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Introduction 

What a mathematical proof consists of seems clear to all mathematics teachers and 
mathematics educators. That is: "A careful sequence of steps with each step following 
logically from an assumed or previously proved statement and from previous steps" 
(NCTM, 1989, p.144). This description is almost the same allover the world, and it is 
very close to what a logician would formulate, perhaps more formally. Comments made 
on mathematical proof as a content to be taught emphasize two points: first they stress 
that it has nothing to do with empirical or experimental verification, second they call 
attention to the move from concrete to abstract. Here is an example of such comments: 

"It is a completely new way of thinking for high school students. Their previous 
experience both in and out of school has taught them to accept informal and empirical 
argupIents as sufficient. Students should come to understand that although such arguments 
are useful, they do not constitute a proof." (NCTM, 1989, p.145). 

We can say that the definition of mathematical proof, as an outcome of these official texts 
is mathematically acceptable, but there is a long way from this definition to the image 
built in practice along the teaching interaction. More or less, teaching mathematical 
proof is understood as teaching how to formulate deductive reasoning: "Pour les 
professeurs, une demonstration, c'est tres nettement l'expose formel deductif d'un 
raisonnement logique" (Braconne, 1987, p.187). 

The construction of this reasoning, and its possible relationships with other kind of 
reasoning, is hidden by that over emphasis on its "clear" formulation. That conception 
is so strong that some teachers can come to an evaluation of a mathematical proof just 
considering the surface level of the discourse. For example, in her requirement for 
teachers comments on a sample of students formulations, Braconne reportsl that: 

"Les professeurs ont reagi aux longueur inutiles du texte de Bertrand, au desordre dans 
la solution de Karine, au fait que Ie texte d'Elodie ne suive pas Ie raisonnement deductif, 
etc. Toutefois, sept professeurs n'ont pas remarque que, dans Ie texte de Bertrand, c'est 
la reciproque du theoreme necessaire it la demonstration qui etait cite au premier 
paragraphe, et huit n'ont pas signale que Ie texte de Laurent contenait la meme erreur 
[ ... ] Donc pour l'eleve, et pour nous, les notes ne refletent pas Ie fait que Ie professeur 
se soit apper~u de l'erreur ou non." (Braconne, 1987, p.99) 

A report on proof frames of elementary preservice teachers shows a similar behaviour: 

"Many students who correctly accept a general-proof verification did not reject a false 
proof verification; they were influenced by the appearance of the argument - the ritualistic 
aspects of the proof - rather than the correctness of the argument. [ ... ] Such students 

The interviewees were 13 French Mathematics teachers. 
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appear to rely on a syntactic-level deductive frame in which a verification of a statement 
is evaluated according to ritualistic, surface features." 

(Martin & Harel, 1989) 

Thus, mathematical proof appears ultimately as a kind of rhetoric specific to the 
mathematical" classroom, it is not surprising then that it appears as such to the eyes of 
students. The nature of mathematical proof as a tool to establish a mathematical 
statement is to some extent hidden by the emphasis on the linguistic dimension. What 
does not appear in the school context is that the mathematical proof is a tool for 
mathematicians for both establishing the validity of some statement, as well as a tool for 
communication with other mathematicians. Also, it is often forgotten that what 
constitutes the present consensus about rigor has not been created ex nihilo, but that it is 
the product of an historical and a social process within the community of mathematicians2

• 

As Manin3 recalls, ultimately "a proof becomes a proof after the social act of 'accepting 
it as a proof' . " 

There is another reason for considering so strongly the social dimension of mathematics 
teaching and learning. For as we recognized that learning is a personal process, we 
should also consider that its outcome is likely to be firstly a private knowledge: The 
students' conceptions. But that conflicts with two constraints specific to the teaching, 
which has to guarantee the socialization of students' conceptions for the following 
reasons: 

- Mathematics is a social knowledge. Students should make their own the 
knowledge that exists outside the classroom. It has a social status in society, or in 
smaller social groups under whose control it is used. For example, the community of 
mathematicians or that of engineers can be taken as a social reference. 

- The mathematics class exists as a community. The teacher has to obtain a 
certain homogeneity in the meaning of the knowledge constructed by students, and she 
or he has to ensure its coherence. Otherwise, the functioning of the class will hardly be 
possible. Because of the constructivist hypothesis we consider, the use of authority is not 
desirable. Thus, the homogenization can only be the result of a negotiation or of other 
specific social interactions such as the one Brousseau (1986) has described in the frame 
of his theorie des situations didactiques. 

The essay of 1. Lakatos (1976) on the dialectic of proofs and refutations gives a good insight of 
this historical process. 

Manin quoted by Hanna (1983). 
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Social Interaction and Situations for Validation 

What is now clear is that as long as students rely on the teacher to decide on the validity 
of a mathematical outcome of their activity, the word 'proof' will not make sense for 
them as we expect it to do. In such a context they are likely to behave mainly to please 
their teacher, just as one of the British students interviewed by Galbraith (1979) told his 
interviewer: "To prove something in maths means that you have worked it out and it 
proves how good you are at working questions out and understanding them." 

But it is not sufficient to propose a problem to the mathematics classroom and to tell the 
students that they have the responsibility of solving it. There is no reason for them, a 
priori, to consider that the problem is their problem and to feel committed to solving it; 
they can still think that they have to do so in order to please the teacher and thus their 
behaviour will not be significant. 

Before going ahead, let us consider a short story told by Sir Karl Popper, which will 
throw a relevant light on what we want to suggest: 

"If somebody asked me, 'are you sure that the piece in your hand is a tenpenny piece?' 
I should perhaps glance at it again and say 'yes'. But should a lot depend on the truth 
of my judgement, I think I should take the trouble to go into the next-bank and ask the 
teller to look closely at the piece; and if the lite of a man depended on it, I should even 
try to get to the Chief Cashier of the Bank' of England and ask him to certify the 
genuineness of the piece. " . 

(Popper, 1979, p.78). 

And then Popper adds that "the 'certainty' of a belief is not so much a matter of its 
intensity, but of the situation: Of our expectation of its possible consequences." (ibid.) 

Along the same line, I would like to suggest that if students do not engage in any proving 
processes, it is not so much because they are not able to do so, but rather that they do not 
see any reason. Even if they engage such a process, its level depends heavily on the way 
students understand the situation. Following a principle of economy of logic they are 
likely to bring into play no more logic than what is necessary for practical needs 
(Bourdieu, 1980, p.145). 

Then the true meaning of the outcomes of students proving processes is to be traced in 
the characteristics of the situation in which they are involved. 

In situations in which they have to decide a common4 solution to a given problem, 
students have to construct a common language and to agree on a common system to 

By 'common', we mean here a solution supported by the whole classroom, or smaller groups of 
students as is usually the case. 
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decide of the validity of the solution they propose. The essential role of the social 
dimension, mainly in situations for communication, provoking a move from "doing" to 
"telling how to do", and their importance in the construction of meaning have been put 
in evidence by Brousseau in his theorie des situations didactiques (Brousseau, 1986). 
Here we would like to recall what this author wrote about the situations for validation: 

The situations for validation "will bring together two players who confront each other 
regarding a subject of study composed on the one side of messages and descriptions 
produced by the pupils and on the other side of the a-didactic milieu used as referent for 
these messages. The two players are alternately a 'proposer' and an 'opposer'; they 
exchange assertions, proofs and demonstrations concerning this pair 'milieu/message'. 
This pair is a new apparatus, the 'milieu' of the situation for validation. It can appear 
as a problem accompanied by the attempt at solving it, like a situation and its model, or 
like a reality and its description ... 

While informer and informed have dissymmetric relations with the game (one knows 
something that the other does not know), the proposer and the opposer must be in 
symmetrical positions, both regards the information and means of action about the game 
and the messages which are at their disposal, and as regards their reciprocal relations, the 
means of sanctioning each other and the objectives vis-a-vis the pair milieu/message. " 

(Brousseau, 1986, p.158). 

We should realize that in suc~ situations, behaviours that are more social than 
mathematical, would probably appear. For example, because of self-esteem, some 
students might refuse to recognize that they are wrong, or others might refuse to accept 
that their opponents are right. 

Thus, to sum up, to provoke students proving behaviours we should design situations in 
such a way that students come to realize that there is a risk attached to uncertainty, and 
thus that there is an interest in finding a good solution. In order to obtain a significant 
scientific debate among students, we should provide them with a situation promoting 
contradiction, but also promoting acceptance. Otherwise systematic rejection could 
become an efficient defensive strategy. In other words, the situation should allow the 
recognition of a risk linked to the rejection of a true assertion, or to the acceptance of a 
false one. 

Following these principles we have designed teaching situations as experimental settings 
in order to study students behaviours in such contexts, and the nature of these behaviours 
in relation to the characteristics of these situations. A priori, we thought that genuine 
mathematical proving processes will be observed, a deep analysis of our experiments 
shown that things are a bit more complex than what is usually acknowledged by 
innovative practice resting on social interaction. 

In the following section we will report, in some detail, on one of these experiments. 
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A Case Study: The Perimeter of a Triangle 

A first principle we wanted to satisfy in designing the experiment was to obtain the 
devolution6 of the responsibility for the validity of the problem's solution from the teacher 
to the students. For that purpose we have chosen a context of communication: We told 
the students that they will have to write a message for other students, of the same grade, 
in order to allow them to solve a given problem. In such a situation the criteria for 
success are left to be decided by students according to their own means for the evaluation 
of the efficiency and the reliability of the message they have produced. We thought that 
this setting would be sufficient to ensure that students will consider that they have the 
responsibility for the truth of their solution, and that they will not refer to the teacher 
expectation. 

In such a situation there is usually some tensions because of the different individual 
motivation and commitment. For this reason, we think that it is not desirable to ask the 
students to work individually, but on the other hand it is not desirable to ask for a 
collective production form the whole class insofar as some students might feel that they 
are not concerned, leaving the job to the others. So, we decided to constitute small teams 
of three to four students working together, telling them that the final solution will be one 
of the ones proposed by the teams, or a modification of it. To promote collective work, 
each team must propose only one solution, and during the debate for the choice of the 
class solution the team will be asked to express its position through the voice of a chosen 
representative. That constraint obliges students to be explicit and to discuss a priori the 
correctness and appropriateness of what they want to be said. We think that the quality 
of the debate will rest on the motivation of each team, its willingness to have its message 
chosen, but also its commitment to the success of the class as a whole. 

The mathematical problem we chosen was the following: 

Write for other students, a message allowing them to come to know the 
perimeter of any triangle a piece of which is missing. To do it, your 
colleagues will have at their disposal only the paper on which is drawn a 
triangle and the same instruments as you (rules, etc.). 

Together with this text a triangle such as the following (fig. 1) was given to the students. 
All the teams in the classroom had the same materials. 

6 

The case study reported here has been made possible because of the close relationships established 
by academics and teachers within a research group of the [REM de Lyon. It is a small part of a 
four year project which had allowed us to collect a large amount of data. The complete report is 
available from [REM de Lyon, Universite Clause Bernard, Lyon. 

Devolution: "A delegating of authority or duties to a subroutine or substitute" (The American 
Heritage Dictionary of the English Language, 1979). 
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The study we made before this experiment 
(Balacheff, 1988, pp 321-360), allowed us to think 
that all the students will be able to enter the 
problem-solving process, with quite different 
solutions. This diversity was expected to be the 
source of interesting debates. We know that some 
students, and thus some teams, will miss the fact 
that the solution must work for a general case and 
not only for the triangle given as an example. But 
we were sure that this will be pointed out during 
the debate, and then that it will be taken in Figure 1 
consideration, even with more strength than if the 
teacher had warned about it a priori. 

The role of the teacher was to present the situation, then not to intervene in any case up 
to the time when all the teams have proposed a solution; then the teacher's position will 
be to regulate the debate and to give the floor to the teams' representatives. The end of 
the sequence will come from a general agreement on the fact that one of the solutions, 
or a new one obtained as a result of the interactions, is accepted. The debate was 
organised in the following way: The messages were written on a large sheet of paper and 
then they were displayed on a wall of the classroom. Each team had to analyze the 
messages and their representatives had to tell the class their criticisms and suggestions. 
These criticisms had to be accepted by the team which was the author of the message 
discussed. In case of an agreement of the class on a false solution, the teacher was 
allowed to propose to the teams a new triangle invoking that such a triangle might be 
considered by the receptors. (Such material had been prepared taking into account what 
we knew from the first study). On the other hand if more than one message was 
acceptable with no clear decision from the class then the teacher was supposed to organise 
a vote to make the choice, asking the students to tell the reasons for their choice. 

I will not report here in detail on the analysis of this experiment. A complete report is 
available in Balacheff (1988, pp 465-562). I will here focus here on the outcomes 
relevant to my present purpose, as they are related to the observations which have been 
made in two different classrooms. 

The First Experiment 

The first experiment was carried out with students of the eighth grade (13 to 14 years 
old). The teacher was a member of the research team, which meant that we were in a 
good position to assert that the project was well known to her. The observations lasted 
for two sessions of 1:30 hours. After the first one we felt really happy with what had 
happened. The second phase raised a feeling of some difficulties ... beyond these feelings 
only the close analysis of the data gathered, led us to discover the existence of the 
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parameters which have played a critical role in the teacher decisions, and thus in the 
students behaviours: 

- First, a constraint of time, which made the teacher intervene in order to ensure that the 
whole process would keep within the limits imposed by the general school timetable in 
which the experiment took place. 

- Second, the teacher's willingness to guarantee an acceptable end in her own eyes. There 
was a huge tension between this willingness and the willingness of not breaking the 
contract of "non intervention". This tension is the indication of what we would like to 
call in the future: the teacher epistemological responsibility. 

Because of these two constraints, the decisions the teacher made tended to oppose the 
devolution .of the problem. In particular, to guarantee that the problem solving phase 
would not be too long, the teacher invited students to propose a solution as soon as she 
thought that it was mature enough, but with no information about the real feeling of these 
students. Also, some teacher's interventions aimed at calling the attention of students to 
the word "any" (in the sentence "any triangle"), and doing so she did not think that it 
was a mathematical intervention, insofar as she thought that it was only due to the 
students' lack of carefulness. But all these interventions led students to a f~ling of 
dependence and the idea of a possible responsibility of the teacher for the validity of their 
answer. 

A significant phenomenon, is that the teacher (as well as the observers) did not realize 
what a continuous contact she kept with the students, making about one intervention every 
minute over an 80 minutes period. The content of these intervention could have been 
light, as: "Are you O.K.?" , or more important as: "Are you sure you have carefully read 
the statement of the task? ". All together we have counted, within these interventions, 
129 different items. We see this phenomenon as an indicator of the intensity of the 
relationship between the teacher and the students in a situation that we thought to be 
quasi-isolated from the teacher before we did a close analysis of the records. 

The same constraints were an obstacle to the functioning of the second phase. After a 
first exchange of critiques by the teams' representatives, the teacher intervened because 
she thought that nothing positive will come out of the engaged process - at least within 
the time available. The teacher then tried to facilitate the progress in the discovery of a 
solution, calling explicitly for ideas and suggestions to start from them and go further. 
Actually, it was quite clear from her attitudes that not all the ideas were of the same 
value. The students' behaviours were deeply transformed by these interventions. They 
got confused and they were no longer committed to any real discovery of a solution. 

The teacher thought that she had kept the spirit of the sequence, the basic frame being: 
search for a solution, critics, new ideas and suggestions to go ahead. But only the 
superficial aspects of the intended sequence were still there; its meaning for the students 



20 

were fundamentally changed. They did not enter a true mathematical actIvIty, as 
expected, but just a new school game not so different, beyond the new and exiting social 
setting, from the ordinary one. 

The Second Experiment 

We learned a lot from this first experiment, and we thought that it would be worthwhile 
to make a second one. We decided to keep the same general framework, but to overcome 
the obstacles we came to be faced with, we chose the three following modifications: 

(i) To observe a tenth grade classroom in order to be sure that no mathematical difficulty 
will disturb the phenomenon we wanted to observe. Also, at this level students have 
already been introduced to mathematical proof. The situation could be an opportunity to 
evidence its power as a means for proving ... 

(ii) To open the time, that means that we decided to leave open when the end of the 
experiment will end up. We thought that three or four sequences of about one hour each 
would be sufficient. 

(iii) To ask the teacher not to intervene, as strictly as possible, during the first phase (the 
initial problem-solving phase), and then to act just as a chairperson and as the collective 
memory7 of the class during the second phase (the debate). 

The first phase8 did not present any special peculiarity. The teacher did not intervene at 
all, leaving students free to decide that they had a solution to propose. Four teams among 
the five reached a solution, the fifth one which was clearly close to surrender, finally 
proposed a "contribution" to the collective effort, as a response to the teacher demand. 

During the second phase, she also followed the specifications we decided together. 
Then 000 

More than a scientific debate, that is, proposing proofs or counterexamples, the data show 
that students entered a discussion with some mathematical content in it, but which mainly 
consisted of an exchange of arguments pro et contra not necessarily connected the one to 
the others. They argued about the different proposed solutions, but they did not prove 
mathematically. 

The situation for communication has really been taken into account as such by students, 
as their remarks on the proposed messages show. The main critics are related to the fact 

To be the "memory" of the class means to take a record of what is said, in particular by writing 
students' decisions on the blackboard. 

This phase took about one hour. 
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that this message must be understandable and usable by its receptors. But the problem 
of the validity of the proposed solution is not really considered. In that sense we can say 
that the situation does not realize a situation for validation. For a clear distinction 
between "arguing" and "proving" in mathematics9

, we refer to the distinction as 
formulated by Moeschler: 

"Un discours argumentatif n'est pas un discours apportant a proprement parler des 
preuves, ni un discours fonctionnant sur les principes de la deduction logique. En 
d'autres termes, argumenter ne revient pas a demontrer la verite d'une assertion, ni a 
indiquer Ie caractere logiquement valide d'un raisonnement [ ... J Un discours argumentatif, 
et c'est la une hypothese de depart importante, se place toujours par rapport a un 
contre-discours effectif ou virtue!. L'argumentation est a ce titre indissociable de la 
polemique." (Moeschler, 1985, p.46-47). 

In that sense, what we have observed is first of all an exchange of arguments about the 
simplicity of the solution ... or of its complexity. The context of a communication with 
other students has favoured the feeling of the relevance of critics in that register. But 
what leads us to suggest that this debate is more an argumentation than a scientific 
debate, in the Moeschler sense, is the frequent lack of logical relationships between 
arguments. Even more, some students can pass in the same argumentation from one 
position to another completely contradictory. These arguments can have nothing to do 
with mathematics, or even with what is required by the situation ... and it could be the' 
same for the objections opposed to an argument. Finally, the involvement of some of the 
teams in the game, I mean the fact that they are eager to win, had favoured the 
appearance of polemics: The strongest opponents to the "too complex" message are the 
authors of the "too simple", and conversely. 

After a first period of debate the messages had been accepted, provided that some 
modifications were made, but their validity has not been really discussed. So, the teacher 
proposed a new triangle, in order to challenge the messages. This triangle was such that 
the wrong solutions will obviously fail. The debate following this checking phase, shows 
how strongly students are more involved in an argumentation than in a scientific debate. 
Finally, one solution being accepted as the solution of the class, the teacher asked 
students whether they were sure of that solution. They answer: "Yes, because we have 
done it in a lot of cases." So, it is even not sufficient to directly address the question of 
the validity. Note, that when later on the teacher asked the students about a possible 
mathematical proof of their solution, they gave one showing that technically it was 
possible to them. 

9 We do not refer necessarily to formal proof, or mathematical proof in the classical sense. 
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Discussion 

Efficiency Versus Rigour 

Even if we are able to set up a situation whose characteristics promote content specific 
students' interaction, we cannot take for granted that they will engage a "mathematical 
debate", and finally that they will produce a mathematical proof. 

A peculiarity of mathematics is the kind of knowledge it aims at producing. Its main 
concern is with concepts specific to its internal development. There is evidence that 
Egyptians used intellectual tools in practical situations for which we have now 
mathematical descriptions, but the birth of mathematical proof is essentially the result of 
the willingness of some philosophers to reject mere observation and pragmatism, to break 
off perception (the monde sensible), to base knowledge and truth on Reason. That 
actually is an evolution, or a revolution, of mathematics as a tool towards mathematics 
as an object by itself, and as a consequence a change of focus from "efficiency" towards 
"rigor" . 

It is a rupture of the same kind which happens between "practical geometry" (where 
students draw and observe) and "deductive geometry" (where students have to establish 
theorems deductively). Also in numerical activities, like the one reported 'by Lampert 
(1988), the same rupture happens when students no longer have to find some pattern out 
of the observation of numbers, but that they have to establish numerical properties In 

their "full" generality (using letters and elementary algebra). 

Here we have to realize that most of the time students do not act as a theoretician but as 
a practical man. Their job is to give a solution to the problem the teacher has given to 
them, a solution that will be acceptable with respect to the classroom situation. In such 
a context the most important thing is to be effective. The problem of the practical man 
is to be efficient not to be rigorous. It is to produce a solution, not to produce 
knowledge. Thus the problem solver does not feel the need to call for more logic than 
is necessary for practice. 

That means that beyond the social characteristics of the teaching situation, we must 
analyse the nature of the target it aims at. If students see the target as "doing", more 
than "knowing", then their debate will focus more on efficiency and reliability, than on 
rigor and certainty. Thus again argumentative behaviours could be viewed as being more 
"economic" than proving mathematically, while providing students with a feeling good 
enough about the fact that they have completed the task. 
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Social Interaction Revisited 

Social interaction, while solving a problem, can favour the appearance of students' 
proving processes. Insofar as students are committed in finding a common solution to a 
given problem, they have to come to an agreement on the acceptable ways to justify and 
to explain their choices. But what we have shown is that proving processes are not the 
only processes likely to appear in such social situations, and that in some circumstances 
they could even be almost completely replaced by other types of interactional behaviours. 
Our point is that in some circumstances social interaction might become an obstacle, 
when students are eager to succeed, or when they are not able to coordinate their 
different points of view, or when they are not able to overcome their conflict on a 
scientific basis1o

• In particular these situations can favour naive empiricism, or they can 
justify the use of crucial experiment in order to obtain an agreement instead of proofs at 
a higher level (Balacheff, 1988). 

Perhaps some people might suggest that a better didactical engineering could allow us to 
overcome these difficulties; indeed much progress can be made in this direction and more 
research is needed. But we would like to suggest that "argumentative behaviours" (i) are 

. always potentially present in human interaction, (ii) that they are genuine epistemological 
. obstac1esll to the learning of mathematical proof. By "argumentative behaviours" we 

mean behaviours by which somebody tries to obtain from somebody else the agreement 
on the validity of a given assertion, by means of various arguments or representations 
(aleron, 1984). In that sense, argumentation is likely to appear in any social interaction 
aiming at establishing the truth or falsehood of something. But we do consider that 
argumentation and mathematical proof are not of the same nature: The aim of 
argumentation is to obtain the agreement of the partner in the interaction, but not in the 
first place to establish the truth of some statement. As a social behaviour it is an open 
process, in other words it allows the use of any kind of means; whereas, for 
mathematical proofs, we have to fit the requirement for the use of a knowledge taken in 
a common body of knowledge on which people (mathematicians) agree. As outcomes of 
argumentation, problems' solutions are proposed but nothing is ever definitive (Perelman, 
1970, p.4l). . 

Insofar as students are concerned, we have observed that argumentative behaviours play 
a major role, pushing to the backside other behaviours like the one we were aiming at. 
Clearly enough, that could be explained by the fact that such behaviours pertain to the 
genesis of the child development in logic: Very early, children experience the efficiency. 

10 

11 

I mean, content specific. 

The notion of "epistemological obstacle" has been coined by Bachelard (1938), and then pushed on 
the forefront of the didactical scene by Brousseau (1983). It refers to a genuine piece of knowledge 
which resists to the construction of the new one, but such that the overcoming of this resistance is 
part of a full understanding of the new knowledge. 
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of argumentation in social interactions with other children, or with adults (in particular 
with parents). Then, it is quite natural that these behaviours appear first when what is in 
debate is the validity of some production, even a mathematical one. 

So, what might be questioned is perhaps not so much the students' rationality as a whole, 
but the relationships between the rationale of their behaviours and the characteristics of 
the situation in which they are involved. Not surprisingly, students refer first to the kind 
of interaction they are already familiar with. Argumentation has its own domain of 
validity and of operationality, as all of us know. 

So, in order to successfully teach mathematical proof, the major problem appears to be 
that of negotiating the acceptance by the students of new rules, but not necessarily to 
obtain that they reject argumentation insofar as it is perhaps well adapted to other 
contexts. .Mathematical proof should be learned "against" argumentation, bringing 
students to the awareness of the speCificity of mathematical proof and of its efficiency to 
solve the kind of problem we have to solve in mathematics. 

Here negotiation is the key process, for the following reasons: 

- First, because the teaching situation cannot be delivered "open" to· the students, 
otherwise many' of them will not understand the point and they will get lost. The 
following quotation from Cooney makes it clear: 

"Maybe not all of them but at least some of them felt 'I am not going to participate in 
this class because you [referring to the teacher] are just wasting my time'. It is so ironic 
because if 1 was doing the type of thing they wanted to do, they would be turning around 
in their seats and talking. So it's a no-win situation." 

(Cooney,1985, p.332). 

- Second, because of the rules to be followed, the true aim of the teacher cannot 
be stated explicitly. If the rules for the interaction are explicitly stated, then some 
students will try to escape them or to discuss them just as many people do with law. 
Also because interacting mathematically might then become "mastering a few clever 
techniques" which may tum into objects to be taught, just as teaching "problem solving" 
has often become teaching quasi-algorithmic procedures (Schoenfeld, 1985). 

The solution is somewhere else, in the study and the better understanding of the 
phenomena related to the didactical contract, the condition of its negotiation, which is 
almost essentially implicit, and the nature of its outcomes: the devolution of the learning 
responsibility to the students. We cannot expect ready-to-wear teaching situations, but 
it is reasonable to think that the development of research will make available some 
knowledge which will enable teachers to face the difficult didactical problem of the 
management of the life of this original society: The mathematics classroom. 
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Geometry is Alive and WelJI 

The repons of my death are greatly exaggerated. 
Mark Twain, 1897 (cable to Associated Press 

from London, upon reading of his death.) 

It is a widely held opinion that geometry is dead. At the Fourth International Congress 
on Mathematical Education held in Berkeley in 1980, a lively debate on the topic featured 
J. Dieudonne, B. Griinbaum, and R. Osserman - all well recognized research 
mathematicians with deep interests in and strong opinions about geometric questions and 
the teaching of geometry. In his address, Osserman noted " ... to speak of the 'death of 
geometry' at the post-secondary or any other level is clearly an exaggeration, [though] 
it nevertheless reflects a reality. "2 

The evidence of the death of geometry as a vital part of the body of mathematics seemed 
convincing: 

- The small role of geometry in the high school curriculum: rarely required, and 
typically a one year (or shorter) course. 
- The insignificant role of geometry in College and University curricula: if offered at 
all, limited to a course for prospective teachers, or specialized courses (projective 
geometry, differential geometry). 
- The dearth of research papers, conferences, and symposia devoted to geometry. 
- The small number of geometry texts at the college level, and absence of any new texts. 

Historically, a knowledge of geometry was considered the mark of an educated person. 
However, in recent times, a reverse kind of snobbery has occurred: a lack of knowledge 
about, and disinterest in geometric questions is a common profile of the mathematical 
research community. The view towards geometry is generally a mixture of one or more 
of the following beliefs: 

1. Euclidean geometry, like Latin, is GOOD FOR YOU. It should be studied (in 
high school) for historical appreciation and to build character. The geometric 
content is not expected to lead (mathematically) anywhere. 

2 

An earlier version of this address was given at the Conference on Learning and Teaching 
Geometry, June 1987, -at Syracuse University, New York. 

All quotations in this paper from ICME IV may be found in The Two-Year College Mathematics 
Journal, 12 (September 1981) 226-246, which contains the addresses given by Dieudonne, 
Griinbaum, and Osserman. 
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2. Euclidean geometry is where students learn logic, the axiomatic method, and 
deductive proof. The geometric content of the course is secondary to these aims. 
(This course could be titled GEOMETRY AS A MILITARY DISCIPLINE.) 

3. Geometry provides some interesting low-level recreational problems to solve, but 
there aren't any important unanswered questions. Mathematicians who claim to 
do research in geometry are not considered as serious in their interests. 

Most mathematicians are totally unaware of the fact that the elementary, intuitive 
approach to geometry continues (and will continue) to generate mathematically profound 
and interesting problems and results. (B. Griinbaum) 

4. The content of geometry has been integrated into (absorbed by) almost all of 
higiJ-er mathematics - linear algebra, analysis, algebraic geometry, topology, 
group theory, etc. - so there is no need to teach it apart from these . 

. .. mathematicians have been extremely appreciative of the benefits of the geometric 
language, to such an extent that very soon they proceeded to generalize it to parts of 
mathematics which looked very far removed from Geometry. 

(J. Dieudonne) 

This last view was met with a memorable rejoinder by Osserman, who summarized 
Dieudonne's position as follows: 

Geometry is alive and well and living in Paris under an assumed name. 

Even in recent years, there has always been a small core of mathematicians who have 
done considerable research in geometry despite the prevailing mathematical fashion. 
H.S.M. Coxeter might be considered the "dean" of such researchers. In an interview in 
1979 for The Two -Year College Mathematics Journal with David Logothetti, he gave 
testimony to his enduring interest in and excitement about geometry, and his belief in its 
vitality. The interview closes with a question by the interviewer, and Coxeter's reply: 

L. If I or my colleague Jean Pedersen start rhapsodizing about geometry, the 
reaction that we frequently get is, "Oh well, that's a dead subject; everything 
is known. " What is your reaction to that reaction? 

C. Oh, I think geometry is developing as fast as any other kind of mathematics; it's 
just that people [research mathematicians] are not looking at it. 

In his closing remarks at the 1980 ICME, Osserman echoed similar sentiments: 

... geometry ... has gone through a period of neglect, while the arbiters of mathematical 
taste and values were generally of the Bourbaki persuasion. On the other hand, ... that 
period is already drawing to a close .... I would predict that with no effort on any of our 



parts, we will witness a rebirth of geometry in the coming years, as the pendulum swings 
back from the extreme devotion to structure, abstraction, and generality. 
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Today we witness a renewed interest in teaching and learning geometry. In 1987, the 
NCTM yearb90k and an international conference in Syracuse, New York were devoted 
to the topic. The newly announced NCTM standards (1989) address the need to 
strengthen geometric content in the K-12 curriculum, and an article by Marjorie Senechal 
in a collection of position papers (to be published in 1990 by the National Research 
Council) on the mathematical content in the K-12 curriculum, identifies shape as a major 
content strand at all levels of learning. These are timely events, since there is convincing 
evidence that points to a renaissance in geometry. There is strong interest in geometric 
figures in the plane and 3-space - exploration of their properties, their interrelationships 
and enumeration of their types. In what follows, I want to convince you that reports of 
the death of geometry (in 1980, and even more so today) are greatly exaggerated. The 
remarks by' Coxeter and Osserman in 1980 were prophetic - for whether or not the 
official teachers and researchers in the mathematical community choose to lead (or even 
join) in this renaissance, it is happening. 

The Evidence 

Activity outside mainstream mathematics 

While mathematicians were neglecting (or ignoring) geometry, its importance grew in 
many other fields. Those areas in which geometry has always been central - art, 
architecture, design and engineering - make direct use of geometry to create and build 
forms which satisfy aesthetic desires and structural needs. The three-dimensional 
Euclidean world which we inhabit demands answers to complex geometric questions, and 
manufacturers, craftsmen, architects and engineers have not waited for the mathematical 
community to provide answers - they always have and still continue to solve geometry 
problems, sometimes in an ad hoc and ingenious manner. Renewed interest in geometry 
related to structure is evidenced in the recent publication of several books concerned with 
the geometry of spatial forms,and the topics of incidence arid symmetry in design (see, 
for example, [Baglivo and Graver], [Blackwell], [GassonD. One especially active site of 
research into structure and form is the University of Montreal, and its associated 
"Structural Topology" group, which seeks to have investigators from many disciplines 
contribute to the common search for a better understanding of and solutions to geometric 
problems. 

Many other fields have found geometry a rich source of ideas for creating models to 
understand complex forms, relations, and processes which cannot be viewed directly. 
Historically, artists and artisans as well as mathematicians have been interested in 
polyhedra (Leonardo da Vinci and Albrecht Durer, as well as Johannes Kepler and 
Leonhard Euler to name but a few), but today, it is not likely that students or their 
teachers even know why a soccer ball has hexagon and pentagon faces, or why it must 
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have exactly 12 pentagon faces. Polyhedra, sometimes viewed by mathematicians merely 
as pretty ornaments, rather than a rich source for study, are indispensable as models in 
diverse fields. The idea of ball and stick polyhedra models to represent molecules gained 
wide acceptance by the late nineteenth century. This modelling of chemical structure (the 
balls representing atoms, the sticks the bonds between atoms) has been one of the most 
productive ideas of modem chemistry. Tetrahedron is the name of an international 
journal of organic chemistry, signifying the importance of the model which considers 
carbon atoms to be situated at the centers of tetrahedra. Inorganic chemistry as well has 
recently developed simple and successful polyhedral models; an international journal in 
that discipline is named Polyhedron. 

Some of the most exquisite polyhedra can be found in nature as crystals. But the inner 
atomic structure of crystals is also highly geometric - it is modeled by a vast lattice of 
atoms whi<;h can be viewed as packed polyhedra, and has been the subject of intense 
investigation in recent times by crystallographers, chemists, mathematicians and 
physicists. In biology, polyhedra serve as useful models for the structure of viruses 
which often (surprisingly) have icosahedral symmetry. The investigation of how 
information is carried by viruses, and how viruses self-replicate has led to the study of 
repeating patterns on polyhedra, and to questions on polyhedral packing. Soap bubble 
froth has been used to study aggregates of polyhedra which model biological structures. 
Difficult questions concerning packing of spheres are of interest to those who model 
chemical (atomic) structures and biological processes; these same studies have important 
applications in algebraic coding theory. 

Another active area of geometry research which has recently emerged involves dynamic 
polyhedral models - here investigators might attempt to model the growth of a rigid 
plant stem through the division of packed polyhedral cells, or model the functioning of 
a robot mechanism. An extremely readable and well illustrated overview of the rich topic 
of polyhedra - history, properties, occurrences in nature and man-made design, 
importance as a modelling device, activities, questions - can be found in the book 
Shaping Space. 

Symmetry is a concept that encompasses very diverse fields; here geometry also plays a 
central role. Symmetry is not only a powerful tool for creating or analysing beautiful 
designs in the plane or space by means of Euclidean and affine transformations; it is also 
a profound idea that gives an approach to understanding many of nature's structures and 
processes. Recently there have been several conferences, articles, and books devoted to 
symmetry and its many manifestations and applications. A large and varied collection of 
articles on symmetry, by authors representing many disciplines and countries, is contained 
in the collection Symmetry: Unifying Human Understanding; a sequel volume has just 
been published. A newly recognized 'type' of symmetry, that of "self-similarity", has 
revealed not only beautiful graphic images of dynamic processes, but offers a new view 
of forms and dynamic systems that were previously viewed as random or unpredictable 
in shape or behaviour. (See, for example, [Gleick], [Mandelbrot], [J?arnsley].) 
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Activity within the mathematical community 

Two measures of the vitality of activity in a mathematical field are the output of research 
articles and the number lectures, seminars and conferences devoted to the topic. 

In recent years, the number of pages in Mathematical Reviews devoted to reviews of 
articles on geometry has grown dramatically. Indeed, the category 51, simply titled 
"Geometry", now has 14 subtitles (51A - SIN), and category 52, "Convex sets and 
related geometric topics" has become a catchall for the large number of papers on 
geometric topics for which a separate category has not yet been designated. (Differential 
Geometry and Topology have their own category numbers.) This increase in publication 
reflects not only a proliferation of articles, but also the establishment of several new 
journals de.voted primarily to research in geometry. In 1989 alone, two new journals, 
Combinatorial Geometry and Symmetry were launched. 

Two new areas of research activity in which the publication of papers has been especial1 y 
prolific are signalled by the titles of recently published books: Tilings and Patterns, and 
Computational Geometry. Artisans of all cultures have designed decorative patterns and 
geometric tilings, and many popular recreational problems concern tilings of geometric 
figures. Yet mathematicians B. Griinbaum and G.C. Shephard found when they set out 
to write a work on "visual geometry": 

Perhaps our biggest surprise when we started collecting material for the present work was 
that so little about tilings and patterns is known. We thought, naively as it turned out, 
that the two millennia of development of plane geometry would leave little room for new 
ideas. Not only were we unable to find anywhere a meaningful definition of pattern, but 
we also discovered that some of the most exciting developments in this area (such as the 
phenomenon of aperiodicity for tilings) are not more than twenty years old. 

(p.vii, Tilings and Patterns) 

Their book brings together the work of many who have investigated tilings, sets out 
definitions and classification schemes, and, most importantly, indicates many avenues for 
further investigation. 

The title "Computational Geometry" is simultaneously suggestive and ambiguous - I 
doubt that agreement could easily be reached on what it is and what it is not. The 
authors Preparata and Shamos indicate in their introduction that several contexts have 
been clothed with that title, but make clear that the essence of computational geometry 
is the design of efficient algorithms (for computers) to solve geometric problems. 
Classically, the restrictive tools of compass and straightedge and the algorithms of 
Euclidean constructions were used to solve geometry problems. With Descartes and later 
Gauss, algebraic and analytic tools could be employed to solve geometry problems, and 
in addition, the question of what constructions were feasible could be discussed. Today's 
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researchers may use computers as restrictive tools and so the problems as well as the 
methods of solution must be recast: 

One fundamental feature of this discipline is the realization that classical characterizations 
of geometric objects are frequently not amenable to the design of efficient algorithms. 
To obviate this inadequacy, it is necessary to identify the useful concepts and to establish 
their properties which are conducive to efficient computations. In a nutshell, 
computational geometry must reshape - whenever necessary- -the classical discipline into 
its computational incarnation. (p.6. Computational Geometry) 

A few of the concerns are the development of new coordinate systems to encode 
geometric information, the creation of very accurate data bases for geometric objects, and 
the visual (screen) representation of geometric objects in 2, 3, and higher dimensions. 
The emphasis on computation has even changed the way in which many geometry 
questions are asked. Instead of asking "How many different types of polyhedra are there 
with n vertices?", the researcher asks "How can the computer determine whether two 
given polyhedra are of the same type?" and "What is the complexity of the best algorithm 
to do so?" 

Conference activity on geometry is decidedly on the upswing, with the participants 
representing many areas of mathematics and other disciplines. Here are just a few special 
conferences largely concerned with geometry held during 1984-87: 

"Shaping Space", an interdisciplinary conference on polyhedra, Smith College, April 1984. 
"International Congress on M.C. Escher", Rome, April 1985. 
"Eugene Strens Memorial Conference on Recreational and Intuitive Mathematics", University of Calgary, 

July 1986. 
Special semester devoted to the Geometry of Rigid Structures, CRM, University of Montreal, January-May 

1987. 
"Computer-aided geometric reasoning", INRIA, Sophia Antipolis, France, June 1987 
"SIAM Conference on Applied Geometry", Albany, July 1987. 

In the last two years, the number of such special conferences on geometric topics has 
risen dramatically, and in addition, at the National MAA and AMS meetings the number 
of lectures, minicourses, and special sessions reflects the growing interest and diversity 
of research in geometry. Here is a list of items on the program of just one such meeting, 
the AMS-MAA meeting held August 7-10 in Boulder, Colorado: 

Colloquium Lectures: 
Special Session: 
Minicourses: 

Invited Addresses: 
Jean E. Taylor: 
Progress in Mathematics Lecture: 

"Geometry, Groups, and Self-Similar Tilings", William P. Thurston 
"Mathematical Questions in Computational Geometry" 
"Chaotic Dynamical Systems", Robert L. Devaney 
"Group Theory Through Art", Thomas Brylawski 
"The dynamics of billiards in polygons", Howard A. Masur 
"Crystals, in equilibrium and otherwise" 
"Liquid Crystals", Haim Brezis 
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The impact of technology 

Perhaps the greatest single impetus to renewed aCtIvIty in geometry has been the 
availability and proliferation of technological tools. This has created a two-way 
interaction involving geometric activity and technology. 

On the one hand, the design and implementation of computers and other high-powered 
research, design, and diagnostic tools require a high level of understanding of traditional 
geometry and the solution of many new geometric problems. For example, 
computer-aided design (CAD) and manufacturing (CAM) (imaging and robotics), 
communications (networks and coding), and diagnostic imaging (computer-aided scanning 
devices) are areas in which geometry plays a central role. On the other hand, 
technological tools can also be utilized to investigate and even prove geometric 
statements .. The ability to make and test conjectures in geometry (or any subject) is 
greatly enhanced by looking at a large number of specific cases. Complicated geometric 
forms can be shown rapidly in many aspects on a computer screen, changed and modified 
effortlessly, and data recorded and compared. Plausible conjectures based on such 
experimental data can be subjected to traditional methods of proof, or in some cases, 
proved by computer programs. As high-powered "eyes"·, technological devices can 
reveal the inner geometry of crystals, plant cells, viruses, and even chemical molecules, 
making it possible to test the veracity of accepted models and provide challenging new 
geometry problems to solve. 

Titles of several of the sessions at the meetings held in France and in Albany in the 
summer of 1987 (listed below) will indicate some of the areas in which there is strong 
interest and active research: 

Image processing; Surfaces; Mathematical Methods and Design 
Packing and Tiling; Mesh Generation; Graphics; Computational Geometry; Robotics; Solids; 

Modelling for Manufacturing; 
Automatic Theorem-proving; Computer-aided design; Applications to Rigidity of Structures; 

Applications to Scene Analysis and 
Polytopial Realization; Algebraic, Topological and Combinatorial Aids to Geometric Computation. 

The availability and use of technology, especially microcomputers, has also begun to 
affect the teaching of geometry at all levels. Exploratory activities with LOGO ("turtle 
geometry"), computer-aided Euclidean constructions ("The Geometric Supposer", "The 
Geometric Constructor", "Cabri") , and transformations using computer graphics can 
enrich the teaching and learning of geometry in elementary and secondary school. To 
construct a computer program which produces an image on a computer screen - the first 
task of computer graphics - requires a good knowledge of geometry, and affords an 
excellent opportunity to teach some traditional college geometry in a new light. A recent 
text, Projective Geometry and its Applications to Computer Graphics, develops the 
geometric machinery necessary to understand the representation and transformation of 
geometric objects in order to produce a screen image. Along the way, the main theorems 
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of projective geometry are proved analytically. The strong purpose of the book linking 
the subject to computer graphics makes a compelling case for learning the geometry. On 
page 1, the authors make clear that a knowledge of Euclidean geometry is assumed: 

The primary purpose of this [first] chapter is to introduce projective geometry and discuss 
it in relation to Euclidean geometry. The reasons for doing this are twofold. First, 
Euclidean geometry is well-known and is a good foundation for the discussion of a "new" 
geometry. Second, the geometry of real objects is Euclidean, while the geometry of 
imaging an object is projective; hence the study of computer graphics naturally involves 
both geometries. 

Controversy 

A subject can be declared moribund only when people cease to ask questions and never 
ch~lenge assumptions or methodology. Controversy is a certain measure of health in 
research. We are accustomed to announcements of new theories, new interpretations, and 
public squabbles among scientists as they seek to explain nature's phenomena - revision 
of old tenets, and even simultaneous acceptance of competing but equally convenient 
theories is not unusuaL But controversy in geometry? That has not happened since the 
reluctant acceptance in the ninet~nth century of non-euclidean geometries as consistent 
systems apart from Euclidean geometry. In fact, perhaps more so than in any other 
branch of mathematics, the view of geometry has been one of orthodoxy, ruled by the 
views of F. Klein's Erlangen program, in which geometry is primarily the study of 
invariants of transformation groups, or by the influence of 20th century seekers of 
complete axiomatic systems, perfecting the original Euclid. The narrowness of these 
confines is being challenged by many. 

Among those most vocal is Griinbaum, whose provocative piece "The Emperor's New 
Clothes: Full Regalia, G string, or Nothing?" decries the arrogance of those 
mathematicians who will only analyze geometric figures from the standpoint of symmetry 
groups, and who declare decorative art as "wrong", or a "mistake" if it doesn't fit that 
scheme. The plea is made to look for other ways to understand and analyse; to look to 
the motives and methods of the creators of the works. As if to underscore this very 
point, in the last couple of years scientists have seen nature mock the orthodox geometric 
model of internal crystal structure, which postulates a periodic repetition of cells, and 
hence forbids the occurrence of crystals with five-fold (pentagonal) symmetry. Yet 
imaging technology has revealed that such "crystals" do exist, and now mathematicians, 
physicists, and crystallographers are scrambling to try to explain how this can occur (see 
[Steinhart] and [Jaric]). Adding a bit of extra irony, these "quasicrystals" appear to have 
lattice patterns related to aperiodic tilings discovered by Roger Penrose - about which 
the symmetry group theory gives absolutely no information, since no symmetry leaves 
these patterns invariant. This incident also illustrates the fact that so-called "recreational" 
mathematics (as Penrose's tilings were viewed) is largely a matter of fashion - now 
researchers are making "serious" attempts at understanding aperiodic tilings. (See 
[Gardner] and [GIiinbaum and Shephard, Chapter 10].) 
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Open questions 

By now it should be apparent that there are more unanswered than answered questions in 
geometry - even geometry in the Euclidean plane and Euclidean 3-space. It may seem, 
from the applications and illustrations that I have given, that most are extremely technical 
in nature, and are difficult to formulate and understand, much less to solve. Of course, 
many are, but many are deceptively simple to state, and point to how little we really do 
know about the geometric structure of the space we inhabit. Many are amenable to 
experimental investigation by students and amateurs - they will yield (at least partially) 
to patient enumeration, or to ingenious insight rather than to what may be inappropriate 
and complex mathematical structure and theory. 

The subject of packings and tilings is rich with such unanswered questions. Many can 
be found in Tilings and Patterns; I would like to point out just a few which are easy to 
state. 

1. Describe all of the convex pentagons which can tile the plane. 
Although congruent regular pentagons cannot tile the plane (fill it completely, without 
gaps or overlaps), there are many pentagons which can be used as paving blocks to tile 
the plane. But the list of such pentagons has not· been proved to be complete. The 
problem was thought to have been solved by a mathematician in 1918, and again in 1968 
by another mathematician, yet each was wrong. After Martin Gardner discussed the 
problem in his Mathematical Games column in Scientific American in July 1975, several 
new types of pentagon tiles were discovered by amateurs. In addition, in 1976, a high 
school summer class in Australia discovered all but one type of equilateral pentagon that 
tiles the plane. (See [Schattschneider: 1978, 1981, 1985].) 

2. If a tile can fill the plane by half-turns only, must there exist a periodic tiling of 
the plane by that tile? 

Tiles that can fill the plane in a periodic manner using only half-turns were characterized 
by J. H. Conway; analysing and creating tiles using his criterion is an enjoyable exercise. 
The question above, however, has not yet been answered. (See [Schattschneider, 1980].) 

3. Does there exist a single tile that canfill the plane only aperiodically? 
The first sets of aperiodic tiles (tiles that can fill the .plane only with tilings having no 
translation symmetry) contained many differently shaped tiles; R. Penrose is credited with 
discovering the first such set containing only two different shapes. Other sets of two tiles 
which tile only aperiodically have since been discovered, but still a single tile that does 
so (or a proof that no such single tile can exist) has not been discovered. (See [Gardner], 
[Griinbaum and Shephard].). 
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4. Which tetrahedra pack space? 
Dissecting simple forms that pack space, such as boxes and prisms, into congruent 
(non-regular) tetrahedra gives some answers to the question. But the list is far from 
complete. (See [Senechal].) Related to this question is the more general one: For a 
given n, describe all convex polyhedra having n faces which also pack space. 

5. Is there an upper bound on the number of faces of a convex polyhedron that packs 
space? 

It is known that no convex polygon having more than six sides can tile the plane. 
Although it seems plausible to believe that there cannot be a convex polyhedron which 
has a great number of faces and also packs space, no one has yet proved it. Amazingly, 
a convex polyhedron has been found that has 38 faces and packs space. (See [Danzer et 
al] (the answer to the question posed in the title of that article has been shown to be 
"no"); see ,also [Griinbaum and Shephard].) 

Conclusion 

I hope that the evidence has convinced you that, indeed, the reports of the death of 
geometry are greatly exaggerated - the reporters have not kept abreast of the many 
exciting developments which are contributing to its rebirth. The news needs to be spread 
- colleagues and students need to be made aware of the vitality of geometry. 

What can teachers do to help bridge the gap between what is happening on the research 
frontier and what is learned in the classroom? Osserman ended his address by offering 
this advice: 

We can initiate and revitalize courses in which students become familiar and comfortable 
with geometric insights and methods. Perhaps most important and difficult of all is to 
develop courses where the fragile but vital ability to invoke geometric intuition will be 
fostered and nurtured. (R. Osserman, ICME IV, 1980) 
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All three sessions were devoted to discussions around a LOGO-based software called "Les 
deux tortues" presented by B. Cote and a set of mathematical activities that it allows. 
Although the working group had been planned to focus on using computers in the context 
of elementary teacher training activities, we ended up spending most of our time looking 
at the mathematical activities presented, and discussing the role of computers in 
mathematical learning . 

The system presented is the result of an effort to build a bridge between computer 
activities with the LOGO turtle and middle school mathematics curriculum. It is 
essentially based on two sets of ideas: 

1. Construction and exploration: 

Here the turtle is not used in the context of learning programming. A set of commands 
are provided that are used in direct mode to produce effects. So we have construction 
activities that deal with creating objects, usually geometric figures. The notion of 
procedure is used as a tool to create a bridge between the concrete world of actions and 
the symbolic level of descriptions of actions as sequences of instructions. The turtle 
belongs to both worlds. It is a "real" object that we can identify with, that we can 
simulate with our body or a paper clip. It is also a geometric object, a point that has an 
orientation. Construction has to do with going from one level to the other by simulating 
what needs to be done and describing our own actions in terms of instructions, or starting 
with instructions and simulating them in order to understand why they do what they do. 

Questions arise naturally in the context of construction activities. Is it possible to do ... ? 
Are there other possibilities? What are all the possibilities? What will happen if ... ? Can 
we make a prediction of what will happen if we use such a number, or change that 
instruction ... ? The activity of formulating such questions and trying to generate an 
answer is what we mean by exploration. Construction has to do with "doing". 
Exploration has to do with "understanding". We have to explain or justify why 
something is like this or why it is impossible. It is a world of induction and deduction, 
where we try to establish what is true, what is false. 

This project is funded through a research contract between UQAM and APO Quebec research 
centre on uses of computers in education. Helene Kayler, Lise Paquin and Tamara Lemerise have 
been involved in the first stage of the project. 
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2. Working on paper: 

Working with the turtle at the computer will often result in an "interactive" way of 
functioning, where the student tries things until it works. This empirical mode of 
functioning is an important aspect of concrete intelligence and is certainly present in the 
mathematician's toolbox. But from the point of view of logico-mathematical 
development, it has to be put under the control of a more "reflexive" mode that works 
within explicit representations of problems with several kinds of reasoning. (These 
modes correspond roughly to what Hillel and Kieran (1987) call "visual" and 
"anal ytical " . ) 

So we need to set up situations where the interactive mode does not work and the student 
has to switch to a reflexive mode. We also need to help students extract the mathematical 
knowledge .that is interwoven in their interactive functioning (what Vergnaud (1982) calls 
"theorems in action"). The notion of turtle is actually a very powerful tool to build that 
bridge, provided 1) that these activities are overtly identified as mathematical, and 2) that 
the computer is used as an essential reference point but within a larger space that includes 
some work on paper. Working on paper means that you have to set up a representation 
of how the turtle works, that you can test afterwards with the computer. You can also 
use the computer to gather information that you write down in order to analyse a 
phenomena and try to understand it. It helps us keep in mind that the goal of all this is 
to learn mathematics and not particularly to get a computer to work. 

Based on these ideas, we have redefined the basic turtle commands in order to facilitate 
work on square paper, with a metric ruler, protractor and compass. We have also added 
a set of commands that allow exploration of specific topics like fractions, polygons, 
integer operations, perimeter and area, motion geometry, variable .,. Moreover, because 
of the central role of the notion of turtle, it was important to shape the basic commands 
in order to facilitate the understanding of its different aspects. So we ended up with two 
tunles, each with its basic commands and the possibility of working in a fraction or a 
decimal mode. 

The square tunle is a simplification of the LOGO turtle that evolves on a square grid. 
It goes forward in terms of number of squares and turns a fourth of a turn, which allows 
only four possible orientations. It can also move along any diagonal. The angular turtle 
evolves on a blank plane. It goes forward in terms of centimetres and turns in a fraction 
of a turn that the user can set up. If we type TOURCOMPLET 360, the turtle turns in 
degrees. If we type TOURCOMPLET 12, it turns in twelfth of a turn. So we can 
simulate the square turtle on square paper and the angular turtle with a ruler and a 
protractor. 

The first session of the group was spent looking at the basic commands of the two turtles 
and getting acquainted with the notions of construction and exploration in this context. 
Much time was spent around an exploration activity related to the command CYCLE, that 
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asks for a sequence of instructions and repeats it until either the turtle comes back to its 
initial state (in which case it prints the number of repetitions) or it finds that it goes 
indefinitely away from it (in which case it prints VERS L'INFINI...). 

U sing this command with the square turtle, we can ask what are the possible answers of 
the machine and how we can predict them. It is an interesting problem in the sense that: 

1) although an empirical approach can help find the possibilities (which are 1, 2, 4 
and CD ), it does not help to find out why they are the only ones; one has to 
identify what is the relevant factor and try to formulate a prediction rule; 

2) one can develop a gradual understanding of the situation; that is, understand some 
cases before formulating the general rule; 

3) the general solution comes from breaking all possibilities into a few categories and 
solving the problem for each of them. Although usually not obvious, the solution 
is quite accessible to 5th and 6th grade children (and their teachers) since there are 
only four possible orientations for the square turtle. 

The second session was spent mainly discussing fractions and decimals. There are three 
representations of fractions in the system: turn, length and ratio. The notion of fraction 
is already involved in relationship with the command TOURCOMPLET. To understand 
it, we can fold a paper circle to separate it into 8 or 12 equal pieces and use it as a 
protractor. This makes the link with the traditional "pie or pizza" approach to fractions. 
We can also type instructions like D (right) 113 DE TOUR, that work directly in terms 
of fraction of a turn. In this context, no special distinction needs to be made between 
fractions that are smaller or larger than unity. The group discussed different ways to 
build the operations and some interesting situations like TOURCOMPLET 114. 

We can also have fractions as lengths. One can make the square turtle move out of its 
grid by going forward fractions of squares. U sing the ruler with the angular turtle, one 
comes naturally to want to express centimetres and millimetres, which is done with 
decimal numbers. The command POTEAU helps compare lengths and so create activities 
where one goes from fractions to decimals and vice versa. The command FUSEE uses 
a fraction to specify the path of a rocket. It is basically the slope interpretation where the 
numerator is associated with the vertical component of a move and the denominator with 
the horizontal one. This creates activities on equivalence and order that promote the 
development of qualitative reasoning on fractions as ratios. 

The discussion went around the notion of microworld. Is it a useful concept? Does it 
cover almost any software that is not based on direct teaching? In this case, we can talk 
about the system including several microworlds; that is, commands that create activities 
around a well defined topic. We can also think of domains of knowledge, for instance 
fractions, as microworlds. This is a way to see knowledge as a dynamic entity made out 
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of a network of elements integrating formal and concrete aspects in a way that has to 
function. From this point of view, each learner has to build his own network. 

The last session started with trying to characterize construction as object formation and 
exploration as relating variables. Although the activities with the two turtles' start as 
construction of figures, the notion of construction gets eventually a larger sense. In order 
to build a figure, one has to choose the right command, with the appropriate number 
(build an instruction), formulate a sequence of instructions (build a procedure). Through 
the exploration activities, one has to manipulate objects like numerical and algebraic 
expressions, to build geometrical transformations like translation or rotation, to formulate 
rules ... . 

Exploration activities are generally based on some classification of objects. We have a 
set of commands or characteristics of commands, that can be put into categories, and a 
set of results, that can also be put into categories. What needs to be done is to formulate 
the relationship between variations in the command side and variations in the turtle side. 
For example, we might ask what will happen if we tell the square turtle to tum of a 
number larger than 4. All the possible turning instructions can be divided into four 
categories according to their end result and the question is which object (instruction) 
belongs to which category (orientation). We have the same thing with CYCLE where on 
one side we have procedures and on the other side number of repetitions (or <D); with 
FUSaE, where on one side we have fractions, and on the other side the same or different 
paths, or above, below or equal to the middle path, or general ordering in terms of 
steepness of slope. We could have on one side possible items of addition and subtraction 
of integers (classified in terms of + + +, + +', ... , '-') and on the other side the 
interpretation in terms of turtle move. Or we can have on one side the regular polygons 
divided into normal and stars, and on the other side the sequences of instructions that 
generate one or the other. 

The session ended with a general discussion on a question raised throughout all workshop 
by S. Dawson: do mathematical activities defined around computers induce a reduced 
view of mathematics, in particular, and the real world in general? 

Much debate throughout the three sessions focused on the supposed neutrality of the 
computer, a question centrally addressed by C. A. Bowers in his recent book The cultural 
dimensions of educational computing. 

"The question has to do with whether the technology is neutral: that is, neutral in terms 
of accurately representing, at the level of the software program, the domains of the real 
world in which people live. If the answer to this question is that it is not neutral, the 
critically important question of how the technology alters the learning process must be 
addressed. " (Bowers, p, 24) 

In particular, computers foster a digital, dichotomous, context-less, ultra rational form of 
world view, which though extremely productive in many- ways, is also at the foundation 
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of many misunderstandings about the world. To paraphrase Gregory Bateson, if we 
separate an object from its context we are likely to misunderstand it. Yet computer 
educators perpetuate the view that the computer is culturally neutral, that it is simply a 
'dumb' machine. 

But this overlooks the fact that " ... the classroom strengthens certain cultural orientations 
by communicating them to the young and weakens others by not communicating them." 
(Bowers, p.6) 

Bowers goes on to say: 

"By interpreting rationality, progress, and efficiency in terms of technological 
achievements, this mind-set haS developed the hubris that leads to viewing the ecological 
crisis as requiring a further technological fix rather than the recognition that our most 
fundIDnental patterns of thinking may be faulty". (Bowers, p.8) 

Much debate throughout the three sessions focused on the supposed neutrality of the 
computer and of Logo. 

The conclusion which Bowers draws, noted below, was hotly debated: 

"Thus the machine that the student interacts with cuts out of the communication process 
(the reduction phenomenon) tacit-heuristic forms of knowledge that underlie commonsense 
experience. While the technology amplifies the sense of objectivity, it reduces the 
awareness that the data represent an interpretation influenced by the conceptual categories 
and perspective of the person who "collected" the data or information. The technology 
also reduces the recognition that language, and thus the foundations of thought itself, is 
metaphorical in nature. The binary logic that so strongly amplifies the sense of objective 
facts and data-based thinking serves, at the same time, to reduce the importance of 
meaning, ambiguity, and perspective. Finally, the sense of history , as well as the cultural 
relativism of both the student's and the software writer's interpretative frameworks, is 
also out of focus. As a symbol-processing technology, the computer selects and amplifies 
certain aspects of language ... " (Bowers, pp 33-34) 
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At Brock University, the Department of Mathematics and Statistics has established an 
undergraduate computer laboratory as an instructional aid in teaching various 
undergraduate mathematics courses, particularly introductory calculus courses. This 
laboratory contains thirty MacIntosh-SE desktop computers linked to an overhead video 
display unit. Working Group B was able to take advantage of this facility for some hands 
on experience. 

During the first session, held in the laboratory, Eric Muller of Brock University presented 
a brief overview of the lab set-up and how it is utilized. The symbolic manipulation 
program MAPLE, developed at the University of Waterloo, is the computer environment 
in which sessions are conducted. Eric indicated that although MAPLE was not developed 
primarily for educational use, it is being used by a number of universities in the teaching 
of undergraduate mathematics. The availability of other software designed for specific 
educational use was mentioned. 

The first session continued with a demonstration of some of the capabilities of MAPLE 
by Stan Devitt. Participants were given the opportunity to experience the considerable 
power of MAPLE as a calculator. The ability of the system to carry out routine as well 
as complex calculations was demonstrated. As a result, participants gained some 
appreciation of the capabilities of MAPLE as an instructional aid and this resulted in a 
discussion of some of the implications of this technology for teaching. 

Stan Devitt indicated that the primary objective of current efforts to incorporate computer 
algebra systems (CAS) such as MAPLE in undergraduate mathematics instruction is to 
build an environment in which all so-called paper and pencil calculations can, with 
appropriate commands, be carried out on a computer screen. He suggested that in order 
to reach this objective, it will be necessary to design special routines so that students can 
easily utilize the full power of the system. For example, special routines, perhaps fairly 
advanced in nature, are necessary in order for students to realize the full potential of CAS 
as an aid in problem solving in areas like Linear Algebra and Number Theory. 
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Generally, during this session, participants had the opportunity to play around with the 
system and become familiar with some of its capabilities and potential problems. Even 
trivial problems such as how to change an expression after eiltering it were evident. 

After coffee break, Stan Devitt gave a demonstration lesson using MAPLE. He indicated 
how the software evolved and introduced some of the commands, such as those for 
finding summations, evaluating definite integrals, and for performing numerical 
integration using Simpson's and the Trapezoidal Rule. Also, the use of computer 
graphics in estimating the area under a curve was demonstrated. 

Towards the end of the session, several issues were raised by participants relative to 
possible implications of this technology on the mathematics curriculum. In particular, 
questions dealing with the evaluation of student learning and how to incorporate computer 
algebra systems such as MAPLE in the mathematics curriculum were discussed. The 
need to address such issues in a meaningful way was emphasized. The need to know 
what has worked well to date in the use of CAS and the need to identify some of the 
problems not just the advantages was emphasized. 

Session II 

At the' beginning of the second session, Stan Devitt provided the group with some 
anecdotal experiences resulting from his own attempts to incorporate CAS in 
undergraduate mathematics courses. He pointed out that even though CAS have been 
around for some time, to date such programs have had very little evident impact on 
undergraduate teaching. One of the first available CAS programs was MACSYMA, 
developed at MIT and available on mainframes about 1980. MAPLE and other CAS 
programs were subsequently developed in an attempt to reduce the large amounts of 
computer memory that such programs require, and thus make the capabilities of CAS 
available to a much wider audience. 

In 1986, the Sloan Foundation provided funding to eight institutions to establish computer 
laboratories using computer algebra systems. Included were the University of Waterloo 
and the University of Saskatchewan, both of which are using MAPLE. Other institutions 
are using different systems, such as Mu-Math at the University of Hawaii. These projects 
are now underway and workbooks have been produced.· In fact, participants of this 
working group each received a copy of "Calculus Workbook; Problems and Solutions" , 
compiled by Stan Devitt for the project now underway at the University of Saskatchewan. 

The collective experience of the institutions funded by Sloan was reviewed at a 
conference held at Colby College in the summer of 1988. It was a disappointment to 
some that several of the projects were just getting underway after the initial eighteen 
month start-up period. Also, institutions reported varying experiences. For example, the 
reaction of students using CAS was not as positive as expected. Some students reported 
that they experienced more difficulty using CAS than with traditional instruction. On 
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the other hand, most faculty members involved in these projects indicated that they would 
not consider teaching undergraduate mathematics without using CAS. In summary then, 
there appeared to be moderate disappointment with the extent to which progress had been 
made in implementing CAS into the undergraduate mathematics curriculum of the 
participating institutions, . and some disappointment at the initial reaction of students 
exposed to CAS in their courses. 

By way of elaboration on the above, Stan Devitt explained that at the University of 
Waterloo, where the MAPLE project has been underway for the past eight or nine years, 
it is not generally being used by faculty members in their teaching. Also, students at the 
University of Waterloo indicated that they were under a lot of pressure to get through 
their assigned work and the use of CAS meant additional work and material to cover. 

At other u~iversities, however, there was a more positive reaction. At Dennison, all 
students enrolled in undergraduate mathematics courses receive instruction in a computer 
laboratory environment. Also, at Brock University, all faculty members in the 
Department of Mathematics are involved in computer labs. However, at the University 
of Saskatchewan, with 30 members in the Department, only three members were 
seriously investigating the potential of CAS. 

One explanation for the apparent lack of interest on the part of some faculty members is 
the fact that most are busy people and are not willing to invest large amounts of their 
limited time unless there is some evidence that the result will be worthwhile. Clearly, 
some faculty remain unconvinced that the result is worth the effort, and it is clear that 
much more thought and effort will be required before CAS can become widely accepted. 

The above summarizes some of the comments of Stan Devitt at the beginning of the 
second session. Eric Muller then gave an overview of the Brock experience. He 
indicated that the original objective was to develop over a three year period, computer 
labs for all service courses offered in the Department. In the first year, V AX MAPLE 
was used by 100 out of 110 students enrolled in such courses, with students meeting in 
compulsory lab groups of 15. At the beginning of the second year, 30 Macintosh-SEs 
were purchased and used in the laboratory, with approximately 600 students now using 
CAS in the computer laboratory. 

At the end of each year, a questionnaire was administered to participating students dealing 
with their attitudes toward the use of CAS. There were some obvious differences in the 
responses of the first group (1988) compared with those of the second group (1989). For 
example, 47 percent of the students in 1988 rated CAS as a good learning aid while 16 
percent rated it poor. In 1989, the corresponding percentages are 11 and 67. Similar 
results were reported on such measures as confidence to do mathematics and enjoyment 
of mathematics. The course in which these students were enrolled was a traditional 
calculus course with applications. 
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In attempting to explain such results, it has been suggested that "better" students perform 
at a higher than normal level using CAS while weaker CAS students perform below 
normal. 

Eric Muller then described how the computer lab at Brock was set up. He reviewed some 
of the practical considerations that received attention. For example, who is responsible 
for each lab session and who should be present in the lab with the students? At Brock, 
it was the practice to have one faculty member and one senior student (familiar with 
MAPLE) associated with each lab session. Each week, students would receive prior to 
the lab session a sheet of questions. A total of 29 lab sessions of one hour duration were 
scheduled over the 40 hour period per week available with about 28 students per session. 
There was a network server for each 10 machines in the lab (a total of 30 machines in the 
lab). 

It was evident that using CAS resulted in changes to the style of teaching. There were 
more question and answer sessions than traditionally. However, in the lab setting, many 
of the questions were of a technical nature having to do with how to use the system to 
solve problems. There was open access to the terminal room during the semester and at 
the beginning of the year some introductory sessions outside of class time were scheduled 
to familiarize students with the system. 

It was also evident that students at Brock preferred using the Macintosh to the V AX. 
However, one complaint, especially in multi-sectioned courses, was that some of the 
weekly assignments could be completed without the use of the computer and hence 
students did not see the need for the computer lab. This type of problem, however, 
seems to be one that could be solved if all faculty members teaching a course could agree 
on the nature of assigned work. 

With respect to the attitudes of students using MAPLE relative to those of students in 
sections of a course not using MAPLE, it was reported that at Saskatchewan the drop-out 
rate in the MAPLE sections was higher. One explanation offered for this was that 
MAPLE students were left on their own more so than the others and the consequent lack 
of feedback when needed may have caused students to quit rather than persevere. In fact, 
the reaction of students left in the lab on their own was often very negative. 

Some participants, as a result of the above discussion, questioned what possible good was 
resulting from this effort to incorporate CAS in the teaching of undergraduate 
mathematics. Did the costs justify the results? Is the use of computer/calculator 
technology being driven by a stick or a carrot? It was suggested that before many 
questions could be answered, there was the need for research on the impact of the 
technology in the classroom, and the only way to do this was via controlled experiments 
rather than anecdotal reporting of experiences. 
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Some of the drawbacks of the MAPLE system were mentioned. For example, the lack 
of a good graphing package and the fact that the user interface is not one that is very 
user-friendly. It was speculated that some of these problems would be addressed in future 
developments of the program. For example, a menu driven interface would improve 
matters considerably. One suggestion was that there could be developed an educational 
version of MAPLE to complement the scientific version. This led to a discussion of the 
pros and cons of MAPLE as opposed to a discussion of the pros and cons of symbolic 
algebra systems in general. 

Session III 

At the beginning of the third session, the group convened once again in the computer 
laboratory at Brock. Various reference materials were distributed. The session continued 
with a typical in-class CAS demonstration by Stan Devitt on limits and continuity. 

The Group then reconvened for a group discussion. Eric Muller described the nature of 
an applied calculus course offered as a service course at Brock to non-math majors. A 
brief outline of the course was presented: functions, special functions, limits, continuity, 
differentiation, anti-differentiation, definite integrals, differential equations, probability 
distributions, and partial differentiation. In response to a question, Eric indicated that 
integration was not introduced as a limit of a sum, to which the question Why? was 
posed. This line of discussion raised the following questions: When is CAS a tool to help 
concept development? and When is it a tool just to compute? Where does one learn when 
to use an algorithm? This resulted in some discussion about the type of student being 
taught, that is math versus non-math students. 

Perhaps the most interesting question posed was this: If the computer can draw pictures 
and compute derivatives, etc., why would a student have to learn any of this? How do 
we as mathematics educators deal with this question? Is there any attempt to try and 
show students that there are things in mathematics that the computer cannot do? The 
suggestion was that we need to give good examples to students that illustrate when it is 
(a) stupid, (b) hopeless and (c) inappropriate to use the computer. Perhaps good 
thoughtful examples to address the above questions would indicate to students why theory 
is so important in mathematics. 

The end result of this question was: How do we teach intelligent uses of the computer? 
and Why is it important that we teach intelligent uses of the computer? The point was 
made that certainly the domain of computation in college courses is different than in the 
past or at least it should be. The discussion ended with some comments on potential 
dangers of using CAS in the teaching of undergraduate mathematics or a least a 
realization that if used inappropriately, certain undesirable outcomes may result. Again, 
the issue of the apparent negative attitudes of those students whom, we might assume, 
stand to benefit most from using CAS was raised. Also, the need for extra time perhaps 
to use CAS effectively. 
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In summary then, a synopsis of the activities of Working Group B is as follows: 

1. A discussion of a philosophy of teaching mathematics using Computer Algebra 
Systems. 

2. An overview of CAS in general, providing an awareness of the current state of the 
art and what efforts are underway to integrate CAS into the teaching of 
undergraduate mathematics. 

3. An opportunity to experience in a laboratory setting how CAS can be used in a 
teaching situation with an actual demonstration of a lesson in introductory 
calculus. 

4. An opportunity to becqme familiar with a Calculus Workbook incorporating CAS, 
produced at the University of Waterloo. 

5. An overview of several projects at other universities that have been initiated since 
1986 with the assistance of grants from the Sloan Foundation. 

6. An overview of the Brock University experience of using CAS in the teaching of 
undergraduate calculus courses. 

7. An indication of some of the problems associated with the implementation of CAS 
in undergraduate teaching, including the attitudes of students and faculty. 

8. A look at what is likely to happen in the future. For example, the conclusion that 
the implementation of CAS requires a great deal of effort and planning for little 
evident initial payoff. 

9. The opportunity to obtain a number of articles on CAS for retention and further 
use. 

In conclusion, it is obvious that Working Group B accomplished much in a short time. 
However, it is also clear that as many questions were raised as were answered. It seems 
that before we can integrate CAS generally into the teaching of undergraduate 
mathematics, there is a need for much more thought, discussion, and investigation. There 
is no doubt that the availability of CAS has the potential to change dramatically how we 
teach and what we teach. It has the potential to remove much of what we might call the 
drudgery of elementary mathematics. However, care must be taken in the design of CAS 
based curricula that we do not replace one form of drudgery with another form that may 
be perceived by students to be equally distasteful. 
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There was a clear indication that CAS has a great deal of potential but at the same time 
that it can never be used to teach some of the fundamental understandings that are 
required of one whom we might classify as a mathematically literate person. Perhaps one 
of the important benefits of using CAS in undergraduate teaching is to make available to 
instructors more time to concentrate on some of the essential ideas and concepts of 
mathematics than is available at present. 

The need for the development of good research ~n this whole area was also evident. 
Controlled experiments on the effects of CAS on mathematics learning and retention 
seems to be called for before we jump on any bandwagon. The need for major 
curriculum reform efforts appear warranted and perhaps this should happen in any event. 
The past practice of permitting textbook writers to essentially determine the curriculum 
in calculus and other undergraduate mathematics courses, need not continue. It is 
possible with desktop publishing and sophisticated word and text processing capabilities 
for individual departments to produce their own curriculum materials and not depend on 
increasingly expensive and perhaps inadequate commercially produced textbooks. 

In summary, this session proved to be interesting, informative and timely. Special thanks 
go to Stan Devitt for sharing his considerable experience with the group and to Eric 
Muller for superb local arrangements at Brock University, including of course, the use 
of the computer lab which made the session more than a speculative discussion group. 
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Science begins with the world we have to live in ... From there, it moves towards the 
imagination: it becomes a mental construct, a model of a possible way of interpreting 
experience. The further it goes in this direction, the more it tends to speak the language 
of mathematics, which is really one of the languages of the imagination, along with 
liteniture and music. 

(Northrop Frye, The Educated Imagination) 

The descriptive advertisement for the three sessions went as follows. 

The group will examine aspects of communicative and other functions of 
language used in the service of mathematics and mathematicians. It will 
have a partly historical, partly linguistic and partly mathematical focus, 
exploring some of the means by which mathematical ideas are expressed 
and ways by which neophytes are encouraged to increase their command 
of the mathematics register. 

Further possible topics for discussion include the notions of metaphor and 
metonymy and their uses in mathematics as means for the creative 
extension of the expressive potential of language for the invention and 
control of mathematical notions. 
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I started the first session by attempting to share some of my current worries and concerns 
with the rest of the group. The first was the myth of learning by experience and the 
relation oflanguage to that experience (see Pimm, 1986, in reply to Liebeck, 1986): in 
particular, the passive role often attributed to language in merely describing or 
representing experience, rather than being either a constituent component of the 
experience or the experience itself. 

The second was an over-narrow conception of meaning in mathematics in terms of 
reference rather than connections in both form and content, and meaning in this restricted 
sense being claimed to be the most important, indeed only goal of mathematics teaching. 
In England, at least, an increasingly common dogma is if in doubt at any stage in 
anything mathematical, then told to go back to the 'meaning' (often the concrete) from 
which everything is presumed to stem. Valerie Walkerdine (1988) has recently drawn 
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attention to the implausibility of such an account in the case of the teaching of place 
value. She offers' a much more telling if complex account, one that intimately implicates 
the teacher's language and positioning within classroom activity. "Signifiers do not cover 
fixed 'meanings' any more than objects have only one set of physical properties or 
function" (Walkerdine, op cit., p. 30). 

In an article entitled On Notation, Dick Tahta has claimed (1985 j p. 49) that: 

We do not pay enough attention to the actual techniques involved in helping people gain 
facility in the handling of mathematical symbols. . .. In some contexts, what is required 
- eventually - is a fluency with mathematical symbols that is independent of any awareness 
of current 'external' meaning. In linguistic jargon, 'signifiers' can sometimes gain more 
meaning from their connection with other signifiers than from what is being signified. 

Linguists have called the movement' along the chain of signifiers' metonymic whereas' the 
descent to the signified' is metaphoric. 

The third concern I mentioned was one recently raised by Tahta (at the 1989 ATM Easter 
conference) of the current trend towards only stressing how we (or pupils) differ from one 
another, rather than what we have in common. How can we endeavour to develop ways 
of working together in relation to the learning of mathematics? One particular fear Tahta 
expressed was of the loss of consensus and commonality as a result of overemphasis on 
individual differences, with resulting isolation and lack of community. (I'm sure you will 
appreciate the political background of these concerns - in particular, following a decade 
of Thatcherism and the attempted wholesale destruction of collectivism at any level, 
whether inside education or outside it.) 

Spoken language is one of the things that we share in common to a marked extent. It 
is socially acquired by considerable individual effort and little overt teaching. Language 
exists as a cultural repository, but also as a magnificent resource into which we can tap. 
A language both reflects and shapes the conceptual framework of its users. We can ask 
how thought is constituted in terms of and in relation to a system of signs, which by 
definition are social. 

One way of describing the relation between mathematics and a natural language such as 
English is in terms of the linguistic notion of register. Linguist Michael Halliday (1975, 
p. 65, my emphasis) specifies this notion as 'a set of meanings that is appropriate to a 
particular function of language, together with the words and structures which express 
these meanings'. One function to which a language can be put is the expression of 
mathematical ideas and meanings, and to that end a mathematical register will develop. 

Thus, while providing pupils with opportunities to gain access to the resources implicit 
in natural language can be seen as a common aim of all teachers (one interpretation of the 
'language across the curriculum' idea), a particular aim of teachers of mathematics should 
be to provide their pupils with some means of making use of the mathematics register for 
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their own purposes. To that end, a mathematics teacher needs knowledge about the 
language forms and structures that comprise aspects of that register. Part of learning 
mathematics is gaining control over the mathematics register so as to be able to talk like, 
and more. subtly, to mean like a mathematician. 

For these sessions, we were mostly in the realm of the signifier, and tried to explore to 
what extent signifiers can be used relatively autonomously from the signified they are 
taken to represent. In the second session, we worked on two classroom excerpts on 
videotape: Anne Tyson with a class on base five arithmetic and Irene Jones with a class 
working on a geometric poster (both from the Open University videotape PM644 
Secondary Mathematics: Classroom Practice). In both cases, the pupils and adults were 
clearly engaged in a discussion - but about what? Where were the referents for what they 
were discussing - to what is the language pointing? 

There are a number of different characteristics and functions of spoken and written 
language. One use of written language is to externalise thought in a relatively stable and 
permanent form, so it may be reflected upon by the writer, as well as providing access 
to it for others. One characteristic of written language is the need for it to be 
self-contained and able to stand on its own, with all the references internal to the 
formulation, unlike spoken language which can be employed to communicate successfully 
when full of 'thises', 'its' and 'over theres' due to other factors in the communicative 
situation. 

One difficulty facing all teachers is how to 
encourage movement in their pupils from 
the predominantly informal spoken 
language with which they are all pretty 
fluent (see Brown, 1982), to the formal 
written language that is frequently 
perceived to be the hallmark of 
mathematical activity. There seem to me 
to be two ways that can be tried. The first 

informal more formal 
spoken spoken 

language _______ ....., language 

B 

(and I think far more common) is to Informal A 
encourage pupils to write down their I:~~~;e '---------....... 

informal utterances and then work on 
making the written language more 
self-sufficient (Route A in the diagram), for 

formal 
written 

language 

example by use of brackets and other written devices to convey similar information to that 
which is conveyed orally by stress or intonation. 

A second route to greater control over the formal written mathematical language (shown 
as B in the diagram) might be to work on the formality and self-sufficiency of the spoken 
language prior to its being written down. In order for this to be feasible, constraints need 
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to be made on the communicative situation in order to remove those features that allow 
spoken language to be merely one part of the communication. 

Such situations often have some of the attributes of a game, and provided the' pupils take 
on the proposed activity as worthy of engaging with, then those pupils have the possibility 
of rehearsing more formal spoken language skills. One such scenario is described by 
Jaworski (1985), where the focus of mathematical attention is a complex geometric poster. 
Pupils are invited to come and out and 'say what they have seen' to the rest of the class, 
under the constraints of 'no pointing and no touching'. These help to focus the challenge 
onto the language being used to 'point' at the picture. The situation is an artificial one: 
in 'real' life, one can often point and this is completely adequate for effective 
communication. However, if the artificiality is accepted by the pupils, natural learning 
can take place that would otherwise not have been so readily available. There is an 
interesting .paradox here, one of how quite artificial teaching can give rise to natural 
learning under certain circumstances. 

A second instance of such an approach comes from the contexts of 'investigations', when 
pupils are invited to report back to the class what they have done and found out. Because 
of the more formal nature of the language situation (particularly if rehearsal is 
encouraged), this can lead to more formal, 'public' speech and structured reflection on 
the language to be used. Thus, the demands of the situation alter the requirements of the 
language to be used. Reporting back can place some quite sophisticated linguistic 
demands on the pupils in terms of communicative competence - that is, knowing how to 
use language to communicate in certain circumstances: here, it includes how to choose 
what to say, taking into account what you know and what you believe your audience 
knows. A further example of these demands at work can be seen in the study by 
Balacheff (1988) on thirteen- year-old pupils' notions of proof, where he asked them in 
pairs to write down their claims about a mathematical situation to tell another pair what 
they had found out. By providing them with some plausible justification for them writing 
a message, he was able to gain access to their proficiency in this matter. 

Educational linguist Michael Stubbs writes (1980, p. 115): "A general principle in 
teaching any kind of communicative competence, spoken or written, is that the speaking, 
listening, writing or reading should have some genuine communicative purpose". Pupils 
learning mathematics in school in part are attempting to acquire communicative 
competence in the mathematics register, and classroom activities can be usefully examined 
from this perspective in order to see what opportunities they are offering pupils for 
learning. Teachers cannot make pupils learn - at best, they can provide well-thought out 
situations which provide opportunities for pupils to engage with mathematical ideas and 
language. 

For the third session, a couple of dynamic mental geometry activities were offered (see 
Beeney et al., 1982, for further school examples), including the pole/polar construction 
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between a point outside a circle and the two tangents to the circle passing through it. 
What happens when the point moves iriside the circle? 

In conclusion, the following quotation from the Second World Conference on Islamic 
Education (1980) was offered, which was their justification for the compulsory teaching 
of mathematics in school. 

The objective [of teaching mathematics] is to make the students implicitly able to 
formulate and understand abstractions and be steeped in the area of symbols. It is good 
training for the mind, so that they [students] may move from the concrete to the abstract, 
from sense experience to ideation, and from matter-of-factness to symbolisation. It makes 
them prepare for a much better understanding of how the Universe, which appears to be 
concrete and matter-of-fact, is actually ayatullah: signs of God - a symbol of reality. 

Items which stood out for me during the discussion 

A discussion of Helen Keller and her realisation by means of associating the running of 
water over one hand with a pattern being repeated tapped into her other of the possibility 
of symbolisation (the juxtaposition being essential in the creation of a sign - and the 
notion of sign itself) and her subsequent rapid 'linguistic' progress by demanding the 
symbols for many objects or phenomena. Valerie Walkerdine, in The Mastery of Reason, 
asks a fundamental question which has particular salience for mathematics teaching: 
"How do children come to read the myriad of arbitrary signifiers - the words, gestures, 
objects, etc. - with which they are surrounded, such that their arbitrariness is banished 
and they appear to have the meaning that is conventional?" This called to mind how we 
tend to project our understanding onto the symbols which can then trigger those meanings 
subsequently. We read the meanings into the symbols, and yet the projection can be so 
strong that we forget that the external manifestation is only the signifier and not the sign. 

Being aware of structure is one part of being a mathematician. Algebraic manipulation 
can allow some new property to be apprehended that was not 'visible' before - the 
transformation was not made on the meaning, but only on the symbols - and that can be 
very powerful. "The sign v-I represents an unthinkable non-thing. And yet it can be 
used very well in finding theorems." Johann Lambert, in a letter to Immanuel Kant. 

Where are we to look for meaning? Self-reference is reference. Mathematics is at least 
as much in the relationships as in the objects, but we tend to see (and look for) the 
objects. Relationships are invisible objects to visualise. Caleb Gattegno, writing in his 
book The Generation of Wealth (p. 139), claimed: 

My studies indicate that "mathematization" is a special awareness, an awareness of the 
dynamics of relationships. To act as a mathematician, in other words. is always to be 
aware of certain dynamics present in the relationships being contemplated. (It is precisely 
because the essence of mathematics is relationships that mathematics is suitable to express 
many sciences.) Thus, it is the task of education in mathematics to help students reach 
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the awareness that they can be aware of relationships and their dynamics. In geometry, 
the focus is on the relationships and dynamics of images; in algebra, on dynamics per se. 

Mathematics has a problem with reference so it tends to reify its discourse in order to 
meet the naive desire for reference. "The questions 'What is length?', 'What is 
meaning?', 'What is the number one?', etc. produce in us a mental cramp. We feel that 
we can't point to anything in reply to them and yet ought to point to something. (We are 
up against one of the great sources of philosophical bewilderment: a substantive makes 
us look for a thing that corresponds to it.)" Ludwig Wittgenstein, The Blue and Brown 
Books. 

'I can count faster than 1 can skip.' 

There is an important difference between wanting to follow and having to follow the 
teacher. What is the teacher's role and responsibilities in attempting to create meaning 
for her students? Is it a pretence for the teacher not to be an authority? Who is the 
custodian of truth in a mathematics classroom? 

Finally, two quotations about symbols: 

Civilisation advances by extending the number of important operl)tions we can perform 
without thinking about them. 

(Alfred Whitehead, Science in the Modern World) 

Underlying the notations of mathematics there are verbal components; so the mastery of 
the spoken language means that it is possible to base mathematics on language. 

(Caleb Gattegno, The Awareness ojMathematization) 
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D) A bibliography collected by Claude Janvier, annotations for 3 provided by R. B. 
Appendix A, Band C 

A) Summary of the Discussions 

Our discussions on conceptions had taken place in a constructivist theory perspective: a 
theory in which individuals are actively involved when learning. Activity is two-fold: the 
individual decides to enter into the process of learning and he/she has to integrate into 
his/her past knowledge the new elements making the resulting knowledge a personal 
construct. Conceptions are important to consider in mathematics instruction because they 
influence such mental activities. 

The discussions have shown that we could distinguish (for each individual) cognitive 
conceptions from belief systems. Cognitive conceptions could be considered as 
elements triggering the action in mathematics reasoning beyond or underneath a set of 
mathematical concepts. Belief systems can be regarded as a set of judgments that control 
the action of the individual in the sense that they determine his/her willingness to engage, 
to remain engaged and define ways of engaging (continuity, multiplication, circle ... ). 

Note: Even though such a distinction was discussed and commented upon, belief systems 
and cognitive conceptions are not always distinguished in the summary. Firstly, the 
group has not analysed and described their difference. Secondly, it appeared all along the 
discussions that, most surprisingly, participants could argue their points and agree having 
in mind one concept or the other. We note then that the term conception is general 
enough so as it can convey the idea of beliefs. 

Among the belief systems, it has seemed relevant to distinguish: 
the one about the self 
the one about mathematics 
the one about school 
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Combinations of these such as those" listed below are important: 
self and mathematics, 
mathematics in a school setting 
school and self, 
self and school mathematics. 

In the group discussions, we have further enriched the following points: the beliefs about 
the self and the ones about mathematics (interpreted as of what mathematics is and what 
doing math is), the ones about school (its implicit role). We have also discussed about 
the self and mathematics (personal judgments and contrasting them in math and other 
disciplines), mathematics in a school setting, school and self (general history of success 
or failures in the regular school program and the expectations derived), self and school 
mathematiGs (specific success or failures in mathematics and the expectations derived). 

It was proposed to consider conceptions as mental constructs induced by the observers 
(self-observation included) on the basis on specific behaviour (action and discourse) on 
the part of the subject. As a result, it is no easy matter to identify and describe a 
conception. It is important to distinguish between the individual conceptions and the 
more general categories that can link several individual conceptions. The latter are more 
abstract in nature. For instance, mathematics viewed as a set of rules to obey may be 
concretized differently in each individual. Equally of importance is the fact that 
conceptions are difficult to imagine without a theory that organizes the observations made 
with or on a specific individual. 

Conceptions in the teacher-student relations 

During the group discussions, it became clear that when considering conceptions relevant 
to mathematics education, teachers conceptions, students conceptions and the relations 
between these two categories should be considered. 

The following three paragraphs are a personal version of the exchanges of ideas. (C.J.) 

It has been suggested that when we envisage the teaching-learning relations between the 
teachers and the students, we must consider STUDENT COGNITIVE CONCEPTION 
(SCC) and STUDENT BELIEF SYSTEMS (SBS) not only per se but also as they are 
an integral part of the TEACHER BELIEF SYSTEM (TBS). 

It could be interesting to denote the teacher's version of SCC and SBS as SCC' and 
SBS'. This part of the TEACHER BELIEF SYSTEM also controls the action of the 
teacher as he/she interacts with students in classroom situations. 



75 

If the change of TBS becomes a concern, then one must minimally consider in addition 
a new variable the TEACHERS TRAINERS BELIEF SYSTEMS. Note the importance 
of this new category. 

Are there right or wrong conceptions? Changing them! 

The dichotomy right or wrong appears to be incorrect. In fact, the word functional 
describes more clearly what an appropriate conception is since one can evaluate a 
conception only in relation with the effect it has in achieving a set purpose. The essential 
factor is the fact that no value should be attached to a conception in absolute terms. 

For example, if we take conceptions about what mathematics is, there should be some 
room for an informal kind of mathematics that would be distinguishable from "official 
mathematics". The idea becomes much more to focus our attentions on the mathematics 
activities such as reasoning, generalizing, formulating hypotheses ... If one imagines that 
official mathematics results from an understanding between mathematicians, mathematics 
educators and mathematics teachers, one needs that informal mathematics by accepted as 
valuable by learners. This is partly what has to be changed. 

If conceptions need to be changed, it must not be forgotten that teachers and students 
stay actors within the school framework constituting a system. And it is clear that 
taking into account the students' belief systems in the organisation of mathematics 
teaching would have to produce results within the actual school system. Perhaps, 
assessment in schools should be adjusted. 

Changing the students' conceptions required that first of all they become known to the 
teachers or the researchers. How can we determine conceptions? More, from the actions 
then from the dialogue? But anyhow, how much do we need to know about students' 
specific and individual conceptions since similar past experiences will produce similar 
conceptions? 

Should the students become aware of their own conceptions as a starting point for 
changing them? In the process of change in students' conceptions, should the teacher 
expect specific conceptions as goals? Should he/she consider replacement or adding 
something stronger? It would mean a certain discontinuity among conceptions: one being 
underivable from the others. 

At any rate, the working group has agreed that conceptions cannot be directly taught, but 
rather developed or formed (implicitly or explicitly) in the individuals on the basis of 
experiences. Individuals are partially aware of their conceptions in the sense that they 
can only make a partial explicit account of them when solicited. 

Acting on the conceptions cannot be achieved without taking into account the ways they 
develop. As a consequence, we cannot hope to change conceptions only by talking 



76 

people into them or by teaching them directly. Individuals must be confronted with 
relevant or meaningful experiences. 

It means that changing a belief system consists perhaps in introducing the seed for a new 
conception to emerge and that, as a result, the subject will be faced with a multiplicity 
of conceptions "available". This will imply on the part of the subject some abilities to 
discriminate and choose how and when to resort to them. Then the notion of context 
awareness appears to be of prime importance. 

During the last sessions, we turn to the questions asked in the description of the 
working group work appearing in the announcement. 

Difficulties involved in research and otherwise 

Finding out a belief or a conception in children is time consuming and many teachers are 
not willing to envisage that it can be worthwhile. On the other hand, as we have said 
previously conceptions belong to a theory that is the mental framework enabling the 
researcher and the teacher to detect them. Many have claimed that the presence of a 
particular conception cannot be assessed if one has not been prepared mentally to notice 
it and, even then, the fact that a conception is effectively active remains a hypothesis. 

Moreover, it is never sure whether a conception does belong to a more general conceptual 
system, a fact that would be more important for its pedagogical consequences. Also, 
conceptions are constantly changing and what can be really observed is not the presence 
of a conception but mainly the movement of conceptions, and the sudden action of one 
particular conception while the others are likely to be activated but not in action at a 
particular moment. In fact, we are back to the notion of an efficient model which 
requires the recourse to an appropriate conception among others. 

The formulation or discovery of new conceptions by researchers does not seem to bring 
about unanimity in the group. On the one hand, some members of the group believe that 
the formulation of prior hypotheses and the relationships discovered between the 
previously analysed variables will lead necessarily to the conceptions that are involved 
in the more or less explicit a priori analysis. Others took more optimistic stands. Even 
though they agree that there is a discontinuity between the previously selected variables 
and the new variables, some people are able to reach the level of creativity needed for 
the discovery of a conception. 

Are the conceptions personal or do they belong to a category of students? 
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Changing them 

The conflict seems to be the "natural" technique. It involves that the teacher should 
introduce some facts or events that will clash with or contradict the conception held by 
the student(s). This method clearly depends on the capacity of the student(s) to be 
receptive to contradiction. Several examples were provided of students supporting 
contradictory positions. For instance, a few cases were reported of students believing that 
a specific fact could be false in arithmetic and true in algebra. In other words, 
mathematics for many is governed by a "special" logic (or by an absence of logic) which 
makes the contradiction that the teacher can see or appreciate strictly out of reach of the 
children. 

As far as changing the conceptions is concerned, the "necessary but not sufficient reason" 
principle was very often mentioned. This was the case for having the students talk about 
the contradicting fact which is often either neglected or accepted with special sorts of 
reasoning. This was also the case for the reflection made possible via the use a daily 
journal. Even the list of key words that are slowly arrived at does not guarantee that the 
contradiction will be assumed. It is clear that the process requires two phases or stages: 
first the actions (and done meaningfully) and then the rejection often helped by the 
contradiction. 

Reflection leads to awareness and then the chances that they will use their will to do it is 
magnified. One needs a motivation to deal with the contradiction. One often accepts 
things as they are and one doesn't mind since changing would be too costly for several 
reasons. In fact, there are always many things any individual doesn't understand. 
Consequently, there is nothing surprising in the fact that the contradiction is not the 
powerful tool to resolve issues as we would like it to be. 

The interviews can be nice (a fruitful and efficient tool) because the students observe 
themselves. The actions during interviews are more meaningful and some participants 
think that the contradictions are thus more efficiently made explicit. However, it is not 
easy for the teachers to make the right moves and conduct interviews adroitly. 

As far as the research goes, the word constraint is more appropriate in the circumstances 
than the vocable difficulty because it reflects the fact that there will always be a limit to 
the capacity of any research tool. Consequently, one should try to use a research 
approach that will maximize the outcomes in view to the objectives that are far from 
being unique. 

Personal conclusions (C.J.) 

The whole session was a real challenge and very fruitful. It is easily noticeable that the 
questions specific to research issues were less debated than the more fundamental 
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problems. Thanks to the contributions of everyone, great steps were made in the 
understanding of the intricate network of conceptions of the many actors in the system. 

B) Crucial Questions Raised in the Discussions CR. Borasi) 

The questions/issues raised seem to cluster around three fundamental 
themes/topics: 

(a) Determining and studying conceptions 
(Whether they are teachers' conceptions or students' conceptions): 

• How are conceptions determined: 
through verbal reports of the subject? 
through observation and interpretation of the subject's action? 
what combination of the two? 

• How can we take into account the researcher's frame in "interpreting" 
conceptions? 

• How much do you need to know about specific students' conceptions? (Yet at the 
same time we may want to be aware of the motivational value that a teacher's 
research on his/her students' conceptions may have, independent of results, just 
because it shows the students that the teacher cares for them). 

• Connection between "getting at" conceptions and "acting on them" (can we really 
do one and not the other?). 

(b) Studying how conceptions are developed 
(mainly for students) 

• How does (past) teaching influence the development of certain conceptions? 

• Are there crucial times/events/contents which can affect students' conceptions? 

(c) "Changing" conceptions 

• Can we talk of right/wrong conceptions? (or rather: dysfunctional? unrealistic? 
inappropriate?). Thus, can we really talk of "changing" conceptions? 

• How can we "change" conceptions? 

• How can we assess a change of conception? 
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C) Short Descriptions of Some Presentations (R. Borasi) 

About teachers and students' conceptions: 

• oJ. Bergeron, N. Herscovics and J. Dionne: 
Description of a course for in-service teachers, consisting essentially of a 
re-examination of basic math concepts (such as NUMBER) and geared at changing 
the teachers' conceptions of maths and teaching mathematics. 

(Research strategies used to assess change in teachers' conceptions (JD): 
triangulation of: 

(a) how the teacher graded (and justified) a set of students math tests 
(b) questionnaire, asking teacher to rank and assign a weight, to the three views of 

mathematics: traditional (stress: algorithms); formalistic (stress: rigour); 
constructivist (stress: process) 

(c) individual interview, also discussing previous tasks) 

• S. Brown and T. Cooney (reported by R. Borasi): 
In-depth study of 4 math teachers' belief systems (of math, teaching, teaching 
math, etc). 
(Research strategies: classroom observations + ethnographic interviews, initiated 
through the teacher's discussion of several "episodes", transcribed; the teacher 
read the transcript and marked significant statements, and later categorized and 
labelled those). 

• Erika Kuendinger: 
Study on teachers' conceptions of themselves as math teachers. 
(Research strategies: combination of: 
(a) learning history of the teacher (w.r.t. math) 
(b )questionnaire 
(c) classroom observations (to validate responses on questionnaire» 

• Linda Davenport: 
An intervention study for students, but also addressing the necessity of dealing 
with the teachers' conceptions at the same time. 
(Research strategies: 
FOR STUDENTS: an open-ended math test and interviews addressing essentially 
their conception of specific math concepts - ex: asking to explain and draw what 
1/2 means. 
FOR TEACHERS: questionnaire (by P. Ernest - see excerpt in Appendix A) 
addressing explicitly the teachers' conceptions of mathematics, learning math., 
teaching math and self w.r.t. math). 
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e Arthur Powell: 
Using writing (more specifically, dialogue journals) to help students' learning of 
mathematics (including a movement towards less dysfunctional conceptions of 
math.). 
(Research strategies: 
Analysis of what the students write (guided by questions~ see Appendix B). 
NOTE: to help the students being more reflective and personal in their writing 
they had: 
ea peer and the teacher responding to their journal 
ea list-of "processes involved in thinking mathematically" (see AppendixJbC) they 
were supposed to refer to). 
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APPENDIX A 

QUESTIONNAIRE ON THE TEACHING OF MATHEMATICS 

Scale I: Attitude Towards Teaching Mathematics 

a. My knowledge of mathematical concepts is sound YES! yes ?? no NO! 
enough to teach basic math. 

b. I am very enthusiastic about teaching math to YES! yes ?? no NO! 
students. 

c. I am confident about my ability to teach math. YES! yes ?? no NO! 

Scale II: View of Mathematics 

a. Someone who is good at mathematics never YES! yes ?? no NO! 
makes a mistake. 

b. Math consists of a set of fixed, everlasting YES! yes ?? no NO! 
truths. 

c. Math is always changing and growing. YES! yes ?? no NO! 

Scale ill: View of Teaching Mathematics 

a. If students learn the concepts of math then YES! yes ?? no NO! 
the basic skills will follow. 

b. Students should be expected to use only those YES! yes ?? no NO! 
methods that their math books or teachers use. 

c. Students should learn and discover many ideas YES! yes ?? no NO! 
in mathematics for themselves. 

Scale IV: View of Learning Mathematics 

a. In learning math, each student builds up YES! yes ?? no NO! 
knowledge in his or her own way. 

b. Learning math is mainly remembering rules. YES! yes ?? no NO! 

c. Most errors students make are due to YES! yes ?? no NO! 
carelessness. 

From the work of Paul Ernest 
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APPENDIX B 

You are asked to keep a journal on 81h" x 11" sheets of loose-leaf paper. Generally, one 

or two sheets will be sufficient for a week's worth of journal writing. Neither your syntax nor grammar 

will be a concern or checked; my only concern and interest is what you say, not how you say it. You are 

asked to make, at least, one journal entry for each meeting that we have, and, as a rule of thumb, you need 

not spend more than five to ten minutes writing each entry. Each week, the latest j oumal entries will be 

collected and returned with comments. 

The focus of your journal entries should be on your learning of mathematics or on the 

mathematics of the course. That is, your reflections should be on what you do, feel, discover, or invent. 

Within this context, you' may write on any topic or issue you choose. To stimulate your thoughts and 

reflections, here are some questions and suggestions. 

1. What did YQY learn from the class activity and discussion or the assignment? 

2. What questions do YQY have about the work YQY are doing or not able to do? 

3. Describe any discoveries YQY make about mathematics (patterns, relationships, procedures, and so 
on) or yourself. 

4. Describe the process YQY undertook to solve a problem. 

5. What attributes, patterns, or relationships have YQY found? 

6. How do you feel about your work, discoveries, the class or the assignment? 

7. What confused YQY today? What did YQY espeCially like? What did you not especially like? 

8. Describe any computational procedure YQY invent. 
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APPENDIX C 

PROCESSES INVOLVED IN THINKING MA THEMA TIC ALLY 
(OR HABITS OF THE MIND) 

1. Posing problems and. questions 

2. Exploring a question systematically 

3. Generating examples 

4. Specializing 

5. Generalizing 

6. Devising symbols and notations 

7. Making observations 

8. Recording observations 

9. Identifying patterns, relationships, and attributes· 

10. Formulating conjectures (inductively and deductively) 

11. Testing conjectures 

12. Justifying conjectures 

13. Communicating with an audience 

14. Writing to explore one's thoughts 

15. Writing to inform an audience 

'16. Using appropriate techniques to solve a problem 

17. Using technical language meaningfully 

18. Devising methods, ways of solving problems 

19. Struggling to be clear 

20. Revising one's views 

21. Making connections between equivalent statements or expressions, transformations 

22. Making comparisons 

23. Being skeptical, searching for COllnterexamples 

24. Reflecting on experiences 

25. Suspending judgement 

26. Sleeping on a problem 

27. Suspending temporarily work on a problem and returning to it later 

28. Listening actively to peers 

Submitted by Arthur Powell 



Topic Group A 

Implementation of an Apple Centre for Innovation 

and Year 1 Mathematics Results 

W. George Cathcart 

University of Alberta 





89 

Recent surveys (Petruk, 1985; Hubert, 1988) have shown an exponential increase in the 
number of computers in schools during the past decade. Hubert (1988) estimated nearly 
27000 computers in Alberta schools at the end of 1987. This translates into about a 1: 15 
computer to student ratio or an average of about 100 minutes per week of computer 
access for each child in Alberta. The actual time a child spends at a computer, of course, 
varies significantly from this theoretical average. Questions remain. If children had 
continuous access to a computer all day, every day, what could they do? What would 
they learn? Would their thinking patterns change? How would the school program 
change? 

The Proposal 

In an attempt to at least partially answer the broad and open questions stated above, a 
proposal w.as submitted to the Apple Canada Education Foundatiori (ACEF) for the 
establishment of an Apple Centre for Innovation (ACI) in a third grade classroom. The 
proposal called for the installation of 1 complete Apple II GS microcomputer workstation 
for each child in the classroom. The plan was to network the computers and printers and 
ultimately to incorporate a file server. With respect to the curriculum, the plan was to 
develop materials that would uniquely integrate the computer into the language arts and 
mathematics programs. 

Implementation 

Hardware 

The proposal was approved by the ACEF early in the summer of 1987. Thirteen! 
complete workstations were set up on temporary furniture ready for the 26 grade 2/3' s 
first day of classes in September. 

Plans for new functional furniture were completed and the furniture ordered. The design 
consisted of an octagonal desk-like cabinet with rectangular wings emanating from every 
second side of the octagon to form a 4-student workstation as illustrated in Figure 1. The 
wings housed the keyboard on a pull out shelf below the table top. Two small shelf-like 
compartments and a longer one along one side of the rectangular wing provided storage 
for disk drives and the CPU respectively. Only the monitor sat on top of the wing. The 
octagonal area in the centre could be used for individual and group work. 

Electricians rewired the classroom so that there were no floor or post outlets. AppleTalk 
cables were also strung through the walls to completely remove all wiring from places 
where it could be accidentally pulled or tripped over. AppleTalk was also extended to 
the school office and library at this time. 

1 In year 1 the computer to student ratio was 1:20 In year 2 (1988-89) the ratio was increased to 1: L 
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Program 

Work Space 

Monitor for 4 Children 
~--.... 

tJ1 
Chair 

Figure 1. Octagonal 4-Student Workstation 

During the summer, the project director (grade 3 teacher) spent many hours preparing 
language arts materials which would incorporate the use of the computer so that there 
would be experimental materials in place for the beginning of the school term. 

It seemed apparent that if grade 3 children were going to make productive use of the 
materials, efficient keyboarding skills would need to be developed. A professor in 
business education at the University of Alberta agreed to teach keyboarding to the 4 
grade 2 and 22 grade 3 students in the ACI classroom. She taught a 30 minute 
keyboarding lesson 4 days each week for 3 months. Afterwards periodic keyboarding 
review lessons (approximately once a week) were conducted for the remainder of the 
year. 

In language arts the computer was used as a tool in creative writing, responding to 
reading comprehension exercises, theme and book studies, research reporting, and for a 
variety of data base activities. 

In mathematics the computer was used primarily as a means of providing practice during 
the first year of the project. Courseware included MAC 3 (Houghton Mifflin), MECC 
(Minnesota Educational Computing Consortium), graphing activities from National 
Geographic's Project Zoo, and some practice and problem solving software written by the 
project director. 
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Year 1 Mathematics Results 

Data is available on the keyboarding and language arts component of the program as well 
as student and parent attitudes towards the project. The focus of this paper, however, is 
the performance of the ACI students in mathematics during year 1 of the project. 

Instruments 

In order to monitor achievement in mathematics a test based on mid to late grade 3 
material was developed by the researcher. Part A of the test consisted of 30 open-ended 
questions. Part B contained 20 multiple-choice questions adapted from released items 
used by Alberta Education. There were 48 basic fact items in multiple choice format in 
Part C; 12 facts for each of the 4 operations. Students were given 1 minute to do each 
section. Parts A and B were not timed. 

In addition to the 4 basic facts scores, the test yielded scores on the 5 strands in the 
Alberta curriculum, number, operations, and properties (25 items), numeration (12 
items), graphing (2 items), measurement (6 items), and geometry (5 items). These 50 
items formed what will be referred to as the concepts portion of the test. In addition 7 
items from these strands were considered to be problem solving and were scored as a 
sixth strand. 

The mathematics test was administered in September 1987 and again in late May 1988 in 
2 sittings, usually before and after recess. 

The Kuder-Richardson reliability for Parts A and B was 0.78 using pre-test scores and 
0.81 using post-test scores. 

Control Classes 

For comparison purposes, 2 control classes were also given the mathematics test during 
the same week as the experimental class. One control class was in a neighbouring school, 
the other was in a very different part of the city. Table 1 shows the age and IQ scores 
for the 3 classes. There were no statistically significant differences among the 3 groups 
on the first 3 variables in table 1.. There was, however, a significant difference among 
the classes on non-verbal IQ. 
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Table 1 
Mean Age and IQ Scores 

Control 1 Control 2 Experimental 

Age (months) 105.85 109.55 107.71 
IQ 

Verbal 114.95 99.91 106.67 
Quantitative 113.65 104.23 112.62 
Non-verbal 105.45 97.95 112.48 

Pre-Test to Post-Test Gains 

It was expected that a significant positive gain in mathematics would be made over the 
course of one school year. A one-way analysis of variance with repeated measures for 
each class confirmed, in general, this hypothesis but there were some interesting 
exceptions. The actual (raw) gains made by each group on the mathematics measures are 
included in Table 2. 

The gains made by the experimental class were all statistically significant. The 2 control 
classes, however, had a total of 7 non-significant gains. All but one of these were in the 
concepts portion of the test. Both control classes failed to register significant gains in 
graphing and geometry, the 2 strands with the least number of test items. Control group 
2 did not reach the level of statistical significance (p~0.05) on measurement and control 
class 1 did not reach that level on problem solving. Control I also failed to reach 
significance on the addition section of the basic facts test. Table 2 also contains a 
summary of the one-way analysis of variance with repeated measures. 

Relative to the 2 control classes, the experimental group improved its rank from pre-test 
to post-test on 9 of the 13 scales, maintained its rank (highest) on 3 of the measures and 
declined in rank (highest to middle) on the numeration subscale. 

Comparison of Classes 

There were no significant pre-test differences (one-way ANOVA) among the groups on 
the major scales (concepts, facts, total score). There were, however, significant 
differences on 2 of the subscales of the concepts test (numeration and geometry) and on 
the subtraction section of the basic facts test. 

The major analysis involved a two-way ANOV A (groups (3) by repeated measures (2)). 
A summary of this analysis is included in Table 3. 
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Table 2 
Means, standard deviations, gains, and 

anova summary for each group 

MEANS GAIN ST.DEV. F 
CLASSN ARlABLE PRE POST PRE POST 

CONTROL 1 
CONCEPTS 

Number, Operations, 
and Properties 12.40 17.70 5.30 3.66 4.01 55.54 ...... 

Numeration 6.15 8.95 2.80 1.60 1.47 39.62 ...... 

Graphing 0.75 1.25 0.50 0.79 0.64 4.13 
Measurement 2.25 3.50 1.25 1.12 1.19 23.06 .. •• 
Geometry 3.70 3.65 -0.05 0.92 0.93 0.03 
Problem Solving 4.00 4.55 0.55 1.52 1.50 2.81 
TOTAL CONCEPTS 25.25 35.05 9.80 6.00 6.36 59.71··· 

BASIC FACTS 
Addition 10.45 10.90 0.45 2.50 1.74 1.98 
Subtraction 7.95 9.05 1.10 3.15 2.59 5.62· 
Multiplication 3.60 5.85 2.25 2.78 3.10 8.83·· 
Division 1.20 5.55 4.35 1.58 3.47 20.75 .... • 
TOTAL FACTS 23.20 31.35 8.15 6.60 8.57 22.61··· 

total score 48.45 66.40 17.95 10.48 12.98 84.86· .. • 

CONTROL 2 
CONCEPTS 

Number, Operations, 
and Properties 11.09 15.73 4.64 4.24 4.63 37.46 ...... 

Numeration 5.91 6.96 1.05 2.62 2.15 5.00· 
Graphing 0.64 0.77 0.13 0.73 0.69 0.59 
Measurement 2.36 2.64 0.28 1.22 1.40 0.68 
Geometry 2.36 2.59 0.23 1.40 1.40 0.63 
Problem Solving 3.05 3.59 0.54 1.68 1.65 5.01" 
TOTAL CONCEPTS 22.36 28.68 6.32 8.42 7.83 42.03 ...... 

BASIC FACTS 
Addition 10.00 11.59 1.59 2.29 1.01 12.53 .... 
Subtraction 5.91 10.14 4.23 2.33 2.23 65.59 .. • .. 
Multiplication 2.91 5.14 2.23 1.54 2.34 16.87·· .. 
Division 1.77 5.41 3.64 1.51 3.08 27.63 .. •• 
TOTAL FACTS 20.59 32.09 11.50 5.10 6.74 103.65·· .. 

total score 42.96 60.77 17.81 11.29 12.31 143.05··· 
.------.-.-~.-.. --. 

EXPERIMENTAL 
CONCEPTS 

Number, Operations, 
and Properties 9.76 18.67 8.91 4.77 3.43 144.92··· 

Numeration 7.43 8.62 1.19 1.81 1.83 16.89·· .. 
Graphing 0.33 0.95 0.62 0.48 0.67 14.70·· 
Measurement 2.05 3.14 1.09 0.97 0.91 36.48·· .. 
Geometry 2.76 3.67 0.91 1.09 1.11 21.75· .... 
Problem Solving 3.38 4.95 1.57 1.75 1.32 20.28 ...... 
TOTAL CONCEPTS 22.81 35.05 12.24 8.56 5.97 120.09 ...... 

BASIC FACTS 
Addition 10.62 11.86 1.24 2.54 0.48 6.32" 
Subtraction 8.38 10.71 2.33 3.46 2.05 12.66 .... 
Multiplication 3.10 7.10 4.00 2.59 3.83 39.53 ...... 
Division 1.62 6.38 4.76 2.04 4.56 31.77"''' 
TOTAL FACTS 23.71 36.05 12.34 8.84 9.17 119.49 ...... 

TOTAL SCORE 46.52 71.10 24.58 15.96 12.66 223.39 ...... 

.. p:S 0.05 ... P :s 0.01 ...... p:S 0.001 
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Table 3 
Anova summary (Group by Repeated Measures) 

Scale Source df F P 
CONCEPTS 

Number, Operations, 
and Properties Group (G) 2,62 0.98 0.38 

Measures (M) 1,63 216.66 0.00 
GXM 2,63 9.66 0.00 

Numeration G 2,62 4.71 om 
M 1,63 50.31 0.00 
GXM 2,63 5.65 om 

Graphing G 2,62 3.08 0.05 
M 1,63 13.62 0.00 
GXM 2,63 1.64 0.20 

Measurement G 2,62 0.84 0.44 
M 1,63 31.96 0.00 
GXM 2,63 3.86 0.Q3 

Geometry G 2,62 7.57 0.00 
M 1,63 5.80 0.02 
GXM 2,63 3.51 0.03 

Problem Solving G 2,62 2.89 0.06 
M 1,63 24.95 0.00 
GXM 2,63 3.68 0.03 

TOT Ai. CONCEPTS G 2,62 2.57 0.09 
M 1,63 214.23 0.00 
GXM 2,63 7.08 0.00 

BASIC FACTS 
Addition G 2,62 0.68 0.51 

M 1,63 19.27 0.00 
GXM 2,63 1.84 0.17 

Subtraction G 2,62 2.31 O.ll 
M 1,63 63.38 0.00 
GXM 2,63 8.04 0.00 

Multiplication G 2,62 1.13 0.33 
M 1,63 57.56 0.00 
GXM 2,63 2.49 0.09 

Division G 2,62 0.43 0.65 
M 1,63 78.57 0.00 
GXM 2,63 0.47 0.63 

TOTAL FACTS G 2,62 1.45 0.24 
M 1,63 191.45 0.00 
GXM 2,63 2.76 0.07 

TOTAL SCORE G 2,62 1.93 0.15 
M 1,63 423.71 0.00 
GXM 2,63 5.20 0.01 
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Testing Effects 

The two-way ANOVA produced significant effects due to the testing on all 13 measures. 
In all cases the post-test composite mean was significantly higher than the pre-test 
composite mean. 

Group (treatment) Effects 

The study was primarily interested in differences among the groups. There were 
significant main effects due to treatment on 3 of the 13 scales; numeration, graphing, and 
geometry. All of these were components of the concepts test. There were no significant 
group effects on the basic facts test. 

A Scheffe post-hoc pairwise comparison of unweighted main effects on the numeration 
sub scale found a significant difference between control class 2 and the experimental class 
(P!i 0.02). The experimental class had a significantly higher composite mean than control 
group 2. 

The Scheffe comparison of unweighted main effects due to treatment on the graphing 
sub test found no significant differences among the groups. The difference between the 
experimental group and control 1 came the closest to reaching significance (p = 0.08). 
On the geometry subtest the significant main effects were primarily due to a significant 
difference between the 2 control groups although the difference between the experimental 
group and control class 2 was close to significance (p = 0.06). 

Interaction Effects 

There were significant interaction effects on 8 of the 13 scales used in the study. The 
graphs in Figure 2 picture the interaction for the 3 major scales (concepts, facts, total 
score). Figure 3 contains a graph of the interaction on the 3 subscales of the concepts 
test which had significant main effects due to treatment. 

The interaction on the facts test was not significant. The interaction on the concepts test 
and the total mathematics score seems to be due to the steeper slope (greater gain) of the 
experimental group. On 2 of the 3 concepts subscales where there were significant 
treatment effects there were also significant interaction effects. On the numeration subtest 
the interaction seems to be due to the greater gain of control group 1 and on the geometry 
sub scale it seems to be a greater gain by the experimental class that caused the interaction. 

Summary and Discussion 

On mathematics concepts, basic facts, and on the total score, the experimental class 
(extensive use of the microcomputer) made greater gains than 2 control classes (incidental 
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computer use). In fact the experimental class made greater gains on 9 of the 13 measures 
used in the study. 

There were statistically significant differences among the groups (based on a two-way 
ANOV A with repeated measures) on 3 of the 13 scales used in the study, These were the 
numeration, graphing, and geometry sub tests of the mathematics concepts test. On the 
first 2 subtests the experimental group significantly outperformed one but not both control 
groups. On the geometry subtest, the difference was due to the difference between the 
2 control groups. 
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The results of this study lend some, although not strong, support to the thesis that 
supplementary computer experiences enhances mathematical skills. Given the nature of 
the treatment (major emphasis on the language arts and a lesser emphasis on 
mathematics), the results are not surprising. If the same time and energy could have been 
given to mathematics as to language arts, the results may have been more definitive. 

Computer use was carefully controlled, the teacher factor was minimally controlled, but 
there are many variables such as teaching style, school philosophy, use of manipulatives, 
and others which were not controlled in this study. These certainly could have a bearing 
on the results. 

Figure 3. 
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Introductionl 

For the last fifteen years, we have witnessed extensive discussions on the need to define 
what is meant by "understanding". Ephraim Fischbein (1978) stressed the importance of 
intuition for the understanding of mathematics and Richard Skemp (1976) provided an 
early model which distinguished between instrumental understanding ("rules without 
reason") and relational understanding ("knowing what to do and why"). Using 
Skemp's model and combining it with Bruner's distinction between analytic thinking and 
intuitive thinking (Bruner, 1960), Byers and Herscovics (1977) suggested the tetrahedral 
model of understanding which identified four complementary modes of understanding: 
instrumental, relational, intuitive, and formal. Later on Skemp (1979) extended his 
moclel to three modes of understanding (instrumental, relational, and logical) each one 
subject to two levels of thinking (intuitive and reflective) and, three years later, he added 
a fourth mode, that of symbolic understanding (Skemp, 1982). A more extensive survey 
can be found in Models of Understanding (Herscovics & Bergeron, 1983). 

The reasons for finding better answers to the question "What does it mean to understand 
mathematics?" are not purely aesthetic and academic, they are also very practical. 
Without some answer to this question, one can hardly expect to train teachers to "teach 
for understanding". The training of teachers in the analysis of mathematical concepts 
through the use of models of understanding was attempted with a class of practising 
primary school teachers (Bergeron, Herscovics, & Dionne, 1981). Results proved to be 
most promising since these teachers ended up de-emphasizing the value of the written 
answer and instead assigned equal importance to the thinking processes underlying these 
answers (Herscovics, Bergeron & Nantais-Martin, 1981). 

The early models of understanding were heavily oriented towards problem solving and 
proved inadequate to describe the comprehension involved in concept formation 
(Bergeron & Herscovics, 1981). Thus, a new model identifying four levels of 
understanding in the construction of mathematical concepts (intuitive understanding, 
initial conceptualization, abstraction, and formalization) was suggested (Herscovics 
& Bergeron, 1981). In the early eighties, this initial model was constantly improved in 
the sense of providing clearer criteria for the different levels of understanding (Herscovics 
& Bergeron, 1982, 1983, 1984). By 1982 we had characterized our second level of 
understanding as "procedural understanding" instead of "initial conceptualization" , 
and by 1983 we were distinguishing between "abstraction" in the psychological sense 
(detachment from the concrete) and "mathematical abstraction" (the construction of 
mathematical invariants). In 1984 we adjusted our definition of "procedural 

Research funded by the Quebec Ministry of Education (F.C.A.R. EQ-2923) 
Based on the analysis of number developed in this paper, we undertook an international study to 
assess the kindergartners' knowledge of natural number. Some highlights of this study appear in a 
companion paper "The kindergartners' construction of natural numbers: an international study" . 
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understanding" to include both the acquisition of mathematical procedures as well as the 
ability to use these appropriately. 

The continued attempt to provide an epistemological analysis of the various conceptual 
schemata taught at the elementary level has proved to be the whetstone on which we have 
refined our evolving model. Of course, we are using the term "epistemological" very 
broadly in the sense of "growth of knowledge" but also within a pedagogical context 
which acknowledges the impact of instruction. On one hand, our model of understanding 
provides us with a new perspective raising new questions such as "What kind of 
knowledge could be considered as evidence of intuitive understanding?". On the other 
hand, the research results force us to refine our initial model. 

The objective of this paper is to present our two-tiered model of understanding and to 
illustrate how it can be used to describe the understanding of a fundamental mathematical 
concept such as natural number. 

The Understanding of Preliminary Physical Concepts 

Back in 1983, we described intuitive understanding by pointing out that 

For most of the (arithmetical) notions taught, one can find some pre-concepts which can 
be viewed as embryonic to the conceptual schema whose construction is intended ... There 
is not yet any (numerical) quantification, maybe at most some simple (visual) estimation. 
These are situations which lead to what Ginsburg (1977) describes as 'informal 
knowledge' . 

(Herscovics & Bergeron, 1983, p. 77) 

The above characterization of intuitive understanding served us well, since it forced us 
to search for appropriate situations in the child's experience that could be used as starting 
points for each intended concept. The acquisition of new knowledge would thereby be 
endowed with meaning and relevance. This last year, we achieved some kind of 
breakthrough when, in our analysis of the number scheme we decided to apply OUf 

existing model to the two notions we consider as pre-concepts of the number concept. 

We have identified the notion of plurality, that is, the distinction between one and 
several, and the notion of position of an element in an ordered set, as two physical 
concept preliminary to the concept of number. We can then define 'number' 
teleologically, that is in terms of its initial uses and functions, as a measure of plurality 
and as a measure of position. 

Applying our existing model to the notion of plurality and to the notion of position meant 
we had to find non-numerical criteria which might be interpreted as representing intuitive 
understanding, procedural understanding, and logico-physical abstraction of these two 
concepts. We would not attempt to find a fourth level of understanding, that of 
formalization, since, in effect, the construction of the number concept could be viewed 
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as the mathematization of plurality and position. We have been successful in identifying 
the needed criteria and in converting these into tasks which have been used to assess the 
kindergartners' understanding of plurality and position. We provide here a brief 
summary of the criteria and tasks used to evaluate each level of understanding. 

Regarding the intuitive understanding of plurality, quite early in our work we had 
designed tasks involving discrete sets that children could compare on the basis of visual 
estimation in order to decide which one had more, which one had less, where there were 
many, where there were few, or if one set had as many objects as another one. More 
recently, we developed tasks in which children used visual estimation to decide if an 
object was before (or in front), after (or behind) another one, if two objects were 
together (or at the same time), whether an object was between two other ones. The 
ability to estimate these notions visually could be considered as evidence of intuitive 
understandip.g of plurality and position since neither needed to be determined with any 
precision, rough approximations proving to be sufficient. 

To identify a level of procedural understanding of plurality and position one had to find 
logico-physical procedures that were non-numerical, in which no counting was involved, 
but which provided precision to the notions introduced at the intuitive level. Procedures 
based on one-to-one correspondences answered this requirement since they provided 
accuracy and reliability to· questions regarding plurality and order. Our investigations 
have shown that by the time children complete kindergarten, most of them can use 
one-to-one correspondences to generate sets that are larger, or smaller, or equal, or that 
have one more element, than a given set. They can also generate ordered sets subject to 
positional constraints such as before, after, at the same time. 

Abstraction in the logico-physical sense was also easy to identify. We used as criterion 
the children's ability to perceive the invariance of plurality or position under various 
surface or figural transformations. The logico-physical processes which enable them to 
overcome the misleading information they obtain from their visual perception provides 
them with more stable conceptions of plurality and position. The abstraction of 
plurality was assessed through tasks in which sets of objects laid out randomly were 
rotated and displaced within the same space, dispersed, and contracted. Two tasks dealt 
with the visual impact of the elongation of a row, the first task involved a single row, and 
in the second task, one row was stretched while another one was kept fixed (Piaget's 
conservation of plurality). The invariance of plurality with respect to the visual 
perception of the elements was tested by hiding some of the objects. The abstraction of 
position was evaluated by assessing the invariance of position with respect to the 
elongation of a row, with respect to the visibility of all the objects in a row, and with 
respect to conservation of position when one of two parallel rows was translated. The 
abstraction of position was also assessed by verifying if the child was aware that the 
position of an element changed when one of the preceding objects was removed. 
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As can be seen from the above outline, it is quite possible to identify criteria that will 
clearly describe three levels of understanding of preliminary physical concepts. These 
three levels replace advantageously the level of understanding which in our previous 
model we described as "intuitive understanding of a mathematical concept" since they 
enable us to provide a full blown epistemological analysis of the preliminary concepts 
rather than view them as merely the initial embryonic stage in the construction of the 
intended mathematical concept. Of course, a model of understanding applied to physical 
notions needs to be distinguished from a model applied to mathematical ones. For 
instance, the procedural understanding evidenced by the use of a 1: 1 correspondence 
between two sets of objects can be considered as a logico-physical procedure whereas the 
1:1 correspondence between objects and the number-word sequence (counting) is of a 
logico-mathematical nature. A similar distinction applies to the construction of 
invariants. These comments provide us with the following description of the levels of 
understand\ng of physical concepts: 

Intuitive understanding refers to a global perception of the notion at hand; it results 
from a type of thinking based essentially on visual perception; it provides rough 
non-numerical approximations. 

Procedural understanding refers·to the acquisition of logico-physical ptocedures which 
the learners can relate to their intuitive knowledge and use appropriately. 

Logico-physical abstraction refers to the construction of logico-physical invariants (as 
in the case of the various conservations of plurality and position), or the reversibility and 
composition oflogico-physical transformations (e.g. taking away is viewed as the inverse 
of adding to; a sequence of increments can be reduced to fewer steps through 
composition), or as generalization (e.g. perceiving the commutativity of the physical 
union of any two sets). 

The Understanding of the Emerging Mathematical Concepts 

We distinguish mathematical concepts from physical concepts when explicit mathematical 
procedures and invariants are involved. We then can identify three distinct constituent 
parts of understanding: procedural understanding, logico-mathematical abstraction, and 
formalization. Once again, we illustrate this with the number concept. In our opinion, 
the number concept is present only when enumeration (counting) is involved. Of course, 
knowledge of the number-word sequence by itself does not imply numerical knowledge. 
However, it is an essential pre-requisite to counting. Fuson, Richards & Briars (1982) 
has described different skills in the child's handling of the number-word sequence 
(reciting from one, reciting on from a given number, reciting backwards, etc.). 

The procedural understanding of number involves explicit counting procedures. Since 
we defined number as a measure of plurality and of position, we had to design various 
tasks in which all the counting procedures could .be used. For instance, asking children 
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to count up a pile of chips "as far as they could go" would assess their mastery of the 
counting-from-one procedure and their numerical range. Asking them to generate a set 
of a given cardinality or to identify an object of a given position would assess their ability 
to count and stop at a given number. A task which might favour the counting-on 
procedure was developed (cf. Steffe et al, 1983) a row of thirteen chips was glued to a 
cardboard and the first six were hidden in front of the children. They were reminded 
how many were hidden and then asked: How many there were altogether? Could they 
find the ninth chip? Could they find the position of an indicated chip? Another task 
which might favour counting backwards also involved a row of twelve chips, some of 
which were hidden: with six chips hidden and the tenth chip pointed out. The children 
would then be asked: How many are hidden? With three chips hidden and the tenth chip 
identified, they were asked to find the seventh chip and afterwards, to find the position 
of an indicated chip. Finally, even more sophisticated tasks were selected, tasks that 
would invo.1ve double counting forwards or backwards. For instance, children might be 
asked to count out loud five number words from a given number, or to find how many 
number words are between two given ones. As can be seen, many tasks can be designed 
to evaluate procedural understanding. 

In view of our definition of number as a measure of plurality and of position, the 
logico-mathematical abstraction of number must reflect both the invariance of plurality 
and the invariance of its measure, leading to the abstraction of cardinal number. It 
must also reflect both the invariance of position and the invariance of the measure of 
position, leading to the abstraction of ordinal number. 

Over twenty years ago, Piaget's collaborator Pierre Greco (1962) felt the need to 
distinguish between plurality and the measure of plurality. He modified the original 
conservation task involving two equal rows of chips by asking the children to count one 
of the rows before stretching the other one; he then asked how many chips were in the 
elongated row while screening it from view. Those who could answer the question were 
said to conserve quotity. Greco found that many five-year-olds claimed that there were 
seven chips in each row but that the elongated row had more. Thus, these children 
conserved quotity without conserving plurality. For these children, to conserve quotity 
simply meant that they could maintain the numerical label associated with the elongated 
row, but their count was not yet a measure of plurality, since they thought that the 
plurality had changed. It is only when both plurality and quotity are conserved, when 
both invariances are perceived, that number becomes a measure of plurality. At .that 
stage, one can claim that the child has achieved a logico-mathematical abstraction of 
cardinal number. Of course, the Piaget and the Greco tasks are not the only ones by 
which abstraction of cardinal number can be assessed. These involve a specific type of 
transformation. All the other tasks previously used to assess the invariance of plurality 
can also be used here by modifying them to include enumeration. 

An entirely analogous approach can be used to describe the logico-mathematical 
abstraction of ordinal number. Similar to the notion of quotity, one can introduce its 
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parallel in the context of position. We define ordity as the ability to maintain the 
numerical label associated with the position of an element in an ordered set subject to 
various transformations such as elongation, translation, hiding part of a row. And of 
course, there are children who perceive the invariance of ordity without perceiving the 
invariance of position. Only when both are present can one claim to have achieved a 
logico-mathematical abstraction of ordinal number. 

By the formalization of number, we mean the gradual development of various 
mathematical notations. When asked to send a message indicating how many objects are 
in front of them, children will represent each one by a drawing and later on by a tally 
mark. Once they learn to write their numerals, they may write the sequence 1,2, 3, 4, 
5, 6, 7 to represent the cardinality of a set of seven objects, thereby indicating their need 
to rely on a 1: 1 correspondence between the objects and the numerals; by the end of 
kindergarten, most of them can use the numeral '7' with its intended cardinal meaning. 

In fact, many of them can write down numbers exceeding nine. Of course, this does not 
imply any awareness of place value notation. Nevertheless, it indicates that they perceive 
the concatenation of two digits globally (e.g. '12' no longer means 'one and two' but 
'twelve'). However, even the understanding of positional notation grows gradually: from 
mere juxtaposition (numerals are written next to each other without regard to relative 
position), through a chronological stage (the order of production prevails over the relative 
position), to a final conventional level. 

The above discussion of number suggests the following description of the understanding 
of mathematical concepts: 

Procedural understanding refers to the acquisition of explicit logico-mathematical 
procedures which the learner can relate to the underlying preliminary physical concepts 
and use appropriately. 

Logico-mathematical abstraction refers to the construction of logico-mathematical 
invariants together with the relevant logico-physical invariants (as in the abstraction of 
cardinal number and ordinal number), or the reversibility and composition of 
logico-mathematical transformations and operations (e.g. subtraction viewed as the 
inverse of addition; strings of additions reduced to fewer operations through 
composition), or as generalization (e.g. commutativity of addition perceived as a property 
applying to all pairs of natural numbers). 

Formalization refers to its usual interpretations, that ofaxiomatization and formal 
mathematical proof which, at the elementary level, could be viewed as discovering 
axioms and finding logical mathematical justifications respectively. But two additional 
meanings are assigned to formalization, that of enclosing a mathematical notion into a 
formal definition, and that of using mathematical symbolization for notions for which 
prior procedural understanding or abstraction already exist to some degree. 
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As can be seen from the first two definitions above, the understanding of a mathematical 
concept must rest on the understanding of the preliminary physical concepts. We thus 
end up with a two-tiered model of understanding. However, this does not imply that 
the understanding of a mathematical concept needs to await the prior three levels of 
understanding of the preliminary physical concepts. For instance, our research shows that 
kindergartners master counting procedures and the formalization of number well before 
they perceive all the invariances of plurality and position. Nevertheless, due to the very 
definition of logico-mathematical abstraction, this component part of understanding cannot 
occur without the prior logico-physical abstraction of the preliminary physical concepts. 
The non-linearity of our model is expressed by the various arrows in the following 
diagram: 

UNDERSTANDING OF PRELIMINARY PHYSICAL CONCEPT 

Intuitive Logico-physical 
.... ....,rocedural 

understanding understanding 

Logico-math. 
procedural 
understanding 

Logico-physical 
abstraction 

Formalization 

UNDERSTANDING OF EMERGING MATHEMATICAL CONCEPT 

Figure 1. The two-tiered model of understanding 

Two further important changes in the model need to be brought out. The first one 
pertains to our definition of 'formalization'. Whereas in our earlier models we required 
prior abstraction in order to recognize formalization as comprehension, we have now 
loosened this restriction to include procedural understanding. For instance, when sending 
a numerical message, the child may write out the whole sequence of digits and this can 
be considered as a formalization of the counting procedure. The other change is more 
general. We have avoided using. the word 'level' to describe the understanding of 
mathematical concepts and replaced it with the expression 'constituent part' in order to 
prevent an overly hierarchical interpretation. 

The following tables summarize the criteria used to assess the child's understanding of 
natural number: 
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Table 1. Understanding of preliminary physical concepts of number 

INTUITIVE 
UNDERSTANDING 

Plurality: 

Visual determination 
of more, less, many, 
few, as many 

Position: 

Visual determination 
of before, after, 
between, at the same 
time, first, last 

PROCEDURAL 
UNDERSTANDING 
(LOGICO-PBYSICAL) 

1-1 correspondence 
used to generate a set 
that has more, less, 
as many as, one more 
than a given set 

1-1 correspondence 
used to generate an 
ordered set subject 
to positional 
constraints (before, 
after, at the same 
time) 

ABSTRACTION 
(LOGICO-PHYSICAL) 

Invariance of a 
single set .wrt 
dispersion, 
displacement within 
a given space, 
rotation, elongation, 
the non-visibility of 
some of its elements. 
Invariance of 
plurality in 
Piagetian test 

Invariance of 
position of an object 
in a single row when 
the row is elongated, 
when some of its 
elements are visible. 
Invariance of 
position of two 
corresponding objects 
when one row is moved 
forward. 
Variability of the 
position of an 
object in a row when 
the first element 
of the row is 
removed. 
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Table 2. The understanding of number 

PROCEDURAL 
UNDERSTANDING 
(LOGICO-MATHEMATICAL) 

Counting from 1; 
from 1 and stopping 
at a given number; 
from a given number 
M; from a given 
number M and 
stopping at a given 
number N>M; backward 
recitation from a 
given number; from a 
given number Nand 
stopping at a given 
number M<N 

Double-counting 

Recitation of the N 
number-words 
following a given 
number-word; 

Recitation from A 
to B>A, keeping 
track of how many 
number-words are 
pronounced; 

Backwards recitation 
of the N number­
words preceding a 
given one; 

Backwards recitation 
from B to A, keeping 
track of how many 
number-words are 
pronounced. 

ABSTRACTION 
(LOGICO-MATHEMATICAL) 

cardinal number: 
uniqueness of 
cardinality; 
invariance of card 
of a row wrt the 
direction of the 
count; 
perception of the 
invariance of 
plurality and quotity 
of a single set wrt 
dispersion, wrt 
elongation, wrt the 
non-visibility of 
some elements; 
perception of the 
iJ?variance of 
plurality and quotity 
of two equal rows 
when one of them is 
elongated; 
synthesis of 
counting-on and 
cardinality. 

Ordinal number: 
perception of the 
variability of 
position and ordity 
of an object when the 
first object of the 
row is removed; 
perception of the 
invariance of 
pos·ition and ordity 
of a single set wrt 
elongation, or the 
non-visibility of 
some of its elements; 
perception of the 
invariance of 
position and ordity 
of two corresponding 
objects when one row 
is moved forward. 

FORMALIZATION 

Ability to recognise 
a numeral and 
generate a 
corresponding set of 
objects or identify 
an object of 
corresponding rank; 
ability to represent 
the cardinality of a 
set: 
- by drawing an 
equivalents set of 
pictures of the 
objects 
- by putting down an 
equivalent set of 
tally marks 
- by writing out the 
equivalent sequence 
of numerals 
- by writing a 
numeral as the 
cardinal of the set; 
ability to write the 
rank of an object 
in a given row; 
Positional notation 
(for those who can 
recognize or write 
two-digit numbers) 
- as juxtaposition 
- chronologically 
- conventionally 
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By way of conclusion 

The construction of a fundamental concept in mathematics involves many different ideas 
that need to be related to each other into some kind of cognitive grid. As opposed to the 
acquisition of isolated parcels of knowledge, the development of fundamental 
mathematical concepts involves linking together several different notions into some 
organic whole forming some kind of cognitive matrix. But all this knowledge needs to 
be significant and relevant. This can be achieved only when it can be related to 
problem-situations, that is, situations in which this knowledge provides answers to some 
perceived problem. For instance, what would be the point in learning the sequence of the 
number words unless these were used to answer questions about cardinality and rank? 
We use the expression 'conceptual scheme' to convey both the idea of a cognitive grid 
or cognitive matrix, as well as the relevant problem-situations. 

As can be inferred from the theoretical part of our paper, our intention has been to study 
the learner's construction of a conceptual scheme and not just a part of it. It is with this 
objective in mind that we have developed our models of understanding. These models 
were to provide a frame of reference in which we could follow each learner's 
construction. In this sense, our models can be called 'epistemological'. Of course, this 
type of work actualizes what is meant by a constructivist approach to mathematics 
education. For instance, since the acquisition of fundamental concepts taught in primary 
school mathematics require two or three years, the conceptual analyses obtained by using 
our models provide the teachers with an overview of a given conceptual scheme. Without 
diminishing the importance of mathematical procedures, our models situate these in a 
broader context and emphasize the thinking processes involved. We thus realize a 
Lakatosian (Lakatos, 1976) perspective in the context of concept formation. 
Our latest model of understanding suggests a basic structure that distinguishes between 
a first tier dealing with preliminary physical concepts and a second tier involving the 
emerging mathematical concept. This distinction is somewhat analogous to the one Piaget 
makes between 'simple' abstraction (or 'physical' abstraction) based on the properties 
of objects, and 'reflective' abstraction (or 'logico-mathematical' abstraction) that is based 
on the coordination of actions or operations. This distinction can be justified as long as 
actions and operations are in the mental domain. However, one cannot justify it as 
readily when the actions and operations are carried out on concrete objects. In fact, 
Piaget has acknowledged this when he suggested two forms of reflective abstraction: 

We will speak in this case of "pseudo-empirical abstractions" since the information is 
based on the objects; however, the information regarding their properties results from the 
subject's actions on these objects. And this initial form of reflective abstraction plays a 
fundamental psycho-genetic role in aIllogico-mathematicalleaming, as long as the subject 
requires concrete manipulations in order to understand certain structures that might be 
considered too 'abstract'. (Piaget, 1974, p. 84, our translation) 

The existence of two tiers in our model takes into account the subject's action on his or 
her physical environment The two forms of reflective abstraction are comparable to the 
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two aspects of understanding in our model: Piaget's pseudo-empirical abstraction is 
equivalent to our logico-physical abstraction, his logico-mathematical abstraction is the 
same as the one we mention in our second tier. 

Our new model has several pedagogical implications. It links up explicitly the children's 
mathematics to their physical world and thus strongly suggests using the latter as a 
starting point in the construction of their mathematical concepts. One cannot 
over-emphasize the importance of this approach, for Ginsburg's work (1977) has brought 
to light the gap that may exist in the children's mind between their school mathematics 
and their 'informal' mathematics, that is, those acquired outside of school. The informal 
knowledge that Ginsburg identifies as System 1 corresponds to what we call 'preliminary 
physical concepts'. Hence, with its two tiers, our model encompasses the two forms of 
knowledge. 

Other implications of a more practical nature involve applications to instruction and 
evaluation. While our model of understanding is definitely not a model of instruction, 
nevertheless, its use for the analysis of a conceptual scheme brings out several aspects of 
understanding that are often neglected. For instance, few teachers or textbooks assign to 
the ordinal aspect of number the importance it deserves. Moreover, logico-mathematical 
procedures are often introduced prematurely, thus neglecting the prior development of 
logico-physical procedures. Activities that may provide the children with the possibility 
of achieving some degree of abstraction, at both tiers, are usually ignored. Following 
the analysis of a conceptual scheme, teachers can develop tasks related to every aspect of 
understanding of a given concept. They could thus present to the children a far broader 
range of activities whose complementarity adds up to a much richer cognitive 
environment. 

Such analyses also provide a frame of reference for the evaluation of a child's 
knowledge. They enable the teacher to assess the shortcomings in his or her background. 
For instance, a child who cannot recite the number words backwards will not be able to 
deduce the new rank of an object in a row following the removal of one of the preceding 
objects. They also enable the teacher to verify if appropriate linkages have been made, 
if different aspects of a conceptual scheme have been integrated. For example, the child 
who can count-on from a given rank in a row of chips, but cannot tell the cardinality of 
the row, has not yet achieved a synthesis of the counting-on procedure and the notion of 
cardinality. 

We do not claim that this model will be suitable to describe the understanding of all 
mathematical concepts. Up to now we have applied it successfully to the analysis of the 
addition of small num\;)ers (Herscovics & Bergeron, 1989) and early multiplication 
(Nantais & Herscovics, 1989). Heraud (1987, 1989) has applied it to length and the 
measure of length, to surface and the measure of surface (area). Dionne and Boukhssimi 
(1989) have applied it to algebraic concepts: to physical point and algebraic point 
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(coordinates); to the physical notion of steepness and to the measure of steepness (slope); 
to physical straight line and to linear equation. 
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I ntroduction1 

In a companion paper, "A model to describe the construction of mathematical concepts 
from an epistemological perspective", we presented a two-tiered model that could be used 
to follow the evolution of the child's understanding. The first tier dealt with the physical 
pre-concepts of the notion involved and consisted of three distinct levels: intuitive 
understanding, logico-physico procedural understanding, and logico-physical abstraction. 
The second tier described the comprehension of the emerging mathematical concept and 
involved three component parts: logico-mathematico procedural understanding, 
logico-mathematical abstraction, and formalization. This model was then applied to 
identify criteria that might be used to characterize each of the six aspects involved in the 
understanding of natural number. 

Initially, each of the six components of understanding of natural number was the subject 
of an assessment study. Several of these studies have been reported. Two papers have 
dealt with numerical procedures (Bergeron, A., Herscovics, N., & Bergeron, J. C., 1986 
Herscovics, N., Bergeron, J. C. & Bergeron, A., 1986a). Results on different tasks 
dealing with logico-physical abstraction of plurality and logico-mathematical abstraction 
of number have also been reported (Herscovics, N., Bergeron, J. C. & Bergeron, A, 
1986b). The kindergartner's symbolization of numbers has been studied and discussed 
(Bergeron, J. C., Herscovics, N. & Bergeron, A., 1986). Following these assessment 
studies which were carried out with different groups of kindergartners, we experimented 
all the different tasks on the same children in four case studies (Herscovics, N., 
Bergeron, J. C. & Bergeron, A., 1987; Bergeron, A., Herscovics, N., 
& Bergeron, J. C., 1987). 

However, to identify some general tendencies in the children's construction of number, 
a few case studies were not sufficient. This is why we extended our study to a larger 
group of kindergartners. We first experimented the tasks on the preliminary physical 
pre-concepts with a group of 30 Montreal kindergartners (Bergeron & Herscovics, in 
press). The following year we were ready to investigate both levels of our two-tier model 
with another group of French speaking Montreal children. And to determine if the 
cognitive structures observed here were comparable to those of other urban children from 
a different culture but with the same language or from the same culture but speaking 
another tongue, kindergartners from Paris, France, and Cambridge, Mass., were also 
assessed. 

The samples used in our study involved 29 Parisian kindergartners of average age 5: 8 
whose school was situated in a lower socio-economic neighbourhood (lower middle class 
and working class); 30 kindergartners of average age 5: 10 whose school was located in 
a lower socio-economic neighbourhood in Cambridge, Mass.; 14 of these children were 

Research funded by the Quebec Ministry of Education (F.C.A.R. EQ-2923) 
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in regular classes whereas 16 of them were following an activity oriented program for 
early childhood based on Mary Baratta-Lorton's Mathematics Their Way (1976); 32 
kindergartners of average age 6:2 from 4 different schools in the Montreal area, two 
being situated in higher socio-economic suburbs and two located in lower socio-economic 
neighbourhoods. For the overall project, which dealt with all the different aspects of 
understanding number, three to four individual interviews lasting on average 30 minutes 
were carried out with" average children selected by the school authorities. Here are some 
highlights of this international study. 

Enumeration skills 

Pre-requisite to any mastery of the enumeration procedures is the child's memorization 
of the number word sequence. However, prior research has shown that a majority of 
kindergartners perform better on the enumeration of a large set of objects than on the 
mere recitation of the number-word sequence (Bergeron, A. et al. 1986). Thus in order 
to assess the extent of their knowledge of the number-word sequence, a set of 76 chips 
was provided with instructions to "Count as far as you can". The following table 
indicates the distribution of their enumeration skills. 

Table 1. Enumeration skills 

City N I 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70+ Ave. 

Call1bri dge 
ReguLar classes 14 I 0 0 3 3 0 1 3 4 53.7 
Lorton classes 16 I 0 0 0 0 2 1 1 12 70.8 

TotaLs 30 I 0 0 3 3 2 2 4 16 62.8 

Paris 29 I 1 10 6 5 1 3 0 3 32.4 

Montreal 
Higher Soc. Ec. 16 I 0 4 1 4 1 0 4 2 45.1 
Lower Soc. Ec. 16 I 1 3 4 4 0 1 1 2 37.3 

Totals 32 I 1 7 5 8 1 1 5 4 41.2 

What is striking at a first glance is the similarity between the Parisian and Montreal 
samples, this, in spite of the fact that the French children were six months younger than 
the Canadian ones. But even more striking is the shift in the distribution of the 
Cambridge children. Not a single child is in the 0-19 range, in contrast with the 37 % 
and 25 % in the other two cities. Moreover, half the Cambridge children can count 
beyond 70, compared to 10.3% and 12.5% in the other two cities. 

The distributions provide another interesting fact. It seems that for the Cambridge regular 
classes, as well as for the Parisian children and the two Montreal groups, the number 39 
constitutes a temporary limit point: 42.9%, 75.8%, 56,3% and 75.0% respectively are 
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within the 0-39 range. Perhaps this might indicate that these children have not yet 
learned the sequence of multiples of ten. That two decades, from 20 to 29, and 30 to 39, 
are sufficient for the generalization of the decade structure, seems evident from the fact 
that when the children learn their multiples of ten, their range jumps up to the sixties and 
seventies. Few of them remain in the 40 to 59 range. 

A greater frequency of the Parisian children in the 50-59 range might be explained by 
a lack of knowledge of the multiples of ten beyond 50. One might conjecture that the 5 
Montreal children in the 60-69 range (16.7%) have difficulties with 70 since in French, 
the tens pattern changes ( ... , cinquante, soixante, soixante-dix, ... ). However, the data 
does not bear this out, since in the regular Cambridge classes, 3 out of 14 children 
(2l.4%) are in the same range. 

Understanding counting - on 

Fuson, Richards & Briars (1982) report that when the number word sequence becomes 
a breakable chain, children can start counting-up (reciting-up) from a given number and 
that this skill translates into a cardinal operation, that of counting-on in the context of 
addition (p.52). In our study, we have experimented numerical tasks requiring 
counting-on in non-additive situations involving both cardinal and ordinal contexts. 

Our results indicate that 84 of the 91 kindergartners could recite up from a given number 
and that most of them did not even need a running start. Comparing the performance in 
the three cities shows that nearly all (90%) the Cambridge children can start at 12,. that 
about two thirds of the Montreal children (68.8 %) , and about half of the Parisian sample 
(48.3%) can also do so. However, when asked to recite up starting from 6, 100% of the 
Cambridge children, 93.8% of the Montreal ones, and 75.9% of the Parisian ones 
succeeded. These differences can easily be explained by the emphasis on counting found 
in the Cambridge school and by the age difference of the Parisian children who were six 
months younger than the Montreal ones. 

Having assessed the children's reciting-up skills, some special tasks were designed to 
determine their spontaneous use in the solution of cardinal and ordinal problems. 
Initially, these tasks were similar to the one used by Steffe, von Glasersfeld, Richards and 
Cobb (1983). Each child was presented with a row of 13 chips glued to a cardboard, 
the interviewer stating: 
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Here is a cardboard with some chips. Look, I'm putting it in this bag 
(while inserting it in a partially opaque plastic bag) 

I • • • • • • • • • • • • • I • • • • • • • 

Figure 1: Inserting row in bag 

Look, six chips are hidden here (indicating the opaque part) 

Can you tell me how many chips are in the whole bag? 

The results indicate that with the exception of the Lorton classes, the predominant 
procedure used was that of figural counting (counting first the hidden objects by pointing 
at each imagined unit and then continuing the count with the visible part): 50% of the 
children used it (50.0%, 48.3%, 43.8% and 56.3% respectively in the usual order of 
presentation) . 

Following this cardinal task, the same material was used for an ordinal task that required 
locating the chip corresponding to a given rank. The interviewer asked: 

Remember, there are six chips that you can't see. Here is the first one 
(pointing out the one on the extreme left of the hidden part) 
Can you put this little arrow next to the ninth chip? 

The data show that once again, with the exception of the Lorton classes, figural counting 
is the most common procedure: 78.6%, 65.5%, 62.5% and 75.5% respectively in the 
usual order of presentation. Although most children can recite-up, the use of the 
counting-on procedure is relatively low, except for the Lorton classes. Less than a third 
of the children who possess the reciting-up skill think of using it in the above tasks, 
21.4%,4.5%,31.3% and 28.6% respectively for the cardinal task and 21.4%,27.3%, 
31.3% and 28.6% respectively for the ordinal tasks. 

These results bring into question the meaning of counting-on for most of these children. 
To investigate their interpretation, a simple task in which they were asked to couQt-on 
was proposed. The interviewer presented them with 11 chips glued to a cardboard. This 
cardboard was then inserted in a partially opaque plastic bag so that 4 chips would no 
longer be visible: 
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Here is a cardboard with chips glued to it 

I·· · · · · · · · · · I ) 
And I'm putting them in a bag 

• • • • • 

Figure 2: Counting-:-on a partially hidden row 

Look, there are some hidden chips. When I counted them, I started from here 
(pointing to the first hidden chip on the left) and when I got here (putting a small arrow 
next to the sixth chip) this was the sixth. Can you continue counting from here OD, 

from the sixth one? 
When the counting was completed: 
Can you tell me how many chips are in the whole bag? 

The results show that out of 87 subjects who could count-on (compared with 82 who 
could recite up), only 33 of them (37.9%) could tell how many. Thus a full 60 % could 
not! Of course, this brings into question the children's interpretation of the counting-on 
procedure. It is evident that they have not yet been able to achieve a synthesis of the 
counting-on procedure and their cardinality scheme. The surprisingly poor performance 
on this task might be explained in terms of three conjectures: (1) Perhaps it is the 
non-visibility of some of the objects that affects the children's capacity to relate the 
counting-on procedure with the cardinality of the set; (2) Perhaps it is their .need to still 
establish a one-to-one correspondence between the number-words and the objects; (3) 
There might be a gap in the children's integration of the cardinal and ordinal aspects of 
number. Further details on the procedural understanding of number appear in Bergeron 
& Herscovics (1989). 

Logico-mathematical abstraction of cardinal number 

Several different tasks were used to assess the children's logico-mathematical abstraction 
of cardinal number. We provide here details of the two most difficult tasks as well as an 
overview of the results obtained for the six criteria. 

Piagetian tasks. One of the tasks used to assess the invariance of cardinality was the 
classical Piagetian test on the conservation of plurality and the Greco modification 
mentioned earlier. The following table shows the results obtained: 
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Table 2. Success rates on Piagetian tasks 

City Invariance Invariance Invariance 
of plurality of quotity of both 

eamridge 
Reg. cLasses (n=14) 8 (57.1%) 12 (85.7%) 8 (57.1%) 
Lorton cL. (n=16) 16 (100%) 16 (100%) 16 (100%) 

Totals 24 (80.0%) 28 (93.3%) 24 (80.0%) 

Paris (n=29) 7 (24.1%) 21 (72.4%) 7 (24.1%) 

Montreal 
Hi soc.ec. (n=16) 13 (81.3%) 14 (87.5%) 12 (75.0%) 
Low soc.ec. (n=16) 8 (50.0%) 12 (75.0%) 7 (43.8%) 

Totals 21 (65.6%) 26 (81.3%) 19 (59.4%) 

Results indicate a maximal rate of success among the children following the 
Barrata-Lorton program. On the invariance of plurality, the sample from the regular 
Cambridge classes compares with the sample from the two Montreal lower socio­
economic neighbourhoods. The sample of Parisian children achieves a much lower rate 
(24.1 %). This can be attributed in part to their younger age. However, this result is 
fairly consistent with their earlier performance on the elongation of a single row, for their 
success rate there was about 25 % lower than the lowest results obtained in Montreal. 

Invariance with respect to the visibility of the objects. In another set of tasks dealing 
with the invariance of cardinality, children were given in the first interview a row of 11 
chips glued on a piece of cardboard. They were told: "Here is a large cardboard with 
little chips glued to it. Look, I'm putting the cardboard in a bag (the interviewer inserting 
the cardboard in a transparent bag). Good, are all the chips in the bag?". Following 
confirmation: "Look, I'm putting a plastic strip in the bag (the interviewer inserting a 
plastic strip with an opaque part large enough to cover three chips). And now, are there 
more chips in the bag, less chips, or the same number as before?". Usually in the second 
interview, this -task was repeated but the children were asked to count up the number of 
chips before they were inserted in the bag. The following table shows the results 
obtained: 
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Table 3. Success rates on partially hidden row 

City Invariance Invariance Invariance 
of plurality of quotity of both 

Callbridge 
Reg. classes (n=14) 1 ( 7.1%) 10 (71.4%) 1 ( 7.1%) 
Lorton cl. (n=16) 5 (31.3%) 14 (87.5%) 5 (31.3%) 

Totals 6 (20.0%) 24 (80.0%) 6 (20.0%) 

Paris (n=29) 8 (27.6%) 6 (20.7%) 1 ( 3.4%) 

Montreal 
Hi soc.ec. (n=16) 3 (18.8%) 13 (81.3%) 2 (12.5%) 
Low soc.ec. (n=16) 0 12 (75.0%) 0 

Totals 3 ( 9.4%) 26 (78.1%) 2 ( 6.3%) 

Whereas the results on the invariance of quotity are similar in Cambridge and in 
Montreal, their discrepancy with those obtained in Paris is hard to explain. But it is the 
uniformly low results on the invariance of plurality that are most astonishing. They 
indicate that among most kindergartners, including those in the Lorton program, the 
visibility of the objects is still primordial. This is not a question of the permanence of 
tQ,e objects since it is acquired well before the age of five. Nor is it a question of the 
enumerability of the partially hidden set, as evidenced by the invariance of quotity. 
Visibility of the objects affects these children's conception of plurality. 

In order to have an overview of the children's understanding of cardinal number, the 
results (in percents) obtained on the various tasks are summarized in the following table, 
invariance of cardinality signifying the invariance of both plurality and quotity: 

Table 4. Hierarchy of criteria for cardinality 

I nvariance C..".idge Paris Montreal 
~ Lorton Regular lower Higher 

classes classes income income 

Uniqueness of card. 93.8 100. , 96.6 100. 93.8 
Inv.wrt direction of count 100. 92.9 86.2 81.3 100. 
Inv.wrt elongation of row 93.8 71.4 48.3 75.0 81.3 
Inv.wrt dispersion of set 93.8 57.1 65.5 62.5 87.5 
Inv.wrt Piagetian tests 100. ", 57.1 24.1 43.8 75.0 
Inv.wrt visibility of objects 31.3 7.1 3.4 o. 12.5 

What is most striking about this table is that apart from the Parisian results obtained on 
tasks involving the elongation of a set, the basic hierarchy is similar in the three samples. 
By and large, the uniqueness of the cardinality of a set and the invariance with respect to 
the direction of the count seem to be achieved in this age group. The Cambridge and 
Montreal results on the elongation of a row and on the dispersion of a set are similar in 
the two regular classes (71.4%) and the two lower income classes (75.0%). Compared 
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with the dispersion of a set, the Piagetian tests are more difficult for both Parisian and 
Montreal children. The invariance with respect to the visibility of the objects has the 
lowest rate of success in all groups. 

Also remarkable is a comparison of the success rates in the three middle columns. Again, 
if the odd results obtained in Paris on the elongations tasks are ignored, very similar rates 
are found among the Cambridge children from the regular classes, the Parisian children 
(who also come from a lower middle class and working class area), and the two Montreal 
classes situated in comparable neighbourhoods. 

Logico-mathematical abstraction of ordinal number 

Four different criteria were used to assess the logico-mathematical abstraction of ordinal 
number. We present here the details on the tasks dealing with the variability of ordinality 
and its invariance with respect to the visibility of the objects and with respect to 
translation. We also provide an overview of the results obtained for the four criteria. 

Variability of the rank. In order to determine if children perceived the variability of 
the rank of an object with respect to the number of elements preceding it, we used the 
following task. A set of 8 little cars of different colours were aligned in a row. 

green white black yellow blue red brown orange 

Figure 3: Variability of rank 

Once a common vocabulary was established using the word "number" in an ordinal sense 
(Herscovics & Bergeron,1988), we told the following little story: "The parade is now 
stopped because the green car broke down. The tow truck is coming to get it (the 
interviewer removing the green car), and it won't come back in the parade. Now look 
at the little blue car. Do you think that the blue car still has the same number as before 
in the parade or do you think that its number has changed?" 

In the second interview, the variability of rank was investigated by repeating a similar 
question but with an important addition. As soon as the parade of cars was laid out in 
front of the children (in the same order as before), they were asked "Can you tell me the 
number of the brown car?". Once the children had found (by counting) that it was in 
seventh position, they were again told that the green car (the first one) had broken down, 
and the interviewer then removed it. At this point they were asked: "Now, without 
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counting, can you tell me the number of the brown car?" while screening the parade with 
both hands or the forearm to prevent the possibility of counting. The following table 
shows the results obtained : 

Table 5. Success rates on variability of rank 

City perceived were able succeeded 
change of to find new both 
blue car's rank of tasks 
position brown car 

Camridge 
Regular classes (n=14) 12 (85.7%) 5 (35.7%) 4 (28.6%) 
Lorton classes (n=16) 14 (87.5%) 13 (81.3%) 12 (75.0%) 

Totals (n=30) 26 (86.7%) 18 (60.0%) 16 (53.3%) 

Paris (n=29) 25 (86.2%) 16 (55.2%) 15 (51.7%) 

Montreal 
High soc-econ (n=16) 14 (87.5%) 14 (87.5%) 13 (81.3%) 
Low soc-econ (n=16) 15 (93.8%) 10 (62.5%) 10 (62.5%) 

Totals (n=32) 29 (90.6%) 24 (75.0%) 23 (71.9%) 

Column 1 shows that without any counting, most children perceived that the position of 
the blue car had changed. However, the success rates shown in the second column vary 
widely. A low of 35.7% is obtained in the regular Cambridge classes. Results found in 
the Parisian group and the two Montreal classes in lower socio-economic neighbourhoods 
are comparable (55.2% and 62.5% respectively) as well as for the Lorton classes and the 
two other Montreal classes (81.3% vs 87.5%). These comments apply to the third 
column, when both tasks are considered. 

These results are somewhat surprising. Except for the Parisian children, it is difficult to 
explain the poorer results obtained in finding the new rank of the brown car. Among the 
French kindergartners only 18 of them (62%) could recite the number-word sequence 
backwards from at least 6. Thus that only 55 % succeeded in identifying the brown car's 
new rank (6) is reasonable. But for the Cambridge and Montreal samples, absolutely all 
children were able to recite backwards. Clearly, this indicates that the cognitive problem 
at hand is much deeper than that of mastering recitation skills. Indeed, the very 
integration of cardinality and ordinality is at stake here since by removing the head car, 
the number of cars preceding the brown car is reduced by one and this should induce a 
corresponding change in the perception of ordinality. 

Invariance with respect to the visibility of the objects. A task introduced during the 
first interview dealt with the invariance of position when part of the set is hidden. A row 
of 9 little trucks was drawn on a cardboard, each truck coloured differently. The children 
were told: "Look, here is a parade of trucks. Can you show me the white truck?" (in 
sixth position). After it was duly pointed out, the interviewer announced "The parade 
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must now go under a tunnel" and then proceeded to slide the cardboard under the tunnel 
in such a way that part of the first truck was still visible but three trucks were hidden. 
The children were then asked: "Do you think that the white truck has kept the same 
number in the parade or do you think that it now has a different number?" 

HHHHH 
black white brown yellow' blue 

tunnel 

Figure 4: Trucks in tunnel 

The above task was repeated in the second interview with an important variation. The 
children were now asked to find the rank of the white truck. After they had counted to 
determine its rank (sixth), the parade was moved forward into the tunnel and the 
interviewer asked again "Now, can you tell me the number of the white truck in the 
parade?". The following table provides the data obtained with this task assessing the 
invariance of position and of ordity: 

Table 6. Success rates on partially hidden row of trucks 

City Invar;ance Invar;ance Invar;ance 
of position of ordity of both 

Canbridge 
Regular classes (n=14) 4 (28.6%) 6 (42.9%) 3 (21.4%) 
Lorton classes (n=16) 11 (68.8%) 12 (75.0%) 8 (50.0%) 

Totals (n=30) 15 (50.0%) 18 (60.0%) 11 (36.7%) 

Paris (n=29) 6 (20.7%) 10 (34.5%) 5 (17.2%) 

MontreaL 
High soc-econ (n=16) 10 (62.5%) 12 (75.0%) 9 (56.3%) 
Low soc-econ (n=16) 5 (31.3%) 7 (43.8%) 3 (18.8%) 

Totals (n=32) 15 (46.9%) 19 (59.4%) 12 (37.5%) 

An examination of the results in the first column indicates that the number of children 
who think that the white truck has kept the same position in the row is comparable in the 
regular Cambridge classes, the Parisian children, and the Montreal kindergartners from 
the two schools situated in a lower socio-economic neighbourhood. The results of the 
other Montreal children compare with those of the Lorton classes. On the invariance of 
ordity alone as well as on the invariance of ordinality based on both position and ordity, 
again the results regroup themselves in two comparable sets, the Lorton classes and those 
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of the Montreal children from the higher socio-economic areas in one set, and the other 
three samples in the other set. 

Invariance with respect to translation. The last set of tasks we developed in our 
assessment of ordinal number were somewhat similar to the Piagetian conservation tests 
for plurality and quotity , for they involved the comparison of two parallel rows. The 
interviewer aligned a row of 9 identical cars, and asked the children "Would you make 
a parade just like mine and next to it?" while handing over another 9 cars. Then using 
a blue coloured sheet of paper (the river) and a small piece of cardboard to represent a 
ferry she explained: "The parades must cross the river on a little ferry boat. But the ferry 
can only carry two cars at a time, one car from each parade: When we are ready, we 
take one car in my parade (putting her lead car on the ferry), and one car from your 
parade" (asking the children to put their lead car on the ferry). The ferry then crossed 
the river with the two cars, unloaded them, and came back for two more: 

~~~~~~~ 

~~~~~~~ 

Figure 5: Two parades crossing a river 

The cars were then put back in their initial position and the children were told: "Now I'm 
putting this little arrow on this car (the seventh car in the interviewer's row). Can you 
put this other arrow on the car in your parade which has the same number as mine?" 

.£}, 

~~~~~~~~~ 

~~~~~~~~~ 

if 

Figure 6: Two cars having the same rank 
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Once this was done, the interviewer announced "Now look, the parades move on" while 
moving the child's parade a small distance and moving her own parade somewhat further 
by the length of two cars: 

o 
~~~~~~~~~ 

~~~~~~~~~ 
"U' 

Figure 7: "Will the two cars cross at the same timeT' 

The children were then asked: "Do you think that the two cars with the arrows will cross 
the river at the same time?" Following their answer, they were asked to show the 
interviewer how the two parades were to cross the river in order to verify that they were 
aware that the cars had to be ferried in pairs. Following the above task, the invariance 
of ordity was immediately assessed. The next table provides data on the invariance of 
position and on the invariance of ordity: 

Table 7. Success rates on translation task 

City Invariance Invariance Invariance 
of position of ordity of both 

Cambridge 
Regular classes (n=14) 2 (14.3%) 9 (64.3%) 2 (14.3%) 
Lorton classes (n=16) 4 (25.0%) 12 (75.0%) 3 (18.8%) 

Totals (n=30) 6 (20.0%) 21 (70.0%) 5 (16.7%) 

Paris (n=29) 2 (6.9%) 18 (62.1%) 2 (6.9%) 

Montreal 
High soc-econ (n=16) 1 (6.3%) 11 (68.8%) 1 ( 6.3% ) 
Low soc-econ (n=16) 3 (18.8%) 10 (62.5%) 2 (12.5%) 

Totals (n=32) 4 (12.5%) 21 (65.6%) 3 (9.4%) 

The 'results on the invariance of ordity with respect to translation vary but little between 
the groups. The very low results on the invariance of position induce a very low rate of 
success on the invariance of ordinality as shown in the third column. Quite clearly, even 
the children in the Lorton classes and in the Montreal classes in higher socio-economic 
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neighbourhoods do not manage to overcome the visual effect of the translation of one of 
the rows. 

In . order to have an overview of the children '.s understanding of ordinal number, the 
results (in percents) obtained on the various tasks are summarized in the following table, 
variability and invariance of ordinality signifying the variability and invariance of both 
position and ordity: 

Table 8. Hierarchy of criteria for ordinality 

Cambridge Paris Montreal 
Lorton Regular Lower Higher 
classes classes soc-ec soc-ec 

Variab. of ordin. no 75.0 28.6 51. 7 62.5 81.3 
Inv.wrt elongation 100. 64.3 27.6 56.3 68.8 
Inv.wrt visibility 50.0 21.4 17.2 18.8 56.3 
Inv.wrt translation 18.8 14.3 6.9 12.5 6.3 

Again, as with cardinality, there are marked distinctions in the performance of the Lorton 
classes as compared with the regular Cambridge classes and important differences between 
the two Montreal samples. 

As was the case with cardinal number, the similarities are quite striking. We find 
essentially the same hierarchy in the last three columns. For the two Cambridge groups, 
the success rates on variability and invariance with respect to elongation are inverted when 
compared with the other groups. Aside from this difference, the general hierarchy is the 
same. As mentioned earlier, the low performance of the regular Cambridge classes on 
the variability of ordinal number is somewhat surprising. The Parisian children'S poor 
performance on the invariance of ordinal number with respect to elongation is similar to 
their poor performance on the other comparable elongation tasks dealing with the 
invariance of cardinal number. Regarding the comparison of the Lorton classes with the 
Montreal children in the schools located in higher socio-economic suburbs, the similarity 
is still quite strong. 

By way of conclusion 

A most important conclusion implied by the international study on the construction of 
natural number is that kindergartners in Western urban environments evolve similar 
cognitive structures, despite some cultural differences, despite linguistic differences. This 
is evidenced by the hierarchies we uncovered among the different criteria used to assess 
each component part of understanding. It is particularly true for the three groups that 
were comparable in terms of classroom activities and socio-economic background. But 
this remains true for the other two groups, those Cambridge classes using activities based 
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on the Baratta-Lorton program and those Montreal children belonging to classes in schools 
situated in wealthier neighbourhoods. Although these last two groups had markedly 
higher success rates on the various tasks, the hierarchy of the success rates was essentially 
the same as for the other three groups. 

In terms of logico-mathematico procedural understanding, Table 1 shows that, with the 
exception of the Lorton classes, the other four groups were still developing their counting 
skills and that in each group the number 39 constitutes a temporary limit point. Again, 
in each of these four groups the predominant procedure used to solve cardinal and ordinal 
problems in the context of a partially hidden row was figural counting, while less than a 
third of the children who could recite up from 6 used counting-on. 

Regarding the children's abstraction of cardinality, Table 4 shows that for the regular 
Cambridge. classes, the Parisian classes and the Montreal pupils in the lower income 
group, not only is the hierarchy of the criteria essentially the same, but the success rates 
are also comparable if we except the Parisian results on the tasks involving elongation. 
For the Montreal children in the higher income group, if we ignore a difference of 6 % 
due to a difference of one child out of 16, the first two criteria are met by all, the next 
two criteria meet with comparable success rates (81.3% and 87.5%). And thus, the 
hierarchy obtained is essentially the same as for the three previous groups. For the 
Lorton group, since they all meet the first five criteria, one cannot order them. 
Nevertheless, even they have not achieved the invariance of cardinality with respect to the 
visibility of the objects. Regarding the abstraction of ordinality, Table 8 shows that, 
except for the inversion of the first two criteria for the Cambridge classes, all five groups 
indicate the same hierarchy. 

Our critical analysis of the children's performance may have obscured the fact that these 
kindergartners possessed a surprisingly extensive knowledge of number. For instance, 
nearly all could recite up from either 6 or 12, as well as recite backwards. Fuson et al 
(1982) have shown that such children are dealing with the number word sequence as a 
bi-directional breakable chain. While they did not use counting-on in order to solve 
problems in which some of the chips in a row were hidden, nevertheless they showed 
great ingenuity in inventing a new procedure, that of figural counting. In terms of 
abstraction too, we did not anticipate that nearly all these pupils could perceive the 
uniqueness of the cardinality of a set and its invariance with respect to the direction of the 
count. But their knowledge was far more extensive than reported in this paper, for almost 
all could leave a numerical message indicating the number of objects in front of them. 
About half the Parisian children and almost all the North American ones could read and 
write numbers beyond 10. 

This international study has also brought to light the existence of four unexpected 
cognitive obstacles. The first one relates to the task of counting-on from the sixth chip 
on a partially hidden row (see Fig. 2). A full 62 % of the children who could count-on 
were unable to answer the question "How many?". Even the Lorton group did not 
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succeed much better (50%). Three possible conjectures that might explain this problem 
were suggested in the analysis of the data. A second cognitive obstacle involves the 
children's perception of the variability of the rank of an object in a row (see Fig 3). 
Table 5 shows that in three of the five groups, many children still had problems in 
determining the new rank of a car following the removal of the lead car. 

If the first two obstacles might show evidence of a lack of integration of specific counting 
procedures (counting-on and counting backwards) into the children's notions of cardinality 
and ordinality, the last two obstacles seem to be more of a developmental nature. For 
instance, in all five groups, the visibility of the objects affects the kindergartners' 
perception of the invariance of cardinality (see Table 3) and to a lesser extent the 
invariance of ordinality (see Table 6). A similar interference due to the visual 
apprehension of the objects seems to be present in the task involving the translation of a 
row of cars (see Figure 7). 

Comparing the different results obtained from the two Montreal groups, it is clear that 
the overall success rate of the children from the classes in the higher socio-economic 
suburbs is greater. We are but mentioning the difference here without any pretence at a 
scientific investigation since the objective of our study was to assess the children's 
understanding. While we did not control for the quality of teachers, nevertheless it is 
well known that quite often, better schools manage to attract better teachers. Moreover, 
since officially there is no mathematics program for Quebec kindergartens, teachers are 
free to choose their classroom activities, with the result that these may differ both 
qualitatively and quantitatively from school to school. Finally, it is also well known that 
children in the wealthier neighbourhoods are more likely to experience at home a richer 
variety of educational activities. These are all variables that would have to be taken into 
account in any investigation of the effect of the pupils' socio-economic background. 
However, in our study, the reason for choosing schools in different socio-economic 
neighbourhoods was to provide us with a wider variety of subjects. 

A comparison of the different results obtained from the two Cambridge groups indicates 
much higher success rates for the children following the Baratta-Lorton program. A 
closer look at this program shows that it makes extensive use of concrete material, games 
and rhythmic body movements, thus touching upon some aspects of the preliminary 
physical concepts. Regarding the logico-mathematico procedural understanding of 
number, it goes well beyond simple enumeration from 1, and teaches explicitly 
counting-on and counting backwards, procedures that are then used primarily in cardinal 
tasks. In some of the kindergarten classes, the early arithmetic may even include addition 
and subtraction of small numbers. Children are also taught numerals and the conventional 
symbolization of the operations. While some of the tasks involved the invariance of 
cardinal number with respect to the partition of a set, most of the activities related to 
procedural understanding and to formalization. But these activities seem to have had a 
marked impact on the children's logico-mathematical abstraction. Table 4 shows that on 
the last four tasks dealing with the invariance of cardinality, the Lorton group scored 
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much higher than the regular one. This pattern holds for the first three tasks on ordinality 
listed in Table 8 

The results obtained by the Lorton group have serious pedagogical implications. They 
bring into question the various government policies specifying that no mathematical 
program ought to be assigned to the kindergarten level. These policies stem from a 
laudable desire to allow these children time to play and develop without any curriculum 
pressure. However, without confining them into a rigid mathematical program, one can 
envisage many numerical activities allowing them to play and develop their mathematical 
thinking. But for many kindergarten teachers, these activities are limited to simple 

'counting tasks. As our conceptual analysis and our international study have shown, 
kindergartners possess intellectual abilities that far exceed those needed to master such 
simple procedural skills. In fact, our work suggests that many different numerical 
activities C9uld be developed that would enable the child to progress along the different 
component parts of the understanding of number. 
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I know I've been asked to speak about multicultural influences in mathematics education, 
generally, but what I would like to do in this topic group is focus specifically upon 
cultural influences among Black, Hispanic, and Native American students. These are 
three populations of students which historically have been underachieving and 
underparticipating in the area of mathematics and often cultural influences are associated 
with their low levels of achievement and participation. Over the past year I have been 
working with a project designed to increase the levels of achievement and participation 
for Black, Hispanic, and Native American students and to look at cultural influences on 
their achievement and participation. Consequently, in this presentation I would like to 
discuss this project and our observations regarding the role of multicultural influences. 

A review of the literature on the mathematics achievement and participation of Black, 
Hispanic, and Native American students contains a great deal of data documenting their 
low levels. of achievement and participation. There are few studies which look 
empirically at possible causes of this low achievement and participation. Until recently, 
the only major studies addressing this issue were a clinical study of the mathematical 
understanding of Hispanic algebra students focusing on the relationships between language 
proficiency and mathematical understanding (Gerace & Mestre, 1982a, 1982b) and an 
examination of the role of Black English on the mathematical understanding of Black high 
school students (Orr, 1987). More recently, a series of chapters devoted to linguistic and 
cultural influences on mathematics achievement has been published (Cocking & Mestre, 
1988), although these tend to address opportunities to learn in specific multicultural 
teaching contexts as well as the role of language in learning rather than multicultural 
influences on mathematical thinking itself. Incidentally, I did not feel that Orr made a 
convincing case for the effects of Black English on mathematics learning, although her 
book is rich with examples of student work demonstrating their difficulties with particular 
mathematics concepts. 

In our project, we were interested in looking at the relationship between culture and 
mathematics achievement. We did believe that Black, Hispanic, and Native American 
students were underachieving and underparticipating because they were not being provided 
with the kinds of opportunities that would help them construct meaningful mathematical 
knowledge. This seemed to fit with the research findings that these populations of 
students had little conceptual understanding of many topics in the mathematics curriculum. 
We also believed that the reason that these students had little conceptual understanding 
was that they were not being provided with opportunities to explore, discuss, and socially 
negotiate meaningful mathematical knowledge. Finally, we believed that since 
mathematical knowledge is constructed in a cultural context, there might be some cultural 
influences on the mathematical thinking of these students which we hoped would emerge 
during the course of the project. 

I might add that I think the approach we are taking is a rather novel one considering the 
frameworks that are often used to examine the underachievement of Black, Hispanic, and 
Native American students generally. During the 1960's, efforts to explain the low levels 
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of achievement of these students focused on issues of cultural disadvantage, followed by, 
in the 1970's, issues of cultural difference. Now, in the 1980's, issues of effective 
instruction for students at risk seems to be the framework for much of this research. I 
think it's interesting that the cultural disadvantage and cultural deficit frameworks were 
really not all that different. This can be seen if you look at some of the so-called cultural 
differences discussed in the literature of that period. For instance, in an article discussing 
the relationship between culture and school achievement, a chart entitled "Contrasting 
Values and their Effects on Mexican Americans" suggests that the chicano student 
"frequently lacks enthusiasm and self-confidence", "works more effectively in groups; 
usually noisy", and "apathetic in school; often embarrassed by deficiency in English and 
few successful experiences; may become a dropout" (Instructor, 1972). Oddly enough, 
the title of the article is "Building on Backgrounds". In the current framework of 
effective instruction, researchers are advocating greater academic learning times with 
learning broken down into smaller pieces. In this framework, cultural issues are ignored 
completely. 

Our project involved examining changes in mathematical thinking of Black, Hispanic, and 
Native American middle school and high school students as they progressed through a 
Visual Mathematics curriculum (Bennett & Foreman, 1989) as opposed to a more 
traditional textbook-based curriculum. This Visual Mathematics curriculum, built around 
Math and the Mind's Eye activities developed through an NSF grant (Bennett, Maier, & 
Nelson; 1987), is highly student-centred, allows for student exploration and discussion, 
and encourages students to construct and share their personal visions of fundamental 
concepts in mathematics. We felt that this kind of mathematics instruction would provide 
opportunities for underachieving Black, Hispanic, and Native American students to 
construct and negotiate mathematical meaning as well as allow any culturally distinct 
mathematical views to emerge through their personal visions. 

We planned to collect information on attitudes towards mathematics, using the Fennema­
Sherman Mathematics Attitude Scales, and achievement in mathematics using both a 
standardized test and an open-ended mathematics test focusing on mathematical concepts 
and problem solving, for students using the Visual Mathematics curriculum and students 
using the traditional curriculum. In the open-ended test, for example, we asked students 
to explain their idea of multiplication and to draw a picture of multiplication. We also 
planned to develop case studies of the mathematical thinking of students in each of those 
instructional settings through the use of clinical interviews. We were especially hoping 
to be able to explore some cultural issues in these interview settings. 

This is only the first year of our project and I have to say there have been some 
difficulties, the primary one being that the implementation of the Visual Mathematics 
curriculum has been quite challenging for many of the teachers. These teachers took a 
3-credit course in Math and the Mind's Eye before the project began and, during the 
academic year, we have been meeting once a month for an all-day session designed to 
provide support as they implement the curriculum. I believe that the challenge lies in the 
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fact that teachers are not accustomed to student-centred instruction. In the Visual 
Mathematics curriculum, the teacher is largely the problem-poser and the facilitator of 
discussion, and it is often impossible to know exactly where the lesson is going to go. 
This uncertainty seems' to make teachers new to the approach a bit uncomfortable. Also, 
as students are encouraged to express their vision of mathematical concepts under 
discussion, teachers are often called upon to facilitate discussions about representations 
they may have not seen before. This also makes teachers a bit uncomfortable. Finally, 
we encourage teachers not to "show and tell", but let students try to figure things out for 
themselves (with the help of some probing questions from the teacher and lots of class 
discussion). Teachers seem a bit uncomfortable letting students go with their ideas and 
sometimes seem to want to show them "the right way". All in all, it is a big change for 
most teachers. I will say that when the Visual Mathematics curriculum is working well 
it can be very exciting for both teacher and students. We have seen it happen in some 
classrooms: Fortunately, our teachers have had enough of these exciting experiences with 
the curriculum to keep going and most claim that they could not go back to teaching from 
a textbook. 

I would like to comment on what we have been seeing in our student interviews thus 
far, as this has been our primary vehicle for exploring cultural influences. The students 
we have been interviewing have shown very little conceptual understanding of 
mathematics topics usually included in the elementary school curriculum. Their facility 
with basic mathematical procedures has been quite limited and they seemed to have little 
in the way of visual models to help them solve the problems they were asked. We have 
seen some changes in students who have been using the Visual Mathematics curriculum. 
They seem more apt to say things like "This is how I see it" or "This is how I think 
about it". We are seeing a great deal of diversity in the approaches used by these 
students although I would have a hard time categorizing those approaches by cultural 
background. The only example I can cite that might even remotely suggest a cultural 
influence is when a young Native American girl drew several pictures of a measuring cup 
to help her think about adding fractions. I should say the questions we were asking were 
rather traditional and had a computational focus, for example, asking students to think 
about 112 + 113. However, our intent was to explore how they were thinking about the 
problem and we did probe for any contexts in which the problem might be made 
meaningful. 

Looking back on our beginning efforts to explore cultural influences on mathematical 
thinking, I think there are several issues which made our effort particularly difficult. One 
is that we were asking questions about school mathematics in the school context. Had we 
moved to a more culturally-relevant out-of-school context and asked questions about 
mathematical applications in that context, perhaps we would have found cultural 
influences. However, I think a larger problem lies in the area of defining "culture". 
Although these students were from several ethnic backgrounds, their affiliation with their 
ethnic culture varied tremendously. All of these students were born in the United States 
and were to some extent participating in its mainstream culture. Some students seemed 
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" uncomfortable with their ethnic identity and, for example, corrected us with an Anglified 
version of their name when we used its correct pronunciation. For all these students, I 
think there were numerous cultural influences such as those associated with television, 
contemporary films, rock music, and the many influences associated with the peer culture 
of middle school or high school. 

As I have tried to think about perhaps better ways to uncover cultural influences on 
mathematical thinking, the work that I have found most helpful is a chapter in a recent 
Review of Research in Education. The chapter, entitled "Culture and Mathematics 
Learning" (Stigler & Baranes, 1988), provides a thoughtful overview of what is known 
about the role of culture in mathematics learning. The authors review cross-cultural 
research conducted both in and out of schools with both children and adults. In a 
discussion of the role of culture in mathematics learning, they suggest that: 

As children develop, they incorporate representations and procedures into their cognitive 
systems, a process that occurs in the context of socially constructed activities. 
Mathematical skills that the child learns in school are not logically constructed on the 
basis of abstract cognitive structures, but rather are forged out of a combination of 
previously acquired (or inherited) knowledge and skills, new cultural input. Thus, 
culture functions not as an independent variable that merely can promote or retard the 
development of mathematical abilities, but rather as a constitutive part of mathematical 
knowledge itself... In short, we ar~ claiming that culture-specific representations of ' 
number do not merely influence the development of mathematical knowledge, but in fact 
remain part and parcel of that knowledge. 

This view is similar, I believe, to that of D' Ambrosio in his several discussions of the 
concept of ethnomathematics (e.g. D'Ambrosio, 1985). If it is true that culture becomes 
and remains "part and parcel" of socially constructed mathematical knowledge, shouldn't 
it be possible to examine the influences of culture in any mathematical context? If it is 
true that we need to return to a culturally appropriate context in order to identify those 
cultural influences, what would that context be for many of the Black, Hispanic, and 
Native American students attending schools in some of the country's largest urban areas? 
These, I think, are some very intriguing questions which need to be answered if we are 
to more fully understand multicultural influences on mathematics education. 
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Introduction l 

The purpose of the research was to explore the meaning of grades assigned by different 
teachers of the same Grade 13 mathematics course, and to formulate possible explanations 
of any differences in meaning found to exist among the teachers. In Ontario, the high 
school curriculum is constrained by provincial guidelines, which specify minimum course 
content and length. Local school boards are responsible for implementing the guidelines 
in their schools, with differences consequently possible in topic emphasis, grading 
methods, and quality of achievement expected for a given mark. 

The project began in the spring of 1986, with selection of a mathematics course. In 
making this choice, due regard was given to an ongoing transition from Grade 13 courses 
to Ontario Academic Courses (OACs). A comparison of Ministry Guidelines for Grade 
13 and OA~ mathematics courses (Ontario Ministry of Education, 1972, 1985) revealed 
that the overlap was substantial for Grade 13 and OAC Calculus. Choice of calculus also 
meant that the results of the survey of calculus examinations by Alexander (1987) would 
complement and inform the results of this study. 

The choice of calculus was made in consultation with a five-member Advisory Committee 
for the project, consisting of: 

Dr. David Alexander, Faculty of Education, University of Toronto, and The 
Ontario Ministry of Education. 
Dr. Edward Barbeau,. Department of Mathematics, University of Toronto. 
Dr. Gila Hanna, Department of Measurement, Evaluation and Computer 
Applications, The Ontario Institute for Studies in Education. 
Mr. George McNabb, Mathematics Teacher, Sudbury Board of Education, 
representing The Ontario Association of Mathematics Educators. 
Mr. John Scott, Mathematics Consultant, Toronto Board of Education. 

The design of the study called for the recruitment of 20 teachers. Practical considerations 
limited choice to teachers working in the urban core of Southern Ontario. In the end, the 
participants were 17 teachers from 17 different schools in 13 different boards. (The 
teachers were guaranteed anonymity, so their names must remain confidentiaL) All 
participants held an undergraduate degree in mathematics, had at least five years 
experience teaching senior mathematics, and had taught the calculus course at least three 
times. Some descriptive information on the classes of the 17 teachers is provided in 
Table 1. 

This is a short version of a long report under the title "Teacher Assessment Practices in a Senior 
High School Mathematics Course." A copy of the long report is available from the authors on 
request. This research was conducted with the support of the Ontario Ministry of Education, 
through Transfer Grant 52-1028 to the Ontario Institute for Studies in Education. 
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Several types of data were collected. The 17 teachers were asked to: 
complete a log throughout the Spring 1987 Semester for one Grade 13 Calculus 
class, recording the activities undertaken each class period and the time devoted 
to each activity; 
list on the log the homework and seat-work assigned each day; 
report the criteria used to arrive at student grades for the course, including tests, 
quizzes, examinations, and other factors (e.g., participation, attendance), along 
with the relative weights of each; and 
mark a common set of 20 final examination papers obtained from a class not 
involved in the study. 

In the material that follows, the use of classroom time is considered first. Successively 
thereafter, attention is turned to the content of the teaching and testing, testing policy and 
practice, and, finally, the exam-marking study. 

Use of Class Time 

In their daily logs, most teachers provided descriptions that indicated the kinds, order, 
duration and focus of the teaching/leaming activities undertaken during each class period. 
Four teachers, however, provided more information about topics covered in a class than 
about activities undertaken, and a fifth delegated the task of completing the log to 
different students, thus providing an uneven record. The logs of these five teachers were 
excluded from further consideration in this part of the study, leaving the data for 12 
teachers. 

There was considerable variation among the 12 teachers in number of class periods and 
length of courses. The number of class periods, ranged from 80 to 109 (Mean 86). Total 
class time for the calculus credit ranged from 96 to 114 hours (median 105). The 
scheduled length of class periods varied from 40 to 80 minutes, although on a given day 
the time actually spent in class might have been less than what was scheduled for any 
number of reasons. 

Six categories of class activities were defined from terms used in the logs: 
Administration: taking attendance, making announcements. 
Direct teaching: presentations, demonstrations and discussions focusing on new 
material. 
Student practice: seat-work and board-work pertaining to new material (including 
handouts, assignments and orally presented problems considered in class), with 
opportunity for individualized instruction. 
Homework: tasks assigned for independent completion, either in class time or 
outside. 



Table 1. Some Characteristics of the Schools and Classes 

Teacher School Class Teaching Number 
Number Size Size Hours of Tests 

1 1400 17 108 10 
2 950 30 103 8 
3 300 13 107 7 
4 1200 15 97 6 
5 1100 18 96 6 
6 1200 28 105 7 
7 900 22 106 6 
8 1900 19 105 10 
9 1900 16 103 7 

1.0 1000 25 106 10 
11 2050 24 105 13 
12 1800 31 103 10 
13 1500 27 110 9 
14 1250 21 105 9 
15 1300 13 104 8 
16 1400 26 103 3 
17 950 27 114 9 

School size: Rounded to the nearest 50, 
Teaching Hours: Including time for examinations and tests, 
Number of Tests: Not including mid-course and final examinations, if either was 

administered. 
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Review: class time used (i) to cover previously learned material, including 
prerequisite knowledge acquired in other courses (e.g., algebra), and content 
previously covered in the course, (ii) to prepare for tests and exams, and (iii) to 
mark or review tests, quizzes and exams, 
Assessment: quizzes, class tests and exams administered in class time. 

Analysis of the time spent on each type of activity as a percentage of total time produced 
the following results: (a) Administration - 0 to 5 percent (median 1 %); (b) Direct 
Teaching - 17 to 52 percent (median 26%); (c) Student Practice - 8 to 47 percent (median 
29%); (d) Homework - 11 to 43 percent (median 18%); (e) Review - 4 to 14 percent 
(median 11 %); and (f) Assessment - 8 to 16 (median 10%). Clearly, the teachers differed 
substantially in their use of class time. 

In a search for patterns in these data, coefficients of correlation (over teachers) were 
computed. A negative correlation was found between total logged time (in hours) and 
the percentage of time spent on direct instruction. This suggests that teachers with greater 
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amounts of class time tend to do less direct teaching. This interpretation is corroborated 
by the findings that percentage of time for direct instruction correlated negatively with 
percentage of time for homework and student practice, whereas the percentages of time 
for homework and student practice were each positively correlated with total time. The 
largest percentage of time, overall, was devoted to student practice. Negative correlations 
between the percentage of time for student practice and the percentages of time for review 
and for assessment suggest that teachers who place relatively high emphasis on practice 
in their teaching of calculus place a relatively low emphasis on review and assessment 
activities. 

Content of Assignments and Tests 

The information about content came from the daily logs of homework and seat-work 
assignments that were maintained by the teachers, and from the quizzes, term tests and 
exams (plus marking schemes) submitted by the teachers. For this and the remaining 
parts of the report, information has been included from all 17 teachers. 

A comment is in order at the outset of this section lest our results be taken as implicitly 
critical of the teachers who participated in the study. The Guideline for the Ontario 
Grade 13 Calculus Course (Ontario Ministry of Education, 1972) mandates broad content 
areas, but not relative importance. Thus, we were not investigating whether some 
teachers exercise better or worse judgment as to what should be in the curriculum. 
Instead, we were investigating differences in the judgments made by qualified and 
experienced teachers. 

A scheme was devised for categorizing the content of the course. The starting point wa.s 
the 1972 Grade 13 Calculus Guideline (Ontario Ministry of Education, 1972) and the 
contents of two Ministry approved texts for the course. When a satisfactory version of 
the category system had been produced, two students, both about to graduate from a 
B.Sc.lB.Ed. program in mathematics education and both experienced in practice teaching 
the calculus course, reviewed and revised the system, and then applied it to questions on 
teacher-produced handouts, quizzes, tests and exams. 

The category system includes 126 topics. In applying this scheme, the two students 
achieved an inter-rater agreement of 88 %. To simplify reporting, the 126-topic scheme 
was collapsed into 14 categories; at this level, inter-rater agreement was 97%. The 14 
Content Categories were themselves classified into six Content Groups: I - the basic skills 
of calculus (limits, sequences and series, differentiation, and integration); II - proofs of 
basic theorems; III - applications of differentiation skills, also referred to as 
differentiation graphing (slope and equation of a tangent, curve sketching); IV -
applications of integration skills, also referred to as integration graphing (area between 
curves, volume of revolution); V - situational problems (motion problems, related rates, 
maxima and minima); and VI - optional topics (complex numbers, polar coordinates), 
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optional in that a school might decide to deal with these topics in one of the other senior 
mathematics courses - Algebra or Relations and Functions. 

Content of Assignments 

Table 2 is a record of the percentage of homework and seat-work questions assigned 
during the course by each teacher, the questions having been classified according to the 
six content groups. In addition, the total number of question on which the percentages 
are based is given for each teacher. Differences among teachers in total number of 
questions assigned was great. The median was 1037 questions, but the range was from 
460 to 1622 questions. 

Several results in Table 2 stand out. First, the emphasis on basic skills (Content Group 
I) was high for all teachers, ranging from 41 % of questions assigned to 76%. Second, 
the greater the emphasis on basic skills, the more almost everything else was de­
emphasized. Third, little attention was paid to questions involving proofs and first 
principles, although increased emphasis on these issues is mandated in the new Ontario 
curriculum. 

Table 2. Percentage of Assigned Questions by Content Group 
and Total Number of Assigned Questions 

Teacher Content Group Total 
I II III IV V VI Number 

1 49 12 5 13 20 1622 
2 56 11 5 25 3 836 
3 65 13 5 12 4 1498 
4 53 21 9 17 456 
5 74 8 8 6 5 1003 
6 64 10 8 18 460 
7 66 1 9 4 20 917 
8 76 2 11 1 11 1388 
9 49 14 11 14 12 1395 

10 41 24 15 18 2 1341 
11 57 2 17 5 19 967 
12 70 10 5 14 1083 
13 46 14 11 21 8 970 
14 54 19 5 23 1037 
15 66 10 12 12 1343 
16 50 2 13 5 18 12 850 
17 54 18 8 19 1274 

Note: The percentages for a row may not sum to 100 due to rounding errOL 

Note: See text for a description of the content groups. 



150 

Content of Tests 

All questions used by teachers in quizzes, classroom tests, and exams were categorized. 
From teacher-supplied marking schemes and weighting systems, the relative (percentage) 
weight of every question in the calculation of final grades was determined. These relative 
weights were summed to yield the percentage of marks toward the final grade that were 
allocated by each teacher to questions in each of the six Content Groups (Table 3). The 
percentages in Table 3 indicate a relatively heavy emphasis in testing on basic skills 
(Content Group I). Emphasis on Content Group II (proofs of basic theorems) was 
relatively low. The teachers varied considerably in the degree to which they emphasized 
each content group, but this variation is especially noticeable for Group VI (optional 
topics). 

Effect of exemptions. A study was made of the effects of exemptions from final exams 
on the content of the assessments of student achievement. Four teachers followed a 
policy, mandated by the board or the school, of exempting students with a high term mark 
(typically 65 % or more) from the final exam. In one of these four classes, the final 
marks of the exempted students were based on assessments of substantially different 
content than the final marks of non-exempted students. 

Table 3. Percentage of Test and Examination Marks by Content Group 

Teacher Content Group 
I II III IV V VI 

1 35 2 14 12 20 17 
2 SO 3 13 3 20 11 
3 51 7 16 4 15 6 
4 33 7 18 12 30 
5 43 2 13 16 20 6 
6 SO 3 13 13 21 
7 46 2 18 8 26 
8 58 1 18 23 
9 37 3 14 11 22 14 

10 33 2 23 12 27 2 
11 35 6 27 8 24 
12 48 8 15 8 22 
13 26 4 19 15 28 9 
14 33 5 24 7 31 
15 48 6 14 14 18 
16 38 4 15 6 25 13 
17 34 10 15 14 25 

Note: The percentages for a row may not sum to 100 due to rounding errOL 

Note: See text for a description of the content groups. 
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Effect of discarding test results. One teacher divided the semester into five segments, 
referred to as terms. Each term contained up to six short quizzes and one test. The tests 
for Terms 3 and 5 were considered to be the mid-course and final exam respectively. 
Students were allowed to drop the test and quiz results for one of Terms 1, 2, or 4 from 
the calculation of their final grades.· Dropping the test and quiz results for Term 4 
produced final marks based on an assessment of somewhat different content than dropping 
the test and quiz results for either Term 1 or Term 2. 

The foregoing results point to problems with the practices of exemptions and selectively 
discarding test results. The expectation of many consumers of high school grades is that 
they reflect achievement of the same curriculum. By exempting some students from final 
exams or discarding some term results from the calculation of final grades, with different 
results discarded for different students, marks within the same class will reflect 
achievemeI.lt of different kinds. Unbeknownst to consumers, differences among such 
marks are uninterpretable. 

Comparing the Contents of Tests and Assignments 

A comparison of corresponding percentages in Tables 2 and 3 reveals a general tendency 
for teachers to do less testing than assigning of content in Group I (basic skills), slightly 
more testing than assigning of the content in Groups II and III (proofs and differentiation 
graphing), and considerably more testing than assigning of the content in Groups IV and 
V (integration graphing and situational problems). At least some of this pattern must be 
due to differences in the relative size of questions for basic skills compared to that for the 
other content groups. (Ten differentiation exercises may require less time to complete 
than one applications problem.) The greater emphasis on basic skills (Group I content) 
in assignments than in tests may also reflect the belief that practice makes perfect, not the 
belief that basic skills are especially important. Moreover, the greater emphasis on Group 
II content in testing than in assignment may mean that proofs are considered important, 
but are dealt with by class instruction and demonstration rather than by assigned exercises. 

Grading Practices 

The data collected about testing and grading practices were used to study the grading 
processes that were used and the actual grades that were assigned. 

The Process 

The 17 teachers were found to use 22 different grading systems. More than one system 
was in use by each of the four teachers who followed an exemptions policy - the grading 
system for a student of these teachers depended on whether the student had been exempted 
from the final examination. Also, the teacher who set aside some of a student's marks 
in calculating the final grade employed at least two different systems. (Refer to the 
description of this method given in the previous section of the report.) 
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Two grading criteria were used almost exclusively: tests, usually administered at the end 
of units of work, and examinations, administered near the mid-point of the course or the 
end or both. The number of tests ranged from three to 13, the number of examinations 
from one to two. For seven of the 17 teachers, tests and exams represented 100% of the 
students' grade. For the other 10 teachers, the weights for tests ranged from 30% to 80% 
of the final grade. The additional criteria used by these teachers included quizzes (six 
teachers, weight ranging from 2 % to 20%), assignments (six teachers, weight ranging 
from 3% to 6%), and a subjective mark for participation (four teachers, weight ranging 
from 5% to 20%). Six of the teachers gave no mid-course exam, while the four who 
followed exemption policies had no final exam for the exempted students. The remaining 
grading systems included both mid-course and final exams. (We use the designations 
first-half and second-half of the course rather than first-term and second-term to avoid 
possible confusion over the meaning of term and semester. All our data were collected 
in semestered schools during the Spring Semester. The break between first-half and 
second-half of the course occurred about mid-April.) 

The teachers combined the different test and examination marks into final grades in 
several different ways. The marks for a test or exam were either (a) weighted according 
to the number of marks in each (simple summation) or (b) re-weighted to make the 
weights of each test or exam equal or (c) re-weighted to reflect the teacher's perception 
of the relative importance of the topics covered by each test or exam. Similarly, the 
halves of the semester were either weighted equally or unequally. Five teachers weighted 
each half equally (at least for some students). The other eleven teachers weighted the 
first-half of the course less (about 30%) than the second-half (about 70%). 

The time spent on testing activities (including exams) varied enormously, ranging from 
nine hours for one teacher to more than 17 hours for another. On average over the 1 7 
teachers, 8.8 hours (range 3 to 15.2 hours) were spent in writing 8 tests (range 3 to 13 
tests), not including mid-course and final examinations. The lengths of tests varied from 
25 to 75 minutes. The total number of test questions administered during the semester 
averaged 104, and ranged from 53 to 180. 

The cycles of teaching and testing throughout the course were examined. Nine of the 
teachers seemed to have more regular cycles of teaching and testing than the others. All 
teachers tested at more-or-Iess regular intervals throughout the first-half of the course, but 
the testing patterns for eight teachers became erratic in the second half. The teachers who 
followed more regular teach-test cycles also gave a greater number of tests on average (10 
compared to 7). 

Another factor that was considered is the number of different topics covered in a test. 
The taxonomy of 14 content categories was used to describe test coverage. The number 
of categories covered ranged from one to eight per test over all the tests given by the 
teachers. The average (for a teacher) of the number of categories per test ranged from 
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2 to 4.7. All but two teachers gave at least one test covering only one content category. 
For five teachers, the final exam included content categories that had not been covered 
in class tests. A possible reason is that the final examinations used by these teachers were 
set by other calculus teachers. When one teacher in a school sets a common final exam, 
that individual requires a certain amount of prescience to set questions that the students 
taught by other teachers have had an opportunity to learn. A class that proceeds more 
slowly than expected, for example, is likely to be disadvantaged by the exam. 

The Grades 

The average mid-course and final grades for each class and the difference between the two 
were calculated. The distinction between mid-course and final grades is important in 
Ontario for Grade 13 courses offered in the Spring Semester. Early in April, Ontario 
universities begin their admissions process. For the courses a student is taking in April, 
the school submits interim grades (normally the mid-course grades in semestered schools) 
to the Ontario University Applications Centre, and students receive a conditional 
acceptance or rejection based on these grades. A concern expressed by several teachers 
in the study is that students become less motivated to work once the interim grades have 
been submitted. 

Averaged over all 17 teachers, the final grade was 67, six points less than the average 
mid-course grade of 73. For every teacher, the mean final grade was either lower than 
or at best equal to the mean' mid-course grade. The range of mean final grades was 54 
to 75, that of mean mid-course grades, 61 to 79. Although there is a high correlation 
between the two sets of grades for a teacher, the difference between a teacher's mean 
mid-course and mean final grades was as much as 15 %. 

A comparison of term marks with final exam marks turned up two results of interest: in 
the 13 classes in which all students wrote a final exam, the final exam marks were lower 
than the term marks by about 12 percentage points (58% compared to 70%). Also, final 
exams tended to discriminate more than term marks. For the 13 classes with no 
exemption policy, the standard deviation of final exam marks was about 50% larger than 
that of term marks. 

Despite all the differences fo~nd in grading processes and in the grades themselves, no 
clear indication was found in the data provided by the 17 teacher-participants that the 
observed differences in grading process were related to the observed differences in grades. 

Responses to the Common Marking Task 

A study was made of the extent and nature of the variation among the 17 teachers in the 
standards they applied in marking a set of examination papers. A final calculus 
examination, administered in June 1987 to students in a school not otherwise involved in 
the study, yielded a set of 20 papers that spanned a range of quality. The 17 teachers 
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were given the 20 papers, and each was asked to prepare a marking guide and then mark 
the papers against it. In addition, the teachers were asked to provide written comments, 
should they care to make any, about the examination and performance of the students. 

The Examination 

The exam contained 11 questions, several of which contained three or more sub-questions. 
In total, the examination consisted of 37 sub-questions. The content of each question can 
be described briefly as follows: 

1. Find the point on a quadratic function where the tangent has a specified slope. 
2. Obtain the derivative with respect to x for each of 13 different functions of x- six 

logarithmic or exponential functions, four polynomial functions, and three 
trig~>nometric functions. 

3. Find integrals of nine functions - three trigonometric functions, four logarithmic 
or exponential functions, and two polynomial functions. 

4. Integrate using the method of parts. 
5. Find the limits of three polynomials. 
6. Solve a problem involving a) acceleration, b) velocity, and c) the position of the 

particle in motion after a specified amount of time has elapsed.' 
7. Find the area enclosed between two trigonometric functions of the same variable 

over a specified range of the variable. 
8. For a cubic function, a) find the coordinates of all maximum and minimum points 

of the function, b) find the coordinates of all points of inflection, and (c) sketch 
the function. 

9. Find the rate at which the distance between two moving objects is increasing or 
decreasing, given information about the direction and rate of motion of the two 
objects. 

10. Prove that the formula (given) for the volume of a sphere can be obtained as a 
volume of revolution. 

1 L Find the radius and height of a cylinder, such that the cylinder will have a given 
volume and an unspecified but minimum surface area. 

The exam was strongly weighted toward the testing of basic skills. According to the 
scheme for categorizing homework and test questions, the basic skills topics (Group I) 
contained most of the exam questions (26 sub-questions). (The total number of sub­
questions for all other content groups combined was only 1 L) 

The Marking Guides 

The marking guides prepared by the teachers indicate the maximum number of marks to 
be awarded for responses to each SUb-question. There was considerable variation among 
teachers in the total number of marks allocated for perfect performance. The smallest of 
the maximum marks was 78, the largest 144, and the median 116. The teachers also 
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differed in their allocations of marks to individual sub-questions. For example, wholly 
satisfactory performance of Question 7 was rewarded with as many as 12 marks by two 
teachers, and as few as 4 marks by one teacher. 

What accounts for differences such as this? For the most part, they seem to stem from 
differences in the number of steps or stages to an answer that are awarded marks. 
Another difference was in the use of bonus marks and deductions. Several marking 
guides indicated bonus marks for good form and for stating the answer in a complete 
English sentence. Several others indicated deductions for failing to include the constant 
of integration in answers or for failing to specify units in answers to questions involving 
measured quantities. These bonuses and deductions, when used, were either one mark 
or one-half mark. 

Despite the,obvious disparities found among the teachers' marking schemes, the teachers 
were in general agreement as to the order of importance of the examination questions and 
sub-questions. A coefficient of correlation was computed for each pair of teachers 
between the maximum marks allocated to the questions and sub-questions of the 
examination. All the intercorrelations were substantial, ranging from 0.76 to 0.95, with 
a median of 0.89. Clearly, the teachers possessed very similar views of the relative 
importance of the questions and sub-questions of the examination. 

This does not mean that the teachers thought the exam was particularly good, at least as 
judged by coverage of the calculus course described in the Guideline (Ontario Ministry 
of Education, 1972). Several teachers objected to the strong emphasis in the exam on 
integration. Three teachers noted the lack of coverage of polar coordinates and complex 
variables. Two teachers pointed to the coverage in the exam of trigonometric functions, 
with one feeling it was inadequate and another thinking it was overemphasized. It was 
observed by two teachers that volumes of revolution, trigonometric limits and differentials 
were given short shrift. And three teachers objected to the preponderance of skill-type 
questions, and the lack of questions involving problem-solving. Note that volume of 
revolution, polar coordinates, and complex numbers are optional topics. (We did not 
suggest that the exam was a model for all teachers to emulate; it was only a means to the 
end of studying differences in marking behaviour. In fact, for present purposes we 
eliminated the section of multiple-choice questions that appeared in the exam as originally 
administered. ) 

In a draft document entitled A Handbook for the Examination Component of Evaluation 
in the OAC - Calculus (Ontario Ministry of Education, 1987), attention is paid to the 
number of marks awarded for arithmetic and algebraic simplification in answers to OAC 
calculus examination questions. An analysis was made of the marking guides in an 
attempt to assess the extent of differences among them in the proportions of marks 
awarded for arithmetic, algebraic simplification, and other skills and knowledge (from 
earlier grades) compared to the calculus skills and knowledge to be acquired in the course. 
(This analysis was possible for 13 of the 17 guides; four guides indicated only total 
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numbers of marks per sub-question.) The percentages of marks for calculus as opposed 
to other kinds of mathematical knowledge and skill ranged from 60 to 76, with a median 
percentage of 66. Thus, there was some variation, but not a lot, in the extent to which 
knowledge and skills peripheral or prerequisite to calculus were rewarded. 

Total Student Marks 

The comparability of the total marks assigned each paper by the 17 teachers was assessed 
by computing for each pair of teachers a coefficient of correlation between the total marks 
assigned the 20 papers. These coefficients were uniformly high, ranging from 0.81 to 
0.97, with a median of 0.92. Obviously, there is close agreement among the teachers in 
the relative orders into which they placed the 20 papers. 

Grading acpievement in calculus and other subjects involves more than rank-ordering a 
group of students. Determinations of fail and pass and honours are usually required. 
How well, then, did the teachers agree as to which papers represented failing 
performance, which represented passing performance, and, of the passes, which 
represented honours? To address this question, the total mark a teacher assigned a paper 
was converted into a percentage of the total mark given in the marking guide. Here we 
find evidence of inconsistency in standards. Three teachers assigned no paper a mark in 
the honours range, and one teacher assigned failing marks to seven papers. On the other 
hand, seven teachers assigned no paper a failing mark, and one teacher assigned 
percentage marks of 80 or more to 10 papers. Variation in standards is apparent, despite 
the fact that the teachers ranked the papers for quality in very much the same way. 

The teachers offered comments, several of which are relevant here. For example, the 
stiffest of the markers directed comments at student performance: the solutions were 
poorly developed, diagrams were missing, and the responses lacked clear, concise 
statements. These might be described as errors of form in the student responses. 
(Although the marking guide of this teacher indicated five marks for the first question, 
no student was awarded more than three. The apparent reason for this was the failure by 
all 20 students to include all the steps listed in the teacher's model answer. Thus, for 
example, no mark was awarded for finding the y-coordinate of the answer if the 
determination of this coordinate had not been made explicit, even when the student' s 
answer did contain the correct coordinate.) Another of the hard marking teachers also 
noted the errors of form as a problem with student answers, but so did two teachers who 
were in the middle of the group as regards severity of marking. The fact that three other 
hard-marking teachers did not mention form of answer as a problem, suggests that this 
factor does not fully explain the source of severe marking standards. 

In fact, no type of comment appears to distinguish the hard from the easy markers. The 
easiest marker described the marking exercise as boring. This teacher also described the 
exam questions as being all of the skill and recall type, and as not requiring higher level 
thinking skills. It is not apparent that adopting this point of view should cause one to be 
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an easy marker, although another easy marker also commented on lack of problem solving 
questions on the exam. So too, however, did a teacher in the middle of the group for 
marking severity. Perhaps more in line with what might be expected, given the severity 
of his/her marking, was a teacher's registration of disappointment in the students' problem 
solving abilities. Other comments were made to the effect that the exam was too easy, 
was of uneven difficulty, with questions being either very easy or very difficult, was too 
long, was "too tricky by half", and was nicely balanced between straight-forward and 
challenging questions. 

One factor, however, may distinguish hard from easy marking teachers. Ten of the 
teachers followed one textbook (published by Gage) and six others followed another 
textbook (published by Holt). (One teacher used a set of notes, and followed no 
published book.) The teachers who used the Gage text were, on average, relatively easy 
markers, whereas the teachers who used the Holt text were, on average, relatively hard 
markers. . 

In a final attempt to understand differences among teachers in marking standards, a study 
was made of the marks assigned by three teachers - the hardest and easiest markers, and 
a teacher at the centre - to three ~tudents - a high, middle and low scorer. It was found 
that these teachers differed relatively little in the percentages of marks each awarded for 

. performance of the 26 basic skills sub-questions. Against this standard, however, the 
corresponding results for the other sub-questions are dramatically different. For example, 
one of the students was awarded about half the marks allocated by the easiest marking 
teacher for performance of the other-than-basic skills sub-questions, but the other two 
teachers assigned only one-fourth the marks they had allocated for performance of the 
same sub-questions. These results suggest that the main source of the difference among 
these teachers lies in their marking of the exam questions that test other-than-basic 
differentiation and integration skills. 

Summary 

The analysis of use of classroom time showed relatively substantial differences among the 
teachers in their allocation of class time to different categories of activities -
administration, direct teaching, review, homework, practice, and assessment. Moreover, 
those with more class time available expended a smaller percentage of time on direct 
instruction, and allocated greater percentage to homework and practice. 

Substantial differences were also found among teachers in content emphasis. 

Teachers varied widely in the number of questions assigned as homework - from 
under 500 to more than 1600. A large part of this variation was accounted for by 
differences in the number of questions on basic skills. . 
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Teachers varied considerably in the extent to which they emphasized different 
topics in their assignment of questions. For example, the number of questions on 
basics ranged from 40% to 75 % of the total number of assigned questions. 
The emphasis on basic skills was less in the tests than the assignments, whereas 
the empha.sis on other content groups was greater in the tests than the assignments. 

Some of the within-teacher differences between 'assignment and testing emphases are 
probably intentional, as when a teacher decides to test only at the top of a small hierarchy 
of skills or knowledge, ignoring the prerequisite skills and knowledge that had been 
included in assignments. Conversely, a teacher may teach a difficult concept and choose 
not to test it because most students failed to grasp it. Whether or not discrepancies 
between teaching and testing constitute a problem to be corrected is a matter not 
addressed in the present study. All we have done here is provide evidence that such 
discrepancies as these exist. 

From the analyses of the grading practices' of the 17 teachers, it was learned that 
examinations and term tests were the two main determinants of student grades. All 
students in all classes wrote a minimum of one examination, as required by provincial 
policy. However, ~e nature of this examination varied. For the four classes following 
an exemption policy, the majority of students took their only exam on material learned 
in the first half of the semester. For six other classes, the only exam was a final exam 
based on the entire semester's work. In the remaining seven classes, both a mid-course 
exam and a final exam were required. The time that students from different classes spent 
in an examination situation ranged from 2 to 4.5 hours. The final examination mark was 
weighted from 15% to 40% of the student's final grade and, when a mid-course exam was 
administered, the resulting mark was weighted 9% to 30% of the final grade. In some 
cases, the calculus content topics that were tested during the semester were not 
emphasized to the same extent on the final exam. This might be attributed to the fact 
that, while the setting of term tests was usually the teacher's responsibility, the final 
examination was the mathematics department's, and not necessarily the participating 
teacher's, responsibility. 

Term testing was found to vary in the following respects: (i) number of tests (ranging 
from 3 to 13), (ii) number of items comprising the tests (from 53 to 180), (iii) amount 
of classroom time used for test taking (from 3 to 15.2 hours), and (iv) schedule of tests 
(sporadic or regular). Term tests were weighted from 30% to 80% of the final grade. 

It is evident from this study that students taking Grade 13 Calculus in the Spring 1987 
Semester from the 17 teachers in this study did not demonstrate their achievement in 
calculus through a common process of assessment and grading. It is reasonable to 
question whether or not it would be beneficial for students to have experienced similar 
grading processes, and to have been judged according to similar standards on similar 
criteria of achievement. 
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The empirical study of the marking process revealed the following: 
The presence of substantial agreement among the 17 teachers as to the relative 
importance of the examination questions. 
Substantial agreement among the teachers as to the relative quality of the 20 
student papers that were marked. 
Substantial disagreement among the teachers as to the absolute quality of the 20 
student papers. 
The marking standards of teachers varied, to a limited extent at least, as a function 
of the textbook being used. 

These results pose a challenge for the Ministry of Education in ajurisdiction where there 
is no external mechanism - no common, province-wide examination - for aligning 
standards of calculus achievement. This challenge has not been lost on critics of 
education in Ontario, and it has not been ignored by the Ontario Ministry. A Handbook 
for the Examination Component of Evaluation in the OAC - Calculus (Ontario Ministry 
of Education, 1987) was developed for the purpose of fostering a greater degree of 
consistency in calculus examinations across the province. The handbook addresses several 
problems found in the present study - (i) the practice of granting exemptions from final 
examinations and the variation in value of final examinations, (ii) the emphasis on basic 
skills to the virtual exclusion in teaching and testing of problem solving, and (iii) the wide 
differences in amount of testing and other assessment activities. But the results of the 
present study suggest that consistency in assessment will be increased only when other 
steps are taken as well. 

These steps include the following: increase the consistency of what is taught; increase 
the consistency with which those examination questions that test other-than-basic calculus 
skills are marked; increase the consistency with which displays of other-than-calculus 
knowledge and skills are marked; have more than one teacher independently mark every 
student exam paper, and set the exam mark equal to the average of the several marks; and 
ensure that exams are sufficiently long and numerous so that all content is covered and 
so that the impact on a student's grade of performance on anyone question or type of 
question is minimized. 
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Dr. Raphael discussed the results of 13-year-old Ontario students on the 1988 
International Assessment of Educational Progress. The results pertain to both Anglophone 
and Francophone student achievement in relation to achievement in the Canadian 
provinces and other countries. 

The presentation was based on a paper read at the Annual Meeting of the American 
Educational Research Association in March 1989. The paper is available through ERIC. 
ED 306259 
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