course in statistics for undergraduate students 

in which the microcomputer were to be fully integrated THROUGHOUT 

the course. The suggested components for such a course were: 

1) Data "display" and interpretation 
(Computer displ.ys and animation used) 

2) Exploratory data analysis 
(Centrality. box plots •••• ) 

3) Transformations of data 
(log. log normal •••• ) 

4) Uncertainty 
(Exploratory games involving repetition) 

5) Nonparametric statistics. sampling, etc. 

A variety of themes occurred throughout the sessions. but time did 

not allow us to discuss them in depth. The following are so~e 

examples: 

- - - - - - - -
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1 ) The use of computers to simulate random processes. 

2) The role of probability in developing statistical thinking. 

This topic was raised at various times throughout the sessions. 

-

The group felt that much could be accomplished in developing 

statistical thinking without a detailed analysis of probabilistic 

concepts. per se. During these discussions a probability based 

game designed to develop statistical thinking was presented by 

Eric Huller. (See Appendix A). 

3) The issue of decision making versus probabilistic thinking. 

There is a fundamental difference in the role of probability in 

the two situations. In statistical thinking a key aspect of 

probability is the role of repetition within the situation and it 

is 'assumed' that the situation can be replicated. However. in 

decision making. while some probabilistic information aids in the 

decision making process. it is usually not a repetitive situation. 

4) The relationship between computer games/activities and the use 

of real objects. How do students relate computer 'generated' 

games/activities to similar real object games/activities? The 

group was concerned that students (particularly young students) 

might have difficulties effectively internalizing ideas developed 

in computer situations without experiences with real objects. 
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In conclusion, there is one point the group would like to make: 

the group felt that it would be interesting to do further work 

during the CMESG meeting at Kingston, and suggested a working 

group focussing on "Inferential Statistics for all High School 

Students". In particular, such a working group would explore, the 

following questions: 

(i) How can the computer be used in conjunction with 

other traditional types of teaching aids? 

(ii) What is the minimum amount of probability needed 

to study inferential statistics? 

(iii) How can s~mulation be used in developing 

inferential statistics? 
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APPENDIX A 

+ 
Developing Statistical Thinking 

by 

Eric R. Muller 
Brock University 

In this supporting document for the Working Group "The role 
of the Micro-Computer in Developing Statistical Thinking" we con­
sider an activity which has been used successfully with groups_of 
students anywhere from elementary school to university. Although 
the activity does not involve the micro-computer the group spent 
a considerable amount of time trying to isolate the conponents of 
thi:> activity which make it successful. Such components could 
then be structured in micro-computer simulation activities. 

+Also submitted in modified form to the Ontario Mathematics 
Gazette. 
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1. 30ard with r positions, marked to r, for positioning 
colour-ed chips. The Board illustrated below has fourteen 
positions numbered above 1 to 14. 

2. 2 regular s1:( sided die -- it is u"ef'.ll to also have avail-

.1. 

l 

C) 

able pairs of the other four regular polyhedra (4, 8, 12 and 
20 sided) 

At least ::/2 blue 3nd r/2 red chips (or any other two 
colour:;) 

3 'r 5 6 7 8 '-1 /0 1/ 

C 0 ,") 
V 0 0 0 0 0 0 

r;1~~_~ [i] f3l QJ [] (1;] fi;l 
-'-'-

@ o ~ ~ I j5J 6 :t 

Play 

1. Two teams - teams of two students - work well as each student 
has a partner to discuss strategies. One team g .. ven red 
chips, other team given blue chips. 

<- • 

3. 

Th~ ~wo teams will alternate placing one of their chips in 
the places provided on the board. The aim is to have a ch;p 
in the position which corresponds to the sum on the faces of 
the two dice when they are rolled, eg., to have a chip .in 
position 8 if a (fiv'! and thrp.e) are rolled. To stZirt one 
of the two teams is selected, it places one of its chips in 
the position on the board which it believes is most likely 
to occur. The other team then places one of its chips in 
one ot the (13) unoccupied places. This procedure al ter­
nates between the two teams until either (a) all positions 
on the board are filled or (b) one team no longer wishes 
to place any of its chips, then the other team may occupy 
all vacant positions. 

The board is now set for n, (say 25) an odd number of rolls 
of the pair of dice. Each time the dice are rolled the team 
which has a chip on a position corresponding to the same on 
the dice records points (single paints at levell, points in 
the square below the position at level 2). 
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4. T·he team wi th the most points at the end of n (say 25) rolls 
wins that gi'lme. 

5. All chips are now taken off the board and a new game may be 
started. 

6. The objective for each team is to find a winning strategy, 
ie. a strategy for selecting the positions for their chips 
which will provide the best chance for winning. 

The following three levels of play suggest a natural progression 
for statistical thinking. Some teams will not progress beyond 
level 1. One !!l~!! resist the temptation to provide solutions. 
This activity provides an ideal medium for exploration and one 
should only do the leading. We have always played with the fol­
lowing rules: 

(i) Teams do not discuss their strategies with other teams. 

(ii) When a team believes it has a strategy for winning it_dis­
cusses it with me. I will not indicate whether the strategy 
is the best I know but I will change the team's opponents or 
materials to either 

Cal expose the possibility of a better strategy 

or 

(b) reinforce the team'~ winning strategy. 

The following three levels of play are suggested: 

~~Y~!_l (Estimating probabilities) 

Objective: 1) Students to observe which outcomes, sum on 
the two dice, are possible and conclude that 
these outcomes are not equally likely 

2) Students to quantify the uncertainty. Ie. 
estimate the probabilities of each outcome 

3) Students to develop the strategy of select­
ing those positions which maximize their 
probability of winning. 

Procedure: The team whose chip is on the position with num­
ber equal to the sum on the two dice gets Q~~ 
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point. The team with the most paints accumu­
lated after n (25) odd rolls of the dice wins 
that game. 

To reinforce winning strategies supply the teams 
with one six and one eight-sided dice -- or a 12 
and a 20-sided dice and a different board! To 
expose a non-optimal strategy change teams to 
play against a team with the optimal strategy. 

~~Y~l_~ (Random variables and Expected values) 

Objective; 

Procedure: 

Note: 

1) Students to discover the concept of random 
variables. 

2) Students to develop a winning strategy based on 
the concept of expectation value, ie. a set of 
positions such that the sum of products (of 
probability and points scored) is greater than 
that for the opposing team. 

The team's whose chip is on the position with 
number equal to the sum on the two dice gets the 
paints indicated below the chip. The board 
illustrated above shows 2 points for a sum of 
six, 4 points for a sum of nine, etc. The team 
with the most points after 25 rolls of the dice 
wins the game. Follow the procedures outlined in 
level 1. 

I have a number of boards, each with a different 
sequence of paints. By switching boards one can 
either reinforce an optimal strategy or expose 
one which is not optimal. 

b~Y~l_~ (The effects of changing the number of rolls or 'trials) 

Objective: 

Procedure: 

.. .. -

Students experiment 'to show that as the number of 
trials is increased in a game the probability of 
Winning the game with an optimal strategy is 
increased. 

The game is repeated 20 times for a fixed 
optimal stragegy and n rolls of the dice 
where 

n 1 
then n 3 
then n 5 

- .. .. .. .. -
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From the~e res'~lts t~~ ~ttl~~nts Astlmate the 
pr::>ba'Jility of vl1l1nL.q in each C3.se o,o.j p!ot 
thyse versuu n. The probability of winning the 
game in 20 rolls should increase ~3 ~ 

increases. 

The reason for this IS that it 19 an ap?licat!o~ 
of the binomial distriJution with the tollCI~lng 
properties: 

1) n identical trials, ie. n rolls of tl,e pair of 
dice (for tl:is game He choose n odd) 

2) each trial results in one of tWO out~orneG. lB. 
a loss tf the tot~l on the jice is not equa: 
to one at the positions of t~e team's cnip 

3) probability of success, p, in a single trial 
remains the same from trial to trial, i=. the 
chips are not reset between rolls, prcbability 
of failure q = 1-p 

4) trials are independent, ie. the result of one 
roll does not depend on that obtained in pre­
vious rolls. 

Then probability of exactly x success i~ gIven ~y 

x n-x 
C(n,X) P q 

In this experiment we are in[er~3[ed in the probability of get­
tiny more than halt ot the points :c ~in the la~p. i~. 

l2 x I)-X 
~ C(n,Klp 4 

x;fl1 

where \11 is the smallest integer greater than 

(n odd by choice) 

Students with a knowledge of the Binom!al probability dis­
tribution can verify that their values are close ~Q the theoreti­
cal ones, viz., 

- - - - - - - - - .. 
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n = 1 - p~ L C( 1,1) P (} P 
).:=1 

~ C 3 ) x 3-x 3 2 3 n = 3 - P= L ( . ,x p q p q , P 
x~2 

5 x 5-x 
n = 5 - P= ~ C(5,x) p q 

j 2 4 5 
lOp q + 5p q + P 

x=3 

Positioning the chips in the most obvious position for a win, the 
s~arti~g team will have 

giving for r. 

giving for n 3 

g~ving ror n 5 

21 
P - 36 

P 0.5233 

P 0.6238 

P = 0.6534 

- -
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1. The Beginning 

My main thesis l here today is that the later stages of 
our evolution, i.e., the distinctively human stages, have been 
mental rather than physical in nature. 

We also note that there is potential danger in any 
evolutionary change for any species. The change may bring new 
opportunities or it may bring unexpected risks. Some species. 
such as the cockroaches, have played it safe by finding a nice 
niche and staying put in it for a very long time. We humans have 
been less "lucky" or less "sensible". 

In his well-known and highly speCUlative book entitled ~ 
Origin of Consciousness in the Breskdown of the Bicameral Mind 
(1976) Julian Jaynes, a psychologist at Princeton, tries to show 
some of the gains and losses associated with the development of 
human language and human consciousness. For example, he claims 
that a schizophrenic-type of condition was associated with 
consciousness and language in pre-historical and early historical 
man. In particular, he claims that the experience of hearing 
"disembodied" voices was very common and led to the development of 
mysticism and religion, prophecy and poetry, as well as to such 
modern residue aa hypnotism and mass "hysteria" (i.e., mass enthusiasm 
or mass ecstacy). Jaynes speculates that as language functions 
became localized in one hemisphere of the human brain, usually in 
the left hemisphere, schizophrenic-like consciousness became much 
less common in our species, and religion became institutionalized 
or fossilized because most of us could no longer hear the voices 
of the gods and angels, the devils and demons. Jaynes' bo ld 
attempt to explain our most recent evolution is very stimulating 
but it has been criticized for being too speculative. However, I 
would like to claim that we need to be even more bold and speCUlative 
if we are to understand the dangerous and critical nature of our 
most recent evolution. 

Whereas Julian Jaynes attempted to link our purely human 
evolution to a left-right specialization in the human brain I will 
attempt to link it to a front-back specialization in the same 
brain. Like Jaynes, I want to link our cerebral development to 
the evolution of natural languages (the things we today call 
English, French, Chinese, etc.) but I also want to link it to our 
development of mathematical languages (the things we today call 
arithmetic, algebra, geometry, etc.). From a pragmatic point of 
view, we can regard natural languages as the tools we invented to 
control one another and mathematical languages as the tools we 
invented to control the rest of nature. 2 

- - - - - - - - - .. 
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As a species we have reached a unique point in the 
evolution of life on this earth. Because of the awesome power of 
mathematical languages, we have been able to create enough nuclear 
weapons to wipe out all (or nearly all?) forms of life on this 
planet. 3 Because of the equally awesome power of natural languages, 
one man in the U.S.A. or the Soviet Union can speak the few English 
or Russian words needed to begin the nuclear holocaust. Obviously, 
we have replaced Jaynes' individual schizophrenia of "primitive" 
man by the collective schizophrenia of "advanced" man.4 

2. The Middle 

When we compare ourselves with our closest primate cousins 
we are immediately struck by three major differences--two in our 
behaviour plus one in our brains. One major behavioural difference 
is that we have natural language, defined by the famous American 
linguist Noam Chomsky as a system that connects sound to meaning 
~ syntax. Syntax is that wonderfu~ human invention which allows 
us to talk or write forever despite a small vocabulary and an even 
smaller intelligencel Since early human language was spoken but 
not written we have no direct evidence about its nature.5 Our 
oldest samples of writing reveal languages that are already highlY 
developed. Moreover, along with the development of writing comes 
the development of early mathematics6 , which we can provisionally 
define as the language of quantification. It would appear, then, 
that our mathematical abilities emerged in parallel with our 
language abilities during the purely human stages of our evolution. 
With the introduction of proof into mathematics, attributed to the 
Greek known as Pythagoras (6th century B.C.) this specialized 
human language became the major tool of science and technology, 
the second major behavioural feature that distinguishes uS from 
our primate cousins. If we look for a third major feature that 
might underlie and help explain the other two, we can find it in 
the distinctive frontal lobes of the human brain. It is those 
highly developed frontal lobes that give US our more prominent 
foreheads as compared to the receding, sloping foreheads of our 
primate cousins. 

But what goes on in those frontal lobes of ours that 
makes us so different from all other primates, from all other 
mammals, from all other animals? Surprisingly enough, natural 
language functions are not all localized in the frontal 10bes.7 
In, fact, much of the human frontal lobes are made up of the so­
called 'silent' areas' of the cortex. These are areas "which, on 
stimulation, evoke neither sensory nor motor response" (Smith 
1961: 193). Smith feels that the main function of the human 
frontal lobes is the integration of perceptionll and knowledge, 
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particularly the time-integration of separate events that gives 
rise to our perceptions of cause and effect. 8 Smith admiringly 
quotes an 1824 entry in Emerson's journal: "Man is an animal that 
looks before and after." This remarkable insight of the then 
youthful Emerson explains the central paradox of human nature; 
that is, it explains why we are simultaneously the most rational 
An4 the most irrational of all creatures. When we compare ourselves 
to other mammals psychologically we are struck by our peculiar 
inability to enjoy the here and now. We are forever regret ting 
the past and fearing the future. We note that our greatest buildings 
(temples, pyramids, cathedrals) used to be erected to those very 
regrets and worries, sins and hopes. We note too that the insatiable 
human sacrifices of the Aztecs were not motivated by ferocity but 
by fear: they were meant to keep nature operating in the future as 
it had done in the past. As our frontal lobes and (somewhat 
later?) our natural languages developed, our instincts were gradually 
replaced by lesrning and memory, by ressoning and faith. But this 
laid an intOlerable burden of choice and responsibility on the 
individual. This must be the basis of our myths about our expUlsion 
from the Garden of Eden, from a state of innocence and grace into 
a knowledge of good and evil. Never again could we be as "natural" 
in our behaviour as the other mammals seem to be. 

Perhaps man's most heroic and rational response to this 
intolerable pressure was to invent mathematics. Natural languages 
already contained most of the raw materials needed 'for basic 
mathematics. 9 For example, in Modern English we can see the 
prototypes of set theoryl0 in the words that linguists call determiners 
and quantifiers (Sto,ckwell ~. 1973: 65-160). Such words are 
underlined in the examples given below: 

ill books 

!!2 books 

the universal set (of books) 

the empty set 

~ book, ~ book -- the unit set 

!!!y books a random subset 

~ books a non-random subset 

etc. 

The prototype of the finitel infinite distinction may be seen in 
our distinction between ("f inite") COUNT nouns and ("inf inite") 
MASS nouns. Examples are given in the table below: 

-
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COUNTII MASS 

a cup some sugar 
a shovel Some snow 
an apple some fruit 
sn egg some butter 

More importsnt, perhaps, waa the existance of logical connectivea12 
in natural languages. In Modern English we find words such as the 
following (Kemeny ~. 1966: 12): 

and for addition (conjunction) 

2£ for alternation (disjunction) 

ll21 for denial (negation) 

if ••• (~) for dependency (conditional) 

The most important of these logical connectives seems to be the if 
(conditional) type. This is because the birth of "real" mathematics 
coincides with the explicit recognition of the methodology of 
proof, associated above with the sixth century B.C. Greek philosopher, 
mystic, and mathematician called Pythagoras. As E.T. Bell (1937: 
20) has pointed out, "Before Pythagoras it had not been clearly 
realized that ~ must proceed from a!l8U!Qptions. Pythagoras, 
IIccording to persistent tradition, was the first European to' 
insist that the Jl!.i2mi., the postulates, be set down first in 
developing geometry and that the entire development there aft er 
shall proceed by applications of close deductive reasoning to the 
axioms." Pythagoras himself is. not likely to have discovered that 
the square on the hypotenuse of a right-angled triangle equals the 
sum of the squares on the other two sides. This fact was apparently 
well known to the priests and land surveyors of Egypt and Babylon, 
both of which Pythagoras visited. His great contribution was to 
prove ~ this fact ~ to be true. The proof(s), using deductive 
reasoning, showed that this theorem had to be true for all right­
angled triangles drawn on the surface of s plane. This was quite 
different from inductive reasoning based, for example, onmeasurements 
taken frQm a hundred specific triangles. Deductive proof guaranteed 
that not even the gods themselves could change this law of nature. 
Hence, it gave the Greeks a confident sense of security so that 
they, unlike the Aztecs, did not have to perform sacrifices in an 
attempt to preserve the laws of nature. 

- .. - .. - - .. -
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It was gradually realized in mathematics and the sciences 
that one did not have to start with postulates that conformed to 
one's sense perceptions or one's common sense. This led to 
developments such as geometries of spaces with more than three 
dimensions. This also allowed Einstein to assume that the velocity 
of light is constant for all observers, a postulate that violates 
common sense. But this counter-intuitive assumption allowed him 
to conclude that E - me 2 ~ experimental evidence was available 
to show the relationship between energy snd matter in nuclear 
reactions. More recently, I have read of discontinuities in space 
called "strings" (Angier 1986). These may be relics left over 
from" the Big Bang that are capable of bending light more radically 
than even the most massive collections of "solid" or "real" matter. 
Though we cannot observe such strings "directly", we (Le., a few 
theoretical physicists) can describe them mathematically. UltimstelY, 
then, our understanding of the universe, at either the mscrocosmic 
or microcosmic extremes, fades awsy beyond our senses into the 
abstractions of mathematics. This means that mathematics defines 
the limits of our "knowable" universe. 

Our provisional definition of mathematics above was the 
language of quantification. We can now amend that definition by 
calling it the language(s) of quantified iffiness. 

3. ~ 

Let me try to recapituate. The development of the 
distinctive frontal lobes of the human brain and the concomitant 
development of natural language cut our species free from the 
control of instincts and forced it to rely on accumulated experience 
(i.e., memory) and on the uncertainties of inductive reasoning. 
Some human groups tried to solve the memory problem by developing 
wr1t1ng. Some tried to solve the problem of inductive uncertainty 
by developing methods of deductive reasoning in logic and mathematics. 
The rapid advances made in European mathematics and science in the 
seventeenth and eighteenth centuries by men like Descartes, Newton, 
and Leibniz led to the remarkable optimism and self-confidence of 
Western Man in the eighteenth century. We managed to make it 
through the nineteenth century fairly safely, but the twentieth 
century destroyed our faith in both men and mathematics. On the 
human side we have seen two world wars and several sttempts at 
genocide. We have also seen about a quarter of the human race 
suffering from acute starvation, chronic hunger, or crippling 
malnutrition. Between the two world wars science and mathematics 
also encounted their limitations. In 1927 Werner Heisenberg 
published hill Principle of Indeterminacy for physics. In 1931 
Kurt Godel showed that mathematical systems can never be complete • 
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that mathematics contains insoluble problems. As William Barrett 
wrote (1962: 39) "This means, in other words, that mathematics can 
never be turned over to a giant computing machine; it will always 
be unfinished, and therefore mathematicians--the human beings who 
construct mathematics--will always be in business." This good news 
I bring youl 

Where, then, can we go from here? If, as I have claimed, 
natural languages and mathematical languages are the two most 
powerful tools, and therefore the most dangerous tools, that we 
have developed should we not approach the teaching of both of them 
with great care and caution? In particular, should we not be 
teaching something about the origins, the development, and the 
limitations of both natural and mathematical languages? Should we 
not be discussing the ethics of their uses and misuses in the 
history of our species? Is it not just as important to teach 
students ~ them as it is to teach students to use them. I 
have known many students who treated mathematics as a kind of black 
magic--"If you do this and this you'll get the right answer, but don't 
ask me why I" Would it not be better to teach primarily for 
understanding13 even if it meant teaching less? Wouldn't less in 
fact be more in this case? Wouldn't the above suggestions solve 
some of the notorious problems of motivation in mathematics students, 
since it would make the whole subject less dry and more meaningful? 
Heaven knows that we have seen in this century some horrific 
results of blind obedience and unreflecting faith. We now know 
that enthusiasm and will are not enough to ensure the survival of 
the human race. If we do 'not pause to assess ourselves we may 
well stampede over the brink like a herd of buffalo. 

But most of all we must learn humility again. We must 
relearn the joy of living within our limitations, of living here 
and now, of being part of nature again. After all, a star scientist 
is a much a product of nature as is a starfishl Let us not forget 
the nobility and grubbiness of our "struggle into light .,,14 We 
imagine our remote primate ancestors attempting to stand upright 
on their hind legs so that they could better spot dangerous predators 
at a safe distance. Now we have become the most dangerous predators 
of all. Unless we can come to terms with our flaws we are finished. 

* * * * * * * * * * 
The orally presented version of this paper ended at this 

point. During the animated question period that followed I discovered 
that some members of the audience wanted me to speculate a little 
about our possible futures. Well, then, here goesl 
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I do believe that there is some slim hope for the human race. 
But it is a painful hope because it involves giving up some of our 
most treasured illusions. And, as we have seen in South Africa and 
elsewhere, people would sometimes rather die than surrender their 
illusions, along with the powers and privileges supported by such 
illusions. On a larger scale, we can observe the terrifying Star 
Wars illusion in the U.S.A., whereby millions are being misled 
into believing that their country can seal itself inside a safe 
cocoon on this tiny planet. There is in fact nothing to indicate 
that the Great (Space) Wall of America will provide better protection 
than did the Great (Stone) Wall of China. The real issue here is 
a psychological one--it is impossibly difficult for people to 
abandon their illusions of safety snd superiority. People do 
indeed need myths as a source of motivation. 

One lesson taught us by the twentieth century is that an 
astonishing quantity of human energy15 is relessed by true belief. 
A former member of the Hitler Youth movement once said to me: 
"People just don't understand how beautiful it was to know that 
you were right and everybody else was wrong, that you were superior 
and everbody else inferior I" Conversely, a lack of faith reduces 
many of us to depression, inertia, and impotence. Even worse, we 
note that the energetic true-believer is often morally inferior to 
the lazy know-nothing. The grest Irish poet W.B. Yeats summarized 
this painful paradox of modern man when he wrote that "The best 
lack all conviction while the worst/Are full of passionate 
intensity."l6 Our hope, then, must lie with people who can act 
without conviction, who can fight without faith, who can pray 
without God. 

Such people will require s rare steadiness of purpose 
and a superior resistance to frustration,!7 This is because 
evolution generally proceeds not by abandoninf the old for the 
new, but by building the new on top of the old. 8 How then'are we 
going to accomodate the old mammals that lie behind our human 
frontal lobes? If we do NOT accomodate them, they are likely to 
destroy us. We must give them their due because without their 
evolutionary history we would not even exist. We must therefore 
learn to love and admire our bodies and our unconscious minds in 
the same "disinterested" way in which we so easily love the bodies 
and the unselfconscious minds of other animals, for we too are 
children of nature. 

Nevertheless, our peculiar human consciousness in our 
inescapable fate. We cannot ever return to pre-consciousness. 
Our only hope is to go forward to to higher levels of consciousness. 19 
We can get a better idea of where we might go only by learning 
more about where we have been. There is therefore a special 
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responsibility laid on the shoulders of us who sre describers and 
teachers of human languages, whether these languages be natural or 
.athematical. We .ust show our students that these languages are 
the .ost powerful and beautiful tools ever developed by the human 
.ind. Our students should therefore learn to respect their power 
while ad.iring their beauty. Above all, both we and our students 
should try to i.prove these tools. Let us join T.S. Eliot in his 
-sture concern "To purify the dialect of the tribe/And urge the 
.ind to aftersight and foresight."20 

FOOTNOTES 

lThis i8 a slightly revised version of the paper which was 
read at the conference. The revisions consist .ainly of extended 
conclusions and additional footnotes. 

20f course, in controlling nature we also came to control 
one another even more, through the develop.ent of weapons, "predatory" 
economies, etc. 

3In addition to worrying about our relatively sudden end in 
a nuclear war we can also worry about slower endings from nuclear 
pollution, che.ical pollution, overpopUlation, famine, etc. 

4Compare the British psychiatrist R.D. Laing, who feels that 
schizophrenic behaviour is the sanest response to living in !'..: 

insane world (Papalia and Olds 1985: 545-6), 

5But see Hockett <l97il) for a judicious weighing of the 
several types of indirect evidence. 

6It is interesting to speculate on why mathe.atics developed 
80 "early" in our history. One reason was no doubt the development 
of writing itself, which gave a new permanence and weightiness to 
language. Also, according to Guillaume (1984: 143) "Writing, more 
than speech, obliterates the turbulence of cogitation." If this 
is true, then writing would have led naturally to the reflectiveneBB, 
reasoning, and generally clearer thinking needed for -sthe.atics. 
But perhaps .ore important was man's long history of precise hand­
eye coordination, well recorded in his developing skills of tool-

'-sking. Even more intriguing is Hockett's hypothesis (1978: 295-
30ll .that the pri-sry medium of human pre language cOll8isted of 
-snual signs (gestures) rather than vocal sounds. If, Hockett is 
correct, then this would help explain the "earliness" of -sthematical 
development in our species. Hockett's theory is especially relevant 
for geometry, since a complex system of hard signals requires 
rapid and precise neuromuscular control of tile hand as well as 
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equally rapid and precise visual perceptions of the reSUlting hand 
movements in space. Both these abilities no doubt unlie both 
writing and geometry. 

7Besides the supple.ental motor area, there are two main 
localizations of language in the hu-sn brain (u8ually stronger in 
the left he.isphere). The -sin speech production centre, called 
Broca's area, is in the (posterior inferior part of the) frontal 
lobe but the main speech RerceptioD centre, called Wernicke's 
area, is found in the (posterior) temporal and parietal lobes. 
This suggests that "language" perception .ight have preceded 
"speech" production in our evolution. In other words, it tends to 
support Hockett' 8 speculation (1978: 295-301) that the pri-sry 
medium of human pre language might bave been 80phisticated hand 
gestures rather than vocal sounds. In any case, the available 
evidence indicates that we achieved fine motor control over our 
hands well before we achieved similar control over such vocal organs 
as the lips, tongue, and larynx. Note too that we cannot teach 
apes to speak b!lt we can teach the. to use "pre language " that 
e.ploys hand gestures. In addition, human beings who are deaf can 
communicate rapidly and fluently through the use of hand signal 
systems. Moreover, it has been demonstrated that apes can learn 
to use (at least part of) the Ameslan (American sign language) 
system that is commoBly taught to the deaf in North America (Hockett 
1978: 277-82). 

8The crucial role of the frontal lobes for human behavior 
is demonstrated by the severe "side" effects of prefrontal lobotomies. 
These surgical operations (commonly carried out in the forties and 
fifties to relieve severe pain' and some psychoses) often left 
patients "as apathetic shells of their former selves; some 5 
percent developed conVUlsions; and more than 6 perCent died" 
(Papalia and Olds 1985; 569). 

9This claim has been advanced by several writers in the 
past. For example, the French theoretical linguist Gustave Guillaume 
(1883-1960) claimed that language "is the pre-science of science" 
and that "the loftiest speculations of science are built on the 
syste.atized representations" of language (Guillaume 1984: 146). 
Guillaume also makes several insightful comparisons between mathe.atics 
and natural language. 

10 
See, for example, Kemeny ~. (1966). 

lIAs a local dialectologist I note that (singular) COUNT 
nouns in Vernacular Newfoundland English are often preceded by 
ll1hn: (or one of its "variants" such as u.:r. or u) rather than 
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by A. or Jill. Thus one commonly hears sentences such as: "Do you 
have either shovel with you?" 

12A1l natural languages seem to be fairly equal in the 
subtleties of their LEXICAL and GRAMMATICAL distinctions but some 
may be superior in thier LOGICAL distinctions. To illustrate this 
ternary division we can break the English sentence "The cow drinks 
if she is thirsty" into nine linguistic forms (called morphemes by 
linguists). Of these nine, three are lexical (£2X, 4Iink, ~)j 
five are grammatical (~, =A on the verb, ~, il, and =x on the 
adjective) and one is logical (If). 

13Here I recall my own collision with geometry on entering 
high school. The teacher provided no introduction to the subject 
at all but began abruptly with the proof of a theorem. I was 
utterly lost for several days until I happened to read the excellent 
preface to our textbook. The result was that I "fell in love" 
with geometry and uaed to tutor other members of my own classes in 
that subject throughout my high school years. 

14This phrase is from the English poet John Clare (1793-
1864), whose own life epitomized the difficulties of this struggle. 
See Tom Dawe's (1983) poem of empathy dedicated to John Clare. 

150f all the pioneers of modern depth psychology it was 
probably Carl Gustav Jung (1875-1961) who had the best insights 
into this crucial problem of the "availability" of psychic energy. 
See, for example, the summary of Jung's theories in Woodworth and 
Sheehan (1964). The most pervasive mental problem of modern times 
is depression, s problem which can be seen as the inability to 
release one's psychic energy. This block is the mental equivalent 
of physical paralysis. 

16From his poem entitled "The Second Coming". 

17For example, every day of my life I want to malign, 
maim, or murder at least one other person. There is nothing 
unique about my feelings. Compare the Quebec policeman Serge 
Lefebvre, who shot two of his fellow officers. He said that he 
turned of a life of crime "because he was frustrated with his job" 
(The Globe and Mail, Thursday, 10 July 1986, p. A8). It is certainly 
true that the increasing specialization, regulation, monotony. and 
mechanization of modern employment is a source of .great frustrstion 
to many people. Barrett (1962) attributes such nihilistic urges 
to the feelings of powerlessness and hopelesanen tbat have accompanied 

the general 1088 of faith experienced by modern Western Man. We 
note that the recent weakening of the church in the province of 
Quebec has been accompanied by a rapid rise in tbe rate of suicide. 
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18See Chapter 12 of Homer W. Smith (1961) and especially 
p. 191. 19 Note that the whole thrust of modern depth psychology 
(and the psychotherapies based on it) is towards higher levels of 
consciousness, which may allow us to transcend our personal problems 
or st least enable us to view them with a tolerable or livable 
degree of mental pain. 

20From T.S. Eliot's poem "Little Gidding" in the Four Ouartets. 
London: Faber and Faber, 1944, p. 54. 

After this my daily fix of poetry, I find it possible to 
end this paper on an upbeat note, or at least on an upbeat footnote. 
The most hopeful sign to me is that we may now be starting to see 
ourselves as the protectors rather than the exploiters of our 
planet. For example, the defense capability of our space programs 
could be redirected to "dealing with threats from space" (Lemonick 
1986) such as any dangerously large asteroid found to be on a 
collision course with planet earth. 
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GENDER RELATED DIF~EPENCE3 IN LEARN!NG OUT-COMES 

Erika F:~lendiger 
University of Windsor 

AI Cognitlve Learning Ou~~omes 

In Nort~ern America the topic "G~nd'?r :.nd Matt-Iematics" was 

discovered to be Important durlng the early 70th. Frc,m the very 

beginning the question u To ~jhat e:·:tend do boys outperfor",n girls 

in m~them?ti~=.l achievement ?" was and still lS of oarticular 

importance to researchers and to the public as achievement often 

is leaked upon as the one essentlal learning outcome. 

By now an eMtenslve body of research is available. Depending on 

the reseacher, results are summed up quite dlfferently ,e.g. 

_ Bendow and Stanley (1983) come to the conclusion that by age 
13 there is a slgnificant difference In mathematical ability 
between the seMes. and that it is especially pronounced 
among high-scaring exceptionally glfted students, with boys 
outnumbering girls 13 to 1: 

_ according to ~ennema and Carpenter (1982) very little sex 
related difference eMlst. if any; and 

summlng up research carrled aut In nine countries~ 
Schildkamc-~"_:endlger (1<:8:) ·=oncludes that se:, - related 
diffarenc25 In 3chlevement were found ~a var'{ canslderably 
both wi~hln and 3mong count~19s. 

The Se,~ond Interna.tlonal Math2matl~s Study ~ SIMS provides 

achievement results of ~tuden~s fr~m t~ent·! countrl~S at the 

Populatlon A level. tha~ ccrresponds to grade eight in Canada. 

The~e re~ult~ have been analv:ed as to s~x related di ff erences 

us!ng !ffer~nt acoroaches (5ee Hanna !( .~uend:g~r 1986 for further 

det2.11s:. 

Over ;.1: Hie :::2.t;, reveal ~r'2,t:;e::-r~lEl~::d 2,~r,~ e'/ement ,:i fferer:ce: 

132 
mostlv dO not occur. !f they occur. they may be as well !n favour 

of girls as of boys. Slgnlf:cant dlff~renc~~ by country and 

subtests range between +~;~ to -7% only . 

B) Attitudinal Learning Outcomes 

In trying to eMplain sex-related achievement differences and 

course-taking behavi=ur. mOdells have been developed that stress 

the importance of the attitudinal aspects of the learning 

crocess~ in particular the impact of genereal believes about the 

appropriatenes~ of women belng involved in mathematics (Eccles 

1996, Kuendi~er 1984). 

The SIMS contains a whole Questlonnaire focusing on students' 

attitudes towards mathematics. The scale "Gender Stereotyping" is 

directly related to the above mentioned aspect. The graohs below 

display the percentages of extrem responses for each of the four 

items by country. The percentages of female responses are plotted 

against the difference of female minus male percentages. It has 

to be noted that 3 of the 4 items are phrased negativelYl for 

these itc;:ms the '::3.tagories udisa.greE" and 'fstrongly disagree" 

have been c~n~i~Er~~; corasoondingly the cat~gories Ifagree 1f and 

H:itronglv aQree lf have been used fer- th,= ocsitively phrased itam. 

In all graphs the line indicating eMtreme responses of ~O% of the 

boys has been entered. 

With the eMceptl~n of Swaziland the graphs reveal some 

astonis~ing regularities: for all other counties the differences 

between extreme rS5~ons~s i~ 9% Qr more with girls having t~e 

mer2 ~::trem~ r2:::JOnSes. Chi ~ - tests done for each item and and 
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BOYS HAVE J10RE NATURAL J;fAT[-{ ABILITY 
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and r~sccnd oat~~rn C= < 0.001). 

posl~ion than ~i~l$ . Mcreo'.Ier. only th~ answers to the items 

and "bovs nee': more m.ath 

than ';lr1=11 a"-= slgnificantly r~latsd to ~ex e < 0.001), 

Future insoect~cn of the attitude scales will reveal as to what 

degree ~egularlties in the attitudinal learning outcomes apeea,. 

within =ountries ~nd./or between countrles. 
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