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Editor’s foreword

Never has the CMESG ventured so far east. NMever before has the CMESG
left the mainland. And never have we had a meeting more memorable than
our visit to Memorial University in St. John’s, Newfoundland. Special touches
of Newfoundland hospitality have indelibly influenced those who were
ritually initiated as honorary "SCREECHERS™

We are especially appreciative for the excellent representation on our
behalf by Ed Williams. As our local organizer, Ed was instrumental in
arranging the most enjoyable social agenda as well as the facilities for
our professional agenda at Memorial University.

David heeler, one of the group instrumental in founding the CMESS,
announced that he was stepping down as chairman of the CMESSG. David has
agreed to Jjoin the executive as past chairman in order that we may
continue to benefit from his advice and interest in the group.

The major lectures were presented by Ross Finney and Alan Schoenfeld.
Ross Finney kindly offered to present a lecture when the previously
arranged speaker withdrew at the last minute. Alan Schoenfeld del:vered a
Joint lecture to the CMS-and the CMESS.

Charles Uerhille
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Preface
Canadian Mathematics Education Study Group
Groupe canadien d'etude en didactique des mathematiques

The Study Group held its tenth annual meeting at Memorial
University from June 8 to 12, 1986. Travelling distance and CAUT
censure made this much the smallest of the Study Group's
meetings. But the thirty-one participants managed to assemble a
lively programme and to generate a comfortable working
atmosphere.

Working Groups, as always the mainstay of the programme,
this year covered Affective aspects of problem solving (led by
Frances Rosamond, San Diego, and Peter Taylor, Queen's). The
problem of rigour in mathematics teaching (led by Gila Hanna,
OISE, and Lars Jansson, Manitoba), Microcomputers in teacher
education (led by Charles Verhille, UNB) and The role of the
microcomputer in promoting statistical thinking (led by Claude
Gaulin, Laval and Lionel Mendoza, Memorial). In spite of the
small numbers, each group managed to funcation and, miraculously,
to flourish. It is worth repeating here, though it has been said
in reports of earlier meetings, that the opportunity for a group
to work for 9 hours on a single topic contributes powerfully to
the productivity of the meetings and to the atmosphere of
collaboration rather than competition that prevades them.

The principal guest speaker, Alan Schoenfeld (Berkley),
threw himself into all aspects of the conference and delivered a
dynamic address under the modest title of Some thought on problem
solving. The lecture, jointly sponsored by the CMS Education
Committee, gave extremely good value, being full of practical
commonsense, critical analyses, cogent research results, and
provocative speculation. Ross Finney (MIT), generously stepping
in at the last minute to replace an advertised speaker, gave
particpants several glimpses of the material collected by UMAP
and COMAP, Harold Paddock (Memorial) refreshed the meeting with a
witty and wide-ranging talk given from the prospective of a
linguist and a poet on Natural language and mathematics in human
evolution.

Other sessions included reports on the Second International
Mathematics Study and the ICMI study on the impact of computers
and informatics on the teaching of mathematics. Claude Janvier
(UQAM) reviewed some of the research on representation, untaken
by him and his colleagues. Several members gave brief surveys of
the research activity in mathematics education in their
provinces, and the final evening was rounded off with a
dramatised reading of extracts from Lakatos' Proofs and
refutations.

The local organizer, Ed Williams, by adding a banquet, a bus
trip and (opportunistically) a rum up Signal Hill, ensured that
all the participants came away with pleasant memories of the host
province, its capital, and its university.

David Wheeler
Chairman
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IN MEMORIAM DIETER LUNKENBEIN

I would 1like us to use this opportunity to pause for a few
minutes in order to pay tribute to one of our very dear
colleagues: Dieter Lunkenbein, who was still among us at our
conference last year and who died on last September 1llth.

I had the chance to know Dieter and to start working with
him shortly after his arrival to Canada in 1968, at the time he
accepted a position as a research assistant to Professor Zoltan
P. Dienes in Sherbrooke, Que. He was initially supposed to stay
a few years in our country and them to return to Germany, his
native land. But what happened is that he and his family decided
to stay and live in Sherbrooke, where he had spent the last 17
years of his 1life. After taking his Ph.D. in mathematics
education at Laval in the early 70s, he became the inspiring
leader of a group of mathematics educators at the University of
Sherbrooke, as well as a very active collaborator to the Quebec
Ministry of Education and to the three major Quebec mathematics
teachers associations.

In 1977, Dieter Lunkenbein was present at Kingston, Ontario,
when the meeting that led to the creation of our Study Group took

place. Since then he has been a regular participant to our
meetings, making a remarkable contribution as a leader or a
collaborator of many groups, particularly those on the

development of geometrical thinking at the Elementary level, on
research in mathematics education and on children's "errors" in
mathematics.

In 1979, Dieter received the "Abel Gauthier Prize" in
recognition for his exceptional contribution to mathematics
education in Quebec. Besides his involvement in Canada, Dieter
has also been quite active at the international level during the
last ten years. In 1982, he was elected President of the
"Commission Internationale pour 1'Etude et 1l'Amelioration de
1'Enseignement de la Mathematique" in Europe. But unfortunately,
he had to resign from that position before the end of his
mandate, after having gone through a heart operation.

Last year, Dieter had apparently recovered so well that in
June he accepted a position as assistant dean of the Faculty of
Education at the University of Sherbrooke, and that in July he
participated in an international conference in Bielefeld,
Germany. But two months later, alas, we heard the tragic news of
his death at 48 years of age, at an age he still had so much to
offer and to contribute.

To all those who have known Dieter Lunkenbein, his death
means a great loss. On the one hand, we have lost a man with a
rich personality and with remarkable human qualities: Dieter was
friendly, generous, modest, and he had a great respect for
others. On the other hand, we have lost a colleague with
outstanding professional qualities: Dieter was a hard worker,

with high standards of rigor and integrity, ever searching for
truth and strongly dedicated to his work in mathematics
education. Let us have good thoughts for him!

Claude Gaulin
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Confessions of an Accidental Theorist

David Wheeler had both theoretical and pragmatic reasons for inviting
me to write this article. On the theoretical side, he noted that my ideas on
"understanding and teaching the nature of mathematical thinking" have taken
some curious twists and turns over the past decade. Originally inspired by
Pdlya's ideas and intrigued by the potential for implementing them using the
tools of artificial intelligence and information-processing psychology, | set out to
develop prescriptive models of heuristic problem solving -- models that included
descriptions of how, and when, to use Pdlya's strategies. (In moments of verbal
excess | was heard to say that my research plan was to "understand how
competent problem solvers solve problems, and then find a way to cram that
knowledge down students' throats.”) Catch me talking today, and you'll hear
me throwing about terms like metacognition, belief systems, and "culture as the
growth medium for cognition;” there's little or no mention of prescriptive models.
What happened in between? How were various ideas conceived, developed,
modified, adapted, abandoned, and sometimes reborn? It might be of interest,
suggested David, to see where the ideas came from. With regard to pragmatic
issues, David was biunt. Over the past decade I've said a lot of stupid things.
To help keep others from re-inventing square theoretical or pedagogical
wheels, or to keep people from trying to ride some of the square wheels I've

developed, he suggested, it might help if | recanted in public. So here goes. . .

The story begins in 1974, when | tripped over Pdlya’'s marvelous little
volume How to Solve It. The book was a tour de force, a charming exposition

of the problem solving introspections of one of the century's foremost
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mathematicians. (If you don't own a copy, you should.) In the spirit of
Descartes, who had, three hundred years earlier, attempted a similar feat in the
Rules for the Direction of the Mind, Pdlya examined his own thoughts to find
useful patterns of problem solving behavior. The result was a general
description of problem solving processes: a four-phase model of problem
solving (understanding the problem, devising a plan, carrying out the plan,
locking back), the details of which included a range of probiem solving
heuristics, or rules of thumb for making progress on difficult problems. The book
and Pdlya's subsequent elaborations of the heuristic theme (in Mathematics
and Plausible Reasoning, and Mathematical Discovery) are brilliant pieces of

insight and mathematical exposition.

A young mathematician only a few years out of graduate school, | was
completely Bowied over by the book. Page after page, Pdlya described the
problem solving techniques that he used. Though | hadn't been taught them, |
too used those techniques; I'd picked them up then pretty much by accident, by
virtue of having solved thousands of problems during my mathematical career
(That is, I'd been "trained" by the discipline, picking up bits and pieces of
mathematical thinking as | developed). My experience was hardly unique, of
course. In my excitement | joined thousands of mathematicians who, in reading
Pdlya's works, had the same thrill of recognition. In spirit | enlisted in the army
of teachers who, inspired by Pdlya's vision, decided to focus oﬁ teaching their
students to think mathematically instead of focusing merely on the mastery of

mathematical suvbject matter.

To be more accurate, | thought about enlisting in that army. Excited by

my readings, | sought out some problem-solving experts, mathematics faculty
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who coached students for the Putnam exam or for various Olympiads. Their
verdict was unanimous and unequivocal: Pélya was of no use for budding
young problem-solvérs. Students don't learn to solve problems by reading
Pdlya's books, they said. In their experience, students learned to solve
problems by (starting with raw talent and) solving lots of problems. This was
troubling, so | looked elsewhere for (either positive or negative) evidence. As
noted above, | was hardly the first Pdlya enthusiast: By the time | read How to
Solve It the math-ed literature was chock full of studies designed to teach
problem-solving via heuristics. Unfortunately, the results -- whether in first
grade, algebra, calculus, or number theory, to name a few -- were all
depressingly the same, and confirmed the statements of the Putnam and
Olympiad trainers. Study after study produced "promising"” resulits, where
teacher and students alike were happy with the instruction (a typicai
phenomenon when teachers have a vested interest in a new program) but
where there was at best marginal evidence (if any!) of improved problem
solving performance. Despite all the enthusiasm for the approach, there was no
clear evidence that the students had actually learned more as a result of their
heuristic instruction, or that they had learned any general problem solving skills

that transferred to novel situations.

Intrigued by the contradiction -- my gut reaction was still that Pdlya was
on to something significant -- | decided to trade in my mathematician's cap for a
mathematics educator's and explore the issue. Well, not exactly a straight
mathematics educator's; as | said above, math ed had not produced much that
was encouraging on the problem solving front. |turned to a different field, in the

hope of blending its insights with Pdlya's and those of mathematics educators.
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The first task | faced was to figure out why Pélya's strategies didn't work.

If | succeeded in that, the next task was to make them work -- to characterize the
strategies so that students could learn to use them. The approach | took was
inspired by classic problem solving work in cognitive science and artificial
intelligence, typified by Newell and Simon's (1972) Human Problem Solving. In
the book Newell and Simon describe the genesis of a computer program called
General Problem Solver (GPS), which was developed to solve problems in
symbolic logic, chess, and "cryptarithmetic" (a puzzle domain similar to
cryptograms, but with letters standing for numbers instead of letters). GPS
played a decent game of chess, solved cryptarithmetic problems fairly well, and
managed to prove almost all of the first 50 theorems in Russell and Whitehead's
Principia Mathematica -- all in all, rather convincing evidence that its problem

solving strategies were pretty solid.

Where did those strategies come from? In short, they came from detailed
observations of people solving problems. Newell, Simon, and colleagues
recorded many people's attempts to solve problems in chess, cryptarithmetic,
and symbolic logic. They then explored those attempts in detail, looking for
uniformities in the problem solvers' behavior. If they could find those
regularities in people's behavior, describe those regularities precisely (i.e. as
computer programs), and get the programs to work (i.e. to solve problems) then
they had pretty good evidence that the strategies they had characterized were
useful. As noted above, they succeeded. Similar techniques had been used in
other areas: for example, a rather simple program called SAINT (for Symbolic
Automatic [NTegrator) solved indefinite integrals with better facility than most

M.L.T. freshmen. In all such cases, Al produced a set of prescriptive procedures
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-- problem solving methods described in such detail that a machine, following

their instructions, could obtain pretty spectacular results.

It is ironic that no one had thought to do something similar for human
problem solving. The point is that one could turn the man-machine metaphor
back on itself. Why not make detailed observations of expert human problem
solvers, with an eye towards abstracting regularities in their behavior --
regularities that could be codified as prescriptive guides to human problem
solving? No slight to students was intended by this approach, nor was there
any thought of students as problem solving machines. Rather, the idea was to
pose the problem from a cognitive science perspective: "What level of detail is
needed so that students can actually use the strategies one believes to be
useful?" Methodologies for dealing with this question were suggested by the
methodologies used in artificial intelligence. One could make detailed
cbservations of individuals sclving problems, seek regularities in their problem
solving behavior,'and try to characterize those reguiarities with enough
precision, and in enough detail, so that students could take those -

characterizations as guidelines for problem solving. That's what | set out to do.

The detailed studies of problem solving behavior turned up some resuits
pretty fast. In particular, they quickly revealed one reason that attempts to teach
problem solving via heuristics Had failed. The reason is that Pdlya's heuristic
strategies weren't really coherent strategies at all. Pdlya's characterizations
were broad and descriptive, rather than prescriptive. Professional
mathematicians could indeed recognize them (because they knew them, albeit
implicitly), but novice problem solvers could hardly use them as guides to

productive problem solving behavior. In shont, Pdlya's characterizations were
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labels under which families of related strategies were subsumed. There isn't
much room for exposition here, but one example will give the flavor of the

analysis. The basic idea is that when you look closely at any single heuristic

"strategy," it explodes into a dozen or more similar, but fundamentally different,

problem-solving techniques. Consider a typical strategy, "examining special

cases:”

To better understand an unfamiliar problem, you may wish to
exemplify the problem by considering vérious special cases. This
may suggest the direction of, of perhaps the plausibility of, a

solution.
Now consider the solutions to the following three problems.

Problem 1. Determine a formula in closed form for the series

n
2 K(k+1)!
i=1

Problem 2. Let P(x) and Q(x) be polynomials whose coefficients are the
same but in "backwards order:"

P(x) = ag +aix + asx2 + ... apx" , and

Q(x) = ap + an-1X + ap-ox2 + ... agxN.
What is the relationship between the roots of P(x) and Q(x)? Prove your

answer.
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Problem 3. Let the real numbers ag and a1 be given. Define the
sequence {ap} by
an=1/2 (apn-2 + an-1) foreachnz=2.

Does the sequence {ap} converge? If so, to what value?

I'll leave the details of the solutions to you. However, the following
observations are important. For problem 1, the special cases that help are
examining what Happens when where the integer parameter n takes on the
values 1, 2, 3, . . . in sequence; this suggests a general pattern that can be
confirmed by induction. Yet if you try to use special cases in the same way on
the second problem, you may get into trouble: Looking at values n=1,2, 3, . ..
can lead to a wild goose chase. It turns out that the right special cases of P(x)
and Q(x) you to look at for problem 2 are easily factorable polynomials. lf, for
example, you consider

P(x) = (2x + 1) (x + 4) (3x - 2),
you will discover that its "reverse,” Q, is easily factorable. The roots of the P and
Q are easy to compare, and the result (which is best proved another way) is
obvious. And again, the special cases that simplify the third problem are
different in nature. If you choose the values ag=0 and a{=1, you can see what
happens for that particular sequence. The pattern in that case suggests what
happens in general, and (especiélly if you draw the right picture!) leads to a

solution of the original problem.

Each of these problems typifies a large class of problems, and

exemplifies a different special cases strategy. We have:
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Strategy 1. When dealing with problems in which an integer parameter n
plays a prominent role, it may be of use to examine values of n=1,2, 3, ..

. in sequence, in search of a pattern.

Strategy 2, When dealing with problems that concern the roots of

polynomials, it may be of use to look at easily factorable polynomials.

Strategy 3. When dealing with problems that concern sequences or
series that are constructed recursively, it may be of use to try initial values
of 0 and 1 -- if such choices don't destroy the generality of the processes

under investigation.

Needless to say, these three strategies hardly exhaust "special cases.”
At this level of analysis -- the level of analysis necessary for implementing the
strategies -- one could find a dozen more. This is the case for almost all of
Pdlya's strategies. In consequence the two dozen or so "powerful strategies” in
How to Solve It are, in actuality, a collection of two or three hundred less
"powerful,” but actually usable strategies. The task of teaching problem solving
via heuristics -- my original goal --thus expénded to (1) explicitly identifying the
most frequently used techniques from this long list, (2) characterizing them in
sufficient detail so that students could use them, and (3) providing the

appropriate amount and degree of training.

[Warning: It is easy to underestimate both the amount of detail and
training that are necessary. For example, to execute a moderately complex
"strategy” like "exploit an easier related problem™ with success, you have to (a)

think to use the strategy (non-triviall); (b) know which version of the strategy to
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use; (c) generate appropriate and potentially useful easier related problems;
(d) make the right choice of related problem; (e) solve the problem; and (f) find a
way to exploit its solution to help solve the original problem. Students need

instruction in all of these.]

Well, this approach made progress, but it wasn't good enough. Fleshing
out Pdlya's strategies did make them implementable, but it revealed a new
problem. An arsenal of a dozen or so powerful techniques may be manageable
in problem solving. But with all the new detail, our arsenal comprised a couple
of hundred problem solving techniques. This caused a nevaroblem, which ['ll

introduce with an analogy.

A number of years ago, | deliberately put the problem

[ x_dx
) x2-9

as the first problem on a test, to give my students a boost as they began the
exam. After all, a quick lcok at the fraction suggests the substitution u= x2 -9,
and this substitution knocks the problem off in just a few seconds. 178 students
took the exam. About half used the right substitution and got off to a good stén.
as | intended. However, 44 of the students, noting the factorable denominator in
the integrand, used partial fractions to express x/x2-9 in the form [A/x-3 + B/x+3]
-- correct but quite time-consuming. They didn't do too well on the exam. And
17 students, noting the (u2 - a2) form of the denominator, worked the problem
using the substitution x = 3sin6. This too yields the right answer -- but it was
even more time-consuming, and the students wound up so far behind that they

bombed the exam.
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Doing well, then, is based on more than "knowing the subject matter;" it's
based on knowing which techniques to use and when. If your strategy choice
isn't good, you're in trouble. That's the case in techniques of integration, when

“there are only a dozen techniques and they're all algorithmic. As we've seen,
heuristic techniques are anything but algorithmic, and they're much harder to
master. In addition, there are hundreds of them -- so strategy selection
becomes even more important a factor in success. My point was this. Knowing

the strategies isn't enough. You've got to know when to use which strategies.

As you might expect by now, the Al metaphor provided the basic
a;ﬁproach. | observed good problem solvers with an eye towards replicating
their heuristic strategy selection. Generalizing what they did, | came up with a
prescriptive scheme for picking heuristics, called a "managerial strategy.” It told
the student which strategies to use, and when (unless the student was sure he
had a better idea). Now again, this approach is not quite as silly as it sounds.
Indeed, the seeds of it are in Pdlya ("First. You have to understand the
problem."). The students weren't forced to follow the managerial strategy like
little automata. But the strategy suggested that heuristic techniques for
understanding the problem should be used first, planning heuristics next,
exploration heuristics in a particular order (the metric was that the further the
exploration took you from the original problem, the later you should consider it),
and so on. In class we talked about which heuristic technique we might use at
any time, and why. Was the approach reductive? Maybe so. But the bottom line
is that this combination of making the heuristics explicit, and providing a

managerial strategy for students, was gloriously successful.



13

Confessions,

The final examinations for my problem solving courses had three parts.
Part 1 had problems similar to problems we had worked in the course. Part 2
had problems that could be solved by the methods we had studied, but the
problems did not resemble ones we had worked. Part 3 consisted of problems
that had stumped me. | had looked through contest problem books, and as
soon as | found a problem that baffled me, | put it on the exam! The students did
quite well even on part 3; some solved problems on which | had not made

progress, in the same amount of time.

Thus ended Phase | of my work. At that point -- the late 1970's to 1980 --
| was pretty happy with the instruction, and was getting pretty good resulits.
Then something happened that shook me up quite a bit. Thanks to a National
Science Foundation grant | got a videotape machine, and actually looked at

students’ problem solving behavior. What | saw was frightening.

Even discounting possible hyperbole in the last sentence, one statement
in the previous paragraph sounds pretty strange. I'd been teaching for more
than a decade and doing research on problem solving for about half that time.
How can | suggest that, with all of that experience, | had never really looked at

students' problem solving behavior?

With the videotape equipment, | brought students into my office, gave
them problems (before, after, and completely independently of my problem
solving courses), and had them work on the problems at length. Then, at
leisure, | looked at the videotapes and examined, in detail, what the students
actually did while they worked on the problems. What | saw was nothing like

what | expected, and nothing like what | saw as a teacher. That's because as
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teachers (and often as researchers) we look at a very narrow spectrum of
student behavior. Generally spéaking, we only see what students produce on
tests; that's the product, but focusing on the product leaves the process by
which it evolved largely invisible. (There's a substantial difference between
watching a 20-minute videotape of a student working a problem and reading
the page or two of "solution” that student produced in those 20 minutes. The
difference can be mind boggling.) In class, or in office hours, we have
conversations with the students, but the conversations are directed toward a
goal -- explaining something the student comes prepared to understand, and
knows is coming. The student is primed for what we have to say. And that's the
point. When we give students a calculus test and there's a max-min proplem in
it, students know it's a max-min problem. They've just finished a unit on max-
min problems, and they expect to see a max-min probiem on the exam. In other
words, the context tells the students what mathematics to use. We get tc see
them at their very best, because (a) they're prepared, and (b) the general |
context puts them in the right ballpark and tells them what procedures to use.
By way of analogy, you don't discover whether kids can speak grammatically (or
think on their feet) when you given them a spelling test, after they've been given
the list of words they'll be tested on. (Even when | taught the problem solving
class, | was showing students techniques that they knew were to be used in the
context of the problem solving class. Hence they came to my final prepared to

use those techniques.)

In my office, problems come out of the biue and the context doesn't tell
students what methods are appropriate. The result is that | get to see a very
different kind of behavior. One problem used in my research, for example, is the

following:
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Problem 4, Three points are chosen on the circumference of a circle of
radius R, and the triangle with those points as vertices is drawn. What
choice of points results in the triangle with largest possible area? Justify

your answer as well as you can.

Though there are clever solutions to this problem (see below), the fact is
that you can approach it as a standard multivariate max-min problem. Virtually
none of my students (who had finished 3rd-semester calculus, and who knew
more than enough mathematics to knock the problem off) approached it that
way. One particular pair of students had just gotten A's in their 3rd-semester
calculus class, and each had gotten full credit on a comparably difficult problem
on their exam. Yet when they worked on this problem they jumped into another
(and to me, clearly irrelevant) approach altogether, and persisted at it for the full
amount of allotted time. When they ran out of time, | asked them where they
were going with that approach and how it might help them. They couldn't tell
me. That solution attempt is best described as a twenty-minute wild gocse

chase.

Most of my videotapes showed students working on problems that they
"knew" enough mathematics to solve. Yet time and time again, students never
gbt to use their knowiedge. They read the problem, picked a direction (often in
just a second or two), and persevered in that direction no matter what. Almost
sixty percent of my tapes are of that nature. But perhaps the most embarrassing
of the tapes is one in which | recorded a student who had taken my problem

solving course the year before.
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There is an elegant solution to Problem 4, which goes as follows.
Suppose the three vertices are A, B, and C. Hold A and B fixed, and ask what
choice of C gives the largest area. It's clearly when the height of the triangle is
maximized -- when the triangle is isosceles. So the largest triangle must be
isosceles. Now you can either maximize isosceles triangles (a one-variable
calculus problem), or finish the argument by contradiction. Suppose the largest
triangle, ABC, isn't equilateral. Then two sides are unequal; say AC = BC. If
that's the case, however, the isosceles triangle with base AB is larger than ABC

-- a contradiction. So ABC must be equilateral.

The student sat down to work the problem. He remembered that we'd
worked it in class the previous year, and that there was an elegant solution. As
a result, he approached the problem by trying to so something clever. In an
attempt to exploit symmetry he changed the problem he was working on
(without acknowledging that this might have serious consequences). Then,
pursuing the goal of a slick solution he missed leads that clearly pointed to a
straightforward solution. He also gave up potentially fruitful approaches that
were cumbersome because "there must be an easier way." In short, a cynic
would argue that he was worse off after my course than before. (That's how | felt

that afternoon.)

In any case, | drew two morals from this kind of experience. The first is
that my course, broad as it was, suffered from the kind of insularity | discussed
above. Despite the fact that | was teaching "general problem solving
strategies,” | was getting good results partly because | had narrowed the
context: students knew they were supposed to be using the strategies in class,

and on my tests. If | wanted to affect the students’ behavior in a lasting way,
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outside of my classroom, | would have to do something different. [Note: | had
plenty of testimonials from students that my course had "made me a much better
problem solver,"” "helped me do much better in all of my other courses,” and
"changed my life.” I'm not really sanguine about any of that.] Second and more
important, | realized that there was a fundamental mistake in the approach | had
taken to teaching problem solving -- the idea that | could, as | put it so
indelicately in the first paragraph of this paper, cram problem solving

knowledge down my students' throats.

That kind of approach makes a naive and very dangerous assumption
about students and learning. It assumes, in essence, that each student comes
to you as a tabula rasa, that you can write you problem solving "message"” upon
that biank slate, and that the message will "take.” And it just ain't so. The
students in my problem solving classes were the successes of our system.
They were at Hamilton College, at Rochester, or at Berkeley because they were
good students; they were in a problem solving class (which was known as a
killer) because they liked mathematics and did pretty well at it. They come to
the class with well engrained habits -- the very habits that have gotten them to
the class in the first place, and accounted for their success. |ignore all of that
(well, not really; but a brief caricature is all I've got room for) and show them
"how to do it right." And when they leave the classroom and are on their own...
well, let's be realistic. How could a semester's worth of training stack up against
an academic lifetime's worth of experience, especially if the course ignores that
experience? (Think of what it takes to retrain a self-taught musician or tennis
player, rather than than teach one from scratch. Old habits die very very hard, if

" they die at all.)
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Well, the point is clear. If you're going to try to affect students'
mathematical problem solving behavior, you'd better understand that behavior.
That effort was the main thrust of what (linear type that | am) I'll call phase 2.
Instead of trying to do things to (and with) students, the idea was to understand
what went on in their heads when they tried to do mathematics. Roughly
speaking, the idea was this. Suppose | ask someone to solve some
mathematics problems for me. For the sake of a permanent record, | videotape
the problem solving session (and the person talks out loud as he or she works,
giving me a verbal "trace" as well.). My goal is to understand what the person
did, why he or she did it, and how those actions contributed to his or her
success or failure at solving the problem. Along the way I'm at liberty to ask any
questions | want, give any tests that seem relevant, and perform any
(reasonable) experiments. What do | have to look at, to be reasonably confident
that I've focused on the main determinant of behavior, and on what caused

success or failure?

The details of my answer are xvi+409 pages long. The masochistic
reader may find them, as well as the details of the brief anecdotes sketched
above, in my (1985) Mathematical Problem Solving. In brief, the book
suggested that if you're going to try to make sense of what people do when they

do mathematics, you'd better look at:

A. "Cognitive resources,” one's basic knowledge of mathematical facts
and procedures stored in LTM (long term memory.) Most of modern
psychology, which studies what's in a person’s head and how that

knowledge is accessed, is relevant here.
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B. Problem solving strategies or heuristics. I've said enough about these.

C. Executive or "Control" behavior. [For the record, this behavior is often
referred to as "metacognition.”] | discussed this above as well. lt's not
just what you know (A+B above), it's how you use it. The issue in the
book was how to make sense of such things. it's tricky, for the most
important thing in a problem solving session may be something that
doesn't take place -- asking yourseif if it's really reasonable to do

something, and thereby forestalling a wild goose chase.

D. Belief systems. | haven't mentioned these yet, but | will now.

Beliefs have to do with your mathematical weltanschauung, or world
view. The idea is that your sense of what mathematics is all about will
determine how you approach mathematical problems. At the joint CMS/CMESG
meetings in June 1986, Ed Williams told me a story that illustrates this category.
Williams was one of the organizers of a problem solving contest which

contained the following problem:

"Which fits better, a square peg in a round hole or a round peg in a

square hole?"

Since the peg-to-hole ratio is 2/x (about .64) in the former case and n/4
(about .79) in the latter, the answer is "the round peg.” (Since the tangents line
up in that case and not in the other, there's double reason to choose that

answer.) It seems obvious that you have to answer the question by invoking a
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computation. How else, except with analytic support, can you defend your

claim?

It may be obvious to us that an analytic answer is called for, but it's not at
all obvious to students. More than 300 students -- the cream of the crop --
worked the problem. Most got the right answer, justifying it on the basis of a
rough sketch. Only four students out of more than 300 justified their answer by
comparing areas. (I can imagine a student saying "you just said to say which fit
better. You didn't say to prove it.") Why? I'm sure the students could have
done the calculations. They didn't think to, because they didn't realize that
justifying one's answer is a necessary part of doing mathematics (from the

mathematician's point of view).

For the sake of argument, I'm going to state the students' point of view (as

described in the previous paragraph) in more provocative form, as a belief:

Belief 1: If you're asked your opinion about a mathematical question, it
suffices to give your opinion, although you might back it up with evidence
if that evidence is readily available. Formal proofs or justifications aren't
necessary, unless you're specifically asked for them -- and that's only

because you have to play by the rules of the game.

We've seen the behavioral corollary of this belief, as Williams described it.
Unfortunately, this belief has lots of company. Here are two of its friends, and

their behavioral corollaries.
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Belief 2: All mathematics problems can be solved in ten minutes or less, if
you understand the material. Coroligry: students give up after ten minutes

of work on a "problem.")

Belief 3. Only geniuses are capable of discovering, creating, and
understanding mathematics. Corollary: students expect to take their
mathematics passively, memorizing without hope or expectation of

understanding.

An anecdote introduces one last belief. A while ago | gave a talk
describing my research on problem solving to a group of very talented
undergraduate science majors at Rochester. | asked the students to solve
Problem 5, given in Fig. 1. The students, working as a group, generated a
correct proof. | wrote the proof (Fig. 2) on the board. A few minutes later | gave

the students Problem 6, given in Fig. 3.
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In the figure below, the circle with center C is
tangent to the top and bottom lines at the points
P and Q respectively.

a. Prove that PV = QV.

b. Prove that the line segment CV bisects angle PVQ.

- Fig. 1 --
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Proof:

Draw in the line segments CP, CQ, and CV. Since CP and CQ are
radii of circle C, they are equal; since P and Q are points of tangency,
angles CPV and CQV are right angles. Finally since CV=CV, triangles
.CPV and CQYV are congruent.

a. Corresponding parts of congruent triangles are congruent, so
PV =QV.

b. Corresponding parts of congruent triangies are congruent, so
angle PVC = angle QVC. Thus CV bisects angle PVQ.

-- Fig. 2 --
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You are given two intersecting straight lines and

a point P marked on one of them, as in the figure
below. Show how to construct, using straightedge
and compass, a circle that is tangent to both lines
and that has the point P as its point of tangency to
the top line.

-- Fig. 3 --
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Students came to be board and made the following conjectures, in order:

a. Let Q be the point on the bottom line such that QV = PV. The center of

the desired circle is the midpoint of line segment PQ. (Fig. 4a).

b. Let A be the segment of the arc with vertex V, passing through P, and
bounded by the two lines. The center of the desired circle is the

midpoint of the arc A. (Fig. 4b).

c. Let R be the point on the bottom line that intersects the line segment
perpendicular to the top line at P. The center of the desired circle is the

midpoint of line segment PR. (Fig. 4c).

d. Let L4 be the line segment perpendicular to the top line at P, and Ls

the bisector of the angle at V. The center of the desired circle is the
point of intersection of Ly and Lo. (Fig. 4d).



—Fig- 4~

Students’ conjectured solutions
(Short horizontal lines denote midpoints.)

The proof that the students had generated -- which both provides the
answer and rules out conjectures a, b, and ¢ -- was still on the board. Despite
this, they argued for more than ten minutes about which construction was right.
The argument was on purely empirical grounds (that is, on the grounds of which
construction looked right), and it was not resolved. How could they have this
argument, with the proof still on the board? | believe that this scene could only
take place if the students simply didn't see the proof problem as being relevant

to the construction problem. Or again in provocative form,
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Belief 4; Formal mathematics, and proof, have nothing to do with
discovery or invention. Corollgry: the results of formal mathematics are

ignored when students work discovery problems.

Since we're in "brief survey mode,” | don't want to spend too much time
on beliefs per se. |think the point is clear. If you want to understand students'
mathematical behavior, you have to know more than what they "know." These
students "knew" plane geometry, and how to write proofs; yet they ignored that
knowledge when working construction problems. Understanding what went on -
in their heads was (and is) tricky business. As | said, that was the main thrust of

phase 2.

But enough of that; we're confronted with a real dilemma. The behavior |
just described turns out to be almost universal. Undergraduates at Hamilton
College, Rochester, and Berkeley all have much the same mathematical werld
view, and the (U.S.) National Assessments of Educational Progress indicate
that the same holds for high school students around the country. How in the
world did those students develop their bizarre sense of what mathematics is all

about?

The answer, of course, lies in the students' histories. Beliefs about
mathematics, like beliefs about anything else -- race, sex, and politics, to name
a few -- are shaped by one's environment. Your develop your sense of what
something is all about (be that something mathematics, race, sex, or politics) by
virtue of your experiences with it, within the context of your social environment.
You may pick up your culture's values, or rebel against them -- but you're

shaped by them just the same.
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Mathematics is a formal discipline, to which you're exposed mostly in
schools. So if you want to see where kids' views about mathematics are
shaped, the first place to go is into mathematics classrooms. | packed up my
videotape equipment, and off | went. Some of the details of what | saw, and
how | interpreted it, are given in the in-press articles cited in the references. A

thumbnail sketch of some of the ideas follows.

Borrowing a term from anthropologists, what | observed in mathematics
classes was the practice of schooling -- the day-to-day rituals and interactions
that take place in mathematics classes, and (de facto ) define what it is to do
mathematics. One set of practices has to do with homework and testing. The
name of the game in school mathematics is "mastery:" Students are supposed
to get their facts and procedures down cold. That means thét most homework
problems are trivial variants of things the students have already learned. For
example, one "required” construction in plane geometry (which students
memorize) it to construct a line through a given point, parallel to a given line. A
homework assignment given a few days later contained the following problem:
Given a point on a side of a triangle, construct a line through that point paralle!
to the base of the triangle. This isn't a problem; it's an exercise. It was one of
27 "problems” given that night; the three previous assignments had contained
28, 45, and 18 problems respectively.. The test on locus and constructions
contained 25 problems, and the students were expected to finish (and check!)
the test in 54 minutes -- an average of two minutes and ten seconds per
problem. ls it any wonder that students come to believe that any problem can

be solved in ten minutes or less?
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I also note that the teacher was quite explicit about how the students
should prepare for the test. His advice -- well intentioned -- to the students
when they asked about the exam was as follows: "You'll have to know all your
constructions cold so that you don't spend a lot of time thinking about them.” In
fact, he's right. Certain skills should be automatic, and you shouldn't have to
think about them. But when this is the primary if not the only message that
students get, they abstract it as a belief: mathematics is mostly, if not all,

memorizing.

Other aspects of what I'll call the "culture of schooling” shape students'
view of what mathematics is all about. Though there is now a small movement
toward group problem solving in the schools, mathematics for the most partis a
solitary endeavor, with individual students working alone at their desks. The

message they get is that mathematics is a solitary activity.

They also get a variety of messages about the nature of the mathematics
itself. Many word problems in school tell a story that requires a straightforward
calculation (for example, "John had twenty-eight candy bars in seven boxes. |f
each box contained the same number of candy bars, how many candy bars are
there in each box?"). The students learn to read the story, figure out which
calculation is appropriate, do the calculation, and write the answer. An oft-
quoted problem on the third National Assessment of Educational Progress
(secondary school mathematics) points to the dangers of this approach. |t
asked how many buses were needed to carry 1128 soldiers to their training site.
if each bus holds 36 soldiers. The most frequent response was "31 remainder

12" -- an answer that you get if you follow the practice for word problems just
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described, and ignore the fact that the story (ostensibly) refers to a "real world"

situation.

Even when students deal with "applied" problems, the mathematics that
they learn is generally clean, stripped of the complexities of the real world.
Such problems are usually cleaned up in advance -- simplified and presented
in such a way that the techniques the students have just studied in class will
provide a "solution.” The result is that the students don't learn the delicate art of
mathematizing -- of taking complex situations, figuring out how to simplify them,
and choosing the relevant mathematics to do the task. Is it any surprise that
students aren't good at this, and that they don't "think mathematically” in.real

world situations for which mathematics would be useful?

I'm proposing here that thorny issues like the "transfer problem” (why
students don't transfer skills they've learned in one context and use them in
other, apparently related ones) and the failure of a whole slew of curriculum
reform movements (e.g. the "applications” movement a few years back) have, at
least in part, cultural explanations. Suppose we accept that there is such a
thing as school culture, and it operates in ways like those described above.
Curricular reform, then, means taking new curricula (or new ideas, or...) and
shaping them so that they fit into the school culture. In the case of
"applications,” it means cleaning problems up so that they're trivial little
exercises -- and when you do that, you lose both the power, and the potential
transfer, of the applications. In that sense, the culture of schooling stands as an
obstacle to school reform. Real curricular reform, must in part involve a reform

of school culture. Otherwise it doesn't stand a chance.
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Well, here | am arguing away in the midst of -- as though you haven't
guessed -- phase 3. There are two main differences from phase 2. The first is
that I've moved from taking snapshot views of students (characterizing what's in
a student's head when the student sits down to work some problems) to taking a
motion picture. The question I'm exploring now is: how did what's in the
student's head evolve the way it did? The second is that the explanatory
framework has grown larger. Though ! still worry about "what's going on in the
kid's head," | look outside for some explanations -- in particular, for cultural

ones.

And yet plus ¢a change, plus ¢a reste le méme. | got into this business
because, in Halmos's phrase, | thought of problem solving as "the heart of
mathematics” -- and | wanted students to have access to it. As often happens, |
discovered that things were far more complex than | imagined. At the micro-
level, explorations of students’ thought processes have turned out to be much
more detailed (and interesting!) than | might have expected. | expect to spend a
substantial part of the next few years locking at videotapes of students learning
about the properties of graphs. Just how do they make sense of mathematical
ideas? Bits and pieces of "the fine structure of cognition” will help me to
understand students’ mathematical understandings. At the macro-level, I'm
now much more aware of knowledge acquisition as a function of cultural
context. That means that | get to play the role of amateur anthropologist -- and
that in addition to collaborating with mathematicians, mathematics educators, Al
researchers, and cognitive scientists, | now get to collaborate with
anthropologists and social theorists. That's part of the fun, of course. And that's
only phase 3. | can't tell you what phase 4 will be like, but there's a good

chance there will be one. Like the ones that preceded it, it will be based in the
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wish to understand and teach mathematical thinking. It will involve learning
new things, and new colleagues from other disciplines. And it's almost certain
to be stimulated by my discovery that there's something not right about the way

I've been looking at things.

Are there any morals to this story -- besides the obvious one, that I've
been wrong so often in that past that you should be very skeptical about what
I'm writing now? | think there's one. My work has taken some curious twists
and turns, but there has been a strong thread of continuity in its development; in
many ways, each (so-called) phase enveloped the previous ones. What
caused the transitions? Luck, in part. | saw new things, and pursued them. But
| saw them because they were there to be seen. Human problem solving
behavior is extraordinarily rich, complex, and fascinating -- and we only
understand very little of it. It's a vast territory waiting to be explored, and we've
only explored the tiniest part of that territory. Each of my "phase shifts" was
precipitated by observations of students (and, at times, their teachers) in the
process of grappling with mathematics. | assume that's how phase 4 will come
about, for I'm convinced that -- putting theories and methodologies, and tests,
and just about everything else aside -- if you just keep your eyes open and take
a close look at what people do when they try to sclve problems, you're almost

guaranteed to see something of interest.
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Applications of Undergraduate Mathematics

Ross L. Finney

In recent years there has been a phenomenal growth in the professional use
of mathemalics, a growth so rapid that it has outstripped the capacity of
many courses in our schools and colleges to train people for the mathemati-
cal tasks that are expected of them when they take employment. People
who take jobs with the civilian government, the military, or industry, or
who enter quantitative fields as graduate students or faculty, discover with
increasing frequency these days that they lack acquaintance with important
mathematical models and experience in modeling. Many of them also find
to their distress that they have not been trained (o be self-educating in the
application of mathematics.

This discovery, perhaps 1 should say predicament, is not the exclusive
domain of people who enler lields that depend for their progress upon
advanced mathematics. In Louisville, Kentucky, the profession of interior
decorating is highly competitive. To stay in business, a decorator must be
able 10 make accurate cost estimates. To do so without delay requires
facility with decimal arithmetic, fractions, and area formulas. People hired
as stenographers by The First National Bank of Boston discover that the
work is done not on typewriters but on computer-driven word processors.
Many stores now use their cash registers for inventory control. The keys on
business machines have multiple functions, and the functions must be

Ross L. Finney is currently Senior Lecturer at MIT and Project Director of the Undergraduate
Mathemalics Applications Project at Educational Development Center, Inc. e was a
Fulbright Scholar at the Poincare Institute in Pasis, France, in 1955, and earned a Ph.D. in
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curricula and 1exts for schools w anglo-phone Afiica tn 1977 he was awarded the Max
Beberman Awaid of the Winois Councit of Teachers of Mathematics for exceptional contribu-
tions in the fickd of teacher cducation in mathematics
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performed in the vight order. As these examples suggest, almost every
professional field now uses mathematics of some kind.

Since 1976 the U.S. National Science Foundation has provided support
for a unique muli-disciplinary response 10 the need for instruction in
applied mathematics: the Undergraduate Mathematics Applications Pro-
ject. UMAP. as the Project is called. produces lesson-length modules, case
studies, and monogeaphs from which readers can learn how to use the
mathemaltical sciences to solve problems that arise in other fields. The
applications presented by UMAP cover a broad range from chemistry,
engineering and physics, 10 biomedical sciences, psychology, sociology,
economics, policy analysis. harvesting, international relations, earth sci-
ences, navigation, and business and vocational pursuits.

UMAP modules are self-contained, in the sense that anyone who has
fulfilled the prerequisites listed inside the front covers can reasonably
expect to read the modules and solve the problems without help. They
cover about as much material as a teacher would put inlo an hour’s lecture.
There are exercises, model exams keyed to objectives, and answers. The
modules are reviewed thoroughly by teachers as well as by professionals in
the fields of application, revised, tested in classrooms throughout the world,
reviewed by individual students 10 be sure they are as self-contained as they
should be, and revised again before publication.

The modules are used for individual study, to supplement standard
courses, and in combination 1o provide complete text coverage for courses
devoted to applications of the mathematical sciences. These sciences, which
I shall simply call mathematics, include probability and statistics, opera-
tions research, computer science and numerical methods as well as the
elementary and advanced aspects of analysis, algebra and geometry.

UMAP case studies are not intended 1o be as self-contained as are the
modules. The studies contain data and background information for a
mathematical modeling problem as a field professional would collect it, but
readers are asked to develop their own models for solving the problems.
The data are seal, the problems current. Teachers are given the solutions of
the problems as they were originally worked out by the professional applied
mathematicians who furnished the problems to the project. Each study has
a teacher’s guide developed through classroom use. The case studies are
used in mathematical modeling courses, and may take several weeks to
complete. One of their striking features is that, like the UMAP modules,
they expect no previous experience with mathematical modeling on the part
of cither instructor or student. Nor do they require any previous knowledge
of the applied field. Anyone with the right mdlhenmmal background can
work through them successfully.

UMAFP's expository monographs are works of cighly pages or more that
make availuble o students in upper level courses, and to faculty in diverse
ficlds, significant applications that are not in commercial texts. They also
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.
give users of standard texts access to additional and complementary profes-
sional methods. Like all UMAP materials, the monographs are written for
students (0 read, and contain exercises with answers.

Although UMAP modules, case studies and monographs are similar (o
traditional texts in that they provide instruction for students with suitable
examples and exercises, they differ dramatically in their objectives: a
UMAP unit follows the logic of the practitioner, not the syllabus of a
course; it presents mathematics as a natural constituent of a whole prob-
lem, not as a defined niche in a planned curricutum. Because of heir
allegiance to diverse masters, UMAP curriculum materials reflect both the
excitement and disarray of current practice rather than the artificial order
of traditional textbooks. They provide an entrée to the useful mathematics
of the next decade. Here are some examples, taken from UMAP modules.

Measuring cardiac outpul

Brindel Horelick and Sinan Koont wrote Measuring Cardiac Output (o
teach an application of numerical integration in medicine.

Your cardiac output is the amount of blood your heart pumps in one
minule. [t is usually measured in liters per minute. A person awake but al
rest, perhaps reading, might have a cardiac output of five or six liters a
minute. A marathon runner might have a cardiac output of more than
thirty liters a minute.

A change in cardiac outpul may be a symptom or a consequence of
disease, and doctors occasionally wanl to measure it. One technique for
doing so, one that works when the heart’s output is fairly constant, calls for
injecting a small amount of dye in a main vein near the heart. Five or ten
milligrams will do. The dye is drawn into the heart and pumped through
the lungs and into the aorta, where ils concentration is measured as the
blood flows past a Swan-Ganz catheter. Figure 1 shows a typical set of
readings in milligrams per lites, taken every second for aboul twenty-five
seconds.

You will notice in Figure | that the concentration stays at 0 for the first
few seconds. 11 takes that long for the first of the dye to pass through the
heart and lungs. The concentration then begins 10 rise. 1t reaches a peak al
about 12 seconds, then declines steadily for another seven seconds. Instead
of tapering to 0 at that point, however, the concentration rises slightly and
holds steady. Some of the dye that went through first has begun to
reappear.

The determination of the patient’s cardiac output requires calculating
the area under the curve that gives the concentration of the first-time-

38

Ross L. Finney

] e e
L ] . 'Y
3 - .
. ®
"\_ L]
£ 2 .
P L ]
i . o
] AP B
e Y [ W
0 5 10 15 20 25
Seconds

Figure 1. Typical readings of dye concentration in the aost

Fi _ 4 - it when 5 mg of dye are
mjected nto a main vein near the heart at ¢ = ’

0 seconds.

ficticious ones, as shown in Figure 2. The chosen points continue the
d()wnwurd trend of the points that precede them. The estimates involved in
selecting the ficticious poinis seem reasonable, and any erross introduced
by lhc_ rgpla.cemcnl are hkely to be small in comparison with other
uncertambies i measurement.

'I?he concentration curve can now be sketched, but there is no formula
{or it that can be integrated. This is often the case with data generated in
the laboratory or collected in the field and there are standard ways to cope
Ql\ the data here there is no reason to use anything more sophisticated lh[:u;
Simpson’s rule or the trapezoidal rule, which is precisely what Horelick and
Koot proceed 10 do. The patient’s cardiac outpui is then calculated by
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l'lgnlrc 2. The cive shown here is fitted 10 the real and
height above the hosizontal axis approximates the conce
passing the monitoring poind i (his patienr’s aosta for the first e

through dye. To find this curve, or at least to make a satisfactory version of
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dividing the estimate oblained for the integial (cxprcssgq in nyil!igrum
minutes per liter) into the number of milligrams of dye originally injected.
The result: 6.8 liters per minute.

Chemistry

Ralph Grimaldi’s module, Balancing Chemical Reactions with Matrix Meth-
ods and Computer Assistance, shows how matrix methods may be used to
balance chemical reactions. The unit gives a concrele setling for the
concepts of linear independence and dependence in vector spaces of
dimension four or more.
In the reaction
Pb(N,), + CR(Mn0Q,),= CR O, + MnO, + PbO, + NO,

which takes place in a basic solution, the atoms from lead azide and -

chromium permanganate combine into four ulhcr. pro«!ucls: chAmmium
oxide, manganese dioxide, trilead tetroxide, and nitric oxide. To find how
much of each of the original reactants has to be present (0 produce hgw
much of each of the products, we “balance” the reaction. That is, we fl.nd
integers u, v, w, x, y, and z, with the property that u molecules 9[ fead azide
plus v molecules of chromium permanganale produce exactly w molecules
of chromium oxide, x molecules of manganese dioxide, y molecules of
trilead tetroxide, and z molecules of nitric oxide. Schematically,

u PB(N,), + 0 CR(MnO,),= w CR,0, + x Ma0, + y PB,O, + z NO.

The numbers u, v, w, x, y, and z are integers chosen to make the number of
atoms of each element the same on each side of the reaction. To balance
the reaction, we balance the atoms.

To balance the atoms, we assign a basic unit vector to each element. I
does not matter which vector we assign to which element, as long as we
assign one apiece and keep track of the assignment. The assignment

Pb = (1,0,0,0,0)
N =(0,1,0,0,0)
Cr=(0,0,1,0,0)
Mn = (0,0,0, 1,0)
0=(0,0,0,0,1)

will do as well as any. We use five-dimensional vectors because there are.
five elements. A
We then replace the chemical reaction with the vector equation

u(1, 6,0,0,0)+ o(0,0, 1,2, 8) = w(0,0,2,0,3) 1 x(0,0,0.1,2)
F a3, 000,40 4 20, 1,0,0, 1)

——— e v— ——
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You can see where the vector entries come from. For every u lead atoms in
lead azide, Pb{N,),, there are 61 nitrogen atoms; hence the utl, 6, 0, 0, 0)
in the vector equation. For every v chromium atoms on the left side of the
reaction, there are also 20 manganese atoms and 8o oxygen atoms. And so
on for the other four integers, w, x, y, and z.

The idea now is 1o solve the vector equation for the integers u, o, w, x, y,
and z: To do so we rewrite the equation as a system of five linear equations
in six variables. Six variables are too many for a unique solution, but we
can arbitragily assign the value | 10 the variable 1 to match the number of
unknowns 1o the number of equations. We may want to change the value
assigned 10 u later, but w =1 will do for now. The resulting system in
matrix form is

0 0 0 3 0lje i
0 0 0 0 1 w 6
-1 2 0 0 O} xt=l0O
-2 0 L 0 O]y 0
-8 3 2 4 t}H]: 0

This system of equations can be solved by a short computer program
listed in Grimaldi’s module. The solution given by the computer when
u=1is

0=293333, w = 146667, x = 5.86667, y = 0.33333, z = 6.

These values are not the integers we seek because they are not all integers.
Once we notice that 0.03333 is about 1/30 and 0.06667 about 2/30,
however, we know enough (o scale everything by taking # equal to 30
instead of 1. The resulting solution is

=300=288 w=44,x =176,y = 10, z = 180.

The module discusses what to do if at {irst you do not recognize the
integer solution that underlies the computer's decimal solution. It also
discusses an example in which reducing the number of variables 10 match
the number of equations does not seem to work. The difficulty is traced to
the fact that the reaction being balanced consists of two reactions that take

place simultancously, independently of each other. Each must be analyzed
apart from the other.

Scheduling prison guards

James M. Maynaid’s A Linear Programming Model for Scheduling Prison
Guards describes a linear program that Maynard developed for the Pennsyl-

vania State Bureau of Corrections. As the newspaper clippings reproduced
in Figures 3 and 4 show, the Bureau was concerned in the middle 1970's
about the increasing cost of paying prison guards to work overtime. hy the
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At 8 State Prisons

Overtime Guard Pay
Bills Keep Mounting

LEALTZIRCISPIINT ST

The Bureau of Conee.
tiuns is still paying heavy
wveriinie 10 heep guatids on
duty al the eight slate pras
ons. Some gusrds are
doubling their salaries
thivugh extra work

A bureau spokesman
saud vesterduy that in 1he
seir ended June 30 the
wgency paid outl ncarly §4
anblivn inovertime. i boust
of $750.000 over the pre
VIOUS year

The bureau alrcady had

excessive avedlnme pay
ments Legislators and oih
of oflicials think the siate
could save money by hising
mose guards al 1egular sal-
slivs wnd reducing over
fime payments at time and
a hall und double lime

Auditor Gen. Robert p
Caney, one of e critics,
seroed in yesterdyy an
overtime at the state pinis
onin Daltas, Luzerne Coun-
1y More than 3430 874 was
it during e fiscal year

been strongly criticized fos — ended in June 1974

Courtesy of the Assoclated Press.

Guards Due Windflall

For Missed Breaks

Femn The Petisod Whe Senicen

About 1700 slate prison
guards will be reimbursed for
perhaps $1,000 each for
missed colfee breaks, it was
learned yesierday.

The windlall comes as a re-
sult of an arbitralor's deci-
sion earlier this monih on
prievainces liled af eipht pe-
nal inslutions  ucross  the
state. It mav cost the cam-
monwealth as much as §1.7
million.

Under the tenms ol their
coniract with the Siate bu-
reau of Corrections. the
puards are ellowed a 15 min-
ulce bieak every four hows

But  because of critical
manpower shortages at the
stide’s prisens. the mea have
ot beea ahle to take  the

breaks since  before  July,
1974,

Robert Saylor, executive di-
Fecinr for the Bureaw of Cor
re.iiGas, refussd 1o coinment
on published eports of (he
rambursenient

The guard answering the
phone at the burean's head-
quaniers here said he had
heid of the deciaon. b
w4, "We thould be pelting
$2.000. **

The arbitrator's  decision
was handed down on July 12,
acvording  to  published  re
ponts, but the bureau made
6o aunauvicement of i,

According 1o Jack Wabhh,
preswdent ol goards  Local
2500 at Western Stale
Penitentiary, the payment
will be made 1o the guards
somclimie this month.

Courtesy of the Harrisburg Patrion.

Figwie 3.

Caney said 12 guards se
cetved between §10.144 and
$6.707 10 avertime Eleven
of she 12 puards had base
salarres of 810,731 One
guard has a $12,875 hase
salury

“The new commissioner
— Williamy Robinsen — is
very uware of the problem
und thai. ulong wilh every
olther program, is being
luoked al very carefully

" the correciion bu-
teau spokesman said “"He
does wung 1o cutl dowa un
the overtime.””

He suid Jormer Comunis-
siones Stewart Werner had
a hiring Ireeze i ellect be-
cuuse of the tighs budget
pulicy adupted by the
Shapp adminisiration.

But under Robinsen, who
assumed the post Jast
munil, the lreeze has been
lifted and 35 guard va-
cancies around the siate
arebeing hiled, the spokes-
mansaid

Hawever. the averlime
problem will linges

Glen R delles, superio-
tendent at Dallas, said va-
cancies alone don't govern
how much overtime will be
needed Vacabians and ghe
facr thin avhogized sealf
levels gie inadeguate also
wie factors, he said.

1 have tequesied addi-
tional officer positions the
last two years 1 received
Auiew positions”

“Withous additional offi-
cer pusitions | sec very
hitthe sinpact on the 1edur
nugotovertime,” hesnd

Ross 1. Finney

Senators Tour
Prison Facility
In Camp Hill

By MERRY BROOKS tion that may assist the spe-
Stall Writer cial  cammitiee in  draliing
prison-related Jegislation.

Sen. Freeman Hankins, D.-
Phuladelphia, commitiee
chairman,; Sen. Marun Mur-
vav, D.-Luzerne; Sen. Her-
bert Aclene, D.-Philadelphia,
and Sen. James E. Ross, D.-
Beaver-Washinglon,  accom-

A fact-finding tour by mem-
bers of the Siste Senate Pris-
on Joquiry Committee yester-
day at the Stare Correctiona)
Institution  at Camp  Hill
ceemed more like a whirl-
wind campaign swing with sea-
stors chaking hands and eli-

citing opinions from prisoners
and guards

But in faci, the information
sought by lour slale senators
on the sinth tour of the eight
slate prisons yielded inlorma-

Courtesy of the
flarrisburg Patriot.

panied by a herd of reporters,
breczed through the prison
Lower Allen Twp. in a thiee-
hour ViP tour.

The senators engaged Lr-
nest  Patlon, prison  superin-
tendent, in a give-and-lake
roundtable discussion before
the tour began. They oblained
the following inforination:

—The prison paid §353,00
in overtime {o guards Jast
yvedr and  expells fo  pay
$461,000 in overtime thia year.
The prison needs an addition-
al 67 guards 10 reduce (he
amount of overhime pay.

Guards sought

By The Assoclaied Press

The hzad of the siate Cor-
rectinns  RAurcau  says Gov
Shapp and  the Lemshature
may be asled w provide from
80 to MM puards at the Gral
ertacd Stale I'nison

Ihe Incres e would raiie to
0 the number of guards ai
the Monigumery County ghis-
on.

Corrections  Commlssloner
Stowart  Werner  estimated

for Graterlord |

the added guards would cost
$500 000 annuatly.

The extra men could cut
down on overtime payments
o the cucremd gualds. naw
ruaning about 320000 a
monih

L I S ¢

Gratertord, the largest of
the siate's eight correctional
institutions, has about |(,600
inmales, about 200 below ca-
pacny.

Courtesy ol the Assoclated Press.

Figure 4.
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year ending June 30, 1975, for example, the Bureau paid nearly four million
dollars in overtime pay, $750, 000 more than it had paid for overtime work
the year before. Some overlime work is to be expecied, of course. It is
expensive (0 keep a full-time stalf large enough 10 cover peak loads, for a
stalf this large is likely 1o be underemployed much of the time. On the
other hand, a staff so small that regularly scheduled guards have 1o work so
many overtime hours that they sometimes double their salaries is also
expensive, as the Bureau was finding out. Understaffing can be expensive
in other ways, too, for fatigue and high inmate-to-guard ralios create
dangerous tensions.

Legislators and other officials thought the State might save money by
increasing the size of its regular prison stalf. Maynard was hired o
deteimine the size of the least expensive overall work force.

The goals of Maynard’s investigation were (o minimize the total cost of
paying prison guards, while reducing the overtime work and establishing
uniform work schedules in all prisons. lle was able 10 meet the goals
successfully with a linear program, the one described in his UMAP module.

Table 1 shows two work schedules for one of the Bureau’s prisons,
referred to here as Prison G. One schedule has parentheses, the other does
not. The numbers with parentheses are the numbers of guards recom-
mended by the linear program. The numbers without parentheses show
how many guards were on duty at Prison G during the week ending
September 30, 1973.

The schedules are weekly schedules divided into twenty-one periods,
three shifts a day for seven days. Each box in the table shows the numbers
of guards working at three different pay levels during the given shift:
regular, time-and-a-half, and double time. The two numbers in the top line
in each box are the numbers of guards working the shift as part of their
regular weekly work schedule. The two numbers next in line are the
numbers of guards working the shift at time-and-a-half. The last two
numbers are the numbers of guards working at double time.

For example, Monday morning, September 24th was worked by 94
guards on regular schedules, 19 guards at time-and-a-half, 3 guards at
double time. On Tuesday afternoon more than half of the 146 guards
present were working overlime. '

The numbers in parentheses proposed by the linear program are strik-
ingly different from the 1973 figures. On Monday morning the model
covers the work load with 117 regularly scheduled guards; where once there
had been 22 overtime guards, now there are none. On Tuesday afternoon
there are only 9 overtime guards where once there had been 76. The new
work schedule is more equitable and less fatiguing than the old one. It is

also more cconomical. If regular pay is calculated at 34 an hour, for

mstance, the new schedule for Prison G saves the State $5,216 a week.
Readers of Maynard’s module are given an opportunity to follow the

development of the lincar program. 1o see the ellects of vanions scheduling
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Table 1. Data and Results from Prison G for the Week Ending September 30, 1973

Day Shifu
Morning | Afternoon Night
94 (a7 70 (13nH 38 (714)
19 (0) 6l 0) 40 (4)
Monday 3 (0) 0 (0) 0 ()

we |t wnl| 1B os

94 (126) 70 3 36 (14)
17 0) 62 9 38 (0)
Tuesday 15 (0) 14 (0) 0 0

126 (126 | 146 (46| 4 (4

97 (116) 69 (137) 36 (74)
19 (1)} 68 {0} 27 1}
Wednesday 0 (0) 0 (0) 2 (0)

e ey | 37 @wnl) 1 3%

9 (128) 63 (98) 3 (74)
41 1) 24 )] 4 )]
Thursday 14 (0) 13 (0) 10 0)

149 49 | 100 ooy | 81 (81

IL N 45 (89) 37 39

20 (0) 16 (0) 2 (0)
Friday 2 (0) 0 (0) 0 (0)
96 [t 6l (89) 39 39)
57 43) 37 45) 26 0)
. 15 33) 14 (6) 3 (29) .
Saturday 4 (0) 0 (0) 0 )

%6 a6l st onl w @9
53 @) | 36 wh| 25 35

7 (0) 12 ) 3l (0
Sunday 3 (0) 0 (0) 2 )

63 63 | 8 @yl 0 (o0

assumptions, and to develop a small-scale program of their own. As in the
Grimaldi chemistry module, the program does not at first yield integer
solutions, but by rounding the numbers of guards given by the computer to
integer values and rerunning the program to determine the values: of the
remaining variables, onc obtains a feasible solution that is close enough. It

15 nol necessary to prove that the integer solution found this way is optimal.
Oue can test its ulility by evaluating the objective function, which gives the
total amount of moncy paid 1o prison guards. W the value of the function
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for the integer solution is close to the value of the function for the original
noi-necessarily-integer solution, then the integer solution is good.

Continuous service in legislatures

Once a group of people has been elected to a legislature, the number of
them who serve continuously from that time onward will normally decrease
exponentially with each passing election.

The elections for the Senate of the United States are held in the fall of
every even-numbered year. The senators, elected for six-year terms, lake
office the following January. Figure 5 shows the proportion of the 1801
Senate that remained in office after successive elections. They were all gone
by 1811. The data are fitted nicely by the curve

-0.029
y=e ‘

where 1 is measured in months beginning in January 1801 with ¢ = 0.

Thomas W. Cassteven's module, Exponential Models of Legislative Turn-
over, shows how exponential curves can be used to forecast election results,
to speculate convincingly about what would have happened if a postponed
election had been held on time, and to disclose suppressed data.

1.0

ot
o

Portion remaining

e b | . 1 SR | e =
1801 1803 1805 1807 1809

81

» Date taking office
Figure 5. The proportion of the 1.8, Senators taking office in 1801 who comtinued
in office through subsequent terms. The patiern shown here, of discrete election
data fitted by an exponential curve, is typical of legislative tunover. The data 1o be
fitted may be cither raw (as in Figure 6) or proportional (as in the figure above).
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One of Cassleven’s many interesting examples is the turnover in the
membership of the Central Committee’ of the Communist Party of the
Soviet Union. In 1957, First Secretary Nikita Khruschev, in some semi-
secret infighting, succeeded in removing a number of his opponents from
the Committee. Their identity was nol made public, nor was their total
number. Their number can be estimated, however, by a calculation based
on election data from nearby years. There were elections in February 1956,
October 1961, March 1966, and March 1971. From these one can calculate
the exponential decay constant for the Central Commitiee’s normal turn-
over. One can then calculate how many of the February 1956 cohort should
have been present after the 1961 election. It turns out that there were about
12 too few of them there. At least a dozen full members were removed in
Khruschev's purge.

H is intersting to note that the decay constants for the U.S. Senate and
the Central Committee of the Communist Party of the Soviet Union have
been nearly equal in recent decades. For the data shown in Figure 6, the
best fitting values of the decay constants are about 0.0079 (Senate) and
0.0073 (CC/CPSU). I the twelve members purged by Khruschev in 1957
are added back in, the match is even closer.

160 |
e CC/CPSU 0 = Feb. 1956 241 = March 1976

140} ® US. Senate O = Jan. 1957 240 = Jan. 1977

[
o
—

2

==}
=]
T

60

Number remaining

40}

20} . »

DU WY WS DY DU NS | i 1 R i
0 100 200

Time in months

Figure 6. A comparison of continuous service in the U.S. Senate and the Central
Committee of the Communist Party of the Soviet Union. The exponential decay
constants of these two legislative bodies have been nearly equal in receat years.
Membership in these two legislutures has been turning over at about the same rate.
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Mercator’s world map

Anyone who has ever wondered what the integral of the secant function is
good for can find a satisfying answer in Philip Tuchinsky’'s UMAP module,
Mercator’s World Map and the Calculus. The unit explains how the integral
of the secant determines the spacing of the lines of latitude on maps used
for compass navigation.

The easiest compass course for a navigator to steer is one whose compass
heading is constant. This might be a course of 45° (northeast), for example,
or a course of 225° (southwest), or whalever heading is required to reach
the navigator’s destination without bumping things on the way. Such a
course will lie along a spiral that winds around the globe toward one of the
poles (Figure 7), unless the course runs due north or south or lies parallel to
the equator.

Figure 7. A flight with a constant beasing of 45° East of Novth Trom the Galapagos
Istands in the Pacific to Franz Josef Fand in the Arclic Ocean.

D e o] ——— — — ——— — — — — —— —
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In 1569 Gerhard Kramer, a Flemish surveyor and geographer known to
us by his Latinized last name, Mercator, made a world map on which all
spirals of constant compass heading appeared as straight lines. This fantas-
tic achievement met what must have been one of the most pressing
navigational needs of alt time. For from Mercator’s map (Figure 8) a sailor
could read the compass heading for a voyage between any two points from
the direction of a straight line connecting them.

Figure 9 shows a modern Mercator map. If you look closely at it you
will see that the vertical lines of longitude, which meet at the poles on the
globe, have been spread apart to lie parallel on the map. The horizontal
lines of latitude that are shown every 10° are parallel also, as they are on
the globe, but they are not evenly spaced. The spacing between them
increases toward the poles. '

The secant function plays a role in determining the correct spacing of all
these lines. The scaling factor by which horizontal distances from the globe
are increased at a fixed latitude 1 1o spread the lines of longitude to fit on
the map is precisely sec 7. There is no spread at the equator, where
sect = L. At latitude 30° north or south, the spreading is accomplished by
multiplying all horizontal distances by the factor sec 30°, which is about
1.15. At 60° the factor is sec 60° = 2. The closer to the poles the longitudes
are, the more they have 1o be spread.

The lines of latitude are spread apart towasd the poles to match the
spreading of the longitudes, but the formulation of the spreading is compli-
cated by the fact that the scaling faclor sec 1 increases with the latitude 1.

)
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Figure 8. A sketch of Mercator's map of 1569,
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Figure 9. The flight of Figure 7 traced on a modern Mercator map. Courses of
constant compass heading appear as straight line paths on a Mereator map. They
are easily constructed. measured, and followed.

The factor to be used for siretching an interval of latitude is not a constant
on the interval. This complication is overcome by integration. Il R is the
radius of the globe being madeled, then the distance D helween the lines
drawn on the map to show the equator and the latitude a° is R times the
integral of the secant from zero (o a:

D= Rf"sec1 dr.
0

The distance on the map between two lines of north latitude, say from a°
up to h°, is

h o rh
D= RI secT dr — Rf sectdr = rJ sect dr.
0 0 !

Suppose, for example, that the equatorial leagth of a Mercator map just
malches the equator of a globe of radius 25cm. Then the spacing on the
map between the equator and latitude 20° north is

0
25f sect dr =9 cm,
0
whereas the spacing between latitudes 60° nosth and 80° nonth, is

#0
25 scct or = 28 cm
Jot)
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The vertical distance on the map between latitude 60° and laiitude 80° js
more than three limes the vertical distance between fatitude 0° and latitude
20°. The navigational properties of a Mercalor map are achieved at the
expense of a considerable distortion of distance.

~Concluding lhuugh'ls

Mathemalical reasoning penetrates scientific problems in numerous and
significant ways. Il the secret of technology, as C.P. Snow said, is that it is
possible, then the secret of mathematical modelling is that it works.
However, the process of developing and employing a mathematical model
is both more subtle and more complex than is the traditional solution of
mathematics texibook problems. Real models frequently have to be con-
structed in the presence of more data than can be taken into account; their
conclusions are often drawn from calculations in which good approxima-
tions play a greater sole than do exact solutions; very often there are
conflicting standards by which solutions can be judged, so whalever an-
swers emerge can only rarely be labelled as right or wrong. Students using
UMAP modules, case studies, or monographs experience mathematics in its
scientific context, and leave the classroom better equipped to face real
demands of mathematical modelling in business, research, and government
work.
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ASPECTS OF CURRENT RESEARCH IN MATHEMATICS EDUCATION *

Carolyn Kieran

Université du Québec a Montréal

The session devoted to "Aspects of Current Research in Mathematics
Education® at the 1986 meeting of CMESG included reports of research being
carried out in British Columbia, Alberta, Ontario, Quebec, and
Newfoundland, with a special report being giveg by Jorg Voigt on his
regearch in Bielefeld, West Germany. These reports were not meant to be a
comprehensive survey of the mathematics education resarch being engaged in
throughout the country, but were intended to give an idea of some of the
main themes of current interest to researchers and to provide pointers to
some of the work which is going on. More details can be had by
corresponding directly with the researcher(s) involved. This article

briefly summarizes those reports.

Beitish Columbia

David Kirshner reported on the research projects of three colieagues,
as well as his own work. There is no single theme which characterizes
these projects. One study (D. Owens) involves intensive work with a smal!
number of sixth grade pupils to see if meaningful understanding of decimal

concepts can be achieved at that grade level. Another project (W. Szetela)

* Thank you to all who contributed both to the session and to this article:
David Kirshner (B.C.), Tom Kieren (Alta.), William Higginson (Ont.), Erika
Kuendiger (Ont.), Claude Gaulin (Que.), Joel Hillel (Que.), Lionei Mendoza
(Nfld.), and Jorg Voigt (Bielefeld, West Germany). Our apologies for

misrepresenting anyone’s research and for not being able to inciude mention
of everyone’s work,
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deals with problem soiving, more specifically, the improvement of teacher
reiiability ratings in the evalqatlon of students’ protocols, Szetela is
also carrying out a cross-cultural problem-solving study (Canada and
Poland) involving 11- and 13-year-olds. The third study (D. Robitaille and
G. Spitler) focuses on developing teaching materials and providing
in-service training at the junior secondary level in the Dominican
Republic. Kirshner’s research in algebra is based on the assumption that
symbol skill relies on procedures which dre not reiated to mathematical

theory, but rather to generative linguistics.

Albecta

Although Tom Kieren was not able to attend the meeting this year, he
prepared é report for this séssnon.‘ The thrust of the research being
carried out in Alberta can be captured in the questions: How do persons
build mathematical ideas? What curricular/instructional actions affect
(positively and negatively) this knowledgé building? A recently completed
study in Calgary (L. Marchand, M. Bye, B. Harrison, T. Schroeder) looked at
the match of school demands and knowledge building levels of pupils in
elementary schools (1767 pupils). A “match" with student levels and
demands. was found for 64% of the cases, but there were significant
divergences at the grade 5 level where the curriculum appeared to be rather
formal. An Edmonton group of researchers (Y. Pothier and D. S;wada) is
investigating partitioning and fractional numbers. Another team (T.
Kieren, D. Sawada, B. Wales) has been looking at an image of mathematical

»
Kieren, T. "Mathematical Knowledge Building in the Classroom: A Report of
Recent Mathematlics Education Research and Development in Alberta*. Copies

of this report are available from T. Kieren, University of Alberta,
Edmonton, Alberta, T6G 2G5
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knowledge building and using it to interpret the fractional comparison
abilities of young children (ages 6-8). Researchers (D. Sawada and A.
Olson) are also involved Wwith using the concept of auto-poeisis as
developed by Maturana to explain how a person’s mathematical knowledge
system evolves.

as well, there has been considerabie work on Logo and mathematics in
Edmonton: Cathcart has looked at debugging strategies; Kieren and QOlson
have developed a theoretical modei relating van Hiele geometry levels,
levels of Logo use, and levels of language use from Frye; Ludwig and Kieren
have tested this theory and used it to explatn results in a Turtie Geometry
development project involving transformational geometry with seventh
graders; Dobson and Richardson have developed extensive curriculum
materials on Logo and problem solving for preliminary elementary aged
children.

Finally, there has been an interest in expert systems and mathematics.
Balding has designed a system which allows teachers to analyze the ratio
work of a consistent student work simulator and, thus, to Identify aspects
of student thinking patterns. Moreno is developing a probiem solving
helper which will use expert knowledge/strategies in a computer advisor to

beginning calculus students.

Qntario

Some of the recent mathematics education research in Ontario has
focused on interpreting the results of the Second International Mathematics
Study (SIMS). For example, E. Kuendiger and G. Hanna have analyzed SIMS
data according to sex differences. Another related area of research

interest is Women and Mathematics (E. Kuendiger, G. Hanna, P. Rogers).
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Kuendiger has deveioped a theoretical model accounting for sex differences
in achievement and course-taking behavior. A curcent project (E.
Kuendiger) examines relationships between pregervice student teachers’
perceptions of mathematics and tﬁexr mathematics teaching. Another study
(G. Hanna) focuses on instruction and achievement in eighth grade
mathematics classcrooms. Another project which is currently in progress (N.
Hutchingon) involves the teaching of representation and methods of solution
of algebra word problems.

A large number of Logo studies were incorporated into the “Creative
Use of Microcomputers by Elementary School Children" Project (W. Higginson,
D. Burnett, H. Carmichael, and others). Though the learning of ma;hematlcs
was not the major focus of this project, the final report does provide
several insights into children’s geometry activity in various Tucrtle

Geometry environments.

Quebec

Much of the research taking place in Quebec can be characterized as
the study of the cognitive processes involved in learning mathematics.

Many of these cognitively-oriented studies investigate different
aspects of mathematical learning within a Logo environement. One research
team (J. Hillel, C. Kieran, S. Erlwanger, J.-L. Gurtner) is examining the
use of visual and analytical schemas by sixth graders in the solving of
selected Turtle Geometry tasks. Another group (H. Kayler, T. Lemerise, B.
Coté)> is investigating the evolution of logical-mathematical thinking among
10- to 12-year-olds in a Logo environment. A third study (R. Pallascio and

R. Allaire) is focusing on the development of spatial-visualization skiils

by fourth graders using Logo-ilke computer activities involving polyhedra.

In another study (E. Lepage), a modified version of Logo for the very young

——— ey ee—
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3¢rves as the getting for researching the learning of early number
concepts. An Object-Logo computer programming environment is used by
another researcher (G. Lemoyne) to examine the knowledge schemas used by 9-
to 12-year-olds in their production of mathematical expressions. ’

Other studies use non-Logo computer settings for their investigations.
One project (A. Taurisson) involves researcher-designed programs to be used
as tools by elementary school children in order to develop their problem
solving abilities. Another team (A. Boileau, M. Garangon, C. Kieran) is
examining the use of computer tools and methods as a semantic support for
learning high school algebra. A group of researchers (J.C. Morand and C.
Janvier) is investigating the evolution of students’ primitive conceptions
of circles. Another study (C. Janvier and M. Garangon) is looking at the
understanding of functions and feedback systems using microcompdﬁers.
Other researchers (M. Bélanger and J.-B. Lapaime) are creating exploratory
computer learning environments in which children can develop probiem
solving strategies. ‘

Other studies with a cognitive emphasis which are currently being
carried out (or have only recently been completed) include the work of:
N. Herscovics and J. Bergeron who are investigating the acquisition of the
concepts of early number among kindergartners and of unit-fraction among
older children; D. Wheeler and L. Lee on high school students’
understanding of generalized algebraic statements; L. Chaloux on sixth and
seventh graders’ construction of meaning for algebraic expressions; B.
Janvier on the use of dynamic representations in the learning of early
arithmetic; N. Bednarz who 13 comparing constructivist and traditional

approaches to the teaching of numeration; C. Girardon on conflictual

conceptions of transformations; A. Boisset on the difficuities which

coliege level students experience with calculus; B. Héraud on the concept
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ot area among B-year-olds; C. Gaulin and R. Mura on the effects of
calculators on the achievement of fifth and sixth graders; C. Gaulin, E.
Puchalska, and G. Noelting on students’ understanding of the representation
of 3-D geometrical shapes by means of orthogonal coding; N. Nantais on the

evaluation of children‘s mathematical understanding by means of the

mini-interview.

Another group of studies exists where the focus is on attitudes

towards mathematics: J. Dionne has analyzed teachers’ perceptions of

mathematics and of mathematics learning; L. Legault is looking at the
affective factors influencing mathematical difficulties; L. Gattuso and R.
Lacasse are investigating mathematical anxiety at the college leve].

Several related studies have recently been carried out by R. Mura and her

colleagues on Women and Mathematics.

Newfoundland

The mathematics education research which 1s presently underway in

Newfoundland includes the work of L. Mendoza, E. Wiiliams, and M. Kavanagh.

L. Mendoza is involved in a study of error patterns associated with
combining monomials. He is examining both the ercor patterns and the
underlying rationale for these errors by means of written testing and
In-depth interviews. M. Kavanagh is Studying grade 12 students’

perceptions of mathematics, comparing those of students from all male, all

female, and co-educational schools. E. Williams’ focus is the study of

Students writing mathematics competitions such as the Canadian Mathematics

Olympiad, more spectfically, the investigation of heuristic and executlive

Strategies used by “good* mathematical problem solvers.
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Special_ Report

The CMESG research information session in St. John’s also included a
special report by Jorg Voigt of Bielefeld on his own research. He provld{d

us with a brief summary of his presentation which is reproduced here:

Patterns and Routines in Classroom Interaction:
A Microethnographical Study in Mathematics Education®

Jorg Voigt
Universitat Bielefeld, West Germany

Often the question-response teaching in mathematics classrooms 1S seen
by the teacher ag being a liberal discourse in which the students actively
participate. In opposition to the teacher’s view, microanalyses of the
discourse processes point to concealed and stereotyped patterns of
interaction and routines. Certain patterns and routines lead to
misunderstanding of the teacher’s intentions. On the one hand, the
patterns and routines facllitate the "smooth® functioning of the classcoom
discourse; while, on the other hand, they produce undesirable effects on
the students’ learning. E

For instance, the following pattern has been reconstructed across
several videotaped situations. The teachers attempted to activate the
students’ everyday expecriences as a starting-point for introducing a new
mathematical content.

-~ The teacher askg an open, ambiguous question hoping to elicit the
students’ non-academic ideas.

-- The students refer to their own subjective experiences from
everyday life.

-- The teacher rejects the students’ ("deviant*) everyday idea using
tactical routines. Although the students’ idea could be a worldly
wisdom, the teacher wants a different specific idea. He uses
suggestive hints in order to make the students give the expected
answer.

-- In effect, the students learn to isolate the mathematical concept
in the classroom from their "truths* in everyday life,

While the teacher thinks that he used the students’ experiences as a
starting polnt, the opposite happened. The teacher and the students seem
to be so skilled in how to deal with each other that the teacher does not
become aware of the gap between his intentions and the routines taken for
granted. Because of the latency of the routines, it would be heipful to
develop the teacher’s awareness of such microprocesses as they occur in
these social interactions.

* A fuller version of this study is ceported in:
Voigt, J. “Patterns and routines in classroom interaction®. Recheccheg
n Didactique des Mathématiques , Vol. 6, No. 1, 1985, pp. 69-118.
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Th@s Study Group derives much of its excitement and cohesiveness from
bringing together individuals who have long been concerned with topics
involving affective aspects of mathematics education, but who have
been developing their ideas almost in isolation. For me it meant
rgcgnnecting with two excellent foci: the positive part of affec-
tivity, avd the community in the classroom which sets the stage for
these positive feelings through its cooperative organization. As we
headed into our final hour, Peter Taylor summarized most beautifully
our collected anecdotes in the following framework:

*  Our
openly
hidden

belief in the sharing of goals; e.qg. by the teacher,

and honestly, with full frontal explicitness, reducing
agendas,

* Our belief in the sharing of our joy in doing math,

* 'Our caring for the people in the class and in the mathematics
being done, and

. * Our promotion of cooperative small group work.

John Poland

The WOtking Group focussed on two activities. We did much problem
solvxng_in pairs in an effort to identify and explore the emotions in-
Yolved in problem solving. This activity is described and the find-
ings are discussed in the appended paper.

Our second major activity was to share techniques for implementing the
framework summarized above. The following paragraphs list some of the

many creative techniques that have been devised and used b :
members of the Working Group. ’ Y various

~-The use of a monthly newsletter talking about the course, test

results, who the teachers are as people, the positive aspect
mathematics, and where to get help. ’ pects of doing

-Taking small group or individual pictures at the beginning of the

course and posting them (perhaps take them at an early informal
gathering).

-Make a list of names and phone numbers of class members and get
everyone a copy.

—;n some way convey expilicitly to the students that they are a spe-
c{al group, perhaps breaking ground through some teaching or cur-
riculum innovation you are sharing with them.
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~Build in fun with math leacrning.
Use flowers, music and movement.

Use Math games. Decorate the room.

-Control the lighting. Some teachers turn off fluorescent lighting
and use candles or lamps instead.

~Interview the physics, chemistry, etc.
cardboard their answer to the question,
when they come into my course".

professors and put on big
"what I want students to know

-"nlgebra Arcade" (Wadsworth Electronic Publishers, 8 pavis Dr., Bel-

mont CAR 94802) was suggested for a first algebra course for groups of
3 or 4 students to work at a time or for one large demonstration
screen.

-Allow students to suggest how they will be evaluated in the course.
They must come to consensus. The discussion can extend over several
days.

-Spend teacher energy on the positive.
achieve and their accomplishments.

Emphasize the students who do

-Talk about what understanding proofs does for them as people, that
they can handle and generate arguments. Have positive expectations.

-Use ice-breaking techniques that help students learn the correct lan-
guage and notation of mathematics. For example, put 4-5 students on a
team to try to communicate to another team (without showing any
writing) a given collection of math symbols.

-Seriously address the idea of math anxiety. The teacher can talk
about his or her own feelings about mathematics. Alert students to
use positive self-statements and other means to prevent emotions from
overwhelming short term memory. Evaluating an emotion can take up so
much student memory that little is left for mathematics decisions.
Math thinking becomes confused with thinking about math.

We came up with many areas to explore further. We would like to know
which ways of organizing classrooms and tests encourage students into
good study, classroom and exam habits. How should we sequence ques-
tions, sets of problems that will provoke students to “"review® as in
Polya? How should small groups best be utilized? What is best size?
How can writing be used in math classrooms?

We decided to ask colleagues to describe techniques they have used
successfully. We plan to compile these aneécdotes together with a bib-
liography of appropriate readings and disseminate the information in a
fuure CMESG Newsletter.
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AUTHORLITY IN THE CLASSROOM

I should like to see the locus of authority in the classroom
shift away from the teacher and the material (these should be
regarded as resources - a less threatening category) and toward

more inwardly generated forces such as beauty, excltement,
challenge, communication.

Let me explain the difference. When consulting a resource,
you are the boss, when consulting an authority, the authority is
the boss. Alternatively, from a resource you take what you want;

from an authority, you take what it wants. Early in the learning
game, teachers have to be authoritdtive. But part of their
purpose must be to gradually change themselves into resources (by
changing the student) and subatitute instead the criteria which
gulde active scholars through the question of whether they are
working in the right things: 1s it beautiful? does it exciteme,
challenge me? does it lead to frultful communication with ay
colleagues?

If we relate this to problem-solving, one thing we see is
that the problems the student works on should much more often be
generated within himself and the various sources of inward
authority I listed above should increasingly be used to guide him
on the questions of what time he should spend on the problem, and
whether c¢ertailn avenues should be pursued.

a.L\q.

—— — —
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COMPETITION AND COOPERATION

When one studies a community, there are two types of forces
one looks for: competitive or disruptive forces and cooperative
or gupportive forces. The mathematics classroom is a community
in which often too much of the action 1s really of a competitive
nature, either astudent against student, or student against a
teacher's expectations, and the effect of this muast often be to
increase student anxiety.

We felt that such anxiety was not beneficial to the student.
While it might enhance certailn aspects of the student's
performance, we felt it was not likely to increase his
problem~solving abilities, and would certainly dampen the
feelings of joy he mighthave when searching for the solution.

We made a number of suggestions for enhancing the
cooperative atmosphere of the classroom, in short, the feeling
that we're all on the same side. First it is important that the
teacher be open and as explicit as possible: about the goals of
the course, about his views on the subject matter, and about his
own feelings about the class. It is important that the teacher
care both about the subject and about the students, and be
clearly enjoying the teaching experience. Second, the nature of
and rationale behind, the methods of testing and evaluationm,
should be thoroughly aired. Thirdly the students should know and
work with one another; often this can be facilitated with small
group work. Other devices such as classroom games, attention to
physical character of the room (lighting, decoration), and a
monthly newsletter, were mentioned. It was suggested that
experimental programmes often generate a very positive feeling of
shared community. Perhaps we should more often be experimental;
even if we have little flexibility in the content of the
curriculum, we can experiment with style.

-y
%
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July 20,1986.

The "affect" workshop took place six weeks ago and even if some of the details
have slipped away (thanks for the reminders Fran), I am still feeling the after-
affects of having been with a group of student-centered math teachers who are
PATTERNS OF EMOTI
interested in exploring affective elements in themselves and their students. ON WITHIN MATHEMATICS PROBLEM-SOLVING
Although I have thought a lot (and talked a lot) about this theme, I feel that
the workshop broke my isolation.

The experience of doing individual problem solving in teacher-teacher pairs

was new to me. I have done some introspective work, interviewed about a hundred
students, and given the introspective problem solving exercise to many adults. Department of Mathematics
[t was interesting to see that as teachers and mathematicians we are not so National University
very different from our students in affect during problem solving. Another

memory of that experience is of several people indicating that their problem

solving behavior was in some way indicative of their behavior in non-mathematical

situations: "That's the story of my life." If this is so, it certainly would

be worth exploring further.

Frances a. Rosamond

Although not everything has been said about affect in individual problem solving,

1 feel I would like to move on to an exploration of group problem solving. In

the workshop we all seemed to be interested in promoting cooperative models and

group work in our classrooms. Yet problem solving in groups is much more

complicated than individual work. Group dynamics and the politics of the class-

room come into play. I, for one, feel a little insecure in initiating group

work - which maybe why I rarely "find time" for it. 1 think that the affect = = —==ceemcao___

workshop, because of its secure and supportive atmosphere, would be the least S?E:fplﬁzgar;ges:g: dthe Panel on "Mathematics as a Humanist i
. : ' i 1
scarey place to start looking at group problem solving. Association of Ameri:a :r:dnt]kexe‘]omt ooetings of the Mathe"‘a“caf

American Mathematica]

San Antonio, Texas, January 1987. Society,

For this 1'd even go to Kingston!
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I like the clever twists of logic that turn a two
page proof into a one-half page proof. There are
lots of clever little insights. There's something
very satisfying about a nice tight argument that no
one can doubt is correct...I've worked on a research
problem for over six months with no results...now I'm
starting to dream about it and that's too much..the
mathematics is taking too much control over me.
(Angrily.) (Rosamond, 1982)

Mathematics often is viewed as the ideal discip-
line-pure rational thought dealing with ideal objects
to produce irrefutable arguments, not coloured by any

emotion. Training in mathematics is seen as
producing students capable of such clear thinking in
all disciplines. So why don't all mathematics
teachers present mathematics in the ultimate,

Bourbaki style? To mathematize is supposedly part of
the human condition, so how can there be such a thing
as math anxiety, when feelings should clearly not be
a part of learning in mathematics?

Or does mathematic arouse emotion because it was
conceived out of emotion in the first place?...What
is the link between the affective and the cognitive?

' (CMESG Announcement, 1985)

PATTERNS OF EMOTION IN MATHEMATICS PROBLEM-SOLVING

In an effort to understand and explicate the feelings of
satisfaction and anger expresssed by the mathematics graduate
student in the first gquotation, a Workshop on the Role of
Feelings in Learning Mathematics was held during the Canadian
Mathematics Education Study Group annual meetings of 1985 and
1986. We engaged in a problem-solving exercise that also was
given to six mathematics education graduate students at a State

college and on two occasions to six people who met in a private
home.

We are all (with the exception of two people) involved in
mathematics as professional mathematicians, as teachers, as
graduate students or as people who use mathematics in our work.
We believe that thinking, feeling and acting work together, that
true understanding implies feeling the significance of an idea,
and that our experiences are not far from that of our students.
We decided to examine our own feelings in depth in hopes of
finding outstanding commonalities that could be used to improve
classroom teaching.

Studies on cognitive science (Davis, 1984.

Papert, 1988),
problem-solving (Silver,

1985), metacognition (Schoenfeld, 1983)
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and belief systems (Perry, 1970) offer some insight into the role
of emotions in problem-solving but only indirectly. We are not
sure we have even a vocabulary with which to describe feelings at
a specific moment as a function of many variables.
€
To begin with, we made a list of " relevant positive and
negative emotion descriptors (see appendix). This 1list was
adjusted by the results of the exercise. The exercise is a
simple one. We went in pairs to different parts of the room
where one person agreed to be the problem-~solver and the other
the observer. The rules were 1) The solver do his or her best to
provide a running commentary on feelings. 2) The observer keep
quiet, pay attention, take notes. ,
After a fixed amount of time (15 minutes, in later sessions
changed to 38 minutes) all gathered and each observer reported on
what the solver had done, focussing on the feelings. The solver
also reported.

The roles were then switched, observer became solver.
Solver became observer. Another problem was presented and the

. observation and reporting process repeated.

We feel many positive emotions (challenge, hope, zest,
satisfaction, etc.) when doing mathematics and wish to promote
these in our students. Lazarus is a noted psychologist at
University of California at Berkeley who has done extensive
analysis of the theory of emotions. In his paper, "Emotions: a
Cognitive - Phenomenological Analysis", he describes some of the
contributions positive emotions make to coping. Before
describing our exercise and the implications that we found for
teaching, I will briefly outline some of Lazarus' position and
make some connections to mathematics.

LAZARUS ON POSITIVE EMOTIONS

Lazarus points out that negative emotions have been studied
almost exclusively. Some reasons for this are that emotions have
been studied as evolutionary and that negative emotions such as
fear or stress influence our capacity to survive. Another reason
is that emotion is studied by therapists who may view emotion as
pathological. In this case happiness may be seen as hysteria,
concern as paranoia and hugs as evidence of nymphomania. A third
reason is that it is more difficult to measure arousal for joy,
delight, and feelings of peace than it is for rage, disgust or
anxiety.

Because we are trying to promote good problem-solving, we
feel it is appropriate to focus on the positive feelings
associated with our goal: on hope rather than hopelessness,
challenge rather than threat, =zest rather than dispair although
negative emotions do need to be recognized.

Positive emotions tend to be frowned upon or viewed as
"childish." Not many people exhort optimism like Ray Bradbury
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does: "We are matter and force turning into imagination and will!
I am the center of a miracle! Out of the things I am crazy about
I've made a life!...Be proud of what you're in love with. Be
proud of what you're passionate about! (Bradbury, 1986) It is
even hard to hear people shout gladly onto the Lord; but we were
just trying to hear people shout gladly about mathematics. People
who exhibit positive emotions often are accused of playing, of
not being serious.

Yet playing with ideas is inherent in mathematics problem-
solving. What emotions should we expect to feel when engaging in
problem-solving? Lazarus answers this by saying that the essence
of play is that it is highly stimulating. It is accompanied by
pleasurable emotions such as joy, a sense of thrill, curiosity,
surprise, wonder, emotions exploratory in nature. We recognize

that we do experience these positive toned emotions when doing
mathematics.

As educators we wish to know the optimum conditions that
encourage problem-solving. Lazarus says, "...exploratory
activity ocurs more readily in a biologically sated, comfortble
and secure animal than in one greatly aroused by a homeostatic
crisis. The human infant will not venture far from a
unless it 1is feeling secure, at which point it will play and
explore, venturing farther and farther away but returning
speedily if threatened or called by the mother." As shall be
discussed in more detail in the next section, mathematics
problem-solving requires playing in an almost "other-world" of
intense concentration. Insecurities in terms of math ability or
other issues (world peace) inhibits problem-solving by
interferring with the level of concentration.

USES OF POSITIVE EMOTIONS

Lazarus sees at least three ways in which' a person uses

positive emotions: as "breathers” from stress, to sustain
coping, and to act as restorers to facilitate recovery from harm
or loss. Lazarus' discussion may be interpreted with mathematics
in mind.

BREATHERS OR TIMES OF INCUBATION

theathers" are times when positive emotion occurs as during
vacations, coffee breaks or school recess. They can also be
thought of as times of incubation.

Lazarus quotes the noted mathematician Poincare to suggest
that it may be the good feelings themselves that allow a solution
to emerge from the subconscious to the conscious.

Poincare made the
creative mathematical

surprising
ideas “are

comment that
those which,

unconscious
directly or

parent
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indirectly, affect most profoundly our emotional sensibility.”
By this he meant that, since creative thoughts are aesthetically

pleasing, the strong, positive emotional reaction to such ideas
provides an opening through which they are ushered into
consciousness., ¢

Lazarus reminds us of another relevant description of a

“breather” made by the great German physicist Helmholtz:

He (Helmholtz) said that after previous investigations
of the problem "in all directions...happy ideas come
unexpectedly without effort, like an inspiration. So far as
1 am concerned, they have never come to me when my mind was
fatigued, or when I was at my working table...They came
particularly readily during the slow ascent of wooded hills
on a sunny day."

The acceptance of the role of a breather is reflected in the
usual advice given by teachers to their students: "Concentrate
long enough to get the problem firmly in your mind and to try
several approaches. But then take a walk or do some pleasant
activity and let your mind work on the problem for you."

SUSTAINERS OR MOTIVATORS

Positive emotions act to sustain problem-solving in the
sense that good feelings build on good feelings. Mathematics and
the word "challenge" often are linked together as in “The problem
is a challenge." A challenge can be viewed as a threat and in
our exercise, problem-solvers were momentarily worried about
failure in front of an observer. However, in challenge, a
person's thoughts can center on the potential for mastery or
gain. This challenge 1is accompanied by - excitement, hope,
eagerness, and the "joy of battle." All these positive emotions
were mentioned by problem-solvers. One solver summarized the
feeling as "the joy of mental engagement and the bringing of all
mental force to bear in a cohesive way." Sclvers who perceived
their problem as too easy felt disappointment even bhefore they
began to work on the problem. Those who felt the problem worth
working felt an immediate joy even before proceeding. This joy
was a signal to bring all mental force to bear on the problem,
which in itself produced pleasure and therefore motivation to
continue.

Lazarus describes "flow" ,an extremely pleasant, sustaining
emotion, as in the case of the basketball player who is "hot™ or
the inspired performance of a musician.Lazarus claims flow arises
when one is totally immersed in an activity and 1is utilizing
one's resources at peak efficiency. Mathematical problem-solving
requires total immersion and we found that a comfort with
notation was important in maintaining this flow. Comfort with
notation will be discussed later in this paper.
motivation to

The positive emotion of hope also provides
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keep going. Occasionally during a problem-solving episode the
solver 1lost control of the problem. Solvers said, “I've lost
control of the problem."” or "This is too complicated, too many
angles to label." or "I feel this is getting a little out of
hand. This one and that one cancel out and I haven't used fact
that it's a prime." Hope, the belief that there is even a slim
chance things will work out, helps one continue. Ambibuity
nurishes hope. One cannot be hopeful when the outcome is
certain. We would llke to know how ambiguity can serve classroom
mathematics. The emotions of challenge and hope are powerful
motivations in problem-solving and deserve further research.

A more obvious way in which emotions sustain actions is in
terms of longer range goals. The student who has a positive
feeling solving one math problem is more likely to try another.
The confidence that comes from understanding mathematics empowers
the student to attempt new ventures also, as in the case of a
geometry student who attributes his decision to help in crime
prevention directly to his success in his geometry class.

RESTORERS

Lazarus offers a third function of positively toned
emotions, that of restorer. Lazarus' descriptions of recovery
from depression or restorations of self-esteem might be useful to
the teacher dealing with math-anxious students. Lazarus gquotes
Klinger:

At some time during clinical depression patients become
unusually responsive to small successes. For instance,
depressed patients working on small laboratory tasks try
harder after successfully completing a task than after
failing one, which is a pattern opposite to that of
nondepressed individuals, who try harder after failure.

It would be worthwhile for the classroom teacher to know when
small successes are more likely to evoke positive emotions.
Offering a small task to a math anxious student may foster
optimism and incentive while the same problem may seem trivial to
a non-anxious student and provoke anger or disappointment. This
is an area for more research.

Much of the information on emotion in problem-solving is
obtained by having students fill out questionnaires. While the
information is useful, a rating on a scale from one to five of
confidence in doing math, 1liking for math, or usefulness of math
is very general. Questionnaries also are remote from the actual
process of problem-solving. Recollections of feelings might not
be quite the same as the feelings at the time. Also,
mathematical problem-solving requires intense attention to the
problem. It is likely that without some help a solver will not

even be aware of his or her emotions. The above reasons together
with the belief that our own feelings when doing mathematics are
the same as those of our students prompted us to do an exercise
utilizing a close observer and introspection.
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OBSERVATIONS FROM THE EXERCISE

Altogether the exercise of observin reportin i
reporting was done by 19 pairs. Problemglinltgally 3éresg%v}2g'
guzzle variety (Gardiner,1967, 1979, Mott-Smith, 1954) but i:
Hate; sessions more substantial problems were chosen from

onsberger. Qne person kept track of time for the whole group A
group of six people (three pairs) seems the best size, ) We

posture...laughter...intent ti " i i
hot used in this papel? stillness but that description is
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BLEM-SOLVING . @ _less conscious resistance to cheating was the seen in

EMBARKING ON THE PRO imposition of ridiculous restrictions on onegelf. For exampigf

Solvers accepted their problems with curiosity and positive ?ne solver had Honsberger's book in hand and was to *“Use the
anticipation. These were people who did Method of Reflestxon' to..."”. (Honsberger, p.78). The solver's
formal mathematics frequently. Two people who had not done re:gtxon was, I understand the problem but don't know this
formal math recently reported terror. method...!I wish I could read the chapter...” . Instead of simply

feadlng the chapter, the solver tries to invent a plausible

The initial reading of the problem ?rovoked a reagt@on to Method of Reflection'.
its type followed by a sense of its difficulty. "I anticxpatenl A
will enjoy this problem but may not make much progress. or I c Another solver spent long moments seemingly aimless. "I'm
loathe this type of problem . It is do-able but will require a eeling a 1little out of control of the problem...lots of
big effort. 1 think I will have to go through many tedius parametets.:.segms to pe a lot of ways to define this
decompositions.” ptoslem:..l d like to clarify the problem by asking whoever wrote

it. Fipally with a forced air, "I could break it up into cases

The word "do-able" was used often and meant either that the myself and come to grips on my own terms and get partial
problem was solvable or that progress could be made in solutions...got control back.”
understanding the question. For one of the peop}e who reported
terror, a person who rarely uses formal mathematics rarely and Self imposed restrictions would slow a solver down until
who was talked into coming to the workshop, considerable time was there were reports of, "I'm squandering time. I really haven't
spent blocking the reading of the problem. Emotion can be done anything.f Then there would be a squaring of the shoulders
regulated by avoidance or denial. This person ackngwledggd : and a bgsinesslxke asse;txop to "...take a stand and try to prove
feeling bad but then felt bad about feeling bad so that Even‘lf it ..." even though ths might mean grinding out a meaningless,
I could do it I couldn’t.” Considerable time was spent recalling albeit correct, solution.
past history of problem solving failureg all Ehetwhxli agoxdigg

consciously) makin the decision to try o o

éizgizgft Another so{ver alsogreported "I felt unhappy and then INVOLVEMENT WITH THE PROBLEM
felt unhappy about feeling unhappy." Emotions tend to feed on )
and reinforce each other. The math oriented solvers were Once commitment was made to attempt the problem, there was
predisposed to extend effort on the problem. They had much more a lorelai seductiveness about it, a delicious slipping off into
commitment to do math. another world. Solver became oblivious to self, observer, or

‘ environment. This total immersion was a wonderful release from
after reading the problem, all began to develop a notation, daily life. Poland (CMESG, 1985) used mathematics to help him

to draw a diagram or to write some hypothesis. Thi§ was the ignore the Palnlof an illne§s. Some people use the other-world
beginning of a cycle of attention on problem - attention on self qualxty..of doing mathematics to avoid interaction with peers.
or distraction by environment - attack on problem - attention to Mathematics can belp_w:th depression as the famous mathematician
self or environment - problem - self - problem - self, etc. Kovalevskaya sa;@ in a letter: "I am too depressed...in such
moments, mathematics comes in handy, and one enjoys the existence
When preparing to choose a method of attack, there was of a world completely outside of oneself." (Knopp, 1985).
considerable emotion tied in with "not cheating.” E§ch person ) )
placed the problem in a certain context and at a certain level of ‘Mlngled ‘wlth the charm of seduction there was a dangerous
difficulty and felt it would be cheating, bad sport, to use a quality, a frightening isolation if one stayed immersed too long.
technique that was too powerful. One solver says, "Can I |use Rosamond (1982) gives examples in which the solver feels consumed
fancy stuff?... Then 1'11 use Jordan Curve Theozem...rlaughs . by a too dominating mathematics. As one mathematics graduate
Backtracks. mMaybe an easier way." Another solver resisted but student said with tears in his eyes, "What do you do if you are
finally made a grudging commitment to using calculus for a problem 80 -~ 990% mathematics? If you've let yourself become consumed by
entitled, "An Obvious Maximization." mathematics so that that is what you are. And then you want to
. let someone get to know you. What do you do when you can't
Using brute force was considered almost as bad as using a explain that much of yourself to them?" The presence of the
too powerful method. “I'm annoyed because I can't see any other observer comforted the solver and lessened the dangerous gquality
way than brute force and that would not yield for me any in the isolation.
understanding of the problem...there must be an easier way. .
Solvers wanted to find solutions that were generalizable. Using There was a letdown feeling of disapointment if the solution
a too powerful method, brute force, or an “"obvious method" came so easily that little emotion needed to be invested in in
brought forth comments of feeling embarrassed or annoyed. the problem. Typical is the remark, "The problem must have been

too easy, 1 got it. So what's the big deal? I feel let down."
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or "It was fun but not intense because not a challenge. I feel
let down because 1 didn't spend a lot of emotion.” The

complexity of the problem came like a revelation to one solver
who then responded with a BIG smile. Overall, the amount of
satisfaction with the problem correlated directly with the
intensity of concentration. The perceived level of difficulty of
the problem also influenced satisfaction and this will be
discussed later.

However, one cannot maintain a constant level of intensity
throughout the solving of a problem. The use of notation in a
ritualistic mannear provided s "breather” or moments of relaxation
while allowing the solver to remain in the "other-world®. When
no progress was being made on a problem, the solver remained in
the intense state by writing out some formal routine. Some
solvers would rewrite the definition of the variable. One solver
began, "“There are two cases: a) the problem is solveable and b)
the problem is not solveable.” Almost everyone used x's and y's
at one time and then decided to switch to a's and b's (or vice
versa). Some would say, "I'm going to try induction.”" and then
write out the induction hypotheses. The rote writing out of
hypotheses or the rote switching of variables afforded a 1lull
within the other-world state and continued the flow. The
importance of these rituals was to help focus on the problem. To

sit too long without progress or a ritual meant the solver would
think about self again.

Other pauses also bump one out of concentration. When the
solver paused overlong in appreciation of some success, then
agtention tended to turn to self or environment. The jolt of
finding a counterexample to a hoped-for truth caused one to
notice the ticking of the clock or the coldness of the room.
Extended frustration of method caused recall of poor geometric
visualization in the past and then embarrassment. Attention was
diverted from the problem to the self. This usually was for a
brief amount of time, less than a minute. Solvers would look
around, sigh, stroke the pen, scratch, talk a little and then go
back into the problem.

Most solvers were engrossed in the problem when time was
called and these people were irritated at being interrupted.
They almost all mumbled "I'll continue later." Solvers who were
in an attention-outward part of the problem-solving cycle Jjust
prior to time being called generally sat back and waited out the
time. They did not work on the problem further while waiting but
mentjoned that they would return to it later. There was
reluctance to allow oneself to get lost in a train of thought and
then yanked out of it.

— — — —-—
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IMPLICATIONS FOR THE CLASSROOM:
VARIABLES THAT INFLUENCE ENGAGEMENT

The primary goal of our exercise is to improve classroom
teaching. It would be useful for a teacher to know what a
particular emotion looks like. For example, a teacher who knows
that yawning is a release of nervous tension and not an
indication of boredom have an immediate and obvious clue that a
student needs help. (And the teacher knows not to get personally
insulted by the yawn.) 1In the opposite direction, the teacher
who wants to indicate positive emotions to the students would
know how to do it because he or she would know what they 1look
like,

To this end we took notice of some physiological indications
of emotive arousal (flushed face, sweaty palms, muscle tension,
etc.) and. of body movement (twitching, sighing, laughing, etc.)
but more work should be done here and these indications are not
elaborated on in this paper.

We found that overall satisfaction in problem solving is
directly related to the intensity of engagement with the problem.
The engagement is influenced by several variables: the nature of
the problem, the perceived usefulness of mathematics, the role
of the observer, the use of mathematics rituals, and the testing
situation. Each of these variables will be discussed along with

-their implications for the classroom.

NATURE OF THE PROBLEM

All solvers were more encouraged by harder problems than by
ones marked "obvious" or ones perceived as easy. There had to be
a sense of value of the problem, not that it must be directly
applicable to daily life, but rather that one needed to think in
order to understand the problem. If one could get the answer
just by asking someone else or by looking it up then that made
the problem artificial and was almost an affront to the solver.

Surprisingly, solvers felt threatened whenever they saw the
words, "Clearly", "It is easy.", or “Obviously". Most felt that
teachers should not say, “This is easy." and that textbooks
should not indicate the easy exercises. Solvers sometimes
worried that the problem looked so simple. They felt they were
missing the point and that their solution was not elegant enough.
One solver found three solutions by varying the constraints and
then felt less humiliated.
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One solver exhibited obvious arousal with eyes wide open,
clear face and a slight laugh. "Hey, there's an infinite
process..." Exploration didn't bear out infinite process and then
there was "That was neat. What was the problem?" together with a
clear drop of interest and rather emotionless settling again into
the problem. The challange of the infinite process
stimulated playing around in the "math-world."

The math-world is a mental out-of-body arena of intense
concentration in which a person can play with ideas. Trivial
problems do not make good play-mates. One solver's most
satisfactory experience of problem-solving came after having
spent a week on a problem only to have the professor tell the
class that the problem was not solveable.

Solvers felt initial relief at seeing an easy problem but
were quickly bored, disappointed or insulted. The classroom
teacher must pay careful attention to the quality of problems
offered and should not label them easy or difficult.

USEFULNESS OF MATHEMATICS

Doing mathematics is seductive but one must allow oneself to
be seduced. Three different participants at three different
sessions (all women) felt that going off and doing mathematics
was a luxury. A teacher of older women said she had to convince
her students that they were not squandering time while problem
solving. Women are always productive. They even knit while
watching TV. She got around her students' hesitancy by saying,
*I'm going to show you some games to teach your kids and improve
their math.”

The notion of usefulness was mentioned by only three women
but it is a construct that has been singled out as the most
important attitudinal factor in decisions to take math classes
(Sherman and Fennema, 1977.)

Usefulness was elaborated on at length by one solver waho
was able to solve the assigned problem in a short time and with
no intense engagement. The solver was disappointed and felt
letdown. It was not clear if the following remarks would have
been made had the solver been given a more engaging problem. 1
asked at the time but the solver was very agitated and insisted
that another problem would have made no difference.

"What would have beeen a meaningful problem?
How come I'm not satisfied? I had an expectation
about solving that problem that did not get fulfilled.
It didn't make me happy. There were some moments of
tension and some of excitement but not intense. It was
entertaining like a grade C movie.
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“Math has no social relevance to me...l am willing
to solve math problems, even ready but it feels
completely disjoint from what interests me. 1 still
love it (This solver has a Masters degree in math and
is an active MD.) but its importance seems miniscule
compared to world problems...beautiful but frivolous to
use my mind in this way." (It would be useful for
other people to do math but there were more pressing
issues for this particular solver.)

Usefulness of mathematics in terms of careers or its
sometimes theraputic value as a means of escape is an affective
variable that may be easy for teachers to influence. Teachers
can present information about the mathematics required by various
careers as well as the mathematics courses that should be taken
to keep options open in the future.

THE USE OF RITUALS

The use of formal routines that keep one's attention on task
while providing a sort of restful interlude speaks directly to
the classroom teacher. Students must have a comfort with
notation not only becausd the notation itself sometimes points
to the solution but because that comfort sustains concentration.

ROLE OF OBSERVER

Contrary to almost everyone's expectation, having someone
observe while working the mathematics was positive. At first,
some solvers felt less inclined to free associate with ideas in
front of an observer who might have the problem already all
figured out or the solver sometimes felt that the observer must
be bored. Some solvers wanted to talk things over with their

observer or would 1look up at the observer hoping for
confirmation.

It turned out that the presence of the observer was an
impetus to persistence in doing the problem. This is a very
important point. Liking the problem was directly and positively
related to the amount of time spent working on it. Almost
everyone liked their problem more the longer they worked. Those
that did not like their problem initially began to like it after
all and to get interested in it. Without an observer, those
solvers might have quit.

Being observed evoked other feelings. As noted earlier, the
presence of an observer reduced the feeling of danger in
isolation that lengthy immersion in the problem somet imes

brought. There was a feeling of honor. "1 felt honored that
another peson was taking the time to observe me." Another
feeling was intimacy. "It felt intimate to have someone commited

to watch the workings of my ming."

While more emotion seemed to come from being watched, it was
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also important to be the watcher. Watching seemed to take away
some of the secret charge of the observer's own problem-solving
anxieties. The observer could recognize his or her own feelings
in the other person and see how the feelings influenced their
actions. Watching another person struggle with anxieties made
the solver think, "Why don't they just get on with it.”

One participant reported, "“The most poignant part of the
exercise was hearing the observer say what I'd done. I did not
feel intimidated. I didn't get any of the bad response I
expected. The observer demystified my emotional and intellectual
engagement by simply listing what I did: 1, 2, 3, 4. This cut it
down to size, gave it true proportion."

This exercise of being observer then reporter, then switching
to being solver then recipient of report should be explored as a
means of eliminating math anxieties in our students. The real key
is the switching, This exposes and throws out the power of
negative feelings while encouraging positive ones.

It should be noted that no one argued with their observer.
a few points of clarification were made but there were no
misinterpretations. It is possible that finer gradations or
other categories of feelings can be made, but there was good
correspondence within our vocabulary.

THE TESTING SITUATION

Concern about the nature of the problem carries over into
the testing situation. One solver commented on the problems
found on math tests. "A test is an almost random set of narrow
problems where one thing must trigger another. It is not about
figuring things out. Test questions do not show that math is a
process.” This solver had as a partner a professional research
mathematician. The solver was not intimidated by being observed
even though the problem was not solved because "The observer
could hear that I have math training. He could see how my math
mind works, how I assimilate information, manipulate, and use an
asrsenal of strategies. This is so much different from taking a
math test where I am not tested on how my mind works. On a math
test, I could expect not to be able to show what I know. I would
feel shame."

Part of almost any testing situation is a time constraint.
Having only 15 or 38 minutes annoyed and inhibited these solvers.
Some reported feeling "hemmed in...I do best by playing
around...ordinarily would draw pictures and really
understand...build up a pattern." Another felt pressure to
categorize a solution method quickly. "Without a time constraint

I probably would have been more impulsive...would have quessed
and then worked backward. 1 felt forced to be more systematic,

meticulous, more step-by-step and mechanical. I think I could
have solved this in a shorter amount of time if there had been no
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time limit."

When the timing in itself counts, it is as though what the
problem means in itself is not enough. Perhaps the discomfort of
a time constraint forces one's attention to be divided between
the math-world and present time. Not only are different methods
of solution chosen at the onset of the process, but also the
total immersion into the problem-world is not as possible or as
deep.

CONCLUSION

It is important to state that a basic assumption of this
experiment is that we professional teachers and mathematicians
have at least the same feelings that students have. We may
experience a difference in intensity (less anxiety, more
confidence) or have other feelings in addition (sense of
commitment) but overall how we respond gives an indication of how
our students respond. A mathematics educator refused to
participate in our exercise saying that it might be worthwhile
for “"personal growth® but that it would give no insight into how
students feel. He believes that teacher feelings are completely
different from student feelings.

But imagine your feelings if the Chair of your Math
Department suddenly announced that you must take a test. If you
have not taught a particular course in the past two years you
must pass a test before you can teach it. What course are Yyou
scheduled to teach that you have not taught recently? What is
your reaction to your Chair's announcement? You are not Dbeing
tested on how well you review the materal during the semester or
on how carefully you prepare your lessons. You are not being
asked to share ideas with a colleague. You are being evaluated
on questions someone else has chosen and already knows the
answers to. I think your reaction to this thought-experiment may
show that seasoned teachers can feel anxiety in a test situation
similar to what their students feel in their test situations.

The act of knowing is not antiseptic; rather it is wrapped
in feelings. It is the engagement of feelings. The primary goal
of our work 1is to improve classroom teaching. This paper
indicated only a few of the emotions inseparately connected
within mathematical activity and specifically calls the
classroom teacher's attention to the nature of the problems, the
perceived usefulness of mathematics, the role of observer, the
use of mathematics rituals and the testing situation.
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REPORT OF WORKING GROUP P lare Jansson & Gila Hanna

THE PROPLEM OF RIGOR IN MATHEMATICE EDUCATION

Funk and Wagnall's Standard Dictionary (1980) gives the

following definitions for the term "rigor:"

1) The condition of being stiff or rigid;j
2) gtiffness of opinion or temper, harshnessi

3) exactness without allowance or indulgencey
inflexibility, strictness.

These dictionary definitions of "rigor" notwithstanding,
the group did not =zeem to have a clear idea of what the term
means, although it was evident that we wished to avoid its
association with mortis. In order to focus our discussions we
attempted to follow an outline which directed us to 1) the
nature and function of rigor in mathematics, and Z) the place
of rigor and proof in teaching.

As an exercise to be completed before the second session,
each member of the group was asked to rank order four different
proofs* of Pythagqoras’ theorem with respect to three criteriad

i) Which is the most rigorous?
ii) Which is the most convincing {(to you)?
iii) Which one would you use to convince a nonmathematical
friend of the truth of the theorem?

It turned out to be very difficult, if not impossible to
reach any consensus on a rank ordering of these proofs in terms
of how rigorous they were. This led to a discussion of what
one means hy the term {in the context of our deliberations the
term “rigor® referred to rigorous proof). Rigorous proof is
the procedure used in an apxiamatic system to demonstrate the
truth of a theorem in that system. The system should comprise:

1) a number of axioms
2) rules of inference
3) theorems (derived truths).

It was immediately recognized that this ideal can rarely
be reached in practice with respect to major branches of
mathematics in their entirety. Rigorous axiomatic
presentations of small systems, e.g., games, were, however,
recognized in subsequent discussion as being more easily
attainable. We thought it important to speak not of abszolute
rigor as the property of activities within a well defined
systems but of degrees of rigor within a system that is not
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completely defined. There were suggestions for definitions of
*more Or less rigorous:”

{. An argument is more or less rigorous to the dearee to
which it is free of unstated assumptions. The more it uses
unstated aszumptions the less rigorous it is.

7., A purported proof is rigorous if it is free of holes
and it cannot be attacked, i.e., if nothinag can be added to the
chain of reasoning to improve it and if all of the analytical
steps have been made explicit and are correct. It is "lese"
rigorous to the extent that these conditions are not met.

3. When the context of the proof is not analytical, e.9.»
proofs without words, the concept of more or less rigorous is
not relevant. (Some group members viewed such a "proof" as only
a schematic outline which could be expanded into a proof in
various ways and of various degrees of rigor).

In the course of the deliberations we found out that

- Some of us are "unconcerned with rigor® in the teaching
of mathematics——-and unapologetically so.

-~ The authority of known mathematicians and of respectable
textbooks or publications play a large part in our acceptance
(although not in an absolute sense) of proofs, even in the
absence of all of the analytical steps.

- A detailed and more rigorous proof may enhance the
undersetanding of a theorem, but it also may hinder or
contribute nothing to understanding.

- The degree of rigor desired seems to be a matter of
taste and judgment depending on context and content. Demands
for rigor rise and fall in history and depend in part aon the
function of the proof: ritual, validation, convincement. . . .

- The fact that mathematics is a social activity occurring
in a social context and the need to communicate mathematice are
very important to the notion of a desired degree of rigor.

- rigorous argument may exist in other disciplines——it is
not peculiar to mathematics.

The group moved in the second session to a discussion of
reasonable expectations of high school graduates regarding
their knowledoe of proof and rigor. Some expectations werel
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- the realization that conclusions must be Jjustified

: ' ‘and
that this is part and parcel of mathematical activity);s

-8 knowledge of the role and function of axioms,
definitions, theorems, proofs, and conjectures, and the ability
to use these properly in & chain of reasoningj s

—.tﬁe ability to develop and sketch an argument/proof and
the ability to defend or attack an argument/proof;

- some sense of the social conventions surrounding proof
and rigor, e.g., the ability to distinguish between what
constitutes a plausible argument and what constitutes a proofi

- we ;hould be more concerned with rigorous thought and
argumentation than with stylized written proof.

. With regard to developing the above abilities and
attitudes in students, some felt that

- mathematics which is exclusively content

: ) {as opposed to
process) oriented is of limited valuej

- that in order to develop the notions of proof and rigor

a teacher may well have to rely on traditional content as a
vehiclej

- a useful pedagogical technique is to

- convince yourself
- convince a friend
- convince an enemy.

The final session focussed on what we could say to
teachers’ groups or curriculum committees regarding rigor.
There was general agreement that teachers should:

1) emphasize the need for Jjustification in drawing
conclusionss

2) teach proof procedurez in context rather than in
abstract formj

3) provi@e students with opportunities to work on problems
and.51tuat10ns which lead to observation of patterns,
conjecture, justification, and looking back.
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4) try to adjust the level of rigor (or of sophistication RIGOR - A READING LIST
of the proof?) to the mathematical ability of the
te, ) o ' - ‘
student Bruner, J.8. (1962). "Intuitive and Analytic Thinking®, Ch. 4
in The process af education. Cambridge: Harvard University
Discussion on the content vehicle revealed that most Press, pp. 55-48.
: ati ic re suitable for obtaining these four . '
2332???5;:31 :?ﬁéﬁz ﬁzre a number of a number of pleas for Davis, F.J. & Hersh, R. (1981). The mafhemat1cal experience.
qeametry at the junior or senior high school level.) Poston: Pirkhauser /Houghton-Mifflin.

Fischbein, E. (1982). Intuition and proocf. For the Learning of
Mathematics, 3(Z), 9-18,

Hanna, G. (1983). Rigorousz proof in mathematics education.
Toronto: QISE Presc.

________________________________________________________________ Kolata, G. (1982). Does Goedel’s theorem matter to mathematics?
Sciencey 218, 779-780.
A number of short readings were distributed and/or recommended

during the sessions of the working group. Those that are Kolatas, G. (1974). Mathematical proofs: The genesis of
available in other sources appear in the attached reading list. reasonable doubt. Science, 192, 989-990.
Post-conference comments on rigour are provided by David . . . . .
Wheeler, Ralph Staal, and Jorg Voigt. Kline, M. (1976). NACOME: Implications for Curriculum Design,

Mathematics Teacher, 69, 449-454.

#«The proofs were Lakatos, 1. (1978). Proofs and refutations. Cambridge:
Cambridyge University Press.

1) the standard proof given in Euclid

2) the Chinese "proof without words” " Maniny Y.I. (1977). A course in mathematical logic. New York:
3) a proof using the inner product of vectors Springer.
4) the proof using the altitude to the hypotenuse and
similar triangles. Semadeni, Z. (1984). Action proofs in primary teaching and in
teacher training. For the Learning of Mathematics, 4(1),
3234,

Senk, S5.L. (1985). How well do students write geometry proofs?
Mathematics Teacher, 78, 448-4564,

von Neumann, J. (195%)., The mathematician, in J.R. Newman
(Ed.), The world of mathematics (v. 4), New York! Simon
and Schuster, pp. ZB53-2043.
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POST-CONFERENCE COMMENTS ON RIGOR

by David Wheeler

Much of the discussion I found interesting, stimulating and actually damages students’ thinking powers (as can be seen in the
helpful, yet I am left with a feeling that perhaps it was a pity substantial number of students who have become convinced that they
that the focus of the group was on rigour rather than on, =ay, are mathematically stupid). There is no doubt that mathematics
proof, mathematical reasoning, or some other more 9eneral could be used as a mediwn for encouraging careful thought. Put how
conception. Rigour in mathematics seems such a specialised often in traditional classrooms does one hear teachers make
notiony far from what appears to me to be my central concerns interventions that promote attention and foster careful argument?

about mathematics or mathematics teaching.

Frobably the difficulty for me is that rigour in mathematics - Look at what you have done!
is eszentially a technical matter. There is the formal apparatus
of axioms, postulates, definitions and theorems, all embedded in a - Listen to what you are saying!
particular mode of deductive logic. Now I would grant that this
apparatus has had twoc general consequences within mathematics: it - Is she right? How do you know?
has (1) encouraged some mathematicians to work on a clarification
of the foundations (Peano is a g9ood case in point) and (2) ~ Are not "this" and "that" contradictory?
generated considerable activity in this century around the
powerful concept of mathematical structures {(Pourbaki and so on). - Would what you have said =till be true if wou
Even soy the majority of professional mathematicians proceed on substituted "this" for “"that"?
their ways ignoring the matter of rigour, and I am forced to
wonder what possible application this technical stuff can have in - What have you forgotten?
the education of students, of novices, of people whose principal
concern should be with knowing how to mathematize. - Can you convince John you are right?
The pity of it is that the very special methods of ensuring - Do you need to use so much energy? Find a simpler way.
{or approaching) mathematical rigour actually tend to reduce the
attention educators give to rigour in its more general sense, that - Do not tell him! He can decide that for himself.

of "close reasoning'. We can speak of rational arguments in any
field as being more or less rigorous, and we sometimes refer to

particular persons as "rigorous thinkers" (qQr not, as the case may Mathematics is a very suitable medium to use in encouraging
be). This general appreciation of the value of rigour is very students to exercise reason since it reliee very little on mature
important, it seems to me. It gives a high valuation to such interpersonal experiences or sophisticated intellectual concepts,
things as weighing evidence, being clear about one’s assumptions, which students don’t have, but a lot on immediate perceptions and
being careful about the validity of the steps in an argument, fundamental mental operations; which they do. (How else could
explicating the consequences of an argument even where these are there be prodigies?) Once the habit of reasoning in mathematics
not the ones hoped for, and so on. Some competence in this leszons has been taught, arguments can be =crutinised and revised
difficult art would serve any adult. I emphasize the word "art" to and made more rigorous. Eventually the students will come to see
indicate that close reasoning is (in the present state of our what a proof is. Put this is a developmental process that takes a
knowledge, at least) something only a person can produce. The number of years. To offer the model of mathematical rigour
slight amount of evidence that computers can presently generate enshrined in the axiomatic approach to school studente is totally
rigorous proofs in fact dismays me because it tells me that inappropriate.

important ingredients of the process are being ignored.

It has often been claimed that exposure to mathematics helps
students acauire general thinking skills. I believe that it could,
but it hardly ever does. Mathematics is still largely taught, in
spite of centuries of advice to the contrary, as a body of skills
that can be imitated without understanding. Taught this way it

} - e R
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by Jorg Voigt

. . « 1 enjoyed the working group and found the sessions
auite interesting, especially because 1 was forced to think about
the connections between rigor in mathematics and rigor in
mathematics instruction. I agree with the report and will try to
sum up my ideas of rigor.

1 think that rigor in the presentation of mathematics should
have little relevance to mathematics education, but rigor chould
be important for the discourse processes in the mathematics
classroom. There rigor could be an implicit element of the
discussions. Somewhere Hans Freudenthal wrote: "When does
reasoning begin with the pupil? Pefore it is termed as proof or

the like."

With regard to Vygotsky, Wittgenstein and others the
development of mathematical thinking depends on the experiences
gained by the pupils in the social interactions between the
teacher and the pupils. One task of the teacher is to organize
mathematics instruction in such a way that the proces=zes of
arguing interactively constituted are preliminaries of individual
rigorous thinking. Surely, the teacher should have some knowledge
of logic, but the problem is to see the lines of argumentation in
the classroom processes and to organize them. The prablem is the
connection of the knowledge of logic with the practice of teaching
in a specific context.

1 have similar findings in mathematics classrooms to that of
Thomas Russell in science classrocoms (J. of Research in Science
Teaching, 1983, v. 20, n.1): Often the dynamic of the social
interaction replaces the rationality of argumentation. In
classrooms the teacher’s authority was established for the social
organisation of teaching and learning, but it is at the same time
a menace to the learning process.

1f I had to work with mathematics teachers in this context, I
would

- make them solve mathematical problems in little groups

- videotape the group work, and

- let the teachers reconstruct the lines of their
argumentation.

In this case, the teachers could notice that it is important and
very difficult to do mathematics rigorously with other persons.

I concede that mathematics instruction could and should be
not an image of the ideal practice of reasoning in the discipline.
Put the teacher’s authority should not be a substitute for the
rigor of mathematical rationality.

— ———— Cr——

T— r—— e we——w

92

by Ralph Staal ’

I found much of tf 3
1e discussion confusing, becaus
b ' ' 1§} y ecause althgo
:he chairman began by pointing out that "rigor" ics a relaf;vzgh
agrmi fome Pparticipants continued to use it apparent 1y in-an
s0lute sense, as in "1 don’t¢ belie i i '
Thic abeoropos: @ C : eve 1n rigor at this level."
s 3 € could be an acceptable conv i
the face thar oyot ] - 2 & convention, except for
: 3 sn’t said what this absolu
S < [S tte
analogy would be when someone =a T teme oo

R )
g opeould, 4% "1 don’t have any temperature

Another example of ambi 5
) ) E ambiguous terminol i
distinguish between: P98 was the failure to

1. The degree of'rigor of a proof that p implies &

; Zz. The degree of rigor of a Proaf of o --
where P itself has been established on either m
rigorous grounds. ‘ l

The difference is that in (1 ‘
] ) = ) the degree of certaint:
¥p9w1ng that P is true is irrelevant, whereas in (2)'?;n§;n?: o
";i? makgs & great difference in talking about rigor in ’
i .nematxcs,‘ Unfortunately, it takes a good deal of persist
effort to maintain the distinction. reistent

With this much variation i i i
N 1in meaning, it was not sur isi
;si:athere,was no congensus as to the ranking of four prz;;:lg?
“hagoras’ theorem with respect to the three levels of rigor

In our.discussions, there seemed to
érard to poxnt to, but felt tg be there)
"Gziszssg::t1qn of mﬁ?hematics with rigopr (presumably meaning

rigorous was naive and s 1
. 21y : wa ‘ was 1n need of correction.
tzrzagﬁpigggz; t?§s P?lgt of view is often the result of upufzdown
g ections 9 which one ¢ s ho t . 1 ,
thing ng pRerf : an how that there is ne such
v Oor beauty, or objectivit j i )

i ) ) b My Oor jJustice, or
;;r;giﬁlu.:pythlng worth talking about. The study of‘foundafi0n=
of perézgi ics doei make one aware of the elusiveness of absélut;

- rl9or, but a thoughtful pere i hi
‘ - spective on this matte
nevertheless puts emphacsis where emphasis is due, namely 06 :he

extremely (perhaps ever ; .
N uniquely) hi : . N
mathematics can be purcued. 9) high degree of rigor with which

be a stfong undercurrent
of wanting to show that

With thig Perspective asg a i
i o guide, I can see no =
ggd;;g ;he rgle of mathematics in education as stemm:i: ?8 :Olarge
=3ree from its association with a relatively high deqree of
rigor. (The work of Lakatos, so often misapplied
does not change this one bit--rather ,

greater rigor leads one ta mor
concepts, )

, in my opinion,
it shows how the search for
€ and more rigorous definitione of
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The main speakers at the meeting, Ross Finney and Alan Schoenfeld,
each joined the working group for one of the sessions.

MICROCOMPUTERS IN TEQCHER EDUCATION

REPORT

Initially the group discussed personal experiences, direct and
indirect, they had with teaching mathematics using computers and
software, The following points gradually emerged from the
conversation of the first evening.

Careful selection of software is necessary because:

a) there is a lot of expensive software that has little educational
value;

b) of the current curriculum. At this early stage in utilizing
" computer as classroom teaching/learning tools, it must fit the
existing curriculum.

GRDUP LEQDER' : Even good and powerful software does not necessarily lead to
CHQRLES UERHILLE effective use. Teachers, both pre and in-service, need to devote
considerable thought in preparing to use computers to help in the
’ teaching of mathematics. Our discussion suggested that there is a
growing body of evidence supporting the computer as a valuable
teaching resource yet it is difficult to assess its potential during
what 1s perceived to be an early stage in the development of the
technology. Not only is the computer hardware undergoing continuous
and rapid changes, but the development of software with exemplary
features is slow. In a recent article published by members of the
Shell Center for Mathematical Education at the University of
Nottingham, a research study over three school terms in a secondary
school indicated the following:

' -
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1) computer aided teaching will be successfully adopted if necessary
resources are available, and

b) computers seem to be very versatile teaching aids and there are
no grounds (at this time) for strongly recommending any
particular style of use.

These suggestions as well as the developing nature of the entire
field of computer use in education give negligable guidance and
direction for microcomputer use in teacher education. The use of
exemplary material in the average classroom with the average teacher
was briefly considered. Several group members described sessions
they had observed using the Geometric Supposer, a piece of software
they considered exemplary. In each instance it was suggested that
the scenario did not typify the average mathematics e¢lassroom with
the average mathematics teacher. The developers and users of this
software in these situations perceived that, because of its power and
versatility, students could be successfully drawn into an inductive
exploration or search for geometric truths, after which they would
concern themselves with developing convincing deductive arguments
(proof). They were behaving as geometers. Because of the features
of the Supposers, in that one has a drawing and measuring tool which
permits the operator to quickly and accurately produce, measure and
alter geometric constructions, much of the drudgery and inaccuracy
related to ruler and compass constructions is avoidable. Equally as
powerful is the ability of this software to "remember" the current
construction and repeatedly repeat 1t upon request. This potential
permits geometric exploration and pedagogical approaches for teaching
geometry that were previously imaginary. Unfortunately many of the
seemingly best mathematically qualified, based on the amount of
mathematics studied, mathematics teachers have never personally
experienced learning mathematics in this way and thus fail to
appreciate exciting new possibilities.

As a result of the initial general discussion we decided to begin by.

examining some of the software material available to the group. We
ended up devoting the rest of the working group sessions to a
discussion of the following software packages:

Apple Logo (Apple)

Algebra Arcade (Wadsworth)

Interpreting Graphs (Conduit and Sunburst)
Geometric Supposer - Triangles (Sunburst)
Calculus Student's Toolkit (Addison-Wesley)
Graphical Adventure (Saga Software)

—— —-—— ———— —-— ——
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4
Graphical Adventure is available only for Commadore 64's while the
others were all Apple Ile packages (although some may be available
for other microcomputers).

It was noted that to examine a software package as well as discuss it
in some depth is deceptive. This working group found its time
quickly spent in the process. The group did not deliberately proceed
linearly through each package. We compared and contrasted features
as the discussion proceeded. The software that invariably drew the
greatest attention contained what the group considered to be powerful
features. Invariably these necessitated a high, active participation
rate with the operator in control. For example, the geometric
supposers are able to draw, measure and repeat constructions only
under the direction of the operator. Without these directions it
will not do anything and the potential of this type of software can
only be explored if the operator is able to interact with it to take
advantage of these features.

During one of the sessions Ross Finney demonstrated the Calculus
Student's Toolkit, a software package that he was involved in .
developing. ’

Sr. Rosalita Furey familiarized the group with the Graphical
Adventure which gseemed to have considerable potential for the
secondary curriculum (particularly at $14.95). Unfortunately it is
only available for the Commodore 64.
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Appendix 1 Geometry via the Computer
SOFTWARE INFORMATION Lesson X by Roland Eddy
1. Apple Logo Apple Canada $ 150.00 The Mediums of a Triangle p
2. Algebra Arcade Wadsworth Publishing 34,45
Co.
8 Davis Drive
Belmont, California
94002 o
3. Interpreting Graphs Conduit 45.00 (US) + 7 -
The University of 8 D
Iowa
Oakdale Campus
Iowa City 1. The medium AD bisects BC.
Iowa 52242 45,00 (US)
2. Calculate the areas of ABD and ADC.
Conclusion? (Equal)
4. Graphing Equatien: Conduit 45.00 (US)
(includes green globs) : 3. Construct several triangles and their three mediums.
Conclusion?
5. Geometric Supposer Sunburst 99.00 (US)
(These are triangles, P.0. Box 3240 132.00 (CDN)
quadrilateral and circle Station F .
versions as well as a Scarborough, Ont.
pre-supposer) M1W 929
6. Calculus Student's Addison-Wesley ?
Toolkit 8
. M G . i ?
7. Graphical Adventure Saga Software 14.95 (CDN) 4 .(:Esgrg/éGAD Détit§ Conclusion
418 Gowland Cres. ' :
Ml%tznz Ontario 5. Calculate the areas of AGB, GBC, GCA. Conclusion?
L9 E (A1l equal)
6. Construct the triangle with sides AD, BE, CF and

construct its mediums. Verify that their measures
are 3/4 AB, 3/4 BC, 3/4 CA.

A
) e
3 K
é D C ge
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é a [

Heron's formula:

a+b+cC

Area = V/é(s-a)(s-b)(s-c), s= 5

Verify the corresponding formula

o Mgtmp*ie
Area = 4/3/ s(s-m) (s-mp) (s-me) » 87 22 —=

A 2
2 2. 2. p° ¢ cH)
Verify: ma2 £ompt o omg 3/4 (a” +
verify the inequality:
, T
m, +omy *om f; 4R + r , where R

represent the circumradius and inradius respect
When does equality occur?

ively.
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CANADIAN MATHEMATICS EDUCATION STUDY GROUP

JUNE 1986 MEETING (ST. JOHN'S)

Report of Working Group D

The role of the microcomputer im developing

statistical thinking

by Claude Gaulin and Lionel Mendoza
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The group was a follow-up to a working group in Vancouver in 1983,
which had focussed its discussion on "the goal of developing
statistical thiunking for all" as well as on appropriate topics and:
methodology for a core curriculum. The report of the Vancouver
working group cam be found in the proceedings of the 1983 meeting

of CMESG.

The objective of Working Group D in St. Johq's waS to investigate
the issue of how microcomputers could be used for developing
statistical thinkiug. Among the aspects initially proposed for
discussion were: software for teaching statistics,; graphical
representations of statistical distributions; simulations of
random experiments; and learning probabilistic and statistical
concepts through programming. The preliminary discussion on the
first evening enabled the group to determine the focus for the

three three-hour sessions that followed.

The work and conclusions of the group can best be summarized by

dividing it into three phases.

Phase 1

This phase raised the difficult question of what was meant by
"statistical thinking"”. While no attempt was made to develop a

formal definition, the group agreed that the core idea of
statistical thinking wvas a comprehension of the nature of
representations, distributions, and inferential statistic, as

opposed to the ability to draw graphs or undertake statistical
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tests, per se. Also, at this Stage it was decided to focus oun the

ANIMATION can be an effective aid for descriptive
role of the computer as a teaching aid, and not as a computational
statistics and exploratory data amalysis. The
aid (as epitomized by statistical packages). It also becanme
ability of the computer to build up successive
apparent in the discussion that the members of the group were not ¢
representations as the data is entered [either froam s
aware of software specifically desiganed to develop statistical
pre-set data sets or student-collected data sets]
thinking.

gives students a visual image for comprehending the
nature of the data.

Phase 2

In this phase the role of the computer was explored.

The group (B) VISUALIZATION IN "INFERENTIAL STATISTICS".
mostly discussed how it could be used to VISUALIZE statistical Animation can also be used in developing
ideas and processes. inferential statistics, an intuitive understandiug
] of hypothesis testing, and the notion of coufidence
(A) VISUALIZATION IN DESCRIPTIVE STATISTICS AND intervals. An example would be using the computer
EXPLORATORY DATA ANALYSIS. to select samples of a given size and building up
Utilizing the computer here involves displaying a ‘ the distribution obtained by repeated sampling. By
variety of graphical representations (e.g. bar varying sample size and the number of samples,
graphs, pie charts, stem-and-leaf plots) om the students can obtain a feel for the nature of
8¢reen. A particularly effective use of distributigns and later on apply this to the
visualization is having different data sets i distribution for a test statistic.
SIMULTANEOUSLY DISPLAYED on the screen, enabling
Students to interpret, discuss, and compare the NOTE: Whether the computer is used to visualize ideas and
data. Alternatively, displaying the same data in processes in descriptive or inferential statistics, the group
different ways develops an awarenes of the insisted that software should be INTERACTIVE, and not merely
advantages and limitations of different displays DEMONSTRATIVE. It should allow the user to ask questions and
and helps students to select the most convenient or indicate displays that he or she would like to see. Thus, the
best illustrative representation from among many interactive nature of the software requires a flexibility of

ossibil
poss lties. choice, beyond that of merely allowing the user to choose from a
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limited selection of options. It is important to stress that it
i{s the INTERACTIVE nature of the software and the DISCUSSION of

ideas generated by the display that leads to statistical thinking.

Phase 3

During the last workimg session, the group discussed the structure
of an imtroductory course in statistics for undergraduate students
fn which the microcomputer were to be fully integrated THROUGHOUT

the course. The suggested components for such a course were:

1) Data "display” and interpretation
[Computer displays and animation used]

2) Exploratory data analysis
[Centrality, box plots,...]

3) Transformations of data
{log, log normal,...]

4) Uncertainty
{Exploratory games involving repetition]

5) Nonparametric statistics, sampling, etc.

A variety of themes occurred throughout the sessions, but time did
not allow us to discuss them in depth. The following are some

examples:
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1) The use of computers to simulate random processes.

2) The role of probability inm developing statistical thinking.

This topic was raised at various times throughout the sessions.
The group felt that much could be accomplished in developing
statistical thinkiang without a detailed analysis of probabilistic
concepts, per se., During these discussions a probability based
game designed to develop statistical thinking was presented by

Eric Muller. (See Appendix A).

3) The issue of decision making versus probabilistic thinking.

There is a fundamental difference in the Tole of probability im
the two situations. 1In statistical thinking a key aspect of
probability is the role of repetition within the situation and it
is 'assumed’ that the situation can be replicated. However, in
decision making, while some probabilistic information aids in the

decisioun making process, it is usually not a repetitive situation.

4) The relationship between computer games/activities and the use

of real objects. How do students relate computer 'generated’

games/activities to similar real object games/activities? The
group was concerned that students (particularly young students)
might have difficulties effectively internalizing ideas developed

in computer situations without experiences with real objects.
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In conclusion, there 1s ome point the group would like to make:
the group felt that it would be interesting to do further work
during the CMESG meeting at Kingston, and suggested a working
group focussing on "Inferential Statistics for all High School
Students”. 1Io particular, such a working group would explore, the
following questions:
(i) How can the computer be used in conjunction with

other traditional types of teaching aids?
(i1) Vhat is the minimum amount of probability needed

to study inferential statistics?
(iii) How can simulation be used in developing

inferential statistics?
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APPENDIX A

+
Developing Statistical Thinking

by

Eric R, Muller
Brock University

In this supporting document for the Working Groqp "The role
of the Micro-Computer in Developing Statistical Thinking" we con-
sider an activity which has been used successfully vith groups.of
students anywhere from elementary school to university. Although
the activity does not involve the micro-computer the group spent
a considerable amount of time trying to isolate the conponents of
this activity which make it successful. Such components could
then be structured in micro-computer simulation activities.

*Also submitted in modified form to the Ontario Mathematics
Gazette.
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1. Activity to Develop Statistical Thinking
Materials
1. 3card with r positions, marked 1 to r, for positicning

coloured chips. The Board jllustrated below has fourteen
positions numbered above 1 to 14.

2. 2 regular six sided die -- it 1is useful to also have avail-
abtle pairs of the other four regular polyhedra (4, 8, 12 and
20 sided)

3. At least r/2 blue and r/2 red chips (or any other two
colours

1 2 LY i S 6 7 8 9 to 1 2 12 1y
o o C O O OO0 o0 OO0 O C
Al B A 3 N 2 N S N 1 Y O 3 I - I
Play
1., Two teams - teams of two students - work well as each student

has a partner to discuss strategies. One team given red
chips, other team given blue chips. .

2. Tha two teams will alternate placing one of their chips in
the places provided on the board. The aim 1s to have a chip
in the position which corresponds to the sum on the faces of
the two dice when they are rolled, eg., to have a chip in
position 38 {f a (five and three) are rolled. Tc start one
of the two teams 1is selected, 1t places one of its chips in
the position on the board which it believes is most likely
to occur. The other team then places one of 1ts chips in
one of the (13) unoccupied places. This procedure alter-
nates between the two teams until either (a) all positions
on the board are filled or (b) one team no longer wishes
to place any of its chips, then the other team may occupy
all vacant positions.

3. The board is now set for n, (say 25) an odd number of rolls
of the pair of dice. Each time the dice are rolled the team
which has a chip on a position corresponding to the same on

the dice records points (single points at level 1, points in .

the square below the position at level 2).
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4. The team with the most points at the end of n (say 25) rolls

wins that game. . ‘
k2
5. All chips are now taken off the board and a new game may be
started.
6. The objective for each team is to find a winning strategy,

ie. a strategy for selecting the positions for their chips
which will provide the best chance for winning.

The following three levels of play suggest a natural progression
for statistical thinking. Some teams will not progress beyond
level 1. One must resist the temptation to provide solutions.
This activity provides an ideal medium for exploration and one
should only do the leading. We have always played with the fol-
lowing rules:

(i) Teams do not discuss their strategies with other teams.

(ii) When a team believes it has a strategy for winning it.dis-
cusses it with me. I will not indicate whether the strategy
is the best I know but I will change the team's opponents or
materials to either
(a) expose the possibility of a better strategy

or

{b) reinforce the team's winning strategy.

The following three levels of play are suggested:
Level 1 (Estimating probabilities)

Objective: 1) Students to observe which outcomes, sum on
the two dice, are possible and conclude that
these outcomes are not equally likely

2) Students to quantify the uncertainty, ie.
estimate the probabilities of each outcome

3) Students to develop the strategy of select-
ing those positions which maximize their
probability of winning.

Procedure: The team whose chip is on the position with num-
ber equal to the sum on the two dice gets one
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point. The team with the most points accumu-
lated after n (25) odd rolls of the dice wins
that game.
Note: To reinforce winning strategies supply the teams
with one six and one eight-sided dice -~ or a 12
and a 20-sided dice and a different board! To
expose a non-optimal strategy change teams to
play against a team with the optimal strategy.

Level 2 (Random variables and Expected values)

Objective: 1) Students to discover the concept of random
variables.

2) Students to develop a winning strategy based on
the concept of expectation value, ie. a set of
positions such that the sum of products (of
probability and points scored) is greater than
that for the opposing team.

Procedure: The team's whose chip is on the position with
number equal to the sum on the two dice gets the
points indicated below the chip. The board
illustrated above shows 2 points for a sum of
six, 4 points for a sum of nine, etc. The team
with the most points after 25 rolls of the dice

wins the game. Follow the procedures outlined in
level 1.

Note: I have a number of boards, each with a different
sequence of points. By switching boards one can
either reinforce an optimal strategy or expose
one which is not optimal.

Level 3 (The effects of changing the number of rolls or 'trials)

Objective: Students experiment to show that as the number of
trials is increased in a game the probability of
winning the game with an optimal strategy is
increased.

Procedure:

The game is repeated 20 times for a fixed
optimal stragegy and n rolls of the dice

where

n =1
then n = 3
then n = §
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From these results thas students prstimate the
nrobahility of winning in each case agd Qlot
these versus n. The probability of winning the
game in 2¢ rolis should increase as N
increases. .
The reason for tiis 1s that it is an a;plicagion
of the binomial distrioution with the follcwing
properties:

1) n identical trials, ie. n roils of the pair of
dice {for this game wve choose n cdd)

2) each trial results in one of twn outcones, }e.
a loss i1f the total on the dice is not equal
to one of the positions of the team's chip

3) probability of success, P, in a s@ngle.trial
remains the same from trial to trial, 13..tbe
chips are not reset between rolls, prcbability
of failure q = 1-p

4) trials are independent, le. the r§su1t.of one
roll does not depend on that obtained in pre-
vious rolls.

Then probability of exactly X success is gaven Yy
ooox  n-X
C{n,x) P 4

In this experiment we ars interesied in the probab;lity of get-
ting more than half of the points ¢ win the jJane, 2.

° X
) C(n,x)p" 1

=

where Y%\ is the smallest integer greater than

n-x

{n odd by cholice}

students with a knowledge of the Binomial probability dis-
tribution can verify that their values are close to the thecreti-
cal ones, viz.,
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n=l—ps) c,)p & =P

¥=1

3 X 3-x 2 3
n=23— P= E C(3,x)p g ~ =3p"qrp

X=2

2 5- 5 2 4 5
ne5-—p=) C5x) p°q F=10p'qg° + Spa+p

Positioning the chips in the most obvious position for a win,

starting team will have

p- 2

36
giving for n = 1 - P = 0.35833
givinglfor n=3 - P = 0.6238
civing ror n = 5 - P = 0.6534

the
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1. The Beginming

My main thesisl here today is that the later stages of
our evolution, i.e., the distinctively human stages, have been
mental rather than physical in nature.

We also note that there is potential danger im any
evolutionary change for any species. The change may bring new
opportunities or it may bring unexpected risks. Some species,
such as the cockroaches, have played it safe by finding a nice
niche and staying put in it for a very long time. We humans have
been less "lucky" or less "sensible".

In his well-known and highly speculative book entitled Ihe
. . B 4 . p

(1976) Julian Jaynes, a psychologist at Princeton, tries to show
some of the gains and losses associated with the development of
human language and human consciousness. For example, he claims
that a schizophrenic-type of coudition was associated with
consciousness and language in pre-historical and early historical
man. In particular, he claims that the experience of hearing
"disembodied" voices was very common and led to the development of
mysticism and religion, prophecy and poetry, as well as to such
modern residue as hypnotism and mase "hysteria" (i.e., mass enthusiasm
or mass ecstacy). Jaynes speculates that as language functions
became localized in one hemisphere of the human brain, usually in
the left hemisphere, schizophrenic-like consciousness became much
less coumon in our species, and religion became institutionalized
or fossilized because most of us could no longer hear the voices
of the gods and angels, the devils and demons. Jaynes’ bold
attempt to explain our most recent evolution is very stimulating
but it has been criticized for being too speculative. However, I
would like to claim that we need to be even more bold and speculative
if we are to understand the dangerous and critical nature of our
most recent evolution.

Whereas Julian Jaynes attempted to link our purely human

-evolution to a left-right specialization in the human brain I will

attempt to link it to a front-back specialization in the same
brain., Like Jaynes, I want to link our cerebral development to
the evolution of natural languages (the things we today call
English, French, Chinese, etc,) but I also want to link it to our
development of mathematical languages (the things we today call
arithmetic, algebra, geometry, etc.). From a pragmatic point of
view, we can regard natural languages as the tools we invented to
control one another and mathematical languages as the tools we
invented to control the rest of nature.
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As a species we have reached a unique point in thg
evolution of life on this earth. Because of the awesome powei ot
mathematical languages, we have been able to create enqugh nuctﬁgs
weapons_to wipe out all (or nearly all?) forms of life on -
planet.” Because of the equally awesome power of natural lan§u8§i5£
one man in the U.S.A: or the Soviet Union can speak the few Eng :
or Russian words needed to begin the nuclgar holoqaust. "Obquzsz“
ve have replaced Jaynes’ individgal sﬁ?1zophreg}a of "primi
man by the collective schizophrenia of "advanced" man.

2. The Mjd

When we compare ourselves with our Flosest primate c9u81:z
wve are immediately struck by three majof dxffere?ces—-tw%fln ﬁce
behaviour plus one in our brains. One wajor behavioural d1Amergcan
is that we have natural language, defined by the famous er:in
linguist Noam Chomsky as a system that coanects {ound to me:1 5
yia syntax., Syntax is that wonderful human invention which a o:n
us to talk or write forever despite a swmall vocabulary and an e; o
smaller intelligence! Since early human language was spoken 0u
not written we have no direct evidence about its gature.h‘ hir
oldest samples of writing reveal languages that are alrgngy ig Z
developed. Moreover, along with the deve%opment of wr1t§n§ co?i
the development of early mathematics ) which we can prov191o:: ny
define as the language of quantification. IF would appear, \ en,
that our mathematical abilities emerged in parallel with our
language abilities during the purely human stages of our evolutxz;;
With the introduction of proof into mathematics, atFrxbuteq tf_ s
Greek known as Pythagoras (6th century B.q.) this npecxallze
human language became the major tool of science an? techuno ggz;
the second major behavioural feature that‘dxstxqguxshea us t;a:
our primate cousinse. If we look for a third major fea.cure.t :
might underlie and help explain the other two, we can f19d lh i
the distinctive frontal lobes of the puman brain. It is t osi
highly developed frontal lobes that give us our more prominen
foreheads as compared to the receding, sloping foreheads of our
primate cousins.

' But what goes on in those frontal lobes of ours that
makes us so different from all other pr}mytes. from all other
mamnals, from all other animals? Surprlglngly enough, mnatural
language functions are not all localized in the frontag lfbe:;-
In fact, wmuch of the human frontal lobes are made up el t ;
called ‘silent areas’ of the cortex., These are areas :hlc ,-o;
stimulation, evoke neither semsory nor motor respomse” (Smit
1961: 193). Smith feels that the main funftlon of the human
frontal lobes is the integration of perceptions and knowledge,
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particularly the time-integration of separate events that gives
rise to our Perceptions of cause and effect, Smith admiringly
quotes an 1824 entry in Emerson’s journal: "Man is an animal that
looks before and after." Thig remarkable imsight of the then
youthful Emerson explains the central Paradox of buman nature;
that is, it explains why we are simultaneously the most rational
and the wost irrational of all Creatures. When we compare ourselves
to other waumals psychologically we are struck by our peculiar
inability to enjoy the here and oow. We are forever regretting
the past and fearing the future. We note that our greatest buildings
(temples, Pyramids, cathedrals) used to be erected to those very
regrets and worries, sins and hopes. We note too that the ineatiable
human sacrifices of the Aztecs vere not motivated by ferocity but
by fear: they were meant to keep nature operating in the future as
it bad dome in the past. As our frontal lobes and (somewhat
later?) our natural languages developed, our instincts were gradually
replaced by learning and memory, by reasoning and faith. But this
laid an intolerable burden of choice and responsibility on the
individual. This must be the basis of our myths about our expulsion
from the Garden of Eden, from a state of innocence and grace into
@ knowledge of good and evil., Never again could we be as "natural"
in our behaviour as the other mammals seem to be.,

Perhaps man’s most heroic and rational response to this
intolerable pressure was to invent mathematics. Natural languages
already contained most of the raw materials needed for basic
mathematics, For example, in Modern English we can see the
Prototypes of set theory inthewordsthatlinguistacalldeterminers

and quantifiers (Stockwell gt al. 1973: 65-160). Such words are
underlined in the examples given below:

211 books ~- the universal set (of books)
no books -- the empty set

a book, the book -- the unit set

any books --. a random subset

Bsomg books —- a non-random subset

etc,

The prototype of the finite/infinite distinction may be geen in
our distinction between ("finite") COUNT nouns and ("infinite")
MASS nouns. Examples are given in the table below:

.-
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countll MASS
a cup some sugar
a shovel some 8Nnow
an apple some fruit
an egg some butter

More important, perhaps, was the existance of logical connectivesl?
in natural languages. In Modern English we find words such as the
following (Kemeny gt gl. 1966: 12):

and for addition (conjunction)

(o]

r for alternation (disjunctionm)

not for demnial (negation)
if ... (then) for dependency (conditional)

The most important of these logical connectives seems to be the Lif
(conditional) type. This is because the birth of "real" mathematics
coincides with the explicit recognition of the methodology of
proof, associated above with the sixth century B.C, Greek philosopher,
mystic, and mathematician called Pythagoras. As E.T. Bell (1937:
20) has pointed out, "Before Pythagoras it had not been clearly
realized that proof must proceed from gsgumptions. Pythagoras,

gccording to persistent tradition, was the first European to-

insist that the axjomg, the postulates, be set down first in
developing geometry and that the entire development thereafter
shall proceed by applications of close deductive reasoning to the
axjoms." Pythagoras himself is.not likely to have discovered that
the square on the hypotenuse of a right-angled triangle equals the
sum of the squares on the other two sides. This fact was apparently
well known to the priests and land surveyors of Egypt and Babylon,
both of which Pythagoras visited. His great contribution was to
prove why this fact had to be true. The proof(s), using deductive
reasoning, showed that this theorem had to be true for all right-
angled triangles drawn on the surface of a plame. This was quite
different from inductive reasoning based, for example, on measurements
taken from a hundred specific triangles. Deductive proof guaranteed
that not even the gods themselves could change this law of nature.
Hence, it gave the Greeks a confident sense of security so that
they, unlike the Aztecs, did not have to perform sacrifices in an
attempt to preserve the laws of nature.
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It was gradually realized in mathematics and the sciences
that one did not have to start with postulates that conformed to
one’s sense perceptions or omne’s common sense. This led to
developments such as geometries of spaces with more than three
dimensions. This also allowed Einstein to assume that the velocity
of light is constant for all observers, a postulate that violates
common semse, But this counter-intuitive assumption allowed him
to conclude that E = mc“ before experimental evidence was available
to show the relationship between energy and matter im nuclear
reactions. More recently, I have read of discontinuities in space
called "strings” (Angier 1986). These may be relics left over
from' the Big Bang that are capable of bending light more radically
than even the most massive collections of "solid" or "real" matter.
Though we cannot observe such strings "directly", we (i.e., a few
theoretical physicists) can describe themmathematically. Ultimately,
then, our understanding of the universe, at either the macrocosmic
or microcosmic extremes, fades away beyond our senses into the
abstractions of mathematics. This means that mathematics defines
the limits of our "knowable" universe.

OQur provisional definition of mathematics above was the
language of quantification. We can now amend that defimnitiom by
calling it the language(s) of quantified iffiness.

3. The Epnd

Let me try to recapituate. The development of the
distinctive frontal lobes of the human brain and the concomitant
development of mnatural language cut our species free from the
control of instincts and forced it to rely on accumulated experience
(i.e., memory) and on the uncertainties of inductive reasoning.
Some human groups tried to solve the memory problem by developing
writing. Some tried to solve the problem of inductive uncertainty
by developing methods of deductive reasoning in logic and mathematics.
The rapid advances made in European mathematics and sciemnce in the
seventeenth and eighteenth centuries by men like Descartes, Newton,
and Leibniz led to the remarkable optimism and self-confidence of
Western Man in the eighteenth century. We wmanaged to make it
through the nineteenth century fairly safely, but the twentieth
century destroyed our faith in both men and mathematics. On the
human side we have seen two world wars and several attempts at
genocide. We have also seen about a quarter of the human race
suffering from acute starvation, chronic hunger, or crippling
malnutrition. Between the two world wars science and mathematics
also encounted their liwmitations, In 1927 Werner Heiseuberg
published his Principle of Indeterminacy for physics. In 1931
Kurt Godel showed that mathematical systems can never be complete,
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that mathematics contains insoluble problems. As William Barrett
wrote (1962: 39) "This means, in other words, that mathematics can
never be turmed over to a giant computing machine; it will always
be unfinished, and therefore mathematicians——the human beings who
construct mathematics--will always be in business.” This good news
I bring youl

Where, then, can we go from here? If, as I have claimed,
natural languages and mathematical languages are the two most
powverful tools, and therefore the most danger9us tools, that we
have developed should we not approach the teaching of both of them
with great care and caution? In particular, should we mot be
teaching something about the origins, the development, and the
limitations of both natural and mathematical languages? Shopld we
not be discussing the ethics of their uses and misuses in the
history of our species? Is it not just as important to teach
students gbout them as it is to teach students to use them, I
have known many students who treated mathematics as a kind of blafk
magic--"1f you do this and this you’1ll get the right answer, bqt don’t
ask me why!" Would it not be better to teach primarily for
understandingl3 even if it meant teaching less? Wouldnft less in
fact be more in this case? Wouldn’t the above suggestions solve
some of the notorious problems of motivation in mathematics stgdents,
gince it would make the whole subject less dry and more meanlnggu}?
Heaven knows that we have seen in this century some horrific
results of blind obedience and unreflecting faith. We now know
that enthusiasm and will are not enough to ensure the survival of
the human race. If we do not pause to assess ourselves we may
well stampede over the brink like a herd of buffalo.

But most of all we must learn humility againi ‘We must
relearn the joy of living within our limitatioms, of living here
and now, of being part of nature again. After all, a star scientist
is a much a product of nature as is a starfishl Let us nofdifrget
the nobility and grubbiness of our "struggle into light. . We
imagine our remote primate ancestors attempting to stand upright
on their hind legs so that they could better spot dangerous predators
at a safe distance. Now we have become the most dangerous predators
of all. Unless we can come to terms with our flaws we are finished.

* * * * * * * * * *

The orally presented version of this paper endeq at this
point. During the animated question period that followed 1 discovered
that some members of the audience wanted me to speculate a little
about our possible futures. Well, then, here goes!
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I do believe that there is some slim hope for the human race.
But it is a painful hope because it involves giving up some of our
most treasured illusioms. And, as we have seen in South Africa and
elsewhere, people would sometimes rather die than surrender their
illusions, along with the powers and privileges supported by such
illusions., On a larger scale, we can observe the terrifying Star
Wars illusion in the U.S.A., whereby millions are being misled
into believing that their country can seal itself inside a safe
cocoon on this tiny planet. There is in fact nothing to indicate
that the Great (Space) Wall of America will provide better protection
than did the Great (Stone) Wall of China. The real issue here is
a psychological one--it is impossibly difficult for people to
abandon their illusions of safety and superiority, People do
indeed need myths as a source of motivation.

One lesson taught us by the twentieth century is that am
astonishing quantity of human energyl? is released by true belief.
A former member of the Hitler Youth movement once said to me:
"People just dom’t understand how beautiful it was to koow that
you were right and everybody else was wrong, that you were superior
and everbody else inferior!" Conversely, a lack of faith reduces
many of us to depression, inertia, and impotence., Even worse, we
note that the emergetic true~believer is often morally inferior to
the lazy know-nothing. The great Irish poet W.B. Yeats summarized
this painful paradox of modern wan when he wrote that "The best
lack all conviction while the worst/Are full of passionate
intensity." Our hope, then, must lie with people who cam act

without conviction, who can fight without faith, who can pray
without God.

Such people will require a rare steadiness of purpose
and a superior resistance to frustrationm. This is because
evolution generally proceeds not by abandoning the old for the
new, but by building the new onm top of the old. 8 How then are we
going to accomodate the old mammals that lie behind our human
frontal lobes? If we do NOT accomodate them, they are likely to
destroy us. We must give them their due because without their
evolutionary history we would not even exist. We must therefore
learn to love and admire our bodies and our unconscious minds in
the same "disinterested” way in which we so easily love the bodies
and the unselfconscious minds of other animals, for we too are
children of nature.

Nevertheless, our peculiar human comsciousness in our
inescapable fate. We cannot ever return to pre-consciousness.
Our only hope is to go forward to to higher levels of consciousness.
We can get a better idea of where we might go only by learning
more about where we have been. There 1is therefore a special
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responsibility laid on the shoulders of us who are describers and
teachers of human languages, vhether these languages be natural or
mathematical. We must show our students that these languages are
the most powerful and beautiful tools ever developed by the human
mind. Our students should therefore learn to respect their power
while admiring their beauty. Above all, both we and our students
should try to improve these tools., Let us join T.S. Eliot im his
mature concern "“To purify the dialect of the tribe/And urge the
mind to aftersight and foresight."20

FOOTNOTES

Lonig is a slightly revised version of the paper which was
read at the conference. The revisions consist mainly of extended
conclusions and additional footnotes.

20f course, in controlling nature we also came to control
one another even more, through the development of weapons, “predatory”
economies, etc.

3In addition to worrying about our relatively sudden end in
a nuclear war we can also worry about slower endings from nuclear
pollution, chemical pollution, overpopulation, famine, etc.

4Compare the British psychiatrist R.D, Laing, who feels that
schizophrenic behaviour is the 8sanest response to living in ez
insane world (Papalia and Olds 1985: 545-6).

5But see Hockett (1973) for a judicious weighing of the
several types of indirect evidence.

6It is interesting to speculate on why mathematics developed
80 "early” in our history. One reason was no doubt the development
of writing itself, which gave a new permanence and weightiness to
language. Also, according to Guillaume (1984: 143) "Writing, more
than speech, obliterates the turbulence of cogitation." If this
is true, then writing would have led naturally to the reflectiveness,
reasoning, and generally clearer thinking needed for mathematics.
But perhaps more important was man’s long history of precise hand-
eye coordination, well recorded in his developing skills of tool-
‘waking. Even more intriguing is Hockett’s hypothesis (1978: 295-
301) that the primary medium of human prelanguage consisted of
manual signs (gestures) rather than vocal sounds. If. Hockett is
correct, then this would help explain the "earliness" of mathematical
development in our species, Hockett’s theory is especially relevant
for geometry, since a complex system of hard signals requires
rapid and precise neuromuscular control of the hand as well as
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equally rapld and precise visual perceptions of the resultin hand
e 4
movemenuts in space. Both these abxlxtles no doubt unlie both

. Begides the supplemental motor area, there are i
localizations of language in the human brai; (usually etrSﬁZe:a;:
the lfft bemisphere). The main speech production centre, called
Broca’s area, is ?n the (posterior inferior part of the).frontal
lobe yut the main speech pexceptiop centre, called Wernjcke’s
area, 18 found in the (posterior) temporal and parietal lobes
zhxs a:ggests Fhat "language" perception might have precede;

speech” production in our evolution. In other words, it tends to
support Hockett’s speculation (1978: 295-301) that’the primar
medium of human prelanguage might have been sophisticated hang
gestures ?atyer than vocal sounds. In any case, the available
evidence indicates that we achieved fine motor control over our
hande vel} before we achieved similar control over such vocal organs
a8 the lips, tongue, and larynx. Note too that we cannot teach
apes to speak but we can teach them to use “prelanguage"” that
employ? hand gestures, In addition, human beings who are deaf can
communicate rapidly and fluently through the use of hand signal
8yétems. Moreover, it has been demonstrated that apes can learn
to use (at least part of) the Ameslan (American sign language)

system that is commo ; .
1978: 277-82), o= Eeu8hE €0 the deaf in North America (Hockett

The crucial role of the fromtal lobes for h i

. uman behavio
;s demonatrﬁted by the severe "side" effects of prefrontal lobotomiesf
fl:x;s? surgical operations (commonly carried out in the forties and
ifties tﬁ'relxeve severe pain' and some psychoses) often. left
g:::eﬁfsd a: a%athet1c shells of their former selves; sgome 5
ent developed convulsions; and more th ied"

(Papalia and Olds 1985; 569). ’ ) o @ percent died

[ . .

This claim has been advanced b several writ i
past. For example, the French theoretical lz;guist Gustaveeé:i;?azzz
(1883-19692 claimed that language "is the pre-science of science"
and that. the loftiest speculations of science are built om the
6ystematized representations" of language (Guillaume 1984: 146),

e €
Gu:.llaume alﬂomk 8 several Luslghtful comparisonsg between mathematl.cs
and natural Ianguage.

10
See, for example, Kemeny ¢t al. (1966).

11
As a local dialectologist I note i
. that (singular) COUNT
nouns in Vernaculgﬁ Newfoundland English are often preceded by
either (or ome of its "variants" such as ai’r or g’r) rather than
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by g or an. Thus one commonly hears sentences such as: "Do you
have either shovel with you?"

12,11 natural languages seem to be fairly equal in the
subtleties of their LEXICAL and GRAMMATICAL distinctions but some
may be superior in thier LOGICAL distinctions. To illustrate this
ternary division we can break the Enmglish sentence "The cow drinks
if she is thirsty" into nine linguistic forms (called morphemes by
linguists). Of these nine, three are lexical (cow, drink, thirat);
five are grammatical (the, -8 on the verb, ghe, is, and -y on the
adjective) and one is logical (if).

13Here I recall my own collision with geometry on entering
high school. The teacher provided no introductiom to the subject
at all but began abruptly with the proof of a theorem. I was
utterly lost for several days until I happened to read the excellent
preface to our textbook. The result was that I "fell in love"
with geometry and used to tutor other members of my own classes in
that subject throughout my high school years.

laThis phrase is from the English poet Johmn Clare (1793-
1864), whose own life epitomized the difficulties of this struggle.
See Tom Dawe’s (1983) poem of empathy dedicated to Johmn Clare.

15Of all the pioneers of modern depth psychology it was
probably Carl Gustav Jung (1875-1961) who had the best insights
into this crucial problem of the "availability" of peychic energy.
See, for example, the summary of Jung’s theories in Woodworth and
Sheehan (1964). The most pervasive mental problem of wodern times
is depression, a problem which can be seen as the inability to
release one’s psychic energy. This block is the mental equivalent
of physical paralysis.

16From his poem entitled "The Second Coming".

17For example, every day of my life I want to malignm,
maim, or murder at least one other person. There is nothing
unique about my feelings., Compare the Québec policeman Serge
Lefebvre, who shot two of his fellow officers. He said that he
turned of a life of crime "because he was frustrated with his job"
(The Globe and Majl, Thursday, 10 July 1986, p. A8). It is certainly
true that the increasing specialization, regulation, monotony, and
mechanization of modern employment is a source of great frustration
to many people. Barrett (1962) attributes such nihilistic urges
to the feelings of powerlessness and hopelessness that have accompanied

the general loss of faith experiemced by modern Western Man., We
note that the recent weakening of the church in the province of
Québec has been accompanied by a rapid rise in the rate of suicide.
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18See Chapter 12 of Homer W. Smith (1961) and especially

. 191,
’ 19Note that the whole thrust of modern depth psychology
(and the psychotherapies based om it) is towards higher levels of
consciousness, which may allow us to transcend our personal problems
or at least enable us to view them with a tolerable or livable
degree of mental pain.

20, 0m T.S. Eliot’s poem "Little Gidding" in the Four Quartets.
London: Faber and Faber, 1944, p. 54.

After this my daily fix of poetry, I find it possible to
end this paper om an upbeat mote, or at least om an upbeat footnote.
The most hopeful sign to me is that we may pow be starting to see
ourselves as the protectors rather than the exploiters of our
planet. For example, the defense capability of our space programs
could be redirected to “"dealing with threats from space" (Lemonick
1986) such as any dangerously large asteroid found to be on a
collision course with planet earth.
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A) Ceanitive Learning Outzomes

In Nor+therrn America the topic "Gender 2nd Mathematics"  was

discovered ta be important during the esarly 70th. Fram the very

beginring the auesticn “ To what extend deo bovs outperform girls

in mathematical achievemert 7" was and still is of particular

. L ,
impor+ancs to researchers and to the public as achievement often

is looked upon as the cne essential learning outcoma.

By now an =2xtensive body of rasearch is available. Depending on

the ressacher, results are summed up quite differently ,2.3.

- Bendow and Stanlsy (19837) ceome to the conclusion that by age
1T there is a significant difference 1n mathematical ability
between the zeues, and that it is especially pronqunced
among high-scoring excentionally gifted students, with boys
ocutnumbering girls 17 to 1:

- accerding to Fennema and Carpenter (1982) very little sex
related differsnce exist, i4 anys: and

- summing up research  carris2d  out 10 nine countries,
Schildkame—¥uendiger (1= zoncludes that sex - realated
differencez in achlisvemznt were found Lo vary cansid=arably
both withkin and among Countrizss.

The Sscond Internz2tional Math=2matics Studvy ( SIMS provides

actiavement rasults of students from  twenty countrizs at the

that corresponds to grade eight in Canada.

v

Thesz recultz have beern analvzed as to sa2x related differencas
%
!

ng ifferent approaches (see Hanna % ruendiger 19246 for further

Overzl! the =2ztz reveal that zen-ralzated achlsvement differencas
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mostly do not occur. If they occur, they may be as well 1m favour

cf girls 235 of boys. 31

s}

nificant differenczsz by

country and

subta2sts range between +ZX to -7% onlvy

B) Attitudinal Learning Outcomes

In trving to explain sex-related achievement differences and

couwrse-taking behaviasur, modells have been developad that stress

the importance of  the attitudinal aspects of the learning

precess, in particular the impact of gener=al believes about the
appropriateness of women being involved in mathematics (Eccles
1984, Ku=ndiger 1983).

The SIMS contains a whole questionnaire focueing on studentz’
attitudes towards mathematics. The scale "Gender Sterectyping” is

directly relatad to the abhove mention=d aspect. The grzphe below
disolay the percentages of extrem responses far each of the four
items by country. The percentages of female responses are plottad
againgt the difference of female minus male percentages. It has
to be noited that 2 of the 4 items arz phrasad

negatively: for

items th

i

cat=zqoories "disagres" and “strongly disagreze"

have been consiZerso;

n

coraspondingly the catz2gories "agre=2" and

"stronglv sorse" have been used for the oesitively chrased {tem.

In a1l graphs the line indicating =2xtreme responees of Z0% aof the
bave has been entered.

With the exc=2ption of Swaziland the graphs reveal some

astonishing regularities: for all other counties the differences

betweern extreme resconszs i 2% or more . with girle having the

nere autreme respens2s. Ghi 2 - testes done for gach item and and
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WOMAN NEEDS CAREER AS MUCH AS MAN

PERCENT AGREE AND STRONGLYT ACREZ
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NEED TO0 KNOW WORE MATH
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BOYS HAVE MORE NATURAL MAT
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Swazilarnd 1= the =nly Zountry in which bovs held a morze siuirsme
posision than 3irls . Mereover, only k= answers to the items
"hoye navae more2 matwrz2l ability in math" and "bBavs need mer2 math
than girls" ara2 sigrificantly ralated to zex ( o < o.o00l).

Future insoecticon of the attitude scales will reaveal 3 to what
degrze ~2gularities in the attitudinal learning cutzcomes apoear

within countriss anc/or Detween countries.
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