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EDITOR'S FOREWORD 
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reprint the article "The Chip with the College Educat£on: the HP-28C", which appeared 
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reprinting this article, which he claimed summarized his lecture as accurately as he 
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excellent presentation of Lecture 2. 
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challenges put before us. 
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LECTURE 1 

THE CHIP WITH THE COLLEGE EDUCATION: the HP-28C 

Herbert So wilf 
The University of Pennsylvania 

NOTE: The following article, reprinted with permission from the 
American Mathematics Monthly, Volo 94, Noo 9, November, 1987, 
ppo 895-902, is an accurate summary of Herb wilf's lecture 0 

Dro wilf suggested reprinting this article since it does give the 
main flavour of his lecture and was written, as we understand it, at 
the suggestion of Dro wilfo We reprint it here with thanks to the 
MAA and the author so that others who may not have access to it can 
be enlightened on this new development. 





THE CHIP WITH THE COLLEGE EDUCATION: THE HP-28C 

Yves Nievergelt 
Graduate School of Business Administration, 

Executive M.B.A. Program, 
University of Washington, Seattle, WA 98195 

Five years ago in the American Mathematics Monthly [15J, the 
present editor of the Monthly augured a future in which students 
would have pocket calculators that could do symbolic calculus. 
Exactly five years later, The Wall Street Journal [1] announced the 
calculus calculator: the HP-28C. This hand-held machine deserves 
some attention - if it could walk into a standard lower-division 
mathematics course, it might well pass on its own. The following 
examples, which demonstrate the new capabilities of the HP-28C, 
provide a basis for the subsequent discussion of the potential of 
such super- calculators in the teaching of mathematics. 

1. The power of the HP~28C 

CALCULUS. First, watch how the HP-28C solves homework problems 
selected from various calculus texts. 

Problem 1. 
#lJ) ., 

Let f(x,y) .= x In xy; ab 
find ax (Fleming [4, p. 79, 

To find af/ax, enter the formula for f in the form IX*LN(X*Y) I, 
specify the variable by entering lxi, and press the differentiation 
key. The calculator answers 

ILN(X*Y) + X*(Y!(X*Y» I 

2 

To simplify this expression, select the ALGEBRA menu and then the 
FORM submenu; move the cursor onto the second * and execute the COLCT 
command. The machine collects similar terms and displays 

ILN(x*y) + 11 

Problem 2. Find the Maclaurin polynomial of degree 3 for ~1 + x 
(Stein [13, p. 547, #10]). 

To determine this Taylor polynomial, enter the formula I~(l + X) If 
specify the variable with Ixl and the degree with 3, and select the 
TAYLR command from the ALGEBRA menu. The HP-28C responds: 11 + .5*X 
- .12SxA2 + .062S*xA31. 

Problem 3. Calculate f{ax
2 + bx + c)dx (Leithold [10, p. 376, 

#20]). To calculate this indefinite integral, enter the integrand, 
IA*XA 2 + B*X + CI, the variable of integration, lXi, and the degree 
of the integrand, 2; then press the integration key. Now add your 
favorite constant to the display. 



If desired, the COLCT command can simplify the redundant form 
A*2/2/3. This redundancy arises from the Maclaurin polynomial of the 
integrand, which the HP-28C integrates term by term. Although this 
procedure may seem unwieldly for mere polynomials, it also enables 
the calculator to tackle harder problems. 

2 
Problem 4. Find the Maclaurin series for (2/~~)I~e-t dt (Hurley 

[6, p. 618, #31]). 

3 

As in problem 3, enter the integrand, 12/~i*e" - T"21, the variable 
ITI, and the degree of the desired Taylor polynomial, for example 3 
(with a higher degree, the calculator runs out of memory space); then 
press the integration key. The HP-28C replies: 

To end this calculus quiz, let the calculator try a curve-sketching 
problem: 

Problem 5. Graph the function f(x) = e
sinx 

(spivak [12, p. 326, 
#4b]). To sketch this curve, store the formula le"SIN(X) I, or 
iEXP(SIN(X» I, into the PLOT menu, and execute the DRAW command. 
Withi~ thirty seconds, the HP-28C traces the graph in exhibit lao 
Since the curve does not quite fit into the display, translate the 
center of the screen upward by 1.4; this will produce the graph in 
exhibit lb. For a hard copy, enter the command eLLCD DRAW PRLCD and 
point the calculator toward its printer (with which it communicates 
by infrared beam) . 

(a) 

(b) 

e"SIN (X) 

e"SIN(X) 

pushed down 

(cl 

(d) 

1/ (X*~- (2*1t) ) * 
exp(-.5*LN(X) "2) 

My program smile 

(e) 

(f) 

Automat i.e 
scaling 

Sample 
program REGR 



EXHIBIT 1. These slightly enhanced, actual-sized copies from 
the HP-82240A printer are identical to the HP-28C displays, 
in both size and resolution. (a) and (b) graphs from Problem 
5. (c) and (d) other examples of graphs. (e) and (f) scatter 
plots from problem 6. 

STATISTICS. In addition to computing means, variances, 
correlations, and regressions, the HP-28C also distinguishes itself 
with two other novelties. First, it draws scatter plots. 

Problem 6. Fit a least-squares line to the data (Freund [5, 
p. 352, #11.1]): 

(5,16), (1,15), (7,19), (9,23), (2,14), (12,21). 

4 

"Always plot the data" [5, p. 367]. Therefore, enter the data with 
the STAT menu, revert to PLOT and execute the DRWL command. At first 
the screen shows the axes but no data, because the points lie outside 
its range. To correct this mismatch, press the SLCL key, which 
automatically fits the display onto the data set (but sends the axes 
away), as in exhibit Ie. To superimpose the least-squares line and 
bring the axes back into the picture, run the following sample 
program. which produces exhibit If: 

«SCLL (0,0) PMJ:N LR «X PREDV» STEQ CLLCD DRAW DRWL» '. 

B~sides drawing scatter plots, the HP~28C computes upper-tail 

probabilities, upt(x) := I:f(t)dt, for normal, chi-square, t, and F 

2 
random variables. For example, to compute the probability that a X 
random variable with 357 degrees of freedom takes a value bigger than 
401.9, enter 357 and 401.9 and execute the UTP2 command. The 
calculator gives .050599 ... , meaning that P(X

357 
> 401.9) ::: 0.0506. 

Combined with the HP-28C equation solver, upper-tail probabilities 
also give an easy solution to the following "percentile problem". 

Problem 7. Determine the 99th percentile of the distribution 

2 
To determine the value of x such that P(X

357 
> x) = 1 - 0.99, program 

this equation in the form «.01 357 X UTPC -» and invoke the SOL~, 
the equation solver. After about a minute, the HP-28C displays X: 
422.08 ... To appreciate this prowess, recall that this amounts to 
solving for x the equation 

foc 1 355/2 -t/2
d 

r(357/2)2 357 / 2 t e t 
0.01 . 

x 
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NUMERICAL ANALYSIS AND LINEAR ALGEBRA. In addition to its 
equation solver, the HP-28C offers further numerical routines that 
evaluate definite integrals, solve linear systems, and compute dot 
and cross products, determinants, operator norms, and inverses of 
real or complex matrices. Since similar features have been available 
for over five years on a predecessor, the HP-15C, a few illustratlons 
will suffice to describe the speed and accuracy of the HP-28C. 

Problem 8. Solve the following moderately ill-conditioned system, 

with condition number IIAII
1

"A-1 11
1 :: 10

6 
(Burden and Faires, [2, p. 

331, #5c] ) : 

1 1 1 1 
1 v + w + x + y + z = 

2 3 4 5 

1 1 1 1 1 
1 v + w + x + y + z = 

2 3 4 5 6 

1 1 1 1 1 
1 v + w + x + y + z = 

3 4 5 6 7 

1 1 1 1 1 
1 v + w + x + y + z = 

4 5 6 7 8 

1 1 1 1 1 
1 v + w + x + y + z = 

5 6 7 8 9 

After entering the right-hand vector, B, and the matrix of 
coefficients, A, simply press the division key, +. The calculator 
thinks for three seconds and displays its solution: 

[5.00000076461 -120.000014446 630.000062793 
-1120.00009538 630.000046863] 

This result compares favorably to that of a large mainframe CDC CYBER 
180/855 running IMSL (International Mathematical and Statistical 
Library), which blinked for just 0.01 second and printe~: 

5.000000002094 -120.000000038932 630.000000167638 
-1120.000000253036 630.000000123768 

Problem 9. Evaluate P(X) = 8118X
4 

- 11482X
3 + x2 + 5741X - 2030 

for X = 0.707107 (Kulisch and Miranker [9, p. 12, #5J). 

-11 
According to Kulisch and Miranker, P(0.70107) = -1.91527325270 ... x 10 . 
Using double precison (28 digits) the CYBER found -1.91527325270819 

x 10-
11

. Working with 16 digits only, the HP-28C returned the slngle 



digit O. 

However, the HP-28C and the CYBER agreed on the answer to this 
last problem: 

Problem 10. Find the eigenvectors of the following matrix (Johnson 
and Reiss [8, p. 104, #7] ) . 

[ 1 

4 4 n 6 1 
A 

1 6 
4 4 

One possible solution (which takes advantage of the HP-28C built-in 
matrix multiplication and transportation) consists of programming 
Jacobi's method according to the algorithm in [14, pp. 341-342]. 
Three sweeps of Jacobi's method take only a minute and yield the 
following eigenvalues and eigenvectors: A1 = -15, A2 = -1, and 
A = 5 = A with 

3 4' 

[ 
.5 

] [ 
-,5 

] [ 
-.155356107285 

] , .5 .5 .689829312165 
vI .5 

v
2 .5 v3 .689829312166 

.5 -.5 .155356107285 

. [ -.689829312165 

] .155356107285 
v

4 -.155356107285 
.689829312166 

COMPUTER SCIENCE. Besides its symbolic and numerical 
capabilities, the HP-28C also provices bit-by-bit logical operat.ors 
(AND, OR, XOR, NOT), register shifts, and hexadecimal, octal, and 
binary arithmetic, all on 64-bit words. This relatively large word
length makes the HP-28C well suited to one of computer scientists' 
favorite homework assignments: the simulation of one machine on 
another. 

Exercise. The CDC CYBER mainframe computer operates with 60-bit 
words, in which it represents integers by "complement to 1." (Thus, 
the CYBER stores a positive integer as its binary expansion, but it 
represents a negative integer as the bit-by-bit logical complement of 
its absolute value.) Simulate the integer arithmetic of the CYBER on 
the HP-28C. 

2. Supercalculators in the mathematics classroom. 

FIRST ACADEMIC REACTIONS. Left to their own devices, four 
freshman familiarized themselves with the HP-28C in just two hours, 
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with the help of the well-written Getting Started Manual. However, 
they felt that they needed a better understanding of the mathematics 
involved in order to use the calculator more intelligently. 
"Anyway", sighed one, "teachers won't allow it on tests, or will 
they?" 

Nobody knows; in a recent informal poll, faculty showed mixed 
reactions: "What would I ask on tests now?" wondered one professor, 
obviously feeling threatened, while at another school, a colleague 
exclaimed: "It will save hours of calculations !" Because of such a 
divergence of opinions, the HP-28C and its successors will probably 
influence individual mathematics curricula in different ways, as does 
the use of different textbooks now. 

Possibly, the HP-28C might enable students instantly to punch, 
read, and speak calculus. In extemely cook-book courses, students 
might do nothing but scan the HP-28C UNITS menu from "An to "tsp" to 
find that one teaspoon equals 14.92892159375E - 6 m~31. 

The HP-28C may also allow users to leave the calculations to the 
machine, and to focus on ideas and strategies. For thinkers, 
including non-mathematicians, the availablity of supercalculators 
may increase the practial importance of theory. Indeed, this 
conjecture seems supported by the following informal survey. 

THE EDUCATION OF THE UNDERGRADUATE MATHEMATICAL PRACTITIONER. 
What ~o employers look for in the mathematical education of a new 
graduate? 

Peter Eriksen, who holds a bachelor's degree in mathematics and 
works for Boeing Military Airplane Co. near Seattle, also has a 
degree in philosophy, which he finds more helpful than mathematics. 
He considers most useful "the training from a particular philosophy 
professor, who insisted that we analyze problems logically. that we 
arrive at some answer, and that we write up our argument in a 
flawless style." 

"Proficiency in undergraduate mathematics, experience in 
utilizing the mathematics library, attention to detail, and written 
communications skills," says Dr. Stephen P. Keller, who hires and 
supervises mathematicians at Boeing Compter Services Co. He 
illustrates the need for these intellectual abilities with the 
following example: "Suppose that you have to code a two-dimensional 
integration routine. Then you must understand something about the 
Riemann integral, be able to review the literature on you own, code 
your algorithm correct.ly, and document your work in a manner 
understandable to your colleagues." Unfortunately, Dr. Keeler has 
found that he cannot assume such an intellectual maturity from 
students with only a bachelor's degree in mathematics. He suggests 
one way in which supercalculators might help in education: "To 
emphasize the importance of details, give students a mathematical 
programming assignment [for instance as above] and insist that they 
get it absolutely right, be it on a LISP machine or on an HP-28C." 



Aside from the aerospace industry, indications about the 
potentials of supercalculators in education may also come from 
elsewhere in the corporate world. 

8 

THE MATHEMATICAL EDUCATION OF THE EXECUTIVE. The Executive 
Master of Business Administration (EMBA) Program of the University of 
Washington offers a propitious environment for testing new ideas in 
the teaching of business calculus, including the use of fancy 
calculators. Immediately before entering the program, the 
participating senior executives attend a "business calculus" course 
designed to meet their needs on the job and in such EMBA courses as 
finance, microeconomics, and statistics. For this mathematics 
course, every executive must bring a powerful financial HP-12C (or a 
scientific HP-15C), which allows for more substantial case-studies, 
as in the following example. 

Example 1. Consider a thirty-year Treasury bond purchased on 15 
May 1984 for $9933.90 with $662.50 interest coupons every six months. 
The "yield rate" of this bond, r, is by definition given by the 
solution v = 1/(1 + r/2) of the equation 

10,OOOv
60 60 59 2 + 662.50(v + v + ... + v + v) - 9933.90 = 0 . 

Calculus shows that this equation has exactly one positive solution. 
While,the calculators were computing the yield rate, one banker 
remarked that "the equation implies that you reinvest every coupon 
into a similar bond." Freed from the computations, the executive 
realized what the yield rate means and how to interpret it in 
business. Then the calculators gave the yield rate in the form of 
rationals on either side of a Dedekind cut or the starts of 
equivalent Cauchy sequences. The calculators also left time to 
explain those concepts. 

Nevertheless, executives do not feel that supercalculators free 
them from mastering the basics, "I still need to understand my 
algebra thoroughly," says a company vice-president, "so that I can 
explain to myself what a formula means for my business." A health
services director adds that "we need much more graphical analysis, 
including the concepts ~f slope and area." Even a supercalculator 
would not help in the following assignment. 

Example 2. Imagine that you sit on the board of directors of your 
local utility company. Discuss the advantages and disadvantages of 
setting the price equal to the marginal cost, instead of the average 
cost. 

CONCLUSIONS. The HP-28C introduces one new element into the 
teaching of mathematics, namely awesome computing power at both a 
modest price and size, with admirable user-friendliness (all three 
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characteristics compared to those of a CYBER, for instance) . 
Students may thus purchase, carry, and utilize a power close to that 
of a main-frame as easily as they do textbooks. Still, in spite of 
the availability of this hand-held power, proficiency in certain 
basic skills remains essential to the students' ability to apply 
mathematics 0 Indeed, it appears that a new trend toward the use of 
the HP-28C and its successors would require that students understand 
the underlying concepts even better than before in order to decide 
what computations to perform, to interpret the results with lucidity 
[11, ppo 40~42]f or even first to recognize that no calculator can 
address the issue at hando In practice, the need for a deeper 
understanding of theory grows dramatically, as seen in two excerpts 
from the The Wall Street Journal: 

software defects have killed sailors, maimed patients, 

wounded corporations and threatened to cause the government

securities market to collapse [3] 0 

Morton Thiokol Inc 0' admitting that it never fully understood 

the working of the booster rocket blamed for the explosion of 

the space shuttle Challenger, said it made major changes [7] 0 

Shortly after the Challenger disaster, a junior mathematics major 
at a university expressed the desire to work on the shuttle program 

but could not cope with the evaluation of I:1IXldX. The faculty 

never~heless decided to graduate the student 0 With pressure on the 
faculty to pass students weighed against the need to train students 
to detect software defects in supercalculators, mathematics 
instructors face a difficult choice. We may refrain from feeling 
partly responsible for mistested drugs and shuttle crashes, or we may 
insist that students (even students with supercalculators) be able to 
solve unfamiliar problems, detect errors in proofs and programs, and 
verify the validity of mathematical algorithms, models, and theories. 

Acknowledgement. I thank Joyce D. Kehoe, Seattle writer, for her 
professional help in editing this review. 
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LECTURE 2 

TOWARDS AN INSTRUCTIONAL 'TIlEORY: THE ROLE OF STUDENT'S MISCONCEPTIONS 

Pearla Nesher 
The University of Haifa 





I. Introduction 

During the past decade we have witnessed a new trend in cognitive 
research emphasizing expert systems, A great deal of effort has 
been dedicated to the study of experts' performance in various 
fields of knowledge, My presentation today deals with the question: 
what kind of expertise is needed for instruction? Researchers in 
the field agree that the process of learning necessarily combines 
three factors: The student, the teacher and the subj ect to be 
learned, In addition, it seems obvious that to teach a given 
subj ect matter we need at least two kinds of expertise: the 
subject matter expert who can knowledgeably handle the discipline 
to be learned, who can see the underlying conceptual structure to 
be learned with its full richness and insights; and there is also, 
obviously, the expert teacher whose expertise is in successfully 
bringing the student to know the given subject matter by various 
pedagogical techniques that makes him the expert in teaching. In 
this framework of experts' systems, what is, then, the role of the 
student? What does he contribute to the learning situation? And 
though it might seem absurd, I would like to suggest that the student's 
"expertise" is in making errors; that this is his contribution to 
the process of learning. 

My talk consists of three main parts, First, I will focus on the 
contr~bution of performing errors to the process of learning. I 
will, then, demonstrate that errors do not occur randomly, but 
originate in a consistent conceptual framework based on earlier 
acquired knowledge. I will conclude by arguing that any future 
instructional theory will have to change its perspective from 
condemning errors into one that seeks them. A good instructional 
program will have to predict types of errors and purposely allow 
for them in the process of learning. But before we reach such an 
extreme conclusion let me build the argument and clarify what 
these "welcomed" errors are. 

II. 

In order to better understand the process of learning, I would 
like to make a digression here and learn something from the scientific 
progress. Science involves discovering truths about our universe, 
and does so by forming scientific theories, These theories then 
become the subject matter for learning. Philosophers worried for 
a long time about these truths. How can one be sure that he has 
reached truth and not falsehood? Are there clear criteria to 
distinguish truth from falsehood? These philosophical discussions 
can also enlighten our understanding. 

It was C.S. Peirce, the American scientist and philosopher (1839-
1914), who brought to our attention how we all act most of the time 

according to habits which are shaped by beliefs, (and from the history 

12 



of science we know that there have been many false beliefs). But 
we do not regularly question these beliefs; they are established 
in the nature of our habitual actions. It is only when doubts 
about our beliefs are raised, that we stop to examine them and 
start an inquiry in order to appease our doubts and settle our 
opinion. Thus, in Peirce's view, this is not an arbitrary act of 
starting inquiry on a certain question, but rather an unavoidable 
act when some doubt arises. When do such doubts arise? It is 
when ones expectation is not fulfilled because it conflicts with 
some facts. On such occasions when one feels that something is 
wrong, only then, does a real question arise and an inquiry is 
initiated, an inquiry that should settle our opinions and fix our 
beliefs (Peirce, 1877). 

A similar, though not identical view was strongly advocated by K. 
Popper (1963). In his book Conjectures and Refutations he argues 
against an idealistic and simplistic view of attaining truths in 
science. He claims that "Erroneous beliefs may have an astonishing 
power to survive, for thousands of years" (Popper, 1963, p. 8), 
and since he does not believe in formulating one method, leading 
us to the revelation of truth, he suggests changing the question 
about "sources of our knowledge" into a modified one - "How can we 
hope to detect error?" (Ibid. p. 25). If we are lucky enough to 
detect an error we are then in a position to improve our set of 
beliefs. Thus for Popper science should adopt the method of 
"critical search for error" (Ibid. p. 26), which has the power of 
modifying our earlier knowledge. 

In the systems of these philosophers which I only touched upon here, 
there are several points relevant to learning in general that 
should be clearly stated: 

1) Falsehood is adjunct to the notion of truth, or in the words 
of Russel: "Our theory of truth must be such to admit of its 
opposite, falsehood." (Russell, 1912, p. 70) 

2) Though having a truth-value is a property of beliefs, it is 
established by many methods and it is independent of our beliefs 
whether it will ultimately become true or false (a point which 
I will take up again later). 

3) We hold many beliefs that we are unaware of and which are 
part of our habits, yet, once such a belief clashes with some 
counter evidence or contradicting arguments, it becomes the 
focus of our attention and inquiry. 

Is all this relevant to the child's learning? I believe it is. 
If I replace the terms "truth and false" with "right and wrong" or 
"correct and error" we will find ourselves in the realm of schools 
and instruction, in which unlike the philosophical realm, "being 
wrong", and "making errors" are negatively connotated. The system, 
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in fact, reinforces only "right" and "correct" performances and 
punishes "being wrong" and "making errors", by means of exams, 
marks etc, a central motive in our educational system, 
I found it very refreshening when visiting a second grade class to 
hear the following unusual dialogue: 

Ronit (second grader with tears in her eyes): "I did it wrong" 
(referring to her geometrical drawing). 
"Never mind", said the teacher, "What did we say about making 
mistakes?" 
Ronit (without hesitating) answered: "We learn from our mistakes". 
"So", added the teacher, "Don I t cry and don I t be sad, because we 
learn from our mistakes", 

The phrase "we learn from mistakes" was repeated over and over. The 
atmosphere in the classroom was pleasant and use of this phrase 
was the way the children admitted making errors on the given task. 
At this point I became curious and anxious to know what children 
really did learn from their mistakes. I will describe the task, 
and how the children knew when they made mistakes. Let us now 
observe a geometry lesson in which the students learned about the 
reflection transformation. The exercises consisted of a given 
shape and a given axis of reflection (see figure 1) which the 
children first had to hypothesize (or guess) and draw the reflected 
figure in the place where they thought it would fall, and then to 
fold the paper on the reflection axis and by puncturing with a pin 
on the original figure (the source) to see whether their drawing 
was right or wrong. 

I would like to make it explicit that, from the child's point of view, 
he or she had to discover the "theory" of reflection. The teacher 
did not intend to serve as the authority for this knowledge, 
lecturing about the invariants of reflection, but instead supplied 
the child with a structured domain which his erroneous conceptions 
could be checked against. The line of dots created by the pin 
puncture served as ideal reality for this kind of reflection, and 
as feedback for the child's conjectures. In my view this resembles 
in a nutshell scientific inquiry in several important aspects. 

Delighted to find such a supportive atmosphere in the classroom, I 
became interested in the epistemological question, what did the 
children really learn from their mistakes? When each child who 
made an error was asked to explain to me what was learned from his 
or her mistake I could not elicit a clear answer. Instead they 
repeated again and again that one learns from mistakes in a way 
that started to sound suspiciously like a parroting of the teacher's 
phrase. At this point it became clear to me that the teacher 
tolerated errors, but did not use them as a feedback mechanism for 
real learning on the basis of actual performance. I then drew on 
the blackboard three different errors: 
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The first one which I named Sharon's error, dealt with the property 
that a reflection is an opposite transformation, thus, what was 
right will become left in the reflection, and vice versa (see 
figure 2). The second error, I named for Dan, was dedicated to 
the size property, i. e., that lengths are invariant under the 
reflection (see figure 3). This was also the basis for the third 
error named after Joseph, that had to do with the distance from 
the reflection axis (see figure 4). I asked the children, whether 
one learns the same thing from each of the above errors? Should 
Sharon, Dan and Joseph learn the same thing? or, is there something 
specific to each error? 

At this point we turned from psychological support and tolerance or 
errors to discover the epistemological and cognitive value of 
errors in the process of learning. From these errors the child 
could learn the distinct properties of reflection, that he or she 
was not aware of before. (If they were aware, they would not 
commit this kind of error). Committing the error, however, revealed 
the incompleteness of their knowledge and enabled the teacher to 
contribute additional knowledge, or lead them to realize for 
themselves where were they wrong. The clash between their expecta
tions, demonstrated by their drawings and the "reality" as was 
shown in the pin functure created a problem, uneasiness (up to 
tears), that they had now to settle. The solution to this problem 
in fact involved the process of learning a new property' of the 
refledtion transformation not known to them until then. As Popper 
(Ibid p. 222) wrote: 

"Yet science starts only with problems. Problems crop up especially 
when we are disappointed in our expectations, or when our theories 
involve us in difficulties, in contradictions; and these may arise 
either within a theory, or between two different theories, or 
as the result of a clash between our theories and our observations. 
Moreover, it is only through a problem that we become conscious 
of holding a theory. It is the problem which challenges us to 
learn; to advance our knowledge; to experiment and to observe" 
(Ibid p. 222). 

I think that if we use the word "theory" in not too rigorous a manner, 
and substitute the word learning for science, then Popper's description 
is most pertinent to our issue. 

IlL 

In the title of this presentation, I did not use the word "error" 
or "mistake" but rather "misconception". The notion of misconception 
denotes a line of thinking that causes a series of errors all resulting 
from an incorrect underlying premise, rather than sporadic, unconnected 
and non-systematic errors. It is not always easy to follow the child's 
line of thinking and reveal how systematic and consistent it is. 
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Mos t studies, therefore, report on classification or errors and 
their frequency, though this does not explain their source and 
therefore cannot be treated systematically. Or, when dealt with, 
it is on the basis of a mere surface structure analysis or errors, 
as in the case of "Buggy" (Brown and Burton, 1978; Brown and 
VanLehn, 1980), where we end up with a huge, unmanageable catalogue 
of errors. It seems that this lack of parsimony could be avoided 
is one looked into deeper levels of representation in which a 
meaning system evolves that controls the surface performance. 
When an erroneous principle is detected at this deeper level it can 
explain not a single, but a whole cluster of errors. We tend to call 
such an erroneous guiding rule a misconception. 

I would like to describe now two detailed examples of misconceptions 
(out of many others) that demonstrate how errors do not occur at random 
but rather have their roots in erroneous principles. Moreover, these 
misconceptions were not created arbitrarily but rely on earlier learned 
meaning systems, and again, although seemingly absurd, they are 
actually derivations of our own previous instruction. These 
examples were chosen because they are each based on extensive 
research programs which deal with unveiling the students' misconcep
tions and focus on plausible explanations for their erroneous 
performance. 

The f~rst example is taken from a series of studies about the 
nature of errors made by elementary school children in comparing 
or ordering decimal numbers. In these studies at attempt was made 
to trace the sources of the student I s systematic errors. The 
findings which emerge, following studies in England, France, 
Israel and USA (Leonard and Sackur-Grisvald, 1981; Nesher and 
Peled, 1984, Swan, 1983) show that in all these countries there is 
a distinct and common system of rules employed by those who fail 
in comparing decimals. 

Consider for example the following tasks which were administered to 
children of grades 6, 7, 8, and 9. The subjects had to mark the larger 
number in the following pairs: 

case I 
case II 

Jeremy marked in case I that 0.234 is larger than 0.4; and in case 
II he marked that 0.675 is the larger one. Does he or does he not 
know the order of decimal numbers? In o,Ur study in Israel the 
data was gathered in individual interviews, so that the children 
could explain their choices. This helped us understand their 
guiding principles. In both cases Jeremy said that the number 
with the lon~er number of digits (after the decimal point) is the 
larger number (in value). Jeremy had one guiding principle as to 
the order of decimals and, accordingly, in case I Jeremy was wrong 
while in case II he was right. Although his guiding principle was 
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a mistaken one, he succeeded in correctly solving all the exercises 
similar to case II. It is also not hard to see that his guiding 
principle was one that served him well up to this point, having 
been imported from his knowledge of whole numbers where the longer 
numbers really are larger in value. And, unless something is done 
Jeremy's "success" or "failure" on certain tasks is going to depend 
on the actual pair of numbers given to him. This, of course, 
blurs the picture of his knowledge in any given test. Now imagine 
Ruth who decided in both cases I and II ( in the above example) 
that 0.4 is the larger number, i.e., in each case she pointed to 
the shorter number as the larger one in value. Ruth gave the 
following explanation: "Tenths are bigger than thousandths, 
therefore, the shorter number that has only tenths is the larger 
one. " Ruth does not differentiate between case I and case I I 
either. She will be correct in all the cases similar to case I, 
but wrong in all cases which are similar to case II. We can 
understand this kind of erroneous reasoning in light of what is learned 
in fractions. Ruth has a partial knowledge of ordinary fractions 
and cannot integrate what she knows about them with the new chapter 
on decimal fractions and their notation. In particular she found 
it difficult to decide whether the number written as a decimal 
fraction is the numerator, or the denominator. She cannot coordinate 
the size of the parts with their number in the decimal notation. 

It is interesting to note that about 35% of the sixth graders in Israel 
who c~mpleted the chapter on decimals acted like Jeremy and were, 
in fact, using the above mentioned rule which relies heavily on 
the knowledge of whole numbers, and about 34% of the Israel:i 
sample of sixth grades made Ruth's type of mistake. Even more 
interesting, is the fact that while Jeremy's rule frequency declines 
in higher grades, Ruth's rule is more persistent and about 20% of 
the seventh and eighth graders still maintain Ruth's rule. (Nesher 
and Peled, 1984). 

As I remarked before, these misconception are hard to detect. 
This is so because on some occasions the mistaken rule is disguised 
by a "correct" answer. [Or, the student may get the "right" 
answer for the wrong reasons.] Thus, for the student who holds a 
certain misconception not all the exercises consisting of pairs of 
decimal numbers will elicit an incorrect answer. For example, 
decimals with the same number of digits are compared as if they 
are whole number and, therefore, usually answered correctly. In 
fact this is also a method taught in schools: add zeros to the 
shorter number until it becomes as long as the longer one and then 
compare them. 

An interesting question emerged: If the teacher is not aware of the 
cases that discriminate between various types of misconceptions and 
those cases that do not discriminate misconceptions at all, what 
is the probability that he or she will give a test (or any other 
set of exercises) that detects systematic errors. Irit Peled, my 
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former student, in her Ph.D thesis dealt with precisely this 
question (Peled, 1986). She built a series of simulations that 
make it possible to evaluate quantitatively the probability of 
getting discriminating items on a test. 

Let me return to the question of a discriminating item for a certain 
error: For example, given the following item "Which is the larger 
of the two decimals 0.4 and 0.234?" If the student answers 0.234 
my may suspect that he holds Jeremy's misconception. But, if he 
answers 0.4, we cannot know whether he knows how to order decimals, 
or if he is holding Ruth's error, but happened to get lucky numbers 
and be correct on this particular item. Thus this item can dis
criminate and elicit those holding Jeremy's misconception, but 
cannot discriminate between those Ruth's misconception and experts 
(i.e. those who really know the domain). Along these lines, for 
the same task, the pair of numbers 0.4 and 0.675 can discriminate 
those holding Ruth's misconception, but cannot discriminate between 
those holding Jeremy's misconception and experts. Similarly 
comparing the numbers 0.456 and 0.895 cannot discriminate either 
Jeremy's, or Ruth's misconception (whether the child answers 
correctly or not). 

So, if a teacher composes a test (or any other assignment) without 
looking intentionally for the discriminating items, there is little 
chang~ that such items will be included. In Peled's simulations 
it was found that when pairs of numbers are randomly selected from 
all the possible pairs of numbers having at most three digits 
after the decimal point, the probability of getting an item that 
will discriminate Jeremy's error was 0.10, and Ruth's error 0.02. 
Thus both Jeremy and Ruth will succeed up to 90% on a test composed 
by their teacher, if she is not aware of this problem. It is not 
surpn.s~ng, then, that teachers are usually satisfied with the 
performance of children holding Jeremy's or Ruth's misconceptions, 
and they should not be blamed. On the basis of one wrong item it 
is impossible to discover the nature of the student's misconception. 

The teacher could of course increase the difficulty of the test by 
allowing only pairs of numbers with unequal lengths (up to three digits 
after the decimal point), which will raise the probability of getting 
discriminating items on the test, but will not insure correct 
diagnosing of a specific misconception (see Appendix B for a 
sample test). The probability is that on such a random test 
Jeremy will get 58% correct and Ruth - 48%. With awareness of the 
problem, the teacher can design a test to intentionally diagnose 
and discriminate the known misconceptions to a proportion and 
distribution already determined. 

The teachers, however, are hardly aware of such analysis of misconcep
tions. Some of them listening to our report, could not believe 
the existence of Ruth's type of misconception at all, until they 
returned to their classes and found it for themselves. 
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Teachers do not generally build such knowledge into their instruction 
and evaluation of the student's performance" Thus, frequently the 
teacher completes the section of instruction on comparing decimals, 
gives a final test, and believes that the children know it perfectly 
well, not noticing that many of them still hold important misconcep
tions such as Jeremy's and Ruth's, as we and others found in our 
studies" In such a classroom it will be also very difficult for 
Jeremy or Ruth to give up their misconceptions since they are 
rewarded daily for their erroneous guiding principles by correctly 
answering non discriminating items. 

Several lessons can be learned from these studies: 

a) In designing the instruction of a new piece of knowledge it is 
not enough to analyze the procedures and their prerequisites which 
is, in many cases, done. We must know how this new knowledge is 
embedded in a larger meaning system that the child already holds 
and from which he derives his guiding principles. 
b) It is crucial to know specifically how the already known procedures 
may interfere with material now being learned. In the case of decimal 
knowledge a fine analysis will show the similarity and dis-similarity 
between whole numbers and decimals, or between ordinary fractions 
and decimals. Some of the elements of earlier knowledge may 
assist in the learning of decimals, but some of them are doomed to 
interfere with the new learning, because of their semi-similarity 
(see Appendix A). 

c) All the new elements, which resemble but differ from the old ones, 
should be clearly discriminated in the process of instruction, and 
the teacher should expect to find errors on these elements. 
Needless to say, although they elicit more erroneous answers, such 
elements should be presented to the children and not avoided. 

My second example is taken from a series of studies by Fischbein 
et al (1985). In their study Fischbein's group claimed that in 
choosing the operation for a multiplicative word problems (let's 
say, choosing between multiplication and division) students tend 
to make specific kind of mistakes derived from their implicit 
intuitive models that they already have concerning multiplication. 
Thus, identification of the operation needed to solve a problem, 
does not take place directly but is mediated by an implicit, 
unconscious, and primitive intuitive model which imposes its own 
constraints on the search process. The primitive model for multiplica
tion is assumed to be "repeated addition". 

The data supporting their hypothesis is based on the following 
findings" Multiplication word problems, in which according to the 
context the multiplier was a decimal number (Le., 15 x 0.75) 
yielded 57% success, while those consisting of a decimal number in 
the multiplicand (0.75 x 15) yielded 79% success. Fischbein's 
group attributed this to the fact that the intuitive model of 
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multiplication as repeated addition does not allow for a non
integer number as a multiplier. 

Similarly, in division when the numbers presented in the word problem 
were such that the students had to divide a smaller ntunber by a larger 
one, they reversed the order and divided the larger one by the smaller, 
so that it would fit their previous notions of division. It also 
became apparent in the series of studies and students misconceive 
that "multiplication always makes bigger" (Bell et aL, 1981, 
Hart, 1981) 0 Fischbein I s research paradigm was repeated several 
times with different populations always yielding the same results. 
(Greer and Mangan, 1984; Greer, 1985; Tirosh, Graeber and Glover, 
1986; Zeldis~Avissar, 1985). 

This set of misconceptions, again, is not easy to detect, without 
somebody isolating and comparing various variables in a controlled 
study. This is where research can directly effect school teaching. 
The probability of occurance of multiplication and division word 
problems that elicit such misconceptions in the textbooks is low. 
In the absence of items or problems purposely directed to detect 
misconceptions we are shooting in the dark. We are likely to put 
too much emphasis on trivial issues while overlooking serious 
misconceptions. 

There is another lesson from these studies which is harder to 
imple~ent. We can trace the sources of maj or misconceptions in 
prior learning. Most of them are over-generalizations of previously 
learned, limited knowledge which is now wrongly applied. Is it 
possible to teach in a marmer that will encompass future applications? 
Probably not. If so, we need our beacons in the form of errors, 
that will mark for us the constraints and limitations of our knowledge. 

So far, what I have said suggests that teachers should be more 
aware of the possible misconceptions and incorporate them into 
their instructional considerations. But this is not sufficient, 
and I would like to return to the example of the second graders 
working on the reflection transformation. 

Let us suppose that in designing the pin puncture booklet the teacher 
was aware of the possible misconceptions and included all the 
discriminating items she could think of. However, another significant 
characteristic of this booklet was that it enabled the child to 
decide for himself whether he was right or wrong and in what 
respect was he wrong. This was possible because the rules by 
which the pin puncture behaved were dependent only on the mathematical 
reality and not on the learner's beliefs. The fact that the rules 
of mathematics and one's set of beliefs are independent allows for 
discrepancies between them. Therefore when the student held a 
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false belief, or a false conj ecture it clashed with "reality" as 
exemplified in their booklet. This kind of instructional device 
enabled the child to pursue his own inquiry and discover truths 
about the reflection transformation, and at the same time make errors 
resulting from his misconceptions, some of which were not anticipated 
by the teacher. He was working within what I call a Learning 
System to which I will devote the rest of my talk. 

A Learning System (LS) is based on the following two components: 

1) an articulation of the unit of knowledge to be taught based 
upon the expert I s knowledge, which is referred to as the 
knowled~e component of the system, and 

2) an illustrative domain, homomorphic to the knowledge component 
and purposely selected to serve as the exemplification component. 

Al though "microworld" may seem a natural choice of term for a Learning 
System, I prefer to use a different term since "microworld" is 
sometimes identified with the exemplification component only, and 
sometimes with the entire Learning System. I, therefore, have 
introduced the term "Learning System" to ensure we understand that 
a microworld here encompasses both components. Various concrete 
materials employed in the past, such as Cuisenaire Rods, or Dienes' 
Blocks (Gattegno, 1962; Dienes, 1960) serve as illustrative aspects 
of Learning Systems. Moreover, I believe that the rapid progress 
of computers in the last decade, with their tremendous feedback 
power, will lead to the development of many more such Learning Systems. 

The knowledge component in a Learning System is articulated, not by 
experts who are scientists in that field, but rather by those who 
can tailor the body of knowledge to the learner's particular 
constraints (age, ability, etc) and form the learning sequence. 
In order for the exemplification component to fulfil its role, it 
must be familiar to the learner. He should intuitively grasp the 
truths within this component. It is necessary that the learner 
while still ignorant about the piece of knowledge to be learned, 
be well acquainted with the exemplification so that he can predict 
results of his actions within that domain and easily detect unexpected 
outcomes. The familiar aspects of the Learning System provide an 
anchor from which to develop an understanding of the new concepts 
and new relations to be learned. 

Familiari ty, however, is not sufficient. The selection of the 
exemplification component should ensure that the relations and the 
operations among the objects be amenable to complete correspondence 
to the knowledge component to be taught. For example, in the case 
of teaching the reflection transformation, the exemplification by 
the pin puncture corresponded more to the knowledge component, 
rather than a mirror which enables reflection of only one half of 
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the plain on the other (There were some other advantages as well 
which I will not go into here). 

The gist of the Learning System is that we have a system with a 
component familiar to the child, from previous experience, which 
will be his stepping stone to learn ~ concepts and relationships, 
as defined by the expert in the knowledge component. A system 
becomes a Learning System, once the knowledge component and the 
exemplification component are tied together by a set of well 
defined correspondence (mapping) rules. These rules map the 
objects, relations and operations in one component to the objects, 
relations, and operations of the other component. 

Functioning as a model, the exemplification component of a Learning 
System must fulfil the requirements described by Suppes (1974) 
i.e., it must be simple and abstract to a greater extent than the 
phenomena it intends to model, so that it can connect all the 
parts of the theory in a way that enables one to test the coherence 
and consistency of the entire system. This forms the basis for 
the child's ability to judge for himself the truth value of any 
given mathematical conjecture in a specified domain. It provides 
the learner with an environment within which he can continuously 
obtain comprehensible feedback on his actions, as was apparent 
from the second graders' behavior. 

I believe that arriving at mathematical truths is the essence of 
what we do in teaching mathematics. This brings me back to the 
question I raised at the beginning of my talk about mathematical 
truths. This is a deep philosophical question that I will not 
delve into here, recalling instead, Russell's formulation on the 
correspondence theory of truth. Russell (1959/1912) clarifies 
that truth consists in some form of a correspondence between 
belief and fact. Thus, though the notion of truth is tied to an 
expressed thought or belief, by no means can it be determined only 
by it. An independent system of facts is needed toward which it 
is tested. This, however, is not the only theory of truth. In 
the same chapter Russell also mentions a theory of truth that consists 
of coherence. He writes that the mark of falsehood is the failure 
to cohere in the body of our beliefs. 

How children arrive at truths is problematic. Clearly the child cannot 
reach conclusions about the truths of mathematics with such rigorous 
methods as those applied by a pure mathematician. While mathematicians 
can demonstrate the truth of a given sentence by proving its coherence 
within the entire mathematical system, young children cannot. If 
a young child is to gain some knowledge about truths in mathematics 
not based on authoritative sources, he should rely on the correspon
dence theory of truth rather than on the coherence theory. Thus, 
he should examine the correspondence between the belief and the 
state of events in the mathematical world. In our example this 
was between his conjecture where to draw the image of a reflection, 
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and the result of his pin puncture as representing the mathematical 
reality. 

But his approach is not without difficulties. Employing exemplifica
tions as the source for verification commits one to introducing 
mathematics as an empirical science rather than a deductive one 0 

On the other hand, I, believe that young children and even many 
not so young will be unable to reach mathematical truths merely by 
chains of deduction without first engaging in constructing and 
feeling intuitively the trust of these truths. Therefore, I 
think, that constructing a world in which the learner will be able 
to examine the truth of mathematical sentences via an independent 
state of events is the major task for any future theory of mathematical 
instruction. Such a world, which I have labelled a Learning 
System is the one in which all our knowledge about true conjectures 
as well as of misconceptions should be builtin as its maj or 
constraints. Being limited by the System's constraints, the child 
will learn by experimentation and exploration the limitations and 
the constraints of the mathematical truths in question. On this 
basis can he later attend to the more rigorous demands of deductive 
proofs. 

In summary I would like to recapitulate several points touch on 
today. At the moment, unlike the promised of the title of this 
presentation, my remarks do not look like a theory at all, but 
rather they specify some assumptions that, in my view, will underlie 
any future instructional theory. 

a) The learner should be able in the process of learning to 
test the limitations and constraints of a given piece of 
knowledge. This can be enhanced by developing learning 
environments functioning as feedback systems within which 
the learner is free to explore his beliefs and obtain specific 
feedback to his actions. 

b) In cases where the learner receives unexpected feedback, if 
not condemned, he will be intrigued and highly motivated to 
pursue an inquiry. 

c) The teacher cannot fully predict the effect of the student's 
earlier knowledge system in a new environment. Therefore, before 
he completes his instruction, he should provide opportunity 
for the student to manifest his misconceptions and then 
relate his instruction to these misconceptions 0 

d) Misconceptions are usually an outgrowth of already acquired 
system of concepts and beliefs applied wrongly in an extended 
domain. They should not be treated as terrible things to be 
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conceptual 

since, this may confuse the learner and shake his 
in his previous knowledge. Ins tead, the new 

should be connected to the student's previous 
framework and be put in the right perspective. 

e) Misconceptions are found not only behind an erroneous perfor
mance, but also lurking behind many cases of correct performance. 
Any instructional theory will have to shift its focus from 
erroneous performance to an understanding of the student's 
whole knowledge system from which he derives his guiding 
principles. 

f) The diagnosing items that discriminate between one's proper 
concepts and his misconceptions are not necessarily the ones 
that we traditionally use in exercises and tests in schools. 
A special research effort should be made to construct diagnostic 
items that disclose the specific nature of the misconceptions. 

I have tried to examine the instructional issues via the misconception 
angle. The examination consisted of more than the analysis of 
pedagogical problems; it had to penetrate epistemological questions 
concerning the truth and falsehood. Delving into questions of 
knowledge has traditionally been the prerogative of philosophy, 
particularly epistemology. Mental representation and the acquisition 
of knowledge, on the other hand, have been dealt with in the field 
of cognitive psychology. Obviously, each diSCipline adopts a 
different angle when dealing with the study of knowledge. While 
philosophers are concerned with the questions related to sources 
of knowledge, evidence and truth, cognitive scientists are mainly 
interested in questions related to the representation of knowledge 
within human memory and understanding the higher mental activities. 

The educational questions are quite different. The agenda in education 
is to facilitate the acquisition and construction of knowledge by 
the younger members of society. While scholars of cognitive 
science and recently of artificial intelligence are interested 
mainly in the performance of experts who are already skilled in 
various domains, educators, on the contrary, are interested in 
naive learners, or novices and how they develop into experts. 
Sometimes I am afraid that the whole notion of ' expertise' is 
alien. My claim is that the road to the expert state is paved 
with errors and misconceptions. Each error might become a significant 
milestone in learning. Let these errors be welcomed. 
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Appendix A 

.66 .154 

.254 .045 

.122 .002 

.101 .067 

.885 .106 

.238 .433 

.233 .244 

.7l'3 .838 

.245 .88'5 

.806 .702 

A Random Comparin~ Decimal Test 

(numbers up to three decimal digits) 

Discriminating Jeremy's rule 

Not discriminating 

Not discriminating 

Not discriminating 

Not discriminating 

Not discriminating 

Not discriminating 

Not discriminating 

Not discriminating 

Not discriminating 
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A Random Comparing Decimals Test 

(Unequal lengths of numbers up to three decimal digits) 

.15 .114 Discriminating Jeremy's rule 

.185 .06 Discriminating Ned's rule (Not discussed here) 

.51 .446 Discriminating Jeremy's rule 

.31 .438 Discriminating Ruth's rule 

.861 .33 Discriminating Ruth's rule 

.606 .82 Discriminating Jeremy's rule 

.72 .722 Discriminating Ruth's rule 

.08 .822 Discriminating Ned's rule 

.81,4 .46 Discriminating Ruth's rule 

.404 .33 Discriminating Ruth's rule 
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APPENDIX B 

Knowledge of Decimal Fractions: Identifying Place Value of Individual Digits 

Elements of Decimal Knowledge 

Ao Column Values: 
10 Correspond to column names 
2. Decrease as move 1 to r 
3, Each column is 10 times 

greater that column to r 
4, Decrease as move away from 

decimal point 

B, Column Names: 
I, End in <ths> 
2, Start with tenths 
30 Naming sequence (tenths, 

hundredths ... ) moves 1 to r 
4, Reading sequence is tenths, 

hundredths, thousandths 

C. Role of Zero: 
1. Does not affect digits 

to its left 
2. Pushes digits to its right 

to next lower place value 

D. Reading Rules: 
1, The number can be read 

either as a single quantity 
(tenths for one place, 
hundredths for two places, 
etc,) or as a composition 
(tenths plus hundreds etc.) 

Corresponding Elements of 
Whole Number Knowledge + or -

A. Column Values: 
1. Correspond to column names 
2, Decrease as move 1 to r 
3. Each column is 10 times 

greater than column to r 
4. Increase as move away from 

ones column (decimal point) 

B. Column Names: 
I. End in <s> 
2. Start with units 
3, Naming sequence (tens, 

hundreds .. ,) moves r to 1 
4. Reading sequence is thou

sands, hundreds, tens, ones 

C. Role of Zero: 
1. Does not affect digi ts 

to its left 
2. Pushes digits to its left 

to next higher place value 

D, Reading Rules: 
1. The number can be read as a 

single quantity and as a 
composition at the same time 
(e, g., seven hundred sixty 
two means seven hundred plus 
six tens plus two). 

+ 
+ 

+ 
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Knowledge of Decimal Fractions: Identifying Place Value of Individual Digits 

Elements of Fractional 
Decimal Knowledge 

E. Fraction Values: 
1. Expresses a value 

between 0 and 1 
2. The more parts a whole is 

divided into, the smaller 
is each part. 

3. There are infinite decimals 
between 0 and 1 

Corresponding Elements of 
Ordinary Fraction Knowledge 

E. Fraction Values: 
1. Expresses a value 

between 0 and 1 
2. The more parts a whole is 

divided into, the smaller 
is each part. 

3. There are infinite frac-
tions between 0 and 1 

+ or -* 

+ 

+ 

+ 

F. Fraction Names: F. Fraction Names 
1. The number of parts divided 

into is given implicitly by 
the column position 

2. The number of parts included 
in the fractional quantity 
are the only numerals 
explicitly stated. 

3. The whole is divided only 
into powers of 10 parts 

4. The ending "-th" (lltenth') is 
typical for a fractional part 

* Supports (+); contradicts (-) 

1. The number of parts divided 
into is given explicitly by 
the denominator 

2. The number of parts included 
in the functional quantity 
are the numerator of 
the fraction. 

3. The whole is divided into 
any number of parts 

4. The ending "-th" ("fourth') 
is typical for a fractional 
part. + 
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O. When I was invited to give an address to the Study Group, the 
title seemed to choose itself. I had in my mind traces of recent 
readings that had rubbed against each other and created a disturbance. 
The period of almost a year between the invitation and the delivery 
appeared to offer a fine opportunity to do what needed to be done 
to arrive at a fresh, structured, survey of the territory. As is 
usual with me, the opportunity somehow slipped by unseized. I 
bring only a few out-of-focus snapshots. 

I. The phrase itself I take from the introduction to Herbert Simon's 
The Sciences of the Artificial. This particular occurrence of it 
has lodged with me, though the phrase - as against the context in 
which it is used - is unlikely to be original. Simon is talking 
about "artificial" phenomena which "are as they are only because 
of a system's being molded, by goals or purposes, to the environment 
in which it lives." (Simon, 1981, p. ix) How is it possible, he 
asks, to make empirical propositions about systems "that, given 
different circumstances, might be quite other than they are?" 
(ibid., p.x) 

My writing '" has sought to answer those questions by showing 
that the empirical content of the phenomena, the necessity 
that rises above the contingencies, stems from the inabilities 
of the behavioral system to adapt perfectly to its environment 
- from the limits of rationality, as I have called them. 
(ibid., p.x; my italics, D.W.) 

Simon offers the image of an ant making its laborious way across 
rough ground. The track the ant makes is irregular and apparently 
unpredictable. Yet it is not a random walk for it takes the ant 
towards a particular goal. We can readily suppose that any very 
small animal starting at the same point and having the same destination 
may well follow a very similar path. 

An ant, viewed as a behaving system, is quite simple. The 
apparent complexity of its behavior over time is largely a 
reflection of the complexity of the environment in Which it 
finds itself." (ibid., p. 64; author's italics) 

Could we not hypothetically substitute the words "human being" for 
"ant"? Simon continues. 

A thinking human being is an adaptive system; man's goals 
define the interface between his inner and outer environments, 
including in the latter his memory store. To the extent 
that he is effectively adaptive, his behavior will reflect 
characteristics largely of the outer environment (in the 
light of his goals) and will reveal only a few limiting 
properties of the inner environment - of the physiological 
machinery that enables a person to think. (ibid., p. 66). 
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To show that there are only a few "intrinsic" cognitive characteristics 
and that "all else in thinking and problem solving is artificial" 
(ibid., p. 66), Simon analyses a familiar cryptarithmetic problem. 
He finds that solvers differ mainly in their solution strategies 
and suggests that efficient strategies could easily be taught to 
those subjects who do not spontaneously produce them. The "limits 
of rationality" are not to be found here but in the general weakness 
of human short-term memory, a weakness that makes it necessary for 
human beings to adopt compensatory strategies. 

Insofar as behavior is a function of learned technique 
rather than "innate" characteristics of the htllllan information
processing system, our knowledge of behavior must be 
regarded as sociological in nature rather than psychological
than is, revealing what human beings in fact learn when 
they grow up in a particular social environment. 
(ibid., p. 76). 

As always in reading anything by Simon, I get the sense of an 
immensely powerful intellect sailing on towards the magnetic 
rather than the true North. The clarity, however, is bracing, the 
ideas challenging to many of my presuppositions. I feel I am 
closer to grasping the nature and purpose of strategies in problem 
solving, for example; and the proposition that the complexity of 
behaviour arises from the complexity of the task and not the 
complexity of the organism working on the task becomes a hypothesis 
worth struggling to refute. But before I give in to the temptation 
to enlarge the first snapshot, let me change the slide. 

2. A different and more alarming view of "the limits of rationality" 
is captured in the following sentence from Leon Brunschwicg IS 

paper, "Dual aspects of the philosophy of mathematics": 

the preconceptions of an overly abstract and narrow 
definition transforms reason into a machine for fabricating 
irrationality. (Brunschwicg, 1971, p. 228) 

Brunschwicg draws his theme from the Pythagoreans. 

When, by representing numbers by points, they showed that 
the successive addition of the odd numbers furnished the 
law for the formation of squared numbers, they were extracting 
evidence of a perfect harmony, ... between what is conceived 
in the mind and what is obvious to one's vision. (ibid., 
p. 225) 

This "triumph of reason should have been decisive; it was immediately 
compromised by a twofold weakness in itself." (p. 226) On the 
one hand the pythagoreans could not resist the temptation of push 
their luck, to go far too far. "Thus 5, the sum of the first even 
number, 2, and the first odd number, 3 (unity remained outside the 
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series), would be the number for marriage because even is feminine 
and odd is masculine." (p. 226) And on the other hand, when the 
difficulty of incommensurability surfaced, the Pythagoreans turned 
their backs on rationality by banishing incommensurable magnitudes 
to a "beyond." 

They receive a command from their avenging gods to deliver 
to the fury of the tempest the sacrilegious member who had 
the audacity to divulge the mystery of incommensurability. 
(ibid., p. 227) 

They implicitly ~ and the more dangerously because of the implicitness 
~ decide that incommensurability will be "something that one does 
not dare to speak of" and so, Brunschwicg says, "the irrational 
threatens to obscure the whole philosophy of science." (p. 227) 

From a rich and subtle paper I select another example. 

Pascal and Leibniz seem to be working together to force 
open the doors of mathematical infinity. But is this to be 
done by pushing beyond the normal resources of reason? 
Leibniz parts company with Pascal on this fundamental 
issue. He returns to the path of Cartesian analysis, 
while Descartes and Pascal find themselves united in their 
opposition to Leibniz's position that the deductive process 
is self-sufficient. The two of them. have proclaimed the 
primacy of intuition, even though they otherwise give it a 
radically different meaning. (ibid., p. 232) 

All three mathematicians reject the position that mathematics is a 
natural system reduced to its ultimate abstraction; for them "it 
is the fitting prelude to, and the relevant proof of, a spiritual 
doctrine wherein the truths of science and religion will lend each 
other mutual support." (ibid., p. 233) Not every mathematician, 
of course, chooses this same path. 

Brunschwicg I S general message is that there are fundamental 
characteristics of mathematical thought that underlie the disagreements 
among mathematicians about the sovereignty of reason, and that 
undercut all dogmatisms that would place the limits of reason 
"here" or "there." Fortunately for mathematics "the manner of 
investigation has no bearing on the value of a discovery." 
(p. 234) As to this, I can't be sure; meanwhile I retain that 
particular image of the Pythagorean machine, reason gone mad, 
spewing forth irrationalities. The image resonates unnervingly. 

3. Less unnerving, but decidedly unsettling, is the drift of Dick 
Tahta's article, "In Calypso's arms", (For the Learnin~ of Mathematics, 
6, 1). Did mathematics originate in commerce of ritual? 
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There was a time, for instance, when historians of mathematics 
would very confidently assert that mathematics began in the 
needs of highly organised social systems to calculate taxes 
and to deep inventories. In a less confident economic climate, 
there has begun to be some cautious speculations about other 
origins. (Tahta, 1986, p. 17) 

We have no records to tell us unequivocally how mathematics began, 
and just as in other cases where we don't know the "facts", we 
construct "myths." Even the procedures and purposes of the high
culture of Greek mathematics, about which we may feel we know a 
lot, remain essentially a matter for conjecture. 

For the purist, there is almost nothing that can be said about 
the early classical period with any certainty. We know the 
names of a handful of individual mathematicians ... (The) 
arithmetic tradition (of the Pythagoreans) is mainly 
interpreted from commentaries written several centuries 
later. (ibid., p. 18) 

Tahta goes on: 

Such aspects have been mythologised to such an extent that 
it hardly seems relevant to question whether they describe 
what was the case. This is, however, to accept a view 
that "narrative" truth, or myth, is ~ in some situations
more important than his torical truth; it is to accep t 
willingly that myths grow by accretion, so that, for 
example, what people have thought about Greek mathematics 
may become part of the history of Greek mathematics. (p. 18) 

When alternative myths are available, as they are for the origins 
of deductive geometry, say, which shall we choose? There is no 
real possibility of settling the question obj ectively. "It is, I 
claim, a question of preferred myth." (p. 21) Some myths may 
work better than others, especially for pedagogical purposes, and 
it is sensible to choose, openly and knowingly, those myths that 
are most powerful and helpful. Historians will naturally disapprove 
but the continuing reflective generation of the account mathematics 
gives of its own history is too important to be left solely to 
historians or to mathematicians. Teaching is part of the 
mathematical enterprise and teachers can help decide what is to be 
considered significant at anyone time. (ibid., p. 22) 

It is, indeed, unsettling to suggest that reason cannot lead us to 
the unique right answers to questions about the nature of 
Pythagoreanism, the origins of deductive proof, the purpose of the 
arithmetisation of analysis '" or whatever. Well, we shall just 
have to be as brave as we require our students to be when we would 
prise them away from their treasured beliefs in the unique rightness 
of solutions to mathematical problems. 
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4. Consider the words of the title. 

LIMIT-___ ----------------------~) ULTIMATE 
------=:.-

.., BOUNDARY 

OBSTACLE 

RATIONALITY ----------7.;;. REASON 

REASONABLENESS 

RATIONALISATION 

The alternatives seem to run from "high" to "low". This is 
particularly obvious in the second case. "Reason" cries out for a 
capital letter: for some it is the greatest of the mental powers, 
the characteristic that makes a human being human. "Reasonableness" , 
on the other hand, is moderate and modest, a characteristic of the 
ordinary man, whether in the street or on the Clapham omnibus. 
"Rationalisation" is a low form of reason, a misprision of reason's 
power to grasp phenomena and make them comprehensible. 

Rationality reminds us of the sober virtue of getting things "in 
proportion". Is it a coincidence that intelligence tests are full 
of questions of the form, "A is to B as C is to ?"? On the other 
hand, being rational may be no more than exhibiting common sense. 
It is this latter connection that supplies the essential social 
and consensual flavour. Rationality is an endowment of all human 
beings in the sense that everyone has the possibility of learning 
to be rational just as everyone is born able to acquire a spoken 
language, but the particular form of rationality (i. e . common 
sense) that a person acquires is determined by social and cultural 
factors as is the particular language that the person learns to speak. 

5. David Bloor, in a speculative article contrasting Hamilton's and 
Peacock's views on the essence of algebra, talks of Hamil ton's 
involvement with Idealism, which he learned mainly from Coleridge 
and Carlyle. 

Carlyle ... goes on to explain precisely how Idealism has 
a practical bearing By making matter dependent on 
mind, rather than something in its own right, Idealism 
removes the threat of a rival conception of Reality. 
(Bloor, 1981, p. 208) 

In Carlyle's view, all conclusions of the Understanding have only 
a relative truth: "the Understanding is but one of our mental 
faculties. There is a hi~her faculty which transcends the 
Understanding and gives us contact with non-relative and non-dependent 
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Absolutes." (ibid., p. 209) This higher faculty is, of course, 
Reason which, in Carlyle's words, should 

"conquer ... all provinces of human thought, and everywhere 
reduce its vassal, Understanding, into fealty, the right 
and only useful relation for it." 

This elevation of Reason to the level of the sacred (echoes of 
"which passeth all understanding"?) has powerful social and political 
implications, but I will not follow that track here. Bloor suggests 
that in relating algebra to our intuition of pure time, Hamilton 
was attempting to raise algebra to the level of the holy too. 

The essence of algebra was given a direct association with 
the Reason, with what was prior to and determined the form 
of experience. At the same time it was thereby put in 
close proximity to our insights into moral truths and 
their divine origin. In a word, Hamilton was irradiating 
algebra with spirit. (ibid., p. 216) 

In the controversy between British mathematicians about the nature 
of algebra, Hamilton took neither the side of Frend, for whom 
algebra was universal arithmetic, nor the side of Peacock, for 
whom algebra was a symbolic system with arbitrary rules, but 
implied that "its essence was derived from the laws and constitution 
of the mind itself - and the most exalted part of the mind at 
that." (p. 217 ) 

It may be arguable whether this last proposition necessarily 
belongs to Idealism or not, but the whole story (which I have not 
been able to offer here) suggests that attempts to give Reason an 
autonomous role, a position above all conflict, safe from refutation, 
only succeeds in embedding it the more firmly in a local, contingent, 
metaphysics. 

6. In "Reflections on gender and science", Evelyn Fox Keller says: 

I argue that we cannot properly understand the development 
of modern science without attending to the role played by 
metaphors of gender in the formation of the particular set 
of values, aims, and goals embodies in the scientific 
enterprise. (Keller, 1985, p. 43) 

At around the time of the foundation of the Royal Society, intellectual 
history could be described schematically in terms of two competing 
philosophies: hermetic and mechanical: "two visions of a "new 
science" that often competed even within the minds of individual 
thinkers." (p. 44) 
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In the hermetic tradition, material nature was suffused 
with spirit; its understanding accordingly required the 
joint and integrated effort of heart, hand, and mind. By 
contrast, the mechanical philosopher sought to divorce 
matter from spirit, and hand and mind from heart. 
(ibid., p. 44) 

The founding of the Royal Society in 1662 marked the victory of 
the mechanical philosophers and the defeat of the alchemists, 
stigmatised as anti-rationalists. The Baconian programme was 
adopted, and with it, the sexual metaphors in which it was expressed. 

A recurrent token of this is their Baconian use of "masculine" 
as an epithet for privileged, productive knowledge. As 
Thomas Sprat (1667) explained in his defense of the Royal 
Society, "the Wit that is founded on the Arts of men's 
hands is masculine and durable." In true Baconian idiom, 
Joseph Glanvill adds that the function of science is to 
discover "the ways of captivating Nature, and making her 
subserve our purposes." (Easlea, 1980, p. 214) (ibid., p. 
54) 

The last quotation suggests a clear association between scientific 
rationality and that act of rape. I am not sure one could wish that 
the hermetic alternative had entirely won, but the metaphors give 
an appalling indication of the social price that had to be paid 
for the establishment of modern science and certainly supply a 
motive for considering whether any of its damaging side-effects 
may be ameliorated. Three hundred and more years later, are we 
any wiser in our day? 

7. The achievements of scientific rationality may seem so substantial 
that we choose to forget its tendency to tip over into 
irrationality. The process is more apparent in the human sciences 
where the danger of pushing rationality too far and forcing it to 
tip over is only too obvious. Or should be. 

Pedagogy provides an illuminating example. It is a reasonable 
pedagogical principle to break up what is to be learned into 
manageable pieces; but this principle becomes an absurdity when 
everything presented to be learned is broken into separate pieces, 
each as small as possible, so that the totality cannot be perceived. 
It is a reasonable pedagogical principle to guide students in such 
a way that the do not fall into egregious error; but this principle 
tips over into foolishness when it becomes an attempt to prevent 
students from making any mistakes, denying them access to an 
important source of feedback. It seems to me a legitimate matter 
for rage and the gnashing of teeth when teachers (hal) and educators 
(ha!ha!) close their minds to the irrationality of their actions. 
In my more pessimistic moments I fear that the educational system 
will always manage to pervert any rational principle in short 
order by pushing it further than it will stretch. 
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Of course, for many people, including a lot of teachers and educators, 
pedagogy has a dubious existence. They don't believe teaching is 
an activity one need be, or can be, scientific about. But teaching 
is not a transparent process for transporting something from place 
A to place B; it is not a catalyst, facilitating learning without 
influencing it. Consider how one may introduce students to, say, 
the solution of simple linear equations in algebra. The metaphor 
of the balance may suggest certain operations on an equation while 
making others, algebraically just as important, seem implausible. 
It is well known, that the "think of a number" approach and the 
"unravelling" technique it suggests work admirably for equations with 
a single appearance of other unknown but fail to give a lead to the 
solution of, say, 5x = 3x + 6. On the other hand, the Dienes 
method of representing both sides of a linear equation with suitable 
pieces of wood gets around the particular limitation of the "think 
of a number" approach while introducing another obstacle: that of 
regarding two manifestly different amounts of wood as representing 
two equivalent algebraic expressions, 

All pedagogical devices cast their imprint on the matter they are 
designed to teach. And in case one would be so naive as to suppose 
that this difficulty might be avoided by suppressing pedagogical 
devices altogether, let us remember that when we teach anything to 
someone who does not yet know it, we cannot proceed without the 
offering the person at least an implicit model of what is to be 
learned. 

The need for pedagogy comes from another source too. There is an 
inevitable tension between engaging with mathematics in order to 
use it and engaging with it in order to teach it. The teacher and 
the mathematician do not have the same professional insights into 
mathematics; what is illuminating for one is not necessarily so 
for the other. The Hindu-arabic notation, when it reached Europe, 
played hell with the teaching of arithmetic, causing teachers to 
substitute "ciphering" for the counting and manipulation of beads 
and other obj ects. (Smith, 1900) Giving the number system a 
solid foundation in set theory was a liberation for mathematics 
and an aberration in the classroom. The HP 28C is a remarkable 
mathematical aid, but it is not the calculator that educators 
would like to have been able to design to sort out some of the 
difficulties for the learner of college mathematics. Indeed, what 
is best for mathematics and the mathematician is not always best 
for teachers and would-be mathematicians. 

8. In coming to the end of this magic show, it seems appropriate 
to ask whether rationality is an instrument of human liberation or 
of human enslavement. To the extent that rationality is 
institutionalized and embedded in a specific culture, it has the 
power to be both. As Jules Henry puts it: 

39 



Thus, the dialectic of man's effort to understand the 
universe has always decreed that he should be alternately 
pulled forward by what has made him homoinguisitor and 
held back by the fear that if he knew too much he would 
destroy himself, i.e. his culture. So it is that though 
language has been an instrument with which man might 
cleave open the universe and peer within, it has also been 
an iron matrix that bound his brain to ancient modes of 
thought. And thus it is that though man has poured what 
he knows into his culture patterns, they have also frozen 
round him and held him fast. (Henry, 1960, closing passage) 

Henry, as always, stresses the negative side of the evolutionary 
dialectic. However difficult it may be to bring about certain 
shifts, nevertheless new knowledge £Sll be constructed, language 
does gradually change, and cultural patterns are transformable. 
Past achievements are indeed a potential obstacle to future 
achievements. But that poses the challenge: to break the grip of 
past knowledge, fight the hegemony of language, and evade the 
restrictions of one's culture. One can't always win, but one 
won't always lose. These constraints are all inside us, in the 
mental schemata we have formed out of the experience of living in 
our world. As Bartlett reminds us, we have the power to "turn 
round upon our own schemata". (Bartlett, 1932, p. 301) That is 
what human consciousness is for. 
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Le passe et Ie futur de GCEDM/CMESG 

Bernard R. Hodgson 
Universite Laval 

A l'occasion de cette rencontre IDe anniversaire du Groupe canadien 
d' etude en didactique des mathematiques, le Comite executif du 
Groupe a pense inscrire au programme une table ronde visant a 
faire un bilan des activites du GCEDM au cours des dix dernieres 
annees et a tracer des perspectives d'avenir. Quatre invites ont 
done ete appeles a presenter leur point de vue a ce sujet. 

Le fait d' organiser une discussion comme celle-ci fait prendre 
conscience, si besoin en etait, de la diversite et de la richesse 
des themes auxquels se rapportent les activites du GCEDM. Ces themes 
peuvent etre abordes tant du point de vue du mathematicien que de 
celui du didacticien des mathematiques; a la fois en tant qU'enseignant 
et en tant que chercheur; en rapport avec l'enseignement aussi 
bien au niveau primaire ou secondaire que post- secondaire; soi t 
comme universitaire, so it comme conseiller pedagogique a l'oeuvre 
dans les ecoles; etc. Cette diversite de points de vue releve de 
l'esprit me me de notre Groupe et contribue a son caractere original. 

C'est en tentant de refleter tant bien que mal une telle diversite 
que les quatre panelistes ont ete choisis, chacun etant bien sur 
libre de determiner quels aspects des activites du Groupe il 
voulait souligner ainsi que le point de vue qu'il comptait adopter. 
Ces invites connaissent tres bien les activites du Groupe pour y 
avoir participe depuis de nombreuses annees, certains meme depuis 
les tous debuts. Les textes qui suivent contiennent l'essentiel 
des commentaires qu' ils ont livres lors de cette rencontre IDe 
anniversaire. 

Les invites ayant pris la parole lors de la table ronde etaient 
(dans l'ordre) 

Tasoula BERGGREN 

Charles VERHILLE 

John POlAND 

William C. HIGGINSON 

Department of Mathematics and Statistics 
Simon Fraser University 

Faculty of Educaton 
University of New Brunswick 

Department of Mathematics and Statistics 
Carleton University 

Faculty of Education 
Queen's University 
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PANEL PRESENTATION OF 
Tasoula BERGGREN 

Department of Mathematics and Statistics 
Simon Fraser University 

I would like to begin with a story from The Greeks told by H.D.F. 
Kitto. 

"Xenophon tells an irmnortal story which can be 
retold here. An army of vicitorious Greeks were on 
their way home after a battle without a leader, 
paymaster or purpose. It was a group of people 
who wanted to go home but not through the whole 
length of Asia Minor. They had seen enough of it 
already. They decided to go North. They had 
hopes for reaching the Black Sea. They got a 
leader, Xenophon himself and held together week 
after week. They marched through unknown mountains 
and encounters with many natives, but they survived 
as an organized force. One day, after climbing to 
the top of a pass they all shouted: nThalatta, 
Thallattan the greek word of nsea. n They were 
excited when they pointed North. A long nightmare 
was over. There was shirmnering in the distance 
salt water; and where there was salt water Greek 
was understood. Their way home was open. As one 
of the The Ten Thousand said, nwe can finish our 
journey like Odysseus, lying on our backs." 

The above reading was the story of a mercenary army concerning an 
incident in The March of The Ten Thousand. Xenophon described it 
in his book Kyrou Anabasis, which translates as Expedition of 
Cyrus. This story seems to me relevant to the history and future 
of CMESG. Like those Greeks we have been together for many years, 
we are a group of people on our way to better mathematics education. 

For ten years we have gathered for the CMESG meetings, with their 
inspiring talks, workshops covering all aspects of mathematics 
education, panels, discussions about the talks, the past and the 
future. Like Xenophon's band we have chosen good leaders and we 
have loyal followers. Over the past ten years we have built a 
strong and dedicated group. A group of people consisting of those 
who have participated year after year by their presence, people 
who have put in time to administer and organize these meetings, 
and people who have shared their classroom work and research. Our 
members worked, produced and searched together. 

But also what was good about the conference is that it presented 
to us ideas. The speakers conveyed to us exciting experiences and 
explorations and a fine search for better mathematics education. 
I generally like our meetings, I like their form, and I would like 
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to see us continue and expand. CMESG is the kind of a conference 
which leaves me enthusiastic, refreshed and with renewed inspiration 
towards better mathematics education. I think, however, that we 
need to go beyond the stage of talk and translate all we have 
learned into action. 

In the past we shared a lot of thoughts about various aspects of 
mathematics education and we shared thoughts about mathematics, 
its curriculum and the impact of high technology. I corne to this 
meeting with concerns. We live in a time when technological 
changes from small calculators to microcomputers - - have a 
highly visible influence in the lives of our students. CMESG has 
long recognized the potential impact of high technology on mathematics 
education. 

In fact in 1982 Working Group A discussed nThe 
influence of Computer Science on Undergraduate 
Mathematics Education." with Bernard Hodgson and 
Tony Thompson. 

In 1984 "The Impact of the Computer on Undergraduate 
Mathematics" was the subject in a panel discussion 
with Peter Taylor, John Poland, Keith Geddes, and 
George Davis. 

In 1985 the group led by Bernard Hodgson and Eric 
Muller participated in a workshop with a similar 
topic on nThe Impact of Symbolic Manipulation 
Software on the Teaching of Calculus." 

We all worked hard and thought deeply about the consequences of 
high technology for mathematics education. Yet, five years later, 
our group has no definite stand on the subject. We still have no 
definite conclusions about whether programmable calculators are 
acceptable in the classroom, or if computers are part of our 
curriculum. 

Our invited speaker, Professor H. Wilf, five years ago in his 
article on "Symbolic Manipulation and Algorithms in the Curriculum 
of first two years" gave a list of topics that are often taught 
and that could be done on a little symbolic calculator of the 
future. Five years ago it was a 3" X 8" flat imaginary object. 
Today 'the dream of a symbolic calculator is a reality. 

And now just as the victorious Greeks knew that where there was 
salt water Greek was understood and, therefore, the way horne was 
open, we must recognize that where there is technology, mathematics 
is understood, and, therefore, the way to better mathematics 
education is open. 

As a result of the 1982 Working Group A, discussions I mentioned 
before, Adler has already recommended that: 
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"CMESG Study Group must try to find what computer 
knowledge our students should have, identify the 
mathematical ideas which generate this knowledge, 
debate whether this mathematics should be included 
in our curriculum, how and at what point." 

Today, I would like to recommend that CMESG form a group, a group 
of volunteers who are willing to make recommendations on the 
changes in calculus, so that technology comes in. We need to 
identify specifically what goes out and what comes in. It is time 
to be ready for these big changes, and CMESG must playa leading 
part. I am sure that somewhere someone is already working to 
produce the right texts with the changes needed. I would like us 
to recommend the changes in the curriculum. CMESG should lead the 
way in the revision of Calculus. We have already done a lot of 
the work and now what is needed is to collect together all the opinions 
and take a specific stand on this subject. 

For example, as a group we must know if we are going to continue 
teaching integration techniques. Is it fair to our students to 
spend their time memorizing? Perhaps, with computers doing the 
drudgery, we can ask: Is this the time to emphasize proofs? Can 
computers help our students understand the course material? How 
do we immerse our mathematics students in high technology? 

I have assumed that much of our attention for university and 
~ollege level should be focussed on the calculus, but I know some 
have said that calculus does not have to be gateway to university 
mathematics. For too many students, the critics say, it has been 
a gateway like that to Dante's Inferno with the words emblazoned 
on it RAbandon Hope, all ye who enter here". 

These critics argue that number theory or combinatorics, or some 
other area of finite mathematics would be more suitable. In my 
opinion, however, elimination of calculus may be risky to mathematics 
education. Sherlis and Shaw say that nA mathematician's calculus 
course can serve as an excellent introduction to mathematical 
thinkingn. I claim that mathemat-ical maturity also can be a 
direct consequence of calculus courses. 

We all know that the physical sciences, computing science, and 
even economics all require their students to take calculus courses 
because they need it. For examp le, my own son, who is studying 
engineering, has told me how much he wished he had had a lot more 
calculus a lot earlier in his studies. Other disciplines such as 
business administration use calculus as a screening device. The 
verdict is in. Calculus is important for a student as early as 
she or he can get it. It follows that re-thinking its teaching in 
light of the new technology is a matter of great importance. Can 
we use computers and calculators to aid us? This group of volunteers 
which I recommend we form will choose the way to incorporate high 
technology. I t will take calculus and reform its teaching. It 
will choose and plan curricula even planning model lectures if 
necessary. 
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CMESG can start conducting pilot projects of incorporating computers 
into the mathematics curriculum, encouraging teachers to experiment 
using computers and to compare results. We should be setting up a 
network with computer conferencing functions which allows members 
to send and receive data. Using electronic mail we can reach the 
mathematics teachers across Canada. CMESG must provide guidance 
and leadership. 

Another and last point I have to make, which we can also do as a 
group is that we must raise the level of mathematics interest 
among our first and second year university students. Our best 
students corne to us excited about their good scores in Euclid or 
AHSME. They are enthusiastic about mathematics competitions, and 
then what do they get in their first year of university? The 
Putnam examinations. Disaster! 

So I recommend that we organize across Canada competitions or a 
paper on mathematics, even a group project on mathematics and its 
history for these undergraduate students. The level of the 
competi tions must be somewhere between high school and Putnam 
examinations. The paper can be an expansion on ideas of theorems 
and problems from undergraduate mathematics, while the group 
project can be something similar in which students are working as 
a team. Such activities will give the opportunity to members of 
our group to work together, to gain support of many more members, 
increase the membership for CMESG and raise the level of our 
mathematics education. It will also bring together undergraduates, 
create a further inducement for our calculus students to do 
mathematics. It will demonstrate our commitment to encouraging 
excellence. It is time for CMESG to become the leading force in 
mathematics education. 

I would like to thank Dr. J.L. Berggren, Hs. H. Fankboner, and 
Dr. H. Gerber of the Department of Hathematics and Statistics at Sim:::>n 
Fraser University for many helpful suggestions. 
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PANEL DISCUSSION OF 
Charles Verhille 

Faculty of Education 
University of New Brunswick 

When the Working Group on Methods Courses for Secondary School Teachers 
began the working group leaders, David Alexander and John Clark 
distributed the following letter from Mathematics Teaching by 
Chris Breen: 

I recently tried to imagine myself an 
anthropologist studying the now extinct 
society of South Africa in the mid 1980's. 
The only records that survive are some 
mathematical textbooks. What picture would 
I construct? 

As a teacher education I immediately thought that this would be an 
interesting task to give either pre or in-service teachers to do. 
Over the years at CMESG gatherings I have gathered several gems 
like this and use them regularly to enrich my teaching as well as 
provide interesting environments for reflecting on mathematics 
teaching. 

My first CMESG meeting was also here at Queen's in 1979. That 
meeting occurred shortly after my first acquaintance with Bill 
(Higginson) and David (Wheeler) who were both maj or speakers in 
Fredericton at a gathering of Maine and Maritime mathematicians. 
This is my third CMESG visit to Queen's in the elapsed nine years. 
From my first meeting I noticed that people became excited during 
our gatherings. Our meetings are professionally stimulating and 
the approach refreshing. On numerous occas ions over the years, 
various people have suggested these as well as the following for 
their continued attachment to CMESG: 

our small size 
working groups 
active participation 
the people 
the guest speakers 

Because many of our group cherish these attributes, including 
myself, I am not about to suggest a future that would alter this 
image in any significant way. B~t I do believe that it is .time 
for us to emerge above ground and take an active, visible role. 
In that regard, I would make four additional suggestions for 
future directions of the CMESG. 

First, that the CMESG actively 
membership to give us a more 
Currently we are not represented 

undergo a moderate increase in 
representative national image. 
by several provinces. Also, a 
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modest increase would provide the possibility for better financial 
stability. 

Second, that we assume a lobbying role for mathematics education 
in Canada. We are possibly the only existing group that has a (or 
at least potential) national face that can legitimately address 
issues related to mathematics education. 

Third, that this group has an opportunity, even a responsibility 
to offer its assistance to ICME 7 which is currently in the development 
stages for Laval. 

Fourth and last, the CMESG occasionally makes quiet noises about 
publication. But other than the proceedings, nothing happens that 
is directly identified with the group. Certainly the group may 
very well play a catalyst role in this regard by stimulating 
individual or collaborative efforts. A publication group at an 
annual meeting structured on the same style as the working groups 
may be a workable format to try. 

Thank you. 
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PANEL PRESENTATION OF 
John Poland 

Department of Mathematics and Statistics 
Carleton University 

Since CMESG meetings are a highlight of the year for me, I'm 
obviously not here to rock the boat. I've been to CMESG meetings 
which were a continuous high for me from breakfast to after midnight 
every day, bouncing ideas off people, people who care, like I do, 
about good teaching, what it is and what it is about. Rare people, 
who have thought deeply and carefully about many aspects of education. 
People with the same ideas as I and people with what seem to be 
very different ideas, people willing to test me ("maybe calculators 
and symbolic programming won' t have any effect on the classroom 
situation" "maybe it's better not to target special help to 
woman in math classes") and people willing to support me. 

I teach in a university setting, a department of 35 mathematicians, 
with classes from 5 students to over 200. Most of my colleagues 
fit into and believe in the standard framework: respect for good 
research = original contributions to the subject matter of mathematics. 
They believe in obj ective criteria: obj ective in judging the 
value of research ("how important is this?", "how often do you 
publish?"); objective in evaluating textbooks ("does it cover the 
material?"); objective in evaluating their students: ("did they 
pass the final exam? Did they know the proofs and the methods of 
the course?"). And so good math teaching = clarity of expos i tion 
+ coverage of the topic, very objective criteria. What then do we 
teach: the tools of math to the unwashed masses who will never 
really understand the glory of math (or what we do), and initiation 
to a few disciples. My colleagues believe in mathematical talent, 
something that no amount of hard work can compensate for. A 
university mathematician who cares about teaching can be a lonely 
figure in this milieu, not only isolated (with very few like
minded colleagues in the same department) in the quest for good 
teaching, but also attempting to grow and find self worth in a 
hostile medium of publish-research-mathematics-or perish. Of 
course, this individual may react in the very way one classically 
sees many woman and blacks react to their oppressive environments
producing the super, all-round mathematician who publishes excellent 
research, effective in administration, growing and interest in 
excellence in teaching and concerned with education issues. Even 
then, one's colleagues in the mathematics department say; "Yes, 
but imagine what research you could really do if you didn't waste 
your time on education issues". So once a year I get a chance to 
explode: to come to CMESG, rattle ideas off dozens of like-minded 
caring individuals, who know how badly mathematics can be and is 
taught, at all levels. And receive their support and well wishes. 
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Let me end my ranting and briefly turn to two concerns that I 
would like to see CMESG in future address. One is my desire to 
see CMESG promote good mathematics teaching more broadly in Canada. 
CMESG is an umbrella for its members, and this umbrella played its 
(minor) role, at least as a network of support, in Claude Gaulin's 
superb efforts to land the 1992 ICME meeting for Canada. My other 
desire is to see a modest extension of the time spent in working 
groups, to an extra 90 minutes, perhaps as at Memorial University 
on the initial evening of the meeting in 1986. 
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WORKING GROUP "A" 

METHODS COURSES FOR SECONDARY TEACHER EDUCATION 

David Alexander 
University of Toronto 

John Clark 
Toronto Board of Education 

52 





CMESG 1987 

REPORT OF WORKING GROUP nAn 

Members of Workgroup "A": 

Hugh Allen, Queen's University 
Rick Blake, University of New Brunswick 
Charlotte Danard, University of Rochester 
Claude Gaulin, Universite Laval 
Harvey Gerber, Simon Fraser University 
Bill Higginson, Queen's University 
Lars Jansson, University of Manitoba 
Tom Kieren, University of Alberta 
Erika Kuendiger, University of Windsor 
Bob McGee, Cabrini College 
Lionel Mendoza, Memorial University 
Barbara Rose, University of Rochester 
Charles Verhille, University of New Brunswick 
Leaders: David Alexander, University of Toronto 

John Clark, Toronto Board of Education 

Methods Course for Secondary Teacher Education 

The group began by identifying issues related to the role of 
teachers of mathematics in the secondary schools. This led to a 
list of needs to be met by the combination of in-service and pre
service courses. 

Some of the issues identified were: 

risk taking; 
critical thinking; 
examination of student learning with its relationship 
to diagnosis and remediation and "student talk"; 
examination of personal beliefs both of students and of 
teachers; 
evaluation of program and of students with related 
assessment; 
the study of mathematics both as process (including 
problem-solving, use of technology, and values education) 
and as product (including a study of new content, a 
re-examination of previously studied content from a variety 
of perspectives, and the impact of technology); 
the features of methodology such as questioning techniques, 
planning and execution of teacher-centred and 
student-centred lessons; 
the awareness of curriculum change and the understanding 
of the process of curriculum implementation. 
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The group also identified the contextual forces which influence 
teacher education. 

pre-service/in-service structure 
practice teaching pattern 
background of participants in mathematics courses 
participants' instructional experiences 
tyranny of mathematics texts 
influence of associate teachers 
curriculum implementation philosophy of Ministry/Board 
influence of unions 

We considered the differing needs of pre-service teachers and in
service teachers both as perceived by them, and as perceived by us 
and also the differing resources that each has: 

pre-service: time to interact with individual students; 
opportunity to search for resources. 

in-service: opportunity to try ideas with 
opportunity to relate newly 
theory to previous experiences. 

a class; 
introduced 

This led to the sharing of the introductory activities employed in 
the pre-service mathematics education courses for secondary teachers 
offered by members of the group. 

Such activities included: 

role playing 
mini-lessons to peers 
lessons to high school students 
diagnosis and remediation experiences 
simulated evaluation experiences 
assignments, tests, or simulated teaching experiences 
to raise awareness of weaknesses in content 
problem-solving activities 
activities to involve students in styles of questioning 
and basics of lesson planning 

Further sharing of ideas related to more long-term strategies: 

journal writing 
modules produced by "editorial boards" 
technology as a classroom aid 
technology as a medium in the production of modules 
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Three specific problems were identified which require further study: 

1. In most one-year pre-service programs for secondary 
teachers there is insufficient time to deal with all 
the issues in sufficient depth, yet there is no assurance 
that teachers will receive any further opportunities 
to extend their knowledge in a systematic way. 

2. The role and status of associate teachers needs to be 
enhanced so that the benefits that their potential 
contribution to the development of pre~ service and 
practising teachers is realized. 

3. Practising teachers need opportunities to upgrade 
their knowledge and skills in relation to the use of 
technology, content, and process components. 

The group recommends that future meetings include study groups 
which over a number of years would address: 

1. in-service teacher education for elementary school and 
secondary school mathematics 

2. mathematics education component of elementary teacher 
pre-service education 

3. mathematics education component of secondary education 
(i.e. don't wait 10 years for another run at this topic) 

We also recommend that a topic group next year might well focus on: 

Writing in the classroom (We would like to hear more of 
Barbara Rose's experience with journal writing). 

Resources: 

Morris, R. (ed.), Studies in Mathematics Education. 
The Education of Secondary School Teachers of Mathematics, 
Vol. 4 UNESCO, 1985 

Fullan, M. and Connelly, F.M., Teacher Education in Ontario: 
Current Practice and Options for the Future. 
A Position Paper written for Ontario Teacher Review. 
Ontario Ministry of Education, 1987 

Johnson, D.A. and Rising, G.R. Guidelines for Teaching 
Mathematics (2nd edition), Wadsworth, 1972 

Skemp, R.R. The Psychology of Learning Mathematics. 
Penguin, 1971 
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Farrell, M.A. and Farmer, W.A. Systematic Instruction in 
Mathematics for the Middle and High School Years. 
Addison-Wesley, 1980 

Osborne, Alan (ed.) An In-Service Handbook for Mathematics 
Education, N.C.T.M., 1977 

Corbitt, M.K. (ed.) The input of Computer Technology on 
School Mathematics: Report of an N. C. T .M. Conference, 
Mathematics Teacher, April 1985, pp. 243-250 

Taylor, Ross (ed.) Professional Development for Teachers 
of Mathematics - A Handbook. N.C.T.M., 1986 
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WORKING GROUP B 

THE PROBLEM OF FORMAL REASONING IN UNDERGRADUATE PROGRAMS 

David Henderson 
Cornell University 

David Wheeler 
Concordia University 
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Working Group Title: The Problem of Formal Reasoning 
Starting Premise: Rigour and formalism are powerful tools of 
mathematics but are not the goal of mathematics. The goal of 
mathematics is understanding and meaning. 

Working group B was attended by 18 people. There follows personal 
re-ports by 9 of these participants. Some quotes were read which 
got us started: 

In mathematics, as in any scientific research, we find two 
tendencies present. On the one hand, the tendency toward 
abstraction seeks to crystallize the logical relations inherent 
in the maze of material that is being studied, and to correlate 
the material in a systematic and orderly manner, On the 
other hand, the tendency toward intuitive understanding 
fosters a more immediate grasp of the objects one studies, 
a live rapport with them, so to speak, which stresses the 
concrete meaning of their relations. David Hilbert (from 
the introduction to the book Geometry and the Imagination 
by Hilbert and Cohn-Vossen). 

It is impossible to understand these definitions (of 
continuity) until you already know what continuity is. 
R.H. Bing (Elementary Point Set Topology, Slaught Memorial 
Paper #8). 

It is in the intuition that the ultima ratio of our faith 
in the truth of a theorem resides. . .. The evidence leading 
to persuasion results from having a sufficiently clear 
understanding of each symbol involved, so that their 
combination convinces the reader. . .. No elaborate axiomatic 
structure or refined conceptual machine is needed to judge 
the validity of a line of reasoning. Rene Thorn ("Modern" 
Mathematics: An Educational and Philosophic Error?, 
American Scientist 59 (1971), 695-699. 

During the working sessions we discussed and compared the formal 
and non-formal in mathematics. The table on the next page is a 
summary of this discussion and comparison and was prepared during 
our discussions. 
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NON-FORMAL 

Intuitive 

Can present the whole 

Expressing what is seen 

Living 

Multiple definitions 

Immediate and direct under~ 
standing 

Direct seeing 

Analogue and pictorial 

Student is the producer and 
has more of a sense of power 

Misconceptions are illuminated 

Interactive 

Is imprecise and therefore 
shows the need to be careful 

How mathematics is discovered 

Is difficult to apply in some 
areas 

Friend 

Trust 

Intimate 

FORMAL 

Abstract 

One meaning at a time 

Emphasizes or reduces to logic 

Mechanical 

Logical consistency 

Reduction to an (axianatic) basis 
Fear of inconsistency 

Connectional understanding 

Digital and logical 

Student can reproduce without 
understanding 

Misconceptions are obscured 

Is bound to a specific formal 
context 

Is precise and therefore often 
illusion of safety 

How mathematics is presen~ed 

Extends intuition into other 
areas 

Enemy 

Fear 

Distant 

It was suggested that these differences along with the emphasis in 
schools on the formal may be a major factor in the lack of 
participation of women in mathematics today" 
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FEAR, SAFETY AND DANGEROUS THINGS: REASONS FOR BELIEF 
David Pimm, The Open University, England 

Residues 

As my colleague John Mason is fond of commenting, there is a 
dangerous myth going around that people learn from experience. He 
prefers to assert that the best that can be claimed is the possibility 
of learning from reflecting on experience. Pearla Nesher gave an 
evocative instance of a classroom where 'we learn from out mistakes' 
was apparently a shared belief, but pupils were unable to say what 
it was that they had learnt. There is a related (possibly apocryphal) 
story in the LOGO community about the nine-year-old who had learnt 
that the response "I'm debugging procedures" to the question "What 
are you doing" was very effective in causing an adult to pass on 
to bothering someone else. 

Rather than attempt to give an account of (or even to try to 
account for) what happened in the Working Group on Formal Reasoning, 
I have chosen to offer some of the residues that I came away with 
for reflection and therefore possible learning. 

The first level of sediment is provided by individual words, 
evocative and potent, forming into clusters. 

logical, rigorous, abstract, explicit 

cleanse situation of extraneous elements (contaminants, hygiene) 

generality, power, precision, ambiguity, clarity. 

But it was also possible to listen behind the words that were 
being spoken to how they were being used to convey other, more 
subtle and covert meanings. It is possible to hear values expressed 
in the tone with which some of these words were be ing uttered. 
Such tone-rich talk is one of the feeble ways in Which mathematicians 
communicate the values of part of the mathematical community; that 
is, the way mathematicians talk about what they do. 

External Quotations 

These were some of the thoughts of others outside the group that 
were offered either as support for claims or as starting points 
for discussion, 'Rigour is not the enemy of understanding' David 
Hilbert. 

'If certainty is not to be found in maths, then where is it to be 
found' David Hilbert 
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'It is impossible to understand these definitions (of continuity) 
until you already know what continuity is' R.H. Bing. 

'The Greek style of proof involves drawing the right picture and 
then saying the right things about it' David Fowler. 

Internal Quotations 

Things always are left out of proofs 
choice and judgement of presenter. 

frequently on the 

Formal proofs can fool students into thinking they can be safe. 

Our culture makes certain ways of mathematising accessible 
and others inaccessible. 

One powerful but dangerous practice of mathematicians, that 
of detaching the symbol from its referent and working solely 
with the symbols, is a semantic pathology. 

As a student I experience a sense of power as a producer of 
one's own knowledge. 

I study mathematics in order to learn about myself. 

Some problems of formal reasoning 

stability of conceptions. 

working outwards from mathematicians' definitions rather than 
inwards from everyday language and experience. 

fear of pictures. 
reasoning apply 
available. 

One answer to question of why formal 
in places where no geometric intuition 

ways to encourage students to develop discrimination about 
mathematical arguments. 

SOME COMMENTS ON FORMAL REASONING 
Ed Barbeau, University of Toronto, and Gila Hanna, OlSE 

That reasoning is a pedagogical issue at all bespeaks a conviction 
that mathematics is a dynamic rather than static process, in which 
student progress towards deeper levels of insight and skill. 
Thus, a classroom activity, including formal or informal reasoning, 
can be judged insofar as it enhances or retards greater understanding. 
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At the beginning is the naive idea, rooted in everyday experiences. 
To provide a base for further work, the idea must be clarified. 
This involves a degree of formalism. A language is created; 
symbols are defined; their rules of manipulation are specified; 
the scope of mathematical operations of delineated. Greater 
precision is afforded, so that the essential can be separated from 
the nonessential and greater generality is achieved. 

However, a price has to be paid. Becoming removed from the original 
context, the student loses a sense of being connected with reality 
and becomes a symbol pusher. Experienced mathematicians have 
learned to handle this danger by acquiring the ability to make 
mental shifts in moving among levels of generality and formalism, 
and to build on specific examples, drawing on only those 
characteristics pertinent to a more general situation under study. 
They exploit symbolism and algorithms to work automatically and 
efficiently, and yet can intervene to monitor the accuracy and 
effectiveness of their work. 

What are the issues to be kept in mind in teaching mathematics, 
and in particular developing reasoning power? 

1. Formalism should not be seen as a side issue, but as an 
important implement for clarification, validation and 
understanding. When there is a felt need for justification, 
and when this can be provided to the appropriate degree 
of rigour, learning will be greatly enhanced. 

2. It is not enough to provide mathematical experiences. It 
is reflecting on experience which leads to growth. As 
long as students see mathematics as a black box for 
instantaneous production of "answers", they will not 
develop the necessary patience to cope with their minds' 
erratic paths towards. grasping what the mathematics is 
about. One goal of pedagogy should be to help pupils 
maintain a level of concentration to negotiate a line of 
reasoning. 

3. Ironically for a discipline touted as precise, the student 
has to develop a tolerance for ambiguity. Pedantry can 
be the enemy of insight. Sometimes, an explanation is 
better given pictorially, loosely, by example or through 
an analogue; sometimes distinctions are better left 
blurred (e.g. the various roles of the minus sign, the 
use of f(x) as both the - function and the value of the 
function at x), and sometimes a symbol varies its role in 
the discussion (e.g. the parameter which is now held 
constant, now allowed to vary): At the same time, when 
genuine confusion might develop, the student must become 
conscious of looseness and apply the necessary amount of 
rigour. It is this judgmental aspect of reasoning, 
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essential in mathematics education, that should be 
communicated to students. 

Mastering mathematics is like mastering a musical piece. There 
are technical and conceptual problems which must be first handled, 
often by isolation from the larger task (learning the notation, 
analyzing the key and time structure, negotiating scales and 
arpeggios) before the final synthesis can occur (dynamics, rhythm, 
interpretation). 

CONTINUUM FROM NON-FORMAL TO FORM REASONING 
R.S.D, Thomas, University of Manitoba 

At the non-formal extreme there is the situation, the actual 
content of which is sometimes unclear, in which a conclusion can 
be immediately seen. Such a conclusion depends upon the situation's 
being generic if the conclusion seen is to be regarded as a general 
one. At the formal extreme there are chains of reasoning where 
the connection between successive links is clear but the wood 
cannot be seen for the trees; there is no inkling of the conclusion 
in the hypotheses and no hint of the hypotheses in the conclusion. 
Between the extremes there are stages making a proof more careful, 
more symbolic, some rigorous, more lengthy. In some examples an 
informal proof cannot itself be made formal, but a new tack needs 
to be taken, e.g., when a result seems somewhat plain but must be 
proved by induction. However, in some examples, many intermediate 
stages do exist. Wherever a specific argument lies on this continuum, 
it can always be taken further; at no point is absolute certainty 
achieved. At no point should an instructor or the instructed by 
entirely uncritical. 

INFORMAL GEOMETRY IS THE TRUE GEOMETRY 
David W. Henderson, Cornell University 

In the schools today formal geometry (with its postulates, definitions, 
theorems and proofs) is usually considered to be the apex or goal 
of learning geometry. Informal geometric topics and activities 
which do not fit into the formal structures are often given second 
class status and relegated to the domain of mere motivation or 
help for those who are not smart enough to learn the "real thing"
formal geometry. I am a mathematician and as a mathematician I 
wish to argue that this so-called informal geometry is closer to 
true mathematics than is' formal geometry. I do not believe that 
formal structures are the apex or goal of learning mathematics. 
Rather, I believe, the goal is understanding a seeing and 
construction of meaning. Formal structures are powerful tools in 
mathematics but they are not the goal. I don't blame teachers for 
giving formal geometry too much emphasis; mostly I blame my fellow 
mathematicians because we have done much to perpetuate the rumor 
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that formal systems are an adequate description of the goal of 
mathematics. 

As an example consider the notion of 'straight line'. I claim 
that this notion is not now and never could be entirely encompassed 
by a formal structure. I am talking here both about the notions 
of 'straight line' as used in everyday language and the notions as 
used by mathematicians. In fact, these various notions are closely 
interrelated through the felt idea of straightness that underlines 
them all. Ask any child who hasn I t had formal geometry or any 
research geometer and they will tell you that "straight" means 
"not turning" or "without bends". (Of course the research geometer 
is likely to mumble something containing the formal notions of 
"Affine connection" or "covarient derivative", but if pressed for 
what that means he will admit that it is a formalization of "not 
turning".) Now "not turning" clearly has a different meaning from 
"shortest' distance". So both the child and the research geometer 
have a natural question: Is a "non-turning" path always the 
"shortest" path? And, if so, Why? They then look for examples of 
"non-turning paths". (The child can do this by imagining and/or 
observing non-turning crawling bugs on spheres and around corners 
of rooms.) They can then convince themselves that the great 
circles are the straight lines on the sphere. (This is not something 
to assume, it is something to check; and it has meaning in the 
sense that a crawling bug on the sphere whose universe is the 
surface of the sphere will experience the great circles as straight.) 
It is then clear that going three-quarters of the way around the 
sphere on a great circle is a straight path but not the shortest 
path. (Going one-quarter of the way around in the opposite direction 
is shorter.) Thus a straight path is not always the shortest. 
(This can also be seen in situations where it is sometimes a 
shorter distance to go around a steep mountain rather than to go 
straight over the top.) But on the sphere it is true that every 
shortest path is straight. So the question becomes: Is the 
shortest path always straight? The research geometers have proved 
that this is true on any smooth (no creases or corners) surface 
which is complete (no edges or holes) and the basic ideas of their 
proof can easily be conveyed to high school students. But then 
the child might think about a bug crawling on a desk with a rectangular 
block on it and notice that there are two points on either side of 
the block such that the obvious straight path joining these points 
is not the shortest path and the shortest path is not straight. 
These explorations, whether by the child or the research geometer, 
are a good example of doing mathematics (or in this case, doing 
geometry) and they are not encompassed by any formal system. The 
mathematician will use formal systems to help in the explorations 
but the driving force and motivation and ultimate meaning comes 
from outside the system. It comes from a desire which the 
mathematician shares with the inquisitive child - the desire to 
explore the human ideas of "straightness" and "shortest distance". 
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So, should we teach formal structures? Definitely, yes. But not 
in geometry. The power of formal structures does not come through 
clearly in geometry - it would be better to look at the formal 
structure of a group with its various examples in geometric symmetry 
groups and number theory. The emphasis on formal structures in 
school geometry obscures the meaning of geometry and does not in 
the context in which it is used add any power. 

REFLECTIONS ON FORMAL REASONING 
Raffaella Borasi, University of Rochester 

Through reasoning seems to be an essential part of mathematics 
(despite what students and high school curricula seem to believe!) 
it was very valuable for me to realise that there are fundamentally 
different kinds of mathematical reasoning. We identified two 
dimensions (at least) that could be considered to this regard: 
informal vs. formal, and non-rigorous versus rigorous (this last 
being rather a continuum that a dichotomy. It was quite a discovery 
for me to realize that these two dimensions are distinct and 
rather independent, and I think it will be worthwhile to explore a 
bit more, conceptually, what are the similarities, differences, 
interactions, between them (at the moment, I'm a bit confused to 
this regard). In particular, I wish I had some more examples of 
what mathematicians would consider as "acceptable informal proofs" , 
to analyze. 

Whatever the results of the prior exploration, through the discussions 
in the working group I have come to realize the almost total 
absence of informal reasoning in the math curriculum, and I think 
something should be done to change this situation. I don't buy 
the argument that students should learn first to deal with mathematics 
formally (even if that bears little meaning for them) and then, 
almost magically, they will leap into creative mathematical thinking, 
which involves reasoning to which they have not been trained in or 
even been exposed to. If formal and informal reasoning are different 
kinds, I think it follows that from the very beginning students 
should be exposed to both. I am looking forward to reading of any 
experience which has attempted to introduce math students (at any 
level) to informal reasoning. 

I'd like to come back, once again, to the affective aspects involved 
in this discussion. During our working group discussion, I felt 
that many affective reasons (including our conceptions of the 
nature of mathematics as well as less "intellectual" emotions) 
were governing the behavior of many of us. In the insistence that 
formal proofs were to be requested from students, one could see 
(more or less explicitly expressed) the fear of pathological cases 
and unforeseen circumstances which could threaten the intuitive 
argument, the search for the security in teaching to the students 
only "right" things (how would we feel, then, if we had to teach 
history or literature, instead of mathematics?), a distrust in the 
students' ability to recognize the relative value (i.e. limitations) 
of their intuitive arguments and to benefit from mistakes. How 
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much is an emphasis on formal arguments, then, just to cover for 
our insecurity as mathematicians and mathematics teachers, and an 
illusion that we are avoiding mistakes and working only with true 
things? Similarly, we may question if the students who do like 
working with formal proofs are also showing the same lack of 
courage, and thus if we are hurting them, too, by fooling them 
that what they are doing is what researcher mathematicians do, and 
that mathematics is a totally true and safe environment, 

LOOKING BACK 
Alberta Boswall, Concordia University 

In asking myself the question "What happened?" I return to the 
first day and my own initial question - Why is it that students 
supposedly trained in ~ kind of logical reasoning (e,g. truth 
tables) very often fail to use this background in their college 
mathematics courses. One seems to be completely divorced from the 
other, Are we asking too much in expecting at least ~ understanding 
from the presentation of a reasonably reasonable logical process? 

As for formal and non-formal, I think that these are labels we 
have been trained to pin on certain proofs that follow a prescribed 
pattern. Not only that but also that one is more valuable 
(mathematically speaking) than the other. There may not in fact 
be an easy distinction. As for formal and non-formal reasonin~ 

there may be even less distinction. Perhaps informal is almost 
intuitive and not as carefully presented. When one gives a detailed 
written or spoken expression of informal reasoning then one hopes 
that we have entered, if not a formal stage then at least a more 
formal one. If in a classroom we try to fill in the missing gaps 
in either informal and formal reasoning we run the risk of becoming 
boring, pedantic and repetitive. We begin to debate (if only with 
ourselves) issues which students regard as unimportant and irrelevant. 

It occurred to me at one point that perhaps the teaching of mathematics 
involves a successive shattering of belief systems from one level 
to the next. My examples are: a smaller number is always subtracted 
from a larger number - or if fl(x)=O then f(x) has extreme values 
at solutions. 

We should be helping students to gain power and confidence in 
their own reasoning abilities. Can we promote this? Can we 
present careful reasoning reasonably? Ought we to present occasionally 
reasoning which seems reasonable but which leads to a false conclusion? 
e.g. All triangles are isosceles. 

If I may paraphrase a line from the paper Proportion: Interrelations 
and Meaning by Avery Solomon in For the Learning of Mathematics
perhaps not every proposition has to be carefully reasoned, but 
certainly ~ should. 

Students I think, have the right to expect that all propositions, 
if true, can be supported by logical reasoning - either formal or 
non-formal. 
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A lot of things happened in this stimulating and even exciting 
group. 
FORMAL REASONING AND LEARNING MATHEMATICS 
Constance Smith, University of Rochester 

My opening thought was how does "formal reasoning" relate to 
making mathematics your own as a student. I believe we reached 
that point in the sense that we are concerned with that issue but 
did not finish developing the relationship. Ideas that came out 
were that we should (could?) build from the students' intuition to 
informal reasoning to finally formalizing their own mathematics. 
The quote from Bing concerning the definition of continuity clarified 
some of these ideas for me. 

Other important points: 

relation to creating doubts for students and then allowing 
them to try to resolve them 
correlation between philosophy's sign/signifier and 
signifier and mathematical symbolism 
importance of developing meaning at both ends of the 
process; we should not leave the students with the feeling 
that the result has only that meaning. We must relate 
our results to the mathematics and the world 
the influence of the students belief system and our 
impact on those systems. 

SOME THOUGHTS ABOUT OUR DISCUSSIONS 
Dan Novak, Ithaca College 

The central core of the conference was, in my view, how to make 
learning mathematics meaningful for students. Our group focused 
on formal reasoning and out of an attempt to clarify and define 
the concept, it happened that ways of thinking and modes of 
understanding of the participants have shifted and changed. It 
was apparent, at least to me, that a definition or formal reasoning 
upon which everyone could agree, was not necessary any more. What 
I found happening was a process of changing my views about teaching. 
The non-formal way of presenting materials will become more frequent 
in my classes and I will try to look for other ways of presenting 
and looking at problems myself. (Shifts of creativity). One way 
of looking at problems will be also the Formal Way, but one needs 
to come back up to the fresh air of meaning of ideas. Otherwise 
creativity, joy and subsequently learning will die. 
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SMALL GROUP WORK IN THE CLASSROOM 

Participants: Tasoula Berggren, Dale Drost, Gary Flewelling, 
Olive Fullerton, Malcolm Griffin, Fernand Lemay, John Poland, 
Marilu Raman, Pat Rogers, Joan Routledge, Daiyo Sawada, Suzanne 
Seager, Avery Solomon, Peter Taylor, Lorna Wiggan. 

Introduction 

In traditional classrooms students often learn to view mathematics 
as a fait accompli, something that is given rather than created. 
They learn that it is a collection of rules and procedures, an 
environment where there is only one right answer to the teacher's 
questions and one which, for many, causes great anxiety. Students 
experience little control over their own learning and are not 
usually encouraged to share their ideas with each other or to work 
together towards a common solution. Research suggests that small 
group learning in which students work cooperatively leads to 
superior achievement in problem solving and higher thinking skills, 
to positive attitudes towards a subject area and to great motivation 
to learn. The purpose of the working group was to examine small 
group learning strategies in the light of recent research and to 
identify those strategies which might be used effectively at the 
post-secondary level. The interests and experience of the group 
members ranged from elementary school to the university level. A 
variety of books and articles were made available during the three 
sessions but there was insufficient time to examine them in detail; 
these are listed in the bibliography. 

Session #1 

Pair-interviewing was used at the beginning of the first session 
as a means of building community in our group. Participants were 
asked to find a partner they did not already know and to take 
turns interviewing each other for five minutes to exchange roles. 
After this exercise the Whole group reconvened and partners introduced 
each other to the group. 

The pairs functioned in a variety of ways. Some pairs adhered 
very closely to the instructions and this produced some excellent 
introductions. Others completely ignored the instructions and 
found that their session became a discussion, the result being 
that some introductions were more about the interviewer than the 
interviewee. One early introduction was so good that it provided 
a model for the later introductions. This created feelings of 
inadequacy for those who felt unable to live up to the example and 
a certain amount of discomfort and isolation for the "excellent 
student." Perhaps more care should have been taken to insist on 
adherence to the interview format. Nonetheless, there was general 
agreement that this was a useful strategy for groups of people who 
did not already know one another, that the provision of questions 
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helped to break the ice and focus discussion and that, omitting 
the final introduction phase, this might be a good way to build 
community in a class. 

For the remainder of this session, participants worked in small 
groups on two cooperative tasks. 

The first task was a communication situation between two students 
in which one produced a written or oral message for the other in 
order to give information essential for that student to complete 
an assigned task. The task used here was adapted from Laborde 
(1986). Partner A of the pair received a card on which was dra~ 
a simple geometrical figure with a supplementary line of a different 
colour. B had a sheet with a similar but incongruent figure, a 
different orientation and no supplementary line. Both partner s 
were aware of the details of the situation as described. A's task 
was to describe the supplementary line without drawing so that B 
would be able to reproduce it perfectly. The purpose of this task 
was to focus, in the context of a mathematics problem, on the role 
of language in a cooperative activity. 

The second activity was one of a series of small group cooperative 
geometry exercises developed by EQUALS to teach students cooperative 
skills. The exercise we used here was a complex spatial task in 
which each member of a group of four people had resources essential 
to the group's effort to solve the problem. Four congruent hexagorLS 
were divided in different ways into four pieces. The pieces were 
labelled A, B, C, and D, sorted by letter into four sets and 
clipped together. Groups of four were formed. Each group received 
an envelope containing the four clipped sets and were instructed 
as follows: 

No talking! 
Each member of the group gets one clipped set of shapes. 
No one may take a shape from anyone else but may offer 
a shape to someone who needs it. 
The group is done only when all four members have completed 
their hexagons (Erickson, 1986). 

There were various responses to this task. Undoubtedly the most 
difficult and frustrating part of the exercise for everyone was 
observing the rule of silence. One person commented that his desire 
to talk was so great that it created enormous tension for him and 
interfered with his ability to concentrate on the task. Evidently, 
for some, talking is a way of lessening pressure when solving 
problems. On the other hand, it was also quite clear that the 
rule of silence facilitated our learning how poorly we cooperate 
and also highlighted the fact that cooperative skills do need to 
be learned. One participant was alienated by the artificial 
nature of the task and found himself wishing he was elsewhere. 
This was likened to the way many of our students feel about textbook 
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word problems. One group so hated the imposed structure that the 
members either disregarded the rules completely or else conspired 
to find ways around them. Nonetheless, despite the hostility 
expressed, or perhaps even because of it, the experience of working 
together on this activity evidently succeeded in fostering very 
strong group feelings. 

We concluded this session by formulating an agenda for discussion 
in the remaining sessions: 

1. competition; 
2. time (space, size); 
3. communication of mathematical ideas; 
4. learning styles/teaching styles; 
5. evaluation; 
6. individual learning/cooperative learning; 
7. open-ended/specific-ended investigations; 
8. "group" theory. 

. Session # 2 

We decided to base our discussion of the agenda above on personal 
experiences with small group work. There was a rich variety of 
experience within the group and this is summarized below. 

Small Group Work Within Lecture Class 

There was a brief discussion of the use of small tutorial groups, 
and lab/problem sessions to provide students with contact with 
their lecturer and immediate feedback on their understanding of 
concepts introduced in lectures. John stressed the importance of 
the physical aspects of the room he has chosen for this purpose: 
high tables and stools so that the students have to lean forward 
and engage. However, in this kind of activity the students are 
often working alongside one another rather than together. By 
contrast, Pat described her use of "pairing" during lectures 
whereby students form pairs to work together on a problem, to 
investigate or discuss an idea that has just been presented, or to 
generate data for ensuing whole class discussion. 

Group Projects 

Many of us had assigned group proj ects to our students. In a 
large statistics course, Malcolm assigns projects to group of at 
most four students and has found that while there are obvious 
administrative advantages in terms of the decrease in time spent 
grading, there are also a number of problems: some groups waste 
all the time set aside for beginning the project in trying to set 
a date for the next meeting; others work independently on small 
parts of the project and then attempt, usually unsuccessfully, to 
glue it all together; there are also complaints of students' 
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"piggybacking" and these are usually left to the students themselves 
to handle, often in an unsatisfactory manner. 

These difficulties were familiar to other members of the group and 
raised a number of questions. What is the purpose of a group 
assignment? Is learning to work in a group so important that it 
should be mandatory or should students be allowed to choose to 
work alone? Marilu observed that, in one of her graduate courses 
where students were given the choice whether to engage in group 
work or to work alone, only two out of twenty students chose to 
work together. Do adult learners, or any other learners for that 
matter, naturally choose to work together? Is group work really 
an artificial setup, or do we simply lack the experience of working 
together? Has society imposed on us the notion that we are all 
individuals? Daiyo observed that it is precisely when he imposes 
group work on his students, or prescribes the size of the groups, 
that problems arise. Perhaps choice is the key. 

Another important question: should the product of group work be 
evaluated and how? In the absence of any real training in 
collaborative skills is it fair to grade the outcome? Most proponents 
of cooperative learning argue that group grades should not be 
assigned if this is the only grade _ the proj ect will receive. 
There are many creative ways of evaluating group work which combine 
elements of teacher~evaluation, peer-evaluation and self-evaluation 
(see, for example, Johnson, D. W., & Johnson, R. T., 1987). In 
support of this view, Gary offered his wife's success with evaluating 
group work in his way. 

Interviews-

Tasoula suggested that oral interviews might be a good way to 
evaluate the individual's contribution to a group project. Avery 
has used interviews as a means for evaluating his own teaching and 
determining the direction of future lectures and Olive uses interviews 
to get to know her teacher candidates at the beginning of each 
year. Interviews with pairs of students seem to be most successful 
when used for these purposes. Both Avery and Olive observed that 
these interviews have had an enormous beneficial influence on the 
atmosphere in the class afterwards. 

Structuring Small Group Activity in the Classroom 

A distinction needs to be drawn between the use of group work as a 
pedagogical device within the classroom and the use of group 
proj ects and assignments where the activity of the group takes 
place outside the classroom. Our collective experience of group 
work within the classroom ranged widely in kind and with respect 
to the amount of structure which was imposed. 
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1. At one end of the spectrum was Gary who prefers to have teachers 
in his inservice workshops move freely in and out of working 
in pairs as the need may be. 

2. Tasoula described her experience with students working together 
in groups of four at the blackboard. (See also Davidson et 
al., 1986?) 

3. Fernand described in detail his experiment with a class of 
thirty Grade 6 girls working on mathematical investigations in 
geometry. The children divided themselves into two groups; 
these groups in turn split in two and so on until the class 
was divided into pairs (see also Gorman, 1969). The names of 
the members of each group were recorded on a large sheet of 
paper. The main rule established was that the child must 
first work on a problem alone; when stuck she may then seek 
out her partner in her pair; if the pair needs help they seek 
out their partner pair forming a quartet and so on. Theoretically 
this might continue until the whole class is reconvened, 
however, it was found that there was usually a preference for 
a group of four. This format is reminiscent of a rule which 
teachers who work with LOGO often adopt. This rule, known as 
"Ask three before me," requires a student, or a pair of students, 
to consult with three other students, or pairs, before seeking 
assistance from the teacher. 

4. Lorna briefly outlined the basic characteristics of cooperative 
learning: 

Students work in small heterogeneous groups and sit closely 
together so that face to face interaction is facilitated; 

Students work in positive interdependence this means 
that each group works on one assignment, with one piece of 
paper and pencil, or one piece of chalk if working at the 
blackboard and they produce one product - they are constrained 
to depend on each other and work together; 

There is high individual accountability through shared 
evaluation. Students evaluate themselves and know in 
advance what skills they will be expected to evaluate 
themselves on. Sometimes observers are assigned to help 
group members assess how they are improving their group sills. 

Interpersonal and small group skills are taught - rules 
for working together are established, collaborative skills 
may be modelled by the teacher who may also choose to work 
on a distinct skill each day. Group work skills, as well 
as content, are processed. 



The objectives of cooperative group learning are two-fold: there 
is an emphasis on the group process as well as on the content. 
Initially, there is more focus on developing the social skills and 
less on the content. But later, as the students become more 
skilled in working together, the stress shifts to the content. As 
students become more experienced with this way of working they 
become more independent and the concept of the teacher as the 
source of all knowledge becomes meaningless. In this classroom 
climate the teacher is a facilitator, a guide, rather than the 
"expert." 

Some members of the group expressed discomfort with such 
a structured approach to teaching. However, as Olive pointed out 
there is a place for individual work, for group work, for competition, 
and for lectures. Really skilled teachers are able to choose the 
strategy that suits the objectives they want to achieve. 

5. Peter described his work with an extremely heterogeneous group 
of Grade 13 calculus students with whom he developed a process 
which bears much resemblance to the JIGSAW strategy described 
below. At the end of the course, he provided the class with a 
set of problems of varying difficulty from which each student 
had to select one. Working independently, students had to 
solve their own problem, write it up and have it checked by 
Peter. In this way, each student became an expert in one of 
the problems. The class then had to do as many of the remaining 
problems as they could, and consult with the expert for each 
problem. The expert would judge the accuracy of the solution, 
giving a hint if the solution was incorrect and a check mark 
if correct. The final grade for this exercise was based on 
the number of check marks a student received. Most earned 
full marks. 

6. The JIGSAW strategy is a variation on cooperative learning in 
which everybody gets the chance to be both expert and learner. 
For example, groups of four, called home groups, might be 
formed to investigate the properties of the straight line. 
The students in each home group are labelled A, B, C, and D and 
sorted by letter into other groups called expert groups. Each 
expert group might work together on one specific property of 
the straight line. The students then return to their home 
groups to teach each other what they know and to synthesize 
all they have learned together. 

This approach concerned Gary who worried that we might simply 
be replacing the single "expert" teacher by a battery of 
experts: "whereas, in the past, the teacher has cast the 
student in the passive role, now you take them into groups and 
have them cast in the passive role in smaller groups." There 
was some debate as to whether this strategy makes "learning 
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mathematics less a process of discovery and more one of finding 
the page where the answer is. Most of the time we might want 
kids put in groups when there is some ambiguity as to the 
outcome and many answers, and it would be inappropriate to 
think of experts." 

Peer Teaching 

Joan cautioned the group on the need for careful teacher training 
if we are not to replace traditional methods with chaos in the 
classroom. She raised the issue of whether children have pedagogical 
skills and observed that peer teaching, which occurs when using 
cooperative learning techniques, is not a challenge for many 
students. Undoubtedly, there is a tremendous amount of unlearning 
that has to take place when ignorance has been pooled. However, 
many members of the group felt that the language developed in 
group work and in peer teaching is very important. Peer teaching 
affords students the opportunity to bring to the material the kind 
of organization that is so essential to full understanding and 
learning. 

Towards the end of this session, Avery summed up the feelings of 
the grQup beautifully: "What we need to do is to isolate those 
things you can do with a small group that you actually could not 
do with a large group. Perhaps small group work might enable 
students to negotiate new meanings of mathematical concepts and to 
make mathematics part of their own individual understanding
meanings that are invoked from within. Our purpose is to put 
students in control of their own learning. We want them to have 
the experience of doing mathematics and thinking mathematically." 
Peter felt that it was crucial that teachers be provided with 
printed material that integrates content and style of teaching. 
This would seem to be a vitally important task for some members of 
our group to perform. 

Daiyo concluded the session by listing certain distinctions which 
had arisen during the course of our discussions: 

1. social process/content control; 
2. spontaneity/control; 
3. cooperation/competition; 
4. the individual/the group; 
5. the novice/the expert; 
6. the means/the end; 
7 . life/death; 
8. receiving/giving; 
9. breaking/joining; 

10. the group as obstacle/the group as facilitator. 
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Are these dichotomies or reciprocities? Are they problems? Or 
can we provide a more encouraging learning environment for our 
students by keeping these distinctions in mind? 

Session # 3 

The intent of session # 3 was to return to the agenda developed 
during session # 1. Group leaders therefore proposed that this be 
done by having small groups focus on a particular agenda i tern 
keeping in mind the distinctions developed in session # 2. People 
then self-selected themselves into groups of two or three which 
met for about an hour. The large group was then reconvened and 
discussion was led by each of the small groups in turn. Highlights 
are summarized below. 

1. Evaluation [Fernand and Peter] 

An analogy was made between works of art (paintings) which are 
purchased and displayed in a home and the painting which the 
homeowner may engage in herself. The works of art on display may 
indicate that art is thriving in the home but it may be dangerous 
to come to such a conclusion: The art may only indicate that the 
people living there have money. Indeed, if the paintings are only 
fqr show, then their presence foreshadows the death of art in the 
home rather than its vitality. Often the way mathematics is 
evaluated encourages, and sometimes forces, children to "display" 
their acquired goods in the manner of pieces of art which they 
relate to only for purposes of display. As with the home, such a 
classroom may witness more death than life in mathematics. Group 
work provides the teacher with an opportunity to observe and 
evaluate the alive part of the mathematics displayed. 

2. Competition [Malcolm and Suzanne] 

In the context of group work, competition is often minimized. Yet 
without competition stagnation and sloth sometimes become problems. 
Nevertheless, competition within a group can become a subversive 
influence leading to the destruction of the group. How can we 
have competition without subversion? One possibility is self
competition in which the student competes with the problem, not 
with others working on the problem. "To compete is to produce. " 
By choosing the "unit of production" (for example, a pair of 
students) self-competition can be blended with cooperation. 

3. Communication of Mathematical Ideas [Dale and Joan] 

Usually communication as a process is associated with the learning 
of mathematics rather than with the content itself. Yet it is 
vitally important to get students talking about the content with 
each other as well as trying to help each other learn it. In this 
way communication should deal with the mathematical objectives per 
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se as well as the processes for learning those objectives. 
Student/teacher communication can help to get students talking 
about the content. 

Self-communication is significant in making mathematics a personal 
experience rather than a strictly objective experience with "something 
out there." Self-communication with mathematics can therefore 
involve communication as a process for dialoguing with mathematics 
as well as with other students. Since self-communication, from 
the perspective of others, is often associated with silence, there 
may indeed be a vital role of "silence" in the mathematics classroom. 
This kind of silence is quite different from the usual kind which 
exists as a product of the teacher who commands silence. A key 
question: How does one achieve a balance between self-communication 
and communication with others in group work? 

4. Learning Styles/Teaching Styles [Lorna and Marilu] 

Research consistently reveals an incredible variety of learning 
preferences. Do we as educators "use a wide enough range of 
methods to accommodate all these learning styles?" Can group work 
help to increase the sensitivity of teachers to these differences 
and provide alternate ways of taking them into consideration? 
What sort of teacher is "suited" to group work as a way of teaching? 
Are certain teaching styles more sui ted to the use of groups? 
There is a delicate balance between helping students by teaching 
to their preferred learning styles and enslaving students by only 
teaching to their preferred learning styles. Should there be as 
great a priority on guiding students to transcend their preferred 
learning styles as there is on catering to them? Perhaps a student's 
preference is simply a good starting point - "the art comes in 
knowing when to subvert preference." 

5. Individual Learning/Group Learning [Gary, John and Tasoula] 

There is the pervasive problem of the interests of the group 
interfering with the learning of the individual and vice versa. 
Is all group work done simply to enhance the learning of individuals? 
Does group work have value all of its own? If a group is a connmmity, 
then does the group as community have value as a social entity? 
Certainly mathematics can be a very individual and personal activity, 
and many of the best students learn it largely on their own. Does 
this indicate that mathematics has little and perhaps nothing to 
do with community processes? Or do students often learn mathematics 
on their own because it is usually taught in the transmission mode 
(lecturing) rather than as a community project perhaps in the form 
of open-ended investigations? If educators were to loosen their 
reins on the classroom, students might spontaneously choose to work 
with others for some of the time in situations which naturally 
arise. In such situations, students might form a group when the 
need arises; when the need subsides, they may choose to work alone 
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or perhaps with others. The problem of group versus individual 
may be nonexistent in this setting. 

A Theme for 1988 

As a way of bringing closure to the three days of discussion 
members were asked to suggest a recurrent theme which could serve 
as a summary as well as a focus of the "Feelings Group" for the 
conference in 1988. Although everyone was given the opportunity 
of suggesting a theme, cohesion quickly emerged around the idea of 
"naturalness" as first volunteered by Gary: " ... a natural way of 
learning mathematics as opposed to how mathematics is taught and 
learned now which is quite unnatural, over-structured, always an 
approximation. I'm thinking of all the happy experiences you have 
had in the ways you are productive in the way you do mathematics. 
I'm going to call those the natural way." 

Perhaps a significant aspect of naturalness in teaching is captured 
in the expression, "A guide on the side rather than a sage on the 
stage. " As well as naturalness in the learning and teaching of 
mathematics there is naturalness in the content of mathematics. 
Some content is focussed upon to excess, not because of its inherent 
significance but simply because it occurs on tests. Some content 
is studied because it is mandated in the curriculum guidelines, 
but does that make it natural? In contrast, if a child were to 
pursue a topic in mathematics as a spin off to an open-ended 
investigation would her spontaneous pursuit be seen as unnatural? 

The discussion came to a natural end with a spontaneous remark 
from Pat: "It is wonderful how a natural topic for next year 
arose naturally." 

In keeping with the way our working group had operated throughout 
the three days of the meeting, we decided to open out discussion 
to other participants who might have been interested in contributing 
to the work of our group but had not been able to attend the sessions. 

There were two main contributions from David Pinun of the Open 
University, England and John Clark of the Toronto Board of Education. 

In England small group activity is common at the elementary level 
and is now being used more and more at the secondary level. One 
of the reasons David chooses group work is to remove himself as 
the focus of attention. In the Open University Summer Schools, he 
uses group work in investigation sessions with adult students 0 

For these sessions he deliberately chooses pairs because he finds 
that domination by one person is frequently a problem in larger 
groups. With pairs, turn-taking is easy to set up. Initially he 
assigns students to pairs randomly, but then after monitoring the 
work of the pairs, he is more selective. He has also experimented 
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with the JIGSAW method when working with students to explore the 
meanings in a text. 

There was some discussion at this point of the JIGSAW method. 
Lorna has a sense that JIGSAW is more successful with older students. 
But John Clark cautioned that there are some problems having to do 
with the nature of knowledge and knowing with the assumptions 
behind JIGSAW. 

John went on to observe that while group work has become commonplace 
in elementary schools in Canada, it is still rarely found elsewhere. 
He first started investigative work with high school students some 
ten years ago. He now uses investigations in his inservice workshops 
with teachers as an introduction to group work and has been surprised 
at the excitement this activity has generated amongst grade 13 
teachers. He emphasized two important aspects in setting up 
successful investigative activity: giving each group good starting 
points and setting up a good system for report. 

Aronson, E., 
(1978). 

Brandes, D., 
learning. 
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TOPIC GROUP R 

WORKING IN A REMEDIAL COLLEGE SITUATION 

Annick Boisset 
John Abbott College 

Martin Hoffman 
Queens College (CUNY) 

Arthur Powell 
Rutgers University (Newark) 
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This one-hour Topic Group began with a brief discussion 
in which remediation in mathematics at the college 
Acknowledging inherent differences in each college setting, 
agreed that students in their remedial courses tended to 
cornmon characteristics, among which are that students 

of the context 
level occurs. 
the discussants 
exhibit certain 

have seen the material (several times) before. 

hold belief systems about mathematics that have been convoluted 
in time in ways not found in younger students. 

have negative attitudes about mathematics. 

have poor study habits. 

are not attuned to understanding in mathematics. 

exhibit low achievement levels based on standardized tests. 

In spite of these difficulties, the discussants feel that progress can 
be realized through activities which promote mathematical thinking. 
This became the central theme for the topic group discussion. 

Annick Boisset discussed a technique of wide applicability, called 
Reverse Problem Solving (RPS) , she has developed for teaching problem 
solving skills. She demonstrated through several examples the pedagogical 
utility of RPS in which students are asked "to construct in their own 
words a problem statement to match a given worked out solution."l RPS 
contains both inductive and deductive components, promotes thinking, 
seems to alleviate fears for some students of attempting problems, and 
can be used effectively as a diagnostic instrument. 

Arthur Powell discussed techniques relating to the affective domain, in 
particular the use of writing as a device for having students become 
more reflective about their mathematical activities. He outlined 
several forms that the writing might assume including free writing, 
focused writing, summary writing and journals. 

The session ended with a brief discussion by Martin Hoffman of some of 
the difficulties that arise when attempting to evaluate student's 
progress. It was noted that standard evaluative instruments are often 
not able to measure the effect of techniques such as those mentioned in 
this discussion. 

1 Boisset, Annick. "The Reverse Problem Solving Method: 
Diagnosing Underlying Causes of Inability." Paper presented 
at the National Council of Teachers of Mathematics 63rd 
Annual Meeting in San Antonio, Texas, April 1985. 
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The short, but lively, question and answer period that followed indicated 
an interest in the subject beyond the restricted group of CMESG/GCEDM 
members who teach remedial level college classes. It was felt by the 
discussants that since remediation is now a prominent part of mathematics 
instruction at primary and secondary levels, that consideration of 
remediation techniques will play a growing role in mathematics education 
courses. 
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TOPIC GROUP S 

MOTIVATION THEORY IN PRE-SERVICE TEACHER EDUCATION 

Erika Kuendiger 
University of Windsor 
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When pre-service teachers start teaching mathematics for the first 
time, they very often experience a reality shock. Students do not 
seem to respond as positively to their teaching efforts as is 
expected by the pre-service teachers. To some extent this is true 
for all subj ects, yet pre-service teachers find it particularly 
hard to motivate their students in mathematics, since many are not 
particularly interested in mathematics. Motivating students in 
this context does not mean getting short time attention, but 
rather to induce a long term involvement in mathematics. 

If this experience occurs repeatedly during a pre-service teachers' 
first student teaching experiences, then they tend to explain it 
by either attributing the reason to the students and/or to the 
subject. Common explanations are: Mathematics is hard to understand; 
many students lack the ability to be successful, that's why they 
are not interested; or, mathematics is boring anyway, nothing is 
going to change this, and since mathematics is an important subject, 
we just have to teach it. 

Obviously, the above explanations have an enormous impact on 
future teaching if they become part of a teacher's general belief 
system. In this case, there is a great chance that they form the 
basis for a self-fulling prophecy. If further teacher's efforts 
to motivate students are not rewarded immediately, he/she may give 
up easily. Each perceived failure will in return strengthen 
his/her belief that there is hardly any way to motivate those 
students that are not successful in the first place. 

To avoid the development of the above beliefs, it is necessary to 
enable pre-service teachers to understand how some students are 
motivated in mathematics, while others are not. At the moment they 
recognize that motivation is the result of a learning process that 
starts at the moment a student has learned the first time about 
mathematics, it becomes clear that change cannot occur over a 
short period of time like two weeks of practice teaching. 

Motivation theory, based on attribution, provides a basis for 
understanding how former and future achievement of a student are 
interlinked and how the motivational framework of a student develops. 
Moreover, this theory provides a basis that enables a teacher to 
understand hisjher role in the development of a student's motivational 
framework. A recent summary of research results, geared for pre
service teachers, was done by Alderman et al. (1985). An application 
of a motivational process model focusing on mathematics and a more 
extensive discussion of the issue can be found in Kuendiger, (1987). 

In mathematics education, the explanatory power of motivation 
theory has become particularly obvious in research projects geared 
understanding sex-related differences in both achievement and 
course-taking behaviour (see e.g. Eccles et al., 1985; Fennema, 
1985; Schildkamp-Kuendiger, 1982). It seems that the importance 
of motivation and affect for the learning of mathematics in general 
has become more recognized. At the PME-XI 1987, for example, a 
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whole series of papers foc~sed on beliefs, attitudes and emotions 
(McLeod, 1987). 
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