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Lecture One 

Understanding Doing + Seeing? 

Anna Sfard 

The Hebrew University of Jerusalem 





Analyzing Mathematical Understanding 

1.1 The problem: what are the ingredients of mathematical understanding and how are 
they related to each other? 

A few month ago I had the good fortune to meet one of the most accomplished of living mathematicians, a 
newcomer from the fonner Soviet Union to the United States. Well into his seventies, he immediately adopted 
a student-teacher mode of communication. This didn't surprise me, since this exceptional person is well 
known for his interest in education and for his many activities aimed at bringing mathematics to young minds 
as well as at bringing the young minds to the world of mathematics. He declared that before we start talking 
about teaching and learning he must put me to a mathematical test; and then he posed the question: How 
many vertices and how many edges are there in a 4-dimensional cube? "But don't you try to formulate the 
defInition of n-dimensional cube," he warned. "Just think." 

There was hardly anything else I could do. Had I remembered Davis and Hersh's (1981) remarks on 
this problem, I would immediately have struck upon the answer my interlocutor had in mind. Since, however, 
I had no recollection of the story, I resorted to the most obvious of methods: I tried induction. Starting with 
a straight-line segment, which may be regarded as a one dimensional cube, and proceeding through a square 
(2-dimensional cube) to the only "real" (3D) cube, I quickly found that the number of vertices is 2N

, where 
N is the dimension. The story of the edges proved a little bit more complicated. However, before I had time 
to look for a fonnula, the mathematician volunteered his method: "Start with O-dimensional cube, with a 
point. Now, to get a one-dimensional cube from this one, all you have to do it to stretch the point to a line 
segment along, say, the x-axis." Immediately, I knew how to go on: "Good, so in order to get to the 
2-dimensional cube we now move the segment along the y-axis, and then we make a transition to 
3-dimensions by shifting the resulting square along the z-axis. One can now see clearly that the number of 
edges in (N+I)-dimensional cube is twice the number of edges in the N-dimensional cube plus the number 
of vertices in N-dimensional cube (you must add the number of vertices, because when you carry 
N-dimensional cube along a new dimension, each one of its moving vertices produces a new edge)." 

"Good," said my instructor, "Now you have a good sense of what this 4-dimensional cube is all 
about; now you understand." But did I? I wasn't sure. True, I could do things that allowed me to get results 
and I could even do it very quickly. Even so, I didn't really feel I understood the concept of the 4-dimensional 
cube. Something was missing: I couldn't see this cube the way I see a segment or a square - not even with 
my mind's eye. 

This brings me to the question of the meaning of the tenn 'mathematical understanding.' What does 
it mean to understand mathematical concepts? What are the ingredients of such understanding? How are these 
ingredients related to each other? 

In mathematics, the notion of understanding seems to be one of the most stubborn unknowns of all. 
Numerous interpretations of the elusive term were offered in the past in relation to variety of contexts, mathe
matics being but one of many. The interesting thing is that most approaches are grounded in dichotomies, 
in the claim that, basically, there are two types of understanding. Or rather, that there is a full spectrum of 
"understandings," whereas the two extrema of such spectrum are distinct enough to be clearly contrasted with 
each other. It is only natural to look for two elementary ingredients which, when combined in different 
proportions, result in these different kinds of understanding. One glance on the approaches offered so far by 
psychologists of mathematical thinking suffices to notice a common thread going through most of the 
defInitions: whether mathematical understanding is divided into instrumental and relational (Skemp, 1976), 
into procedural and conceptual (Hiebert and Lafevre, 1986), into abstract and algorithmic (Halmos, 1985), 
or into operational and structural (Sfard, 1991), there is the same kind of distinction underlying all these 
classillcations: the distinction between doing and seeing. Or, to put it in different language, all the defInitions 
imply that understanding mathematics is somehow related to two abilities: the ability to perform 
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mathematical processes and the ability to see the mathematical objects to which the processes are applied. 
This is why the equation appearing in the title presents understanding as a combination of seeing and doing. 
This paper is devoted to a discussion of the role of both these ingredients. In the reminder of this section, I 
shall approach the subject theoretically, grounding my position in things said in recent past by philosophers, 
psychologists, and linguists. Then, in the second section, I shall take a closer look at the relative role of doing 
and seeing in understanding mathematics by three different populations: students, teachers and mathe
maticians. In the last part I shall close the discussion with some questions and suggestions regarding possible 
didactic implications of what has been said in the former two sections. 

1.2 Is understanding anything more than an ability to do? 

The problem of understanding, in general, and the question of its elementary ingredients in particular, are 
certainly not new. Since antiquity, philosophers have been devoting their writings to this exciting subject. 
That understanding entails ability to perform certain actions has always been considered obvious and indis
putable. However, while many thinkers seemed to be in agreement that understanding means more than the 
ability to do, some others argued that the claim about anything as tangible and non-measurable as "seeing 
with one's mind's eye" must be dropped. Ludwig Wittgenstein, one of the most influential modem 
philosophers in recent history, belongs to the letter school of thought. In Philosophical Investigations, 
Wittgenstein (1953) begins his reflections on understanding with the story: 

Let us imagine the following example: A writes a series of nwnbers down; B watches hlln and tries 
to find a law for the sequence ofnwnbers. If he succeeds he exclaims "Now I can go on!" - So this 
capacity, this understanding, is something that makes its appearance in a moment. So let us try and 
see what it is that makes its appearance here ... (l 5 1; p. 59). 

Following a lengthy discussion in which he tries many different approaches to the issues of meaning, expla
nation, and understanding, Wittgenstein finally decides to stop looking for occurrences that take place inside 
our mind: 

Try not to think of understanding as a 'mental process' at all. - For that is the expression which 
confuses you. But ask yourself: in what sort of case, in what kind of circwnstances, do we say, "Now 
I know how to go on," when, that is, a formula has occurred to me? In the sense in which there are 
processes (including mental processes) which are characteristic of understanding, understanding 
is not a mental process. (l 54, p. 62) 

Instead of dealing with the elusive concept of mental state we should focus on externally observable factors, 
such as a person's ability to actually do things. According to Wittgenstein, grounding the concept of under
standing in anything that is only accessible by introspection would be philosophically useless or even worse 
than that: it would be confusing. The refusal to think about understanding as a mental state was a natural 
thing to do for a philosopher who promoted a "third person view" of the world (as opposed to "fIrst person 
view',), denied the possibility of "private language" and proposed to replace talks about the meaning of our 
verbal expressions with a discussion of the ways these expressions are used. According to Wittgenstein, the 
most useful thing we can do is to view understanding as something 'akin' (bearing 'family-resemblance') to 
the ability to do certain things. Thus, if Wittgenstein participated in our present discussion, he would prob
ably object to talking about "seeing" as an important ingredient of understanding; after all, in the case of 
mathematics, "seeing" is a private experience which can only be approached through self-examination. 
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The very use of the term "seeing" in the equation appearing in title of this talk implies that 1 decided 
not to listen to Wittgenstein's exhortation to limit analysis of understanding to its more tangible and measur
able manifestations. Before, however, 1 am accused of either ignorance or arrogance, let me explain my 
reasons. Wittgenstein's advice is methodological-pragmatic rather than anything else: we should not talk 
about the things we have no way to put our finger on. The question remains open, however, whether it would 
be useful to talk about anything more than the ability "to go on" for any practical reason. In this paper 1 will 
argue that from the point of view of teaching and learning it is important to realize that understanding does 
include more than an ability to do. Ability to see is the name given here to this other ingredient of under
standing. It should be stressed that the "seeing" 1 am talking about should not be equated with the concepts 
of visualization, imagery or mental representations. Although my theme has a distinct bearing on these topics, 
1 would not like to make unnecessary commitments by formulating exact descriptions. Clearly the term 
"seeing" is used here metaphorically, and this use is justified by the fact that we often substitute the expres
sion "1 understand" with the phrase "1 see." The hope is that the word will become meaningful by contrast 
with the ability to do. To put it in a different language, the term "ability to see" should be understood in 
the present context as referring to all these aspects of understanding which obViously are there, as I will 
try to show, but are not included in or explainable by the ability to do. What the defining features of this 
"seeing" are will, hopefully, become gradually clearer as our discussion goes on. 

That the phenomenon of understanding cannot be fully understood without considering more than 
behavioural aspects has already been signaled in my opening example. As 1 have pointed out, even though 
1 could easily do whatever was necessary to solve the puzzle of the 4-dimensional cube, I clearly felt that my 
understanding of the central concept was far from satisfactory and that some crucial ingredients were missing. 
Paul HaImos (1985), a well known mathematician, provides us with an even more convincing illustration of 
the same phenomenon: 

... I was a student, sometimes pretty good and sometimes less good. Symbols didn't bother me. I 
could juggle them quite well ... [but] I was stumped by the infinitesimal subtlety of epsilonic 
analysis. I could read analytic proofs, remember them if I made an effort, and reproduce them, sort 
of, but I didn't really know what was going on. (p. 47) 

Thus, Halmos' ability to do things was clearly not enough. Even though he could "juggle symbols," read 
analytic proofs, remember these proofs and reproduce them, he still had a distinct feeling that he had not 
understood "epsilonic analysis" as well as he would wish to. And his longing for something more than the 
ability to do things was not just a fantasy. Some time later, things took a fortunate turn: 

... one afternoon something happened. I remember standing at the blackboard in Room 213 of the 
mathematics building talking with Warren Ambrose and suddenly I understood epsilon. I understood 
what limits were, and all of that stuff that people were drilling in me became clear. I sat down that 
afternoon with the calculus textbook by Granville, Smith, and Longley. All of that stuff that 
previously had not made any sense became obvious ... (Albers & Alexanderson, 1985, p. 123) 

Clearly, therefore, what HaImos calls the 'true' understanding or 'real knowing' involves something that goes 
beyond the operative ability to solve problems and to prove theorems. Even if difficult to describe, to analyze, 
and to measure, this additional constituent cannot be ignored by the students of teaching and learning. To 
defend this position even more strongly, let me summon the voices of contemporary thinkers, for whom edu
cation is not necessarily the main concern but who nevertheless make a similar claim. The thesis that the 
discussion on understanding should not be limited to behavioural aspects fmds support in recent develop
ments in cognitive science. 
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First, let me remark that by postulating the ability to see as one of the basic components of under
standing I touched upon the perennial body-mind dilemma. This quandaIy has many disguises and it goes 
like a thread of scarlet through the history of human philosophical and scientific thought. Wittgenstein's 
logical behaviourism alone can be opposed to many past and recent schools of thought. Among others, it can 
be contrasted with the mentalist doctrine recently suggested by Chomsky and Fodor, and also with the inten
tionalism first formulated by Brentano and currently developed by Searle. The importance of deep under
standing of the relationship between the mental and the physical in the context of human thinking and 
functioning was never of greater practical importance than it is today, in the view of its prospective impact 
on information processing technology. The historical disputes on the body-mind dilemma have been echoed 
in the ongoing discussion between proponents and opponents of "strong AI." 

One of the most powerful and convincing attacks on the claim that it may be possible to program 
a computer in such a way that it will behave in a truly intelligent manner, as if it was endowed with human
like capacity for understanding, was launched by the American philosopher John Searle. Searle is fiercely 
opposed to the view that "the brain is just a digital computer and the mind is just a computer program" 
(Searle, 1984, p. 28). The reason for Searle's denial of this position is his deep conviction that, indeed, to 
understand means more than knowing how to behave and being able to apply an appropriate algorithm when
ever necessary. To support this claim Searle concocted his famous Chinese Room allegory. This is a story 
of a person - in fact, Searle himself - sitting in a room full of Chinese written texts. Searle does not know 
Chinese, but being also endowed with English, purely syntactical, prescriptions for constructing Chinese res
ponses ('answers') to various Chinese statements (,questions'), he is able to gradually develop an ability to 
behave as if he did understand Chinese. Indeed, his Chinese behaviour and his English behaviour are prac
tically indistinguishable from the point of view of an external observer: 

Suppose that after a while I get so good at following the instructions for manipulating Chinese 
symbols... [that] from the external point of view - from the point of view of somebody reading my 
"answers" - the answers to the Chinese questions and the English questions are equally good (after 
HofstadterandDennet, 1981,p. 33) 

In spite of this striking similarity of behaviours, there is an important difference between the two situations. 
Searle stresses this difference time and again: "In the Chinese case, unlike in the English case, I produce the 
answers by manipulating uninterpreted formal symbols" (ibid). And he summarizes, leaving no doubt as to 
the necessity of considering more than behavioural aspects when talking about understanding: 

The whole point of the parable of the Chinese room is to remind us of a fact that we knew all along. 
Understanding a language, or indeed, having mental states at all, involves more than just having a 
bunch of formal symbols. It involves having an interpretation, or a meaning attached to these 
symbols. (Searle, 1984, p. 33) 

The component of meaning that Searle stresses so forcefully here is an epistemological counterpart of the 
psychological phenomenon of "seeing" I am talking about in this paper. Once again, without making any 
explicit commitments as to the exact sense of the word, I include in the seeing anything that constitutes 
understanding but goes beyond the mere knowledge of rules or the ability to follow them. 

1.3 Seeing and doing complement each other 

In the light of the last section a crucial question arises·: What does it mean "to see" in the context of mathe
matics, this most abstract of intellectual disciplines? Formalists would probably say that here, the only things 
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to be observed with one's eyes - whether with those situated on both sides of one's nose, or with those 
placed in the mind - are mathematical symbols. For them, to understand a formula, 5x 2 + 3px, for 
example, would just mean being able to manipulate it according to the rules of algebra. Although today many 
educators would instinctively shrug at this last sentence, there are psychologists who take the exhortation to 
restrict the discourse to the 'third person view' seriously, and there are mathematicians for whom manip
ulations on algebraic fonnulae are the only possible source of the meaning of fonnal symbols. The nineteenth 
century British mathematician D. F. Gregory (1840) became one of the leading representatives of this last 
group when he defmed algebra as a discipline "which treats the combination of operations defmed not by 
their nature, that is by what they are or what they do, but by the laws of combinations to which they are 
subject." 

I already smnmoned Searle and his Chinese room to my support when I claimed that for the purpose 
of psychological analysis, as well as for many other reasons, it would be a methodological mistake, to say 
the least, to restrict the analysis of mathematical understanding to the scrutiny of people's ability to perform 
formal manipulations. Searle was talking about the necessity to consider "meaning attached to symbols." In 
the present section I will elaborate on the theme of the meaning of mathematical symbols and will try to 
explain why the verb "seeing" is pertinent to this context. 

Since, however, this word in its original sense applies, first and foremost, to what belongs to the per
ceptibly accessible reality, let me begin with an analysis of the role of the sense of sight in our understanding 
of the physical world. In order to this, I shall use an example inspired by Searle's parable. Instead of the 
Chinese room, imagine entering an ordinary messy room, full of different pieces of furniture, with many odd 
objects scattered all over the place. Imagine also that your aim is to get from the door to the window. While 
doing so, you must be careful about your steps. Since, however, this messy room is a part of the world you 
have deeply engraved in your mind, your decisions are made in a most natural, non-reflective manner. 
Instinctively, you try to get to your target by following the shortest path. Sometimes, in order to keep the 
direction, you remove an object lying there on your route; in some other cases, when the object in your way 
seems too heavy to be easily moved, you just make a small detour. Whatever you do is not so much an effect 
of a reflection as a result of your deep understanding of the world in which you have to make your way. Your 
profound sense of the nature of the objects which furnish this world gives a clear direction to your actions 
and informs your operative decisions. 

In order to be able to decompose understanding into its basic components I must now introduce a 
new element to the story: an external observer - another person, who actually does nothing except to watch 
you moving through the room and try to make sense of your actions. Let us concentrate on her understanding 
of the situation. Such understanding is not too difficult to attain. After all, the observer and you share the 
same world, the same experiences. It is easy to have a good grasp of your aims and the reasons for your 
actions just by looking at you moving through the room. We could test the observer's understanding of the 
situation by asking her to repeat your actions. 

Now imagine, however, that rather than moving through a real messy room, you are engaged in 
playing a virtual reality game. Intricate computerized equipment - a helmet and a glove - allows you to 
feel as if you were, indeed, in a messy room. If the game is well-designed, you can see almost no difference 
between this situation and the fonner one, when you were in the real room. You see the same objects, you 
make the same decisions, you perfonn the same actions. How about the observer, however? For her, no 
doubt, the situation has changed dramatically. True, she can still see you doing things, but the moves of your 
empty hands and the sudden turns and bends of your body can no longer make much sense to her. In her eyes 
youjust look funny, very funny. If asked to repeat your actions, she would probably feel utterly lost. 

This time, one cannot say that the observer understood the situation. She did not understand it in 
spite of the fact that she was watching the same behaviour, the same actions as before. In the ftrst case, her 
understanding could be conftnned by her description of the moves she would do herself in the same situation. 
This time, even though she has a full grasp of the rules of behaviour in a messy room, she would not be able 
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to repeat your actions. What is missing, this time, is the element of seeing. The observer could not see the 
objects scattered on your way, the objects you moved or tried to circumvent, the objects which made you 
behave the way you did. Awareness of these objects, however, was indispensable to render your actions 
meaningful. 

The example of the messy room made it possible to separate the component of seeing from the 
purely operative aspects of understanding. It has shown that being able to see - or, more generally, to grasp 
the existence of certain objects - is an important component in our ability to deal meaningfully with the 
physical world. Incidentally, by now it should be clear that the word "seeing" is used in this paper as a 
metonym for a perceptual or as-if perceptual grasp of a certain reality - either physical or virtual. In his 
insightful study of the experiential roots of understanding, Johnson (1987) states that 

... understanding is the way we 'have a world', the way we experience our world as compre
hensible reality ... our understanding is our mode of 'being in the world' ... Our more abstract 
reflective acts of understanding ... are simply an extension of our understanding in this more basic 
sense of 'having a world'. (p. 102) 

Our example should clarify what 'having the world' is all about. In mathematics, where there are no palpable 
objects to guide a person through the maze of messy abstract spaces, one has to envision abstract objects in 
order to have a sense of direction. These abstract constructs, even though incommunicable to others, are often 
clearly seen by the mathematizing person with her or his mind's eye. 

The importance of such virtual mathematical reality cannot be overemphasized. One can bring many 
examples showing why having the tangible world of even most sophisticated but empty formal symbols is 
definitely not enough to have a deep understanding of mathematics. Many such examples can be found in 
the paper dealing with learning and teaching of algebra by Liora Linchevsky and myself (see Sfard and 
Linchevski, 1994). In that paper we argue that being able to see different mathematical objects behind the 
same symbols and the ability to adjust one's perspective to the requirements of the problem at hand necessar
ily underlie every effective mathematical activity. Taking symbols at their face value would not be enough 
to tackle such an equation as (p + 2q)x 2 + X = 5x 2 + (3p - q)x. Here, one must see through symbols 
rather than just see symbols; before the problem-solver can undertake any concrete action, he or she has to 
decide whether the equation is numerical or functional - whether the objects hiding behind the two 
component formulae represent numbers or functions. And this is only one example out of many. 

In fact, most mathematical activities require constant alternating between seeing symbols and seeing 
through symbols. One has to see abstract objects represented by the signs in order to make operative 
decisions, and one must forget all about these intangible entities if one is to capitalize on the possibility of 
fast mechanical symbol manipulations. Indeed, the semantic 'cargo' would put an unnecessary strain on the 
person's working memory and would thus make the whole algorithmic operation much less effective. The 
alternations between the different ways of looking at symbols, or rather between symbols' visibility and 
invisibility, is at the very heart of any effective mathematical activity. After Lave and Wenger (1991) I would 
say that "these two crucial characteristics are in a complex interplay, their relation being one of conflict and 
synergy." Lave and Wenger use a persuasive metaphor to describe the role of the visibility-invisibility 
alternations: 

It might be useful to give a sense of this interplay by analogy to a window. A window's invisibility 
is what makes it a window, that is, an object through which the world outside becomes visible. The 
very fact, however, that so many things can be seen through it makes a window itself highly visible, 
that is, very salient in a room, when compared to, say, a solid wall. 
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Even though Lave and Wenger refer in their writing mainly to technology and other physical tools, this meta
phor seems adequate - and quite enlightening - when transferred into the context of mathematical sym
bolism. 

Today, the majority of researchers seem to agree that in mathematics, the ability to do things must 
be complemented by some kind of "inner seeing." For example, among the eight modes of understanding 
postulated by Kieren and Pirie's "recursive" theory, there are "image making" and "image having." The 
researchers say that for the students "at the image having level ... mathematics is the image they have and 
their working with that image." (Pirie and Kieren, 1994) 

I wish to stress, once again, that the present discussion of the aspect of seeing in mathematical 
thinking goes well beyond the ability to create mental images. Imagining concrete pictures is certainly a part 
of the story, but it is not more than a part. Visualizing mathematical objects is often helpful, but it is not 
indispensable for understanding their nature and feeling their existence. On the contrary, even though mathe
maticians tend to agree that picturing mathematical structures is an important and quite common phenom
enon, too concrete an image would hinder thinking rather than promote understanding. For instance, Hada
mard (1949), who admits the importance of mental "drawings," stresses at the same time that the schemes 
he builds must always be "of vague character, as not to be deceptive." Similarly, Thurston (1994) warns that 
"words, logic, and detailed pictures rattling around can inhibit intuitions and associations" (p. 165). 

In this paper, I include in seeing all the components of "virtual perception" - all the aspects of 
understanding which display characteristics similar to those of sensory perception of any kind: "to see" 
mathematical object means, among other things, to be able to think about many different components of the 
situation simultaneously and in a holistic manner and to feel as if there really was some permanent entity that 
exists independently of whether we think about it or not. 

My recurring stress on the links and analogies between mathematical thinking and the perception 
of physical reality is not accidental. As I argued at length elsewhere (Sfard, 1991, 1994), I believe that 
sensory experience is what shapes our abstract reasoning and understanding. The intangible objects that pop
ulate the virtual realm of mathematics can be viewed as metaphorical reflections of our sensory experience. 
In their seminal work on the role of our perceptual capacities in shaping our vision of the world and of our 
imagination, Lakoff and Johnson (1980) explain why thinking in terms of abstract objects is a part and parcel 
of our understanding: 

Understanding our experiences in terms of objects and substances allows us to pick out parts of our 
experience and treat them as discrete entities or substances of uniform kind. Once we can identify 
our experiences as entities or substances, we can refer to them, categorize them, group them, and 
quantify them - and, by this means, reason about them. (p. 25) 

I cannot conclude the theoretical reflections on the role of seeing and doing in understanding mathematics 
without stressing once again the complementary nature and the mutual dependence of these two abilities. 
Using the story of the messy room I have already shown that the ability to see underlies the ability to do. In 
mathematics, unlike in the physical world, the opposite is true as well: seeing mathematical objects would 
not be possible without intensive mathematical doing. According to the theory of process-object duality of 
mathematical concepts, mathematical objects are reified mathematical processes - they are entities that 
appear at those junctions in the development of mathematical concepts where certain well-known processes 
are to become "inputs" to some higher level processes; to fit this new role, the "input" processes have to be 
"squeezed" into object-like capsules. To put it differently, the things we see in the realm of mathematics with 
our minds' eyes are emergent phenomena brought into existence by the mathematical activity itself. Many 
kinds of evidence could be given to support this thesis. Since, however, I began this paper with a story of 
4-dimensional hypercube, no example would be more pertinent than the one referring to the same concept. 
Let me remind: in the opening example I claimed that in spite of the ability to operate with the concept of 4-D 
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cube, I did not feel that I fully grasped the idea - that I could see the hypercube with my mind's eye. Thanks 
to Davis and Hersh (1981) I can finish the story with a happy ending: one of the authors of Mathematical 
Experience was able to bring the hypercube into as-if tangible existence just by manipulating it - by turning 
around its different 3-dimensiomll projections presented to him by a computer: 

I tried turning the hypercube around, moving it away, bringing it up close, turning it aroWld another 
way. Suddenly, I could/eel it! THE HYPERCUBE HAD LEAPED INTO PALPABLE REALITY, AS I LEARNED 

HOW TO MANIPULATE IT, feeling in my fmgertips the power to change what I saw and change it back 
again. The active control at the computer console created a union of kinaesthetic and visual thinking 
[of doing and seeing] which brought the hypercube up to the level of intuitive [structural] 
understanding. 

This seems to me one of the most persuasive examples showing how mathematical objects can emerge out 
of a stubborn mathematical doing. There are many others. 

Different Recipes for Understanding Mathematics 

The focus of this section will be on personal attitudes of different people toward the issue of understanding. 
To put it more precisely, I will address the question of the requirements and expectations a person may have 
with respect to his or her own understanding of mathematics. It is important to stress that unlike in many 
traditional studies, the main interest will not be here in any externally measurable manifestations ofWlder
standing. Rather, it will be an attempt to bring 'first person's views': I will try 'to get into people's own heads' 
to learn as much as possible about those elusive mental states which can be described as states of Wlder
standing. In particular, I will be interested to fmd out the relative importance ascribed by different people to 
the ability to see abstract objects as opposed to the ability actually to do things. Just to remind ourselves, 
mental states were once banned from the philosophical discourse by Wittgenstein but have been recently 
brought back to grace by those interested in scientifically useful and technologically applicable conceptions 
of mind. In what follows I will tum to representatives of three different populations: research mathematicians 
presently active in the field, students for whom learning mathematics is not always a matter of their own 
decision, and teachers whose task it is to 'inculcate' mathematics into other people's head. As it will soon 
become clear, different people may have quite different conceptions as to what understanding mathematics 
is all about. Indeed, when talking to mathematicians, students, and teachers, I have found, basically, three 
'prescriptions for Wlderstanding', each one of them offering a unique blend of seeing and doing. 

2.1 The mathematician's formula: mostly seeing 

My first object of interest is the mathematician - the person who may be expected to have more to say on 
mathematical understanding than anybody else. I interviewed quite a few representatives of this group, asking 
each one of them to describe as well as they possibly could the mental states that may be described as states 
of understanding (see more exhaustive account of these interviews in Sfard, 1994). In the absence of any 
other ways to get into mathematicians' heads, introspection was the only means of inquiry I could think about. 
Needless to say, self-examination is not the best "scientific" tool one can imagine. In his recent paper for The 
Bulletin of AMS, mathematician Thurstone (1994) warns that even for somebody as experienced as himself, 
ta1kiD.g about understanding mathematics may not be an easy matter at all. "Understanding is an individual 
and internal matter that is hard to be fully aware of, hard to understand, and hard to communicate." 
Nevertheless, Thurstone is able to make some helpful remarks about the components of mathematical 
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lUlderstanding. He clearly emphasizes the abilities that are structural rather than operational or, to put it in 
our present language, that have to do with seeing rather than with doing. Indeed, he speaks about the 
importance of "vision, spatial sense, kinesthetic (motion) sense," all of which have their roots in the ways 
we interact with a physical reality. 

The central role of the ability to "somehow grasp a structure" was a leading motif in all the mathe
maticians' testimonies I was able to collect. The ability to see seemed, therefore, the principal need of the 
mathematicians, the need much more obvious than their need to be able actually to do things. Nowhere else 
did this preference for seeing come through more forcefully than in this statement by one of my interviewees: 

There are mathematicians who try to see the general structure fIrst of all. I sense that most 
mathematical activities don't require algorithmic thinking at all. The main thing is to see a structure, 
somehow. Only after you have this general picture you start thinking about details. I believe that the 
majority of good mathematicians proceed in this way. I am one of these people who do not think 
algorithmically. I don't use manipulations when I try to understand a new concept. Not even 
manipulations in the most abstract sense of the word. When I have a new concept, I need, fusfand 
foremost, a metaphor. A human metaphor - personifIcation of the concept. Or a spatial metaphor. 
A new metaphor of a structure. Only when I have it can I answer questions, solve problems, perform 
manipulations. I can do all this only after I have the metaphor. 

Although all the mathematicians I was able to talk to remarked that some of their colleagues may have 
different needs, none of them was able to produce an actual example of the "different type of mathematical 
mind" Neither did I find much evidence for the existence of this other type in the literature. I feel, therefore, 
that it would be justified to conclude that for the great majority of people who deal with mathematics on an 
everyday basis, having this as-if sensOI)' perception of mathematical constructs is the most important, crucial 
component of understanding, whereas the ability to perform manipulations is somehow secondary, being but 
a natural outcome of the ability to see. 

2.2 Student's formula: more often than not - mostly doing 

The next group I shall tum to now is the largest: it is the group of those who learn mathematics as an obliga
toI)' part of their curricula. The mathematician I quoted in the last section was able to recall his experience 
as a student: 

Also as a child I couldn't manage symbolic manipUlations and couldn't arrive from one thing to 
another without seeing the links between one entity to another. I knew what to do and how to do it 
only after I could see that important something that was hidden behind the symbols. It was because 
of this particular need of mine, this inability to manipulate empty symbols, that I didn't score too high 
in mathematics until I was 16 year old, until my last year in school. Only on the fmal examinations 
my grades jumped to the maximum. 

My interviewee emphasized in the statement I quoted earlier that in his research work, he needs "to see" 
before he can do anything productive. Now it is clear that he displayed this preference already as a child. My 
observations and interviews with high school students show, however, that this attitude is rather rare among 
young people. Indeed, it may well be that it was precisely because of my interviewee's special ability (and 
need) to have as-if sensoI)' perception of the virtual world of mathematical objects that he eventually became 
a mathematician. As I will 11)' to show now, the cognitive preferences displayed by the mathematicians seem 
quite unique when compared with the formulae for understanding implicitly held by the majority of young 
learners. 
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My first example comes from the ongoing project on teaching and learning algebra carried out in 
Montreal by Carolyn Kieran and myself. In this project, twelve-year old children were introduced to algebra 
in such a way as to gain an ability "to see" certain abstract objects ("unspecified number," a function) well 
before any symbolism was offered. In this short talk it would be impossible to give the details of the teaching 
method or of the actual learning processes that took place during the two parallel thirty-hour long courses. 
The reader, therefore, has no choice but to rely on our preliminary observations and summaries, according 
to which the students had a pretty good grasp of numbers and functions as the referents of algebraic formulae 
well before they started to manipulate the formal expressions. Later, the basic rules of equivalence of linear 
formulae were discovered by the children themselves in the course of graphically supported activities with 
functions (adding functions, multiplying a function by a number, etc). As could thus be expected, when it 
came to manipulating algebraic expressions, the children had no difficulty with either doing what was 
necessary or with explaining their decisions in terms of functions and graphs. Needless to say, we were all 
quite pleased both with the children and with ourselves: at long, long last, here is a method that works, we 
thought. Judging from our own and other researchers' findings, never did young high-school students mani
fest so much understanding of algebra. Our joy, however, was short-lived. Final interviews, held only a few 
weeks later, brought a disappointment: the majority of children seemed to have lost their ability to see 
through symbols and the only thing they could do was to manipulate the symbols. There was not much 
difference anymore between our experimental groups and any standard algebra class. Here is a representative 
segment of an interview with Gillian, one of our subjects: 

1: Could you write this [3(x + 2)] differently? 
G: [writes: 3(x + 2) = 3x + 6] 
1: What makes these two things equivalent? 
G: I don't know ... 
I: But how could you explain this equality to somebody? Why didn't you write, say, 

3(x + 2) = 3x + 2, as some of you did sometimes? 
G: Yeah ... cause they're just rules. They're there so you can follow them, so that everybody'll do the 

same thing ... Without [the rules] I'd do it one way, she'd do it another way. 

Once again, arbitrary rules for doing things were what algebra seemed to be all about. There was no mention 
of functions behind the symbols, no hint of the world of abstract objects which was supposed to make the 
rules meaningful. The ability to see this abstract universe, which at a certain stage seemed to be here, 
disappeared after just a few weeks. When we complained about this regrettable change to one of our inter
viewees, he responded: Once I know algebra, nothing comes to my mind. Ijust do it. 

Students' own expectations and attitudes toward learning mathematics may be the key to under
standing the events which took place in our experimental classrooms. It seems that the children felt much less 
need to have "meaning attached to symbols" than we wanted them to have. Most of them quickly forgot the 
existence of "seeing-based" way of explaining equivalences; the best they could do was quoting the rules or 
repeating the process itself. We decided, therefore, that the majority of the children were doers rather than 
interpreters: they only expected to be able to do things, and had not much belief in (or ability to create, or 
awareness of) the realm of the abstract objects, in which the rules of algebra become "the laws of (virtual) 
nature." 

That the degree of meaningfulness of mathematics is, to a great extent, the result of-students' attitude 
toward understanding I was able to notice already in an earlier study on algebra carried out in Israel with _ 
Liora Linchevsky. A fuller account of the phenomena observed in this experiment are presented in Sfard and 
Linchevsky (1994). Here, let me only complete the picture by focusing on the findings relevant to our present 
topic. The study, in which six twelve-year old students had a series of individual one-hour long sessions 
devoted to the basic concepts of equations solving, provided us with an excellent opportunity to have a close 
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look at children's behaviour and needs. We decided to focus on two pupils, Snir and Dana, who obviously 
differed in their aims and expectations. In our terms, Snir can be described as interpreter, while Dana was 
an example of a doer. 

For Snir, there were always two dimensions in the problems he tackled: the dimension of means, 
namely of procedures to be performed, and the dimension of ends - of the purpose for which the procedure 
was employed. The purpose was something that had to be defmed with no reference to the procedure. Thus, 
when asked to justify, say, the equivalence of 7x + 157 = 248 and 7x = 91 ,Snir would give a lengthy 
explanation: 

I do the same operation on both sides, and I substitute the same number on both sides ... 
if I substitute and compute the sides of the [ new] equation, I get a different results [than in 
the old equation], but it is still the same structure ... the same ... how shall I put it? So the 
solution is the same solution ... 

Snir obviously had some difficulty finding the right words, but what he seemed to be saying was that the per
missible operations, although they altered the functions represented by the two sides of the equation, did not 
change the "input value" for which they both gave the same "outputs." In general, he clearly recognized the 
independent existence of a universe of mathematical entities, such as numbers and algebraic expressions, and 
whatever he did was a derivative of his knowledge of these entities and the relations between them. From the 
first moment he seemed to be in pursuit of links between the manipulations and the properties of the objects 
on which these manipulations have been performed. 

For Dana, in contrast, the activity of equation solving had only one dimension: that of doing. In her 
eyes, the means were also the ends and the actions she performed were undertaken for their own sake. Dana 
seemed unable to understand the meaning of the request 'explain' the same way the teacher did. When asked 
to account for the equivalence of two equations, she would usually just repeat the operations that have been 
performed to transform one into the other: "7x + 157 = 248 and 7x = 91 are equivalent because when we 
subtract 157 from both sides we get an equivalent equation." When prompted to say what it meant that the 
equations were equivalent, she would reply: "That they are equal." Dana's single-minded preoccupation with 
doing and manipulating persisted in spite of the instructor's efforts to entice her into a more reflective mode. 

Interestingly, Snir's example has shown that a constant attempt to understand has its price: a struggle 
for meaning may mean postponement of an 'automatic mode' of dealing with algebra and a slow-down in the 
acquisition of skills. Indeed, after dealing for some time with the equations of the form ax + b = c in a 
natural way of undoing, Snir was slower in adopting the algebraic method of solving this kind of problem. 
For a while, he refused to accept the idea of operation on both sides of an equation. It seemed to us that Snir's 
temporary resistance to the new technique stemmed from his inability to fully justify it. Such justification 
would require a fully-fledged functional view of algebra, which, as is well known from studies on the 
development of the concept of function, is not an easy thing to attain. As long as the undoing was more 
meaningful to him than the algebraic method, he would rather choose the former. By the same token, the 
relative easiness with which Dana 'switched allegiance' from the technique of undoing to the algebraic method 
stemmed from the urge to actually do something on the one hand, and from her relative indifference to the 
issue of "seeing through symbols" on the other hand. 

The main moral from the stories I have just told is this: although some learners of mathematics are 
interpreters and include seeing in their implicit defmition of mathematical understanding, the majority of 
students are doers, who will always rush to do things rather than reflect on them. For them, symbols are 
things in their own right and not peeping holes to a universe of intangible objects. You cannot entice a doer 
into the game of virtual mathematical reality. 
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2.3 Teachers' formula: undecided 

Let me now turn to the teachers and ask the same question as before: what are the main ingredients of 
mathematical understanding, in their opinion? What kind of skills and abilities would they like to help their 
students to develop in order to make these students likely to come up with Wittgenstein's exclamation "Now 
I understand! Now I can go on!" 

Data that can be extracted from the quickly growing bulk of research on teachers' attitudes and 
beliefs are ample and somehow confusing. The most important moral of these studies is that teachers' 
behaviour in the classroom may be quite different from the one he or she believes would be the most 
appropriate. Or, to put it in more fonnallanguage, teachers' espoused and enacted theories do not always 
agree with each other. Therefore, even if a teacher claims - as she often does - that her aim is to develop 
in her students more than a mere ability to perfonn mathematical procedures, her actual teaching may show 
little concern for anything but skills. In today's anti-behavioural atmosphere, when there seem to be a full 
consensus about the importance of 'conceptual understanding,' only a few have a courage to openly admit that 
they do not strive for anything more than their students' ability to do. For me, therefore, it was a special 
experience to meet a teacher who was prepared to voice his objections against the notion of "conceptual 
understanding" in public, in the presence of tens of other teachers and researchers. The event I am talking 
about took place during my recent meeting with a group of Israeli high-school inservice teachers. Following 
a discussion on what it means to understand algebra, one of the participants took the floor and declared that 

Teaching algebra should be like teaching the use of word processor. The students must know what 
to do and how to use it, and this is all they need to know. You don't have to 'see through symbols' 
to understand. Indeed, you wouldn't say that a person doesn't understand [a] word processor only 
because he never read the program that runs it or never saw the inside of a computer. (I reconstruct 
this statement from memory, helping myself with the notes I took immediately after the meeting). 

Not every teacher would interpret the words "seeing through symbols" the way this teacher did, nor would 
everyone express his or her doubts about the role of 'seeing' in mathematical understanding in such an 
extreme manner. The teacher who participated as an observer in our Montreal study on algebra - let's call 
him John - had a more balanced view. He stressed many times how important it was that the students have 
'meaning attached to algebraic symbols' and was pleased, therefore, with our intensive use of graphs which, 
so he believed, ran a good chance of bringing the missing element of seeing back into the play. On the other 
hand, John recognized the addictive power of successful manipulations. He was well aware of the fact that 
the aspects of doing would often dominate the vision and take over as the primary source of all mathematical 
wisdom. He could feel this himself and he acknowledged this attitude in his students. This can clearly be read 
in the answer he gave in our fmal interview to the question "How would you, as a teacher, describe, what it 
means that the students understand - or don't understand - an algebraic rule, like opening brackets, or like 
subtracting the same expression from both sides of an equation?" Indeed, John's response revealed his full 
awareness of the primacy of the aspect of doing: 

[They understand if] they can do it, would be my answer. [To those students who understand, the 
rules of algebra are] as clear ... as they are to me, without the words. Perhaps they won't be able to 
explain, they may not have the skills to explain, but it's just perfectly obvious to them. There is no 
point in asking them to justify why this is true because this is quite obvious ... so I don't feel the need 
with all my students to go around and say why x + 3 = 7 is equivalent to x = 4 ,you know ... For 
most of them it's as clear as that the sun rises in the East. 
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From this statement it is not yet clear whether John denied the very necessity of "seeing through symbols" 
for good understanding of algebra or was just saying that the seeing is not anything the students and the 
teachers should be expected to explicitly talk about. Knowing John and some other opinions expressed by 
him in the course of our work together, I would opt for the latter possibility. Even so, the conspicuous lack 
of any mention of the necessity to see beyond symbols indicates that John might have doubts as to his role 
as a teacher in helping students to develop this elusive ability. 

John's doubts, ifhe indeed had them, would hardly be surprising. Whereas doing is public and thus 
relatively easy to describe, observe, regulate and measure, seeing is private, elusive, inaccessible to the in
spection of another person, and not easy to detect even by indirect means. Therefore, even the teacher who 
recognizes the importance of the component of seeing in understanding mathematics may fmd it practically 
useless to talk about it or to try to do anything about it. What seems inaccessible to teachers' inspection may 
be instinctively put aside and never made an explicit objective of instructional effort. 

Like in the former cases of mathematicians and students, it was not my intention to draw an 
exhaustive picture ofteachers' attitudes toward the issue of understanding mathematics. In particular, I am 
not in a position to make any general statements on what mathematicians, students, and teachers usually think 
about mathematical understanding or what the latter are prepared to do about the learners' ability to see 
mathematical objects. Much research is still needed before one may start making this kind of claims. The 
little sketches I drew in this talk are but accidental snapshots of persons and events which caught my eye 
during my professional travels. I hope, nevertheless, that this impressionistic outline does point to important 
phenomena and conveys the essence of the problem. In the next section I will complete my sketchy 
descriptions by discussing the ways in which students could be helped in their efforts to turn the invisible 
mathematical objects into an integral part of their private mathematical universe. 

Perennial Teachers Dilemma: 
What Comes First, Seeing or Doing? 

When it comes to practical pedagogical implications of all that has been said in the former sections, one 
obvious question should be asked: how can we foster students' ability to see? Today, there is an immediate 
answer: this special ability may be massively supported with the help of computer graphing software. The 
graphics turn inner impalpable reality into external and tangible, and in the absence of the former they readily 
offer the latter, thus making up for what was missing. In our Montreal study, where learning algebra was 
accompanied by an intensive use of computer graphics, we found much evidence for the beneficial influence 
of this computer-generated counterparts of mental images. To give but one example, let me quote from the 
fmal interview with George, who was asked to solve the equation 7x + 4 = 5x + 8. 

G: WelI,You could see, it would be like, ... Start at 4 and 8, this one would go up 7, hold on, 8 and 7, 
hold on ... no, 4 and 7; 4 and 7 i s 11 ... they will be equal at 2 or 3 or something like that. 

I: How are you getting that 2 or 3? 
G: 1 am just graphing in my head. (Emphases added) 

The advantages of graphs as a means for making abstract into visible were explicitly stressed by some of the 
children in our final interviews. Here is a representative utterance: "It's good for kids who might have trouble 
just by numbers, because you can see something you could follow.l mean, it's something to look at, not just 
abstract numbers." (Emphasis added) 

It is hard to believe, however, that the perennial problem of mathematical understanding will be 
definitely solved by this new means of turning abstract into concrete. Firstly, not every abstraction is readily 
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translatable into pictures. Secondly, the quandary of mathematical understanding requires yet deeper analysis 
before one starts to look for the ways to promote the seeing capacity of the learner. Let me explain. 

Today, mathematics educators seem to be in an universal agreement that learning mathematics 
should be done with understanding, and that understanding means more that technical skills: 

Following Brownell (1935), mathematics educators oppose rote to meaningful learning ... 
Mathematics educators seem to be universally opposed to the drill and practice, skill-based 
conception that was given, perhaps, its fIrmest theoretical support by Thorndike (1922). In other 
words, there appears to be pretty good community agreement as to what "meaningful" is (or at least 
what it isn't). (Orton, 1994). 

But is there, indeed, such universal consensus as to the nature of mathematical meaningfulness? It seems to 
me that for all the lengthy discussion that took place over the last decades (and, indeed, in this version or 
another - throughout history), and in spite of many insightful conceptual frameworks which deepened our 
comprehension of the subject, this question still remains wide open. As I tried to show in the preceding pages, 
even though there may indeed be a pretty general agreement as to the insufficiency of dealing exclusively with 
the operational aspects of mathematical behaviour, people seem still puzzled by the nature of this additional 
something that goes into the experience of understanding. In this talk I revisited this old issue and tried to 
scrutinize it in a "back-to-the-basics" manner. While dissecting the problem into its component elements I 
presented one possible theoretical route that can be taken in the search for a better understanding of the 
problem of mathematical understanding. But then, there is another question that waits to be answered - the 
question of ways in which this special non-operational component of understanding could be fostered in the 
student. This problem will be my theme in this closing section. 

The recognition of the necessity to distinguish between conceptual and behavioural aspects of mathe
matical understanding leads inevitably to the old pedagogical dilemma regarding the relative importance of 
the different capabilities and the order in which they should be developed. Say Hiebert and Carpenter (1992): 

One of the longstanding debates in mathematics education concerns the relative importance of 
conceptual knowledge versus procedural knowledge or of understanding versus skill (Brownell, 
1935; Bruner, 1960; Gagne, 1977; McLellan & Dewey, 1895; Thorndike, 1922). The debate was 
often carried out in the context of proposing instructional programs emphasizing one kind of 
knowledge over the other. The prevailing view has see-sawed back and forth, weighted by the 
persuasiveness of the spoke-person for each particular position. Although the arguments may have 
been convincing at times within the mathematics education community, we have not made great 
progress in our understanding of the issue. (p. 77) 

The question of which comes first, seeing or doing, was apparently present also on the previous pages of this 
paper and was given confusingly diverse answers by different people. On the one hand, Davis and Hersh, in 
their hypercube example, were telling us that seeing comes with doing; on the other hand, the mathematician 
I quoted extensively made it a point that he, as well as many of his colleagues, must see before he is able to 
do. We seem to have a dilemma, which, as I will try to show in a moment, can only be solved by realizing 
that the problem "which comes fIrst" is, in itself, ill-posed. 

Those who ask the question of precedence present the distinction between meaning and skill (or 
between seeing and doing) as dichotomous in character, rather than dualistic. They conceive it as referring 
to two separate abilities which can be dealt with independently and opposed to each other, rather than viewing 
it as concerning two non-severable, complementary aspects of the same phenomenon. This, in my eyes, is 
a great theoretical and practical mistake. Moreover, the majority of those who propose the dichotomy 
between meaning and skills suggest, in fact, that mathematical manipulations have not much to do with 
meaning (and understanding), and that there is almost an opposition between the two. This seems to me an 
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even graver mistake. As was emphasized time and again in this talk, whether we are engaged in a theoretical 
or pedagogical discussion, we must recognize that both seeing and doing are necessary components of 
understanding, and that being complementary they are inseparable from each other. Although in a slightly 
weaker sense, this last statement applies also to our dealing with the physical reality: I would say that the 
question whether we should foster seeing before or after we learn to perform actions on objects can be 
compared to the question whether we should take a look at the messy room before or after we actually make 
our way to the window (as opposed to looking at it as we are walking); or, paraphrasing William James we 
could say that making any definitive claims on the 'order of appearance' of seeing and doing in mathematics 
would be equally absurd as stating that, for some reason, our left leg should always be used exclusively 
before the right leg starts moving (compare Putnam, 1987, p. 77). 

Thus, the mathematician I quoted earlier may have been deluding himself when claiming that seeing 
is, for sure, what usually comes first in his and his colleagues' mathematical learning and inventions. It is 
more plausible that the whole process consists in a subtle interplay between seeing and doing. The nature of 
this interplay is intricate and diffIcult to capture due to what was called elsewhere (Sfard, 1991, 1992) "the 
(vicious) circle ofreifIcation" - due to the fact that seeing mathematical objects seems a prerequisite to 
operating on these objects, while the objects themselves seem to be something that can only come into being 
out of these operations. 

My conclusion from the preceding paragraphs is simple: since there is no understanding without 
doing, it would be a mistake to postpone any kind of mathematical activity (including the one aimed at the 
development of technical skills) until the students acquire the ability to see. I am not claiming that mechanical 
doing should precede an attempt to promote the seeing, either. My thesis is that these two intimately related 
abilities - the ability to see and the ability to do - should evolve together, the absence of one not being a 
good enough reason to stop fostering the other. After all, this is obviously the way mathematicians them
selves arrived at understanding new mathematical concepts in the course of history. This is what may be 
learned, for example, from the rich biography of algebra. Says Kitcher (1988): 

Leibnitzians confidently set about using new algebraic techniques, vastly increased the set of 
problems in analysis, and postponed the task of attempting to provide a rigorous account of their 
concepts and reasoning. Their attitude is not only made explicit in Leibniz's exhortation to his 
followers to extend the scope of his method without worrying too much about what the more 
mysterious maneuvers might mean, but also in the acceptance of results about infinite series of sums 
that their successors would abandon as wrongheaded. Insofar as they were concerned to articulate 
the foundations of the new mathematics, the Leibnitzians seem to have thought that the proper way 
to clarify their concepts and reasonings would emerge from the vigorous pursuit of the new 
techniques. In retrospect, we can say that their confidence was justifIed. (p. 307, emphasis added) 

Thus the solution that can be learned from history may be put into simple words: seeing may be expected to 
evolve from doing, and doing, in its tum, will become more and more effective thanks to this emergent 
seeing. How the development of the ability to do and the ability to see could be orchestrated in the most 
effective and secure way is quite a different question. The problem seems extremely diffIcult due to many 
factors. Let me name but three of them. Firstly, the ability to see, although indisputably necessary, is difficult 
to capture not only by an external observer, but by the cognizing person as well. It is certainly not easy to try 
to develop something which cannot be clearly delineated. Secondly, almost inevitable moments of imbalance 
between the two component abilities (as indicated, for example, in Ketcher's historical account) may have 
a lasting destructive effect on the learner's attitude toward mathematics. Thirdly, teachers and researchers 
are often bitterly disappointed and frustrated by their recurring failure to significantly improve students' 
understanding of mathematics. As I have argued earlier, however, while discussing the, case of Snir and 
Dana, the ability to see through symbols is, to great extent, a function of student's expectations and aims: the 
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interpreters will struggle for meaning whether we help them or not, whereas the doers will rather rush to do 
things rather than to think about them. The problem with the doers stems not so much from the fact that they 
are not able to see the mathematical objects, as from their lack of urge to look for it. In a sense, they do not 
even bother about what it means to Wlderstand mathematics. The main moral of Snir and Dana's story seems 
to be this: our success in fostering student's ability to see depends, among others, on our ability to tum doers 
into interpreters. After we agree, in principle, that the ability to see and the ability to do should be promoted 
together, the above three difficulties should become a focus of intensive research. 
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Introduction 

At one level of reading, this article describes a collegiate-level course I developed at Colby College, in Maine, 
during the four-year period from 1989 to 1993, when I was professor of mathematics and chair of the 
Mathematics Department there. (The course continues to be offered at Colby, though perhaps the format has 
changed since I left. I intend to introduce the same course at Saint Mary's College starting in 1995.) 

The course, which meets for three fifty-minute periods a week for a complete, thirteen-week 
semester, is not designed to develop any particular mathematical skills or knowledge; rather, the principal 
- and almost sole - goal is to develop in the student an awareness of the nature of mathematics as a part 
of human culture. 

It is almost certainly not the only course of its kind, but discussions with mathematics educators from 
other institutions suggest that it may not be very common, and may have some unique features that could be 
transposed elsewhere. It is not clear whether a course that follows exactly the same procedure would be 
appropriate at other kinds of institutions; certainly, even moderately larger class sizes would entail changes 
to the format. 

This report is not presented as a research paper within the discipline of mathematics education. I am 
trained as a research mathematician, and remain active in research. I have always taken teaching seriously, 
and have reflected on the activity over the entire 24-year span of my professional career, which has always 
involved teaching (usually two courses per semester). 

My research over the past decade has been increasingly interdisciplinary, involving collaboration 
with linguists, cognitive scientists, philosophers, psychologists, sociologists, and computer scientists, and 
this has made me far more aware of issues directly relevant to education theorists than is the case for most 
mathematicians - issues oflanguage acquisition and use, learning and concept formation, communication, 
and so forth. This has undoubtedly influenced the way I structure and present my courses, but not in any 
deliberate, overt manner. 

Quite clearly, though I have strived to be objective, what you will find in this account is a 
fimdamentally subjective view, by the individual who both developed and gave the course. Student reactions 
to the course were obtained from the anonymous assessment questionnaires I designed and handed out to the 
students during the semester, plus the feedback obtained from the anonymous all-college student evaluation 
forms at the end of the semester (which included a section for free-form comments). The procedures used for 
both kinds of evaluation ensured a near 100% completion rate. 

In addition to being a description of a particular course, my article is also intended to make a case 
for a certain kind of mathematical experience to form part of the education of all non-science students. (Thus 
the format of the article is not at all that of a typical course report.) As such, it provides the view of at least 
one research mathematician on what I believe is an important aspect of collegiate mathematics education that 
is largely missing at most present-day institutions. (I could make a similar argument for an analogous course 
for science majors, but in this article I will restrict myself to the case for which I have concrete experience.) 

Background 

Colby College is a selective, private, four-year, baccalaureate institution. There are 170 faculty and 1700 
students. Class sizes almost never exceed 30; mathematics classes never exceed that number. Colby students 
come predominantly from professional families with a fairly high disposable income. For the most part, their 
high school experience has been positive, either at a good public school or a private school. They are used 
to a high degree of personal attention in their schooling. Their most common career goals are business 
management, government, and medicine. Very few students go to Colby with the intention of pursuing a 
career in science, mathematics, or engineering. 
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Like many similar institutions, some years ago Colby instituted mathematics and science 
requirements for all students. In order to graduate from Colby with any major, a student has to successfully 
complete two science courses (at least one of them having a significant laboratory component) and one 
mathematical course (which does not have to be within the mathematics department, though most of the 
appropriate courses are). These courses have to be taken for full credit, not on a pass-fail basis. 

The immediate result of the introduction of a mandatory mathematical course resulted in a large 
increase in the number of students enrolling for mathematics courses. For the most part, this new student 
population consisted of highly reluctant students, many of them with either math anxiety, hostility toward 
mathematics, or both. The new course I developed was aimed to provide these students with an educational 
experience that not only enabled them to fulfil their mathematics requirement, but had a genuinely positive 
effect on the way these students viewed mathematics. 

That last remark is potentially controversial. Many would argue that the intent of the mandatory 
mathematics requirement was for the students to achieve a certain level of competence in "traditional" areas 
of mathematics, perhaps a mixture of algebra, trigonometry, and elementary calculus. As one of those directly 
involved in fonnulating Colby's mathematics requirement, I can accurately report that such was not the intent 
of all of us, but in any case, this issue is beside my current point. The new course I am reporting on was not 
designed as a "how to" comse (though students inevitably picked up, or developed, some "how to" skills as 
the semester progressed). The significance of the mandatory mathematics requirement was that it provided 
the students in the class - students who, as remarked above, were often math anxious or math hostile. As 
the instructor, I knew why they were in the class; the question I addressed was what to do with them once they 
were there. 

Aims of the course 

Though the aims listed below really only make sense relative to an overall philosophy of mathematics and 
mathematics education, to be outlined in a later section, it seems only fair to the reader to present these aims 
now; likewise for the means adopted to achieve them, described in the following section. 

• The principal aim of the course is to develop in the student an appreciation of mathematics as a part 
of human culture. (This aim notwithstanding, I should say at the outset that, as far as I can tell, the 
course is not a variant of the "math appreciation" or "math for poets" courses that can be found at 
many institutions. In fact, it was designed not so much as a "course" but to provide an 
"experience".) 

• The course (or the "experience") is intended to bring out the creative, conceptual nature of 
mathematics, as opposed to the procedural, symbol-manipulative aspects that, for most of the 
students, constitute their entire view of the subject (at least when they come into the course). 

Emphasis is placed on mathematics as a "way of knowing", a "way of approaching", or a "way of 
understanding" the world, and a "means of communicating" that knowledge or understanding. 

• Efforts are made to place mathematics within the whole framework of human culture and human 
understanding, to bring out both the similarities between mathematics and other branches of human 
learning and the differences. 
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• Efforts are made to demonstrate to the student, from the very outset, that mathematics has relevance 
to them. (This is not at all the same as saying that they will "need to know" some mathematics, 
either for their career or their future life in general.) 

• The student should leave the course with far less math anxiety than at the beginning, and hopefully 
no math hostility. (My experience so far indicates that relatively few go so far as to say the course 
leaves them positively liking mathematics - though this does happen - but the more modest goals 
stated are achieved on a fairly regular basis.) 

Before I proceed to describe the course, rIllet you know what the students are told in advance. (They tell me 
afterwards that what they get is not at all what they expected, but that reflects their initial expectation of what 
mathematics is, rather than a misleading course description.) 

The Course Description 

I have stated already that it would be more apt to use the phrase "experience" rather than "course". 
The course description given to the students prior to their signing up for the course emphasizes that 

they will be required to do little "procedural mathematics", and that what work there is of this nature will 
count minimally (and in an essentially ')ust give it a good attempt" fashion) toward their fmal grade. 
(Incidentally, Colby students are strongly grade oriented. What pass-fail options are available to them are 
used ruthlessly to maximize their GP A. As remarked earlier, the mathematics requirement that brings them 
to this course cannot be taken on a pass-fail basis.) 

The course description does, however, make it clear that the course is not at all an "easy option". The 
workload is high, and is not at all passive in nature. The students are required to carry out reading 
assignments, enter into class discussions, and complete two major written assignments, each one building 
on a series ofpreparatoty written assignments. They are told that the written assignments will be graded on 
content, quality of exposition, and overall presentation, including the use of diagrams and pictures, where 
appropriate. 

In addition, on the first day, the students are informed that the grade distribution for the course will 
almost certainly be much the same as for any other mathematics course, which means that there will be 
relatively few A's, an occasional F, with the bulk of the class earning a B or a C. I tell them that in order to 
obtain an A, they probably have to have an innate mathematical ability that, had they previously pursued a 
different educational career path, could have led to a mathematics major. I tell them that a serious effort on 
the part of anyone else will almost certainly result in a B. (For the vast majority of the class, the prospect of 
getting a B in a math class seems to exceed their wildest dreams! Many of them do just that.) 

The course description does not include a syllabus. The reason for this is that there is no fixed 
syllabus. In addition to a description of the overall aims of the course, and its predominantly reading! 
discussion/writing format, there is a list of mathematical topics that may be covered (including properties 
of whole numbers, logic, infmity, geometty, dimension, statistics). 

The course description does not indicate any required textbooks. I list a number of books that they 
may find useful. These are never textbooks; in particular, they are not "pedagogic" and they do not have 
exercises. Rather they are (low price) books that were written to be read, such as Ian Stewart's The Problems 
a/Mathematics, my own Mathematics: The New Go/den Age, or John Allen Paulos's Beyond Numeracy. 
Occasionally, I have required that they obtain a copy of a particular one of these. I generally require that they 
also obtain a copy of A. A. Abbott's Flatland. 
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The Start of the Course 

One of the principal features of the course is that the students will have a significant role to play in the 
"design" of the curriculum. More precisely, they are told at the outset that the choice of topics will depend 
upon their interests (either their intended major or, perhaps, some extra-curricula pursuit). They are told that 
their final written assignment will be the production of a magazine that conveys to the general public that true 
nature of mathematics, and the ways it relates to everyday life. (I suggest 12-16 pages, but in practice many 
students exceed this guideline quite substantially.) They are told that many of the smaller assignments they 
carry out during the semester will build toward this final project. 

1 believe the initial two or three sessions are particularly important for the way the remainder of the 
course goes. Certainly, students who join the class after those first opening sessions usually have a 
tremendously difficult time adjusting to the course, and sometimes never succeed, despite the fact that almost 
no "mathematical content" is covered during this period. Accordingly, 1 shall describe those early sessions 
in some detail. 

1 regard the frrst day is purely an ice breaker. (Remember, there is a lot of math anxiety and math 
hostility about!) 1 start out by asking them all to write down a one sentence defmition of mathematics. (I ask 
them to put their names on the sheet, as I collect them in a short while later. When I have looked through 
them all, I give them back and ask them to save them in a file in which they should keep all their written 
work) Almost without exception, their response is some minor variant of the sentence "Mathematics is the 
study of numbers". 

I also ask the class to write down, on the same sheet, five adjectives that they feel are appropriate 
to mathematics, and five adjectives they feel definitely do not apply to mathematics. Among the adjectives 
they produce as applicable to mathematics, the following are the most common: dull, boring, useless, tedious, 
frustrating, illogical. The ones most frequently chosen as being not representative of mathematics are: 
creative, interesting, stimulating, analytic, useful, and fun. 

When I collect in their responses, I write up their chosen adjectives on the board. This inevitably 
breaks the silence, as they realize they are not at all alone in their views within the class. 

I tell them that, although their two lists of adjectives are exactly the opposite way round from the 
ones I would choose, the result comes as no surprise to me. I am not surprised because I know that virtually 
none of the students has the slightest idea what mathematics is. How could they, 1 tell them, since it is almost 
never taught in our school system. 

Of course, everyone sits through several years of "math classes", I continue, but they no more teach 
mathematics than a course in spelling will teach them what makes a great novel or a course on bricklaying 
will teach them anything of architecture. 

I ask them (verbally now) why everyone studies mathematics at school. Their answer is invariably 
that mathematics is useful. I ask them in what way it is useful. They generally make vague comments about 
working out change when making a purchase, computing their taxes, and similar numerical tasks. I follow 
up by asking them to be definite: when was the last time they actually performed such a computation? When 
did they last observe one of their parents actually making such use of mathematics? Not surprisingly, almost 
no one can produce an actual instance when they or someone in their family actually performed a 
mathematical computation, other than making use of a calculator or a computer - for which uses they readily 
agree that the relevant mathematics was learned in kindergarten or soon afterwards. 

Interestingly, so powerful is the belief that mathematics is useful in real life - that is to say, of real, 
direct use by ordinary citizens - that, even when faced with the evidence that practically no one in the class 
can supply a concrete instance, some of them invariably insist that it is useful in everyday life, that others 
need it, and that they themselves will one day need it. 



Lecture Two 27 

I up the ante by asking them when was the last time they fOWld themselves having to solve a 
quadratic equation; or how many times a year are they faced with having to calculate the time it will take a 
ball to land, when thrown from the top of a 40 foot building with an upward velocity of 55 feet per second. 
Do they remember their brother's age, say, by noting that 10 years ago he was half their age, but that fifteen 
years from now he will be 5/6 of their age? 

They laugh, and start to wonder just what kind of a course this is going to be. I tell them that, to the 
best of my knowledge, almost nobody makes any direct use, in everyday life, of any of the procedures learned 
and practiced in the high school math class - ever. 

The only people who do make use of some high school math are some trades and business people, 
who use some mathematics in their professional lives, and those who go on to careers in say science or 
engineering. This latter group, I point out, most defmitely use mathematics, and lots of it, but for them., the 
stuff learnt at high school is at best a two-fmger exercise for the symphony to be played later. 

The point of this discussion is to provoke in them an expectation that, whatever the course has in 
store for them, it most certainly will not be numerical computation. It would be nice if they would also begin 
to reflect on just what was the purpose of large parts of their high school math class, but at this stage they 
rarely do. Later in the semester we sometimes revisit this issue in a discussion format, at which point some 
students generally produce a number of good observations. 

I end the first session by general conversation with the students, fmding out what their intended 
majors are, any mathematical backgroWld in their families, etc. 

At the start of the second session, I hand back their initial one-sentence definitions, and write up on 
the board a crude statistical analysis of their responses. I then point out that the definition of mathematics 
as the study of numbers ceased to be accurate some two and a half thousand years ago. I make the following 
points. 

In the days when a man's worth was measured in terms of the number of oxen he owned (and in 
those days ownership of property usually was a male perogative) or how many sacks of grain he had to sell 
or barter, numbers constituted an important intellectual tool. In those early days, competence in the language 
of numbers was as important as a facility with the language of words. Back then, mathematics was indeed 
the study of numbers. 

By the dawn of Greek civilization, around 500B.C. the needs of architecture had led to the 
development of geometry and trigonometry, and from then on mathematics was not only the study of number 
but of shape as well. 

In the mid-seventeenth centwy, mankind's desire to Wlderstand the universe in which we live led to 
the invention, by Isaac Newton and Gottfried Leibniz, of the calculus, one of the most significant intellectual 
creations of all time. With the dawn of the calculus, mathematics expanded yet again, this time to become 
the study of number, shape, motion and space. 

Though the calculus was recognized to be a useful and powerful tool, mathematicians had difficulty 
Wlderstanding why the methods of Newton, Leibniz, and others worked. Using the calculus was in many ways 
a case of, "Do this, then this, and then, as if by magic, you get the answer you want." It took a further two 
hundred years of effort, and the development of an enormous amount of mathematics, to figure out what was 
going on. This period of development constituted a fourth era of mathematics. 

At each stage in its development, mathematics concerned itself with the abstract structures that lay 
beneath the most pressing questions of the day. 

And so it is today. In the present age of infonnation and communication, mathematics has expanded 
- some might say exploded - to include the study of abstract structures involved in all walks of life: 
physics, chemistry, biology, geology, economics, communications, sociology, psychology, politics, music, 
computing, engineering, astronomy, linguistics, manufacturing, warfare, cryptography, sport, entertainment, 
the list goes on. If you ask a present-day mathematician for a defmition of mathematics, the answer you 
obtain will almost certainly be some variant of "Mathematics is the science of patterns and abstract 
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structures." Clearly, this definition requires considerable elaboration, and providing that elaboration will take 
the rest of the semester. 

To accompany this brief account of the development of mathematics, I give the students a handout 
that gives the same overview in a little more detail. I do not want them trying to take notes. My aim is to give 
them a general sense of events. 

I often ask the students to guess who, at the present time, is the largest single employer of PhD level 
mathematicians in the United States. Their fIrst guess is the Internal Revenue Service - mathematics as 
facility with numbers is a difficult belief to crack. I tell then it is the National Security Agency, and that the 
single biggest area that these NSA mathematicians work in is cryptography. Other large employers of high
level mathematicians, I tell them, are the telecommunications companies such as AT&T, the large computer 
companies, the automobile industry, the aerospace industry, and the movie industry (in the computer graphics 
area). 

I stress that mathematics, that is to say real mathematics, has never been something apart from the 
rest of life. It has always advanced hand in hand with society, as people seek ways to describe, understand, 
and deal with the abstract structures involved in the major issues of the day. 

For Galileo, the major issue was the planetary universe. Galileo said «The great book of nature can 
be read only by those who know the language in which it was written. And this language is mathematics." 
Striking a similar note, in 1986 the Cambridge physicist John Polkinhome wrote "Mathematics is the abstract 
key which turns the lock of the physical universe." 

F or these men, and many like them, the abstract structures of greatest interest were those of the 
physical universe. Today, there are different problems, giving rise to new kinds of mathematics. For instance, 
in our Information Age, there is a considerable interest in people, in the way we think, the way we learn, the 
way we communicate, and the way we live, work, and play together, and this interest has given rise to new 
kinds of mathematics, mathematics that is still not fully developed. 

This is really the end of the introductory section(s) of the course. 

Deciding the Syllabus 

The next task is to detennine the syllabus for the remainder of the course. To this end, we continue our earlier 
discussion of their intended majors or their interests. I try to indicate - very briefly at this stage - ways in 
which mathematics relates to their majors or interests, and what kind of mathematics it is. 

For example, an intending student of law will likely be interested in ways that trial lawyers can -
and do - use statistical techniques to choose juries likely to decide a case a certain way. This would lead in 
to an investigation of statistics later in the course. 

A student of history or government would probably fmd it interesting to see the similarity - almost 
certainly not an accident - between the formulation of the United States Constitution and a set of axioms 
(and indeed, the culminating statement of a theorem based on those axioms). Or I could mention the way that 
historians often make use of statistical analyses to reconstruct past events, such as deciding the authorship 
of the Federalist papers. 

Student interests in sports can give rise to a number of different mathematical themes: statistics, the 
analysis of baseballs in flight, the design of superfast running tracks, the development of high-performance 
equipment of various kinds, etc. 

An intending airline pilot can lead to a discussion of what keeps an airplane in the sky 
(Bernoulli'sLaw), and how the design of a modem airplane followed the development of the appropriate 
mathematics. We might also talk about navigation. 
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Music can lead to a discussion of sound waves and Fourier analysis, and the twentieth-century 
electronic music-synthesizer technology that depends upon that nineteenth-century mathematics. 

The idea is to discuss a number of such themes at a very superficial level, and then decide on on two 
or three to be examined in more detail. Though I believe it is important for the class to have the fmal choice 
(we search for a consensus, rather than moving to a vote), I try to steer them in such a direction that the fIrst 
topic is "doable" to a suitable degree within a two week period. 

My favourite initial topic of late has been mathematical linguistics, a la Chomsky. Since the class 
is invariably dominated by English majors, it is generally easy to "ensure" that this is chosen as the initial 
topic. It has a number of additional advantages. One is that it is an application of mathematics that comes 
as a complete surprise to the students, an advantage which I have found provokes a signifIcant level of 
interest from the class. Another advantage is that it deals with a domain - the English language - with 
which everyone is familiar. It requires no deep mathematics. The importance of a symbolic notation is self
evident It is easy to see both what the mathematics can tell you about language and what it cannot - I think 
it is important to convey an appreciation of the limitations of mathematics. Moreover, the level of abstraction 
that can be achieved by means of a mathematical analysis leads to signifIcant insights, such as the deep 
connections between language and computation - see presently. 

The following section outlines a treatment of mathematical linguistics that I have found to be of an 
appropriate length and depth. 

Mathematics of Language 

Take a look at A, B, and C below. In each case, without hesitation, tell me whether you think that what you 
see is a genuine sentence of English. 

A. Biologists fmd the A-spinelli morphenium an interesting species to study. 

B. Many mathematicians are fascinated by quadratic reciprocity. 

C. Bananas pink because mathematics specify. 

I am pretty certain that you decided, without having to give the matter any thought at all, that A and B are 
proper sentences but that C is not. And yet A involves some words that you have never ever seen before. How 
can I be so sure? Because I made up the two words "spinelli" and "morphenium". So in fact, in the case of 
example A, you happily classified as a sentence of English, a sequence of "words", some of which are not 
really words at all! 

In the case of example B, all the words are indeed genuine English words, and the sentence is in fact 
true. But unless you are a professional mathematician, you are unlikely to have ever before come across the 
phrase 'quadratic reciprocity'. And yet again, you are quite happy to declare B to be a genuine sentence. On 
the other hand, I am sure you had no hesitation deciding that C is not a sentence, even though in this case you 
were familiar with all the words involved. 

How did you perfonn this seemingly miraculous feat with so little effort? More precisely, just what 
is it that distinguishes examples A and B from example C ? 

It obviously has nothing to do with whether the sentences are true or not, or even if you understand 
what they are saying. And it doesn't make any difference whether or not you know all the words in the 
sentence, or even if they are genuine words or not. 
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What COWlts is the overall structure of the sentence (or non-sentence, as the case may be). That is 
to say, the crucial feature is the way the words (or non-words, as the case may be) are put together. 

This structure is, of course, a highly abstract thing; you can't point to the structure the way you can 
point to the individual words or to the sentence. The best you can do is observe that examples A and B have 
the appropriate structure but example C does not. 

And that is where mathematics comes in. For mathematics is the science of abstract structure. 
The abstract structure of the English language that we rely upon, subconsciously and effortlessly, 

in order to speak and write to each other and to Wlderstand each other, is determined by the grammar of 
English. 

Since the pioneering work of the MIT linguist Noam Chomsky in the late 1950s, we have known that 
the most effective way to describe and study grammar is by means of mathematics. For example, the 
following are some of the rules of English grammar that enable us to tell sentences from non-sentences. 

DNPVP -+ S 

VDNP -+ VP 

PDNP -+ PP 

DETNP -+ DNP 

DNPPP -+ DNP 

ANP -+ NP 

N -+ NP 

In words, the :first of these says that a deterministic noWl phrase (DNP) followed by a verb phrase (VP) gives 
you a sentence (S); the second says that a verb (V) followed by a DNP gives you a VP; the third that a 
preposition (P) followed by a DNP gives you a prepositional phrase (PP); the next that a determiner (DET), 
such as the word "the", followed by a noun phrase (NP) gives you a DNP. If I tell you that A stands for 
adjective and N stands for noWl, you can figure out the meaning of the last three rules for yourself. 

In order to use the grammar to generate (or analyze) sentences of English, all you need is a lexicon, 
a list of words, together with their linguistic categories. For example: 

to -+ P 

runs -+ V 

big -+ A 

woman -+ N 

car -+ N 

the -+ DET 

Using this grammar, it is possible to analyze the structure of the English sentence 



Lecture Two 31 

The woman runs to the big car. 
Such an analysis is most commonly represented in the form of a parse tree, as shown in figure 1. 

At the "top" of the tree is the sentence. Then, each move you make from any point in the tree, down by one 

5 
The woman runs to the big car 

DNP 
The woman 

N 
woman 

Figure 1 

VP 
runs to the big car 

P 
to 

DET 
the 

N 
car 

level, indicates the 
application of one rule 
of the grammar. For 
example, the very first 
step down, starting from 
the topmost point, rep
resents an application of 
the grammar rule 

DNPVP 0 S 
The parse tree rep
resents the abstract 
structure of the sen
tence. Any competent 
English speaker is able 
to recognize (generally 
subconsciously) such a 
structure. You may 
replace each of the 
words in this tree with 
other words, or even 
non words, and, provided 
your substitutions 
"sound right" for each 
grammatical category, 
the resulting sequence 
of words will sound like 
an English sentence. By 
providing axioms that 
detennine all such parse 
trees, the formal gram
mar thus captures some 
of the abstract structures 
of English sentences. 

Of course, 
English is very complex, 
and these are just a few 
of the rules of English 

grammar. I just wrote enough of them to indicate the advantage of using a mathematical ( algebraic) notation 
over a description expressed in ordinary English. For one thing, the symbolic notation is much briefer and 
easier to read (once you have remembered what the abbreviations mean). And, more significantly, since the 
whole point is to write down the rules of English grammar, it is surely better to avoid use of English 
sentences themselves at this stage. 

In fact, neither of these is the real reason why a mathematical approach is so powerful in linguistics. 
The real reason is that English grammar detemrines a complex, abstract structure, and mathematics is simply 
the most precise intellectual tool we have to describe abstract structures. 
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Language is one huge, complex, abstract structure. When I write down, as I just did, some of the 
rules of grammar, what I am doing is representing, or describing, part of the abstract structure of the English 
language that lives in our minds. 

What makes one particular sequence of sounds music to our ears and another a discordant noise is 
the abstract structure of that sequence of sounds. The notes of a tune may be written down on a sheet of 
paper, their order and position on the stave representing the structure of the tune, but the musical structure 
itself is an abstraction, something that exists in our minds when we hear the tune being played. 

Of course, formal grammars of the kind just described can only capture part of the structure that 
consti1lltes an English sentence. What can be captured mathematically is captured in a very precise way -
and indeed it is this mathematical precision that may be utilized in order to develop computer systems that 
can handle "natural language" - but mathematical formalisms do not capture all there is to know about 
sentence structures. 

There is a great opportwllty for discussion at this point. In principle, formal grammars could capture 
a considerable amount of sentence structure, but the resulting mathematical description would be so long and 
complicated as to be virtually useless. (One obvious question: how do you handle the relationship between 
active and passive sentences, such as John greeted Sally and Sally was greeted by John?) It is interesting 
to investigate whether there are features of language that absolutely could not be treated mathematically, and 
if there are such, what makes them resistant to mathematical analysis. Such an investigation can reveal much 
about both language and mathematics. What are the limitations inherent in applying mathematics to other 
domains besides language? What are the pluses and minuses of mathematical analyses in general? 

The discussion of formal grammars can be taken a step further that leads to another illustration of 
the power of mathematical abstraction. Having found a way to use mathematical techniques in the study of 
language, Chomsky took his analysis a step further, examining the nature of formal grammars in general. By 
placing various restrictions on the kinds of rules that may appear in a grammar (i.e. the kinds of combination 
that can appear on the left or the right of the arrow), he introduced a whole hierarchy of grammars, known 
as the Chomsky hierarchy. The grammars in this hierarchy ranged from the simplest, called regular 
grammars, to the most complex, the phrase-structure grammars. 

The regular grammars describe only very simple "languages". One example is the nwnerical 
language you use to release a combination lock. You probably have never thought of a combination lock as 
having anything to do with language, but it does. The "sentences" in the language are sequences of nwnbers. 
The "grammatical sentences" are the sequences that trigger the lock to open. For most combination locks, 
there is only one grammatical sentence. 

At the other end of Chomsky's spectnun, the phrase-structure grammars are fairly complicated, 
and describe large parts of human-language sentence structure. 

Having described, briefly, the various grammars in the Chomsky hierarchy, it is possible to 
demonstrate one of those remarkable moments in mathematics when sufficient abstraction leads to a 
significant new insight. 

During the 1950s, when Chomsky was developing his theories at MIT, mathematicians at the same 
institute, and elsewhere, were developing a mathematical theory of computing. In particular, they proposed 
and studied a number of hypothetical models of computing devices. 

Chomsky was able to prove a number of theorems that indicate fundamental connections between 
the grammars in his hierarchy and the various kinds of hypothetical computing device studied by the 
mathematicians, thereby demonstrating that, at a suitably abstract level, language and computation are two 
sides of the same coin. 

The simplest of these hypothetical computers is the so-called finite automaton. Roughly speaking, 
this is a computer that can respond to input but has no memory. Chomsky showed that the languages that 
could be "understood" by such a device are precisely those whose grammar is a regular grammar. 
("Understood" in this context means that the device will make an appropriate response to an input that is 
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grammatical according to the particular grammar concerned. For example, in the case of a combination lock, 
the appropriate response is that the lock is released.) 

Next in complexity are computers that have a fairly rudimentary memory (a single "stack", for those 
who know what this means). The languages these computers "understand" are precisely those determined 
by the context-free grammars, a class of grammars in Chomsky's hierarchy of particular interest to linguists. 

Add still more memory to your computer and you fmd that the languages "understood" are exactly 
those detennined by a context-sensitive grammar. The computers in this case are known as linear-bounded 
automata. 

Add more memory still to your computing device, and you obtain what is known as a Turing 
machine. This hypothetical computer was introduced by the logician Alan Turing in 1935, in an attempt to 
capture the patterns of thought involved in human computation. The Turing machine is a hypothetical device 
having an unlimited, though rudimentary, memory. During the period from the 1930s to the 1950s, a large 
number of results demonstrated that, for all its simplicity and hypothetical nature, a Turing machine could, 
in principle, and given enough time, perform any computation that could ever be performed by any kind of 
computer, no matter how complex. 

Chomsky tied language to computation in a very strong way when he proved that the languages that 
can be "understood" by a Turing machine are just those whose grammar is a so-called phrase-structure 
grammar, a particularly important class of grammars in linguistics. 

Thus, an attempt to investigate the structure of English sentences (what it is that we recognize when 
we recognize a particular sequence of "words" as an English sentence) can lead, via an algebraic formalism, 
to the notion of a formal grammar, then on to an investigation of the nature of computation, and finally to 
some theorems that demonstrate a close connection between grammars for language and mathematical 
models of computers. 

Curricula Fixed-Points 

Though the initial topic covered can vary from semester to semester, there are a couple of regular themes that 
I always include - the only thing that varies is the manner in which the topics are introduced, since I always 
provide a link from one topic to the next. 

Calculus is one such fixed-point. I do not think that such a major and far-reaching step in human 
intellectual advancement can be ignored. I do not attempt to train the students how to perform differentiation 
and integration, skills they will almost certainly never need. (The same can be said for about 90% of our 
science and engineering majors, but that is another argument.) 

My emphasis is on the ideas behind the calculus and why it was important to develop a calculus. 
I motivate the former as a means of applying the essentially static objects of mathematics (points, lines, 
planes, etc.) to study dynamic issues of change and growth. The two main ingredients are (i) having a precise 
(static) description of the change (captured by means of a function), and (ii) capturing the pattern of a 
continuous changing quantity as a limit of a sequence of approximations by fixed, computable quantities. 
Finding the sum of a geometric series to resolve Zeno's Achilles and the Tortoise paradox is one way to 
introduce these ideas of working with the pattern or function and evaluating the limit of a sequence of 
approximations. 

I usually ask the class to compute, from first principles, a couple of very easy derivatives, such as 
the derivative of r (having dealt with r myself in class). 

Explaining why it was necessary to develop a calculus to compute analytic derivatives and integrals 
is easy: in the days when there were no electronic computers, there was no other option, and the rich calculus 
that was developed serves as a marvellous testament to the ingenuity of humankind in circumventing a major 
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obstacle. Quite why so many of those techniques are still being taught today, when we do have enough 
computing power to evaluate the derivatives and integrals we need, escapes me, but once again that is another 
issue. 

In addition to the coverage of the calculus, I also show an occasional video, to illustrate just how 
broad mathematics is. Among those I use frequently are twenty-minute sections of A Mathematical Mystery 
Tour (Time-Life Videos), which I made with the BBC some years ago, and Scientific Visualization (Fihns 
for the Humanities, Inc., of New Jersey). 

A further theme that I always manage to weave in is to indicate how advances and trends in 
mathematics tend to be in keeping with developments elsewhere in human culture. Typical examples are the 
development of projective geometry in the Renaissance period, the trend toward great abstraction in art, 
music, and mathematics in the early part of this century, fascination with the notion of dimension in art, 
literature, and mathematics at about the same time, and the present-day use of graphical systems and (other) 
interactive media in mathematical research and education. 

Finally, I want the students to come away from the course with an overall sense of how mathematics 
fits in to the broad spectrum of human knowledge and learning. 

I try to indicate that mathematics and the various sciences are not fundamentally different from most 
other products of the human intellect. They are just ways of understanding ourselves and our enviromnent, 
ways of describing, and ways of communicating. I generally make the following points. 

• Humans are great toolmakers. We have hammers and nails to join pieces of wood, saws and knives 
to cut, drills to make holes. 

• We have pens and pencils to make marks on paper. 

• We have bicycles and automobiles to get from place to place. 

• We draw a map to help people fmd their way around an unfamiliar town or region. 

• We use blueprints to specify the way to assemble a machine. 

• In addition to these physical tools, we develop and use conceptual tools to achieve various ends. 

• If our aim is to capture and convey emotion and sensation, we can use poetry or music. 

• If our aim is to record the main events of the day, we can use text, as in a newspaper. 

If you want to try to change people's political views, or the way they run their lives, you would be far more 
likely to be successful if you use the rich conceptual framework of theatre or, the more modem variant, 
movies. (Oliver Stone is a successful master of this art, with his powerful anti-war movies, and his movie 
JFK. In the Name of the Father is another recent example that comes to mind.) 

What medium would you use to try to understand animal life, and to communicate that understanding 
to others? Not movies. Not maps. Not blueprints. Not poetry or music. These are good for other things, not 
understanding life, just as saws are good for cutting wood but not for driving nails into wood. The 
appropriate medium to understand animal life is biology, or biological theory. Biology is the collection of 
conceptual tools we human beings have developed to help us understand animal life. 

• Chemistry is the conceptual apparatus we have developed to help us understand matter. 
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• Physics is the conceptual apparatus we have developed to help us understand the forces that govern 
our environment. 

• Psychology is the conceptual apparatus we have developed to help us understand people. 

• Sociology is the conceptual apparatus we have developed to help us understand how societies 
function. 

• Linguistics is the conceptual apparatus we have developed to help us understand how language 
functions as a medium of communication. 

• Mathematics is the conceptual apparatus we have developed to help us understand various abstract 
patterns and structures that we perceive in the world. 

And so on. The list can vary. I often ask the class for other suggestions, and allow a discussion to develop. 
I have also assigned homework on this theme, asking the class to suggest media particularly suited to 
conveying particular kinds of information or to achieving various ends, and to examine their relative 
advantages and disadvantages. 

I also try to show the students that these various media are not separate and compartmentalized. Each 
has its own advantages and disadvantages, and we often have need to utilize several media at once. 

Faced with a rose, we can approach it in various ways. We can see its beauty. We can feel its texture. We 
can smell its scent We can study its biological properties. We can analyze its chemical composition. We can 
examine the physical forces that bind its molecules together. We can catalogue its mathematical symmetries. 
We can write a poem about it. We can paint a picture of it Each one of these tells us something different 
about that rose. The more ways we can fmd to examine that rose and describe its properties, the deeper and 
richer will be our understanding of that rose. 

The various sciences are just different ways to understand and describe aspects of our world. Since they 
are ways of understanding that have been developed by humans - since they are all products of the human 
mind - they are not fimdamentally different from any of the so-called humanities. Both drama and biology 
tell us something about what it is to be human, to have the relationship to our environment that we do. 
Mathematics, the science of patterns, is a conceptual framework that humans have developed over three 
thousand years in order to describe, analyze, and understand various abstract features of ourselves and the 
world we live in. 
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1. What do you think of when you hear: 
"theories in mathematics education?" 
"theorizing in mathematics education?" 

2. In what ways do you use theories in mathematics education? 

3. What are the theories in mathematics education? 

4. Into what categories can the theories of mathematics education be grouped? 

5. Are there formal and informal theories? If so, how do they differ? What can 
each contribute to mathematics education? 

6. What are the purposes of theories in mathematics education? 
In what sense are theories ""of' something? 
In what sense are theories "for" something? 

7. What are some interesting theoretical constructs in mathematics education? 
Are such constructs useful independent of their theoretical framework? 

8. In what ways are theories useful in mathematics education: 
to researcher? 
to students of mathematics education? 
for curriculum design? 
for material design? 
in classrooms? 

9. In what ways are teachers' theorizing different from researchers' theorizing in 
mathematics education? 
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to. In what ways can theories and theorizing be a hindrance in mathematics 
education? 

11. Are there alternative ways of knowing to theories/theorizing that are relevant to 
mathematics education? 

12. Can we know anything about mathematics education without theorizing? 

13. Are there theories not currently used in mathematics education that should be 
explored in terms of potential uses in mathematics education? 

This is the list of questions that was prepared by the working group leaders to serve as the 
basis of discussion on theories and theorizing in mathematics education. However, the 
participants did not simply surrender themselves to this list but found ways of weaving in and 
out of it as they shared and resonated in each other's thinking and stories of experiences with 
respect to the nature and uses of theories in mathematics education. What resulted was a 
situation that seemed to be less of something to be recorded and more of something to be 
lived. However, for the purpose of this report, a collection of some of the ideas/thoughts that 
emerged in the group is being presented. 

As seen below there was a variety of thoughts on the nature, uses and values of theories and 
theorizing in mathematics education. There is in these comments a sense that theorizing 
should have practical outcomes. Some put this in terms of the pragmatic; in those terms a 
theory is valued based on its projected effects on a desirable goal-for example, broader more 
integrated mathematical knowing by more of a broader cross-section of students. Cast in 
these terms of the pragmatic, a theory or theorizing need not be couched in directly practical 
terms, but its proposer must be able to defend it at least in terms of long term usefulness to 
the community. 

One way of allowing for this practicaVpragmatic outlook is to consider mathematics education 
theory or theorizing as a design theory. This in itself raises questions: if one sees students 
as constructing their own mathematics, then a design theory must take into account that 
teachers and students are fully implicated in curriculum and instructional design and not 
simply the recipients and users of the products of the design of others. The same kind of 
questions might be raised about the criterion of predictiveness. If one thinks that 
mathematics learning entails the building up of pre-determined "correct - images in one's mind 
and the capability of showing such images for others, then a predictive theory might be useful. 
But a student's mathematical actions are thought to be at once determined by that student's 
own structure and that a student is bringing forth a mathematical world with others which 
co-emerges with her or his space of actions, then "prediction is not a useful criterion. If 
mathematics education theories are 'theories for" rather than 'theories of-, then they provide 
a platform for teacher or researcher observation of and action with respect to student 
mathematical behaviour without the necessity of being predictive of anything. 
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3. Thoughts on the Nature of Theories and/or Theorizing in Mathematics Education 

** A theory in mathematics education is a design theory or an applied theory. It should have 
the possibility of generating some technology, some techniques or solve certain kind of 
practical problems. In some ways one doesn't know whether the theory is ever going to do 
that when one started working on the theory. But I would make it a requirement of a 
respectable, reasonable theory of mathematics education. If t doesn't do any of those things 
then we are wasting our time except for those who want to be philosophers. Mathematics 
education is about educating people, not about theorizing, philosophizing, tossing things 
around. 

**Mathematics education has a very practical goal and we shouldn't lose sight of it. We have 
to have a pragmatic goal in mind and then speak of these theories in view of this goaL 

** A theory must be based on a small, concise set of basic assumptions, from which all other 
statements of this theory could be derived. Any theory must be rich in possibilities, i.e., its 
basic set of assumptions has to be highly generative and give a possibility to drive conclusions 
covering broad areas and many phenomena. It must generate explanations that are global 
rather than local. 

** A theory must explain how something is learned, how it is understood and how it could 
or should be taught. It should allow one to predict the outcome of one's actions. 

** A theory should provide entry and exit into a situation, for example, when and how one 
should stop doing something. 

* * A theory should do something. 

* * A theory is a model for nurturing learning and/or teaching of mathematics. 

** A theory is like a map or a guide book. It is designed for someone else as something one 
can use to travel a territory without getting to know it very well but get to where one wants 
to go, or like a guide book, for one to be able to explore the territory and get to know it 
oneself. 

** A theory is a means of looking forward - let's try to get it right so that we know what to 
do. 

* * A theory should be considered more in terms of practice of mathematics education, the 
actual practice of helping people to learn mathematics through the action of teaching. 

* * A theory needs to explain something. If a theory wishes to explain something, it should 
go through the process of verification in some way. Otherwise it remains more of an opinion 
than a theory to someone. 

* * A theory is a conceptual framework of varying breadths that allow it to come up with a 
rationale for what to do and how to do it. 
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* * A theory helps to make sense of experience, explaining things, explaining phenomena you 
have observed from teaching and so on. It should tell you what to do in the classroom. 
There are many theories that try to explain, but they don't tell you what to do. This creates 
a gap between theory and practice. But one can challenge the statement that the theory 
should tell you what to do in the classroom. The theory may be helpful to a teacher, not by 
telling the teacher what to do exactly, but helping the teacher to analyze what's going on -
being more conscious and therefore taking action accordingly. This is different from, say, the 
theory that tells you how to do things. 

* * There are too many theories and they are too restricted. What we have so far are 
fragmentary (often, beautiful) conceptual frameworks good for working in restricted areas. 
What we don't have, as yet, is a theory which would provide us an overarching paradigm a 
framework that would be not so much be a guard of consensus (which is not a good thing at 
all) as a provider of a common language through which we could communicate (right now, 
we seem to talk past each other rather than communicate, only too often). 

** Theories are not necessarily connected -an often fragmented series of formulations on a 
range of topics. 

* * Relationships among theories are not developed -no synergy. 

* * Is it possible to have a unified theory? 

** A theory can be associated with a sort of distancing. Its more arrogant-if somehow we 
could get the theory right we would then know what to do. 

* * Theories can be used as weapons rather than intellectual tools. 

* * While theories could distance us from practice, they could in fact provide some different 
views of practice and change practice in the sense that one's common sense reaction to a 
situation mayor may not be the most productive way to in fact practice it. 

* * Theories can make us know less. 

* * Theories are things you put in the way. They allow you to see things you can't always see. 
If you think of theory in terms of the sum of the parts, it can allow certain things to be seen 
that can't normally be seen because the overwhelming amount of stuff coming is too great. 

* * Theories allow one to make certain kinds of distinctions that one couldn't otherwise make, 
i.e., having made these distinctions what should one do now and since one doesn't have 
obvious follow-ups what can one do. 

* * A theory looks like something which is a product and a more public kind of phenomenon. 
It is something that would be known to some public. 

* * Small theories are theories with small themes. 
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* * Theories are very large scale, complex, big things, not little things. 

* * Theory is jargon, specialized and often idiosyncratic use of terms, more of an interference 
than a source of insight. 

** Pure unadulterated theories could not exist, because they could not be verified. 

** Theorizing involves discussion and/or reflections that aim at developing theory or putting 
some flesh on a theory or buying some theory or even attempting to interpret a theory. 

** Theorizing is post-facto. You look at what your experience is and what happened and 
what research is done and talk about that. 

* * Theorizing can be considered, at least, at two different levels. One is the context of, for 
example, the scientific community trying to build theory. In this case communication is 
important, i.e., the theory has to be communicable. The other level is, for example, when a 
teacher is using reflective analysis about what he or she is doing, reflecting upon phenomenon 
observed in the classroom, in a disciplined way, not just common sense, but in some 
disciplined way or with some tools. One could say that such a teacher is theorizing, trying to 
explain what is happening in the classroom. Maybe not with a big 'T' but at least a small -.:
and that's a local theory which may be very helpful for the teacher. This can be called a 
personal theory. But very often big theories in the scientific community are built starting 
from personal theories. So there is a link between the two. But in the context of someone 
trying to explain what is happening in hislher particular situation, the person may say -I 
theorize for myself because 1 want to improve what 1 am doing, 1 want to be more aware
in which case communication is not essential. 

** Theories are drawn from psychology, philosophy, sociology linguistic, .... We have few of 
our own in mathematics education. It seems that we have too many theories, but actually in 
mathematics education we suffer in that we don't have very many theories. 

* * A theory as multiple embodiments would be better than a singular embodiment. 

* *It is confusing as to what a theory is. Take, for example, this situation from my teaching 
of students teachers. Now is this just a principle (i.e., telling them "don't only use one 
material, you should use a lot of materials -)? If it's only a principle then what theory was this 
embedded in? 

** Consider Van Hiele's model, for example. Lots of people don't want to call this a theory. 
They feel it's a model. They say it gives the steps to go through. But there is something 
lacking in the whole thing - global explanation. It's the same thing with models of 
understanding. Many of them just say there are these and these and these kinds of 
understanding, but they never define what these understandings are. That's why 1 tend to not 
call them theories. Not yet. 

* * Principles would be much more specific than theories. But then there is the question 
about whether you could actually absolve the principles without dissolving the theory. 
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* * Most things called theories are really paradigms and principles. 

* * Principles are not necessarily part of theory or are not big enough to be worthy of the 
name 

* * In classes lots of things that we use for theory, perhaps are more properly approached with 
paradigms or principles. 

* * There are things called principles that are not theories and are something separate. 

* * Principles based on theory are sort of part of the theory, not something separate, they are 
implications from the theory. 

* * If we think there are theories and principles, for me principles are embedded in theories 
or they speak about a thing or of teaching not learning. 

** There don't seem to be a lot of theories to describe the role of the teacher. 

4. Thoughts on the Uses of and/or Using Theories in Mathematics Education 

* * Theory can transform one's way of viewing something. It can provide one with different 
ways of looking at a situation one had accepted as being the only way it could be. One can 
use to stand back from what seems to be just obvious up front and see it in a different light. 

* * One can use theory to notice how one learns things then use this to help others help 
themselves. 

** Theories can be used as a basis for explaining things in teaching; as object of study; for 
research. 

** Theories promote one's own self awareness. 

* * Theories lead to personal growth. 

** Theories allow one to see things one didn't see before. 

* * Theories help us appear to make sense; know what we are talking about. 

** The only possible use of theory is to have something to talk about. It's a formulation. It 
gives a focus that can be discussed. 

* * Theories gives language to express a phenomenon. 

* * Theories are useful or maybe essential where common sense failed. 
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** Theories can be translated into practice in completely different ways. 

* * Theories are not prescriptions for teaching, they offer instruments to improve the teaching. 

** There is no unique way of developing the technology or the teaching tools that fall from 
the theory, no matter how explicit the theory tries to be. 

** Theories are used to inform thinking, but one personalizes them in the use of them. Is 
it still theory once personalized? 

** Don't know if I use theories because what I use is part of me. I act out of strong beliefs. 
Therefore not a formal system. 

** Theory seems too lofty/important for what I do, to talk about using theory. 

** We don't notice where underlying ideas to theories come from, we just use them. 

** In using a theory, we actually bring it into our embodiment, into our lives and want to 
make it part of our doing, It's hard to now call it theory. It wants to be called something else, 
a principle or a generalization. So in a way something happens in that this thing that was a 
theory just a minute ago now belongs to me because I have used it. It's part of who I am and 
it doesn't hold the label theory quite as well as it did just a minute ago. 

** How much of a theory do you need to use to use it? 

** I use theories in my teaching as a basis for explaining things. This is different from 
teaching the theories themselves as objects of study or using them as a basis for suggesting 
ways of teaching. I use them as a reference but I don't stop and explain the whole theory. 
My concern is as follows. If you take a look at, for example, Dienes' ideas about learning 
mathematics, he had a theory in which he claimed there were six stages to learning 
mathematical concepts, but there were also all the principles going with it. Now if you teach 
elementary teachers, at one moment you will refer to one of the principles, you won't refer 
to the whole theory. But it's not clear that if you refer to one principle that it mean's that 
you are buying or using the whole theory. What makes things even more difficult is that 
many theories incorporate ideas that come from others. Just following one element doesn't 
mean you are buying the whole theory, because the element can be common to other 
theories. So when we say using theory, does it mean using all of the theory or parts of the 
theory? It is a complicated matter but generally we don't use the whole theory, only the main 
features useful for one's purposes. Even in research very often we don't use the whole 
theory. 

** Can we use ideas or concepts without buying into the theory? When we pick up a 
principle and actually use it, are we in some sense living out a kind of theory implicitly 
whether we know it or not? 
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s. Examples of Theories and Theorizers 

** Skemp; Piaget; Vygotsky; Dienes; Van Hiele; Bruner; Ausubel; Gagne; Bloom and Carrol; 
Meyer; Wlttgenstein; Perry; Gattegno; Minsky; Thorndike; Skinner. 

** Constructivism; activity theory; critical pedagogy frames (e.g., feminist ways of knowing); 
concept image; Enactivism. 

** Areas of influence: behavioural psychology; cognitive psychology; epistemological 
influence; mathematical influence; philosophy of mathematics; sociological influences; 
affective domain; gender; representations. 

6. Thoughts on Categories of and/or Categorizing Theories 

** What is the purpose of classifying theories? Our group could not find one. 

** We would have to go back to the question of why we teach mathematics and answer that 
before we can start categorizing theory. 

** One could categorize based on various areas borrowed from for example, psychology, 
philosophy, sociology, etc. 

** One could categorize based on the underlying assumptions regarding mathematics, learning 
and teaching. 

** One could categorize as useful and all the rest. 

** One could categorize as older ones (learning theories) versus recent (shift in 70's from 
learning as primary focus to classroom ) in research. 

** One could categorize based on scope of theory, e.g., particular to mathematics education, 
more general, object of study. 

** One could categorize as different theories of same thing versus different theories of 
different things. 

** One could categorize based on pedagogical design. 

** One could categorize based on the underlying assumption regarding mathematics, learning, 
epistemology, teaching. 

* * One could categorize by focusing on big theories, those that come from clearly outside 
mathematics education and those that are at least partly built by math educators -those partly 
developed within mathematics education for math educators. 

** Can we come up with a unified theory from all of the pieces being listed? Is there some 
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ultimate theory where it all comes together? 

7. Questions Suggested to Add to List (at beginning of report) 

* * What areas are in need of theorizing? 

** What areas are over theorized? 

* * What is the relationship between formulated theories and our unformulated actions; i.e., 
the way we behave and the way we theorize about our behaviours. 

** We are borrowing theories from lots of places. Many people think we should have home 
grown theories in math education and of math education. So the question is what do we 
mean by home grown theories? Is it just a combination of ideas, or is it just an adaptation 
in some sense, adaptation to the specific case of mathematics? What is original in what you 
would call the home grown theory in the field of math education? 

* * What is important in order to call something a theory? 

** Must or can all of mathematics education be explained by theory? 

** Are all of our theories all at: the same level? Are they all theories? 

** How does theory and theorizing enter into design of lesson sequences? 

* * How does theory and theorizing lead to technology? 

** Can all practice be justified by theory? 

** What would post-theoretical mathematics education look like? 

* * Can we have a more every day theory or theorizing about math education, down to level 
of classrooms? 

* * Take one or two theories and then critically analyze that particular theory to try to come 
to some agreement of the assumptions built into them. What questions would come out of 
the activity. 

** How different would mathematics education be without any theories? 

* * What kinds of theories are possible in our domain and how can we overcome the problem 
of incompatible differences with science. 

** What are instances of techniques that are derived from theories? 

* * What sort of techniques and things have come out that are now available for teachers, 
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because of the theories that weren't there before the theory? 

8. Folklore 

The issue of folklore was raised by David Wheeler and resulted in a discussion from which 
the following excerpts are taken. 

** In some ways, folklore very often fulfills the place of a theory. Folklore is what people 
have when they don't have theories. 

** If you want to examine folklore and change it, I don't think you can do that empirically 
or just by changing beliefs or things like that. I think you need the apparatus of alternative 
theory in order to shift folklore and if you want, if you think folklore is mistaken in some 
respects, misguided, then it may become important to develop theories in order to have a 
groundwork on which to make the folklore change, force it to change. So again, is it quality 
of a good mathematics education theory that enables you to examine the folklore or change 
the folklore, or examine it or something? 

** Common sense isn't what I'm calling folklore; there is quite the distinction between them. 
Nevertheless, common sense is related to folklore. 

** Both common sense and folklore are difficult to define. But what are the characteristics 
of common sense? There is a sort of consensus level probably about folklore. An individual's 
belief would apply to folklore somehow. But of course every individual is embedded in some 
cultural situation. We do talk about the folklore of the classroom, don't we, or the folklore 
about teaching, about how this should be done.... Embodied in them, there seems to be a 
shared set of assumptions which has never really been put to critical evaluation and testing 
and it seems to be one of the purposes of science to examine folklore. Folklore may be right 
and/or elements of the folklore may in fact be correct, but still unexamined, still taken for 
granted and therefore we don't know whether or not they are really correct. 

* * Common sense may be my own experience, what you develop from your experience. 

**lliustrations of folklore: 

(1) Student teacher going into a class/school to perform practicum taken aside by the 
vice-principal or whoever looks after student teachers at the particular school and told, "Now 
forget all that nonsense they tell you in university, we want you to do a,b,c, and d." That's the 
induction to folklore. 

(2) Limits are difficult. 

(3) Multiplying by 7 is more difficult than multiplying by 5. 

* * Folklore is verified by centuries of experience, therefore making a big case of verifying 
them and making a big experiment doesn l make much sense. 
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** Folklore might have some kind of basis that's fact 

** Is folklore knowledge isolated or tied into a lot of other things? Should someone 
challenge people's folklore? 

* * Folklore knowledge is often principled knowledge, things to do, ways to behave, and can 
help you get below the surface. 

* * Folklore is whatever comes from practice. It is known for a 'fact-. 

** Some elements of folklore are in fact sound practical wisdom, but then there seems to be 
a lot of other stuff around. 

** A piece of unsolved folklore: Girls cannot do mathematics. That should be challenged. 
Folklore should be challenged. 

* * Folklore obviously does have a variety of meanings, but one sense is clearly story telling. 
That's what lore is. It's the stories you tell about things and it tends to be shared stories that 
a group or culture has in common. Some of the stories may in fact serve very useful 
functions, others may in fact be obstacles to making certain things better. 

* * If you put folklore in the practical wisdom side, you might put opinion on the theory side 
and say there are opinions that pass for theories. 

9. Concluding Remarks 

Our group as a whole, as well as individual participants, worked hard to make the notion of 
theorizing in mathematics education problematic. Theorizing was challenged and questioned 
both in terms of its uses and its usefulness. It was studied to trace its sources and to consider 
its breadth and generality. It was challenged on the basis of its commonsense and 'folkloric
alternatives. Perhaps the success of our working group is best measured by the wealth and 
breadth of thoughtful contributions which raised even more questions about theories and 
theorizing in mathematics education than were brought by its organizers. 

Olive Chapman and Tom Kieren. 
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In 1989, the International Commission on Mathematical Instruction (ICM!) organized at the 
University of Leeds (UK) a study seminar on the popularization of mathematics. This symposium 
was concerned with the general question of the nature and aims of the popularization of mathe
matics, as well as with the discussion of the problems faced in popularizing through particular 
media. The outcome of this seminar has been published in the ICM! Study Series (reference 1 
provides a detailed description of the contents of these Proceedings). The purpose of this CMESG 
Working Group on "Popularizing Mathematics" was to identify and to examine some popularization 
activities that have been developed since the ICM! Study. 

The Working Group started by attempting to reach a consensus on an informal definition 
and arrived at the following: 

"Popularizing Mathematics" is any activity which makes mathematics more 
broadly accessible and acceptable to a Wider lay audience, while also conveying 
a sense that mathematics itself is an area of human activity which extends far 
beyond school mathematics. The main objective in popularizing is not so much 
to teach content but rather is to change attitudes so that, as was expressed by 
one participant in the Group, the lamentation '1 could never learn mathematics" 
would become as rarely heard as "] could never learn to read". 

Participants identified two different situations in which popularization activities can take place 

Popularization aimed at a CAPTIVE AUDIENCE (henceforth denoted by CA), that is 
individuals involved in a mathematical activity on a compulsory basis and over which the 
presenter has "full authority". Students in our classrooms (whatever the level of education) 
represent a typical instance of such a situation. Examples of such situations are presented 
in Appendices #2, and #4. 
Popularization aimed at WILLING PARTICIPANTS (henceforth denoted by WP), that is 
individuals involved in an activity on a voluntary basis. Typical of such situations are activ
ities intended for the general public, such as Math in the Mall (see Appendix #1), Math 
Trails (see Appendices #5 and #1) or television programmes (see Appendix #6). In such 
a context there is no "audience" until the targeted individuals accept to participate. 

The two situations above provided the general framework for the Working Group's discussions, 
which proceeded to explore them with respect to both the aims (Section 3 below) and the process 
(Section 4 below) of popularization. For the aims, the Group devoted its attention to the "WHY?" 
of popularization. For the process, the Group addressed the questions "HOW to do it?" and "WHO 
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is involved?" When dealing with the latter the Group concentrated on the "FOR WHOM?" and did 
not have time to consider the "BY WHOM?" 

3. Aims of Popularizing Mathematics 

Even with considerable discussion the Group was not able to identify different aims for popularizing 
mathematics under the two CA and WP situations. Among the various aims identified by the partici
pants, two were of a pragmatic and concrete nature. These are: 

(I) from the point of view of the individual 
Mathematics is required in a large segment of the job market. One of the central aims of 
popularizing mathematics should be to entice individuals to continue their mathematical 
education and thereby keep their career options open; 

(2) from the point of view of society 
The well-being of modem society relies heavily on the development and maintenance of 
technology, sciences both physical and social, etc., which in turn rely on individuals posses
sing a high level of mathematical understanding. Another central aim of popularizing 
mathematics should be to help meet this need of society by attracting a sufficient number 
of qualified individuals for these areas of study. 

The other aims addressed the relationship of the individual to mathematics. These are: 

(3) while most individuals might surround mathematics with an aura of respect, many have 
developed fear and even hostility for the subject (math phobia). Popularizing mathematics 
should aim to eradicate this fear; 

(4) most individuals have experienced mathematics in a sterile and uninteresting environment. 
However, mathematics is much more of a cultural pursuit. Therefore another aim of populari
zation should be to engender appreciation of mathematics' long and rich history and cultural 
heritage, the role that it plays in today's life and mathematics as a human mental activity; 

(5) mathematics, as a required component of school education, alienates a large portion of the popu
lation. These people do not feel part of "the club," they lack confidence in learning and using 
mathematics. Popularizing should aim to develop confidence in an individual's capacity for 
learning and using mathematics. 

In conclusion the aim of popularizing mathematics is to stimulate people to engage in mathematical 
activity. 

4. The Process of Popularizing Mathematics 

Three process components of popularizing mathematics discussed by the participants. They were 
FOR WHOM?, WHAT? and HOW? In each case, both situations ofCA and WP were discussed. 
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A-FORWHOM? 

i) CA situation In a certain sense all students must be taken into account when popularizing 
mathematics. However, because of their general negative attitudes towards mathematics and because 
of their future possible influence on others, students in three categories were identified as needing 
special attention of popularizing mathematics. 

a) Elementary school teachers (both in pre- and in-service programmes). The majority of these 
teachers lack the appropriate mathematical knowledge and many have a genuine fear of the 
subject. Popularizing mathematics for these individuals should aim to help them develop a 
clear perception of the role and importance of mathematics in the development of humanity, 
and should underline the important role that they play in mathematics education at these 
introductory levels; 

b) Pre-adolescent students. Many of the students in this age group drop out of mathematics, 
even though they continue to be physically present in mathematical classrooms they do not 
expand their limited mathematical horizons. The ultimate effect is to limit their career 
opportunities; 

c) Students in university service courses. These students need to develop a mathematical under
standing which empowers them to formulate the mathematics of the given situation. Courses 
for these students often tend to emphasize mathematical techniques, which are better 
performed by technology, and at the expense of mathematical concepts and understanding. 

ii) WP situation While the whole population could eventually be seen as the target audience of 
popularization activities, the following categories were perceived by the Group participants as 
especially important. 

a) Senior citizens. They have time, they are often very open-minded, and they can eventually 
exert some influence on their grandchildren; 

b) Policy makers Many have opportunities to influence significantly the role that mathematics is 
to play in education; 

c) Parents and children. The interaction between parent and child can provide positive rein
forcement for the learning of mathematics; 

d) Journalists. Because of their background and training journalists generally have little under
standing of mathematics and yet they have the possibility of influencing many people; 

e) Mathematicians. Few mathematicians have effectively popularized their activities or worked 
actively to explain their work and interest to others outside their profession. Mathematicians 
should be made aware of the importance of their role in this endeavour of popularizing 
mathematics. 

B-WHAT? 

The Group decided not to make any distinction between the CA and the WP situations in connection 
with this question. It recognized that no a priori restriction should be put on the mathematical topic 
used as a popularization activity. A variety of topics is important, since individuals may be "turned 
on" by different kinds of mathematical activities. Linking mathematics to social issues highlights 
its importance. Mathematical topics aimed at developing an individual's capacity for making 
decisions in non-deterministic situations such as the development of probabilistic thinking can be 
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particularly useful. Finally, the topics chosen for popularization activities should convey the feeling 
that math is or can be fun. Popularizing mathematics ultimately aims at empowering citizens, at 
helping then to develop their critical judgment and to appreciate how mathematics can help in 
analyzing the world around them. 

C-HOW? 

Most of the following comments apply to the WP situation. Some also apply, with slight modi
fications, to the CA situation. 

The medium used must reach the target audience wherever it is; in the video arcade, in the mall, at 
home in front of the television, in a bookstore, in a library, etc. To be appropriate, the material 
should have some of the following properties. 

The material should include some mathematical "big idea." 

The material should have a hook, a stimulus, to catch the attention of "spectators." This 
"attention getter" could be a particular device or instrument (the kaleidoscope, the Rubik's cube 
come to mind as examples), a pleasing pattern (visual, auditive, etc.), an attractive display, for 
example. Once the spectator is hooked, the activity should develop that attention. 

The material should convey an infonnal, pleasant and even fun atmosphere. 

The material should allow participants to access various levels of knowledge, allowing those 
who are more advanced to proceed deeper and deeper into the mathematics. 

Some participants in the Group stressed the idea that a successful popularization module can be 
visualized as a multi-level procedure with the following steps: 

1) capture the attention of the target audience; 
2) convey some preliminary infonnation; 
3) get the people involved in some activities; 
4) entice them to move on to another popularization sequence. 

Individuals who have some experience of developing popularization materials believe that their 
success can be significantly enhanced when they are developed as a coordinated effort with policy 
makers, business people, media experts, etc. 

5. Examples of Popularizing Mathematics 

The Group included individuals with substantial experience in the development and implementation 
of popularizing activities. This is evident from the number of appendices attached to this report. The 
following examples provide reference to the appendices and other activities mentioned during the 
discussions. 
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AcrIVITIES FOR CAPTIVE AUDIENCES 

1) Backpack Math Linking the Home and the School Through Math. Backpack math is a set of 
mathematical activities for children to take home and share with their parents. These activities are 
transported to and from school in backpacks, hence the name. This programme provides oppor
tunities for parents to experience with their children the math that occurs in the classroom. The 
Family Math Program (developed at the Lawrence Hall of Science in Berkeley) is built on this idea 
of forming parent-child teams. 

2) Agriculture in the classroom The use offood to develop math skills in geometry, measurement, 
estimation, graphing and problem solving. The Ontario Ministry of Agriculture and Foods has 
developed materials for such purposes. 

3) Mathematica's Mathshop TV Ontario series of 10 fifteen-minute programmes for Primary 
Mathematics within the context of stories. 

4) Math Shop The Open Learning Agency of British Columbia; see Appendix #6 by Tom O'Shea. 

5) Mathemathlon See Appendix #3 by Bernard Hodgson. 

6) Mathematicians and their Society See Appendix #6 by Tom O'Shea. 

AcrIVITIES FOR WILLING PARTICIPANTS 

1) Math in the Mall See Appendix # 1 by Malgorzata Dubiel. 

2) Math Trails See Appendices #5 by Eric Muller and # I by Malgorzata Dubiel. 

3) Kaleidoscopes See Appendix #3 by Bernard Hodgson. 

4) Newspaper articles Keith Devlin described the work that he did for a column in England (see 
reference 4 below). He indicated that it was very difficult to get such a column, one has to be around 
just at the right time when an editor is looking for something specific. 

5) Popular mathematics books for specific sectors of the general public. Keith Devlin compared 
the different approaches that were taken in the preparation of his two books Mathematics: The New 
Golden Age and Mathematics: The Science of Patterns (see references 3 and 5 below). After these 
experiences he is of the opinion that mathematicians writing a book for general audiences should 
involve someone else -a strong copy editor. This made the work far more demanding but it brought 
in a very different perspective. 

6) Television programmes Keith Devlin spoke about his work on two different television projects 
developed in England. The first, Mathematical Mystery Tour, is aimed at sophisticated audiences 
and is now available as a Time Life Video. In this series mathematics is presented as human culture. 
The second, The Johnny Ball Show developed by the BBC, was aimed at children of 6-14 years. 
This was followed by another series in which Celia Hoyles was involved; called Think of a Number 
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it was not trying to impart mathematics but rather to bring awareness of mathematics in human 
culture (see the paper by C. Hoyles in reference I below). See also Appendix #6 by Tom O'Shea. 

7) Public lectures Some departments of mathematics sometimes venture into organizing lectures 
intended for the general public. Two such talks were organized during 1993-4 by the Number 
Theory Group ofUniversite Laval. The fITst was about Fermat's Theorem (a must in 1993!) while 
the other, given by Peter Hilton, concerned issues of code-breaking during the Second World War. 
The latter was publicized in particular among war veterans; they were really pleased both by the fact 
that organizers had thought of them and also by the lecture itself, which was given just at an 
appropriate mathematical level. 

6. Towards a "didactical engineering" product 

The group identified a number of characteristics which appeared to be linked to the success of a 
popularizing mathematics activity. The activities should be multi-level, an example of this concept 
being the National Geographic magazine - one can fITst be engaged by looking at the pictures; 
then if it is found to be interesting one can follow it up by reading the descriptions under each 
picture; and fmally, one becomes completely engaged if one reads the articles. 

In many cases the activities appear to be successful when the mathematician involves other 
specialists in such important areas as communication, child studies, writing, etc. Test trials with a 
segment of the target population also appeared to enhance the success of the activities. 
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Appendix 1 

A Pair of Examples of Popularizing Mathematics 
Malgorzata Dubiel 
Simon Fraser University 

Loon Lake Trail 
In August 1993 Science World BC organized a week long science camp for teachers at Loon 

Lake in the UBC research forest. Kathy Heinrich and I were invited to give a 3-hour workshop. We 
decided to organize our workshop as a mathematics trail (for more information on math trails, see 
the Appendix #5 by Eric Muller). The camp site is a peninsula which projects into Loon Lake. We 
went there earlier, to look at the terrain, fmd any interesting features, and make a map, as the organ
izers were not able to provide one. 

In preparing the trail questions, we concentrated on three themes; measure, basic combin
atorics, and patterns and shapes. Participants were strongly encouraged to add their own questions 
to the booklet. On the cover of the Trail booklet we put our map; the next page gave helpful hints 
and formulae. We decided not to give people a tape measure, just a piece of string, and asked them 
to devise their own way of measuring. One of the hints, illustrated by a famous sketch by Leonardo 
da Vinci, was that when you stretch your arms, the distance between the tips of your fingers is 
approximately equal to your height. Kathy, I, and two of our colleagues we took along, each took 
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a small group on the trail. Each of us started at a different location - we designed the trail so that 
this was possible. My group found it easy to construct a measure. A woman said that she was 
exactly 150 em high. By measuring the distance between the tips of her fingers, folding the corres
ponding piece of string into three and doubling the result, we had a length of string approximately 
1 mlong. 

Combinatorics problems were mainly concerned with assigning people to their living 
quarters, and seating arrangements at the cafeteria tables. 

The feedback from participants was very positive. They had fun with the trail-something 
most of them did not expect. They commented that the measuring exercises gave them a better 
insight into the concept of measure and the meanings of various units of measure. We wrote our trail 
using imperial measures. Teachers asked that the questions be changed to ones using metric units 
because the curriculum is based on the metric system. Many of them admitted to not feeling com
fortable with it. After working through the questions and discussing them with us, they felt a sense 
of achievement. 

The combinatorics/scheduling questions also elicited favourable comment. Teachers, 
especially those from the early grades, said they would try our ideas in scheduling their classroom 
activities. 

Looking for patterns and shapes was the most novel activity we gave the participants. One 
of them said jokingly afterwards that we had spoiled the forest for her-now she keeps seeing 
patterns and shapes all around her. 

This year the science camp will be repeated twice, and we have been invited back. I went 
to the orientation meeting for workshop leaders. The first thing I noticed was that our map was given 
to participants as part of the information package. The organisers cited our approach of connecting 
the workshop to the surroundings as one of those which had proved most successful in the past. 

We are making some changes in the trail for this year. Metrization dictates the redesign of 
some of the problems. The trail will also be longer, to give teachers more ideas to take back to class. 
We will stress that they are not expected to fInish answering the questions during the workshop. 

The success of the Loon Lake Trail inspired us to introduce a mathematics trail exercise 
as a group assignment in the course Mathematics for Elementary School Teachers at Simon Fraser 
University. Students design a trail around the campus as the first part of this assignment. Each group 
is required to hand in two copies of their trail. The second part of the assignment consists of testing 
a trail designed by another group. 

Math in the Mall 
Kathy Heinrich and I discovered the need to popularize mathematics for general public while 

working with students taking Simon Fraser's Mathematics for Elementary School Teachers course 
(MATII 190). A very high percentage of students taking this course have an extremely poor attitude 
towards mathematics-they believe it is boring, diffIcult, and probably beyond their reach, not to 
mention that it is also completely removed from real life. We started to look for ways to help them 
to see a glimpse of what we see in mathematics-the beauty of it; the excitement and amazement 
upon seeing something unexpected; the mathematics around us; and the people of mathematics. We 
developed (or found in books) various projects to develop the students' interest in mathematics. 
Later, we asked them to prepare their own projects, as one of the course assignments. 

The projects proved very succesful and we started to think about reaching younger children. 
Our fIrst opportunity was the Homecoming event organized for the 25th anniversary of Simon 
Fraser University in September 1990. We mounted a display called "Is this Math?" We used some 
of our Math 190 projects as well as puzzles, games, books, geometrical models, and a videotape 
with a week's worth of "Square One TV" courtesy of PBS. The display was even more succesful 
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than we expected. When colleagues from computing science complained that our display was 
diverting traffic from their exhibits, we knew we were on the right track. The president of SFU 
visited the display and was sufficiently impressed to promise funding for us to take the display to 
other sites. 

While planning our exhibit for Simon Fraser's homecoming we were already discussing the 
possibility of taking our activities to a shopping mall. Malls are now centres of social life in most 
areas. You meet people there who would never go to a university event, people of all ages, and often 
whole families. 

For our first foray outside the university we chose Lougheed Mall-a large mall in Burnaby, 
close to SFU and to several elementary schools. While preparing the event, we were contacted by 
organizers of the Science and Technology Week 91 and, at their request, agreed to repeat the display 
three weeks later in another Burnaby mall, Metrotown. Since then, our mall appearances have been 
restricted to Science and Technology Weeks and similar events, as this makes the organization much 
easier. We also take some of the activities to schools and occasionally have groups of children visit 
the Department. 

From the outset our displays have been enormously popular with children. This has pulled 
in parents interested in activities for their children and teachers looking for ideas for classroom 
activities. 

To attract attention to our mall display we have a large custom-made sign MATH & MAGIC 

(2.25 m high). Another large sign advertises Simon Fraser and the Canadian Mathematical Society. 
There are also colourful posters about the relation of mathematics to design, arts, crafts and other 
areas of human activity not usually associated with mathematics in people's minds. Other posters 
have a more humorous intent with lots of jokes about mathematics and mathematicians. We also 
have interesting models-a huge kaleidocycle, colourful models of platonic solids etc. The activities 
we have found most succesful include making and decorating kaleidocycles and hexaflexagons, 
Mobius bands, geometrical models from flexible drinking straws (we use up to 6000 straws a day!), 
and pentagonal stars made from strips of paper. These are especially popular with elementary school 
kids. The older children and adults enjoy puzzles-geometrical ones and these based on Gray codes 
are the best-and games. At some displays we also have a VCR and computers, but this is not really 
essential. 

We recruit colleagues, graduate students, and undergraduates to assist with the display. At 
all times we have at least five people to talk to members of the public attracted to the display. 
Students who have taken, or are taking, MATH 190 like to help, partially because they have to 
demonstrate volunteer work for the admission to professional programmes in education. We never 
have difficulties in rmding help when repeating our display. Those who help once usually come 
back; they have fun participating. 

We have many wonderful memories from the displays, and some touching letters from 
children. It is difficult to assess whether we make any impact-we believe we do. Recently, for 
example, I met the father of a girl who came to our first display three years ago. He told me that 
MATH & MAGIC had sparked her wish to study mathematics and science when she eventually goes 
to University. 
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Appendix 2 

Preparing Secondary School Teachers to aid in Popularizing Mathematics 
Harvey Gerber 
Simon Fraser University 

The Working Group on Popularizing Mathematics at this CMESG conference felt that teachers 
should be educated about the broader aspects of mathematics. This paper looks at the work in this 
direction done at Simon Fraser University for secondary school teachers. In particular, it looks at one 
mathematics course in a master's programme. 

Foundations o/Mathematics is the first course in a series of six courses for the Master's Programme 
in Secondary School Mathematics Education at Simon Fraser University. The programme stresses 
the human aspects of mathematics. It emphasizes the role of mathematics in society and the natural 
development of mathematics as a growing, changing, entity. As the fIrst course in this programme, 
Foundations o/Mathematics sets the tone for the entire programme. 

Foundations o/Mathematics looks at various areas of the secondary school curriculum 
(including calculus) from a historical, and sometimes philosophical point of view. The emphasis is 
on the mathematical problems at certain moments ofhistol)', and how these problems were resolved. 
We are not only interested in the subject, but also in the way it evolved and the reasons for its 
evolution. Mathematics is shown as a subject created by people. The intent is to show mathematics 
in the making rather than as a finished product. 

While the students entering the programme have a fairly strong mathematics background, 
their understanding comes from material they learned in isolated, seemingly unrelated, courses. One 
of the purposes of Foundations o/Mathematics is to integrate the students' fragmented knowledge. 
We must make evident the connections between the supposedly separate topics. 

Three things are taking place in the course. In the first place, the students are presented with 
the historical development of the real numbers (along with the mathematics required). We begin with 
the Pythagoreans and Eudoxus and continue to Cantor, and Dedekind's work. We close with a 
description of the nonstandard real numbers used in nonstandard analysis. 

The second aspect of the course has the students read and present the material from Journey 
through Genius by William Dtmham. This text presents certain great theorems in mathematics along 
with historical background to illuminate these theorems. 

Finally the students have to write a major paper on the development of some topic from the 
secondary school curriculum (again including calculus). The papers are presented to the class. A 
brief sample of the papers presented include histol)' of the influences leading to the development of 
analytic geometl)', the background to Cantor's work on set theol)', the development of trigonometry 
tables, and the development of algebra as a deductive science. 

We feel that the courses and the programme have been vel)' successful. The secondary 
school teachers walk away with the knowledge that mathematics has an influence on, and is 
influenced by, the culture of its time. Moreover, these teachers are actively engaged in learning and 
spreading the word. Witness the fact that two participants at this meeting have been students in that 
programme. 
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Appendix 3 

Deux faceUes de la vulgarisation des mathematiques 
Bernard R Hodgson 
Universite Laval 

Comme il est clairement ressorti des discussions de ce Groupe de travail, la vulgarisation 
des mathematiques peut se realiser dans des contextes et avec des moyens fort varies. Le but de ce 
texte est d'illustrer brievement certains aspects de la vulgarisation it l'aide de deux activites, l'une 
con~ue specifiquement it l'intention d'eleves du primaire et l'autre pouvant etre utilisee dans des 
situations diverses. 

Le Mathemathlon 
Les competitions mathematiques sont souvent per~ues comme des activites plut6t elitistes 

ne touchant qu'une portion infime de la population etudiante. De nombreux contre-exemples existent 
it ce propos, depuis les competitions australiennes jusqu'au Kangourou mathematique fran~ais, en 
passant par Ie concours americain ASHME. 

Au Quebec, l'Association des promoteurs de l'avancement de la mathematique it 
l'elementaire CAP AME) a mis sur pied depuis une dizaine d'annees une activite touchant de meme 
un tres grand nombre d'eleves du primaire. Connue sous Ie nom de Mathemathlon, cette 
"competition" biennale s'inscrit tout it fait dans une demarche de vulgarisation mathematique, non 
pas seulement it cause de la quantite de jeunes impliques, mais principalement en vertu de la 
philosophie qui la sous-tend. 11 ne s'agit plus d'une competition au sens classique, dans laquelle "Ie 
meilleur" (ou "la meilleure") gagne, mais d'une activite qui s'inscrit dans une vision pedagogique 
plus globale touchant meme l'intervention de l'enseignante dans sa classe. En plus de fournir un 
cadre prop ice it une demarche en resolution de problemes, on y cherche surtout it favoriser Ie 
developpement d'habiletes et d'attitudes non traditionnelles dans la classe de mathematiques travail 
d'equipe, communication, analyse de strategies possibles, identification d'objectifs specifiques it une 
equipe, etc. L'enseignante qui inscrit son groupe au Mathemathlon se voit proposer une demarche 
qui l'accompagne pour une partie importante de l'annee scolaire. 

Qu'il suffise de mentionner que lors du dernier Mathemathlon (annee 1993-94), 167056 
eleves du primaire (3e, 4e, 5e et 6e annees) ont participe aux epreuves locales, dont 3500 hors du 
Quebec. (Ces epreuves etaient ensuite suivies d'epreuves regionales, avec des representants de 
chaque classe, et enfin d'epreuves nationales.) Cela fait pres de 7500 enseignantes dont Ie travail 
quotidien a ainsi ete influence par la participation au Mathemathlon. Compte tenu du message que 
cherche it vehiculer Ie Mathemathlon quant aux mathematiques de l'ecole primaire, cela constitue 
certes une realisation interessante du point de vue de la vulgarisation mathematique. 

Pour obtenir plus de renseignements sur Ie Mathemathlon, priere de s'adresser au Secretariat 
de l'APAME a l'adresse suivanteAPAME, Case postale 300, Terrebonne, Quebec J6W 3L5. 

Le kaleidoscope 
Tres souvent, une activire de vulgarisation, et cela est certainement Ie cas avec un auditoire 

non captif, requiert une bonne amorce afm d'attirer l'attention du public vise et de susciter son 
interet. Cette amorce peut etre de diverses natures situation choc, image fascinante, objet intriguant, 
etc. 

Le kaleidoscope peut certainement etre vu comme un objet it la source d'un cas assez unique 
de sucres dans l'histoire de la vulgarisation scientifique. Des son invention par sir David Brewster 
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au debut du XIXe siecle, il a suscite Ie plus vif interet et a meme provoque dans la population une 
excitation qui n'est pas sans rappeler, en des temps plus recents, la rage du cube de Rubik de la fin 
des annees 70. Dans une lettre it sa femme, Brewster rapporte en effet ce qui suit "You can form no 
conception of the effect which the instrument excited in London; all that you have heard falls 
infinitely short of the reality. No book and no instrument in the memory of man ever produced such 
a singular effect." Rapidement, nous dit Brewster, des centaines de milliers de kaleidoscopes furent 
fabriques, quoique bien peu respectaient, se plaint-ii, les regles qu'il avait enoncees en vue de 
l'obtention d'un "bon" kaleidoscope (voir [BD. 

La fascination exercee par Ie kaleidoscope a ete decrite en termes on ne peut plus clairs par 
Andre Gide au tout debut de son ouvrage Si Ie grain ne meure "Un autre jeu dont je raffolais, c'est 
cet instrument de merveilles qu'on appelle kaleidoscope. (. .. ) Le changement d'aspects des rosaces 
me plongeait dans un ravissement indicible. ( ... ) Bref,je passais des heures et des jours it ce jeu. ( ... ) 
J'etais intrigue autant qu'ebloui, et bientot voulus forcer l'appareil it me livrer son secret." 

Meme dans notre monde d'aujourd'hui, l'interet d'un instrument tel Ie kaleidoscope ne se 
dement pas (quoiqu'il ne suscite evidemment plus l'euphorie de l'epoque de Brewster). La beaute de 
la rosace kaleidoscopique attire immanquablement l'attention, et l'instrument se prete tres bien it une 
exploration visant it developper un modele geometrique approprie. Brewster lui-meme vantait 
d'ailleurs les merites de tels objets qui, reposant sur des principes scientifiques, ne pouvaient, 
soutenait-il, qu'amener l'observateur vers une demarche et une connaissance systematiques. 

Le kaleidoscope se prete evidemment bien it un activire libre du type "Les maths au centre 
commercial" (voir Appendice #1). J'ai moi-meme eu it maintes reprises l'occasion de l'utiliser avec 
des auditoires captifs, dans Ie contexte de la formation des enseignants du primaire et du secondaire. 
Dans un cas comme dans l'autre, on y retrouve de nombreux ingredients d'une vulgarisation 
fructueuse emotion soulevee par la beaute de l'image observee dans Ie kaleidoscope; nombreuses 
possibilires d'experimentation et de decouvertes; facilite de modification des donnees de base (par 
exemple, l'angle entre les miroirs, Ie motif it reproduire, Ie nombre de miroirs) de fa~on it mieux 
comprendre et controler la situation; diversite des modeles, depuis des modeles tres simples (miroirs 
reels, papier pointe) jusqu'it des versions plus sophistiquees (simulation sur ordinateur permettant 
it la fois la decomposition etape par etape du jeu d'interaction des miroirs et la mise au point de 
"kaleidoscopes fictifs" reposant sur des transformations autres que la reflexion axiale) ; liens avec 
la vie de tous les jours (miroirs paralleles ou it angle que l'on rencontre au salon de coiffure ou au 
magasin de vetements, motifs geometriques parfois utilises it la tele, etc.) On trouvera plus de 
commentaires sur certains de ces aspects dans les articles [H] et [GH]. 
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Appendix 4 

Popularizing mathematics in the classroom 
Joanne McDonald 
University of Regina 

How can we popularize mathematics in the university classroom? Perhaps it can never be very 
popular with so many of our students taking the subject simply to satisfy a degree requirement. 
Many of them are afraid of mathematics, are convinced they can't do it, or believe it to be nothing 
more than number-crunching and manipulating formulas. 

I have made several attempts to stimulate the interest of students who feel they are in a 
mathematics comse through no fault of their own. Some of these attempts are described below. The 
success rate has not been uniformly high. While some students responded very well to the assign
ments, others sustained a high level of hostility in the face of all my efforts to improve their outlook. 

Mathematical autobiographies 
On the first day in each of my courses I assign a mathematical autobiography, usually to be 

submitted the next class day. The write-up is to be between a half-page and a page. Individual stu
dents may choose to write about their feelings toward mathematics, their perceived successes or 
failures, why they are taking the course and how they expect to use the knowledge they acquire, or 
whatever comes to mind when they hear the word 'mathematics'. Students are assured that I will not 
hold against them anything uncomplimentary they may say about mathematics. 

I continue to assign autobiographies as I have found they are not only a good way for my 
charges to vent any hostility and clear the air for getting down to work on the course material, but 
they also give me a chance to get to know my students better. Another advantage for me is that there 
is no grading to be done; these assignments are read purely for my own enjoyment and infonnation. 

Term papers 
Two years ago, in a class of 104 student teachers (elementary school), each of my students 

was required to submit a term paper worth 10% of the final grade. There was a great deal of 'math 
anxiety' in this class, as well as a conviction that mathematics never was and never would be some
thing they could do. Many had the naive hope that since they were not interested in the subject they 
would never be called upon to teach it. 

My reason for the assignment was to have these students feel more confident about mathe
matics. The class was informed on the first day of the course that a term paper was a required 
component. Within the fIrst 3 weeks of the semester they were supplied with information on possible 
topics, suggested length of paper, the due date, and a list of reference sources available in the on
campus libraries. There was freedom to choose a topic other than a listed one, providing they 
checked with me to be sure the choice did actually have to do with mathematics. I did not require any 
in-depth understanding of mathematics, as these students often have vel)' little background in the 
subject. Papers were due 2 weeks before the end of classes, that is, some 8 or 9 weeks after the 
detailed requirements were in the students' hands. Some of the suggested topics were: 

• a short biography of a famous mathematician (several names were supplied, e.g. Gauss, 
Galois, Noether, Newton, etc.); 

• a histol)' of the development of the calendar or of numeration systems; 
• a detailed explanation of why 'galley' multiplication works. 
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In this assignment, response exceeded any expectations. Of the 104 who were on my class list, 98 
twned in papers and they were, for the most part, very well done. Some were of publication calibre. 
A prodigious amount of my time was required for grading, so the undertaking was overly ambitious 
on my part. 

Should I teach this course again, the papers would be optional and they would make up a 
larger proportion of the final grade. On the trial run I had no idea the students would put in so much 
effort. They really deserved more than the agreed-on credit. 

Micro-themes. 
My first experience with assigning optional micro-themes was during a calculus class a year 

ago. There were many repeaters in the class. At least two students were taking the course for the 
fourth time, and for several it was the last chance to get the required math credit for a degree. The 
level of fear was extremely high. 

Some of the pressure was relieved by allowing the students to choose any number from zero 
to all of the optional micro-themes, However, once an initial submission was made, there was no 
longer a choice about counting that micro-theme's result as part of the final grade. It would be 
counted. 

There were 6 micro-themes in all. Each was a problem or procedure found in a typical first 
course in calculus. The student had to solve the problem without using derivatives, or explain the 
procedure used. The date for the initial submission for each project was chosen to correspond to 
material already covered in the course. Between the first and last submission dates for each project, 
the student could redo and resubmit it any number of times. To keep my marking time manageable, 
the assignment was given a mark of 0 (if anything was wrong) or 10, if done correctly. (I may indi
cate where an error occurs, but it is the student's responsibility to detect the error and correct it, 
before redoing the assignment for the next submission.) Each project was to include a brief but 
complete explanation, in good English, of what was done and why it was needed. A 2.5% block of 
the final grade was reserved for each micro-theme a student elected to do. Thus, if all six were 
completed correctly, the fmal exam was worth only 35 points instead of the usual 50% of the fmal 
grade. 

One micro-theme was stated as follows Guy wires are used to stabilize two poles that are 
of heights 35 feet and 15 feet respectively, and which are set 100 feet apart on level ground. One 
of the wires is attached to the top of each pole and to a peg at ground level between the two poles. 
Where should the peg be placed so the least amount of wire is used? Include a diagram and 
explain your reasoning carefully. (Solve this problem without using derivatives.) 

Another example was based on a problem solved in the text that found the 'most econ
omical' proportions for a cylindrical can to have the diameter and the height equal. These questions 
were to be answered: 

(a) What is the relation between the height of the most economical can and its diameter? 
(b) Check some cans at home or on grocery shelves. What are some of the proportions? Do they 

match the answer in part (a)? 
(c) If the results in (b) are different from those in (a), why are cans not made with these 'most 

economical' proportions? Provide a minimum of two distinct reasons. (Your reasons must 
be based on the idea of maximizing profits.) 

(One student got so interested in this problem that he called the toll-free number for two food 
processors to ask the reason for their choice of can proportions. One answer was that "the size and 
shape of the can depends on the product inside it", the other was "I don't know, I never took 
calculus. ") 
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None of these attempts was entirely successful, but student response was generally positive. 
The micro-theme projects were worthwhile for several reasons. The students had to really think 
about what they were doing. The written explanations required the use of correct sentence structure 
and clear, unambiguous statements. If submissions were carelessly done, it was soon obvious that 
it took precious time to redo the assignment correctly. It was clearly to the student's advantage to do 
a proper job the fIrst time. I also hoped the message would get through that even if we were doing 
calculus, that did not mean calculus methods were always the best means for rmding a solution. 

Mathematics Trails 
Eric Muller 
Brock University 

Appendix 5 

What is a Mathematics Trail? A recent short publication [1] by the Association of Teachers of 
Mathematics in the UK says "Math trails are the mathematical version of nature trails". The aim of 
a nature trail is to observe and study nature. This suggests that a mathematics trail should point to 
applications of mathematics which are found in most situations and should also involve individuals 
in mathematical activities to stimulate appreciation of their surroundings. These possibilities 
inspired me to develop a set of mathematical activities that children, students, parents and teachers 
can experience in the environment in which they occur. School classes periodically take fIeld trips 
as part of their history or geography courses. How often do students go on mathematics fIeld trips? 
Rarely! We should not be surprised that most youngsters see mathematics as a human activity with 
little or no relevance to their daily life. If you are, like me, continually looking for activities to 
stimulate the interest of youngsters in mathematics then a Mathematics Trail may be what you are 
looking for. 

This short article will take you through the various steps I used to develop two Mathematics 
trails. The fIrst task in making a trail is to look for a location. This can be in the city, in the zoo, 
around the university (for freshmen orientation), in a provincial park or any location which attracts 
young people. Living in the Niagara Peninsula, I had two obvious sites-the Niagara Falls and the 
WeIland Canal. These two areas have interesting natural history and are centres of human achieve
ment. They attract people from all over the world including student groups from various parts of 
Canada and the United States. In both these cases I found the areas too vast to cover in a reasonable 
amount of time. I therefore concentrated the activities around major points of interest close to where 
the mathematics trails are distributed. Early in my planning I received support from the Niagara 
Parks Commission. This included the use of their materials and a commitment to have the Niagara 
Falls Math Trail booklets distributed from the tenninal of their People Mover-a transportation 
system developed to ease car traffic around the Falls. For the Weiland Canal Math Trail the City 
of St. Catharines offered to have the booklets distributed from their tourist facility at Lock 3. 

A source of funding never hurts! I placed a high priority on funding those parts of the 
projects which would ensure the long term survival of the trails with little or no intervention on my 
part. I was fortunate to receive funding from a number of sources. To-date these include Science 
Culture Canada, SEED programme, Casio Canada Ltd., the Niagara Parks Commission and a number 
of Offices at Brock University. Further sponsorships are being sought to ensure that the trail 
booklets will be printed in large quantities. 
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There are a nmnber of publications which suggest that youngsters appear to lose both their 
interest in and their confidence to do mathematics when they are between 10 and 14 years old. I 
therefore targeted the mathematical activities at this age group. A student was hired from Brock's 
concurrent BSclBEd programme for mathematics teachers at the Junior and Intermediate grades in 
Ontario and together we worked on the activities for the booklets. What are appropriate Math Trail 
activities? To me, they should involve mathematics and should satisfy a majority of the following 
criteria: they should be fun, they should arise naturally from the situation, they should call attention 
to some of the remarkable natural phenomena or hmnan achievements such as art, history, tech
nology, etc. For the 10 to 14 year old age group we looked for applications of geometry, statistics 
and elementary algebra. By looking at existing Math trails one fmds that their contents can vary in 
emphasis. Some, like the one developed by Blane and Clarke [2] in Melbourne and the one at ICME-
7 in Quebec City by de Champlain, Gaudreault, d'Entremont [3] could be classified as mathematical 
classroom activities on a walk, while others, like the one developed by F asanelli, Rickey and 
Thorington [4] for the Washington Mall, could be classified as observations of mathematics on a 
walk. The Niagara Falls and Weiland Canal Math Trails are strongly influenced by both of these 
approaches. They are written in a dialogue between two youngsters expressing their knowledge of, 
and asking questions about their surroundings. They use mathematical ideas to explore possible 
solutions. 

A preliminary draft of the Niagara Falls Math trail was tested with a young girls' soccer 
team and again with a grade 7/8 class. This experience was invaluable in completing the fmal 
version. Reactions expressing, dismay, enjoyment, bafflement etc., all contributed to a very different 
final trail booklet. The comments of the teacher and adults were very helpful. I strongly recommend 
this field testing. I was also happy to receive critical input from a writer in Brock's External 
Relations Office. 

One of my aims was to develop a set of mathematical activities which would stand on its 
own, that is, I would not be involved each time a school group or family wished to do the trail. This 
has been partially achieved. It will become a reality when I have completed an introduction sheet for 
the teacher or group leader. I believe that a small manual of follow up activities with references to 
existing materials would also be helpful to the teacher. It is so much easier to generate interest in 
mathematics and its applications when they are based on experiences of everyone in the class. 

This project has taken more time than I had originally estimated. However it is possible to 
develop a Math Trail on a smaller scale, for example, one of the university campus for visiting 
school groups. It does put a different perspective on one's surroundings! Good Walking. 
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Appendix 6 

Two Examples of Popularizing Mathematics 
Tom O'Shea 
Simon Fraser University 

From my point of view, two issues were of particular importance in this Working Group. The first 
concerned the problem of educating teachers about the nature of mathematics and the place of 
mathematics in our society. The second examined the broader issue of educating the general public 
about mathematics. For each issue, I have chosen one example of work that I have engaged in over 
the past several years. 

Mathematicians and Their Society 
Students in my mathematics methods course need to understand that mathematicians work 

within a social context; that mathematics does not develop in isolation-that it is a human enter
prise. In my opinion, they cannot develop this understanding by reading a textbook on the history 
of mathematics nor a series of biographical sketches. They need to immerse themselves in the life 
and time of a mathematician. 

Generally the mathematics methods class enrolls 30 to 40 teachers. For this assignment I 
chose the following mathematicians: Rene Descartes (1596-1650), Blaise Pascal (1623-1662), 
Isaac Newton (1642-1727), Evariste Galois (1811-1832), Ada Lovelace (1815-1852), Nikolai 
Lobachevsky (1792-1856), Sonya Kovalevslqr (1850--1891), and Georg Cantor (1845-1918). This 
group spanned three hundred years of mathematical thought. I made sure to include female mathe
maticians to emphasize to the predominantly female group of student teachers that mathematics is 
becoming an equal opportunity employer. 

I randomly assigned the students to mathematicians and presented them with a list of 
questions to answer for the first week. They were expected to work on their own and fmd their own 
resource materials. I gave them a second set of questions in the second week, and a third set in the 
third week. At the end of the sixth week, the students submitted written reports in response to the 
questions. 

To complete the task, all students assigned to a particular mathematician formed a discus
sion group, and responded to a fmal set of questions. These discussions were tape-recorded and 
formed part of my evaluation of the students' work. They also provided feedback on how the 
assignment might be improved next time around. The assignments went as follows: 

Let us designate the mathematician you will become intimate with by the letter M. 

Week #1 
In what year was M born? In what year did M die? 
In what country was M born? In what country did M die? 
Outline M's main contribution to mathematics in terms that you understand. 
In what decade did M make this contribution? Upon whose work did M build? 
Were Ms mathematical ideas values at the time? If so, by whom? If not, when was recognition fIrst given? 
How would M exchange information with other mathematicians? 
Who were Ms acquaintances? Name some friends. Name some enemies. Why would they be enemies? 
Did M marry? Have any children? 
Was M happy? Why (not)? 
Make up an epitaph for Ms tombstone. What does it say? 
Make up a picture to engrave on M'S tombstone. Show it. 
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Week #2 
The following questions are to be considered for the decade of M's most productive work. 

In what country, call it C, did M reside? 
Was this country the same as the one in which M was born? If different, why? 
Name the countries or states having borders with C. Identify the most important of these. 
Who was the head of state in these latter countries? How did M get along with his/her head of state? 
Would M have been comfortable working in any of the neighbouring states? Why (not)? 
What was M's professed religion? Did M practice that religion? How was that religion viewed at the time? 
Did M's religious beliefs have any influence on M's mathematical thoughts or motivation? 
After a hard year's work M decided to visit one of the recently discovered areas of the world. Where might 

M have gone? Why? IfM had decided to go to "Canada" for a holiday, how would M have traveled? 
Sketch one of the vehicles used. How long would it take? Where might M have gone in "Canada"? 
Draw a sketch of the region which we might think of as "Canada" at that time. 

Week #3 
On Saturday night M went out for dinner. Would M have taken his or her spouse? Why (not)? 
M met some friend at the restaurant and they spoke animatedly of the latest scientific developments. What 

topics might they have discussed? Would M have approved? 
After dinner they all went out to the theatre to hear the latest musical entertainment. What did they go to? 

Did they like it? During the intermission they talked of art, and M expounded a length on his or her 
favourite artist (A) of the day. Who might that have been? Why would M have been attracted to A's 
work? Draw a sketch of a subject as A would have painted it. 

Mathematicians Rap-up [for the group discussions] 
1. Comment on the quality and quantity of information on M which you were able to find. Were there 

any surprises? 
2. Did M contribute in areas other than mathematics to the development of human thought and 

understanding? If so, comment on the relative significance of those contributions. 
3. What is your personal feeling about M? Affection? Admiration? Distrust? Contempt? Empathy? 
4. Would you have liked to have been M? Given the benefit of hindsight, what would you do differently 

if you had been? Would you have liked to live at the time ofM? 
5. Would the world be different ifM had been still-born? 
6. Did this assignment contribute to your own understanding of mathematics? To your personal under

standing of the world? Was it worth doing? How might if be reconstructed or improved for future 
use? Would an assignment of this type be useful in your own teaching? If so, how might it be 
modified for use with younger people?" 

I intended in this assignment to move students week by week further into the details of M's life and 
times. Students could answer most of the first week's questions by consulting standard biographical 
sources. The second week's questions caught the students by surprise; they had not expected to deal 

with anything other than mathematics. Now they had to examine the political, religious, and geo
graphical ideas of the time. By the third week, I think they were prepared to make subjective 

assessments of M's personal feelings with respect to matters of scientific, musical, and artistic 
importance of the day. The questions in the final discussion were designed to allow students to share 

their insights into the soul of the mathematician, to speculate on the significance of his or her 

contribution to mathematics, and to think about how they might modify the assignment for their own 

students. 
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Math Shop 
The Open Learning Agency (OLA) of British Colwnbia provides opportunities for learning 

through the flexible delivery of courses and programmes using a variety of learning tools. It most 
commonly is thought of as a "distance education" institution. Means for learning include written 
course materials, telephone tutors, classroom-based lectures, audio tapes, videotapes, and television 
programmmg. 

In 1993-4, I assisted OLA in developing a 16-part series of 30-minute television pro
grammes to support its Adult Basic Education course Mathematics II. The series was designed to 
illustrate mathematical concepts that can benefit from a visual treatment. The programme, Math 
Shop, uses a combination of real-life applications, computer graphics, and instructor demonstrations. 

Because the series is televised on an open channel, anyone with access to basic cable service 
may view the programme. Thus the programme had to be designed with three audiences in mind 
students who were enrolled in OLA's ABE Mathematics II course, public school teachers who 
might want to tape the programmes off-air to use in their regular Mathematics II classes, and 
general viewers who watched as a matter of interest. It is the presence of the latter group that 
concerns us here, as the programme becomes a means to popularize mathematics and promote 
mathematical understanding in the general population. 

The setting for the series is a "store-front" operation called the Math Shop. The two hosts 
are Christine (a technological expert) and Kanwal (a mathematics consultant). Euclid (Christine's 
super computer) assists in various novel ways. The series was designed to fit the Mathematics 11 
curriculum, and the topics consist of the usual textbook-type descriptors: real numbers, equations 
and inequalities, data analysis, basic trigonometry, etc. Each episode begins with a mathematical 
problem, most commonly submitted by one of Christine's many cousins. Christine and Kanwal dis
cuss the problem usually using graphics or video clips from the "field" camera. This leads into the 
main topic for that day. For example, in the programme on perimeter, area, and volume, Christine 
begins by deciding to landscape the grounds of Math Shop and discovers the importance of using 
the same units of measure when a truck delivers 3 cubic centimetres of soil instead of 3 cubic metres. 
Euclid provides computer graphics to help calculate the perimeter of the Math Shop yard, and the 
two hosts determine the relationship between the speedometer and odometer of a car and the circum
ference of its wheels. Euclid helps calculate the volume of soil needed to dress the lawn, and later 
in the programme Kanwal and Christine visit the beach to calculate the area of a triangle. Kanwal 
orders pizza to help calculate the area of a circle. The volume of two cans is calculated and Kanwal 
explains why that despite their different shapes the volumes are nearly equal. The programme ends 
with an environmental perspective by showing why cans of the same capacity may have different 
surface areas, causing one to use more metal than the other. 

A Study Guide is being written for each episode, and it is expected that these will be 
completed during the summer of 1994. Viewers in British Colwnbia may tape the series off-air for 
later viewing or to use in instructional situations. It is expected that by Fall 1994 the video series 
and study guides will be available for sale singly or as a package. For up-to-date information on cost 
and availability, those interested may contact Craig Nichols, Marketing Department, Open Learning 
Agency, 4355 Mathissi Place, Burnaby BC, V5G 4S8. 
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Appendix 7 

Hands-on activities through Dissection-Motion Operations (DMO). A physical 
justification for "The sum of the angles of any triangle is 180-" 
Medhat H. Rahim 
Lakehead University 

It is known to all of us that in order to popularize mathematics, one should make mathematics less 
threatening and start right from the early levels of schooling. The construct of mathematics anxiety 
has received close attention in recent years, both among researchers, and mathematicians and 
mathematics educators (Chin & Henry, 1990). Richardson and Suinn (1972) defmed mathematics 
anxiety as "feelings of tension and anxiety that interfere with the manipulation of numbers and the 
solving of mathematical problems in a wide variety of ordinary life and academic situations" 
(p 551). Fennema and Sherman (1976) defmed it as "feelings of bodily symptoms related to doing 
mathematics" (p 4). Through my personal observations of the students' behaviours in my classes and 
my own experience as a mathematician and mathematics educator, I believe that more accessible 
mathematics through hands-on activities will reduce anxiety. It will make attitudes less hostile 
toward mathematics, mathematics practitioners, and mathematicians. The task of developing such 
accessibility is not easy, nor is it likely achievable by one individual. It needs a collaborative and 
continuous effort. Such a need should be more fully explored in the forthcoming conferences of the 
CMESG. 

The following is an example ofDMO activities (for further details, see Rahim, 1986, parts 
1,2,3; Rahim & Sawada, 1986, 1989, & 1990) focusing on the idea of using hands-on manipu
lation and intuitive reasoning in justifying mathematical propositions. Through teacher-directed 
sessions, the aim here is to present a medium through which students will (i) be involved in a 
sequence of examining and exploring physical models, (ii) make appropriate dissections to the 
physical models, (iii) apply the transformation (motion) of translation, rotation, or reflection (or a 
combination of them) on the resulting pieces and (iv) make their own conclusions. 

Activity 
Main Objectives 
Knowledge and Skills 

• Understand and apply techniques in dissection theory on polygonal regions through paper 
folding. 

• Apply transformations translation, rotation, and reflection. 
Experience working with simple spatial operations in geometry (DMO). 

• Express in precise mathematical terms concepts or propositions which have been 
demonstrated concretely. 

Attitudes 
• Motivate students by providing a learning opportunity in a non-standard format hands-on 

activity. 
• Have students experience a non-abstract application of mathematics. 

Students appreciate that "learning" and "proof' may proceed through discovery, creativity and 
intuitive reasoning, as opposed to the usual deductive reasoning. 
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Purpose 
Materials 
Procedure 

to justify the proposition that the sum of the angles of a triangle is J 8(/'. 
8.5 x 11 sheets of plain paper and scissors. 
In a teacher-directed session, distribute an 8.5 x 11 sheet of paper to each 
student. Denote it as ABCD (see Figure 1). 

Dissection Steps Instruct the students to: 
1. Choose an arbitrary point on the top edge of the sheet of paper (not the vertices or the 

midpoint). Denote this point by P. 

Figure 1 

2. Fold comer A to comer D and make a crease. Mark the point where the crease intersects AD 
byE. 

3. Fold comer B to comer C and make a crease. Mark the point where the crease intersects Be 
byF. 

4. Using a ruler, starting from P,join P with E and F. 
5. Label angles APE, EPF, and FPB by x, y and z respectively. 
6. Find out the sum x + y + Z = ti. APE + ti. EPF + ti. FPB = f::... APB = 180°. 
7. Cut the rectangular paper ABCD along the line segments PE and PF. 

Motion Steps Instruct the students to: 
1. Use the following rules throughout (a) use all of the pieces; (b) no overlapping pieces; (c) do 

not lift a piece completely off the desk. 
2. Find out if the rectangular paper ABCD can be transformed into a triangular region of equal 

area. [Answer: it can be transformed by a half tum to the left of triangle APE about E and a 
half tum to the right of triangle PBF about F.] 

3. Identify that the angles of the resulted triangular region are x,y andz. 
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Appendix 8 

The Aim in Popularizing Mathematics 
David Reid and Lynn Gordon Calvert 
University of Alberta 

One of the central concerns of our Working Group was to establish the aims of popularizing mathe
matics. There is a tendency to establish the aims of any project in an inclusive rather than exclusive 
manner. By doing so, all seemingly potential outcomes will be included. This tendency is inherently 
problematic as conflicting aims and outcomes may result within the list. Also, the aims as stated may 
claim to accomplish much more than was intended. We have included the following in the aims of 
popularization: 

(a) increasing the knowledge of mathematics in the population so that more individuals will be 
prepared to pursue mathematics and science education and occupations; 

(b) to increase the awareness and appreciation of mathematics as a human endeavour and as an 
integral part of our culture; and 
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(c) to improve self-confidence and reduce anxiety so that people will be more likely to engage in 
mathematical activity. 
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A conflict occurs between (a) and (c) when we consider the process involved in accomplishing these 
aims. For example, for individuals to pursue mathematics and science education and occupations 
they must have the knowledge and skills that are currently part of our mathematics programmes; 
however, the knowledge and skills currently emphasized are thought to be the primary cause of 
anxiety and frustration in mathematics. Until (or unless) there is a change to what is considered to 
be mathematical knowledge in our schools and universities, popularization activities may not 
improve the mathematical knowledge as it is currently dermed. 

Another conflict of aims occurs out of the premise that popularizing mathematics is based 
on the "freedom to choose". At the same time we realize that people have the freedom not to choose 
to engage in the activities that we lay in their path. This places (b) and (c) in conflict. In order for 
people to become aware of and appreciate mathematics as a human endeavour they must have the 
mathematical confidence to choose to become involved in the activities made available to them. 
Confidence and internal motivation then seem to be important prerequisites for engaging in 
popularized activities. 

Ifwe have been successful in tempting people to engage in a popularized activity, what can 
we expect to accomplish? For the vast majority of people it will be an enriching but isolated 
experience. Does this experience have the potential to overcome many years of boring and frus
trating school math for a significant number of people? Or will those individuals who have had poor 
school experiences even be able to recognize popularized mathematical experiences as being related 
to their personal conception of mathematics? Isolated experiences in popularized activities overtly 
labelled as mathematics will conflict with many people's beliefs about the nature of mathematics. 
This conflict involving incompatible images of mathematics will drastically limit the number of 
people who are able to develop an appreciation and awareness of mathematics through popularized 
activities. 

Stating broad general aims have initially allowed us to focus our attention on the importance 
of mathematics for individuals and for our society. The aims of popularization, although noble, have 
gone beyond what popularizing mathematics could hope to accomplish. In fact, these aims are very 
similar to the aims identified for all of mathematics education reform (see NCTM Standards, 1989). 
Our present list of aims represents an (over-simplified) philosophy of "understanding, awareness, 
and appreciation of mathematics for all." Perhaps it is time to move further and determine specific 
and attainable aims within the scope of popularizing mathematics. 

One specific aim for popularizing mathematics was briefly mentioned, but deserves a more 
thorough discussion than was possible at the meeting. Keith Devlin, in his plenary address, referred 
to the aim of empowering students as one he had in mind when designing his course. By this he 
meant that he wanted his students to be in a position to sensibly critique the technology around them, 
rather than labouring under the false impression that technology, as a product of science and founded 
in mathematics, must be the way it is, on some logical or empirical grounds. Those of us in mathe
matics and the sciences are aware that these fields are products of human activity, and nothing has 
to be the way it is. Human beings are implicit in every aspect of science and mathematics. We stum
bled across a good example of the human factors implicit in mathematics recently. In The 
Mismeasure o/Man, Gould writes 

Readers who have done factor analysis for a course on statistics or methodology in the 
biological or social sciences ... will remember something about rotating axes to varimax 
positions. Like me, they were probably taught this procedure as if it were a mathematical 
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deduction based on the inadequacy of principle components in finding clusters. In fact, it 
arose historically with reference to a definite theory of intelligence (Thurstone's belief in 
independent primary mental abilities) and in opposition to another (general intelligence and 
hierarchy oflesser factors) buttressed by principle components. 

(Gould, 1981, p 300, footnote) 

Gould reports about a situation that uses the application of mathematics, in correct or misleading 
ways, to support claims about the nature of human intelligence. Empowering people, by fostering 
both an awareness of such misuses of mathematics, and the ability to understand and detect misuse, 
should be one of the aspects of popUlarizing mathematics. Davis & Hersh, in Descartes' Dream, 
suggest another important aspect of empowerment. They relate the growing mathematization of 
human thinking over the last four centuries and the damage that has been done as a result. This 
mathematization of thinking has facilitated the misuse of mathematics, such as Gould describes, but 
it is also a problem in itself Mathematical thinking, by being positioned as the only correct mode 
of thinking, as supplanted by other modes, leave human beings less able to make sense of their 
world (A more detailed description of one other mode of thinking, narrative thinking, can be found 
in Bruner, 1986.) Empowering people by making them more aware of this process of reducing 
thought to mathematical thinking is another aspect of popularizing mathematics. 

The importance of being explicit about our aims in popularizing mathematics becomes clear 
when we consider the ways in which these aims might be addressed. Many of the suggestions made 
in the Working Group as to how we might popularize mathematics do not address the aim of em
powerment, and some might actively interfere with this aim. In our classrooms we can popularize 
mathematics by being clear about the human origins of the mathematics we teach. We should touch 
especially on those areas we might wish to avoid; the origins of mathematics in war, and in social 
engineering. This may not be simple, as many of us were not taught this aspect of mathematics, and 
most historians of mathematics have chosen to downplay its darker side. In addition to referring to 
the human origins of mathematics, we can also make reference to the current applications of mathe
matics in circumstances which directly affect our students. The ranking of people on a linear scale 
according to mathematical principles (grading) is an important aspect of most students lives, and 
might be the easiest place to begin. Students are also keenly aware of the use of mathematics as a 
filter for determining career opportunities, and there are many interesting aspects to this issue. 
Larger social issues are also closely related to mathematics, and especially to the mathematization 
of thinking. As teachers we can make students aware of the ways that mathematics and mathematical 
thinking are used by government and business to the advantage of some and disadvantage of others. 
We can also make students aware of the ways they can use mathematics and mathematical thinking 
to reveal hidden features in social situations (as Frankenstein 1987, 1989, 1991 has done with 
differential mortgage rates in Boston). 

Outside of the classroom, books such as The Mismeasure afMan and Descartes' Dream 
offer one model of popularizing mathematics to empower people. Similar projects could be under
taken through many media. Math trails and informative displays at historical sites can also serve to 
increase awareness of the human origins of mathematics, and the historical misuse of mathematics. 
As an example, major east coast ports might include displays on the relationship between the 
introduction of quantitative intelligence testing in the early twentieth century and the enacting of 
legislation to bar European immigrants from low scoring ethnicities entrance to the U.S. and Canada. 
Central European Jews were one group that suffered from this mathematically justified policy. 
Popularizing mathematics to empower may seem to be more likely to lead to mathematics becoming 
less popular, which is not the usual vision of popularization. An important part of popularizing 
mathematics to empower must be maintaining the distinction between mathematics itself and the use 
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(and misuse) of mathematics. We should strive to make the misuse of mathematics as unpopular as 
we can, while preserving mathematics as a valuable part of human culture. Discouraging the misuse 
of mathematics in our society can only improve the cultural value of mathematics. Only when people 
begin to see mathematics as an inhuman force manipulating their lives, can they begin to see 
mathematics as a spectacular human invention of great beauty and complexity. 
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Fractal Cards 
Elaine Simmt 
University of Alberta 

Appendix 9 

Fractal cards are beautiful "pop-up" type cards that are reasonably easy to make and full of mathe
matics. Suitable activities which help popularize mathematics are important for all of us whether we 
work with young students, older students, or individuals who are long (and not long) out of school. 
Fractal cards are such an activity; they are appropriate for use both with mathematics students and 
the individuals in the general population (see the "Math in the Mall" activity described in Appendix 
# 1 by Malgorzata Dubiel). Mathematics lessons that are easy enough for middle school students or 
challenging enough for secondary and post-secondary students can be developed around fractal 
cards. In this short paper I will explain how to make fractal cards and provide some suggestions for 
questions that point to the mathematics of the fractal cards. 

Inherent in the construction of fractal cards are concepts such as self-similarity, recursion, 
scale, iteration, and infinity. When doing the activity "in the mall" it is possible to note some of the 
mathematical features of the process of generating the fractal card as well as some of the features 
of the fractal itself. If the fractal cards are used with mathematics students then an important part 
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of the activity is the search for the mathematics of the fractal. Some of the obvious mathematics 
involve measure, number patterns, sequences, series, and limits. Questions and suggestions for 
mathematics students include: 

• Describe the growth pattern. 
• What happens to the number of boxes as the number of iterations goes to infInity? 
• Write a sequence, then a series, to describe the growth pattern of the fractal. 
• How many cuts are there at the tenth iteration? 
• What is the surface area of the fractal generated? 
• What is the volume contained by the fractal? 
• How far away is the furthest box from the fIrst box? 

Create your own fractal card using fractal cuts and then fmd the mathematics in your fractal. 

To make a card (see Figure 1) you defIne a simple rule and then repeat that rule until the physical 
properties of the paper prevent you from continuing at smaller scales. Once your "student" has 
created the card then the student can look for the mathematics in the fractal. This search can be 
informal (limited to observations) or it can be rigorous (involving mathematical notation, abstraction 
and formalization). 

These fractal cards (Figure 2) provide an inexpensive, fun, and creative entry into 
mathematics. 
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Directions for Making a Fractal Card 

1. Take a sheet of paper and fold it in half. 

2. Make two cuts, of:tt1,2) the length of "a" 
and :tt1,4) of the way in from each edge. 

4. Repeat Steps 2 and 3 
until it is too difficult to 
cut or fold the paper. 

Figure 1 

I-

3. Fold along the line produced by 
the two cuts. 

5. Once you stop cutting 
you must open the folds 
back out and push out 
the fractal. 
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Figure 2 - Fractal Card 
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Introduction 

Ann Anderson, Mary Crowley, Nonna Evans, Doug Franks, Kgomotso Garekwe, Lars Jansson, Don 
Kapoor, Geoffrey Roulet, Joan Routledge, Donna Scarfe, Sol Sigurdson, Susan Stuart 

Nel Noddings (1992, p 205) argues that "(p)rofessionals depend on the trust of their clients" and 
teachers "need opportunities to earn that trust, and such opportunities arise as teachers are entrusted 
by those now controlling their work." We need to trust teachers in the same way we trust other pro
fessionals, such as lawyers, doctors and architects (Fullan & Connelly, 1987, p 50). Without this 
trust, teachers are workers rather than professionals (McNeil, 1987, p 101). If teachers are to learn 
different ways of approaching their teaching, then their agency will playa crucial role (Connelly & 
Clandinin, 1988, pp 137-155). As Carl Rogers (1969) wrote, "the only learning which significantly 
changes behaviour is self-discovered, self-appropriated learning." It appears that without an active, 
interested role by teachers, change in education is likely to remain superficial. 

Dewey (1938) wrote about personal agency in terms of democratic freedom and the power 
to "frame purposes and to execute or carry into effect purposes so framed." He saw freedom and 
power as a habit of mind based on scientific thinking (Dewey, 1965, P 67). This implies that 
thinking is problem and inquiry driven, requiring teachers "to reflect on the origins, purposes, and 
consequences of their actions" and "develop the pedagogical habits and skills necessary for self
directed growth" (Zeichner & Liston, 1987, P 31). Dewey (1965, p 171) saw these higher level 
thinking processes, these habits of mind which are an integral part of teacher agency, spilling over 
into classroom environments and changing perceptions of what constitutes education. 

An opportune time for providing teachers with appropriate situations and support for exer
cising their agency is during the practicum component of their education as teachers. This could be 
a time when teachers develop the habits of mind associated with exercising their agency in growing 
as educators. However, in a review of such field experiences, Zeichner (1981, p 9) suggests that 
these experiences are presently fostering the development of utilitarian rather than inquiry-based 
perspectives as "(t)eachers for the most part do not seem to be especially reflective or analytic about 
their work. " 

The members of our Working Group shared an awareness of the need to improve the edu
cation of mathematics teachers. We joined the group with the hope of generating ideas for better 
teaching mathematics methods courses, for providing meaningful practicum experiences for new 
teachers, and for strengthening the link between course work and practicum experiences. We also 
made a conscious effort to understand mathematics teacher education in tenns of the metaphor 
"teachers as purposeful learners." 

Purposeful learning 

In answering the question "What is purposeful learning?", in the context of mathematics teacher 
education, we identified a number of overlapping qualities: 

• having a vision or goal of what is to be accomplished; 
• visions are growth related and involve an improvement on the status quo; 
• injecting one's self in the process and making it personally relevant; 
• being committed to one's visions; 
• being able to outline and carry out a plan of action to meet a goal; 
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• reflecting on the learning process and revising or adapting when necessary; 
• making choices. 

Our view of a purposeful learner/teacher is a person who: 
(a) is committed to the improvement of the teaching of mathematics; 
(b) creates visions for change based on personal experiences and knowledge; 
(c) is able to work towards a goal by outlining and carrying out a plan of action; and 
(d) reflects on actions and visions and adapts when necessary. 

We considered the cases of Julie and Martin (Gadanidis, 1994), two preservice mathematics teachers 
whose thoughts and actions appear to exemplify purposeful learning. Julie and Martin were part of 
a teacher education program which provided them with the opportunity for developing personal 
visions of innovation in mathematics education and for experimenting with them in practice. That 
is, they were entrusted with the responsibility for improving on the status quo. Both were able to 
take advantage of the opportunity by drawing on their personal knowledge and goals to develop 
innovative visions and practice that reflected who they are as learners, teachers and people. 

Julie learned best in informal, small group settings. A sense of belonging was important to 
her. She chose to attend a smaller university for that reason. Julie noticed a mutually beneficial 
relationship between tutor and tutee. Explaining concepts to others helped her understand the 
concepts better. TIlls gave her an appreciation for the benefits of strong and weak students working 
together. Through tutoring, she also discovered that different students learn in different ways and 
that they need individual attention and help to overcome learning difficulties. This highlighted the 
importance of working on a one-to-one basis with students. These characteristics were part of who 
Julie was as a student and as a teacher. 

Julie's practicum ex1Jeriences with cooperative learning reinforced her personal beliefs about 
how students learn best. 

I think it's good for them, to be able to teach each other .... I think you have to learn to let 
go of ... being the centre of attention ... that made it easier, seeing that they could actually 
accomplish it on their own .,. instead of feeling that I have to do it for them ... So now I 
don't feel like I have to be up there guiding them all the time, they can be guiding 
themselves. 

Martin learned best when he was active in the learning process. He found that material learned 
through lectures, such as concepts of Calculus, was soon forgotten. Martin had vivid memories of 
what he had learned while being involved in a two week school project that crossed curricular boun
daries. He preferred one-to-one interactions as opposed to group interactions. He felt that he learned 
well when he had to interact with others, talking, explaining concepts in depth, as opposed to giving 
monosyllabic answers to predictable questions in teacher centred classroom formats. Martin felt that 
his schooling did not help him to develop personal interests and build on his strengths. He felt this 
was important. He wanted to do it for his own students. 

Martin's practicum experiences reinforced his personal beliefs about student-centred 
learning . 

... what really made it a success was the participation of the kids. You know, what really 
stands out in my mind ... was the kids' presentations, watching as they spoke for a mere 60 
seconds or so and realizing that this was the first time I had heard them talk in complete 
sentences and express themselves in another way than responding in cryptic phrase to my 
questions. For the first time, I had a glimpse of the personalities of these kids, and their 
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scientific 'sea-legs'. What a rush! ... Long live group work and individualized learning 
programs. 

Balancing priorities 

Our Working Group felt that making "purposeful learning" a goal for preservice mathematics 
teachers would mean a significant shift from current mathematics teacher education goals. It would 
imply focusing on changing teacher attitudes rather than providing them with teaching theories and 
utilitarian skills. It would mean allowing for much more choice and for constructive criticism of 
goals and processes. In our discussion we highlighted two opposing views on this matter. 

On the one hand, we recognized that "survival" concerns of preservice teachers are strong. 
We wondered whether purposeful learning issues may be inappropriate concerns for them. There 
may be a danger in aiming too far down the road. Perhaps the best we can do for preservice teachers 
is to help them survive the practicum experience. We can do this by focusing more on commonly 
used techniques for teaching and less on ways of improving on the status quo. A successful prac
ticum could give them the confidence to aim for higher goals in their future teaching. 

On the other hand, we felt that focusing mostly on "survival" concerns may create strong 
pressures for perpetuating the status quo. The education styles that we model and preservice teachers 
rely on in their practicum help shape how they teach later in their careers. Some of our Working 
Group members reflected that when they were studying to be teachers they wanted more than just 
survival and its tactics. They had personal visions of how mathematics education could be improved. 
They wanted to inject creativity into their teaching and to bring their love of mathematics into their 
classrooms. 

Fuller (1969) identified three stages of concern teachers go through as they learn to teach: 
survival concerns, teaching style concerns, and pupil concerns. Recognizing that, generally, certain 
concerns may tend to be more predominant in one stage than another is very helpful in supporting 
preservice teachers during their practicum experience. 

However, stages of concern in teacher development are sometimes interpreted in terms of 
what preservice teachers can or cannot do at each of the stages identified. Such an interpretation 
questions the view that innovation, and an accompanying focus on teacher agency, is an appropriate 
concern for the majority of teachers in the preservice teaching "stage". Scardamalia and Bereiter 
(1989, p 43) concede that a case can be made for omitting such higher-level concerns "in preservice 
education and introducing them through inservice education, after teachers have passed through the 
'survival' and 'mastery' stages and are ready to deal with impact." However, they also note that "it 
has been shown that once teachers are entrenched in problem-minimizing approaches it is very 
difficult to dislodge them." 

There is a strong parallel between strictly linear interpretations of teacher development and 
traditional interpretations of student development. For example, it is usually assumed that students 
must first develop competency in individual facts and skills of mathematics, then move to under
standing through meaningful application, and fmally to problem solving. Unfortunately, given the 
myriad of facts and skills that are encompassed by the subject-matter of mathematics, students rarely 
get to experience the higher level thought processes involved in problem-based learning. 

Through linear interpretations of human development, education becomes a process for 
preparing students for later, real-life stages or situations rather than a process which continuously 
involves them in real-life processes. However, as Dewey (1897, P 78) suggested, education is 
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a process of living and not a preparation for future living .... I believe that education which 
does not occur through foImS of life, foImS that are worth living for their sake, is always 
a poor substitute for the genuine reality, and tends to cramp and to deaden. 

Perhaps by maintaining educational cultures where higher-level thinking is not supported or encou
raged we are strengthening the forces which stunt student growth in this area, hence making the 
phenomenon of developmental stages culturally dependent. Papert (1980, P 20) suggests, in relation 
to the developmental stages attributed to Piaget, that such developmental differences may in fact be 
attributed to the poverty of the educational culture in which they are experienced. If we want students 
to learn to think at high cognitive levels when they do mathematics then we should, as Greeno 
(1988) suggests, be immersing them in classroom experiences where this is what they do. 

An alternate view of teacher development is that the teacher concerns identified by Fuller 
define growth areas that are best dealt with in a parallel fashion rather than sequentially. This view 
is supported by the cases of Julie and Martin (discussed earlier), where the three types ofteacher 
concerns identified by Fuller were intertwined. For example, Julie's search for a cooperative learning 
teaching style, based on her perception of the needs of students, led her to "survive" more effectively 
in the classroom. She not only noticed that students worked well together but also that it was easier 
on her as a teacher - she felt less tired after cooperative learning lessons. Also, Martin's use of 
CAL as a way of meeting individual needs led him to discover that CAL had a positive impact on 
classroom management. He noticed that not only were students able to work at their own pace and 
he was able to give them individual attention but also that they were on task throughout their work 
in the computer lab and often worked past the bell. 

Redesigning mathematics teacher education 

In our discussions of redesigning mathematics teacher education, our Working Group considered 
three issues: (a) working with associate teachers; (b) the curriculum of methods courses; and, (c) 
practicum structure. 

Working with associate teachers 

The current relationship between associate teachers and faculties of education is often one of the 
weakest links in teacher education programs. One exception to this appears to be in the Professional 
Development Schools organized in British Columbia. Both of the lower mainland universities, the 
University of British Columbia and Simon Fraser University, prefer working in this model if 
possible. A Professional Development School is a practicum environment with the following charac
teristics: 

• the application to become a Professional Development School comes from the teaching 
staff, rather than the administration 

this is a bottom-up approach 
staff have ownership 
it becomes a school project 

• professional development goals are identified for both the associate teachers and the pre
service teachers 

this is a win-win situation where both the participating school and the faculty of 
education use the practicum relationship as an opportunity to meet their goals 
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• the participating school and the faculty of education pool human and material resources to 
meet goals set 

faculty of education staff may be used for teacher in-service 
the university and the school district make professional development funds available 

• preservice teachers are assigned to the school in groups 
this allows a number of different associate teachers to cooperate in creating a learning 
environment for the preservice teachers 
it also provides a peer support and reflection network for preservice teachers 
clustered placements are cost-effective for faculties of education. 

In our discussions of Professional Development Schools, we would also like to recommend the 
following: 

• well-designed practicum handbooks for both associate teachers and preservice teachers 
• a practicum newsletter 

- this could be edited and circulated by participating schools on a rotating basis 
- some of the items the newsletter could include are: 

articles written by associates, preservice teachers or faculty of education staff 
reports on exemplary programs 
reflections of associates, preservice teachers, faculty of education advisors, 
administrators, students ... 
pictures of classroom action 
a bulletin board of upcoming events 

• better strategies for recruitment of associate teachers 
consider what makes a good associate teacher 
increase visibility of faculty advisors in schools 

• greater involvement of teacher federations 

• elevation of associate teacher status 
a professionally oriented reward structure 
increase awareness of the importance of the contribution made by associate teachers 
and the professional benefits of being an associate teacher. 

Practicum structure 

There is a wide variety of practicum structures across Canada. Some universities offer programmes 
which integrate practicum and course experiences. For example, concurrent programs offer 
practicum experiences throughout a preservice teacher's university career. Other universities offer 
less integrated programs, where practicum experiences alternate with faculty of education courses, 
but have no relationship with undergraduate courses. Some universities offer fairly fragmented ex
periences where practicum blocks are separate from faculty of education courses. A number of 
universities offer a variety of programs. Nonetheless, although practicum structure does have an 
effect on how well practicum and course experiences are integrated, the level of integration often 
depends on what professors do (course curriculum, assignments, etc.) within a particular structure. 
In our discussion of the practicum, we identified three aspects we value: 

• the integration of faculty of education courses and practica 
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at present many preservice teachers fail to see a strong connection between what they 
learn in faculty of education courses and what they experience during the practicum 

• extended practicum experiences 
minimum 5-6 weeks at a time 

• practicum supervision by methods course instructors 
would give valuable feedback to instructors 
it would help create a common language of experience. 

The curriculum of methods courses 

We felt that it is important to provide a more holistic experience in methods courses. To effect this 
purpose, we proposed a model for consideration. We suggested using a single theme or thread for 
the entire methods course. For example, the course could focus on the curriculum planning regularly 
done by teachers. The course goal could be to plan the curriculum for a particular unit (or units or 
course). This would be a communal effort. As the course progresses, the curriculum planning 
process can be refmed and increased in sophistication by taking into account the following 
considerations: 

the rationale for the curriculum 
assessment and evaluation theory and techniques 
motivation and classroom management 
curriculum integration 
the use of problem-solving 
the use of computer technology 
the use of cooperative learning 

In parallel to this class project of planning curriculum, small groups would also plan the curriculum 
for a different topic or unit of their choice for use in their practicum. This gives preservice teachers 
the opportunity to apply the curriculum planning skills in a new situation. It also gives a context for 
the "common language of experience" that may be used in supervision of the practicum. 
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Introduction 

Habituellement, les recherches en didactique portent sur les eleves ou sur les enseignants et les 
enseignantes. Pour une fois, il m'a semble interessant de faire une recherche sur Ie groupe auquel 
j'appartiens, soit celui des didacticiens et des didacticiennes des mathematiques. Ayant deja mene 
une enquete sur les professeurs et les professeures de sciences mathematiques dans les universites 
canadiennes (Mura, 1990, 1991 et 1993), j'ai decide d'effectuer une enquete semblable sur les 
personnes qui enseignent la didactique des mathematiques. Le but de l'enquete etait de recueillir des 
donnees sur leur origine sociale, sur leur profil d'etudes et de carriere et sur leur vision des 
mathematiques et de la didactique des mathematiques afm de mieux connaitre la communaute 
professionnelle qu'elles constituent. 

Les resultats portant sur la vision des mathematiques et de la didactique des mathematiques 
sont analyses dans Mura (1994 et sous presse). Dans Ie present article, apres avoir decrit la methode 
d'enquete, j'expliciterai d'abord les donnees d'ordre demographique, puis celles qui concement les 
etudes (y compris l'origine de l'interet pour les mathematiques et pour la didactique des 
mathematiques) et la carriere. Tout au long de l'expose, je signalerai au fur et a mesure les 
eventuelles differences, d'une part, entre les hommes et les femmes, et, d'autre part, entre les 
personnes travaillant en milieu anglophone et celles qui sont en milieu francophone. Enfin, avant de 
conclure, je comparerai les resultats de la presente enquete et ceux de l'enquete menee 
precedemment aupres des mathematiciens et des mathematiciennes. 

1. La methode d'enquete 

Mon objectif etait d'atteindre tous les professeurs et professeures de didactique des mathematiques 
dans les universites canadiennes. Dans ce but, j'ai envoye un questionnaire aux personnes dont Ie 
nom apparaissait dans la liste d'envoi du Groupe canadien d'etudes en didactique des mathematiques 
ou dans Ie repertoire des recherches en cours produit par Ie meme groupe (Kieran et Dawson, 1992). 
J'ai aussi demande a chacune de ces personnes de nommer tous les didacticiens et les didacticiennes 
des mathematiques dans leur universite et j'ai ensuite envoye un questionnaire aux nouveaux 
individus ainsi reperes. 

Aucune universite canadienne n'ayant de departement de didactique des mathematiques (Ia 
seule qui se rapproche de cette situation est l'Universite de la Colombie-Britannique qui possede un 
departement de didactique des mathematiques et des sciences), il revenait a chaque personne de se 
reconnaitre ou non comme didacticien ou didacticienne des mathematiques. Compte tenu de cela, 
la page couverture du questionnaire contenait les deux questions suivantes: «Occupez-vous un poste 
permanent ou pouvant mener a la permanence dans une universite canadienne ?» et «Est-ce que la 
didactique des mathematiques est votre domaine principal d'enseignement et de recherche ?» Ceux 
et ceDes qui repondaient «nom> a rune des deux questions etaient invites a retoumer Ie questionnaire 
sans Ie remplir. 

Quelques-unes des personnes qui ont r~u Ie questionnaire ont avoue avoir he site avant de 
repondre a la deuxieme question. L'une d'entre eUes, membre d'un departement de mathematiques, 
a ecrit: «I almost returned your questionnaire with NO for mathematics education being my primary 
field, but 1 hesitated and now 1 am lost: 1 feel like I'm coming out of the closet! Confessing to 
mathematics education as my primary interest.» 

En tout, 158 questionnaires ont ete expedies par courrier a la session d'hiver 1993. Apres 
deuxlettres de rappel, 106 questionnaires (67 %) etaient revenus. De ceux-ci, 63 ont ete remplis par 
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des personnes appartenant Ii la population cible et ont ete retenus pour la presente etude. 1 Ces 
personnes sont au service de 28 universites differentes situees dans huit provinces (les deux 
provinces non representees sont Terre-Neuve et l'IIe-du-Prince-Edouard). 

Deux des personnes qui n'ont pas retoume Ie questionnaire ont pris la peine d'ecrire pour 
expliquer les raisons de leur reticence. La premiere se sentait mal Ii raise par rapport Ii certaines 
questions, surtout celles qui touchaient son CV, tandis que l'autre ne voyait pas l'interet de ce genre 
de recherche. 

Le questionnaire comprend 54 questions, dont 7 sont «ouvertes». Plusieurs questions sont 
reprises du questionnaire utilise pour l'enquete aupres des matbematiciens et des mathematiciennes 
afin de permettre une comparaison entre les deux groupes. Vne version anglaise ou fran~aise du 
questionnaire a ete utilisee selon la langue de travail du ou de la destinataire. 

Contrairement Ii l'enquete precedente sur les mathematiciens et les mathematiciennes, la 
presente enquete n'a pas ete planifiee dans Ie but principal de comparer les deux sexes. Ainsi, les 
hommes et les femmes n'ont pas ete apparies, en aucune fa~on, et, comme on Ie verra, une plus 
grande proportion de femmes que d'hommes ont Ie rang d'adjointe, alors qu'une plus grande 
proportion d'hommes que de femmes ont Ie rang de titulaire. Lorsque des comparaisons entre les 
sexes seront etablies, il faudra tenir compte de leur distribution differente dans les rangs 
universitaires. 

Enfin, Ii noter que pour tous les tests statistiques, Ie seuil de signification est fixe Ii 0,05. 

2. Les donnees demographiques 

Sexe L'echantillon comprend 19 femmes (30%) et 44 hommes (70%). La proportion des femmes 
est egale Ii celle que rapporte Statistique Canada (1993a, p 12), pour 1990-1, pour Ie corps 
professoral du domaine de l'education, alors que Ie pourcentage correspondant est beaucoup plus 
faible du cOte des mathematiques et sciences physiques (7%). 

Langue de travail Le tableau 1 montre la distribution de l'echantillon selon Ie sexe et la langue de 
travail. Pour simplifier les analyses, deux personnes travaillant en milieu bilingue ont ete classees 
ainsi: l'une dans Ie groupe anglophone et l'autre dans Ie groupe francophone selon leur langue 
matemelle. 

Les personnes travaillant en milieu francophone constituent 35% de l'echantillon et sont ainsi 
legerement surrepresentees par rapport aux francophones dans la population canadienne: en effet, 
d'apres Ie dernier recensement, parmi les personnes qui parlent une seule langue Ii la maison, on 
trouve 69i'1o d'anglophones, 23% de francophones et 8% d'allophones (Statistique Canada, 1993b, 
Tableau 1). Cette surrepresentation n'est pas due Ii une meilleure participation des francophones Ii 
l'enquete (sur 158 questionnaires distribues, 49 (31 %) ont ete envoyes Ii des francophones, et sur 
106 questionnaires retoumes, 31 (29%) ont ete remplis par des francophones) et peut donc 
correspondre Ii une reelle plus grande importance accordee Ii la didactique des mathematiques dans 
les universites francophones. 

On peut done estimer Ii une centaine de personnes la population des didaetieiens et des 
didaetieiennes des mathematiques dans les universites eanadiennes. 
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Tableau 1 
Distribution de l'echantillon selon Ie sexe et la langue de travail 

Langue de travail Femmes Hommes Total 

Anglais 9 32 41 

Fran~ais 10 12 22 

Total 19 44 63 
Note: 'l corrige pour continuite = 2,7; non significatif. 

Age La moyenne d'age pour l'ensemble de l'echantillon est de 50,5 ans (la mediane est de 50 ans, 
avec une etendue allant de 30 a 64 ans). La moyenne d'age est de 46,7 ans pour les femmes 
(mediane = 47 ans) et de 52,1 ans pour les hommes (mediane = 54 ans); elle est de 51,1 ans pour 
les personnes qui travaillent en milieu anglophone et de 49,4 ans pour celles qui se trouvent en 
milieu francophone. La difference entre les sexes est significative (t = -2,9; P < 0,01; grandeur de 
l'effet d = - 0,8), tandis que celle entre les deux groupes linguistiques ne l'est pas. 

A nouveau, on constate que l'echantillon ressemble davantage au corps professoral des 
sciences de l'education qu'a celui des mathematiques et sciences physiques: en effet, Statistique 
Canada (1993a, p 43) rapporte, pour 1990-1, un age median de 46 ans pour les femmes en 
education et de 49 ans pour leurs collegues masculins, tandis qu'on observe 41 ans pour les femmes 
et 48 ans pour les hommes dans Ie domaine des mathematiques et sciences physiques. 

Pays d'origine Les personnes qui ont participe a l'enquete viennent de 12 pays differents. La 
majorite cependant (N = 38, soit 60%) sont nees au Canada. Parmi les autres pays, Ie mieux 
represente est les Etats-Unis (N = 11, soit 17%). La proportion de personnes nees au Canada est de 
47% parmi les femmes et de 66% parmi les hommes; elle est de 51 % parmi les personnes qui 
travaillent en milieu anglophone et de 77% parmi celles qui sont en milieu francophone. Les 
differences ne sont pas statistiquement significatives. A titre de comparaison, preeisons que, en 
1991,83% de la population canadienne etait nee au pays (Statistique Canada, 1992a, Tableaux 1 
et 2). 

Citoyennete Chez les personnes qui ont participe a l'enquete, 87% (N = 55) ont la eitoyennete 
canadienne (84% des femmes, 89% des hommes; 83% des personnes travaillant en milieu 
anglophone et 95% de celles qui se trouvent en milieu francophone). Cette proportion est egale a 
celIe dans Ie corps professoral des sciences de l'education (87%), alors que, en ce qui conceme les 
mathematiques et sciences physiques, Ie pourcentage est un peu inferieur, soit 80% (Statistique 
Canada, 1993a, P 52). Lameme source rapporte des taux de 83% pour les femmes et de 81% pour 
les hommes, toutes disciplines confondues. Pour l'ensemble de la population eanadienne, Ie taux est 
de 94% (Statistique Canada, 1992, Tableau 5). 

Langue maternelle Pour ce qui est de la langue matemelle (la premiere langue apprise et encore 
comprise), les personnes interrogees ont nomme sept langues differentes; pour 39 d'entre elles 
(62%), iI s'agit de l'anglais et pour 18 (29%), du fran~ais. Seulement 6 (10%) (trois femmes et trois 
hommes; quatre en milieu anglophone et deux en milieu francophone) ont done mentionne une autre 
langue. Par aiIleurs, deux personnes de langue matemelle anglaise travaillent en milieu francophone, 
alors qu'il n'y a aucun exemple de la situation inverse. 
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La proportion de l'echantillon qui est de langue matemelle anglaise ou francaise (90%) est 
superieure Ii celIe de l'ensemble de la population canadienne, soit 87% d'apres Ie recensement de 
1991 (Statistique Canada, 1992b, Tableau 1). 

Scolarite et occupation des parents Le tableau 2 indique Ie plus haut niveau d'etudes atteint par 
la mere et par Ie pere des personnes ayant participe Ii la presente etude. 

Tableau 2 
Scolarite des parents 

Mere 
Seolarite 

N % 

Prima ire (tennine ou non) 22 35 

Seeondaires 25 40 

Universitaire 15 24 

Donnee manquante 1 

Total 63 

Pere 

N % 

21 34 

27 44 

14 23 

1 

63 

Le tableau 3 precise la caregorie socioprofessionnelle de l'occupation de la mere et du pere des 
personnes ayant participe Ii la presente etude. 

Tableau 3 
Occupation des parents 

Categorie Mere 

socioprofessionnelle' N % 

Strate superieure 2 3 

Strate intennediaire 12 19 

Strate inferieure 10 16 

Hors travail ou autre 39 62 

Total 63 

Pere 

N % 

9 14 

31 49 

19 30 

4 6 

63 

·Strate superieure: haute administration publique et privee, grands proprietaires, membres des 
professions traditionnelles, universitaires; 

Strate intermediaire: cadres moyens, agriculteurs et agricultrices, semi-professionnelles et 
semi-profession nels, enseignants et enseignantes du primaire et du secondaire, artisans et 

artisanes; 
Strate inferieure: contremaitres, co Is blancs, co Is bleus. 



Topic Group A: Mathematics Educators in Canada: A Family Picture 97 

Le niveau de scolarire et la categorie socioprofessionnelle de l'occupation des parents sont 
semblables pour les femmes et pour les hommes ainsi que pour les personnes travaillant en milieu 
anglophone et francophone. 

3. Les etudes 

DiplOmes universitaires 
Cinquante-six personnes ayant participe ala presente enquete (89%) sont titulaires d'un doctorat. 
Les 7 autres ont une maitrise. Parmi les 56 doctorats, 46 sont en sciences de l'education (y compris 
la didactique des mathematiques), 8 en sciences mathematiques et 2 en psychologie. Sans exception, 
ceux et celles (32) qui ont specifie que leur doctorat etait en didactique des mathematiques ont 
classifie leur diplome comme un diplome en sciences de l'education. 

Parmi les sept personnes qui ne detiennent pas de doctorat, trois sont des femmes et quatre 
des hommes, deux travaillent en milieu anglophone et cinq en milieu francophone. Quatre de ces 
personnes ont une maitrise en mathematiques, IDle a une maitrise en education, une a deux maitrises 
(en education et en mathematiques) et une demiere a une maitrise en administration. Leur moyenne 
d'age etant de 51,7 ans, elles ne constituent donc pas un groupe sensiblement plus vieux que celui 
des titulaires d'un doctorat (age moyen = 50,4 ans), comme on aurait pu Ie supposer. 

Ainsi, pour 75% des personnes interrogees, Ie diplome Ie plus eleve est en sciences de 
l'education. Parmi ces personnes, 9 (14%) n'ont que des diplomes en sciences de l'education, 12 
(19%) n'ont que des diplomes en sciences mathematiques, 35 (56%) ont des diplomes en 
mathematiques et en education, 16 (25%) n'ont aucun diplome en education et 12 (19%) n'ont aucun 
dip lome en mathematiques. Quatorze personnes (22%), en plus d'un ou plusieurs diplomes en 
education ou en mathematiques, ou dans les deux a la fois, sont titulaires de diplomes dans d'autres 
disciplines (psychologie, sciences de l'administration, genie, physique, chimie, biochimie, biologie, 
histoire, philosophie, arts, litterature et latin). 

Trente-six participants et participantes (57%) ont obtenu leur diplome Ie plus eleve d'une 
universire canadienne, 21 (33%) d'une universire aux Btats-Unis, 2 du Royaume-Uni, 2 de Suisse, 
une de France et une d'Israel. 

A titre de comparaison, en 1990-1991, dans l'ensemble du corps professoral, toutes 
disciplines confondues, la proportion de titulaires d'un doctorat etait de 63% parmi les femmes et 
de 75% parmi les hommes (Statistique Canada, 1993a, p. 33). 

Age a I'obtention des diplomes universitaires 
L'age moyen auquelles participants et les participantes a l'enquete ont obtenu leur premier diplome 
universitaire est de 22,7 ans (mediane = 22 ans, avec une etendue allant de 18 a 31 ans): il est de 
22,8 ans pour les femmes, de 22,7 ans pour les hommes; et de 22,7 ans pour les personnes 
travaillant en milieu anglophone comme pour celles en milieu anglophone. 

Quant a l'obtention du doctorat, l'age moyen pour l'ensemble de l'echantillon est de 36 ans 
(mediane = 34,5 ans, avec une etendue allant de 25 a 60 ans): il est de 38 ans pour les femmes, de 
35,2 ans pour les hommes; et de 34,9 ans pour les personnes travaillant en milieu anglophone et de 
38,4 pour celles en milieu anglophone. Ces differences ne sont pas statistiquement significatives. 

Origine de ['interet pour les mathematiques et pour la didactique des mathematiques 
Le tableau 4 indique l'age auquel les personnes qui ont repondu a l'enquete ont decide de se 
specia1iser en mathematiques et en didactique des mathematiques. Comme on Ie voit, la majorite des 
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personnes interrogees (67%) ont pris la decision de se specialiser en didactique des mathematiques 
apres rage de 21 ans, alors que 85% d'entre elles avaient deja pris la decision de se specialiser en 
mathematiques avant eet age et que la moitie avaient meme pris eette derniere decision avant rage 
de 17 ans. Les distributions sont semblables pour les deux sexes et pour les deux groupes 
linguistiques 

Tableau 4 
Moment de la decision de se specialiser en mathematiques 

et en didactique des mathematiques 

Moment de la decision 
Mathematiques Didactique 

N % N % 

Avant I'age de 12 ans 4 6 3 5 

Entre 12 et 17 ans 27 44 5 8 

Entre 18 et 21 ans 22 35 13 21 

Apres I'age de 21 ans 9 15 42 67 

Donnee manquante 1 

Tableau 5 
Raisons de I'attraction initiale pour les mathematiques 

Raisons N % 

Reussite 34 56 

Defi, resolution de 27 44 
problemes 

Logique, rigueur, absence 8 13 
de debats° 

Abstraction, imaginaire, 7 11 
fuite de la realite-

Abstraction, imaginaire, 14 23 
fuite de la realite-

Totar 90 

'Deux des personnes qui ont fait ce choix ont exclu «I'absence de debats d'opinions», en ne 
maintenant que «Ia logique et la rigueur». 

-Une des personnes qui a fait ce choix a exclu «Ia possibilite de fuire la rea lite» , en ne 
maintenant que «Ia nature abstraite et imaginaire des mathematiques». 

-Certaines personnes ont donne plus d'une reponse. 
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Raisons de l'attraction initiale pour les mathematiques 
Le tableau 5 indique les raisons de l'attraction initiale pour les mathematiques. Les choix de 
reponses proposes etaient: 1) Ie fait de bien reussir; 2) Ie gout de relever des defis, de resoudre des 
problemes; 3) la logique, la rigueur, l'absence de debats d'opinions; 4) la nature abstraite et 
imaginaire des mathematiques, la possibilite de fuir la realite; et 5) autre (preciser). II y a peu de 
difference entre les reponses donnees par les deux sexes et par les deux groupes linguistiques. 

Une personne qui a opre pour les troisieme et quatrieme choix de reponses, en en exluant toutefois 
«l'absence de debats d'opinions» et «la possibilite de fuir la realite», a ajoute l'explication suivante: 
«il me semble qu'on associe trop vite [ces aspects] a ce qui les precede». Une autre personne, par 
contre, a ofIert un commentaire qui me semble aller tout a fait dans Ie sens de la possibilite de fuir 
la malire: <<Math was a world 1 could escape to-a private, safe place my father could not steal from 
me.» 

Les quatre themes suivants sont les seuls qui reviennent plus d'une fois parmi ceux qui ont 
ete abordes dans les 14 reponses «autres». 

1. L'impossibilite ou la difficulte de poursuivre d'autres etudes (N = 4). 
Exemples 

«Le fait d'avoir ere refusee en informatique.» 
«I was weak in literature and language arts.» 
«My first interest was Physical Education, but a serious knee injury prevented my studying 
Phys. Ed. at University. » 

2. Un interet pour l'enseignement des mathematiques (N = 3). 
Exemples: 

«The fact that mathematics was/is badly taught at the elementary level.» 
«I was able to help other students in doing math.» 

3. La valorisation personnelle (N = 2). 
Exemples: 

«Valorisation personnelle d'etre une fille bonne en maths.» 
«The respect into which math was held by my pears.» 

4. La possibilite de faire autre chose (N = 2). 
Exemples: 

«Pour avoir du temps pour [aire autre chose!» 
«Majoring in math at the university allowed me the greatest flexibility in opting into other 
electives. » 

Raisons de l'attraction initiafe pour fa didactique des mathematiques 
La question concernant les raisons de l'attraction initiale pour la didactique des mathematiques etait 
une question ouverte formulee comme suit: «Qu'est-ce qui vous a attire-e vers la didactique des 
mathematiques initialement?» Un espace de six lignes etait disponible pour la reponse. Seulement 
2 personnes sur 63 n'ont rien repondu. 

Les raisons mentionnees Ie plus souvent peuvent se regrouper en dix themes. Le premier 
a trait aux mathematiques, sept autres portent sur l'enseignement et les deux derniers concement des 
influences ou des contraintes extemes. 
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l. L'interet ou l'amour a l'egard des mathematiques (N=12). 
Exemples: 

Roberta Mura 

«1' ai beaucoup aime «faire» les mathematiques comme etudiante au primaire et au 
secondaire.}) 
«I really enjoyed the subject.» 

2. L'interet ou l'amour a l'egard de l'enseignement (des mathematiques) (N = 14). 
Exemples: 

«Le fait que j'aime enseigner.» 
«Always (as far back as 1 remember) I've wanted to teach.» 

3. Le desir de faire aimer, de faire comprendre les mathematiques. Le desir de les demythifier, de 
les humaniser, de les simplifier (N = 8). 
Exemples: 

«[ ... ] vouloir que d'autres personnes comprennent les mathematiques.» 
«Le besoin d'«humaniseD) et de «demythifieD> la mathematique.}) 
<<As a student 1 always enjoyed helping my peers with mathematics and found satisfaction 
when 1 succeeded in letting them «see» some concepts that they could not «see» before.}) 

4. Le rore social de l'enseignement: Ie gout de travailler avec les gens ou avec les jeunes; Ie desir de 
faire quelque chose d'utile socialement, Ie souci de justice sociale (N = 8). 
Exemples: 

« I care about equity issues, fairness and humanizing the teaching process.}) 
«It seemed more socially useful than scientific mathematics.» 
«[ ... ] I like working with people.» 
«Love of communication.» 

5. L'experience d'avoir aide d'autres eleves lorsqu'on etait soi-meme aux etudes (N=4). 
Exemples: 

«Des l'age de lOans, j'aidais les plus faibles ... » 
«l was good at mathematics and had success showing others how to do it. All through 
secondary school I tutored other students.» 

6. La reus site dans l'enseignement (des mathematiques) (N = 7). 
Exemples: 

«Ma grande capacire et aptitude a pouvoir aider les autres a comprendre les mathematiques 
[ ... ]» 
«I was good at communicating abstract ideas [ ... ]» 
«[ ... ] I was an excellent teacher of mathematics in my public school teaching experiences.» 

7. Des questions ou des besoins suscites par la pratique de l'enseignement (des mathematiques): Ie 
desir de s'ameliorer, Ie desir de comprendre les difficultes observees chez les eleves (N= 11). 
Exemples: 

«L'enseignement que je realisais. Le questionnement que cela suscitait en moi.» 
«Interest in students' difficulties observed in my teaching.» 

8. Le d6sir d'ameliorer l'education en ce qui concerne les mathematiques, d'aider les enseignants et 
les enseignantes a mieux enseigner. L'interet pour la formation des maitres (N = 5). 
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Exemples: 
«[ ... ] pour aider les enseignantes [sic] a enseigner une mathematique intelligente.» 
«Challenge of trying to improve state of mathematics education.» 

«Desire to train/educate good mathematics teachers.» 

9. L'influence de certaines personnes (N = 7). 
Exemples: 

«Le contact avec d'autres personnes en didactique [ ... ]» 
«Des contacts avec des didacticiens de reputation intemationale.» 
«University people who worked in this area.» 

10. Le hasard, des circonstances extemes, la possibilite d'emploi (N = 9). 
Exemples: 

«L'offre d'un poste a une ecole secondaire.» 
«Le hasard de l'emploi. » 
«Free tuition.» 
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Plusieurs reponses, surtout parmi celles qui sont classees sous les cinq premiers themes, semblent 
expliquer l'attraction initiale pour l'enseignement des mathematiques autant que celle pour la 
didactique des mathematiques. Cette confusion se produit plus souvent, mais non exclusivement, 
en anglais, peut-etre parce que l'expression «mathematics education» est moins precise que la 
toumure fran~aise «didactique des mathematiques» et peut designer aussi l'enseignement 
(l'education). 

4. La carriere 

Emp/oi dans des etablissements d'enseignement primaire, secondaire ou collegial 
Cinquante-cinqparticipants et participantes a l'enquete (87%) ont deja occupe un emploi dans une 
ecole ou dans un college: 25 (40%) dans une ecole primaire, 45 (71%) dans une ecole secondaire 
et 23 (36%) dans un college (plusieurs ont travaille a plus d'un ordre d'enseignement). Dans la 
plupart des cas, il s'agit d'emplois comme enseignant ou enseignante, mais aussi comme conseiller 
ou conseillere (pedagogique ou d'orientation), comme orthopedagogue, comme personne-ressource 
ou dans des fonctions administratives. Proportionnellement plus d'hommes que de femmes ont 
travaille au secondaire (80% c. 44%; X2 corrige pour continuite = 6,1; P < 0,02) et plus de 
francophones que d'anglophones ont travailIe au colk~gial (55% c. 27%; X2 corrige pour 
continuite = 3,6; P < 0,06). Cette derniere difference, marginalement significative, s'explique 
vraisemblablement par la structure particuliere du systeme scolaire au Quebec. II n'y a pas d'autres 
differences statistiquement significatives. 

Emp/oi dans des universites 
Quarante-sept participants et participantes a l'enquete (75%) travaillent dans un departement de 
sciences de l'education, 13 (21%), dans un departement de sciences mathematiques, et 3 ont des 
postes combines en sciences de l'education et sciences mathematiques. 

Onze des treize personnes qui travaillent dans un departement de sciences mathematiques 
sont au service de l'une ou l'autre des deux universites quebecoises (l'une anglophone, Concordia, 



102 Roberta Mura 

et l'autre francophone, l'Universite du Quebec a Montreal) qui confient a leur departement de 
mathematiques les cours de didactique des mathematiques. 

Rang universitaire 
Sept des personnes ayant participe a l'enquete sont membres du reseau de l'Universite du Quebec 
et n'ont pas de rang universitaire. Le tableau 6 donne la distribution de l'echantillon selon Ie rang 
universitaire et Ie sexe, en excluant ces sept personnes. La distribution selon Ie rang universitaire est 
tres semblable chez les deux groupes linguistiques. 

Tableau 6 
Rang universitaire selon Ie sexe 

Femmes Hommes Total 
Rang 

N % N % N % 

Adjointe ou adjoint 7 47 8 20 15 27 

Agregee ou agrege 4 27 11 27 15 27 

Titulaire 4 27 22 54 26 46 

Total 15 41 56 

Note: X2 = 4,7; non significatif. 

A titre de comparaison, l'ensemble du corps professoral des sciences de l'education comprend 23% 
d'adjoints et d'adjointes, 44% d'agreges et d'agregees et 33% de titulaires, alors que les taux 
correspondants pour l'ensemble du corps professoral des mathematiques et sciences physiques sont 
18%,32% et 50% (Statistique Canada, 1993a, p. 32). 

Cheminement dans la carriere universitaire 
L'age moyen au moment du premier engagement au rang d'adjoint ou d'adjointe est de 35 ans pour 
l'ensemble de l'echantillon: il est de 37,6 ans pour les femmes, de 33,8 ans pour les hommes; de 34,6 
ans pour les personnes travaillant en milieu anglophone et de 35,9 ans pour celles en milieu 
francophone. Les differences ne sont pas statistiquement significatives. 

L'age moyen au moment du premier engagement au rang d'agrege ou d'agregee est de 37,7 
ans pour l'ensemble de l'echantillon: il est de 41,5 ans pour les femmes, de 36,7 ans pour les hommes 
(t = 2,2;p < 0,04; grandeur de l'effet d = 0,8); de 37,1 ans pour les personnes travaillant en milieu 
anglophone et de 39,3 ans pour celles en milieu francophone. La derniere difference n'est pas 
statistiquement significative. 

L'age moyen au moment du premier engagement au rang de titulaire est de 42,9 ans pour 
l'ensemble de l'echantillon: il est de 42 ans pour les femmes, de 43,1 ans pour les hommes; de 41,9 
ans pour les personnes travaillant en milieu anglophone et de 45 ans pour celles en milieu 
francophone. Les differences ne sont pas statistiquement significatives. 
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Obtention de La permanence 
Quarante-sept participants et participantes it I'enquete (75%) ont obtenu la permanence dans leur 
emploi universitaire actuel. Les taux correspondants sont de 53% pour les femmes et de 84% pour 
les hommes ('1: corrige pour continuite = 5,4; P < 0,03); cela s'eleve it 73% pour les personnes 
travaillant en milieu anglophone et a 77% pour celles qui sont en milieu francophone. 

L'age moyen it l'obtention de la permanence est de 36,9 ans pour I'ensemble de I'echantillon: 
il est de 38,8 ans pour les femmes, de 36,4 ans pour les hommes; de 36 ans pour les personnes 
travaillant en milieu anglophone et de 38,5 ans pour celles en milieu francophone. Les differences 
ne sont pas statistiquement significatives. 

Domaines de recherche autres que la didactique des mathematiques 
Plusieurs des participants et des participantes ont fait (52%) ou font encore (22%) de la recherche 
dans lID ou plusieurs domaines autres que la didactique des mathematiques. Les taux correspondants 
sont de 53% et 21% pour les femmes, et de 52% et 23% pour les hommes; de 46% et 17% pour les 
personnes travaillant en milieu anglophone et de 64% et 32% pour celles qui se trouvent en milieu 
francophone. Les differences ne sont pas statistiquement significatives. 

Pour ce qui est du passe, les domaines mentionnes Ie plus frequemment, par plus de deux 
personnes, sont les sciences mathematiques (mathematiques pures ou appliquees, statistique et 
probabilire, informatique) (19), les sciences de l'education (8) et la psychologie (6). Quant au 
present, les domaines mentionnes Ie plus frequemment sont les sciences de I'education (5), les 
sciences mathematiques (4) et la psychologie (3). 

Donc, non seulement 81% des participantes et des participants a I'enquete ont-its au moins 
un dipl6me universitaire en sciences mathematiques, mais 30% affirment avoir fait de la recherche 
dans ce domaine dans Ie passe, voire en faire encore. 

Reorientations 
Cinquante-quatre participants et participantes a I'enquete (86%) affIrment avoir connu des 
reorientations au cours de leurs etudes ou de leur carriere. Les pourcentages sont semblables pour 
les deux sexes et pour les deux groupes linguistiques. Dans Ie questionnaire, Ie sens du mot 
«reorientation» etait precise au moyen de deux exemples: Ie passage d'un emploi dans les 6coles it 
un emploi universitaire ou des mathematiques a la didactique des mathematiques. 

De plus, parmi les neuf personnes qui affirment n'avoir vecu aucune reorientation, six ont 
travaille dans une ecole primaire ou secondaire ou dans un college avant leur engagement dans une 
universire et une autre ne detient que des dipl6mes en mathematiques, y compris un doctorat, et a 
fait des recherches en mathematiques pures. Si I'on considerait que ces sept personnes, contrairement 
a ce qu'elles affIrment, ont en realite vecu des reorientations, la proportion de I'echantillon ayant 
vecu des reorientations monterait a 97%. 

La plupart des reorientations correspondent aux deux exemples donnes dans Ie 
questionnaire, c'est-a-dire Ie passage d'un emploi dans Ie systeme scolaire ou dans un college it un 
emploi universitaire ou encore Ie passage des mathematiques a la didactique des mathematiques. 
Parfois ces deux types de reorientation se produisent en meme temps ou l'un it la suite de l'autre. Un 
cas typique est celui de quelqu'un qui enseigne les mathematiques au secondaire ou au collegial, qui 
retourne aux etudes, obtient un doctorat en education et est engage dans lID poste universitaire en 
didactique des mathematiques. 

Parmi les raisons qui ont pousse les participants et les participantes a l'enquete it laisser 
l'ecole ou Ie college pour I'universite, on trouve l'insatisfaction des conditions de travail en milieu 
scolaire, I'interet pour la recherche ou pour la formation des maitres, Ie desir d'un poste plus 
prestigieux offrant plus de defis, de variete et de liberte ou encore l'espoir d'etre en position de 
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produire des changements dans Ie systeme educatif. Quant aux reorientations des mathematiques 
a Ia didactique, elles sont dues surtout a l'inreret personnel pour les questions touchant a 
l'enseignement, mais aussi a des circonstances extemes (possibilire d'emploi) ou a une certaine 
insatisfaction a l'egard des mathematiques (<<Didn't enjoy the solitude of pure math»). 

Ces reorientations ont generalement ete vecues de fa~on heureuse. Ceux et celles qui ont 
quine l'6cole ou Ie college pour l'universite s'en disent satisfaits, contents ou tres contents, meme si 
quelques personnes font allusion a la charge de travail plus exigeante ou a la nostalgie par rapport 
aux eleves. Une seule personne regrette d'avoir effectue ce type de changement dans sa carriere. Le 
passage des mathematiques a la didactique a ere egalement, dans la plupart des cas, une experience 
positive. Une petite minorite mentionne cependant une certaine amertume ou frustration (liees aux 
circonstances particulieres de la reorientation ou aux reactions des collegues) et Ie regret de ne plus 
avoir la possibilite d'enseigner les mathematiques. II est d'ailleurs ironique qu'une reorientation 
dict6e par un inreret pour l'enseignement des matbernatiques ait parfois l'effet d'empecher la pratique 
de l'enseignement de cette matiere. 

Satisfaction it l'egard du choix de carriere 
Parmi les participantes et les participants a l'enquete, 86% ont affinne que s'ils pouvaient 
recornmencer leur carriere, ils choisiraient encore de devenir didacticien ou didacticienne des 
rnathematiques. Les pourcentages sont tees sernblables pour les deux sexes et pour les deux groupes 
linguistiques. 

Charge d'enseignement et de supervision de stages 
A la session d'automne 1992, les participants et les participantes a l'enquete enseignaient en 
moyenne 5,5 heures par semaine (mediane = 5 heures, avec une etendue allant de 0 a 16) et 
accomplissaient une tache de supervision de stages equivalente a 1,1 heure d'enseignernent par 
semaine (mediane = 0, avec une etendue allant de 0 a 9 heures), pour un total de 6,6 heures par 
semaine. Si 1'0n ne tient pas compte de 17 personnes qui n'avaient pas de taches de ce genre a la 
session d'autornne 1992 (a cause d'un conge sabbatique, d'un conge de maladie, d'un degagement 
pour accomplir des taches adrninistratives, etc.) la moyenne est de 7,6 heures d'enseignement et 
s'eleve a 9,2 heures si on inclut la supervision des stages. Les statistiques sont semblables pour les 
deux sexes et pour les deux groupes linguistiques. 

Direction de memoires et de theses 
Le tableau 7 indique Ie nombre de memoires de maitrise et de theses de doctorat terrnines au cours 
des cinq demieres ann6es sous la direction des didacticiens et des didacticiennes des mathematiques 
qui ont participe a l'enquete, selon leur sexe. II y a peu de difference relativement a ces variables 
entre les deux groupes linguistiques. 
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Tableau 7 
Direction de memoires et theses seion Ie sexe 

Nombre de Memoires de maitrise Theses de doctorat 
travaux Femmes Hommes Total Femmes Hommes Total 
diriges N N N N N N 

Aucun 10 10 20 15 29 44 

Entre 1 et 5 7 26 33 4 16 17 

Plus de 6 2 8 10 0 1 1 

Donnee 0 0 0 0 1 1 manquante 

Total 19 44 63 19 44 63 

Seulement 47010 des femmes ont dirige au moins un memoire de maitrise au cours des cinq demieres 
annees, alors que 77% des hommes l'ont fait ("I: corrige pour continuite = 4,2; P < 0,05). Toutefois, 
cette difference devient non significative si ron contr61e Ie rang universitaire. 2 Quant aux theses de 
doctorat, 21% des femmes en ont dirige au moins une, comparativement a 33% des hommes; la 
difference nlest pas statistiquement significative. 

Publications 
Les questions posees aux professeurs et aux professeures de didactique des mathematiques au sujet 
de leurs publications visaient Ie nombres dlarticles et dlouvrages publies ou acceptes pour 
publication au cours des cinq demieres annees et Ie nombre de ceux qui avaient ete ecrits en 
collaboration. 

En moyenne, Ie nombre dlarticles publies ou acceptes pour publication au cours des cinq 
demieres annees est de 8,3 pour l'ensemble de l'echantillon: il est de 6,4 pour les femmes et de 9,2 
pour les hommes (t = -1,5; non significatif); et de 8,4 pour les personnes travaillant en milieu 
anglophone et de 8,3 pour celles en milieu francophone. Au total, 44% de ces articles ont ete ecrits 
en collaboration Les taux correspondants sont de 42% pour les femmes et de 44% pour les hommes; 
de 57% pour les personnes travaillant en milieu francophone et de 36% pour celles en milieu 
anglophone (1.2 corrige pour continuite = 19,6; P < 0,001). 

En moyenne, Ie nombre dlouvrages publies ou acceptes pour publication dans les cinq 
demieres annees est de 1,2 pour l'ensemble de l'echantillon: il est de 1,3 pour les femmes et de 1,2 
pour les hommes; de 1,3 pour les personnes travaillant en milieu anglophone et de 1,1 pour celles 
en milieu francophone. Par ailleurs, 71 % de ces ouvrages ont ete cerits en collaboration. Les 

2 La correction pour la distribution differente des femmes et des hommes dans les rangs universitaires 
a ete faite en caIculant la moyenne ponderee des proportions d'hommes adjoints, agreges et titulaires 
ayantcollabore Ii une recherche canadienne (respectivement 37,5%,45,5% et 54,2%), en utilisant 
comme coefficients les pourcentages d'adjointes, d'agregees et de titulaires parmi les femmes 
(46,7%,26,7 % et 26,7%), ce qui donne 44%, un taux qui n'est pas significativement different du 
taux observe chez les femmes (16%). 
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pourcentages correspondants sont a peu pres les memes pour les deux sexes et exactement les 
memes pour les deux groupes linguistiques. On ne retrouve donc pas a propos des ouvrages la plus 
grande tendance a ecrire en collaboration observee chez les francophones a propos des articles. 

Travail pour des revues scientifiques ou des maisons d'edition 
Le tableau 8 indique combien de fois, pendant les cinq dernieres annees, les personnes interrogees 
ont ere appelees a evaluer des manuscrits pour une revue scientifique ou pour une maison d'edition. 
Les distributions sont semblables, aussi bien selon Ie sexe que selon la langue de travail. 

Tableau 8 
Evaluation de manuscrits 

Frequence N 

Jamais 7 

Entre 1 et 5 fois 26 

Entre 6 et 10 fois 14 

Plus de 10 fois 16 

Total 63 

% 

11 

41 

22 

25 

De plus, 43% des participants et des participantes a l'enquete ont affrrme etre ou avoir deja ete 
membre du comire de redaction d'une ou de plusieurs revues scientifiques. Les pourcentages 
correspondants sont a peu pres les memes pour les deux sexes. Ils sont de 34% parmi les personnes 
travaillant en milieu anglophone et de 60% parmi celles qui sont en milieu francophone; la difference 
n'est pas statistiquement significative. 

Participation a des congres 
En moyenne, pendant les deux dernieres annees, les participants et les participantes a l'enquete ont 
assisre a 5,6 congres, ont presente une communication a 4,3 de ceux-ci et ont preside une seance a 
1,4. Les statistiques sont semblables pour les deux sexes et pour les deux groupes linguistiques. 

Insertion dans les reseaux professionnels 
Le tableau 9 donne la frequence, au COUTS des deux dernieres annees, de diverses activites indicatives 
de l'insertion dans les reseaux professionnels nationaux et intemationaux. 

II n'y a pas de difference significative entre les deux groupes linguistiques du point de vue de 
l'insertion dans les reseaux professionnels. Par ailleurs, la seule difference significative entre les 
sexes concerne la collaboration a des recherches avec des collegues du Canada. Au cours des deux 
demieres annees, proportionnellement plus d'hommes que de femmes ont ete engages dans ce type 
d'activite (55% c. 16%; '1..2 corrige pour continuite = 6,6;p = 0,(1). Dans ce cas aussi, cependant, 



Topic Group A: Mathematics Educators in Canada: A Family Picture 107 

comme dans celui de la direction de memoires de maitrise, la difference devient non significative si 
ron controle Ie rang universitaire. 3 

Tableau 9 
Insertion dans les reseaux professionnels 

Activite menee avec 
Collaboration a Redaction Echange 
une recherche d'articles d'informations 

des collegues ... 
N % N % N % 

••• du Canada 27 43 31 49 42 67 

••• des Etats-Unis 11 17 12 19 37 59 

••• d'Europe 11 17 9 14 33 52 

••• d' autres pays 11 17 10 16 29 46 

5. Une comparaison avec les resultats de I'enquete aupres des mathematiciens et des 
mathematiciennes 

Deux precautions ont ete prises avant de comparer les resultats des deux enquetes. Premierement, 
puis que des didacticiens ou des didacticiennes des mathematiques peuvent travailler dans un 
departement de mathematiques, comme on l'a vu plus haut, il a fallu verifier si l'echantillon des 
math6maticiens et des mathematiciennes ne comprenait pas des didacticiens ou des didacticiennes. 
Effectivement, il s'en trouvait quatre. Les donnees qui les concernent ont ete retirees de l'echantillon 
des mathematiciens et des mathematiciennes avant d'effectuer des comparaisons entre les deux 
groupes. 

Deuxiemement, alors que la presente enquete s'adressait cl l'entiere population des 
didacticiens et des didacticiennes, la premiere enquete avait ete menee aupres de toutes les 
mathematiciennes et d'un echantillon d'hommes jumeles cl l'ensemble des femmes selon Ie rang 
universitaire, ce qui a entraine, d'une part, une surrepresentation des femmes (50% au lieu de 6%) 
et, d'autre part, parmi les hommes, une surrepresentation des professeurs adjoints et une sous
representation des professeurs titulaires. Afin de rendre comparables les donnees provenant des deux 
enquetes, celles qui concernent les mathematiciens et les mathematiciennes ont ete «ajustees», c'est
cl-dire qu'elles ont ere remplac6es par des moyennes ponderees calculees en utilisant les pourcentages 
de femmes et d'hommes (6% et 94%) et les pourcentages d'hommes aux rangs d'adjoint, d'agreg6 
et de titulaire (16%, 39% et 45%) dans l'ensemble de la population. C'est pourquoi les donnees 

3 La correction pour la distribution differente des femmes et des hornmes dans les rangs universitaires 
a ete faite en calculant la moyenne ponderee des proportions d'hornmes adjoints, agreges et titulaires 
ayant collabore Ii une recherche canadienne (respectivement 37,5%,45,5% et 54,2%), en utilisant 
cornme coefficients les pourcentages d'adjointes, d'agregees et de titulaires parmi les femmes 
(46,7%,26,7% et 26,7%), ce qui donne 44%, un taux qui n'est pas significativement different du 
taux observe chez les femmes (16%). 
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rapporrees ici pour les mathematiciens et les mathematiciennes dItlerent de celles qw sont publIees 
dans Mura (1990 et 1991). 

I.e groupe des didacticiens et des didacticiennes, compare it celui des mathematiciens et des 
mat:hematiciennes, est environ quinze fois moins nombreux, il comprend une plus grande proportion 
de femmes (30% c. 6%) et une plus grande proportion de personnes travaillant dans un milieu 
francophone (35% c. 16%). II s'agit aussi d'un groupe plus age (age moyen de 50,5 ans c. 46 ans). 
Dans chacun des deux groupes, les femmes sont plus jeunes que les hommes (de 5,4 ans en 
didactique et de 4,3 ans en mathematiques). Parmi les didacticiens et les didacticiennes, on trouve 
egalement une plus grande proportion de personnes nees au Canada (60% c. 32%) et de personnes 
de langue matemelle anglaise ou fran~aise (90% c. 58%). 

Parmi les mathematiciens et les mathematiciennes, les femmes viennent de familIes plus 
scolarisees que les hommes, alors que cette difference ne se rencontre pas entre les didacticiens et 
les didacticiennes. Si l'on compare separement, d'une part, les mathematiciennes avec les 
didacticiennes et, d'autre part, les mathematiciens avec les didacticiens, on observe que les premieres 
viennent de familles plus scolarisees que les secondes, alors qu'il y a peu de difference entre les 
hommes des deux disciplines (tableaux 10 et 11). 

Tableau 10 
Scolarite des parents des femmes selon Ie domaine de travail 

Mere Pere 
Scolarite Mathematiciennes Didacticiennes Mathematiciennes Didacticiennes 

0,(, % % % 

Prima ire 8 33 14 39 

Secondaire 51 44 28 39 

Universitaire 41 22 59 22 

Tableau 11 
Scolarite des parents des hommes selon Ie domaine de travail 

Mere Pere 
Scolarite Mathematiciens Didacticiens Mathematiciens Didacticiens 

% % 0,(, % 

Primaire 34 36 19 32 

Secondaire 56 39 52 45 

Universitaire 10 25 29 23 

En ce qui conceme les etudes, il y a peu de difference entre les deux groupes it propos du moment 
de la decision de se specialiser en mathematiques et des raisons de l'attraction initiale pour cette 
discipline. I.e pourcentage des personnes titulaires d'un doctorat est Ie meme (89%) chez les deux 
populations. 

Le tableau 12 resume la progression dans les etudes et dans la carriere universitaire des 
professeurs et des professeures de mathematiques et de didactique des mathematiques. 
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Tableau 12 
Progression dans les etudes et dans la carriere selon Ie sexe et Ie domaine de travail 

Age au moment •.. 
Didactique des mathematiques Mathematiques 

Femmes Hommes Femmes Hommes 

••• du premier diplome 22,8 22,7 22,0 22.6 

••. du doctorat 38,0 35,1 29,6 30,1 

••. de I'engagement 
comme adjoint ou 37,6 33,8 30,4 29,5 

adjointe 

••• de I'agregation 41,5 36,7 34,6 33,6 

••• de la pennanence 38,8 36,4 35,2 35,0 

••• de la titularisation 42,0 43,1 38,4 40,1 

Annees ecoulees entre Ie 
premier diplome et la 19,2 20,4 16,4 17,5 

titularisation 

Meme si rage d'obtention du premier diplome est semblable, les didacticiennes et les didacticiens, 
compares it leurs collegues de mathematiques, accumulent plusieurs annees de retard (8,4 ans pour 
les femmes et 5,1 pour les hommes) avant d'obtenir Ie doctorat. Ce retard s'explique probablement 
en partie par Ie fait que 87% des didacticiennes et des didacticiens ont occupe un emploi dans une 
ecole ou un college avant d'etre engages par une universire. Peut-etre aussi les etudes de doctorat 
sont-elles plus longues en education qu'en mathematiques, mais aucune donnee it eet egard n'a ete 
recueillie dans la presente enquete. Le retard va en s'amoindrissant tout au long de la carriere 
universitaire: il n'est que de 3,6 ans pour les femmes et de 3 ans pour les hommes au moment de 
l'obtention de la titularisation. 

Si l'on regarde les activites professionnelles, les professeures et les professeurs de 
didactique des mathematiques sont au moins aussi actifs que leurs collegues de mathematiques du 
point de vue des indicateurs suivants: 

• les heures d'enseignement: 6,6 heures par semaine, y compris la supervision des stages, 
contre 6 pour les mathematiciens et les mathematiciennes; 
la direction de memoires de maitrise et de theses de doctorat: dans les cinq dernieres annees, 
68% ont dirige au moins un memoire de maitrise et 29% ont dirige au moins une these de 
doctorat, contre 40% et 29% pour les mathematiciens et les mathematiciennes; 

• les publications: 8,3 articles et 1,2 ouvrages en moyenne au cours des cinq dernieres annees, 
contre 7,8 et 0,6 pour les mathematiciens et les mathematiciennes. Par ailleurs 44% des 
articles et 71 % des ouvrages produits par les didacticiens et les didacticiennes ont ere ecrits 
en collaboration, contre 49% et 80% pour les mathematiciens et les mathematiciennes; 

• Ie travail pour des revues scientifiques ou des maisons d'edition: 89% des didacticiennes et 
des didacticiens ont e16 appeles au moins une fois it evaluer un manuscrit pendant les cinq 
demieres ann6es et 43% font ou ont fait partie d'un comite de redaction, contre 82% et 13% 
des mathematiciens et des mathematiciennes; 
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• la participation a des congres: en moyenne, au cours des deux demieres annees, les 
didacticiens et les didacticiennes ont assiste a 5,6 congres, ont presente une communication 
a 4,3 de ceux-ci et ont preside une seance a 1,4. Les donnees correspondantes pour les 
mathematiciens et les mathematiciennes sont de 3,1; 1,8 et 0,4. 

Quant a l'insertion dans les resaux professionnels, comme Ie montre Ie tableau 13, les differences 
entre les deux groupes ne sont pas tres grandes et ne vont pas toutes dans Ie meme sens. 

Tableau 13 
Insertion dans les reseaux professionnels selon Ie domaine de travail 

Collaboration a une Redaction d"articles 
Echange 

Activite menee recherche d"infonnations 
avec des Didact. Mathemat. Didact. Mathemat. Didact. Mathemat. 

collegues 
% % % % % % 

du Canada 43 52 49 47 67 62 

des Etats-Unis 17 30 19 28 59 71 

d"Europe 17 35 14 16 52 46 

d"autres pays 17 13 16 10 46 31 

En:fin, 69% des mathematiciennes et des mathematiciens ont repondu inconditionnellement que s'ils 
pouvaient recommencer, ils referaient Ie meme choix de carriere; Ies autres ont hesite ou repondu 
qu'ils feraient un choix different Panni. les didacticiennes et les didacticiens, 86% ont affirme qu'ils 
referaient Ie meme choix. 

Pour ce qui est des differences entre les sexes concernant Ia carriere, une seule est commune aux 
deux groupes: les femmes sont moins souvent permanentes que les hommes. Des deux autres 
differences observees entre les didacticiennes et les didacticiens, l'une touche l'emploi dans une ecole 
secondaire et ne s'applique pas aux professeures et aux professeurs de mathematiques, tandis que 
l'autre (les femmes sont plus agees que les hommes au moment de l'agregation) apparait entre les 
mathematiciennes et les mathematiciens comme une tendance mais non comme une difference 
significative. A l'inverse, quatre differences observees entre les mathematiciennes et les 
mathematiciens ne se retrouvent pas parmi leurs collegues de didactique, a savoir: les 
mathematiciennes sont plus souvent adjointes et moins souvent titulaires que leurs collegues 
masculins (c'est une tendance en didactique aussi, mais la difference n'est pas significative); au rang 
d'adjointes, les mathematiciennes publient moins d'articles que les hommes du meme rang (c'est une 
tendance en didactique aussi, mais la difference n'est pas significative); leurs articles sont plus 
souvent ecrits en collaboration et elles sont moins souvent appelees a evaluer des manuscrits pour 
des revues scientifiques ou des maisons d'edition (ce n'est pas Ie cas en didactique). 
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Conclusion 

Au Canada, la didactique des mathematiques est plus souvent rattachee aux sciences de l'education 
qu'aux mathematiques: les trois quarts des professeurs et des professeures universitaires dans ce 
domaine ont obtenu leur dipl6me Ie plus eleve en education et la meme proportion travaille dans un 
departement ou dans une faculre d'education. II est donc normal de constater que, du point de vue 
de plusieurs variables, Ie groupe des didacticiens et des didacticiennes des mathematiques se 
rapproche davantage du corps professoral des sciences de l'education que de celui des 
matb.ematiques et sciences physiques. Ainsi, en faisant appel aux donnees fournies par Statistique 
Canada (1993a), on a observe que Ie present echantillon, comme l'ensemble du corps professoral 
des sciences de l'education, compare a celui des mathematiques et sciences physiques, constitue un 
groupe plus age et comprend une plus grande proportion de femmes ainsi que de personnes ayant 
la citoyennete canadienne. Une comparaison avec les resultats d'une enquete effectuee 
precedemment aupres des mathematiciennes et des mathematiciens (Mura, 1990 et 1991) a mis 
egalement en evidence que, compares a ces derniers, les didacticiennes et les didacticiens sont plus 
souvent nes au Canada et de langue matemelle anglaise ou fran~aise. 

Peut-etre la caracteristique la plus frappante du prom professionnel du groupe etudie est-elle 
que la grande majorire (87%) a vecu une carriere en deux phases: une premiere phase dans un 
etablissement d'enseignement primaire, secondaire ou collegial et une seconde en milieu 
universitaire. La decision de se specialiser en didactique survient tardivement par rapport a celle de 
se specialiser en mathematiques - pour la majorite (67%), apres rage de 21 ans. Cette situation 
entraine un retard de quelques annees dans l'obtention du doctorat et dans Ie debut de la carriere 
universitaire comparativement a un groupe comme celui des mathematiciens et des 
mathematiciennes qui suit un cheminement professionnel plus lineaire. Malgre ceIa, la plupart des 
didacticiens et des didacticiennes ont vecu de fa~on heureuse la reorientation du milieu primaire, 
secondaire ou collegial au milieu universitaire et des mathematiques a la didactique: 86% des 
personnes interrogees affirment que, si elies pouvaient recommencer, eUes referaient Ie meme choix 
de carriere. 

Mis a part Ie retard dans l'obtention du doctorat et dans Ie debut de la carriere universitaire, les 
professeurs et les professeures de didactique se comparent favorablement a leurs collegues dans Ie 
domaine des mathematiques du point de vue de la formation et des activires professionneUes. 

En ce qui conceme la comparaison faite, d'une part, entre les femmes et les hommes et, d'autre 
part, entre les personnes travaillant en milieu anglophone ou francophone, parmi les nombreuses 
variables considerees, si l'on contr6Ie Ie rang universitaire lorsqu'il est opportun de Ie faire, 
seulement quatre ont revele une difference significative entre les sexes et deux entre les groupes 
linguistiques. Le peu de differences statistiquement significatives observees peut toutefois etre du, 
du moins en partie, a la petite taille de l'echantillon. Les quatre differences entre les sexes sont les 
suivantes: 
• les femmes constituent un groupe plus jeune, en moyenne de 5,4 ans, que les hommes (grandeur 

de l'effet d = - 0,8); 
• proportionnellement moins de femmes que d'hommes ont travaille dans une ecole secondaire; 
• au moment de l'agregation, les femmes sont plus vieilles, en moyenne de 4,8 ans, que les 

hommes (grandeur de l'effet d = 0,8). Cette difference est Ie resultat du fait qu'elles ont ere 
engagees comme adjointes 3,8 ans plus tard que les hommes et du fait qu'elles demeurent au 
rang d'adjointe un an de plus que les hommes; 

• proportionnellement moins de femmes que d'hommes ont obtenu la permanence. 
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Quant aux groupes linguistiques, les deux differences observees sont les suivantes: 
• proportionnellement plus de personnes en milieu francophone ont travaille dans un college (ce 

qui s'explique vraisemblablement par la structure du systeme scolaire Quebecois); 
• proportionnellement plus d'articles pub lies par des personnes travaillant en milieu francophone 

ont ete ecrits en collaboration. 

Si les sous-groupes etudies ne se distinguent pas de fa~on marquee les uns des autres, Ie portrait de 
famille dessine par les resultats de l'enquete est celui d'une communaure professionnelle diversifiee. 
Ainsi, chacun et chacune de nous pourra maintenant mieux se situer par rapport it ses collegues et 
savoir dans queUe me sure son experience est singuliere ou partagee par d'autres. 
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Three software packages for the Macintosh which allow high school students to investigate the 
properties of functions were demonstrated. Following this the participants were able to carry out 
their own exploration of the software. The packages presented, CARAPACE, Math Connections 
Algebra II and Function Probe 2.0.3, all represent funtions using tables, graphs and expressions, 
but each does this in a different way. The criteria used for evaluation of these (and other) packages 
were based on needs emerging from a particular research project on introducing algebra to grade 
seven students. 
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Introduction 

Kathy Heinrich and I became interested in popularizing mathematics while teaching the course 
Mathematicsfor Elementary School Teachers (MATH 190). Our goal was-and is-to change the 
attitudes of student-teachers to mathematics. Our strategy was to prepare (and later let students 
prepare) various projects which would allow them to see a glimpse of what we see in mathematics; 
the beauty of it, the excitement and amazement upon seeing something unexpected, the mathematics 
around us, and the people of mathematics. 

The projects proved very succesful and we started to think about reaching younger children. 
Our first opportunity was the Homecoming event organized for the 25th anniversary of Simon Fraser 
University in September 1990. We put up a display which we called "Is this Math?" using some of 
our MATH 190 projects; puzzles, games, geometrical models, videotape with a week's worth of 
Square One TV (with permission of PBS), and a display of our choice of books. The display was 
even more succesful than we expected. When colleagues from computing science complained that 
our display was diverting traffic from their exhibits, we knew we were on the right track. The 
president of SFU visited the display and was sufficiently impressed to promise funding for a 
shopping mall version. 

For our first foray outside the university we chose Lougheed Mall-a large mall in Burnaby, 
close to SFU and to several elementary schools. While preparing the event we were contacted by 
organizers of the Science and Technology Week 91 and, at their request, we agreed to repeat the 
display three weeks later in another Burnaby Mall, Metrotown. Since then, our mall appearances 
have been restricted to Science and Technology Weeks and similar events, as this makes the 
organization much simpler. We also take some of the activities to schools or occasionallu have 
groups of children visit the department. 

The most popular activities are: 

1. Kaleidocycles and hexaflexagons We discovered them through Martin Gardner's books. We 
always have several models displayed, including one or two of "monster size" on the floor (each side 
the largest triangle you can make out of one piece of poster paper), and some with Escher designs 
on the faces. These are the "bait"-people start playing with them and want, and are encouraged, 
to make one themselves. We have designs ready for them to cut, glue and decorate. Decorating is 
an important part of the process as it allows the participants to discover symmetries of the object. 

2. Platonic solids Forms to make them and lots of models. 

3. Drinking straw models Flexible plastic drinking straws can be used to make geometrical 
models-the icosahedron being the most popular choice. You cut through the shorter end of a straw, 
squash it to make it narrower and insert it into the longer half of another. Polygons made in this way 
cnan be assembled using tape to make models of solids. This activity is very popular with small 
children, but everybody loves it, including our helpers, who always manage to build a strange object 
during slower moments. 

4. Pentagonal stars A MATH 190 student from Singapore taught us how to make these. The basic 
idea is that if you tie a knot in a rectangular strip of paper and flatten it, you get a regular pentagon. 
When you fold the strip around itself several times and then push the edges in to pop it out you get 
a pentagonal star. We use gift wrapping paper cut into long strips of various widths. 
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5. Mobius band 

6. Puzzles-especially ones based on Gray codes, and geometrical ones. They are especially good 
for participants twelve years and older-teenage boys often do not want to be seen "playing" with 
models, but will be tempted by puzzles. We are slowly building our own collection. 

We also have lots of posters on geometry, Escher, mathematical careers, mathematical houmour; 
activities one does not usually associate with mathematics (for example, knitting, design, archi
tecture etc.) Most of them we made ourselves, but there are many good posters available. 

To help with the displays, we recruit colleagues and students, both graduate and under
graduate. Students from MATH 190 often like to help, partially because they have to demonstrate 
volunteer work for admission to the professional programmes in education. Many of those who help 
once come back-they have fun participating. 

The list below includes both articles about mathematics displays and trails, and a selection of our 
favourite books. 

Bolt, B. Mathematical Cavalcade, Cambridge University Press. 
Bolt, B. Mathematical Fun/air, Cambridge University Press. 
Bolt, B. More Mathematical Activities, Cambridge University Press. 
Bolt, B. The Amazing Mathematics Amusement Arcade, Cambridge University Press. 
Gardner, M. Mathematical Carnival, MAA. 
Gardner, M. Mathematical Magic Show, MAA. 
Gardner, M. Mathematical Circus, MAA. 
Gardner, M. The Scientific American Book a/Mathematical Puzzles and DiverSions, Simon and 

Schuster, 1959. 
Gardner, M. The Second Scientific American Book 0/ Mathematical Puzzles and Diversions, 

Simon and Schuster, 1961. 
Heinrich, K. Mathematics Education, CMS Notes, 24(4), May-June 1992. 
Muller, E. Math Trails, CMS Notes, 25(2), March 1993. 
Schattschneider, D. and Walker, W. M C. Escher Kaleidocycles, Pomegranate Artbooks, 1987. 

(A book with several very interesting ideas and wonderful models ofkaleidocycles 
and solids to make, decorated with Escher pictures-deflnitely worth buying! We 
buy a new one every two years.) 

Williams, E. RMath in the Mall, CMS Notes, 25(1), January-February 1993. 



Topic Group Cl 

UBooking", a Non-Traditional Approach 
to the Teaching of Mathematics 

in the Transition Years 

Gary Flewelling 

Guelph Board of Education 





Booking, a Non-Traditional Approach 
to the Teaching of Mathematics 

in the Transition Years 

Over the past five years a small group of mathematics educators has worked on producing a 
"different" series of middle school (Grade 7-9) student mathematics texts and associated teachers' 
resource books (Flewelling et al. 1991,1993). This topic group focused on some of the decisions 
made by this writing team and some of the issues surrounding these decisions. 

Author Beliefs 

The authors brought the following beliefs to the writing task. 

1. The learner constructs understanding based on his or her own experiences. 

2. Traditional teaching methods provide the student with insufficient experiences upon which 
to create understanding. 

3. Students in the middle years are "allover the map", with respect to experiences, skill levels, 
and soon. 

4. Students need to take more control over their own learning. 

It became the task of the team to create (rich) sources of experience, learning activities, for students. 

Characteristics of Learning Activities 

The authors tried to design the activities which 

• placed stress on understanding 

aroused interest 

• were accessible to all 

helped to broaden the student's view of what math is and what it means to do and to 
make mathematics 

• built student confidence and willingness to take risks 

• integrated problem-solving 

• made the importance and relevance of mathematics self-evident 

• fostered a liking for mathematics 
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• 
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• 
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• 

• 

Gary Flewelling 

placed more emphasis on the student as teacher and evaluator 

placed a greater premium on the teacher as facilitator 

encouraged more student autonomy 

took greater advantage of technology 

encouraged an estimation mindset 

encouraged a spirit of enquiry 

focussed on different ways of doing something 

encouraged more reflecting on their experiences and thinking for themselves 

encouraged communication with more speaking, reading, writing, and reporting about 
ideas 

gave the students more opportunities to gather evidence upon which to make, verify, and 
revise generalizations 

Texts and Resource Books 

The student texts were designed to talk directly and solely to the student. The language used was 
informal and personal. Importance was placed on the student's ability to read. The aim was to get 
the student to accept ownership in their own learning and to think for themselves. The authors were 
able to share information, advice, and suggestions with the teacher through the teacher's resource 
book. 

Activity Structure 

An activity structure was decided upon because it was thought that such a format would increase 
student involvement in their own learning and provide the student with a richer source of experiences 
than they could get from a more traditional set of exercises. 

An activity-based approach requires the teacher to use traditional teaching methods more 
for the setting up and summing up (or reflecting) phases of an activity. The teacher, during the 
activity, usually assumed the role of facilitator. Information, advice, and suggestions for the teacher 
in each of the three phases of an activity were placed in teacher resource books. Because of the open 
nature of many of the activities, suggestions concerning such things as time allotments and 
homework were often not included. 

Many of the activities lent themselves to students working in small groups (for reasons 
listed above). 

Many of the activities, by their nature, encouraged the teacher to use a broader range of 
assessment tools than is traditionally used. 
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Part of the problem of ''booking'' the above, that is, putting it into print in a student text was 
to decide on how much structure to wrap around any given activity, to decide on how much to say 
and direct and how much to leave unsaid and open. (The authors wanted students to exercise 
autonomy and learn to think for themselves.) The authors usually chose more structure than they 
cared for and gave suggestions to the teacher, in the teacher resource book, for modifying the 
structure or constraints. Tension and balance between autonomy and authority is an important issue. 

Implementation 

The non-traditional nature of the materials was not found to be a significant obstacle to effective 
implementation. Implementation problems, where they existed, were found to be more related to 
narrow views of mathematics and outmoded views of the roles of teachers and students. 
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In its simplest form, mathematics may be described as the study of numbers. Mathematics 
involves two components. The first component consists of numbers and the other 
component involves operations. These operations are then applied to one or more of 
these numbers resulting in another number. In a broader sense mathematics is also the 
study of lines, objects such as circles, squares and triangles. Mathematics involves the 
manipulation of equations and functions. 

The most attractive attribute of mathematics that I enjoy is the fact that the 
answer is either right or wrong. There is no middle in mathematics. However, there is 
usually more than one way of doing a question or problem. I also enjoy mathematics 
because you can usually check your solution to your answer. Because mathematics is a 
logical process and has a step by step approach, it is easy to check where you went 
wrong. I also enjoy the manipulation of numbers and how mathematics can be useful in 
the real world; whether it be, being able to add up a bill or to check what the total cost 
of a product would be with the tax included before it is punched into a cash register. 
(Teacher Candidate, 1991) 

The above was written by a secondmy school mathematics teacher candidate in response to an initial 
course assignment asking students to describe mathematics and to identify those features of the 
subject that excited them. This image of mathematics, as a fixed body of indisputable facts and 
procedures, is not unique to this student but appears to be held by a majority of mathematics teacher 
candidates. It is also not the result of a weak academic background, for prior to beginning the one
year teacher preparation programme, this student had obtained an Honours BSc degree in Mathe
matics and Computer Science. Here he had completed the equivalent of nine full-year university 
mathematics courses, seven more than that required by the Ontario Ministry of Education and 
Training for certification as a teacher of mathematics. 

Such a conception of mathematics may be contrasted with the philosophy underlying the 
curriculum guidelines describing courses that this candidate is preparing to teach and the view 
promoted by the leaders of the profession he will soon be joining. The introductory pages of the 
Curriculum Guideline: Mathematics: Intermediate and Senior DiviSions (Ontario Ministry of 
Education, 1985) describe a programme that employs an experiential approach with concepts being 
developed out of applications. Mathematical modelling and problem solving, including the 
exploration of situations in which a strategy is not immediately evident, are identified as underlying 
themes. The recently released Focus on Renewal of Mathematics Education (Ontario Association 
for Mathematics Education/Ontario Mathematics Coordinators Association, 1993) sets out the 
principles of teaching and learning supported by the professional organizations for Ontario teachers 
of mathematics. Here is described a program in which pupils actively construct mathematical 
understandings through investigating, conjecturing, testing hypothesis, and the discussing and 
sharing of ideas. 

Progress towards mathematics programmes which reflect the philosophies of these two 
Ontario curriculum documents has been slow. Provincial reviews examining the teaching and 
learning of mathematics at Grades 8, 10, and 12 summarize the data on instructional practice with, 
"The most commonly used methods for teaching ... mathematics are presentation of information to 
the class by chalkboard or overhead projector and assignment of individual work" (Ontario Ministry 
of Education, 1991a, 1991b, 1991c, pi). Thompson (1992, August), while discussing this slow 
pace of educational change, suggests "the sharp contrast between these two images [of mathematics] 
may be the single greatest obstacle to achieving mathematics instruction as envisioned in many 
reform documents" (p 4). Recognition of the importance of subject images or beliefs has encouraged 
research exploring the conceptions of mathematics held by teachers and teacher candidates. This 
paper reports on two such studies conducted with student-teachers in their final year of preservice 
education. 
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Teachers' Conceptions of Mathematics 

The research literature does not present a precise or consistent defInition of belief and the boundary 
between belief and knowledge is not clear. However there is general consensus (Pajares, 1992) that 
beliefs impact on knowledge in that they filter new infonnation and playa key role in interpretation. 
Both directly and through their influence on knowledge structures, beliefs strongly affect behaviour. 
Consistent with this view, surveys of the literature in mathematics education (Fennema, Carpenter 
& Lamon, 1991; Fennema & Franke, 1992) present models of teaching showing the impact of a 
teacher's beliefs on knowledge, decision making, and classroom practice. In particular, reflecting 
Thom's (1973) observation that "whether one wishes it or not, all mathematical pedagogy, even if 
scarcely coherent, rests on a philosophy of mathematics", Ernest (1989) and Higginson (1980) have 
developed models of mathematics education that give a central and critical role to teacher views of 
the nature of the discipline. Thompson (1992) uses the tenn conception of mathematics to collect 
together a teacher's beliefs, meanings, images, preferences and personal philosophy concerning the 
subject. This broader label will be employed in this paper. 

Ernest (1989) identifIes three possible conceptions of mathematics: instrumentalist, 
Platonist, and problem-solving. For the instrumentalist, mathematics is a collection of facts, rules 
and procedures that have their value in applications in other fIelds. Platonists view mathematics as 
a body of consistent absolute knowledge that exists independent of human thought while for those 
holding the problem-solving image the discipline is a cultural invention, created by human inquiry 
and thus continually growing and open to revision. In a more recent work Ernest (1991) collects the 
instrumentalist and Platonist conceptions under the label absolutist, indicating the view that 
mathematics is a collection of absolute truths established through logical deduction, while the 
problem-solving position is called fallibilist as it accepts the logical frailty of a system created by 
human thought. 

Studies have shown a link between the pedagogical practices of high school and junior high 
school teachers of mathematics and their conceptions of the discipline. Thompson (1984) worked 
with three teachers of mathematics in an American junior high school. Although the author does not 
employ Ernest's categories, two of her participants possessed absolutist conceptions of mathematics 
taking Platonist and instrumentalist positions while the third teacher articulated beliefs that were 
closer to the fallibilist position and revealed a problem-solving orientation to her subject. 
Instructional methods reflected these conceptions of mathematics, with those holding the absolutist 
view adopting a transmission model of teaching. Students were expected to assimilate content and 
learn procedures from the teacher's examples, explanations and demonstrations. The only significant 
difference between these two teachers was that the Platonist stressed the reasons and logic 
underlying mathematical procedures and established links between concepts. Thompson's other 
participant demonstrated her problem-solving orientation by taking a more process approach to 
instruction. Students were encouraged to guess, make conjectures and produce their own problem 
solutions. 

Through the use of a questionnaire, Lennan (1990) identifIed two pairs of mathematics 
teacher candidates that represented the extremes of the absolutist and fallibilist perspectives. After 
the presentation, via video recording, of a short mathematics lesson, interviews were conducted to 
elicit these four students' assessments of the teaching observed. The link between views of 
mathematics and orientations to teaching practice are drawn with the observations "that the two 
student teachers who were the most 'absolutist' felt that the teacher in the extract was not directing 
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the students enough and was too open, whereas the most 'fallibilist' thought she was not open 
enough, and was too directed" (Lerman, 1990, p 59). 

The four high school geometry teachers in McGalliard's (1983) study showed a dualistic 
(Copes, 1982; Perry, 1981) conception of geometrical knowledge. This view, that every question 
has a correct answer that can be defended by reference to authorities, was consistent with the 
observed instructional practice which focused on the preparation of pupils for the next mathematics 
course by careful compliance with the syllabus and the teaching of rules without explanations. 

The Toolkit Conception of Mathematics 

In September 1991 data was collected to help construct a picture of the conceptions of mathematics 
held by students beginning the one-year secondary school mathematics teacher preservice pro
gramme at Queen's University. 

Method The 29 members of a mathematics curriculum and instruction class were asked after the 
initial course meeting to write position papers giving their images of Schwab's (1978) four 
"commonplaces of teaching"; the subject (mathematics), the student, the teacher, and society in 
general. In particular, students were asked to "[ d]escribe the subject of mathematics to someone who 
has not studied the subject beyond the grade 8 level", and to relate what excited them about 
mathematics. hnages of students and teachers were elicited by the questions: "How do students best 
learn mathematics?", "What makes a 'good' mathematics teacher?", and "What makes a 'good' 
mathematics lesson?" The questions concerning society at large asked class members to describe 
the benefits for students and the larger community that result from school mathematical studies. 
While the assignment was compulsory, to minimize anxiety and encourage students to report their 
own personal views, no assessment of the writing was made and no grades were assigned. 

Analysis of the position papers involved three readings. An initial reading produced a 
general overview of student perspectives and a second identified common themes by noting 
frequently occurring words and ideas. During the third reading those themes addressed by each 
student and the particular positions taken were catalogued. 

Results Two popular themes were identified: (a) the structure and logical completeness of 
mathematics, and (b) the utility or application of mathematics, with all but two students commenting 
on both issues. Students introduced these themes with their descriptions of the discipline and 
elaborated upon them in their discussions of teaching and learning and of the place of mathematics 
in the conununity at large. While the positions taken on the two themes were not unanimous, for both 
there was a strong majority view. 

For two-thirds of the class "mathematics in its simplest form is only a set of rules", or 
"methodologies of how to work with numbers and symbols" which "demands from you patience and 
logical thinking to follow step by step procedures". These students fmd comfort in a system that "is 
rigorously precise" with "no grey areas or exceptions" and where one can "get the right answer just 
by following rules and methods." 

This view of the structure and logical completeness of mathematics was continued in these 
students' descriptions of good teaching and of the best methods for learning the subject. Effective 
teaching involves "presenting the concepts in a clear and coherent manner without causing any 
confusion." The provision of "countless examples to explain and clarify concepts and 
methodologies" should be followed by student practice for "one of the best ways of learning 
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mathematics is by repetition." 
For these students, following mathematical procedures in a "step by step approach" is a 

"logical form of thinking" that may be applied in other situations. School graduates who have 
studied mathematics are "quick-thinking, reasonable individuals" capable of solving "many other 
problems through similar logical reasoning." 

A smaller portion of the class (8 of 29) saw mathematics as a "language" for expressing 
"analytical thinking" and discovering "patterns and relationships." This image leads to a less 
absolutist conception of mathematics with some of these students noting that "two totally different 
solutions can end up at the correct answer" and in some cases one may "achieve multiple answers 
based on various assumptions." For these teacher candidates productive mathematics teaching and 
leaning involves more than the presentation of examples and the practice of routines. "It is important 
that the teacher invites [sic] the student to learn a more 'hands-on' and creative approach to the 
subject" which will "allow the students to 'own', through self-discovery and thorough knowledge, 
the concepts being taught." Through such a mathematics program "a student's imagination and 
creativity can greatly [sic] be enhanced" and one's "understanding of life" increased. 

In a similar manner, when discussing the utility of mathematics the students generally 
adopted one of two positions. A majority of the class saw arithmetic as being central to mathematics 
and gave as a positive feature of the subject its usefulness in solving problems of "everyday life" 
such as calculating "how much of your entertainment money do you need to save to buy that new 
stereo for your car." A serious concern for these teachers-to-be is a lack of relevance of the secon
dary school mathematics curriculum that leads to pupils who "don't perceive the usefulness of a 
strong background in mathematics, and as such put forth little effort in trying to learn intangible 
concepts." Since "students best learn math by solving practical problems using concepts they have 
been taught," careful presentations of routines should be followed by applications. 

The other one-third of the students also acknowledged the utility of mathematics but they 
saw applications beyond daily financial problems, for mathematics "allows us to explore the unseen 
and to experience the unexperienced." "In good measure, the value of math is more aesthetic than 
practical." Applications are an important component of successful lessons for this group also but 
the order is reversed with concepts introduced and developed "using key examples chosen from the 
real world." 

In summary, instrumentalist and absolutist conceptions of mathematics were predominant 
in this class. More than half of these future mathematics teachers held a toolkit image where 
problems are generated in other disciplines, employment, or daily living and mathematics supplies 
fixed routines for calculating the answers. Beginning teachers who view their task as ensuring that 
school graduates possess full mathematical toolkits are not likely to contribute to the reform of 
mathematics education. 

The Development of an Alternate Conception 

While the toolkit image is the dominant conception of mathematics among student-teachers, not all 
candidates hold this view. Some arrive at their fmal preservice year possessing a more fallibilist and 
social contructivist (Ernest, 1992) philosophy of the discipline; one that views mathematics as a 
cultural product open to new interpretations, revisions and growth. Studies addressing Thompson's 
(1992) proposed research question, "How are teachers' beliefs formed?" might provide valuable 
insights when focused upon those who hold richer visions of mathematics. The second study to be 
reported here is an example of such a project. 
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Method In September 1992 Katerina's (a pseudonym) response to the initial course assignment 
revealed a conception of mathematics that stood in contrast to the toolkit view popular in her class. 
When a subsequent essay entitled "Why Teach Mathematics?" further developed this rich image she 
was recruited as a participant in an intensive study aimed at characterizing visions of mathematics, 
its teaching and learning, and identifying life experiences that might have contributed to these 
images. 

Katerina's conceptions of mathematics and her images of how the subject may best be 
taught and learned were explored through unstructured interviews focusing on her writing, her 
teaching practice observed during a Grade 10 mathematics lesson, and repertory grids. Repertory 
grid technique (Beail, 1985) involves the identification of pairs of contrasting descriptors, the 
constructs, that are employed to form linear scales along which a set of elements are arranged. The 
sets of elements for the four grids built by Katerina involved: school subjects; teachers of mathe
matics, real and imagined; mathematics lessons, real and imagined; and pupils. Factor analysis, 
performed by the computer program, Repgrid (Shaw, 1990) gave measures of the clustering of 
elements and constructs and helped surface some of Katerina's more hidden images of mathematics 
and its teaching. 

On the surface Katerina's academic career prior to the BEd year was not dissimilar from the 
nonn: elementary and secondary education in Ontario public schools, four years of university leading 
to a BSc with concentrations in chemistry and mathematics, and one year of part-time teaching. Thus 
a search for experiences that might have contributed to the fonnation of her different conception of 
mathematics required a more detailed examination. In a series of free flowing interviews, Katerina 
provided narratives of her mathematical experiences from her early pre-school years to her present 
position, 24 years later, as a faculty of education student. 

Katerina's writings, transcripts of all interviews, and the four repertory grids were analyzed 
to identify recurring themes. Repeated passes through the data were made to gather items under 
theme labels, to link features of Katerina's conception of mathematics to life experiences. 

Results Katerina's mathematical life has not been a series of exclusively positive experiences but 
through reflection she has used the good and the bad to build her image of mathematics and its 
teaching. "I did well all the way through but 1 definitely, in tenns of teachers, had ups and downs. 
It's just that having those bad experiences, almost drives me more. 1 have mental check lists that, try 
not to do this, try not to do that." 

For Katerina mathematics is a language which "did not develop apart from other activities" 
but has been built up as a "needed tool for relating, communicating and expressing infonnation." 
A consequence of this metaphor is that the meanings of mathematical tenns must be personally 
constructed as in learning one's native tongue. "I think that a lot can come through without 
necessarily putting a defInition up on the board. It helps to gauge how much the students already 
know by soliciting defInitions from their words versus getting trapped in the terminology." During 
her practice teaching, Katerina put these principles into action when students were regularly called 
upon to flesh out their answers and fully explain their reasoning to the whole class, while their peers 
were expected to carefully analyze and comment upon the arguments. 

This vision of vocabulary growth and Katerina's sensitivity to the exclusionary power of 
formal language have their roots outside of her mathematical experience. Being the child of recently 
arrived immigrants, Katerina's home language was Italian and she learned English through her 
introduction to Canadian schooling. In their interactions with the school system "my poor parents 
just felt totally inadequate. It is intimidating." Reinforcing these childhood recollections are 
Katerina's more recent experiences of similar emotions during an overly formal treatment of 
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mathematics. "First year calculus, ... I just thought, oh my God, what's going on, it's a new language 
and I decided to go to chemistry." 

The writing activities, repertory grids, and interviews make clear that for Katerina 
mathematics and problem solving are almost synonymous, but her deftnition of problem has evolved 
over the years. "I don't remember ever being excited about math Wltil I hit Grade T' when the teacher 
broke "the mould of the worksheets" and introduced problems; "mostly the word problems with 
money, you're going shopping, you've got so much money for candy, that kind of thing." This view 
was expanded by her experience in a Grade 11 enriched course with challenge problems, open-ended 
projects and no textbook. 

While practical applications still hold interest for Katerina, her experience in an exciting 
university synthetic geometry course expanded this view to include problems within the discipline 
of mathematics itself. "He was trying to get us so we could see things we had just assumed were true 
in a different light often and trying to get us to question why we just accepted certain things." It 
taught me "don't assume that everything is as I'm told it is, because there is a lot more work to be 
done and a lot more work that can be done." Since "math is not just a cut and dried system of sign 
and procedure but an intellectual way of making sense of the world," it follows for Katerina that her 
students should be "mathematically seeking solutions, exploring patterns and formulating con
jectures." However, Katerina realizes that there are rules to the game and she feels a tension between 
freedom and structure both in the subject and her planning of student activities. This view that there 
is an underlying logic that must be respected and her balanced position on student exploration 
appears to come from her Grade 11 teacher who, "had that binder, even though he seemed to be 
going everywhere." He "knew what he wanted to do with us but we always felt like we weren't 
structured. It was like he was discovering something new with us." 

To teach in such a style requires enthusiasm and intellectual commitment and fortunately 
Katerina found such traits in her Grade 11 mathematics and Grade 13 calculus and algebra teachers, 
and her professor of synthetic geometry. Each made her feel that "he was almost learning it also and 
let's try to ftgure this out together." While speciftc teachers and their mathematics courses 
contributed to the development of Katerina's commitment to the discipline, the roots of this 
intellectual curiosity can be found in her supportive family. Her parents, while not well educated 
themselves, provided constant support and gave the message that the pursuit of knowledge not just 
schooling was valued. The immigrant experience of having to "look at a lot of things in different 
ways" set Katerina apart from her classmates in Grade 1 and now in her BEd year appears still to 
separate her intellectually from other teacher candidates. 

Discussion 

"The single most compelling issue in improving school mathematics is to change the epistemology 
of mathematics in schools, the sense on the part of teachers and students of what the mathematical 
enterprise is all about." (Romberg, 1992, p 433). Unfortunately it would appear that the proponents 
of mathematics education reform cannot COWlt on the replacement of retiring senior staff by begin
ning teachers to change the epistemology of school mathematics. The toolkit view of the 
mathematical enterprise held by the majority of teacher candidates means the continuation of 
transmissive modes of instruction. Inservice work with these new teachers, once they have secured 
employment, is not likely to prove effective. Professional development activities are usually of short 
duration and reach only a limited portion of the teaching population. Underhill (1988) reports that 
there appears to be little change in teachers' conceptions with passing years in the classroom and 
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research shows that even an extensive series of university level mathematics courses delivered to 
practising mathematics teachers resulted in no significant change in beliefs (Bush, Lamb & Alsina. 
1990). 

Teacher certification programmes must be altered to encourage graduates who begin their 
teaching careers with richer visions of mathematics. This task cannot be left to a single course in 
mathematics pedagogy in the final preservice year but must involve the mathematics studied prior 
to the BEd programme. Of the 29 students in the 1991 class studied, only three had majored in 
mathematics during their undergraduate studies. The rest of the class, mainly science, computer 
science and engineering graduates, had studied mathematics as support for their primary discipline. 
Only six students had experienced courses other than calculus, elementary differential equations, 
introductol)' statistics, linear algebra, and numerical methods. Service courses addressing such topics 
are likely to promote a toolkit image of mathematics. Katerina's university experience with calculus, 
statistics and linear algebra were counter-productive to the generation of excitement about 
mathematics as a creative field. Only the synthetic geometty course had a positive impact. 

Increasing the Ontario mathematics teacher certification requirements from the present two 
full credits and fmther specifYing a range of topics would broaden student-teachers' experiences and 
could hopefully generate new images of the discipline. To ensure some familiarity with the syntax 
and substantive structures of mathematics (Schwab, 1964), the processes of enquiry and knowledge 
production in the discipline, regulations might require prospective mathematics teachers to study a 
course addressing historical and foundational issues of mathematics (Shenitzer, 1987). However 
change will require more than just an increase in university mathematics credit requirements. 

Mura (1993) has found that university faculty generally hold formalist views of 
mathematics that encourage presentations of the subject emphasizing abstraction, logic, rigour and 
symbolism. Such approaches are likely to encourage absolutist conceptions of mathematics among 
the student population, including those who will eventually be teaching at the secondary school level. 
University mathematics instruction must change to reflect a social constructivist philosophy before 
such views can be expected on the part of teacher candidates. 

K.aterina's stOI)' and the work of Bush et al (1990) suggest that student-teachers' views of 
mathematics are based more on pre-university experiences than on their university courses. Positive 
influences such as Katerina's supportive family and her problem solving focused Grade 11 course 
are not the results of personal choice and are not available to all those planning careers as secondary 
school mathematics teachers. Present elementary and secondary school programmes mean that 
potential mathematics teachers will continue to arrive at first year university with absolutist views 
of mathematics. It will require active promotion of alternate conceptions of the discipline by both 
those who teach undergraduate mathematics and those who teach mathematics education to graduate 
beginning teachers for whom the present reform proposals are a natural way to proceed. 
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Teaching According to Constructivist Principles 
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Introduction 

There are many books and articles on constructivism, but little on how this theory may be transposed 
into actual classroom practice. In this discussion group, some characteristics of a teaching/learning 
method which is consistent with constructivist principles was discussed. We shall call such a method 
AC (for Applied Constructivism). Of course there may be many such methods, so let AC stand for 
what is common to all of them. 

The following are some principles which seem to me to be an essential part of AC. To 
emphasize the applied aspect of this report, I have chosen to address it to an imaginary teacher. 

1. People learn best by doing and then reflecting on what they did. (Papert, Piaget, Dewey, 
Montessori). 

Verbal explanations can be effective mainly when they organize and summarize knowledge that 
students have already intuitively gleaned through previous or ongoing experiences. In general, 
listening to a lecture is an ineffective way of learning new stuff. 

2. A rich source of activities can be found in appropriate computer environments. 

For example, turtle geometry, function machine, Cabri or Geometric Supposer, Logo or INSETL 
programming activities. 

3. Good activities are engaging, open-ended and allow for many different solutions and answers. 

Such activities encourage creativity, exploration, problem posing and problem solving on many 
levels and in many directions. Poor activities are narrowly prescriptive, have only one route to the 
solutions and have only correct or incorrect answers. Contrary to the dictum found in many books 
on didactics, good activities often defy a simple clear-cut answer to the question "What is the goal 
of this activity?" 

4. Learners express their creativity and individuality through their work on the activities. 

It is important that we should educate ourselves to cherish this variety and self-expression. What we 
view as "the best" solution may often just happen to be the one that agrees best with our way of 
thinking. 

5. Cooperative learning is an excellent way to stimulate reflection on the activities. 

This includes small-group work, peer help and classroom discussions. In most cases, learning 
through activities is more engaging and more effective when done in a group rather than individually. 
It is very important to create a supportive climate in the classroom, in which students feel safe to 
explore, make guesses and learn from their errors. 

6. Activities over explanations: When preparing to teach some non-trivial piece of mathematics, 
it is more important for mathematics teachers to think up some good activities rather than just 
good explanations. 
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The activities are meant to build up an experiential base for the students. When the explanations 
come after the activities, and address the experiential base explicitly, there is a better chance that 
students will be able to make sense of them. There seems to be a strong temptation in all of us to 
explain too much too early. We should strive to resist this temptation. 

7. The principle of effective minimal help: The more independent the students become in finding 
errors in their own work and in correcting them, the more they will benefit from coping with 
these errors. 

This principle is especially powerful when applied to computer activities, where feedback from the 
computer often renders the teacher's intervention unnecessary. When you observe an error in your 
students' work, resist the temptation to point out the error prematurely and how to fix it; in most 
cases the students will come to a solution on their own a little later. 

Even when students explicitly ask for help during computer activities, try not to solve their 
problems for them, Instead, help them gently and sensitively to solve the problem on their own, by 
helping them clarify their thinking or by giving appropriate heuristic advice. A good rule of thumb 
is that in such a dialogue most of the talking is to be done by the students, not the teacher. Another 
rule of thumb is that asking questions is preferable to making statements. When appropriately 
practiced, this principle enhances students' learning as well as their independence and self
confidence. 

(On the other hand, not all errors are worth fussing about. In some cases, when a particular 
error seems to distract students unduly from their main task, you may decide to help them more 
actively to get rid of the distraction.) 

8. The principle of successive refinements: Complex concepts are not learned in one shot but 
through a sequence of successive refmements. 

Finding errors and fixing them is where most of the learning occurs. We should educate ourselves 
and our students to believe that errors and their analysis are the stepping stones to the next stage in 
the learning process. 

More generally, how should we approach the teaching (or learning) of a complex piece of 
mathematics, such as a concept or a proof? The standard model of dealing with complexity 
advocates decomposing a topic into a linear sequence of tiny "atoms," then proceeding along the 
sequence, mastering the atoms one at a time. The problem with this approach is that students in most 
cases will not see the forest for the trees: it is difficult for them to know where they are going and 
why they are learning this particular atomic piece at this particular time; and when they fmish, they 
seldom have an integrated view of the complex topic that originated the whole sequence. Clearly this 
way of dealing with complexity is not conducive to humane and insightful learning. 

The principle of successive refmements offers a viable alternative for dealing with 
complexity. One starts with a simplified version of the phenomenon under study, and refines it 
successively to include more and more details, subtleties and precision. Through the entire process, 
the student constantly deals with the whole picture, though it may be vague or imprecise in the 
intermediate stages. 

This principle has its roots in the work of Pia get and Papert, and in computer science. Piaget 
has contributed the notion of mental schemes and their successive updating by assimilation and 
accommodation; Papert has demonstrated the great power of computer programming as a medium 
for learning by successive refinement; and computer scientists have explicitly talked about program 
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development by successive refmement, though with a much more restricted meaning than the one 
used here. 

9. Constructing versus discovering: Learning by construction is not the same as learning by 
discovery. The activities are meant for the student to establish an experiential base in some 
topic, not to discover the correct answers. 

Through the activities, students become familiar with the complexities and intricacies of a problem 
or a concept, even if in a vague and incomplete way. When the topic is finally discussed in the class, 
it will appear to the students as a summary of a familiar situation, rather than as a totally unknown 
and alien topic. 

In this approach, it is not expected that all students will always discover the "correct" 
answers. However, it should be acknowledged and explicitly discussed with the students, that this 
state of affairs may cause frustration; indeed that a certain amount of "constructive frustration" is 
inherent in any serious learning effort. Experience shows that when frustration is acknowledged and 
legitimised-and held with reasonable bounds-then students are willing to struggle. 

10. The recursive call: Learning to teach with the constructivist approach-constructively: 
Educating yourself to use the constructivist approach in your learning and teaching is a non
trivial and lengthy learning experience which can only happen through a sequence of successive 
refmements. 

When things do not quite work the way you expected, remember that errors are just the stepping 
stones to the next refinement. Likewise, having someone read this document is not a good way to 
introduce them into AC; it would be better to go through some learning experience conducted 
according to the principles of AC, and have these principles emerge by reflection on the learning 
experience. This document is therefore more appropriate as a summary than an introduction. 

Let us end with a meta-principle: Use the principles in this document (including this one) 
only as heuristic advice on the way to fmding your own individual expressions as a teacher. Beyond 
everything else, your educational philosophy is a state of mind, not a way of behaving. Avoid paying 
behavioural lip-service to this or any other set of rules. 
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Introduction 

Goldenberg (1989) describes a view of the mathematics educational experience that encourages 
knowledge generation by Teamers. From this view mathematics 

can be the most freeing of subjects, a game in which the player is free to invent any set of 
playing pieces, rules, and constraints, and then reason out or observe the consequences of 
these choices. It is a game whose players frequently use the words elegant and beauty, and 
whose beauties are both visual and intellectual. Yet we show little or none of this to our 
students. (p 170-1) 

Underlying this approach to mathematics education is a different view of cognition than that which 
is generally associated with mathematics education, that is, the representationist stance. From the 
representationist stance "The world is pregiven ... its features can be specified prior to any cognitive 
activity. Then to explain the relations between this cognitive activity and a pregiven world, we 
hypothesize the existence of mental representations inside the cognitive system" (Varela, Thompson 
and Rosch, 1991, p 135). Action in the world is based upon these cognitive representations. The test 
of these cognitive representations is correspondence to the appropriate features of the world. 

In discussing the representationist point of view Varela, Thompson and Rosch (1991) state 
that "the realist naturally thinks that there is a distinction between our ideas or concepts and that 
which they represent, namely, the world" (p 136) while "the idealist, on the other hand, quickly 
points out that we have no access to such an independent world except through our representations" 
(p 137). Both stances require a search for a ground. For the realist the ground is external while the 
idealist searches for an internal ground. The idealist, by rejecting the idea of an independent world, 
is left without a sense of an outer ground. 

Varela, Thompson and Rosch (1991, p 140) describe an alternative approach to this 
searching for a ground internally or externally. From this perspective, called "enaction", the world 
is enacted "as a domain of distinctions that is inseparable from the structure embodied by the 
cognitive system". The world is not completely independent nor is it dependent. It is not purely the 
construct of our own thoughts or perception but is enacted by our structure. Thus it is not an 
independent entity 'out there' nor is it the internal construction of individuals. It is the interplay 
between the internal constructions and the structure. 

This stance challenges the Cartesian dualism separating mind and body, student and task 
which is a very representationist one relying on the notion of an external and an internal. This idea 
is at the core of numerous research programmes in regard to mathematics and computers in edu
cation. But what if we were to see education differently? What if we were to envision some way 
without this separation? 

Varela, Thompson, and Rosch (1991, p 149) propose embodied action or enaction in which 
"knowledge depends on being in a world that is inseparable from our bodies, our language, and our 
social history-in short, from our embodiment ... We must see the organism and environment as 
bound together in reciprocal specification and selection" (p 174). The organism and world mutually 
specifY each other, each enacting the other. They are said to codetermine each other. The system's 
(organism's) behaviour is determined by its structure and history of interaction in the environment. 
A path of action is laid down by the mutual specification of an organism acting on and in the world. 
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Implications for Education and Research 

The meaning of instruction is codetemrined by students in context. The structure and meaning of the 
'information' is codetennined by students in the setting. Students structure their activities according 
to their perceptions of the medium and based upon their experiences and personal history. 

There is no "transmittal infonnation" in communication. Communication takes place each 
time there is behavioral coordination in a realm of structural coupling ... Each person says 
what he says or hears what he hears according to his own structural detennination ... From 
the perspective of an observer, there is always ambiguity in a communicative interaction. 
The phenomenon of communication depends on not what is transmitted, but on what 
happens to the person who receives it. (Maturana & Varela, 1987, P 196) 

The focus of educational encounters then must be the actor in the educational context. The student 
who takes action brings forth a world. The meaning of the actions is codetermined by the students' 
structures and history in the medium. The medium codetermines with the student a sphere of 
behavioural possibilities in which the student may take action (or may not, dependent upon the 
student). Together, through educational contexts and codetermined actions, students and teachers 
can bring forth worlds. These worlds might seem exploratory, expressive, manipulative or mathe
matical to an observer. But it is the actors in the media who codetermine their true meanings. 

In the chaos theory study students saw themselves in the process of generating mathematical 
ideas. The nature of these students' activities was codetermined by students' perceptions of them
selves in the roles they created for themselves, through their perceptions of the activities, and 
through students' perceptions of the environment through which they generated their experiences. 
The students brought forth these meanings through their activities and interactions within the 
computer-enhanced medium. Ihde (1979,1993) described technical experiences of technology as 
1) relating through a machine to the world, and 2) relating to a machine as something in the world. 
Students in the chaos theory environment related to their mathematical explorations through the 
computer and related to the computer interface as the focus of their attention watching the cobwebs 
generate and iterate gaphs being drawn, in short they had technical experiences of the computer. Ihde 
also describes nontechnical experience of technology in which the computer is active as backgound. 
However, later in the activities students primarily used the computer as an environment in which to 
create mathematical ideas (in generating a chart of values which led them to generate bifurcation 
diagrams), and thus this nontechnical experience of the computer is evident. 

Ihde (1979, P 56) discussed the "amplification-reduction-transformation" of technology 
through which "technologies bring with it a simultaneous amplification of certain possibilities of 
experience while at the same time reducing others". The technology, in this case the computer, 
selects from the human sphere of behavioural possibilities and amplifies some activities while 
reducing others. For the students in this study the experience of generation of mathematical ideas 
was amplified through their experiences with the cobwebber and spreadsheet. Educators exploring 
computer environments with their students need to examine what types of activities are amplified 
by interaction with the environment and what types of activities are reduced. This determination can 
only be done by interacting with students as they explore the medium. This will allow educators to 
balance the activities, hopefully providing a more inclusive view of computing and broader 
applications and usage of skills and concepts than traditional narrow definitions of computer 
applications. 

The chaos theory study traced students' interactions with the cobwebber and spreadsheet 
progams. The way students interacted in this enviroment were through/with the computer and with! 
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in the mathematical context. Students enacted the computer environment in this context as an 
exploration environment through which they could develop mathematical ideas. The computer 
environment, including hardware and software, facilitated particular types of explorations and 
activities by its structure, like the generation of a series of cobwebs from which generalized 
statements about the action of a cobweb could be made. It enframes students' activities to a 
particular range of activities delimiting the types of input students could enter. However within that 
range the computer environment freed students to try many values and to draw repeated cobwebs 
they may not have tried if the computer environment were not available. Thus the computer 
environment both empowers and enframes students' activities. 

The chaos theory study provided an overview of several computer programs for the 
exploration of mathematical concepts in the field of non-linear dynamics and chaos theory. The 
environment provided by these software packages was brought forth by Barnes (1994) through inter
actions with it. Each package provided particular features which made aspects of the mathematics 
salient. The computer programs, taken together, generated a space for exploring and generating 
mathematical concepts consistent with the field of non-linear dynamics. Students demonstrated 
taking action within computer environments building mathematical meanings. By interacting with 
these students, by watching what they did, how they explored, and by having them record their 
activities, findings and perceptions, it was possible to get some sense of their enacted meanings in 
the context. Their writings revealed an experience of this computer medium through mathematical 
actions. The medium seemed to be of mathematical significance to them. They noticed patterns and 
the lack of patterns, developed understandings of the context, and enacted this environment through 
explorations and interactions. They noticed the approach of a fixed point, cycles of activity when 
iterating, and chaos. However these students wondered what happened when fl > 4. Was another 
type of behaviour other than chaos evident? They also wondered about values of fl < O. What effect 
would this have? They wondered what effect input values of x, other than 0 <x < 1, might have. In 
particular they wondered about negative values. Students were introduced to fractal geometry in the 
study. They were interested in the connection of their non-linear dynamics mathematical explorations 
to the study of fractal geometry. Many fractal packages exist which use iterative functions to 
generate fractals. These could also be explored by students to extend their mathematical activities. 

If the patterns revealed through each of the studies characterizes human-computer inter
action in this context, then the role of the teacher, the student, the environment, the curriculum and 
the computer changes. The effect of each is codetermined by the context in which activity takes 
place. The teacher's role changes from provider of information to facilitator of exploration, becom
ing a learner and explorer with the students. The students' activities take on new importance as these 
are the ways that students experience and generate new meanings. The environment mediates the 
activities of students so it must be considered in educational decision making and educational 
research. The curriculum becomes that which is enacted by students immersed in a context. New 
pedagogic concerns will undoubtedly emerge from student and teacher involvement in computer
enhanced contexts. These become places for further research. 

Conclusion 

An enactivist stance is an alternative to a representationist stance. "The autonomy of the living being 
[must] be given its full place" (Maturana and Varela, 1987, p 253). This stance is a view of 
knowledge which is quite different from that usually found in the domain of cognitive science. This 
stance to cognition has broad implications. If we cast out our representationist views then what is 
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research? What is instruction? What is educational experience? If this non-representationist view 
takes the sense-making capacity of autonomous living systems as its focus then research agendas 
and educational endeavours must take new fonns. This stance implies the need to look deeply at our 
own practices and change them to encompass this broader view. This focus toward change will 
engage us in action, bringing forth a world of research and education from an enactive stance. 
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Mathematical Modelling 

The principle thrust of this paper is that mathematical modeling is one of the main links between 
problem solving and applications of mathematics. Problem solving is like an empty vessel and 
people fill it with anything they want. It really means different things to different people. However, 
the process of analysis and synthesis is the central notion in the strategy of problem solving. 

Cmriculum and Evaluation Standards for School Mathematics (NCTM, March 1989) states 
problem solving is one of the primary goals of teaching mathematics at all grade levels. Standards 
also states that cmriculum should include broad applications of mathematics to the real world. How 
can these two objectives be achieved? In my view further refinement and extension of problem 
solving should include the Process of Mathematical Modeling as shown below. 

Problem ~( _~) Mathematical ~( _~) Applications 
Solving Modeling 

This will make applications of mathematics real and reachable in the context of school curriculum 

What is Mathematical Modeling? 

The process of forming and using Mathematical models is an evolutionary process that takes place 
in steps. The suggested steps are: 

l.Identification of a real-world problem. 

2. From the real world to the real model-some real world realizations of the problem. 

Real ) Verbalize & 
World Simplify 

j 

3. From the real world to the classroom model. 

c;;Jeal --~) 
Model 

Simplify further 
and reset 

~--------------~ 

) 

) 

Real 
Model 

1 

Classroom 
Model 
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4. From the classroom model to the Mathematical model 

Classroom ~ 
Replace words with ~ Mathematical 

Model symbols and Model 
expressions, for 
example, equations 

5. From the mathematical model to the conclusions. 

Apply mathematics 
Mathematical ~ educe, analyze, ) Conclusions 

Model 
solve, evaluate 

6. From conclusions to wherever you started. 

1 Conclusions 1---+) 1 Test and use 1 t '---_R_e_al_W_Orl_d_-t 
r- Real Model 

Classroom model 

The usefulness of a model depends on the appropriateness of the simplifications and on the accuracy 
of the mathematical applications. Sometimes models lead to false conclusions based on faulty data 
or observations. Some models, though not perfect, prove to be useful. Most people use a very crude 
and inadequate model for predicting the weather. They look up at the sky and make a judgement, for 
example, about whether or not to take an umbrella to work. Meteorologists collect data on present 
and past weather conditions to make predictions which can prove fallible. The real message is to 
refine and improve models frequently. 

The six stages of mathematical modeling are illustrated below. 

Stage 1 Stage 2 Stage 3 

I Real World }t------.......,.~ Real Modelt--~----iI ~~ Classroom Modell 
I~ ! 

Stage 5 Stage 4 

L-....--------t: Conclusions l~I:(-----t Mathematical 
Model 
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Problems in the real world are often too complicated to deal with mathematically. A very important 
step in the model-making process is to decide which aspects of the problem can be ignored in order 
to make the problem simpler. Of course, there is always the danger of ignoring something important, 
and then the resulting model may not be useful. 

What is the difference between problem solving and mathematical modeling? 

Mathematical modeling is a type of problem solving. Although mathematical modeling shares 
characteristics with problem solving, it is distinctly different. Frequently, in a mathematical 
modeling situation, a phenomenon that is seemingly non-mathematical in context must be modelled. 
This may be an event in the realm of politics, such as predicting election results; or even of ecology, 
such as future growth patterns of a forest. These events should be interpreted as problems in the con
text of mathematics. 

Thus, mathematical modeling is a systematic process that draws on many skills and employs 
the higher cognitive activities of interpretation, analysis, and synthesis. 

The modeling process is composed of four main stages: 

I. Observing a phenomenon, delineating the problem situation inherent in the phenomenon, and 
discerning the important factors (variables/ parameters) that affect the problem. 

2. Conjecturing the relationships among factors and interpreting them mathematically to obtain 
a model for the phenomenon. 

3. Applying appropriate mathematical analysis to the model 

4. Obtaining results and re-interpreting them in the context of the phenomenon under study and 
drawing conclusions. 

These stages can be schematically represented in the form of a closed cycle: 

Real-world t---------------~ '" Mathematical 
Phenomena observation , Model 

J interpretation 
formulation 

application analysis 

.... " 
Conclusions Mathematical 

~----------------------------~ Predictions I' Conclusions interpretation 
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A fifth stage could also be added to this process, the testing and refmement of the model. Are the 
conclusions usable? Do they make sense? If not, a re-examination of the model's factors and 
structure is called for and a possible refonnulation of the model may be necessary. 

Broad Levels of Applications 

Pamela Ames of the University of Chicago Laboratory Schools has categorized mathematical 
applications into four broad levels as follows: 

LevelZero These are a large collection (mostly mental) of very short statements consisting mostly 
of references or allusions to uses of mathematics. They are used in class when we are dealing with 
a particular idea. Just make plain remarks to use even if applications are not actually being 
considered or planned for a lesson. Examples: 

(i) Lesson on vector sum 
Remark: Airplane pilots use vector sums for everyday trips. 

(ii) Lesson on congruence 
Remark: congruence is the basis of all mass production. 

Most of the level zero statements are complete in themselves; once you have mentioned them there 
is essentially nothing more to be said or done. The purpose is to keep the real world in contact with 
the classroom. However, these short statements do not just arise automatically; you have to 
constantly look for them and plan their appearance during instruction. Try this resolution: one 
remark per unit or lesson. With effort and time, one can develop a large enough bank of these 
statements to make at least one such remark a day. 

Level One These are the so-called story or word problems. They are short, self-contained, artificial, 
real-world [sic] situations that usually pose a question that has a single solution or an easily 
obtainable defmite number of solutions. Nonnally the "search model" is a linear or a quadratic 
equation which is readily available. Textbooks and teachers do a fairly adequate job in this area 
though most of the problems posed are rather artificial and remote. 

Level Two These are entire lessons built around a single real world situation and may take from one 
to five class periods to complete. A single situation is investigated in depth using many different 
mathematical techniques. It is this level of application which is most important and the most 
neglected. In this application stage, the plan is to work long enough within one situation to see 
mathematics as a resource to build understanding of the situation rather than mathematics as a tool 
to carve out answers to specific questions. An example of a Level Two application may be: 

(i) building a garage or swimming pool 
(ii) cost estinntes, drawing floor plans, etc. 

Level Three These are open-eneded investigations. They are simply fertile ideas that I have not 
really dealt with yet. Most of these I have never used with a class as I rarely take a whole class on 
an entirely open-ended investigation. I rather save them for individuals who are ready to strike out 
alone or in small groups. 
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As a teacher I place these situations that I would like to do something with. But when these ideas do 
get investigated, I will get some Level Zero, One, and Two materials from the results [sic]. 

The purpose of this paper is to focus on Level Two and/or Three Applications through the process 
of mathematical modeling. This goal can be accomplished if we take a problem solving strategy 
which utilizes a wide variety of applications and uses of mathematics. You have to constantly look 
for ideas. The problems given below are chosen to show how mathematics can be applied, problem 
solving skills developed, and incidental learning in another area incorporated. 

An Dlustration of Mathematical Modeling 

PROBLEM #1 SIZE OF WILDLIFE POPULATIONS 

Stage 1 - Identification of a Real World Problem 
How to Estimate the Size of Wildlife Populations 

Stage 2 - From the Real World to the Real Model 
Some realisation of this Problem 

1 How many fish in a pond? 
2 How many trees in a given forest area? 
3 How many chips in an envelope? 

Stage 3-From the Real Model to the Classroom Model 
Some Ways to Solve the Problem 

1 By actual counting. But this method is tedious, time consuming and impractical. Example: 
catch all the Eve fish in a pond and count them. One way is to drain the water and count the 
fish. However, the end result is dead fish. Ends would not justify the means. 

2 Reducing the problem to a situation which is solvable (that is, situation closer to reality). 

Stage 4 - From the Classroom Model to the Mathematical Model 
Defining Parameters of the Problem 
How many chips in this envelope? 
What is n? (n = number of chips) 
Do the following tasks: 

1 Select 10 chips, mark them and return them to the envelope. 
2 Shake the envelope, select any 15 chips; record the number of marked ones; and return all 

of them to the envelope. 
3 Shake the envelope and repeat (a total of 10 times). 
4 Record your observations in the form of a table. 

Stage 5 - From the Mathematical Model to the Conclusions 
A Suggested Solution: 

Defmed Variable: 
n : total number of chips in an envelope 
y : number of chips marked 
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q : number of chips taken out each time 
y : mean of the marked chips for x trials 

Given y , q and y , we can calculate PI using: 

1::.=1::. 
PI q 

The table gives the values for y, q and y for ten trials. 

Trial Number Marked: y = 10 

1 3 
2 2 
3 2 
4 2 
5 1 
6 1 
7 1 
8 1 
9 1 
10 2 

Total 16 

y = 1.6 

Using y = 1::., we have 
" q 

10 1.6 

PI 15 

=> PI = 93.75 = 94 

Don Kapoor 

Number Selected: q '" IS 

15 
15 
15 
15 
15 
15 
15 
15 
15 
15 

It is interesting to note that the exact number of chips in the envelope was 100. The answer of 94 
is a reasonable estimate to the real situation. However, if the experiment is repeated a number of 
times, the answer will be closer to 100. 

Stage 6 - From Conclusions to Wherever You Started 
Can This Problem Help Us to Solve the Original Problem? 
Surely, applying the same strategy on a pond problem or taking samples of the various regions of 
a forest. 
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Some Questions for Class Discussion: 

1. What concepts do children learn in solving the problem? 
2. Can this strategy be applied to other problems? Brainstorm 
3. Is this strategy too specific or too general? Some variations or applications of this strategy? 

Exercises for Discussion 

1. Problem: Yellow Traffic Lights 

What is the duration of the yellow light at a traffic intersection? 

How is the duration of the yellow light detemined? 

Math concepts required. velocity, acceleration 

Specific Problem 

Find a minimum safe duration for a yellow light in an 80-foot intersection. The intersection lies in 
a 45 kph speed zone. 

Model 

Two equations from physics will be needed to solve this problem: 

Equation # 1: 

Equation #2: v2 = v; + 211.% 

% = distance 
a = acceleration 
v = velocity 
t = time 

v 0 = initial velocity 

2. Problem: Facility Location 

Description o/the problem 

A big controversy erupted in Carlisle, Pa., because the ABF Trucking Company wanted to build a 
new terminal that was to be the biggest in the nation. The residents of the area were fighting the new 
terminal because they felt that it would create too much air and noise pollution. This is an example 
of one problem that many businesses face when establishing a new location. 
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Many factors must be considered when a company opens a new store or plant. One of the most 
important considerations is where to locate the facility so that the distances travelled by suppliers 
and customers, or the distances its product must be shipped, are kept to a minimum. A company can 
save thousands of dollars every year by properly locating its facility, since the cost of shipping 
products today is so high. 

Mathematics concepts required: Simple geometry and graphing 

Specific problem 

This type of problem requires geometry in its solution. To get an idea of the mathematics involved, 
we will consider a simpler type of problem in which we decide where to locate a school-bus shelter 
for a group of seven students living along a road. Suppose one student lives in each house. The 
distances between their houses are given below. A school-bus-stop shelter is to be erected for the 
students to share while they wait for the bus. Determine where the shelter should be located so that 
the total distance the seven students have to walk is the minimum amount. 

A B c D E F G 

SOO' 100' 200' 150' 300' 50' 

Questions for Discussion 

1. Does mathematical modeling mostly involve discrete mathermtics? 

2. Why incorporate mathematical modeling into the secondary school curriculum? 

3. How can mathematical modeling be incorporated into secondary school mathematics teaching? 

4. How can a teacher prepare to undertake modeling exercises with students? 
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Introduction 

Recently, Alberta Education invited Harold W. Stevenson to administer his Asian-American high school 
mathematics tests to a sample of Alberta schools. In retrospect, the sampling reflected practical necessities 
and it could be questioned However, the Alberta sample approximated the nwnbers of students in our three 
different levels of high school mathematics. It also represented an appropriate urban-rural mix. Teachers in 
the sample schools claimed, one year later, that the students seemed to take the test seriously and they had 
no reservations about the test accurately representing the students' best efforts. 

An important concern about the test itself is that Alberta students might have given up in the face 
of so many questions that they could not answer. However, as we shall see, the first ten questions of the test 
were mainly arithmetic and would have allowed most students to get a good start. Even on questions that 
students did incorrectly, they may well have thought that they had done them correctly. These were questions 
that could easily have been misinterpreted. 

I make these initial statements because the results on the tests do not show Alberta mathematics 
education in a very good light. Although the testing and sampling situations, as in many international studies, 
are not ideal, they are reasonable. We are not alone but part of a North American phenomenon, as seen by 
the distinctly parallel nature of the Alberta and American data (see Graph 3). This parallelism also gives 
confidence that the North American mathematics education scene was fairly represented. 

An Interpretation 

On seeing the achieve
ment data, the reader is 
immediately drawn to 
asking why there are 
such differences. There 
is no simple message. 
Stevenson (1992), of 
course, realizes this as 
much as anybody. To 
this end, he included in 
the testing student self
report data on the stu
dents' family back
ground, study habits, 
out-of-school activities, 
views on schools and 
teaching, and general 
demographic infor
mation. The present 
paper presents some of 
the data that is already 
fairly well known in the 
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literature but more importantly the intention is to interpret what this data means to teachers, schools, 
educational ministries and our society. 
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Mathematics Achievement 

All testing was done at the end of the grade eleven year. The questions asked represented a negotiated 
selection of questions that were relevant to the North American and Asian scene. For example, few questions 
on calculus or three-dimensional geometry were asked, although these are a significant part of the Asian 
cmriculum. Although the graph in Figure I includes school averages from six different sites, our observations 
are limited to Alberta, Sendai, Taipei and the two American sites. In this graph, the distribution of school 
averages, namely the Alberta cluster versus the wide range of Sendai schools, results from every Alberta 
school having a full range of students while Sendai schools are differentiated academically. The more 
important pattern in the graph is the average scores for each site. Table 1 shows the scores out of a possible 
forty-seven questions. 

Site Alberta Minneapolis Sendai Taipei 

School Average 11 14 22 23 

Table 1: Average nwnber of mathematics questions correct out offorty-seven 

Alberta scored around eleven, Minneapolis around fourteen while Sendai and Taipei were approximately 
twenty-two and twenty-three respectively. It: as in traditional scoring of items, the frrst ten questions (easiest) 
were weighted one, the next ten, two, the third ten, three, and the fmal seventeen questions, four, then the 
Sendai and Taipei scores would have been around thirty-three. In this case, the achievement differences 
would have looked even greater. 

In Graph 2, two observations are noteworthy. The steepness of the right-hand side of the Alberta 
curve means there were few high-achieving (even for Alberta) students. Although the Taipei curve is bimodal 
(representing students in non-academic and academic schools) the non-academic group in Taipei has a mean 
higher than both Alberta and the American sites. 
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Graph 3 shows the consistency not only across five mathematical topics but also between the North 
American sites and the Asian sites. (Fairfax County is not typically North American but it also fits the 
pattern.) The conclusion from the three views of the data presented above is that Asian students score con
sistently and significantly higher on these mathematics tests. We now look at what these differences mean. 
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Social, cultural and schooling comparisons 

Many social and cultural factors represent differences between countries that are independent of schooling. 
However, many differences between Asian and North American students are in areas in which the school 
might be able to exercise some control. 
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Student responsibility for learning Graph 4 shows that North American students believe that teaching 
rather than students' individual effort contributes more to student achievement. Where do they get this idea 
from? Similarly the number of hours students spend on studying suggests that Asian students in general take 
this aspect of learning more seriously (Table 2). Besides this, Asian students also spend more time in 
organized tutorials outside class time. Graph 5 shows that North American students (especially Alberta 
students) are much more likely to miss school. 

Site Alberta Minneapolis Sendai Taipei 

Hours studying 9.3 hours 12.4 11.4 16.6 outside school 

Table 2. Mean hours of study outside school per week 
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Graph 5: Number of days absent in the semester 

A final item in this category refers to ability. Two questions were asked: 

Days absent 

Days absent 
without excuse 

Sendai 

Natural ability: The tests I take in school can show how much or how little natural ability I have? 
Same ability: Everyone in my math class has about the same natural ability in math? 

Graph 6 shows that North American students, more so than Asian students, think both mathematics test 
scores reflect the natural ability of the student and that not everyone in their class has the same mathematical 
ability. While these are not absolute measures, both beliefs show North American students think "natural 
ability" plays a more significant role in mathematics achievement than other factors. 
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These four sets of data suggest that North American students do not take their own responsibility for learning 
very seriously. They are more likely to attribute success to good teaching and ability rather than to the 
individual's time and effort in study. While some of this lack of assuming responsibility is due to societal 
factors such as students having to work, some part of it can be attributed to the student's view of learning, 
a view that is, perhaps, reinforced by their teachers, namely that individual effort is not a key factor in 
learning. This whole area is one in which classroom teachers might influence students. 

Learning Expectations The Stevenson data in the area of student attitude in interesting. Surprisingly, in 
view of the achievement scores, Stevenson fmds that only 30 percent of North American students are 
dissatisfied with their academic perfonnance while approximately 80 percent of Asian students are 
dissatisfied. Also North American students are more likely to think that the school and the teacher are "doing 
a good job." When asked how they are "doing in mathematics," North American students respond very 
positively compared to Asians. As well, they rate their mathematics teacher much more highly that do Asians. 

The student attitude data suggests that North American students are living in an unrealistic world 
of feeling they know a lot of mathematics and that things are going along well in their mathematics education. 
In comparison to the Asians, North Americans have set low expectations for their students. In fact, one 
general conclusion from this and other Asian comparisons is that our North American students could be 
learning much more mathematics than they currently are. This begs the question of whether our teachers are 
indeed as satisfied as are our students with the mathematics students learn in our high schools. 

Other factors Although we have singled out student responsibility and learning expectations factors from 
the Stevenson data, we will mention other data from this and other studies which are not as directly related 
to the classroom. The list comes from Lynn (1989): 
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1. In Asian cultures, families provide a "nuturant and protected atmosphere" for learning. Elsewhere, 
Stevenson (1992, p 11) has said that Asians believe that the "avenue to success, as it has for hundreds 
of years in Asian cultures, lies in becoming a learned person." 

2. External incentives. Entrance to the best high schools and universities are based on achievement. 
3. Curriculum is centrally organized in a country like Japan. In this way, expectations for students are 

higher. 
4. Greater time is spent in schools, in hours per day and in days per year, in learning mathematics and much 

more out-of-school tutoring occurs for students at all levels of schooling. 
5. Teaching methods. While teaching methods were not part of the present study, Stevenson's video 

"Polished Stones" reports that teachers spend much time preparing lessons and teach in whole group 
sessions to larger classes than is typical in North America (Stigler and Stevenson, 1991). 

The first four "other" factors suggest that learning in general and mathematics learning in particular are 
highly valued in Asian society. The teaching-methods factor may simply be a consequence of Asian students 
coming to school prepared to learn and to take some responsibility for that learning. 

Mathematics Learning 

In presenting the above data, the parallels between the Alberta and American students have served to 
reinforce the consistencies of the comparison. I would now like to look at only the Alberta results on the 
mathematics achievement test in an effort to understand qualitative differences between the mathematics 
learning of Alberta and Asian students. It isn't simply that Asians did, at least, twice as many questions 
correctly but rather that there are qualitative differences in the questions on which Alberta students did 
poorly. Our hypothesis is that many questions required a certain "mathematical maturity" which was beyond 
Alberta students. The 42 of the 47 items, that we have chosen to comment on from the achievement test, fall 
into four categories: 

A. Questions judged not to be in the Alberta curriculum - 14 questions. 

B. Questions which 60% or more of Alberta students did correctly - 10 questions. 

C. Questions which 40% to 60% of Alberta students did correctly - 8 questions. 

D. Questions which fewer than 10% of Alberta students did correctly - 10 questions. 

The remaining 5 questions (for which achievement levels are between 10% and 40%) will not be commented 
upon here. 

A. Non-curricular questions These questions underscore the reality that some of the poor achievement 
of Alberta students is due to neither the students nor the teachers but rather to the curriculum expectations. 
An examination of the 14 questions in this category indicates that Asian students in the eleventh grade study 
calculus, three-dimensional geometry, plane geometry of the circle, slope of a quadratic curve, the sum of a 
geometric series, some aspects of the trigonometry of the right angle triangle, the intersection of two 
parabolas, vectors, complex numbers, logarithms, and the trigonometric functions. 
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Even this partial list is a vel)' impressive segment of mathematics to which our grade eleven students 
are not being exposed. The low scores on the achievement tests which we have just reported, generally, 
indicate that the quality of mathematics learned is low. This list of topics indicates that the quantity of 
mathematics learned is also low. To some extent this situation is due to less time being spend on mathematics 
in Alberta schools than in Asian schools. It does serve to reinforce the point that our expectations, that is our 
curriculum standards, for our grade eleven students are low compared to other countries. Our provincial 
department of education, responsible for setting these standards, must assume responsibility for this state 
ofafIairs. 

B. Questions with 60 % or better achievement For the most part, these questions are arithmetical in 
nature. Typical examples are 

6. Cloth is sold by the square metre. If 6 square metres of cloth cost $4.80, how much 
does 17 square metres of cloth cost? 

9. Write 3.225 x 105 in expanded form 

The only algebra question in this category was to evaluate a quadratic at x = 2. For the most part all of these 
questions could be done by average grade nine students. 

C. Questions with between 40% and 60% achievement Questions in this category were of four types. 

1. More difficult arithmetic questions such as 

13. The price of a product was $100. The price was fIrst raised by 10% and then lowered by 10% 
of the new price. What is the price of the product now? 

This is a simple percent question requiring a two step procedure. At least one grade eleven student, 
interviewed separately, was able to multiply 100 by 0.1 in his head. Many cannot. 

2. Simple algebra questions given in a verbal statement 

12. On a number line two points A and B are given. The coordinate of A is -3 and the coordinate 
ofB is 7. What is the coordinate of point C ifB is the midpoint of line segment AC? 

Mathematically, this is a very simple question requiring knowledge of only the numberline and midpoint of 
a line segment. This question provides some problem in reading. First of all, fmding the midpoint between 
two points is a standard type of exercise in beginning coordinate geometry. This interpretation would lead 
students astray. A second difficulty would be in incorrectly assuming the unknown point, C, was to be the 
midpoint rather than the end point. 

3. An algebra question given in an unusual format: 

aX 
19. If - - 1 = 0, thenx=? 

a 3 
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A more straight forward question involving the same mathematics such as, 

aX 
19. If - • 1, thenx=? 

a 3 

would have been much easier. Seeing the unusual expression, a ratio of exponents, in an unusual 
circumstance made the question more difficult to answer. 

4. A fourth type of questions which was answered by only half of the students was a sketch of a basic 
quadratic equation. 

29. Sketch the graph of the equation y • x 2 + 1 

The low score of this question suggests that grade eleven students cannot sketch simple graphs. Perhaps if 
they had been asked to plot the graph, they may have done better. Infonnal methods such as sketching are 
difficult for students who are used to performing only mathematical procedures. 

In this category, the mathematics (algebra) was not the difficulty. The multi-step nature of the 
questions, somewhat lengthy verbal statements of algebraic relationships, atypical contexts for the algebra 
questions and infonnal methods contributed to half of the students incorrectly answering the questions. 
Although sketching a graph is not given high priority as a mathematical outcome in grade eleven, it is 
normally discussed as a method for understanding quadratic equations. If students have exposure to this 
method, the sketch question should not have been a difficult question. 

D. Curriculum questions answered correctly by fewer than 10% of students These questions are very 
difficult for these grade eleven students. Although one or two of the questions in this category could be 
identified as difficult mathematics. Most of these question require some interpretation and transfer of 
knowledge to situations that were non-routine. We have categorized these questions into three types. 

1. Simple questions that were mis-read. The most interesting of these is 

5. If it takes 12 minutes to saw a piece of copper pipe into 3 pieces, how long would it take 
to saw it into 4 pieces? 

An unthinking response is to generate ratios based on the numbers in the question. A possible explanation 
for the low number of correct responses to this question is that Alberta students do not expect to have to 
interpret questions on mathematics tests. If they had stopped to draw the picture many more would have done 
the problem correctly. Another of these is 

25. Find all the roots of x 3 
+ 2x2 + x = 0 

The two factoring procedures in this question are dealt with in the introductory stages of factoring. We 
sunnise that the cubic tenn signified a situation for which students could not identify a procedure. Again this 
suggests that students do not expect to have to interpret questions on mathematics exams. (One observer has 
suggested that Alberta students are unfamiliar with the expression "fmd all the roots." However a popular 
textbook uses the expression "fmd the roots" throughout the quadratic equation section (Kelly et aI, 121).) 
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2. Questions that require non-procedural responses 

I will give three questions of this type because they are important in that they represent an element of 
mathematical maturity that Alberta students seem not to possess. The ftrst, 

27. For the two points A = (1, 2) and B = (I, -2), fmd the equation of the line that is 
perpendicular to segment AB and bisects it. 

can be easily solved visually by plotting on the coordinate plane. The answer is simply the x-axis. Not 
visualizing the problem and trying to solve it by a mathematical procedure is much more difficult. The second 
question is, again, best understood visually: 

30. What is the shortest distance from the point (3,4) to the circle x 2 + Y 2 • I? 

Once it is recognized that the circle is the unit circle about the origin, the student must recognize that the 
shortest distance is along the line from the point (3, 4) to the origin. Finally the student must recognize that 
the point (3, 4) indicates a 3-4-5 Pythagorean relationship. Once visualized, the problem is simple 
subtraction. 

The final question of this type is less a matter of visualizing than of using knowledge in new ways. 
This question involves problem solving. 

35. The graph of y • ax 2 + bx + c (a, b, c are constants) 

is given below. What are the signs of a, b, and c? 

If the graph opens down then a is negative. The constants band c can 
be detennined by noting that c must be positive since y is positive when 
x is zero and by making use of the formula: the vertex of a quadratic is 
F(-b, a) . The question requires rather unusual uses of this particular 
knowledge. Certainly most students know these facts and formulas but 
none were unable to use them in this non-routine manner. 

3. Complex symbolic manipulation 
Figure 1 

The third type of question with which students had extreme difficulty is illustrated by 

34. Solve the equation: 3x " --

1 + -
x 

In isolating x, there are several opportunity to make mistakes. The student needs to be careful. 

Summary of mathematical learning First we must not overlook the major differences in curricular 
expectations between Asian COWltries and Alberta. The larger Asian curriculum requires students continually 
to use the more elementuy mathematics, which is, then, continually reinforced and becomes more meaningful 
through usage. Why is mathematical learning given such low priority in Alberta and North American 
Schools? 
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Secondly, Alberta students did reasonably well on what is essentially ninth grade arithmetic and 
algebra. They did less well on multi-step arithmetic problems, simple algebraic relationships given in verbal 
fonn, symbolic algebra in an WluSUal fonnat, and simple informal methods of algebra. These suggest a lack 
of exposure to a variety of verbal, symbolic, and infonnal uses of algebra. Better than average students can 
work in these ways but others cannot. 

Thirdly, Alberta students have extreme difficulty with any situation that could be misinterpreted. 
They are unwilling, unable, and are not predisposed to read a question with the intention of understanding 
it. They are used to responding quickly and procedurally to all questions. Geometric visualizing also gives 
great difficulty. While this relates to failing to Wlderstand the question, students seem incapable of visually 
seeing questions even when that visualization is specifically indicated. A third area of extreme difficulty is 
using well-known knowledge in non-routine ways. Again this relates to the students' reluctance to try to 
understand the problem but also identifies an inability to use procedural and propositional knowledge in nOD
routine ways. This means that they are unable to engage in problem solving, even in this simplest of ways. 
The :final difficulty concerns complex manipulations which probably results from lack of practice in symbolic 
manipulation. Of all the weaknesses mentioned above, this latter would be the simplest to remediate. 

What do we in Alberta learn from the Asian comparisons? 

There is no reason to doubt the general fmdings of this study. At the least, we have no reason to be 
complacent about the mathematics learning in our high schools. The comparison has major implications for 
our expectations of students not only in high schools but also at earlier levels. Provincial curriculum 
standards from kindergarten to grade 12 must be called to our attention. In Alberta, especially, teachers have 
a large input into the development of provincial mathematics programs. Are teachers, like their students, 
satisfied with student perfonnances? Do our 65% averages on Provincial diploma exams have any validity? 
Do these and other tests, predispose our students to respond procedurally to test items? The adequacy of our 
examinations is especially important in Alberta because of the renewed emphasis in this area in the 
mathematics program. 

Implications from this study for teaching practices are less obvious. Are teachers satisfied with their 
students' learning? Are they and their students assuming responsibility for student learning? How, indeed, 
are teacher expectations maintained? Do our teachers have an adequate vision of what it means to know 
mathematics or are they solely dependent on curriculum guides for this expectation? The current study does 
not directly comment on classroom practice. However, the indicated lack of mathematical maturity of Alberta 
students should give every teacher cause to reflect on his or her teaching practices. 

More than anything, this recent comparison of Alberta and Asian mathematics should provide an 
impetus for those of us interested in mathematics education. Our 17 -year olds are learning much less 
mathematics than is possible. Is mathematics a foundational study for many careers in our post-industrial 
society? If our time with mathematics teaching is to be limited, as it currently is, we must be selective. Is the 
mathematics that we are selecting most appropriate and is our limited time most wisely used? A senior high 
school mathematics teacher recently commented that the extreme emphasis on data management in Alberta 
most rightfully belongs in the area of social studies. The Asian comparisons are certainly a wake-up call. Out 
students have a right to the best possible mathematics education that we can provide. 

The interpretation offered here calls for us to go beyond comparisons. Whether our students are 
better than Sendai or St. Petersburg, they should be able-through their own efforts and expectations, 
through a curriculum which places different emphasis, and through teaching which provides occasions for 
appropriate student activity-to work in ways that allow them to overcome the weaknesses identified here. 
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Introduction to leMI Studies 

This report describes the seventh in the series ofICMI studies, each dedicated to a specific theme. 
The series began in 1986 with a study devoted to the question of the influence of computers and 
infonnatics on mathematics education. 

The work of an ICMI study is organised in a special way. The executive committee of ICMI 
appoints an international programme committee whose frrst task is to write a discussion document. 
This document outlines the themes, aims and scope of the study and is published in several 
international journals and newsletters. Mathematics educators are invited to comment on the 
document and to apply for participation in the study conference. 

An ICMI study conference is held with a limited number of participants (50-100). It 
constitutes a working forum of both experts and novices who meet to exchange ideas on the theme 
of the study. The conference consists not only of presentations, but also of group discussions of 
significant issues identified in the discussion document. 

The overall aim of a study is to provide to the participants and to the interested community 
at large a picture of the state of the art in the topic under study. Accordingly many of the group 
discussions are summarized and published, together with a selection from the papers presented, in 
a book which appears under the general editorship of the President and the Secretary oflCMI. 

To date ICMI has sponsored eight studies, on the following topics: computers and infor
matics, school mathematics in the 1990's, mathematics and its teaching, the popularization of 
mathematics, mathematics and cognition, assessment in mathematics education, gender and mathe
matics education, and research in mathematics education. Seven books have already been published, 
based on the frrst six studies. Books based on the last two conferences will appear in 1995. 

The Seventh IeM! Study: Gender and Mathematics Education 

This study was originally planned for 1990 or 1991. An initial background document written by Gila 
Hanna and Gilah Leder was prepared in January 1989, and disseminated to various mathematics 
education groups during 1990 and 1991. It was published in 1991 in both the ICMI Bulletin and in 
the IOWME newsletter. This was followed by the official discussion docwnent titled "Gender and 
Mathematics Education: Key issues and questions," which was published in 1992 in a number of 
international mathematics education journals, in the ICMI Bulletin, and in several newsletters of 
mathematics and mathematics education groups. 

The conference was held in Hoor, Sweden, from October 7 to October 12, 1993. It was 
attended by eighty participants (sixty-eight women and twelve men) from some twenty-three 
countries. Most of the participants were scholars actively involved in one or more of the following 
areas of action and investigation: mathematics, mathematics education in general and gender issues 
in mathematics education in particular, the psychology of gender and learning, feminist issues, 
educational policy, and the active promotion of women's participation in mathematics. 

It was generally acknowledged at the conference that the issues of gender and mathematics 
education are open to multiple interpretations and subject to examination from a nwnber of different 
perspectives. Indeed, the International Program Committee conceived the conference as a forum in 
which the participants would not necessarily reach a consensus but would make some progress 
toward a better understanding of the field and of the often radically disparate existing positions. 

The overall task of the opening panel was to set the stage of the study conference. The 
following extracts from the panel statements will give an idea of the direction of the conference. 
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Gila Hanna: Opening remarks 

"First, let me say that it is not the aim of the present conference to race towards universal 
solutions to the problems of gender and mathematics education. Instead, I see this 
conference as an opportunity to explore differing and often opposing views, and in the end 
to deepen our understanding of the important issues through this exchange of ideas. I 
presume we hold many different views of mathematics education in general. As far as I 
know, we also have different ideas on gender and mathematics education in particular: on 
how to look at the issues, on which issues are more important, and on an agenda for action. 
During this conference we should be prepared to argue for the positions we hold. However, 
we should also be prepared to listen to others, and to abandon some of our present beliefs 
if during the discussions we fmd them to have been unfounded. Since I see no virtue in 
premature theoretical closure, I look forward to a few days of fruitful exchanges and lively 
discussions. " 

Gilah Leder: Future directions 

"There is much that can be learnt from previous research. To maximize the chances of 
doing so we must engage in constructive debate, particularly with those in other countries 
and with researchers working in paradigms and disciplines different from our own. It is 
essential that as part of this debate due recognition be given to the context in which data 
were gathered and findings were obtained. We should tackle the difficult task of exploring 
how research questions might sensibly be refined further so that the many subtle, indirect, 
and less readily quantifiable factors are not ignored. We should welcome and foster 
diversity in the formulation and exploration of relevant issues. We also need to consider 
seriously the challenge of identifying and discussing gender differences in mathematics 
learning without at the same time further perpetuating these differences." 

Structure of the Conference 

The scientific program of the conference consisted of plenary sessions, panel discussions, two 
streams of working groups, and paper presentations, and is summarized below. 

Plenary Sessions: 

Elizabeth Fennema: Scholarship in gender and mathematics education: past and future 

Karin Beyer: A gender perspective on mathematics and physics education: similarities and 
differences 

Mary Gray: Recruiting and retaining students in mathematics. 

There was also an evening plenary with Bent Christiansen speaking on aspects of mathematics 
teaching which promote gender imbalance. 
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Panels: 

Panel 1: Gender and mathematics education (Moderator: Mogens Niss) Gila Hanna, Carl 
Jacobson, Christine Keitel, Anna Kristjansdottir, Gilah Leder 

Panel 2: Feminist perspectives (Moderator: Elizabeth Fennema) Leone Burton, Suzanne 
Damarin, Ann Koblitz, Beth Ruskai, and summary by Jeremy Kilpatrick 

Panel 3: Role of organisations (Moderator: Christine Keitel) Josette Adda, Gerd Brandell, 
Kari Hag, Cora Sadosky 

Panel 4: International perspectives (Moderator: Jean-Pierre Kahane) Elfrida Ralha, Hanako 
Senuma, Teresa Smart, Maria Trigueros 

PanelS: Research perspectives (Moderator: Maria Trigueros) Karin Beyer, Helga Jungrith, 
Meredith Kimball, Else-Marie Staberg 

Panel 6: ICMI and equity in mathematics education (Moderator: Gila Hanna) Jean-Pierre 
Kahane, Miguel de Guzman, Jack van Lint 

Working Groups (Streams A and B) 

AI: Students: Personal and psychological factors (Gilah Leder) 
A2: Mathematics as a discipline (Gila Hanna) 
A3: Social, economic and technical developments (Lesley Jones) 

Bl: Assessment and curriculum (Mogens Niss) 
B2: Teachers: Personal and psychological factors (Christine Keitel) 
B3: Sociological and cultural factors (Maria Trigueros) 

Paper Presentations 

Thirty papers were presented (three at a time, in parallel sessions). The presenters discussed research 
on a number of topics: the role of attitudes, ethnicity and gender differences, applications of selected 
feminist theories to classroom organisation, policy and equity, gender inclusive teaching, the role 
of methods of assessment in gender imbalance, and the place of values in teaching and learning. In 
addition, several presenters reported on the situation in their own country as to the differential 
participation of boys and girls in mathematics. 

Despite the diverse and often conflicting perspectives on gender and mathematics education 
expressed at the conference, there were several important points of similarity. All participants 
attached great importance to the continuation of research in gender and mathematics education, and 
all seemed to agree that both an awareness and an understanding of positions different from their 
own were an important outcome of this ICMI study. 
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Appendix A 

This is what Barbro Grevholm, chair of the Local Organising Committee and member of the 
International Program Committee wrote about the site of the conference: 

"Welcome to Akersberg 
From allover the world we are gathered in Hoor. We do hope that you will find 

Akersberg and its surrOWldings comfortable and inspiring. Akersberg was officially opened 
by the Bishop of Lund on September 19, 1993. So we are among the fIrst guests after the 
opening and we are the frrst international conference to be here. 

We wish that our work during the conference will be successful and influence the 
situation in mathematics education in many countries and for many years to come .... If you 
need some physical exercise to balance the intellectual activities in the conference you will 
fmd a beautiful park for walking or, if you are sporty, you will find jogging paths a bit 
further away .... If you are looking for a peaceful, quiet place where you can hear your own 
thoughts you will find a chapel at Akersberg. It is always open and you can test your eyes 
on some beautiful Swedish design, glasswork, woodwork, pottery and architecture. There 
will be short services every day. Anyone is welcome to join. If you would like to have a 
service in English, talk to the priest." 

Appendix B: International Program Committee 

Gila Hanna (Chair), Canada 
Carlos Bosch Giral, Mexico 
Barbro Grevholm (Chair of the local organising committee), Sweden 
Geoffrey Howson, UK 
ChristinelCeitel-lCreidt, Germany 
Gilah Leder, Australia 
Mogens Niss (member ex-officio), Denmark 
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Some logistics 

Between January and May 1993 a discussion document for the study was published in various 
journals: L 'Enseignement Mathematique, Bullettin of leMI, Educational Studies in Mathematics, 
Recherches en Didactique des Mathematiques, Zentralblatt fur Didaktik des Mathematik. 
Moreover, the Joumalfor Research in Mathematics Education published a revised version of the 
document as an article (Sierpinska, 1994). The discussion document called for papers with a 
deadline of September 1, 1993. 

In May 1994, a conference was held in Washington, grouping some 80 people from around 
the world. Three kinds of activities were held at the conference: (1) Plenaries addressing general 
questions; (II) Working groups addressing five more specific questions from the discussion 
document, and (ill) "Paper sessions", in which specific examples of research were discussed in view 
of the general theme of the study. 

There were five plenary sessions devoted to the following themes: 

1. General questions: What is mathematics education as a field of research? 
The speakers addressing this topic were: G. Brousseau, J. Mason, F. Lester, E. Wittmann. 

2. Balancing theory and practice in research. 
Speakers: C. Margolinas, B. d'Ambrosio, E. MUller, G. Vergnaud, J. Sowder, C. Shiu and 

G. Hatch. 
3. Training researchers in mathematics education. 

Speakers: C. Laborde, G. Gjone, C. Gaulin, D. Johnson. 
4. Perspectives on mathematics education research: 

(a) Mathematics education through the eyes of mathematicians 
Speakers: L. Blum, R. Brown, M. Artigue, W. Dorf1er. 

(b) Mathematics education research through the eyes of researchers 
Speakers: N. Presmeg, E. Pehkonen, P. Boero. 

The working groups were supposed to discuss the following questions: 

Group 1. What is the specific object of research in mathematics education? 
Leader: J. Confrey. Main speakers: A. Sfard, C. Keitel. Reporters: A. Kristjansd6ttir, 

D. Blane 
Group 2. What are the aims of research in mathematics education? 

Leader: Ole Bjorkqvist. Main speakers: G. Leder, J. Szendrei. Reporters: P. Gomez, 
T. Romberg. 

Group 3. What are the specific questions I themes I problematiques of mathematics education? 
Leader: M. G. Bartolini-Bussi. Main speakers: N. Balacheff, E. Silver. Reporters: B. Hodgson, 

I. Osta. 
Group 4. What are the results of research in mathematics education? 

Leader: S. E. J. Pirie. Main speakers: C. Kieran, F. Arzarello. Reporters: T. Dreyfus, 
J. Becker. 

Group 5. What criteria should be used to evaluate research in mathematics education? 
Leader: B. Johansson. Main speakers: G. Hanna, H.-G. Steiner. Reporters: M. Brown, 

M. Blomh0j. 

There will be no proceedings of the conference; instead, a book will be published which will add to 
the series of lCM! Study Publications. The book will contain contributions by people who decide 
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to contribute to the Study, not just from those who were at the conference. There will be a reviewing 
process to ensure a high level of quality. 

In the sequel, I shall give some information concerning mainly the fIrst two "plenary" 
themes as they were discussed at the Washington conference. 

Some themes and questions discussed at the Washington conference. 

One (unexpectedly) much debated question was "What is mathematics?" A serious point of 
disagreement was the relationship between research and the activity of teaching. Two things on 
which everybody seemed to agree were: (I) it is through confrontation with a different research 
paradigm that we come to a better awareness of our assumptions and standpoints; (2) we need some 
sort of "forum" for discussion of the issues related to a defInition of the domain of research in 
mathematics education. 

Theme 1: What is mathematics education as a field of research? 
Guy Brousseau gave the following defInition, in French and English: 

La didactique des mathematiques est la science des conditions specifiques de la difusion 
imposee des savoirs mathematiques aux gens et leurs institutions. 

Mathematics education is the science of the specific conditions of teaching mathematics in 
educational institutions. 

The main message of Guy Brousseau's address was that mathematics education as a fIeld of research 
is part of mathematics. His argument went, approximately, along these lines (I hope I am not 
distorting Guy's ideas). Problems related to mathematics teaching contain an irreducibly 
mathematical part; choice of problems, organisation of mathematical contents for different didactic 
purposes, structuring of the mathematical discourse, analysis of mathematical understanding, 
identifIcation of specifIcally mathematical activities and "their modeling in order to cause them to 
happen in students"... All these problems are related to communication of mathematics. And 
communication of mathematics is part of mathematics.! Calling upon the authority of W. Thurston, 
Guy Brousseau said: 

The activity of mathematicians is not restricted to the production of defmitions, conjectures, 
theorems and proofs. It includes also the communication of results, the reorganisation of 
theories and knowledge, the formulation of questions and problems and all that "enables 
people to understand mathematics" .2 

One of Brousseau's points was that mathematicians do not usually recognize activities such as 
communication of results, organisation of knowledge, etc. as mathematical activities. One is not a 
mathematician unless one produces original mathematics, i.e. new (and signifIcant, I would add) 

1 Although a safer conclusion would have been that communication of mathematics and mathematics have 
a non-empty intersection. 

2 "We are not trying to meet some abstract production quota of definitions, theorems, and proofs. The 
measure of our success is whether what we do enables people to understand and think more clearly and 
effectively about mathematics" (W.P. Thurston). 
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theorems. The challenge of mathematics education as a field of research, he said, is to find scientific 
means oflegitimizing these activities; but, he added, "cela demande une serieuse reconsideration par 
les mathematiciens et les autres de ce que sont les mathematiques" ("this requires a serious 
reconsideration by mathematicians and others of what is mathematics"). 

Thus, we are down to this fundamental question: What is mathematics? This is a serious 
question which is implicated in more practical issues such as: What should count as mathematical 
knowledge for curriculum designers or educational policy makers? Is "communication of mathe
matics" a mathematical activity that should be explicitly taught (and assessed)? More generally, 
what is a "mathematical activity"? Many people agree that the core of research in mathematics 
education should be related to the identification of "mathematical activities", their study and the 
design of ways in which students can be motivated to engage in such activities. Views start to 
diverge at the question of what counts as a mathematical activity. 

In mathematics education we often broaden the meaning of "mathematics". Brousseau 
wanted to include communication of results and organisation of mathematical knowledge. Erich 
Wittmann included into mathematics all the societal uses and modes of expression that are 
mathematical in nature but are not studied at the universities. 

Work in the core [of mathematics education] must start from mathematical activity 
as an original and natural element of human cognition and must conceive of 
'mathematics' as a broad societal phenomenon whose diversity of uses and modes 
of expression is only in part reflected by departments of mathematics at the 
universities. As a consequence, mathematics educators need a lively relationshhip 
with mathematics and with applications of mathematics and they must devote an 
essential part of their professional lives to stimulating, observing and analyzing 
genuine mathematical activities of children, students and student teachers. 

For Wittmann, the core of research in mathematics education should consist of, among others: 

• development oflocal theories (for example, of mathematizing, problem solving, proof), 
• mathematical analysis of content and the identification of possible contents of mathematics 

teaching focussed at making them accessible to learners, 
• development and evaluation of "substantial teaching units ... " 

In the discussion following Erich Wit1mann's presentation this notion of "teaching unit" was debated 
for a while as a term which was not very clear. 

Both Brousseau and Wittmann mentioned that approaches and methods as well as problems 
of neighbouring disciplines (such as psychology or sociology) cannot be directly applied to the core 
problems of mathematics education. A specific theorizing effort is necessary, and borrowing from 
the neighbouring disciplines can even harm the development of didactics of mathematics as a scien
tific discipline. Wittmann wrote in his paper: 

... approaches, methods and standards taken over from related disciplines are more easily 
applied to problems in the neighbourhood of these disciplines than to problems in the core. 
As a result, a great deal of didactic research sticks to mathematics, psychology, pedagogy, 
sociology, history of mathematics, etc. Thus the holistic origin of didactic thinking, namely 
mathematical activity in social contexts, is dissolved in single strands, and the specific tasks 
of the core are neglected. In my view, this is a dilemma that presently inhibits major 
progress in mathematics education. 
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Wittmann's main thesis was that mathematics education should be regarded as a design science. 
As a side comment, let me mention that this postulate is strangely remindful of the words 

that can be read in the 1980 NCTM publication "Research in Mathematics Education", written by 
T.J. Hummel: 

As educators, we are primarily involved with design science. A design science deals with 
the principle of constructing hwnan artifacts, entities that do not occur naturally in the 
environment. . . Educators use infonnation from state sciences to understand better the 
potential of students and the boundary conditions within which they must work. Although 
educators must sometimes carry out state science research when certain data are not 
available, they are primarily concerned with the design function, without which curriculum 
could change only through an unplanned evolutionary process. (Hummel, 1980, p 66). 

Things looked so much simpler back in 1980! We have become, since then, more sceptical about 
research being able to provide us with "missing data", and more aware that we have to find original 
methods and theories and not just "use information from state sciences" to understand how people 
learn mathematics or teach mathematics. We became so deeply involved in these activities that we 
almost forgot about the design fimction of research in mathematics education, and we have to remind 
ourselves of it (at least some of us, not to offend didactic engineers and educational technologists 
of the world!). 

John Mason's view on research in mathematics education had an "introspective" flavor: a 
significant result in mathematics education, according to Mason, is one that brings about the 
transformation of the being of the researcher, an awareness which enables others to alter their 
practice. He proposed "researching from the inside", reflecting on, for example, what it is like to 
be stuck, to be turned on or off from mathematics. Such research, he assured the audience, can also 
be systematic and epistemologically sound. For Mason, the aim of the research in mathematics 
education is to enable us to be mathematical with and in front of the students, to make us more 
sensitive to the experience of others, to provide us with a broader range of choices in the moments 
of decision. These moments of choice, which are the teaching acts, are the main objects of study for 
research in mathematics education. Mason proposed a few criteria of validity of research: research 
is valid if (a) it explains, organizes the past; (b) fits with present experience; (c) informs future 
practice. 

Frank Lester spoke about criteria for evaluation of research reports in mathematics 
education He noticed changes in the field by looking at the Journal for Research in Mathematics 
Education. In 1973, the average length of a paper was a bit more than nine pages with statistical 
analysis as the predominant method, in 1983 - about eleven pages with one-third of analyses non
statistic in nature. In 1993 the average length became twenty pages with three-eighths of statistical 
techniques, one-half non-statistical techniques and one-eighth some combination of techniques. We 
have now papers with rich story telling and more narrative in the stories. After the enumeration of 
criteria currently in use by the Journal, and some discussion of them, Lester concluded that it may 
not be useful to have one set of criteria, but it is necessary for the community of mathematics 
education researchers to discuss the criteria for the evaluation of research reports. Indeed, the 
question of criteria of evaluation raised quite a discussion in the audience. Participants were not so 
much proposing new sets of criteria, as they were stating the fact of the extreme difficulty in 
mathematics education of coming up with a coherent and universal set of criteria. It is not rare, in 
reviewing processes, to obtain contradictory opinions, one rejecting a paper, the other praising it. 
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Theme II: Relations between theory and practice 

There were two distinct positions with respect to this theme: 

Position I: There is a sharp dichotomy between theory and practice. 

Guy Brousseau said "The mixing up or confusion between the research on teaching and the activities 
of teaching can be a subject of criticism." 

Claire Margolinas proposed the view that the line which most clearly separates theory from 
practice is the line between facts and phenomena. A fact is an isolated statement that can be 
verified. For example, "pupils have difficulties with the concept of limit" is a fact. It can be verified 
by statistical methods. However, to become a phenomenon, this statement must be embedded into 
a theory that will explain it. She suggested that "research must take fact into account and practice 
must take phenomenon into account". 

In a discussion, Nicolas BalachefI very strongly criticized the use of such "hybrids" as 
"teacher-researcher" or "action-research". An interesting analogy he used was the following: you 
cannot be a teacher-researcher just as you cannot be your own psychoanalyst. 

Position II: There is a continuum of practical and intellectual activities between the 
questions What is the case? (theory) and What is to be done? (practice) (cf. Begle, 
1980). 

Christine Shiu and Gill Hatch showed an example of how a teacher is likely to reflect upon a piece 
of lesson transcript, how a researcher would reflect upon it, and how, indeed, one kind of reflection 
can feed the other. 

Beatriz d'Ambrosio showed how a reflection of a teacher on her own practices, supported 
by readings and discussion, improved her understanding of the phenomenon of teaching. 

The issue of relations between research and practice is important in mathematics education 
at two levels: (a) the level of research and (b) the level of curriculum development. At the level (b) 
it leads to questions like "How is mathematical thinking related to practical thinking?" or "Can 
mathematical thinking be developed through 'learning mathematics in contexts', or 'anchored 
instruction', or 'realistic mathematics'?" Is "realistic mathematics" still mathematics? (cf 
Sierpinska, 1995, to appear). 

This way, again, we are asking ourselves "what is mathematics"? This question had been 
left for us as homework. As it came out very clearly in Anna Sfard's presentation in Group I, it is 
to no avail that we shall be looking up to philosophers to solve this problem for us. 
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The following is the list of previous proceedings available through ERIC. 

Proceedings of the 1980 Annual Meeting .................... ED 204120 

Proceedings of the 1981 Annual Meeting .................... ED 234988 

Proceedings of the 1982 Annual Meeting .................... ED 234989 

Proceedings of the 1983 Annual Meeting .................... ED 243653 

Proceedings of the 1984 Annual Meeting .................... ED 257640 

Proceedings of the 1985 Annual Meeting .................... ED 277573 

Proceedings of the 1986 Annual Meeting . . . . . . . . . . . . . . . . . . .. ED 297966 

Proceedings of the 1987 Annual Meeting .................... ED 295842 

Proceedings of the 1988 Annual Meeting .................... ED 306259 

Proceedings of the 1989 Annual Meeting . . . . . . . . . . . . . . . . . . .. ED 319606 

Proceedings of the 1990 Annual Meeting .................... ED 344746 

Proceedings of the 1991 Annual Meeting .................... ED 350161 

Proceedings of the 1993 Annual Meeting . . . . . . . . . . . . . . . . . . .. Not yet assigned 

There was no Annual Meeting in 1992 because Canada hosted the Seventh International 
Conference on Mathematical Education that year. 
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