
EDITED BY 
Yvonne M. Pothier 

CANADIAN MATHEMATICS EDUCATION 
STUDY GROUP 

GROUPE CANADIEN D'ETUDE EN DIDACTIQUE 
DES MATHEMATIQUES 

PROCEEDINGS 
1996 ANNUAL MEETING 

Mount Saint Vincent University 
May 31-June 4 1996 

Mount Saint Vincent University 



Cover Printed by 
McCurdy Printing Limited 

Halifax, Nova Scotia 

Mount Saint Vincent University Press 
Halifax, Nova Scotia 

B3M2J6 

1996 



Editor's Forward 
Acknowledgements 
Schedule 
Pictures 

INTRODUCTION 

CMESG/GCEDM 1996 Annual Meeting 
Mount Saint Vincent University, May 3 I-June 4,1996 

TABLE OF CONTENTS 

PLENARY LECTURES 

1. Beyond the Classroom: The Curriculum as a Key Factor in Students' Approaches 
to Proof 
Celia Hoyles, University of London 

2. Teaching and Making it Count 
David Henderson, Cornell University 

WORKING GROUPS 

v 
vii 
be 
xi 

7 

27 

A. Reflections on Teacher Growth: Pre-service and In-service Perspectives 47 
Bill Higginson, Queen's University 
Susan Stuart, Nipissing University 

B Fomiation a L'enseignement des mathematiques au Secondaire: Nouvelles Perspectives 
etDefis . 57 
Nadine Bednarz, Universite du Quebec a Trois Rivieres 
Sophie Rene de Cotret, Universite de Montreal 

C What is Dynamic Algebra? 
Martin Hoffman, Queens College, City University of New York 
Richard Noss, University of London 

D The Role of Proof in Post-Secondary Education 
William Byers, Concordia University 
Harvey Gerber, Simon Fraser University 

Le Role de la Preuve dans l'Education Post-Secondaire 
Frederic Gourdeau, Universite Laval 

TOPIC SESSIONS 

A Problems, Puzzles, Games 
Edward Barbeau, University of Toronto 

B {Parents}n{Children}n{Mathematics}: Researching the Intersection 
Elaine Simmt, University of Algebra 

iii 

69 

77 

83 

91 

99 



C Internet and Mathematics Education 113 
Linda Gattuso, Universite du Quebec a Montreal 

D Teaching From a Problem-Solving Perspective: A Report of my Doctoral Research 123 
Rick Seaman, University of Regina 

E Exploring Number Understanding: A Case Study With Grade One Beginners 127 
Marjorie McCaul, University of Guelph 

AD HOC SESSIONS 

1. Mathematics Enrichment in an Out-of-school Setting 137 
Ann Kajander, Lakehead University 

2. Students' Difficulties With the Notion ofIsomorphism: Some Preliminary Results 141 
Caroline LaJoie, Universite Laval 
Roberta Mura, Universite Laval 

3. When Silence Says it All: An Exploration of Students' Mathematical Talk 151 
Jo Towers, University of British Columbia 

4. "Why Does a Letter Always Arrive at its Destination?": Opening up Living 
Space Between Problem and Solution in Math Education 157 
Susan Gerofsky, Simon Fraser University 

5. What the "Failure" of the Whole Language Movement Can Tell us About 
the Design of a Whole Math Curriculum 163 
Peter Taylor, Queen's University 

PANEL: WHO DRIVES THE CURRICULUM? 

LaJune Naud, Mount Saint Vincent University 
Harry White, Universite du Quebec a Trois Rivieres 
Gary Flewelling, Arthur, Ontario 
Florence Glanfield, University of Alberta 
Richard Noss, University of London 

APPENDICES 

Appendix A Working Groups at Each Annual Meeting 

Appendix B Plenary Lectures 

Appendix C Previous Proceedings 

Appendix D List of Participants 

iv 

167 

175 

179 

181 

183 



EDITOR'S FORWARD 

I wish to thank all those who contributed reports for inclusion in these Proceedings. The care 
taken in preparing a hard copy and disk me of the report, together with camera ready figures 
made my work as editor a pleasant task. The value of these Proceedings is entirely the credit 
of the report authors. 

These Proceedings will serve to revive the memories of those who participated in the meeting 
and hopefully will help generate continued discussion on the varied issues raised during the 
meeting. 

Yvonne M. Pothier 
Mount Saint Vincent University 
August, 1996 

v 





ACKNOWLEDGE~NTS 

We would like to thank Mount Saint Vincent University, Halifax, for hosting the meeting and 
providing excellent facilities. Special thanks are due to Yvonne Pothier, Mary Crowley, LaJune 
Naud, Education Department and Suzanne Seager, Mathematics and Computer Studies 
Department, for their time and work prior to and during the meeting to make the experience 
pleasant and enjoyable for all participants. 

Finally, we would like to thank the guest lecturers, working group leaders, topic group and ad 
hoc presenters,panelists, and all participants. You are the ones who made the meeting an 
intellectually stimulating and worthwhile experience. 

vii 





SCHEDULE 

Friday Saturday Sunday Monday Tuesday 
May 31 June 1 June 2 June 3 June 4 

0900-1200 1000-1300 0900-1200 0900-1000 
Working Groups Working Groups Working Groups "Who drives 

the 
-------- ---------- ------ curriculum?" 

1200-1330 1300-1430 1200-1330 panel 
Lunch Lunch Lunch -------------

1000-1030 
1700-1800 Response to 

Opening panel 
Plenary 1330-1350 1430-1540 1330-1350 presentation 

Continued small Plenary II Continued small ------------
General group discussion D. Henderson group discussion 

Introductions Plenary I ------------ Plenary II 1045-1145 

---------- ... - -------------- Closing Plenary 
-----------
1800-1930 1350-1445 1540-1600 1350-1445 

Dinner Questions from Initial small Questions from 1200-1300 

small groups to group discussion small groups to Lunch 

speaker Plenary II speaker 
--------------- ------------ ------------

1450-1545 1600-1645 1450-1545 
Topic Groups Ad Hoc Topic Groups 

(part 1) presentations (part 2) 
--------- ------------ ------------

1600-1700 1600-1655 
AGM NewPhDs 

presentations 

2000-2110 1730 1730 1730-1900 
Plenary I Dinner Cruise Excursion to Banguet 
C. Hoyles on Peggy's Cove -------------

Harbour Queen I 
1930-2030 

2110-2130 Special 
Initial small presentation 

group George Escher 
discussion 
Plenary I Post -Lecture 

Reception 
2130 

Reception 

ix 





1996 Meeting Memories 

Four CMESG Presidents 
Sandy Dawson, Tom Kieren, David Wheeler, Claude Gaulin 

Plenary Session Speakers 
David Henderson, Celia Hoyles 

xi 



Guest speaker George Escher, 
President Sandy Dawson 

Opening reception 

xii 



Introduction 

INTRODUCTION 

These Proceedings cannot capture the spirit of what takes place at our annual meeting. They do, 
however, provide a record of the results of our work and discussions. The keynote addresses are included, 
and in some instances, the Proceedings is the only place these appear. It is clearly the case that the only 
printed record of the deliberations of the Working Groups and Topic Groups is contained in the 
Proceedings. It is important to have such records, both as a marker of what the various groups have 
accomplished in their study in any particular year, but also as a bridge for other groups in future years to 
build upon the work already done. For those reasons alone, the Proceedings are valuable. 

But alas, the Proceedings cannot tell the whole story, so this introduction is designed to give those 
new to the organization, or those who have not had the opportunity to attend an annual meeting, a taste 
of what the meeting is really all about. During one of our early meetings at Queen's University, where 
four of the first six annual meetings were held, Izzie Weinzweigjoyously sampled the many varieties of 
ice cream offered at the Queen's residence hall. Many of us were amazed at the prodigious amounts he 
could consume, but while he ate his ice cream discussion was lively, funny, critical, and searching about 
important happenings in the arena of mathematics education. Izzie's ice cream escapade is notorious in 
CMESG/GCEDM circles. An event such as this is also part of the annual meeting. This introduction will 
try to capture aspects of that spirit, items which are not recorded in the printed reports of working and 
discussion groups. 

It was in the fall of 1977 that a couple of young mathematics education scholars, Claude Gaulin and 
Tom Kieren, gave two of the three keynote addresses at the inaugural meeting of what was to become the 
Canadian Mathematics Education Study Group-Groupe canadien d' etude en didactique des 
mathematiques (CMESG/GCEDM). Both went on to become presidents of the group. Though he wasn't 
a keynote speaker at that meeting, the group's fIrSt president, David Wheeler, was one of its organizers. 
As much as any set of mathematics educators in Canada, these three epitomize the spirit and diversity of 
the Group. And what is that spirit they so ably display, and how did they and their colleagues in the 
Group encourage and foster that diversity for twenty years? 

The spirit is embodied in the intellectual playfulness of the Group. This manifests itself in a host 
of ways. It is there in the serious though not somber ways in which current issues and topics in 
mathematics education are studied, that is, where time is given during the three full working days of the 
annual meeting for an opportunity to go deep, in the vernacular of the day, to listen carefully, attentively, 
and without pre-judgement to the interests, ideas and experiences of one's colleagues. These study 
periods, called Working Groups (WGs), meet three hours each day, and provide opportunities for 
elongated discussions, not just the oftimes brief, superficial conversations one experiences at conferences 
where there are presentations hourly. Though the leaders of the WGs do extensive advanced planning, 
they really are the provocateurs of the study once the group is assembled. It is the working group 
members themselves who determine the particular pathway the group takes during its deliberations. In 
the words of David Wheeler, the philosophy behind this structure was that " ... people [could] work 
collaboratively at a conference on a common theme and generate something fresh out of the knowledge 
and experience that each participant brings to it."i And members are diligent about guarding against a WG 

iWheeler, D. (1992). The origins and activities ofCMESG/GCEDM. In Kieran, C. & Dawson, 
A. 1. (eds.). Current Research on the Teaching and Learning o/Mathematics in Canada: Les Recherches 
en Cours Sur I 'Apprentissage et I 'Enseignement des Mathematiques au Canada, p. 6. Montreal, QC: 
CMESG/GCEDM. 



CMESG/GCEDM 1996 Proceedings 

becoming the platform for a particular point of view, or being dominated by the leaders. In fact, though 
leaders make detailed preparations and plans, provide extensive and elaborate occasions for group and 
group member thinking, it is usually not long into the deliberations that their plans fade into the 
background, and the discussion goes in directions not anticipated by the leaders. This is not to say that 
the groups operate in a random or disorganized manner. Rather, the orders of the working group are 
what Bohm would call implicate rather than explicit, and arise from the discussions occasioned by the 
interactions among group members. 

There are other times as well when members are given opportunities for extended periods of study. 
Topic Groups (TGs) are sessions where individual members present work-in-progress, and invite and 
solicit feedback from their colleagues. These sessions are not meant to be one way informational 
sessions-indeed, efforts to have such a format would be frowned upon by the group-but rather are 
opportunities to present 'three-quarter baked ideas '2 and have them critiqued in a supportive and caring 
environment. Ad Hoc groups serve a similar function, but these are events which are so current that it 
was not possible to include them in the Program prior to its printing and circulation. Nonetheless, it is 
important to note that the organization of the annual meeting provides the time and space for Ad Hoc 
groups to occur, and they invariably do. 

The in-depth study of questions and issues in a conference setting does seem to be the prime 
characteristic ofCMESG/GCEDM, what Wheeler has called 'its study-in-cooperative-action,'3 and the 
heart of the intellectual playfulness of the Group. The scope of the topics discussed can be seen in the 
listing of the focus of WGs over the years which are listed in Appendix A. What is noticeable about that 
list is the central concern the Group has had " ... with teacher education and mathematics education 
research, with subsidiary interests in the teaching of mathematics at the undergraduate level, and in which 
might be called the psycho-philosophical facets of mathematics education (mathematization, imagery, the 
connection between mathematics and language, for instance ).'>4 

The Group's playfulness also has a social aspect. Over the years the excursions have developed 
a reputation for inventiveness and surprise and wonderment. We have toured the plains of Saskatchewan 
and Manitoba, sipped wine under the waterfalls on the Sea-To-Sky highway of BC' s west coast, enjoyed 
Shakespearean and Shaw festivals in Ontario, toured the Plains of Abraham in Quebec, sampled galleries 
and markets in New Brunswick, sailed around Halifax harbour, and hiked up and around St. John's. 
Marty Hoffman makes the rather dubious claim to fame of being the one who initiated midnight 'pizza 
runs', a tradition which has grown in frequency, size and inclusivity as the years pass. One night in 
Fredericton saw almost all conference registrants crowded into one very small, and overwhelmed, pizza 
parlour. In Regina, there were so many people prepared to wander the town in search of the 'perfect 
pizza' that the run took place over two nights. 

The diversity which the Group achieves is accomplished in a number of ways. First, and perhaps 
most importantly, the Group has always sought to attract mathematicians as well as mathematics educators 
to its gatherings. The Group has been relatively successful in this venture with roughly a third of the 
Group's membership being drawn from the ranks of professional mathematicians. Moreover, recent years 

2 To use a phrase Uri Leron is fond of and has written about. Uri was a most welcome non
Canadian visitor to the Group's Annual meeting in Regina in 1994. He argues that many ideas are more 
than just 'half-baked'. Some are better than that and are at least 'three-quarters baked' . 

3 Op. Cit., p.7. 

4 Op. Cit., p.5. 
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has witnessed a greater involvement by college and CEGEP mathematics instructors, a move widely 
applauded within the organization. Concerted efforts have also been made to have school people involved 
with the annual meeting, but typically this involves just teachers and provincial association representatives 
for the region where the conference is being held. It is a sad truism that not many teachers can obtain 
travels funds to attend conferences. Unfortunately, university, college and CEGEP instructors may soon 
be facing the same funding difficulty, if they aren't already. Nonetheless, the Group attracts a broad 
spectrum of the mathe-matics and mathematics education community across the country, something no 
other organization in Canada accomplishes. 

The shifting location of the annual meeting is also a source of diversity. Since education is a 
provincial responsibility in Canada, it is difficult to get 'a fIx' on what is occurring in all parts of the 
country with respect to mathematics education. Moreover, it is difficult to comprehend and understand 
the diversity which exists across the country, dictated by local settings, without actually visiting and living 
in, however briefly, particular regions of the country. We have been fortunate to have been hosted by 
universities all across the land, at incredibly reasonable costs, in ways which allowed us to experience the 
richness and diversity of Canada as few others in the general population ever have the opportunity of 
doing. 

In their own way, the four presidents have brought their experiences of the west coast, the prairies, 
French speaking Quebec, and English speaking Quebec, to bear on the focus and direction of the 
organization, and thereby fostered an understanding of the diversity of our country. It will not escape 
note, however, that all the presidents have been male. Over the past decade, however, the Executive itself 
as well as the cast of plenary speakers, working and topic group leaders at the annual meetings have been 
gender balanced. The increased participation of women in the Group has also led us to make changes in 
the programme components, such as the small group discussion format after the plenary talks, aimed at 
making our deliberations richer and more inclusive. 

Keynote speakers also contnbute to the diverse points of view to be examined by the Group. While 
the Group is Canadian, with only a small handful of members coming from outside the country, it was 
always foremost in the minds of those planning the conferences that the organization should not become 
parochial in its viewpoint. Efforts were made, therefore, to ensure that the keynote speakers were (l) 
foremost authorities in their areas of interest, those at the so-called 'cutting edge' of thinking in their 
fIeld, and (2) brought a non-Canadian viewpoint to the Group. A quick perusal of the list of past speakers 
included in Appendix B will be sufficient to convince even the most skeptical that the Group has been 
successful in attracting leading mathematicians and mathematics educators to attend its meetings. These 
speakers don't just come, deliver their lecture, then leave, but they stay with us for the entire conference, 
participating in the WGs, the TGs, and the social events which embellish the 'headier' aspects of the 
meeting. They are active participants working right alongside our members. Moreover, one keynote 
speaker typically represents the mathematics education fIeld, and the other the views of professional 
mathematicians. And for fInancial reasons, one is typically from a location 'close' to the site of the annual 
meeting, and one from some distance removed from that site. In all of this, the attempt is to invite 
individuals who will stretch our thinking, who will challenge our home-grown ideas, who will broaden 
our educational horizons. Sometimes these efforts are successful, sometimes not, but it still seems worth 
the effort. 

Though rich in tradition and perhaps wedded to a particular format and way of working, the Group 
nonetheless continues to evolve. The face of the organization is gradually changing as individuals new 
to the fIeld make their presence felt. They have begun to lead working and topic groups bringing with 
them perspectives and experiences new to the fIeld. Discussion formats which are more inclusive for both 
new and long term members are being tested, adapted based on experience, and then adopted. 
Recognition, and a place on the program, is being given to those who have recently completed doctoral 
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studies. The format of topic groups is being modified to give them greater exposure and opportunity for 
fuller discussion. As with most of life, some things about the Group change, while others stay the same. 

But "study--etude" remains the central focus of the Group and perhaps it greatest strength and 
defining characteristic. This is as it should be if the Group is to be true to its origins. And if the ice cream 
is being kept cold in case Izzie comes along, and if local pizza parlours are stocking extra supplies, then 
you will know you are in a location where the annual meeting of CMESG/GCEDM is being held. 

4 

A. J. (Sandy) Dawson 
President, 1993-1997 
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Many studies have classified students' approaches to proving along various dimensions: from 
pragmatic involving recourse to actions, to conceptual arguing from properties and relationships, (van 
Dormolen, 1977; Balacheff, 1988); from weak to strong deduction (for example, Bell, 1976; Coe and 
Ruthven, 1994); according to different modes-enactive, visual and manipulative (Tall, 1995), or proof 
schemes (Harel and Sowder, in press). Despite differences in emphasis, this corpus of research evidence 
points to the fact that if the meaning of proof is taken only to be some kind of logical verification, proving 
in school mathematics is likely to be fraught with conceptual difficulties. Many students have a limited 
awareness of what proof is about. On the one hand, they show a preference for empirical argument over 
any sort of deductive reasoning and seem to fail to appreciate the crucial distinction between them: for 
example, many students judge that after giving some examples which verify a conjecture they have 
proved it, yet, on the other hand, students tend to assume that deductive proof provides no more than 
evidence with the scope of the proofs validity being merely the diagrams or examples in the text. Finally, 
other findings point to the difficulty many students have in identifying the premises of a proof and 
following through a logical argument from these premiSes to a conclusion (for evidence on all these points 
see for example Williams, 1979; Fischbein and Kedem, 1982; Balacheff, 1988; Martin and Harel, 1989; 
Porteous, 1990; Chazan, 1993; Finlow-Bates, 1994). 

A common interpretation of these findings has been to argue that students' understandings of proof 
are organised along a hierarchy: with empirical 'proof or procedural validation by action at the bottom 
and rigorous deductive argument or relational validation based on premises and properties at the pinnacle. 
But are there other, equally plausible, interpretations? In order to open an alternative window on to the 
situation, I will sketch out a fictional study in mathematics education that focuses on its potential 
limitations. 

The study sets out to investigate students' understandings of proof and the proving process in 
mathematics. The sample of students is drawn from a school local to the researcher or from a class of 
students in the researcher's university or college. Usually, the mathematical background and experience 
of the students are briefly described but rarely is this description used as an explanatory variable in the 
interpretation of the results or in any discussion of how 'representative' the students might be. The 
empirical core of the study comprises the identification and analysis of students' written responses to a 
range of questions concerning proof. The meaning of what is required as a proof is not made explicit; 
neither is it clear what students have been taught, what has been emphasised and what forms of 
presentation have been deemed to be acceptable. The influences of the content and sequencing of the 
curriculum are ignored in an analysis which takes the individual student and their constructions of proof 
as the object of attention-an analysis that leads almost inevitably to some kind of hierarchical 
classification. 

This uniformity in the research methodologies employed in the international mathematics education 
community stand in stark contrast to the huge variation in when proof is introduced and how it is treated 
in different countries-as evident from even a cursory glance at textbooks and examination questions. In 
some curricula, the nature of mathematical proof is discussed explicitly in terms of premises, definitions 
and logical deductions and the acceptable forms of presentation of proofs are made apparent In others, 
definitions and criteria for proving are either implicit or negotiated during the activity. Informal 
discussions with teachers in one country (the U.K.) reveal a multitude of opinions about how proof should 
and would be introduced and judged-with some teachers declaring that they would be comfortable with 
an informal explanation to others who would require a formally presented logical argument 

These considerations lead me to question the existence of a universal hierarchy of 'proving 
competencies'. My argument elsewhere (Noss and Hoyles, 1996) has been that hierarchies of this sort 
(e,g., concrete/abstract or formal/informal) are largely artifacts of methodology-if we restrict our terms 
of reference simply to the interaction of epistemology and psychology, and ignore the social dimension, 
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then it is inevitable that mathematical learning will be perceived as the acquisition of context-independent 
knowledge within a hierarchical framework. Thus starting from a position of epistemology/psychology 
locks research and its fmdings into a tautological loop. 

There seem to be two ways out of this dilemma. One is to search for patterns of reasons for 
differences in student response that stretch beyond the purely cognitive--encompassing considerations 
of feelings, teaching, school and home factors. Another is to ensure that the goals for including proof in 
the curriculum and how these are operationalised are clarified and taken into account. Clearly proof has 
the purpose of verification-confirming the truth of an assertion by checking the correctness of the logic 
behind a mathematical argument. But at the same time, if proof simply follows conviction of truth rather 
than contributing to its construction, if proof is only experienced as demonstrating something already 
known to be true, it is likely to remain meaningless and purposeless in the eyes of students (see, for 
example, de Villiers, 1990; Tall, 1992; Hanna and Jahnke, 1993). I argue therefore that it is just as 
important, maybe more so at the school level, for proof to provide insight as to why a statement is true 
and to throw light upon the mathematical structures under study. Hanna has argued for this alternative 
approach based upon what she calls explanatory proofs-proofs that are acceptable from a mathematical 
point of view but whose focus is on understanding rather than on syntax requirements and formal 
deductive methods (Hanna, 1990, p. 12). Another related option for proof which also aims to encourage 
student engagement and ownership of the proving activity is again to emphasise explanation but in a 
social as well as a mathematical sense-the need to explain one's argument to a peer or a teacher as well 
as to convince oneself of its truth. It is this sense that has been taken up in the U.K. and it is to this 
innovation that I now tum. 

PROOF IN THE U. K. NATIONAL CURRICULUM 

In the u.K., the main response to evidence of children's poor grasp offormal proof in the 60's and 
70's was the development of a process-oriented approach to proof. Following Polya, (1962), many argued 
(for example, Bell, 1976; Mason, Burton, and Stacey, 1982; Cockcroft, 1982) that students should have 
the opportunity to test and refine their own conjectures in order to gain personal conviction of their truth 
as well as to present their generalisation and any evidence of their validity in the form of a proof. 

Clearly there are huge potential advantages of this approach in terms of motivation and the active 
involvement of students in problem solving and proving. Indeed many prominent researchers at the 
present time (see, for example, de Villiers, 1990) are arguing for just such a shift in emphasis, suggesting 
that students develop an inner compulsion to understand why a conjecture is true if they have first been 
engaged in experimental activity where they have 'seen' it to be true. But before other countries follow 
this route it would be useful to learn some lessons from what has happened in the U. K. What the 
mathematics education reform documents failed to predict was how teachers, schools and the curriculum 
wouid act upon and re-shape this 'process' innovation: in fact, the deliverers of the innovation ignored just 
the same potential influences on student response as alluded to earlier in my description of a fictitious 
mathematics education research study. How will the goals and purposes of the different functions of proof 
be conceived and how will these functions be organised when they are systematised and arranged into a 
curriculum? What will be the implications of this choice of organisation? How will the changes be 
appropriated and moulded by teachers and students? 

Answers to these questions can be sought by an analysis of the present situation in the u.K. 
following the imposition of the National Curriculum. The National Curriculum in Mathematics for 
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children aged 11-16 years is organised into four attainment targets (Department for Education and 
Employment Education, 1995).2 

ATI Using and Applying Mathematics 
AT2 Number and Algebra 
AT3 Shape, Space and Measures 
AT4 Handling Data 

Rather strangely, communication and proving is to be found in ATl, the target named Using and 
Applying Mathematics. However, one major implication of the curriculum organisation does not derive 
from the naming of the targets but from the fact that almost all the functions of proof are separated from 
other mathematical content To tease out all the reasons why this compartmentalisation happened would 
be a fascinating story of the demise of geometry intertwined with political intrigue-but unfortunately 
this is beyond the scope of this paper. But this separation has already had consequences. Many text books 
written for the National Curriculum are now divided into sections according to attainment targets. Rather 
than construction, justification and proof! working together as different windows on to mathematical 
relationships, students are expected to use results of theorems in, for example, Shape, Space and Measures 
but not to prove them; Pythagoras' theorem will be stated and students asked to apply it to calculate a 
length of a side of a triangle. Additionally, the work under the banner of A Tl, has become transformed 
into an 'investigations curriculum' dominated by data-driven activity during which students are expected 
to spot patterns, to talk about andjustify them. Rarely, if ever, are students required to think about the 
structures their justifications might illuminate. What also has not been considered is the inevitably 
ambiguous status of any justification or proof given its disconnection from other mathematical content 
For example what is likely to be the reaction of students to proving a formula if it has already been used 
elsewhere as a fact? 

The second major consequence of the organisation of the National Curriculum is the division of all 
attainment targets into eight levels of supposed increasing difficulty. In A Tl, the sequence in the proving 
process is given below. 

NATIONAL CURRICULUM: ENGLAND AND WALES 

Attainment Target 1: Using and Applying Mathematics4 

2 The national curriculum has been through several changes each time with a different number of 
attainment targets. Nonetheless the basis of its organisation has remained unchanged The structure 
described here was put in place in 1995 where some attainment targets only appear for children of certain 
ages. 

3 In the remainder of this paper I will take justifying to mean an explanation which convinces oneself 
and is communicated to others. I will leave the term 'proving' to convey the more formal sense of logical 
argument based on premises. 

4Children age 11-14 years should be within the range oflevels 3 to 7. Level 8 is available for very able 
pupils. 

10 
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Level 4 

Level 5 

Level 6 

Level 7 

Level 8 

Plenary Lecture I 

Students show that they understand a general statement by fmding particular examples 
that match it. 

They search for a pattern by trying out ideas of their own. 

They make general statements of their own, based on evidence they have produced, and 
give an explanation of their reasoning. 

Students are beginning to give a mathematical justification for their generalisations; 
they test them by checking particular cases. 

Students justify their generalisations or solutions showing some insight into the 
mathematical structure of the situation being investigated. They appreciate the 
difference between mathematical explanation and experimental evidence. 

They examine generalisations or solutions reached in an activity, commenting 
constructively on the reasoning and logic employed, and make further progress in the 
activity as a result. 

Exceptional Performance 

Students use mathematical language and symbols effectively in presenting a convincing 
reasoned argument. Their reports include mathematical justifications, explaining their 
solutions to problems involving a number of features or variables. 

First, it is worth noting that the division into levels and the stipulation of eight as the number of 
levels applies to all subjects in the National Curriculum. This decision was undoubtedly not to do with 
progression in any subject area but rather emanated from the need to impose a uniformity on the 
curriculum as a whole in order that levels could serve as a mechanism to measure and compare the 
achievement of students, teachers and schools. What was not anticipated, however, was the far-reaching 
implications of this levelled classification on individual knowledge domains- on the disciplines 
themselves and how they are experienced by students. Of relevance here is that the majority of students 
engage in data generation, pattern recognition and inductive methods while only a minority at levels 7 or 
8 are expected to prove their conjectures in any formal sense. The imposition of this hierarchical 
organisation has therefore meant that most students have little chance to appreciate the importance of 
logical argument in whatever form and few opportunities to engage in formal discourse requiring any 
linguistic precision.5 In a nutshell, it is now official that proof is very hard and only for the most able. 

Clearly the shift in emphasis to a process-oriented perspective is an understandable attempt to move 
away from the meaningless routines that characterised what was largely geometrical proof in an earlier 
period. While some students managed to undertake the routines of Euclid correctly, far fewer understood 
more about geometry as a result. But in trying to remedy one problem, others have come to the surface. 
The meaning of 'to prove' has been replaced by social argumentation (which could mean simply giving 

5 A similar trend in North American has been noted by Hanna (1995) who has argued that the gradual 
decline of the position of proof in school mathematics and its relegation to heuristics can be attributed 
partly to the 'process orientation of much of the reforms in mathematics education since the 1960s'. She 
also suggests that another contributing factor is the persuasiveness of constructivism-or at least the way 
it is operationalised in the classroom. 
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some examples) or, at the very least, separated from it; justifying is largely confmed to an archaic 
'investigations curriculum' separated from the body of mathematics content; and proof is labelled as 
inaccessible to the majority. 

But what are the consequences for student attitudes to and understanding of proof following this 
massive change in the treatment of proof? What are the consequences for student learning of a curriculum 
that now contrasts sharply with that adopted elsewhere-in the United States, France, Germany, and 
countries on the Pacific Rim to name but a few. Some recent research (Coe and Ruthven, 1994) into the 
proof practices of students who have followed this curriculum, suggests rather unexpectedly that nothing 
appears to have changed and students remain locked in a world of empirical validation. Even more 
surprisingly given the emphasis in the curriculum reforms, the researchers also report that students show 
little attempt to explain why rules or patterns occur, or to locate them within a wider mathematical system 

How far are these findings generalisable? As yet this is not known but far more influential than any 
research study is the pervasive belief amongst influential groups in the U.K. that students' understanding 
of the notion of proving and proof in mathematics has deteriorated. There has been a huge outcry, mainly 
amongst mathematicians, engineers and scientists in our universities, complaining about the mathematical 
incompetence of entrants to their institutions. The argument is that the National Curriculum only pays 
lip-service to proof with the result that even the more able students who go on to study mathematics after 
16 years fail to grasp the essence of the subject. The debate cumulated in 1995 in the publication of an 
influential report by the London Mathematical Society, a powerful group of mathematicians, known as 
the LMS Report (London Mathematical Society, 1995). Points 4 and 5 of its summary are reproduced 
below: 

4. Recent changes in school mathematics may well have had advantages for some students, but 
they have not laid the necessary foundations to maintain the quantity and quality of 
mathematically competent schoolleavers and have greatly disadvantaged those who need to 
continue their mathematical training beyond school level. 

5. The serious problems perceived by those in higher education are: 
• a serious lack of essential technical facility-the ability to undertake numerical and 

algebraic calculation with fluency and accuracy; 
• a marked decline in analytical powers when faced with simple problems requiring more 

than one step; 
• a changed perception of what mathematics is-in particular of the essential place within 

it of precision and proof (p. 2). 

The message of the LMS report is clear. Students now going on to tertiary education in mathematics 
and related subjects are deficient in ways not observed before the reforms: students have little sense of 
mathematics; they think it is about measuring, estimating, induction from individual cases rather than a 
rational scientific process. Clearly we might argue that the evidence of 'decline' is not sound or that its 
putative causes are hard to pinpoint given the complexity of the educational process-not least the 
massive expansion in the university population in the U.K. But this argument is difficult to sustain in the 
absence of systematic evidence. In fact, the conclusions concerning proof are eminently plausible: given 
that there are so few defmitions in the curriculum, it would hardly be surprising if students are unable to 
distinguish premises and then reason from these to any conclusion. But rather than pointing out what 
students 'lack', it would seem to be more fruitful and constructive to fmd out what students can now do 
and understand following the reforms of the curriculum and the different functions of proof they have 
experienced. What is needed is a comprehensive study of students' views of proving and proof and the 
major influences on them. Having followed the new curriculum, what do students judge to be the nature 
of mathematical proof? What do they see as its purposes? Do they see proving as verifying cases or as 
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convincing and explaining? Do they forge connections between the different functions of proof or do 
these functions remain fragmented and isolated? What are their teachers' views? Although we have a 
national curriculum, are there variations in how it is delivered and experienced and if so why and what 
are the implications for student learning? 

These questions take me to a discussion of a research project, Justifying and Proving in School 
Mathematics, which I have been undertaking with Lulu Healy at the Institute of Education in London 
since 1995. In this research, we aim to answer some of these questions by surveying student views of 
proof and trying to explain these against a landscape of variables and influences that extends beyond a 
simple description of students' mathematical competencies. In the next section, I will describe some 
aspects of the project in more detail. 

THE RESEARCH PROJECT 

The pn;>ject set out in 1995 to probe the conceptions of justification and proof in geometry and 
algebra amongst 15 year old students.6 Our aim is to open a range of windows on to students' conceptions 
of proof in order to [md out what they think it involves, what they choose as proofs and how they read 
and construct proofs. We also want to tease out all the influences that might be brought to bear on these 
conceptions--the curriculum, teachers and schools. Given that we wanted to investigate students who had 
gained at least some familiarity with proving in our curriculum, we were forced to sample only high 
attaining students. We are only mildly interested in discovering what students cannot do, but rather seek 
to identify profiles of student responses in order to tease out how they might have been shaped and to 
identify their strengths as well as their weaknesseS. Our fmdings from the survey are to form the basis for 
thinking about how we might introduce students to proof in the future-to capitalise on any positive 
outcomes of the reforms in the curriculum while seeking to reduce any limitations. In fact the survey is 
only the first phase of our project. In the second phase, following our analysis of student and teacher 
responses, we will design and evaluate two ,computer-based microworlds for introducing students to a 
connected approach to proving and proof. 

We spent many months reviewing existing literature and discussing with teachers, advisers and 
inspectors in order to come up with a student questionnaire.7 We wanted the mathematical content to be 
sufficiently straightforward for the proofs to be accessible, familiar and in tune with the U.K. National 
Curriculum, yet sufficiently challenging so there would be differentiation amongst student responses. In 
our questionnaire, proofs and refutations were to be presented in a variety of forms--exhaustive, visual, 
narrative and symbolic and set in two domains ofmathematics--arithmetic/algebra and geometry. 

The questionnaire was pre-piloted by interviews with 68 students in four different schools aiming 
to find out how far the questions were at an appropriate level and engaging for students. Following the 
pre-pilot, items were removed that were too easy or modified if too hard. We also wanted to be able to 
make comparisons between responses in algebra and geometry so we revised the format so its presentation 
in each domain was completely consistent. 

6 The project is funded by the Economic and Social Research Council, Grant number R00236178. 

7 We also organised a small international conference on proof in order to share frameworks and 
present our first ideas for the questionnaire (Healy and Hoyles, 1995). 
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Simultaneously with the development of the student questionnaire, we designed a school 
questionnaire to obtain infonnation about the schools-the type of school, its organisation generally and 
the hours spent on mathematics, the text books adopted and examinations entered and specifically the 
school's approach to justification and proof. We also sought teacher data to provide infonnation on their 
background, qualifications, their reactions to the place of proof in the National Curriculum and the 
approaches they adopted to proof and the proving process in the classroom. 

We piloted both questionnaires with 182 students in eight schools after which we were able to iron 
out any remaining ambiguities and to specify the time required to complete the survey (70 minutes) and 
the instructions for its administration. The questionnaires were completed between May and July 1996 
by 2459 students in 94 classes from 90 schools in clusters throughout England and Wales. We had 
originally planned to use 75 schools but more requested to take part in our survey-a reflection we believe 
of the interest teachers have in this topic, their recognition of its importance and their concern about the 
changes that have taken place. The questionnaires were administered by members of the project team or 
mathematics educators in different parts of the country who volunteered to help us. This process ensured 
consistency in administration procedures and a 100% return of questionnaires. While the students 
answered their questionnaires, their teacher filled in parts of the student questionnaire (see later) as well 
as completed the school questionnaire. 

Schemes for coding the questionnaires were devised and all the coding undertaken and checked during 
July and August 1996. We are now producing descriptive statistics based on frequency tables and simple 
correlations as well as modelling student responses against all our teacher and school variables using a 
multilevel modelling technique (see Goldstein, 1987). The purpose of this paper is not to report the 
findings of this statistical analysis but rather to provide a flavour of how students in the U.K. now see 
proof through the presentation of a selected sample of questions together with some student responses. 

A WINDOW ON STUDENT VIEWS OF PROOF 

The first question of the student questionnaire asks students to write down everything they know 
about proof in mathematics. A rather typical answer is given below: 

All that I know about proof is that when you get an answer in an investigation you may need 
some evidence to back it up and that is when it is proof You have to prove that an equation 
always workY. 

Another student wrote: 

All I know is the proof in mathematics is that, if say you are doing an investigation, and you 
find a rule, you must prove that the rule workY. So proof is having evidence to back up and 
justify something. 

These responses clearly echo our curriculum structure where it is the 'investigation' which requires 
proof--or at least the presentation of some sort of evidence. Following this open-ended question, the 
questionnaire is divided into two sections, the first concerned with algebra and the second with geometry. 
The first question of each sections is in a multiple-choice fonnat as illustrated in Figures 1 and 2. 

The purpose of having a multiple-choice question at the beginning of each section is to introduce 
students who may not be acquainted with the meaning of 'to prove' to a range of possible mean
ings-remember that our students are not introduced to defmitions nor generally required to produce 
logical deductions in mathematics. Almost all the student responses used as options for this question were 
derived from our pre-pilot and pilot studies or from school text books, so we could be fairly sure that 
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A 1. Arthur, Bonnie, Ceri, Duncan and Eric were trying to prove whether the 
following statement is true or false: 

When you add any 2 even numbers, your answer is always even. 

Anhur's answer 

a is any whole number 

b is any whole number 

2a and 2b are any two even numbers 

2a + 2b = 2 (a + b) 

So Anhur says it's true. 

Ceri's answer 

Even numbers are numbers that can be 
divided by 2. When you add numbers with a 
common factor, 2 in this case, the answer 
will have the same common factor. 

So Ceri says it's true. 

Eric's answer 

Bonnie's answer 

2+2=4 
2+4=6 

2+6=8 

4+2=6 
4+4=8 
4+6=10 

So Bonnie says it's true. 

Duncan's answer 

Even numbers end in 0 2 4 6 or 8. 
When you add any two of these the 
answer will still end in 0 2 4 6 or 
8. 

So Duncan says it's true. 

Let x = any whole number, y = any whole number 

.1'+Y=l 

l-.1'=Y 

l-Y=.1' 

l + l - (x + Y) = x + Y = 2z 

So Eric says it's true. 

From the above answers, choose one which would be closest to what you would 
do if you were asked to answer this question. I I 

From the above answers, choose the one to which your teacher would give the 
best mark. I I 

Figure 1: The First Algebra Question 
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G 1. Amanda, Barry Cynthia, Dylan, and Ewan were trying to prove whether the 
following statement is true or false: 

When you add the interior angles of any triangle, your answer is always 
180°. 

Amarrda's answer 

I tore the angles up and put them together. 

It came to a straight line which is 180°. I 
tried for an equilateral and an isosceles as 
well and the same thing happened. 

So Amanda says it's true. 

Cynthia's answer 

I drew a line parallel to the base of the triangle 

't';: 
Statements Reasons 
p = s................ ... ...... Alternate angles between 

two parallel lines are equal 
q = t......................... Alternate angles between 

two parallel lines are equal 
p + q + r = 180°........ Angles on a straight line 

:. s+t+r= 180° 

So Cynthia says it's true. 

Ewan's Answer 
If you walk all the way around the edge of the 
triangle. you end up facing the way you began. 
You must have turned a total of 3600. 

You can see that each exterior angle when added to 
the interior angle must give 180° because they 
make a straight line. This makes a total of S4O°. 
S4O° 0 360° = 1800. 

So Ewan SayS it's true. 

Barry's answer 

I drew an isosceles !in 
triangle, with e 
equal to 6S·. c b 

Statements Reasons 
a = 180'0 2e....... Base angles in 
isosceles triangle equal 
a = SO·............... 180' 0 130' 
b = 6S·............... 180' 0 (a + e) 
e = b.................. Base angles in 
isosceles triangle equal 

:. a + b + e = 180° 

So Barry says it's true. 

Dylan's answer 

I measured the angles of all sorts of 
triangles accurately and made a table. 

abc total 
110 34 36 180 
95 43 42 180 
3S 72 73 180 
10 27 143 180 

They all added up to 1800. 

So Dylan says it's true. 

From the above answers, choose one which would be closest to what you would 
do if you were asked to answer this question. I I 

From the above answers, choose the one to which your teacher would give the 
best mark. . I I 

Figure 2: The First Geometry Question 
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some at least would be familiar. These questions (and others with a similar multiple- choice form) were 
designed to help us ascertain what students recognised as a proof. These responses could then be 
compared and contrasted with what students actually produced as proofs later in the questionnaire. Clearly 
these two processes are related but not identical-i;onstructed proofs require specific knowledge to be 
accessible. As well as presenting different meanings for proof, the choices in the questions ranged over 
different forms to enable us to tease out how far students are influenced by the form as well as the content 
of a proof: the 'proof types' shown in Figures I and 2 are categorised as empirical, enactive, narrative and 
formal with two examples of this last case, one correct and one incorrect.' 

We are seeking to investigate the influence of the teacher in various ways-through their responses 
in the school questionnaire but also through the eyes of the student in the student questionnaire. In the last 
part of each mUltiple-choice question, the student is required to choose the proof to which they think their 
teacher would give the best mark. Responses here will help us to see how students interpret what is 
rewarded by their teacher. The teachers are also asked to complete these same questions--to write down 
what they would choose as a proof as well as what they think their students will choose as the one given 
the best mark. The analysis to date reveals a picture that is by no means simple. What is interesting is the 
sizeable minority of students whose personal choice bears no resemblance to the one they believe will 
receive the best mark (only 21 % overall made the same choice for both~ and the small group who 
choose, for the latter, a formal proof that is incorrect! 

Following each multiple-choice question in both Algebra and Geometry are questions seeking to find 
out how students evaluate each of the choices previously presented. Do they think it is correct? Do they 
believe that the proof holds for all cases or simply for a specific case or cases? Do they judge it to be 
explanatory or convincing? An example of the format used as it applies to Bonnie's 'proof is shown in 
Figure 3. 

Bonnie's answer 

2+2=4 
2+4=6 
2+6=8 

4+2=6 
4+4=8 
4+6=10 

So Bonnie says it's true. 

Bonnie's answer: 

Has a mistake in it 

Shows that the statement is always true 

Only shows that the statement is true for some even numbers 

Shows you why the statement is true 

Is an easy way to explain to someone in your class who is unsure 

2 

2 

2 

2 

2 

Figure 3: Student Evaluations of Bonnie's Answer 

3 

3 

3 

3 

3 

'Before the students started to respond to the questionnaire, it was pointed out to them that for this type 
of question several options could be 'correct'. 

9 In fact there is a significant relationship between these two choices but the correlation is low. 
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By analysing all the responses to this question, we will fmd out if students are convinced of the truth 
of a conjecture by a list of empirical examples. Do they judge that these examples help them to explain 
the result? Do they recognise that it only shows the conjecture is true for some numbers even though they 
might have chosen it as their response or as the one to which the teacher would give the best mark?1O We 
are analysing whether it makes a difference if the proof evaluated was the one chosen by the student. 
Preliminary analysis in algebra suggests that students tend to choose for themselves 'proofs' that they 
evaluate as general and explanatory while the proofs they think will be assigned the best mark are 
evaluated as general but not necessarily explanatory. Formal presentation (correct or incorrect) is highly 
favoured for the best mark while narrative is the favourite for individual choice. 

Following the set of multiple-choice questions-one of which in each section concerns an incorrect 
conjecture which is proved by some choices and refuted by others-.--the students are asked to construct 
some proofs. Great care was taken to choose proofs that would be either familiar or at least accessible to 
most students who had followed our curriculum. The influence of the investigations curriculum is again 
very evident in their constructions, as illustrated in Figure 4: 

The same phenomenon is illustrated by another student's response to the second, rather harder, 
algebra proof construction in Figure 5. 

Even in geometry, rarely the site for a school 'investigation', the discourse of investigations is evident 
in the form of many of the student responses and the explanations given, as illustrated in Figure 6. 

What is evident from these responses is that students have learned a format for presenting and 
'proving' an investigation. They have appropriated some structures to help them to make sense of a 
situation and to assist in developing a language for proof. But, limitations of these approaches are very 
apparent. Students appear to be imposing a 'type' of proof on a question; for example, a proof must 
involve data. All too easily students seem to have shifted their notion of proving from one ritual to 
another-from aformal ritual to a social ritual-something added on to the end of an investigation. This 
new ritual is likely to be equally meaningless, empty of mathematical illumination and missing any 
mathematical point unless ways can be found to connect it to a sense of the function of proof (in any of 
its forms) and to the constructive activity of the investigation itself. 

Clearly I have selected student responses to illustrate my point and it is important to guard against 
the danger of over-generalising. Our survey shows huge variation in student response. We are in the midst 
of generating complex and sophisticated models using both student and school questionnaires to tease out 
how variables interrelate and to describe the range of contributory 'causes' for any differences in the 
student response profile. Is it curriculum, text book, examination board, school or teacher that shapes 
response or a combination of these? Are students' responses consistent in any domain or across domains? 
If so, how do their different answers correlate? 

Despite this cautionary note, it has been salutary to identify the extent of the influence of the 
curriculum (either intended or unintended) and how it is delivered by teachers. These phenomena and 
their behavioural manifestations cannot be 'blamed' on the student. Their behaviours cannot simply be 
ascribed to properties of age, ability or even individual interactions with mathematics. We cannot and 
must not assume the students are learning an object whose meaning corresponds to that assigned to it in 
mathematical discourse. Its meaning has been radically changed by the way the curriculum has been 

10 Preliminary analysis suggests this latter choice may be subject to interesting gender differences. 
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organised. For example, responses in geometry are very different-and much worse from a mathematical 
perspective-from those in algebra. This rmding is unsurprising given the almost complete disappearance 
of geometrical reasoning in the curriculum, but nonetheless it casts doubt on how far proof can be con-

A 4. Prove whether the following statement is true or false. Write down your answer 
in the way that would get you the best mark you can. 

When you add any 2 odd numbers, your answer is always even. 

My answer 

1 + t := ~ 

3+3:'=' 

S -\- 5 = 10 

.. 
CDnc:i..u.Dt 0)") 

'r~-'~ *,CJ.8-~ ~ til carrC2Ct 
f( am ~ t)J0'f12.lIl9 1 hc.UAO. c.arrlSld 0J..t-. 

Figure 4: An 'investigations' response to a 
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sidered as a unitary mathematical 'object' separate from its domain of application. Many mathematics 
educators have shown how we must take seriously the influence of the teacher-and our teacher data will 
shed light on this. But surely, we have now to look for reasons which include this curriculum organisation 
and in the case of the U.K., its separate targets and the straightjacket of its levelled statements? 

The starting point of our research was the belief that proving in mathematics need not be restricted 
to 'the exceptional' and that the organisation of the U.K. national curriculum seriously underestimates the 
potential of our students. Responses to the survey are proving to be rather promising in this respect. 
Alongside the ritualised responses described above and the all too numerous solutions that simply resort 
to empirical examples, there are some fascinating and ingenious proofs which provide a pointer to the 
wealth of resources that might be tapped and built upon in the process of building a proving culture. 

Take, for example, the following proof of the ftrst algebra example which combines a visual 
approach to show the structure of the problem with a narrative to indicate the generality of the argument 
(see Figure 7). 

Even in geometry where responses are disappointing, we fmd several examples of creative proofs 
as illustrated in Figure 8. 

Both of these responses are likely to be influenced by school factors which we intend to investigate 
through interviews with teachers in the schools concerned. It may be, for example, that the geometry proof 
above has roots in prior experimentation with dynamic geometry software. But note how both point to 
an iterative or inductive approach to proof where the starting point is not data but rather a speciftc and 
special case where the conjecture is known to be true from which a road to the general case is 
suggested-in the former case by language and image and the latter by means of , adding a bit in one place' 
and 'taking the same from another'. This calls into question the whole notion that students' development 
of mathematical justiftcation has to proceed from inductive to deductive processes. Clearly this assertion 
needs careful investigation. 

CONCLUSIONS 

We have a long way to go to unpick all the factors that go together to underpin student conceptions 
of proof in the new scenario we now face in the U.K. It is almost certain that many of the influences on 
student responses, interactions in classrooms and institutions were not anticipated. Nonetheless we can 
learn from this experience. The main message of this paper is that mathematics educators can no longer 
afford simply to focus on student and teacher if we are to understand teaching and learning and if we seek 
to influence practice. We cannot ignore the wider influences of curriculum organisation and sequencing 
if we are to avoid falling into the trap illustrated by the U.K.'s ubiquitous 'investigation'. 

The challenge remains to design new situations that motivate students to prove in all its functions 
and that help students to forge connections between them at every opportunity. We must resist the 
temptation of assuming that situations that engage students with proof must follow a linear sequence from 
induction to deduction. To do this we simply have to keep our goals clearly in mind. As Goldenberg (in 
press) has argued, we must aspire to developing 'ways of thinking' not their 'products' and use these as 
guides to curriculum organisation-but at the same time not neglect to recognise how these ways of 
thinking are deeply connected with content domain. To do this effectively, we must exploit all the 
resources at hand: our collective knowledge from research much of it undertaken under the influence of 
a very different set of curriculum restraints; the ftndings of our present survey; and the opportunities 
opened up by new tools now available-tools that will change the landscape of assumptions underpinning 
proof as well as the strategies open for undertaking proving. If we fail in this endeavour, there is a real 
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A 4 • Prove whether the following statement is true or false. Write down your answer 
in the way that would get you the best mark you can. 

When you add any 2 odd numbers, your answer is always even. 

~yans~o + @o 
_ 000000 
- OOOOO() 

Ttu/J t/) tec.ru.w.e .~ ~ ~ ruv~ .1 
F ~ ttu., oelRJ ~!fJU wLD 
q.e% eM ~ ~ CM C;f~). 50 it 
~ ().e1eP tkt;;L ~.1

1 

S ¥ OJ.RH F 
c,cuj,,- 5i~ F wtu qif ~, So 

i)rwW e.w.~ ~ el.LeMt~+2 
{JiM cJA VJ (Qc1d - I) + (OdR.J - ,) t ~ 

Figure 7: Developing a language for proving 
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G4. Prove whether the following statement is true or false. Write your answer in a 
way that would get you the best mark you can. 

If you add the interior angles of any quadrilateral, your answer is 
always 3600

• 

My answer 

So 
Figure 8: rom a spec a case towar a generalIsation 
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danger that the pendulum will simply reverse and we will return to the failed approaches of the past. In 
the U.K., we now stand at this turning point. 

Will the curriculum 'swing backwards'? Or will we be able to seize the opportunity opened up by 
all the discussion around proof, to take a step forward and begin to induct all students into a negotiable 
but also mathematical proving culture where they can derive a sense of purpose in proving and come to 
see a proof as generative and not merely descriptive. 
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Plenary Lecture II 

ALIVE MATHEMATICAL REASONING 

David W. Henderson 
Cornell University, Ithaca, New York 

INTRODUCTION 

Cecilia Hoyles in first plenary told us that whenever we examine someone's conceptions of proof 
we should learn something about their background-what have they been taught about mathematics. 
So, I thought it was appropriate that I start by telling you something of my background, since I am 
going to talk with you for the next hour about my views of proof as gleaned from my experiences as 
student, teacher, mathematician and general experiencer of the world. 

I have always loved geometry and was thinking about geometric kinds of things since I was very 
young as evidenced by drawings that I made when I was six which my mother saved. But I did not 
realize that the geometry, which I loved, was mathematics. I was not calling it geometry-I was 
calling it drawing or design or not calling it anything and just doing it. I did not like mathematics in 
school because it seemed very dead to me-just memorizing techniques for computing things and I 
was not very good at memorizing. I especially did not like my high school geometry course with its 
formal two-column proofs. But I kept doing geometry in various forms in art classes, out exploring 
nature, or by becoming involved in photography. This continued on into the university where I was a 
joint physics and philosophy major and took only those mathematics courses which were required for 
physics majors. I became absorbed in geometry-based aspects of physics: mechanics, optics, 
electricity and magnetism, and relativity. On the other hand, my first mathematics research paper (on 
the geometry of Venn diagrams for more than 4 classes) evolved from a course on the philosophy of 
logic. There were no geometry courses except for analytic geometry and linear algebra, which only 
lightly touched on anything geometric. So, it was not until my fourth and last year at the university 
that I switched into mathematics because I was fmally convinced that the geometry that I loved really 
was a part of mathematics. This is not an uncommon story among research geometers. Since high 
school, I have never taken a course in geometry because there were no geometry courses offered at the 
two universities which I attended. So, in some ways I may have had the advantage of not having taken 
a geometry course! 

But I was educated in a very formal tradition-in fact, mathematics was, I think, the most formal 
that it has been about the time that I was studying at the university in the late 1950's and early 1960's. 
One of the evidences for this was the number of geometry courses offered at colleges and universi
ties-there were practically none anywhere at that time except for a few geometry courses for 
prospective school teachers and still at many institutions such courses are the only geometry courses 
offered. 

I am the same generation as most of the faculty now in mathematics departments in North 
America (most of us are 50-65 years old) because we were hired to teach the baby boomers in the 
1960's. So now my generation is clogging up most of the tenure faculty positions all over North 
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America, and in the USA we will not be required to retire because the Supreme Court has ruled 
recently that it is unconstitutional to have mandatory retirement ages. Almost all of the mathemati
cians in my generation had a very formal training in mathematics. This has affected us and affected 
mathematics and will continue to affect mathematics because my generation now has the positions of 
authority in mathematics. 

I want to mention specifically one mathematician in my generation and that is Ted Koscynski, 
the suspected Unabomber. He had very much the same kind of university mathematics education that I 
had. Both of us at the time were socially inept and it was difficult for us to get to know people. In fact, 
in some ways, this was encouraged in our training all the way through graduate school and certainly 
was not a hindrance in any way. My thesis advisor talked to me and a few of the other men graduate 
students and said to us that it would be very important for us to fmd wives who would take care of all 
of our social responsibilities, so that we would not have to deal with social things and could put all of 
our energy into mathematics. Fortunately, one of the things that helped save me was that I did not take 
his advice-I got married but not to such a wife. The suspected Unabomber talks about similar things 
which happened to him. 

Both Ted Koscynski and I accepted tenure track professorial positions at major research 
mathematics departments (Berkeley and Cornell). And we were initially both successful with 
professional mathematics. Then, in the early 1970's, both Ted Koscynski and I quit mathematics. I got 
angry with mathematics-I got very furious about what mathematics had done to me. It is too 
complicated to go into all my feelings then (even if! could retrace them accurately)-but if someone 
came up to me at that time and called me a mathematician I felt strongly like punching them in the 
face! The evidence indicates that Ted Koscynski had a different more violent reaction but his writings 
express feelings very similar to the ones I had at that time. He and I both went into the forest and built 
a cabin and lived there alone and we isolated ourselves. But, there was a huge difference-I made a 
constructive positive breakthrough and Ted Koscynski didn't. 

It was geometry, the many friends I made, and my family that brought about this breakthrough 
and in many ways saved my life. I got back into geometry. Before this, I had not been teaching 
geometry-I had been teaching geometric topology and such courses but all of my teaching up to then 
had been very formal. There was one geometry course at Cornell at the time-the one for prospective 
secondary school mathematics teachers. It was not considered to be a real mathematics course and I 
considered myself to be a real mathematician so I did not have any interest in teaching it. But at that 
time, when I thought I was quitting mathematics, I needed to teach a little in order to have enough 
money to survive in my cabin, so I took a leave without pay and then occasionally came back and 
taught for some money. (Fortunately I did not bum any bridges.) So I started teaching this geometry 
course for prospective teachers. In the first three years that I taught the course, while living in the 
forest, three mathematics educators familiar to most of you were in the class, David Pimm (Open 
University), Jere Confrey (Cornell), and Fran Rosamond (National University, San Diego). This 
geometry course was essentially all that I was teaching for a few years. A lot of what I am going to 
talk about are my experiences with that course and what happened since then. This course (and my 
new friends) pulled me out of the fire that Ted Koscynski never got out of. 

FORMAL DEDUCTIVE SYSTEMS 

Global formal deductive systems can be very powerful and are important in certain areas (for 
example in the study of computer algorithms and in the study of questions in the foundations of 
mathematics). Local formal deductive systems can be important and powerful in many areas of 
mathematics (for example group theory.) But many people hold the belief that mathematics is only the 
study of formal systems. These beliefs are wide-spread especially, I fmd, among people who are not 
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mathematicians or teachers of mathematics. Let me give some descriptions of formal mathematics. 
For example, in FOCUS: The Newsletter of the Mathematical Association of America a professor of 
computer science wrote: 

... one of the most remarkable gifts human civilization has inherited from ancient Greece in 
the notion of mathematical proof [and] the basic scheme of Euclid's Elements ... This 
scheme was formalized around the turn of the century and, ever since ... mathematicians 
have rested assured that all their ingenious proofs could, in principle, be transformed into a 
dull string of symbols which could then be verified mechanically. One of the basic features 
of this paradigm is that proofs are fragile: a single, minute mistake (e.g., an incorrectly 
copied sign) invalidates the entire proof. (Babai 1992) 

This is the kind of view of mathematics that I learned when I was in school and the university. 

Here's a more recent description that just appeared in the past year in the American Mathematical 
Monthly in an article (by another professor of computer science and member of my mathematical 
generation) about a new reform teaching technique and text for discrete mathematics which is based 
on a "computational" formal approach which uses uninterpreted formal manipulations which have 
been stripped of meaning: 

... most students are troubled by the prospect of uninterpreted manipulation. They want to 
think about the meanings of mathematical statements. Having meanings for objects is a 
"safety net", which students feel, prevents them from performing nonsensical manipula
tions. Unfortunately, the use of the "meaning" safety net does not scale well to complicated 
problems. Skill in performing uninterpreted syntactic manipulation does. (Gries 1995) 

He literally means to get rid of the meaning. He takes literally the formalist view of mathematics 
that the meaning is not important. He goes further to say that the meaning actually gets in the way. I 
was at one of his talks when he was explaining his new teaching method and he gave a proof of some 
result in discrete mathematics and I tried to follow the meaning through from the hypothesis to the 
conclusion, because the hypothesis and conclusion did have meaning. I tried to follow that meaning 
through the proof in order to see the connections, but I failed to do so. I brought this up at the end and 
he said something close to: "Yes! That's precisely the idea! We have managed to get the meaning out 
of the way so that it doesn't confuse the students so they are now better able to do mathematics." 

Now let me give another description of mathematics. This was written by Jean Dieudonne in an 
article which was written in response to an article by Rene Thom in which Thom was talking about 
intuition and how it was important to bring in and foster intuition in the schools. 

I am convinced that, since 1700, 90 per cent of the new methods and concepts introduced 
in mathematics were imagined by four or five men in the eighteenth century, about thirty in 
the nineteenth, and certainly not more than a hundred since the beginning of our century. 
These creative scientists are distinguished by a vivid imagination coupled with a deep 
understanding of the material they study. This combination deserves to be called "intu
ition." ... 

In most cases (the transmission of knowledge) will be entrusted to professors who are 
adequately educated and prepared to understand the proofs. As most of them will not be 
gifted with the exceptional "intuition" of the creators, the only way they can arrive at a 
reasonably good understanding of mathematics and pass it on to their students will be 
through a careful presentation of their material, in which defmitions, hypotheses, and 
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arguments are precise enough to avoid any misunderstanding, and possible fallacies and 
pitfalls are pointed out whenever the need arises. (Dieudonne 1973) 

Both of the frrst two quotes were from computer scientists who down-play the role of meaning 
and intuition in mathematics. Now, Dieudonne who certainly is a mathematician and a very good one, 
pointed out that intuition and imagination are very important but that there are only a few people 
(apparently, men) who have that intuition and that for the rest of us it is necessary for mathematics to 
be put down in a very precise formal way. Dieudonne has two claims to fame that are connected to 
this. One is he was the founder of the Bourbaki movement which was an attempt (which was never 
fmished) to formalize all of mathematics. The other which is more significant for this gathering is that 
about the time of this article he was chair of the ICMI (International Commission on Mathematics 
Instruction) and chair of it at the time that the "New Math" was being spread around the world. He has 
always been involved in education. 

Another example of descriptions of mathematics: Mathematica©, the computer program, when it 
frrst came out was advertised as a program that can do all of mathematics- remember those early 
ads? If you believe a strictly formal view of mathematics then that claim was believable and many 
people did believe it. 

CONFINING MATHEMATICS WITHIN FORMAL DEDUCTIVE SYSTEMS IS HARMFUL 

Now I want to talk about how I see the view (which I take as starting roughly a hundred years 
ago) that mathematics is just formal systems has been harmful. I see this view as harmful because: 

- it encourages what I think are incorrect beliefs. For example, those beliefs mentioned 
above that mathematics is only the study of formal systems. Of course, people can have disagreements 
as to what mathematics is, but I think that most of the people in this room do not believe that 
mathematics is just formal systems. And let me make it clear that I believe that formal systems do 
have a place in mathematics and that they are very useful and very powerful in many ways. Formal 
systems are very important in computer science because that is what a computer does --deal with 
formal systems. So it is not surprising that it was professors of computer science who made the 
statements that I have put here. Formal systems have certainly been very important in various parts of 
algebra and analysis and topology (which was my area of research) which flourished in this century. 
But geometry virtually disappeared as evidenced by the fact that there were almost no undergraduate 
geometry courses in 1970. That trend has now reversed. For example, now at Cornell there are eight 
undergraduate geometry courses and of those eight there is only one-half of one of them that deals 
with axiomatic systems. So things are changing. 

- much interesting and useful geometry is either not taught at all or is presented in a way 
that is inaccessible to most students. For example, spherical geometry was in the high school and 
university curriculum (or, at least in the textbooks) of 100 years ago. Of course, high schools in those 
days were more elite institutions than they are today, but spherical geometry is almost entirely absent 
from our courses and textbooks now. Why is it that it disappeared? It is not because it is not useful: 
Spherical geometry is very applicable-navigation on the surface of the earth, the geometry of visual 
perception, the geometry of astronomical observations, surveying on a scale of several kilometers. 
Spherical geometry is a very useful geometry, but we do not teach it anymore-why? I think the 
reason is that spherical geometry is very difficult to formalize-there is no convenient axiom system 
for spherical geometry. There is an axiom system for spherical geometry (Borzuk did it just before the 
Second World War)-it is in a book that is in many mathematics libraries but it rarely has been used 
because it is not a useful axiom system. "Non-Euclidean" geometry has been often taught in under-
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graduate geometry courses, but it has always been "the" non-Euclidean geometry, hyperbolic 
geometry, which has a relatively simple axiom system and which has only been around for about 160 
years. Spherical geometry which is very old (the Babylonians and Greeks studied it) is rarely taught. I 
can not think of any reasonable explanation for why spherical geometry disappeared except that it 
does not fit into formalism. This is one of the reasons that I have it in my geometry course. When 
freed from the confmes of formal systems it is possible to present spherical geometry in ways that are 
based on geometric experiences and intuitions. (See Henderson, 1996a) 

- important notions in mathematics are formally defined in ways that separate them from 
the students' experiences. For example, the new Chicago Mathematics Curriculum for American 
secondary schools (which has many good things in it and is now the fastest growing curriculum in the 
USA) defines a rotation as the product of two reflections. Now that is an interesting fact (theorem) 
about rotations. But what does a student think when he or she comes to that as the defmition of what a 
rotation is? It is very difficult to relate the product of two reflections with our experiences of rotations 
such as opening a door or riding a merry-go-round. One of the problems is that our intuition of 
rotations is a dynamic thing-it is actually a motion. Whereas to think of rotation as the product of 
two reflections is a static thing-it is the result of the rotation motion that is equal to the product of 
two reflections. If I were a student and saw this defmition in the textbook I would say that this 
geometry is not relating to what I know geometry is and I would feel that the text is telling me that my 
experiences and intuitions are not important. It appears that the main reason for using this defmition is 
that it is convenient formally in the deductive system in which the geometry in the text is confmed. 
Also, differential geometry (the geometry of curves and surfaces, the geometry of the configuration 
spaces of mechanical systems, the geometry of our physical space/time) has extremely difficult 
formalisms which make it inaccessible to most students and even, I suspect, most mathematicians are 
uncomfortable with the formalisms of differential geometry. Some people have called it the most 
complicated formalism in all of mathematics. But, yet, differential geometry is basically about straight 
lines and parallelism-very intuitive notions. When we insist on formalizing differential geometry 
then it becomes inaccessible--even more so because there is no agreed upon formalism. My second 
book, (Henderson, 1996b), is an attempt make differential geometry accessible by basing it on 
geometric experiences and intuitions, as opposed to basing it on standard algebraic and analytic 
formalisms. 

- many important and useful questions are not asked. This was something that really 
surprised me when I started teaching this geometry and started listening to the prospective teachers 
who were taking the course. There are a lot of questions that students have that we never ask in 
mathematics classes. For instance, the reliance on a formal Euclidean deductive system rarely allows 
for questions such as "What do we mean when we say that something is straight?" We normally don't 
ask that in any classes, even though we talk about straight lines all the time. We just write down some 
axiom or we just say "everyone knows what 'straight' is." In differential geometry the formalism has 
attempted to get at what the meaning of straight is, but in a way that is not accessible. But one can ask 
the question about what it means to be straight; you can ask that of students. I've done it with first 
graders-they can come up with good discussions. One of the results of this is that when spherical 
geometry or other geometries are talked about, usually they are just presented with some statement 
like: "We will defme the straight lines to be the great circles on the sphere." But that is ridiculous, the 
great circles are the straight lines on the sphere, you do not have to defme them. If you have a notion 
of what straightness is, then you can imagine a bug crawling around on the sphere and ask how would 
the bug go if the bug wanted to go straight. You can convince yourself that it is the great circles. But 
we cannot even ask those questions in a formal context. Also, the connections between linear algebra, 
geometric transformations, symmetries, and Euclidean geometry are very difficult to talk about in a 
formal system (in fact I don't know ifI want to say impossible or not), but it is not conveniently done 
and often not done at all in a formal system. Remember the example above of defining a rotation to be 
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the product of two reflections. (Other questions which we ignore include: "Why is Side-Angle-Side 
true on the plane (but not on the sphere)?", "What is the geometric meaning of tangency?", and "How 
do we experience the connections between ?") 

- mathematicians are being harmed. I have already talked about how mathematicians are 
being harmed-I was harmed by the over emphasis on formalism-so was Ted Koscynski. And I'm 
sure that you know of examples (at your own university or around your own university) of mathemati
cians, roughly my generation, who have more or less dropped out of society. There are a lot of them 
around-people who have been good mathematicians, who had been successful in the system back in 
1950's and 1960's. So it has been harmful to mathematicians. 

- students are being harmed. When a student's experiences lead herlhim to understand a piece 
of mathematics in a way that is not contained in the formal system, then the student is likely to lose 
confidence in herlhis own thinking and understanding even when it is backed up by what I will call 
alive geometric reasoning. Deductive systems do not encourage alive mathematical reasoning (which 
in my experiences with students and teachers is a natural human process) and thus they serve to 
deaden human beings whose thinking and understandings are forced to reside in these systems. We 
now have machines that can do the computations and formal manipulations of deductive systems: we 
need more alive human reasoning. 

Here are some examples: 

One of the things that I clearly remember from the beginning of my teaching of the geometry 
course is the following: I was teaching the Vertical Angle Theorem and its standard proof: 

y+ a = 180 degrees 
1 + p = 180 degrees 

a = 180-1= ~ 
a=p 

I can still remember one of the students who was very shy and wouldn't speak up in class, but I 
was having the students do writing. She wrote on her paper something like the following: 

All you have to do is do a half-turn. Take this point here (P) and rotate everything about 
this point half of a full revolution. We have already discussed that straight lines have 
half-turn symmetry and so each line goes onto itself and ex goes onto p. 

I don't know what your reaction is now but my reaction then was "That's not a proof" and I told 
her so. Fortunately, though she was shy, she was persistent and stubborn and she kept coming back 
and insisting that that was a proof. She worked on me for about two weeks and I kept listening to her 
and struggling with the question, Is that a proof?, because it did not seem like proofs that I had been 
accustomed to and that I would accept. Finally, she convinced me and now I think it is a great proof 
and much better than the standard proof which is in most of the textbooks. The standard proof has a 
lot of underlying assumptions that need to be cleared out and many formal treatments do that-they 
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put in the "Protractor Postulates" which state the appropriate connections between angles and numbers 
and then you can do the standard proof. But the proof with the half-turn is just connected to a certain 
symmetry of straight lines. You can use other symmetries of straight lines to prove this result also, but 
this proof is the cleanest, the simplest. And this proof is not possible in a formal system and it is 
particularly not possible in a formal system if (because you want to insist on putting everything in a 
formal system) you define a rotation as the product of two reflections. That particularly won't work 
here because, if you take one of the lines and reflect through the line. and then reflect perpendicular to 
the line that is equivalent to a half-turn, but there is no pair of reflections that will simultaneous do 
that to both of these lines, but yet a half-turn clearly preserves both lines. I do not see any reasonable 
way for that to have been included in any kind of formal system. So, if I had been insisting on formal 
systems, I would have missed out on the half-turn proof and not learned this bit of mathematics. I 
almost missed out anyhow and it was only because she was very persistent. 

After that experience I started listening more to students and expecting that when they would say 
things that I didn't understand, that maybe they really did have something (and something that I could 
learn). I took the attitude that we are not working in a formal system, but that we are doing mathemat
ics the same way that mathematicians mostly do mathematics. (In geometry, mathematicians do not 
stick inside any particular formal system, we use whatever tools might be appropriate: computers, 
linear algebra, analysis, symmetries. Mathematicians use symmetries a lot!) As I listen to students I 
have been learning more and more geometry from the students. I used to be surprised at that and 
thought it was just because I had not been teaching the course for very long. I thought that after I have 
taught it for a while then I will know it all and I will not see anything new. Well, what happened is 
that I have been teaching the course for 22 years now and now 30-40% of the students every semester 
show me some mathematics that I have never seen before! (These students are in different pro
grams-some are matheinatics majors, all the prospective secondary school teachers, and most of the 
mathematics education gradua~e students.) I would miss out on most of this new geometry if things 
were being done inside a formal system. 

Another example: There are many properties of parallel lines in the plane (for example, any line 
which traverses two parallel lines will intersect those lines at the same angle) whose proofs depend on 
the parallel postulate. When we get to that point in the course I let the students come up with their own 
postulate-whatever it is that they think is most important to assume that will separate the plane from 
the sphere. There is a difference between the plane and the sphere and there is some difference that 
has to do with parallel lines. The students come up with all kinds of different postulates, many of 
which I think would be much more reasonable to assume than the usual parallel postulates. By the 
way, Euclid's parallel (fifth) postulate is true on the sphere-Euclid's parallel postulate is not what 
distinguishes spherical geometry from plane geometry, contrary to what many books say. I take that as 
evidence that people who have written such mistakes about spherical geometry have never really 
looked at a sphere-they have just been looking at the situation formally and thus made the mistake. 

Let me give another example to show that I can think about something that is not just geometric. 
Here is the proof that is usually given to American secondary school students that 0.99··· 9··· = I: 

x= 0.99···9··· 

lOx = 9.9··· 9··· 

now subtract both sides to get 
9x = 9.0··· 

and thus 
x=l 
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This proof embodies a very useful technique for figuring out, when you have a repeating 
decimal, what fraction is equal to that repeating decimal. It is a very useful technique in that context. 
But I claim that it is not a proof in this context. I claim it is something that is masquerading as a 
formal proof: It looks like a formal proof, it has steps and x's and all that stuff. I started asking my 
calculus students at Cornell what they thought, and some of the best high school students in North 
America come to Cornell. They mostly know this proof, because they learned it; but only about half of 
them believe it, because they do not believe that 0.99···9 = 1. To show you why I think that this is 
masquerading as a proof and really isn't a proof, let us consider the following: Let us try to make this a 
little more precise as to just what it is we mean by 0.99···9··· (that is part of the problem here). Well, to 
most students what 0.99···9 means is, 0.9, then 0.99, then 0.999, ... - a limit of a sequence (at the time 
they are expressing this, they might not even know what a sequence is}-you keep putting on one 
more 9, you go on for ever-that is the way that they talk about it. It fits in nicely with calculus to do 
it that way and to think about 0.99···9··· as the limit of a sequence: 

0.99···9··· :; lim {0.9, 0.99, 0.999, ... }. 

If you think of it as this limit and then follow the formal rules for subtracting sequences and 
multiplying sequences and so on, you come out with the amazing conclusion that: 

x = 0.99··· 9··· :; {0.9, 0.99, 0.999, ... } 

lOx = 10 x lim {0.9, 0.99, 0.999, ... } = lim {9, 9.9, 9.99, ... } 
9x = lim {9, 9.9, 9.99, ... } - lim {0.9, 0.99, 0.999, ... } = lim {S.l, S.91, S.991, ... } 

x = (lim {S.l, S.91, S.991, ... }) -;- 9 = lim {0.9, 0.99, 0.999"" } 

x=0.99 .. ·9···! 

This is true-not very useful, but it is true. And it has to be that way, because there is an 
assumption being made here-the Archimedian Axiom. Way back, Archimedes knew that in talking 
about numbers it was possible to talk about ones which we now call infmitesimal, and then Archime
des had an axiom or principle which rules out these infmitesimals. The Archimedian Axiom (or 
Principle) gets stated in various different ways but is rarely mentioned these days in the North 
American undergraduate curricula-most textbooks (if they mention it at all) relegate it to a brief 
mention in a footnote or exercise. The usual approach these days is to subsume the Archimedian 
Axiom under Completeness in a hidden way so that you do not even notice that it is there. I think it is 
important for the students to know that this is an assumption. They can understand why it is conve
nient to assume that 0.99···9··· =1 and understand that there are a lot of reasons for making that 
assumption. But we should tell them that it is an assumption-and it really is. 

Another example-here is a theorem: 

For natural numbers. n X m = m X n. 

Now, the usual formal proof which I learned for this theorem is a complicated double mathemat
ical induction. I dutifully learned this proof and was dutifully teaching it when I first started teaching. 
But here is the prop for another proof (I do not want to say 'another proof but only 'a prop for a 
proof): 
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Here we think of 3 x 4 as three 4's or four 3's (it seems that most mathematicians think of 3 x 4 
as three 4's, but many of my students think of3 x 4 as four 3's). I fmd a proof based on this schema as 
more convincing than the one with the double induction. And this proof can be visualized with having 
arbitrary numbers of dots, because the whole point is that you do not have to count the dots to know 
that this is true-there is symmetry. But it is hard to express in words and put down in a linear fashion 
on a piece of paper and all that kind of stuff. 

- mathematics is being harmed. Historically, most current-day mathematics was based on 
geometric explorations, geometric reasonings, and geometric understandings. The developers of our 
current deductive systems in algebra and analysis explicitly attempted to weed out all references and 
reliances on geometry and the geometric intuitions on which the algebra and analysis was originally 
based. When we confme mathematics to these formal systems we teach the students to distrust 
mathematics, not to value it, and not to use their intuitions in understanding mathematics. Many, many 
students who have a natural interest in mathematics are lost to mathematics by this process-I almost 
was. 

HOW SHOULD WE DESCRIBE WHAT IS MATHEMATICS? 

David Hilbert is considered to be "the father of formalism" so I checked what he had to say. In 
1932, late in his career he wrote in the Preface to Geometry and the Imagination: 

In mathematics, as in any scientific research, we fmd two tendencies present. On the one 
hand, the tendency toward abstraction seeks to crystallize the logical relations inherent in 
the maze of material that is being studied, and to correlate the material in a systematic and 
orderly manner. On the other hand, the tendency toward intuitive understanding fosters a 
more immediate grasp of the objects one studies, a live rapport with them, so to speak, 
which stresses the concrete meaning of their relations. (Hilbert's emphasis) 

As to geometry, in particular, the abstract tendency has here led to the magnificent systematic 
theories of Algebraic Geometry, of Riemannian Geometry, and of Topology; these theories make 
extensive use of abstract reasoning and symbolic calculation in the sense of algebra. Notwithstanding 
this, it is still as true today as it ever was that intuitive understanding plays a major role in geometry. 
And such concrete intuition is of great value not only for the research worker, but also for anyone who 
wishes to study and appreciate the results of research in geometry. (Hilbert 1932) 

The last sentence in the first paragraph ("On the other hand ... ") is a very nice description of what 
a lot of us are trying to do and he goes on to say how important this is in mathematics. I even went 
back to his paper "On the Infmite"-he does not say that mathematics is formal systems or that all of 
mathematics should be formalized. He, in fact, says very explicitly there that mathematics is based on 
intuition and that intuition is an appropriate basis for what he calls "ordinary fmite arithmetic." He 
wanted to introduce the formalization in order to take care of various paradoxes that were coming up 
in dealing with the infmite, because there seemed to be some problems with intuition around infmite 
things. He never claimed that mathematics was formal-that was his followers. 

Here is a more recent view expressed by William Thurston, who is director of the Mathematical 
Sciences Research Institute at Berkeley and one of the most prominent American mathematicians. 
Thurston rejects the popular formal defmition-theorem-proof model as an adequate description of 
mathematics and states that: 
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If what we are doing is constructing better ways of thinking, then psychological and social 
dimensions are essential to a good model for mathematical progress .... 

'" The measure of our success is whether what we do enables people to understand and 
think more clearly and effectively about mathematics. (Thurston 1994) 

I will now give a description of mathematics that is what I think Hilbert and Thurston are talking 
about. I call it "alive mathematical reasoning" where I take the word "alive" from Hilbert's quote. 

WHAT IS ALIVE MATHEMATICAL REASONING? 

Alive mathematical reasoning includes both abstraction and intuitive understanding as 
Hilbert says in the above quote. 

Alive mathematical reasoning is paying attention to meanings behind the formulas and 
words-meanings based on intuition, imagination, and experiences of the world around us. It is not 
memorizing formulas, theorems, and proofs-this is again something that computers can do. We, as 
human beings, can do more. As Tenzin Gyatso, the fourteenth Dalai Lama has said: 

"Do not just pay attention to the words; 
Instead pay attention to meanings behind the words. 
But, do not just pay attention to meanings behind the words; 
Instead pay attention to your deep experience of those meanings." 

Alive mathematical reasoning includes "living proofs", that is, convincing communications 
that answers-Why? It is not formal 2-column proofs-computers can now do formal proofs in 
geometry. If something does not communicate and convince and answer "why?" then I do not want to 
consider it a proof What we need are alive human proofs which 

- communicate: When we prove something to ourselves, we are not fmished until we can 
communicate it to others. The nature of this communication depends on the community to which 
one is communicating and it is thus, in part, a social phenomena. 

- convince: A proof works when it convinces others. Proofs must convince not by coercion or 
trickery. The best proofs give the listener a way to experience the meanings involved. Of course 
some persons become convinced too easily, so we are more confident in the proof if it convinces 
someone who was originally a skeptic. Also, a proof that convinces me may not convince my 
students. 

- answer 'Why?': The proof should explain, especially it should explain something that the 
listener wants to have explained. As an example, my shortest research paper [Henderson 1973] 
has a very concise simple proof that anyone who understands the terms involved can easily 
follow logically step-by-step. But, I have received more questions from other mathematicians 
about that paper than about any of my other research papers and most of the questions were of 
the kind: "Why is it true?" "Where did it come from?" "How did you see it?" "What does it 
mean?" They accepted the prooflogically but were not satisfied-it was not alive for them. 

One of my colleagues at Cornell was hired directly as a full professor based primarily on a series 
of papers that he had written even though at the time we knew that most of the theorems in the papers 
were wrong because of an error in the reasoning. We hired him because these papers contained a 
wealth of ideas and questions that had opened up a thriving area of mathematical research. 
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Alive mathematical reasoning is knowing that mathematical definitions, assumptions, etc., 
vary with the context and with the point of view. Alive reasoning does not contain defmitions and 
assumptions that are fixed in a desire for consistency. It is an observable empirical fact that 
mathematicians and mathematics textbooks are not consistent with defmitions and assumptions. We 
find this true even when the general context is the same. For example, I looked in the plane geometry 
textbooks in the Cornell library and found nine different defmitions of the term "angle". Also, 
calculus textbooks do not agree on whether the function y = f(x) = l/x is continuous or not continu
ous; and analysis textbooks have many different axioms for the real numbers that have different 
intuitive connections and necessitate different proofs. 

Alive mathematical reasoning is using a variety of mathematical contexts: 2- and 3-
dimensional Euclidean geometry, geometry of surfaces (such as the sphere), transformation geometry, 
symmetries, graphs, analytic geometry, vector geometry, and so forth. It is not Euclidean geometry as 
a single formal system. When a mathematician is constructing a proof that needs a mathematical 
argument she/he is free to use whatever tools work best in the particular situation. Mathematicians do 
not limit themselves in this way. Also, those who use geometry in applications, do not feel restricted 
to a single formal system. 

Alive mathematical reasoning is combining together all parts of mathematics: geometry, 
algebra, analysis, number systems, probability, calculus, and so forth. 

Alive mathematical reasoning is applying mathematics to the world of experiences. 

Alive mathematical reasoning is using physical models, drawings, images in the imagination. 

Alive mathematical reasoning is making conjectures, searching for counterexamples, and 
developing connections. 

Alive mathematical reasoning is always asking" WHY?" 

BUT WHAT ABOUT CONSISTENCY AND CERTAINTY? 

- Formal deductive systems do not gain consistency. For example, is the function f(x) = IIx 
continuous? Look in several calculus books. They give different answers! Differential geometry is 
another example where there is no consensus as to which formalism to use, but yet everyone thinks 
they are talking about the same ideas. Why? 

- Formal deductive systems usually do not gain for us the certainty that we strive for. 
Formal deductive systems are useful and powerful in some circumstances, for example, in deciding 
which propositions can be logically deduced from other propositions and whether certain processes or 
algorithms will always produce the expected result. But, these deductive systems only give us 
certainty that certain steps (that can in principle be mechanized) can be carried out. They usually do 
not gain us certainty for the human questions of "Why?" or the human desire for experiencing 
meanings. 

ALIVE MATHEMATICAL REASONING BRINGS BENEFITS TO MATHEMATICS 

In my experiences, students with alive geometric reasoning are the most creative with mathemat
ics. These are also the students who can step back from their individual courses and see the underly-

37 



CMESG/GCEDM 1996 Proceedings 

ing ideas and strands that run between the different parts of mathematics. They are the ones who 
become the best mathematicians, teachers, and users of mathematics. 

There is research evidence that successful learning takes place for many women and un der
represented students when instruction builds upon personal experiences and provides for a diversity of 
ideas and perspectives. See, for example Belenky et al. (1986), Cheek (1984), and Valverde (1984). 
Thus, alive mathematical reasoning in school classes may contribute to increasing the numbers of 
mathematicians who are women and persons from racial and cultural groups that are now under
represented. 

In my own teaching, I encourage students to use alive mathematical reasoning and observe how 
their thinking and creativity is freed and their participation is opened up. (See Lo et al.,1996.) As I 
listen to the alive mathematical reasonings of my students I fmd that 30-40% of the students show me 
mathematics that I have not seen before and that (percentage-wise) more of these students are women 
and persons of color than white men. (Henderson, 1996) 

CLOSING EXAMPLE 

I will conclude with a proof that I learned from a student in a freshman course which is taught in 
the same style and using some of the same problems as the geometry course. The course was for 
"students who did not yet feel comfortable with mathematics" and who were social science and 
humanities majors. There, a student, Mariah Magargee, who was an English major, had been told all 
the way through high school that she was no good at mathematics and she believed it I want to share 
with you her proof that the sum of the angles of a triangle on the sphere is more than J 80 degrees. We 
had previously, in class, been talking about the standard proof that on the plane the sum of the angles 
of a triangle is always 180 degrees: 

Standard planar proof: Given a plane triangle ABC, 
draw a line through A which is parallel to BC. The 
sides AB and AC are transversals of these parallel 
lines and therefore there are congruent angles as 
marked. We see now from the drawing that the sum 
of the angles is equal to 180 degrees. 

BL-__ ~ ________ ~~C 

In class I stressed that the students should remember that latitudes circles (except for the equator) 
are not geodesics (straight on the sphere) and I urged them not to try to apply the notions of parallel to 
latitude circles. Mariah ignored my urgings and noted that two latitude circles which are symmetric 
about the equator of the sphere are parallel in two senses-first of all they are equidistant from each 
other and: 
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Note that: 

Two latitude circles which are symmetric about the 
equator have the property that every (great circle) 
transversal has opposite interior angles congruent. 

This follows because the two latitudes have 
half- tum symmetry about any point on the equator. 
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Now we can mimic the usual planar proof: 

We see that the sum of the angles of the "tri
angle" in the figure sum to a straight angle. This is 
not a true spherical triangle because the base is a 
segment of a latitude circle instead of a (geodesic) 
great circle. If we replace this latitude segment by a 
great circle segment then the base angles will in
crease. Clearly then the angles of the resulting 
spherical triangle sum to more than an straight angle. 

You can check that any small spherical triangle can be 
derived in this manner. 

Nice proofl I like it. That is Mariah's proof. This is a student who believed that she was no good at 
mathematics and was told she was no good at mathematics, but she taught me a really nice proof. 
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QUESTIONS AND ANSWERS 

Question: How might we encourage our students to experience the passion that they have for 
mathematics-that passion can include joy, fear, excitement, however you want to 
interpret the word. 

Answer: I only know ways that I have tried and I do not think there is only one way. It seems to me 
that the most important thing is to expect it to happen and I do that and try to convey that I expect to 
see that from the students. The other thing that I started noticing when I started to have the students 
write is that a lot of the students' ideas and their passions are very fragile. There are a lot of students 
who do not dare to speak it in class, but they will write something. Maybe what they write isn't even 
directly what they really want to say but they will hint at it. So I have them write and then I respond to 
their writing and then they respond to my comments and so there is a dialogue that goes on in the 
writing. That I found to be the most powerful because then if someone just starts having an idea about 
something that is very tentative and very fragile, I can encourage it. I can encourage it easier in the 
written dialogue than it can happen in a class situation. That together with just expecting it and 
encouraging it whenever it happens and validating it is what I fmd that works for me. 

Question: What isformalism goodfor? 

Answer: One of the areas for which formalism is clearly good for is in computer science, in studying 
the algorithms and proofs in computer science. A huge area in computer science now is how to prove 
that a program does what you want it to do-it's a formal proof because that is what computers do, 
they are formal systems. The other place in which formalism is very powerful is in any situation like 
with groups. Studying groups is a good place to have axioms and build it up formally because there 
are a lot of different models for what a group is. So you can prove certain results that work for 
anything that satisfies these particular axioms and there are some examples and you can apply it 
across all the examples. There are a lot of areas like that in mathematics where that can happen. I think 
that Euclidean geometry is a particular bad place to apply formalism, because there is essentially only 
one model of Euclidean geometry and it is not a question of building these things up and then you can 
apply it somewhere else. Those areas where there actually are different models for a particular axiom 
system are areas where formal systems are powerful tools. I would also say that sometimes it is useful 
to use formal systems in areas where you actually have several different axiom systems-which we do 
not usually allow in courses as, we usually stick with only one. This happens in differential geometry. 

40 



Plenary Lecture II 

There are very complicated formalisms for differential geometry but there are a lot of different ones 
and to play the different ones off each other can be powerful. If you try to stick within one then you 
lose the geometric meaning, but if you go across them then the only thing which ties them together is 
the geometric meaning; and that is one way to get at what the geometric meaning is. 

Question: How is the way that you teach geometry dependent on whether you have preservice 
teachers or have mathematics majors? 

Answer: The main course that my book is based on has mathematics majors and preservice teachers 
(who are also mathematics majors) and mathematics education graduate students and then there are 
miscellaneous people (teachers, artists, or other members of the community who are interested in 
geometry)-I do the same thing with all of them. Because most of the feedback is based on the 
writing that they do, they can respond in different ways, so I can have a different dialogue going on 
for different students depending on where they are coming from. I have not been able to do this as 
well in other subjects, but geometry is particularly suited to this because most people do not have 
much background in geometry, and that evens them out. Also geometry is more accessible concretely 
and through the intuition. I should tell you about one workshop that I did that was very powerful, one 
of the most powerful workshops that I have lead. It was in South Africa and they had gotten together a 
group of about 50 people which included elementary school teachers (many of whom had not finished 
secondary school, so had very weak mathematics backgrounds and virtually nothing in geometry), 
secondary school teachers, mathematics education people, and research mathematicians (including the 
chair of the mathematics department)-the whole span. I had them work on the same problems in 
small homogeneous groups, the elementary school teachers worked with each other and the research 
mathematicians were working with each other. Of course, what they were doing in their small groups 
was very different, but I then had them report back to the whole group what they had found. Then the 
research mathematicians had to express it in a way that made sense for the elementary school teachers 
and the elementary school teachers were able to express what they had found and see that they had 
found things that the research mathematicians hadn't seen. It was very powerful-I try to have as 
much diversity as possible in my class, but I have never had that kind of diversity before or since. 

Question: Can or should geometry be taught separately from algebra? 

Answer: When I teach geometry, I encourage students to use whatever they fmd useful to use and, if 
that is algebra, then-great. Is that the kind of thing you were meaning by the question? 

Question: Should geometry be taught before algebra? 

Answer: My own feeling is that geometry comes before algebra-much of algebra developed out of 
geometry, historically, and that should not be lost. Mostly I would like to turn the question around: 
Should algebra be taught separate from geometry? And there my answer would definitely be NO. 
Whenever I teach linear algebra, geometry is there a lot. And that is true historically-much of linear 
algebra was developed to help with the description and study of the geometry of higher dimensional 
spaces. 

Question: Could you elaborate on your comments that formalist mathematics is harmfUl and 
destructive? Is this perhaps a fUnction of generation, because Leslie Lee seemed to be 
really able to identify with your comments because she too wanted to build a cabin? 

Answer: Several people here came up to me afterwards and said they had had similar experiences, not 
just Leslie, and they were all about my age. Our generation was the generation before the baby 
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boomers-I think the baby boom generation (the ones that went into mathematics and the ones that 
didn't) was just different and maybe that is part of the reason why my generation is affected. Also I 
think that mathematics was most formal when we were in school. There seems to be something about 
our generation; and we are now in charge so we are more visible and that puts more pressure on us. 
Also, this formalism is only a product of this century, so for a long while the leaders in mathematics 
who were doing the formalism also knew that it was not all of mathematics-like the quote I have 
from Hilbert and that was in the 1930's. But then somehow after the war in the late 1940's and 1950's, 
most of the mathematicians who had had direct personal contact with what was going before 
formalism came in had died off and so that may have affected our generation. 

Question: How has the harmfulness or destructive nature of formalist mathematics manifested 
itself beyond the urges to live in the woods? 

Answer: Well, I do not think that the urge to live in the woods is harmful! I think that it was mainly 
that when I was going through school I never grew up socially and I was not effectively encouraged to 
grow up socially. I was a 'brain' (or 'science whiz') and that particularly substituted for growing up 
socially. Being immersed in formalism sort of fit that and encouraged that. That's part of it and I think 
that with the baby boom generation there were lots of external forces that started drawing people out, 
that was just not around in my days. And people who were more alive and more socially active than I 
was, tended not to go into mathematics, or if they were in mathematics then they dropped out. 

Question: Could you picture a world where mathematics majors and graduate students could be 
extroverted and emotional and deal with people and still do formalism? Do think 
there is something inherent in formalism? 

Answer: I do not know for sure. I look at the graduate students now at Cornell and there are some of 
them who are like I was but there are also significant numbers of them now who are not like I was and 
who are alive in lots of ways. They are surviving at Cornell and Cornell is basically still a very formal 
place, but they are also interested in teaching and we have mathematics graduate students who are 
taking the initiative to do some educational reform. So, yes, I think it makes sense that it fits in with 
formalism. I should say more about formalism, there is the part of mathematics, the foundations of 
mathematics, which is specifically studying formal systems and now in lots of places, in particular at 
Cornell, there is almost no distinction between it and a part of theoretical computer science. That is an 
active area of research where there is a lot of exciting things going on. I am not talking about that, that 
is a part of mathematics. I don't know ... Let me tell you one observation that I had that is less true 
now but it used to be true 10 years ago or so. Almost all of the women graduate students did not go 
into geometry or geometry related areas, but instead went into very formal areas. I talked with some of 
these women trying to catch why this was true, because in most of these cases these women were very 
active outside of mathematics-they were involved in various social movements, political movements, 
feminist activities, and other such things going on 10-20 years ago. They expressed to me that they 
had to separate their lives-when they were doing mathematics they had to separate it off from the 
rest of their life and it was easier to do that when they were doing formal mathematics. That seems to 
fit in with what I am saying. I see that happening less now, for both the men and the women. 

Question: We are interested in the resurgence of geometry at Cornell. Can you give us a sense of 
the constellation of the geometry courses that are available at Cornell and the 
population that they are for? 

Answer: As far as I can tell, Cornell has more geometry courses than anywhere else in the world. The 
undergraduate geometry courses are: 
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1. Euclidean and spherical geometry (the course that the book is based on) that is required for 
prospective teachers but it is taken by lots of other majors also. 

2. Hyperbolic and projective geometry. 

3. Geometry and groups-tessellations, transformation groups, etc. Cornell has a strong 
geometric group theory research group and the course grew naturally out of that research group. 

4. Differential geometry. 

5. Geometric topology. 

6. "From space to geometry"-A freshman course which is based on writing assignments. 

7. "Mathematical explorations"-for first and second year students who are humanities and 
social science majors. I use a lot of the same problems that are in my book-Mariah's proof 
about the sum of the angles of a triangle on the sphere was from that course. 

8. Applicable geometry-sometimes computational geometry, sometimes the geometry of 
operations research (such as convex polytopes), and other applied topics that vary from year to 
year. 

Question: Isn't the issue more one of HOW you run the course rather than the subject matter of 
geometry? 

Answer: First of all, only one of those eight geometry courses deals extensively with axioms and 
formalism and that is the hyperbolic and projective geometry course and it does not deal with axiom 
systems totally. But I agree with you that the important thing is, How? I think that as long as you can 
start with something that is a concrete contextual situation and use that to start building the area of 
mathematics, then it can be done with any subject; and I think all parts of mathematics have such 
grounding. Geometry is easier to get into because there is not a tradition of having a long string of 
prerequisites, this linear sequence of courses and so on, in geometry, so it is easier to jump in different 
places. But I have done it in an abstract algebra course where, because it was me doing it, I started 
with symmetries of polyhedra and ended up with Galois theory. The main thing that I try to do is to 
have a concrete contextual situation where the students are able to experience the meaning of what is 
going on and so, in that way, it can be more constructive. The other part of it (what I mentioned in my 
answer to the first question) is eliciting from the students their ideas and their thinking, so that if there 
is some way that their imagination and intuition can latch on, then I just start pulling out of them what 
the ideas are and guiding them in the right ways and giving suggestions and writing challenging 
problems. 

Question: Are the other geometry courses at Cornell also not so prerequisite bound? 

Answer: None of the geometry courses have any of the other geometry courses as prerequisites. 

Question: It is perhaps true that the phenomena is not so much a growing interest in geometry 
but rather a growing interest in something mathematical that can engage the students 
in less formal ways? 

Answer: I think you may well be right and that geometry is just a particularly convenient or easier 
area to do that in. There is a debate going on in our department as to whether or not students who want 
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to take my courses are wanting to take it because of me or is it something about the course. It is hard 
to gauge that but it seems to be what you say, that they are really looking for a different way in which 
to engage with mathematics- something that is less formal, that is not just lecture and exams. 

Question: Have you had any resistance to your approach from colleagues, other mathemati
cians, or from students? 

Answer: Yes, all of the above. The geometry courses, fortunately, are not required for mathematics 
majors except for prospective teachers, so students who do not want to do the course just do not take 
the course and I have had no complaints from the prospective teachers. But, I and some graduate 
students are trying to put some of these ideas into the calculus now. We have had a few cases of 
students getting up and stomping out of the room when we introduce small group work and other 
activities to engage the students. It seems that this happens because they are not there to learn 
calculus; they are there because they are required to take calculus and they want to do it with a 
minimum amount of effort to get their passing grade so they can go on to do whatever it is that it is 
required for. The students who want to learn calculus, they seem to love the new approaches. 
Sometimes I am teaching one section and there are other sections of the calculus course taught in 
traditional ways. I am required by the department for my students to have the same assignments and 
exams, so I am giving them stuff in addition to that. I tell them this right up front and I tell them 
why-I think they will learn it better and with more understanding, but they will have every week 
more assignments than the other sections. Typically, what happens when I announce that in the 
beginning, a few students drop out and other students hear about it and come in. At the end of the 
semester the students report that the extra stuff is the best part of the course. 
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Never before in education has there been greater recognition of the need for ongoing 
professional development. In-service training and other forms of professional development 
are a crucial component in nearly every modern proposal for educational improvement. 
Regardless of how schools are formed or reformed, structured or restructured, the renewal of 
staff members' prQfessional skills is considered fundamental to improvement (Guskey and 
Huberman, 1995, Introduction). 

Leaders in mathematics education are calling for significant revisions to today's mathematics 
programs at all levels. How to effect these changes has become of major import for many educational 
stakeholders. It is widely accepted that the majority of classroom teachers do not have the mathematical 
backgrounds that will permit them to implement the required changes without assistance. Nor can it be 
assumed that we will be able to depend on future teachers to bring in sweeping changes. Like the 
experienced teachers, many pre-service teachers lack sound mathematical backgrounds and most current 
mathematics methodology courses have neither the time nor the mapdate to assist these novices in 
attaining the necessary mathematical skills or understanding. 

Current in-service and pre-service programs are being scrutinized by many educational partners. 
Classroom teachers are often unhappy about the fragmented approach to in-service, politicians complain 
about the cost of professional development, and math leaders feel that little change has occurred as a result 
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of the 'training' (Ball, 1989; Aichele, 1994). Matthew Miles, a leading researcher in the field, pulls no 
punches when he surveys the field: 

Let's frame the issue in extreme terms. A good deal of what passes for "professional 
development" in schools is a joke--one that we'd laugh at if we weren't trying to keep from 
crying. It's everything that a learning environment shouldn't be: radically under-resourced, 
brief, not sustained, designed for "one size fits all," imposed rather than owned, lacking any 
intellectual coherence, treated as a special add-on event rather than as part of a natural process, 
and trapped in the constraints of the bureaucratic system we have come to call "school." In 
short, it's pedagogically naive, a demeaning exercise that often leaves its participants more 
cynical and no more knowledgeable, skilled, or committed than before. And all this is 
accompanied by overblown rhetoric about "the challenge of change," "self-renewal," 
"professional growth," "expanding knowledge base," and "life-long learning" (Guskey and 
Huberman, 1995, Foreword). 

Several research studies (Creemers, 1994) have provided evidence of effective classrooms and 
effective teacher behaviour but have provided "limited evidence about the design and implementation of 
a good mathematics teacher education program(s)" (Brown & Borko). 

This working group, facilitated by Susan Stuart and Bill Higginson, set out to explore the answers 
to two questions through the eyes of both pre-service teacher educators and in-service teacher planners: 

What should the teacher coming out of our "best" programs look like? 

What are the exemplary strategies that we use (or that we could use) to assist developing teachers 
to demonstrate these characteristics? 

The participants represented a wide range of concerns and backgrounds, but they all expressed an 
interest, as one said, in rmding ways "to change teacher behaviour-not just mimicking-but true 
change." Some began by indicating a belief that thorough reform was needed to teacher education 
programs and others wondered how elementary and secondary math teachers could be encouraged to 
continue to learn and grow. New questions were added to our list. 

Ifwe restructure pre-service programs, how much math and of what sort should there be, and where 
does it fit in? 

What relationships with the field would be most helpful, and how can such relationships be 
developed? 

How can we look, not only at the B.Ed. program, but all stages of teacher growth, including 
career-long development? 

Who are the players in the various teacher development models? 

A tall order for nine hours, but we were anxious to explore and see where the questions would take us. 
The follOWing account is simply a summary of many of the ideas that came from the discussions. Some 
are seeds from other sessions, others are ideas that will continue to grow and flourish long after these three 
days. 

SESSION ONE 
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Before investigating effective strategies to develop mathematics teachers of the highest quality, we 
needed to explore our vision of the characteristics of a "developed" teacher of mathematics. Our first 
assumption was that a "developed" mathematics teacher could be described. We could have simply 
adopted, or adapted, the criteria for "good mathematics teaching" as found in the NCTM's (1990) 
Professional Standards for Teaching Mathematics, but we felt it was important for us to establish a 
common foundation. And so, working in small groups, the participants brainstormed, with the resulting 
characteristics compiled into a list. The characteristics listed below are thought-provoking and extensive, 
but probably not exhaustive. 

In the collective opinion of the group, a 'developed' mathematics teacher would: 

- Be knowledgeable 
- knowing how students learn 
- knowing appropriate math 
- having pedagogical knowledge 
- having math skills, competency 
- having technological expertise 
- having a broad vision of math 

- be pedagogically effective 
- see errors as valuable 
- sensitive to student needs 
- flexible to learning styles 
- richness of math experiences 
- provides supportive environment 
- aware of student competencies 
- confident pedagogically 
- able to consult resources 
- appreciative of diversity 
- aware 
- a believer in equity 
- a good listener 
- a good observer 
- flexible 
- possess good communication skills 
- confident in children's ability 
- respectful of students 
- active 
- a critical thinker 
- curious 
- creative 
- enthusiastic about the subject 
- teaches with enthusiasm 
- open-minded 
- a problem-solver/model for learners 
- share 
- versatile 
- be mathematically competent 

- competent and confident 
- capable of designing appropriate teaching/learning experiences 

- help children view themselves as mathematicians 
- view themselves as mathematicians 
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- open to seeing math from different perspectives 
- connected with the math community 
- promote aesthetic appreciation of math 
- appreciates own 'mathematization' 
- reflective 
- interested in classroom-based research. 

After placing the results of each group's brainstorming on the chalkboard, we attempted to fmd 
commonalities and then to classify, using fairly general headings. The group felt that the descriptors could 
be grouped as Knowledge (content, pedagogical and math), Dispositions or Attitudes, and Beliefs 
(appreciations, confidence, etc.). The teacher behaviours that are important encompass not only those that 
are related to quality of instruction (Brophy & Good, 1986), but those which are more 'teacher-as-person' 
characteristics. These are the behaviours which, although difficult to measure reliably (Creemers, 1994), 
can have lasting effect on learners. When asked about former teachers, adults will more often refer to 
personalities than teaching strategies or content to which they were exposed. Being aware, a good listener, 
and sympathetic, can go a long way with a student. These are generic qualities that we value in any 
teacher, in any subject. However, the group felt that they were qualities that were urgently needed in the 
mathematics classroom. Changing the commonly held view of mathematics from "a boring and 
meaningless act" (Franks, 1995, p. 78) to mathematics as dynamic and worth studying will require 
teachers who are curious, creative, and enthusiastic. 

Susan presented several student-teacher quotes from personal mathematics journals, and one said: 

. As a teacher I want to remind myself of what it is like to learn new things and the frustration 
which arises when instructions are incomprehensible and you simply do not understand (Bev) 

Our image of a "developed" teacher was complex. It encompassed a depth and breadth of 
knowledge and skills including knowledge of self and students, knowledge about mathematics and 
mathematics teaching, and knowledge of generic educational research and theory. Interpersonal skills 
seem to go hand-in-glove with teaching skills. Several group members indicated that knowledge of 
mathematics and mathematics teaching went beyond skill, requiring teachers to not only have the 
conceptual understanding but the ability to transfer this understanding into conceptual approaches to 
teaching mathematics in the classroom. Not an easy task. 

This led us to our next question. How can this be accomplished? Teacher development takes two 
forms. The first begins at the universities in our mathematics for prospective teachers and mathematics 
methodology courses. The other is a career-long commitment of professional development. 

SESSION TWO 

On day two to facilitate possibilities for discussion, the group divided into two sub-sections for the 
first part of the session according to relative interest in pre-service or in-service activities. The mandate 
for the two sub-groups was to share examples of effective teacher-development activities, and to return 
to the large group to report briefly on these activities and to be prepared to look for common patterns 
across the range of examples. 

The pre-service sub-group, in particular, were looking for suggestions for designing or improving a 
mathematics methods course or a content course which would address student-teachers' assumptions, 
feelings and knowledge about the subject and about themselves as teachers and learners of mathematics, 
as well as their beliefs and assumptions about the roles of students and teachers in the classroom (Ball, 
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1989). Like most elementary and secondary math courses, most math methodology courses in Canada 
face problems of time and coverage. The numbers of hours allotted to our courses was mentioned by 
several group members. We were aware that course organization and time lines varied greatly among 
provinces, universities and even among courses within the same faculties (Stuart, 1995). 

Among the "creative strategies" shared in the sub-groups were: The idea of using community schools 
as the learning environment for pre-service candidates. Elaine Simmt arranges for the prospective teachers 
whose major is secondary mathematics, organized in groups of 4 to 5 to a classroom, to teach a series of 
lessons to small groups of students. Each pre-service teacher begins by meeting with the classroom 
teacher, then prepares lessons on a specific math topic collaboratively with his/her peers who have been 
assigned to the same classroom. After teaching the initial lesson to their assigned group of 4 or 5 students, 
the pre-service teachers meets again for sharing, consultation and further planning. This process continues 
throughout the length of the assignment. Each pre-service teacher is required to keep notes and write a 
student profile of one of their learners. Elaine explained that this experience was quite different from the 
full practicum that was a requirement of the program, of which these students had already completed four 
weeks. Unlike teaching a full class, with the accompanying pressures of dealing with classroom 
management and presentation strategies, this teaching experience allowed prospective teachers to focus 
on teaching math. They had opportunities to interact with secondary school math learners individually 
to find out how they were learning and what they were thinking. Elaine described the rich conversations 
that took place during the collaborative planning time, telling us about several pre-service teachers who, 
for the first time, excitedly realized that teaching did not necessarily translate into learning or that all 
students learned different "things" at different times. As one group member observed, this task would give 
pre-service teachers a chance to move beyond the stage of thinking only of themselves in the teaching 
process and move to the stage of seeing the learners dealing with the skills and concepts. 

Ann Kajander told us that one aim she has for her mathematics content course for elementary 
teachers is to build their math confidence. She has the teachers form small groups, with a rotating 
chairperson. Each person chooses a math topic, designs a lesson, and teaches this lesson to the other 
members of their group. They are encouraged to choose topics that are unlike any they have encountered 
or used before and which they feel "might not work." Each group then selects one of the lessons to be 
taught to the whole class (the teachers who agree to do this on behalf of their group receive bonus marks). 
We found it very interesting that Ann was using a teaching strategy which might be found more 
commonly in a math methodology course. This double experience-learning new math and teaching new 
math to others-requires these teachers to think about the mathematics in depth. 

The students in Ann's course also explore mathematics through an active assignment which asks 
them to "Find something about math that you fmd interesting" and then demonstrate their learning at a 
Math Fair, through posters or model presentations. One of our group members wondered about grading 
these types of assignments and an interesting discussion ensued about maintaining math quality while 
supporting math confidence. Although, as a few said, we want our students to gain confidence in 
themselves as learners of mathematics, we also do not want to sacrifice the math standards. Would 
grading the knowledge of the mathematics delay or derail the confidence building? 

Roberta Mura wants to encourage her pre-service students to have confidence in children's ability 
to learn mathematics and to encourage risk-taking in the way they approach mathematics teaching. 
Roberta has developed a series of videotapes which feature classroom teachers in elementary classrooms, 
using appropriate manipulative materials. The videotapes do not, she said, depict 'special' lessons, but 
demonstrate everyday lessons and common teacher behaviours. Before viewing each video, the 
pre-service teachers are given the opportunity to work on math questions using the featured manipulatives. 
After the videotape, the students discuss what they have seen, focusing on both learners' and teacher's 
behaviours. Unlike observing teachers during regular practicum experiences, this is a controlled and 
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shared activity. Student reaction to.the math and to the manipulatives can be discussed, focus can be 
drawn to such things as questioning strategies and teacher-student, student-student interactions. Roberta 
feels that the pre-service students see that manipulatives have a place in the math classroom and that using 
manipulatives is "doable." She also stressed that the pre-service teachers highly enjoy the videotapes and 
the discussions. 

Doug Franks asks his senior division pre-service math teachers to maintain a journal of their 
experiences in working their way through Mason's Thinking Mathematically. They tum in their journal 
four times during the one-year program and he responds to their writing. They also discuss the book and 
their joumalling experiences in class. Doug asks the students to give the problems in "Mason" a good 'go', 
but he also tells them that this is not primarily a problem-solving activity, so it not necessary to stick with 
a problem until they 'solve' it. They are asked to note their thinking and their emotional responses while 
working their way through the problems/chapters. They are asked to try to apply, and react to Mason's 
RUBRIC. As the year goes on, and they gain classroom experience, they are asked to think about how 
their experiences with Mason (often trying) cast light-if any-on the possible struggles students might 
have in secondary school math classes. They also are asked to reflect on how "Mason" might have 
applicability in their math classes, even though Mason says that school structures do not permit the 
development of such mathematical thinking. Most fundamentally, Doug says, the process of "masoning" 
and "journalling" is to experience 'stuckness', and to explore their responses to being in that state, and 
ultimately, to come to know themselves better as mathematical persons and mathematics teachers. 

An assignment borrowed and adapted from Rena Upitis at Queen's University was described by 
Susan Stuart. Susan asks her elementary pre-service math teachers to choose a 'new learning' for the year. 
This can be anything at all, as long as it is something that "they have never done before, something that 
they have wanted to learn or do." The teachers must put together a plan for their learning and keep a 
journal as they work on the task. Topics have ranged from quilting and complex needlepoint, to 
re-measuring and re-drawing the map for the university's hiking trails, from learning American sign 
language to refurbishing a bathroom (tiles to tub). Throughout the year the projects are discussed in class 
in small groups, focusing on the 'ups and downs' of the learning and the implementation of their plan. As 
the projects progress, the teachers begin to focus on the mathematics that was part of the task they had 
chosen. At the end of the year, they submit a summary of their project, discussing in detail the 
mathematics that they encountered. The assignment allows the students to evaluate themselves as learners 
and makes them aware of the fact that mathematics, in some form, is an integral part of almost everything 
they do. 

If students cannot see what they 'know' reflected around them, then they cannot 'know' in any 
important or meaningful sense. As a teacher, I realize it is critical that I be aware of my own 
learning so that, by extension, I begin to see how children learn and attempt to manage their 
growth and learning (Student quote (David)). 

Other activities shared included ones by Gord Doctorow (having students write letters to friends 
explaining mathematical concepts), Rita Janes (inservice programs for the implementation of new 
curricula), LaJune Naud (a 'Second City' "Freeze!" technique-"Why did I just do what I did in this 
lesson?"), Douglas McDougall (tasks for teachers involved in 'upgrading' courses), Richard McKinnon 
(an assessment technique of having students correct their own papers), and Vicki Zacks (an example of 
a rich problem for the promotion of language and thinking skills- "How many squares?"). 

The group took some time discussing the commonalities among these teaching strategies and 
assignments. Perhaps these examples are pointing us toward math courses and math methodology courses 
which look different from those we have experienced in the past. First, David Robitaille drew our 
attention to the fact that these strategies seemed to take away from the time that we "instruct," changing 
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the nature of the pre-service classroom to one that models the theories that we are teaching rather than 
"lecturing about the theories we want them to know about." Doing, rather than talking about how to do. 
This led the group to realize that all the strategies or assignments focused on mathematics teaching and 
learning, including situations in which the pre-service teacher could observe math learners without being 
impeded by pressing issues such as whole class management. 

The strategies also highlight our belief in the importance of reflective teaching and learning. Perhaps 
that is why many of the examples fmd prospective teachers interacting in small groups on tasks that are 
experiential or manipulative. Not only do the tasks help them to learn about mathematics teaching, but 
they require the teachers to demonstrate and discuss their learning (learning how to learn?). We also noted 
that the instructional opportunities went beyond the standard "walls" of the math methodology classroom, 
making use ofa wide variety of people, places and materials. 

The examples indicate to us that our programs need to model several things: 

1. Beginning (or extending) the habit of taking responsibility for personal learning 

2. Learning to reflect on action and on learning 

3. Taking mathematics beyond the traditional classroom setting, brining the learning of 
mathematics teaching closer to situations in which students are learning and people are using 
mathematics. 

Our discussion has allowed us to explore some creative approaches. Ball (1989, p. 7) describes math 
methodology courses as "the launching stage for learners of math teaching that will serve them well in 
continuing to learn on their own." These strategies, perhaps, could serve as the "launching" of long-term 
changes in many of our courses. 

SESSION THREE 

At the end of the second session-partly in an attempt to move the group somewhat closer to a 
tangible result by the end of its nine hours of deliberation-Bill distributed a draft of a framework 
(LeMaistre and Higginson, 1995) for teacher growth and development that had been generated at the 
Second Queen's-Gage National Mathematics Education Institute held at Kingston in the summer of 1995. 
Rather than outlining an implementation plan for staff development, the framework describes levels or 
stages that mathematic!? teachers might move through in a career-long developmental journey. The 
framework recognizes that each teacher enters the profession as a novice, and with each professional act, 
be it attendance at professional development activities, planning and implementing workshops or courses 
for other teachers, or curriculum writing, moves toward "master teacher" level. The stages of growth also 
take place in different environments or "spheres of influence"-from classroom participation, to school 
and board leadership, and eventually provincial and national involvement in mathematics education. The 
framework postulates (see Table 1) six levels of developmental achievement: Candidate, Associate, 
Mentor, Master, Fellow, and Wizard (well, it is in 'draft' stage). Each of these six levels is described in 
terms of six different categories: 

Characteristics, Mathematical Skills, Pedagogical Skills, Sphere of Influence, Input From, and 
Adjudication By. The 'Characteristics' ofa successful 'Mentor', for example, would include: professionally 
active, shows initiative and support for others and an interest in the development of others. Applicants for 
certification at this level would be adjudicated by representatives of local and provincial organizations. 
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The intention of the draft framework was to stimulate discussion about possible structures to assist 
teachers in thinking about career growth. Reaction to the framework at the third session was spirited and 
varied and resistance was, in many quarters, quite high. One set of objections was essentially that such 
a procedure violated one of the fundamental principles of Working Groups, that of independence. The 
Study Group President in his Introduction to the 1995 Proceedings (Dawson, 1996) stated this clearly, 
"members are diligent about guarding against a WG becoming the platform for a particular point of view, 
or being dominated by the leaders." A few members had concerns which were more a function of the 
particular model, especially with its hierarchical nature and the 'excessively masculine' language in which 
it was couched. 

Other participants expressed the view that the framework could be a helpful mechanism for 
developing more substantial professional development programmes. There was general consensus, 
however, that the content factors (the fIrst three columns) needed to be more clearly distinguished from 
the contextual or process factors (last three columns). 

The session ended with the generation of a series of questions which related the proposed framework 
to some of the issues raised in the earlier sessions. Among these were: 

Could we use a descriptive example like Vicki's "How many squares?" problem when illustrating 
the framework? 

We are in control of what we do--how can we promote growth for ourselves? 

NCTM documents have a 'mid-80s' feel to them. Our list of descriptors is more 'mid-90s'. How 
can we build in the attempts to revise our own thinking about teachers and teacher education? 

What is the growth plan for this growth plan? 

So ended another CMESG Working Group. More questions than answers - some frustration and a 
sense of incompleteness, but also many new insights, and a growing awareness of the richness and depth 
of different perspectives on fundamental issues. 
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Working Group B 

FORMATION A L'ENSEIGNEMENT DES MATHEMATIQUES AU SECONDAIRE: 
NOUVELLES PERSPECTIVES ET DEFIS 

Nadine Bednarz, departement de mathematiques et Cirade, Universite du Quebec it Montreal 
Sophie Rene de Cotret, departement de didactique, Universite de Montreal. 

Les objectifs que nous propos ions pour Ie groupe de travail sur la formation des enseignants au 
secondaire qui devait prendre place It Halifax en juin 1996 etaieht les suivants: 

• echanger sur nos contextes respectifs de formateurs intervenant aupres des futurs enseignants 
en mathematiques au secondaire afin de comprendre les orientations globales qui sont retenues 
en divers lieux, les pratiques mises en place, leurs fondements et les questions et defis qui se 
po sent; 

• It partir d'exemples de pratiques de formation que l'on considere fructueuses, tenter de degager 
les diverses composantes d'un modele viable de formation des enseignants en mathematiques au 
secondaire. 

Ce groupe de travail n'ayant pu avoir lieu, nous rendrons compte essentiellement dans ce texte de 
nos propres contextes de formation des enseignants en mathematiques au secondaire et d'une experience 
qui est mise en place. 

I. Orientations generales des programmes de formation des enseignants au secondaire au 
Quebec. 

1.1. Cadre global orientant la formation des enseignants en mathematiques. 

L'enonce par Ie gouvemement du Quebec en 1993 d'une politique d'agrement des programmes de 
formation It l'enseignement, dans la perspective de contribuer It la qualite de la formation professionnelle 
menant It l'exercice d'une profession, ici celIe d'enseignantI, et les nouvelles orientations ministerielles qui 
accompagnent cette politique d'agrement2 conduisaient en 1994 It la mise en place dans les differentes 
universites du Quebec de changements importants dans les programmes de formation des maitres. 

Quelles sont ces orientations auxquelles doivent se plier les programmes de formation? 

1 La mise en oeuvre d'un processus d'agrement des programmes des mai est une activite nouvelle 
au Quebec, voir It ce sujet l'enonce des politiques d'agrement des programmes de formation It 
l'enseignement. CAPFE (comite d'agrement des programmes de formation It l'enseignement). 
Gouvemement du Quebec, 1993. 

2 Voir La formation It I' enseignement secondaire general. Orientations et competences attendues. 
Quebec, MEQ- Direction generale de la formation et des qualifications, 1992,35 p. 
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L'enonce de politique situe d'emblee l'orientation professionnelle generale qu'on souhaite donner 
Ii ces programmes de formation qui deviennent maintenant des programmes de quatre ans. Cette visee 
s'exprime ainsi: "La formation Ii l'enseignement doit iltre consideree comme une formation a caractere 
professionnel orientee vers la maitrise de l'intervention pedagogique dans les matieres enseignees" 
(enonce des politiques d'agrement, p.l 0). 

Un certain nombre de principes directeurs decoulent pour Ie CAPFE (comite d'agrement des 
programmes de formation des maitres) de cette orientation globale impliquant entre autres une meilleure 
integration de la formation dans les disciplines et de la preparation Ii enseigner, une meilleure integration 
de l'ensemble des cours theoriques et des activites pratiques. Nous reviendrons tout d'abord sur certains 
de ces principes en identifiant a leur propos les nombreuses questions qu'ils soulevent. 
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a) Une formation qui se veut polyvalente : 

L'idee de polyvalence est associee pour Ie ministere Ii une formation Ii l'enseignement dans au moins 
deux matieres inscrites au regime pedagogique de l'enseignement secondaire. Conr;:ue pour preparer 
les enseignants a intervenir en fonction des grands objectifs de formation integrale de l'ecole 
secondaire, cette interpretation exclusive que donne Ie ministere de la polyvalence apparait quelque 
peu questionnable. 

Elle force en effet une prise en compte de la formation Ii l'enseignement dans deux disciplines, et 
ce quel que soit Ie champ d'intervention vise. Elle ne prend nullement en compte par consequent 
la complexite plus ou moins grande que recouvre une telle preparation en fonction du champ vise, 
de l'importance de celui-ci dans Ie curriculum scolaire (l'enseignement moral est ici par exemple 
traite sur un milme pied que l'enseignement des mathematiques ou l'enseignement du franr;:ais) et de 
la realite scolaire (l'enseignant de mathematiques est appeIe Ie plus souvent Ii intervenir non pas dans 
une autre matiere mais a differents niveaux scolaires, aupres de divers types d'eleves, eleves en 
difficultes, classes d'accueuil, classes multiethniques ... ). Ce n'est pas tant pour nous l'idee de 
polyvalence du futur enseignant au secondaire que nous questionnons, celle-ci apparait en effet tout 
Ii fait pertinente, mais son interpretation. On aurait pu laisser place Ii d'autres interpretations 
possibles de cette idee de polyvalence, en regard par exemple du champ disciplinaire d'intervention 
(dans notre cas l'enseignement des mathematiques) et de ses liens avec d'autres matieres enseignees 
au secondaire (sciences physiques, geographie ... ) contribuant Ii une ouverture, a un enrichissement 
et a une meilleure integration de la formation au secondaire (ce qui est different d'une formation 
dans deux disciplines); ou encore Ii une polyvalence preparant Ie futur enseignant a mieux intervenir 
dans ce domaine aupres de diverses clienteles (eleves en difficultes, tripleurs, decrocheurs, eleves 
reguliers, classes multiethniques ... ) et a ainsi affronter la realite scolaire telle qu'elle se presente sur 
l'ile de Montreal. 

On semble aussi tenir pour acquis que Ie fait de preparer les etudiants Ii enseigner deux disciplines 
contribuera Ii approfondir la culture generale de ces futurs enseignants. On pourrait toutefois iltre 
confronte Ii une simple juxtaposition de deux formations dans des disciplines differentes sans pour 
autant contribuer Ii une mise en lien et en continuite des matieres enseignees; ce qui semble d'ailleurs 
Ie choix retenu par plusieurs universites. 

Aucune allusion n'est faite dans cette politique d'agrement aux deux matieres specifiques qu'il est 
possible de considerer, laissant la porte ouverte Ii diverses interpretations possibles (les matieres qui 
seront retenues ne presenteront donc pas necessairement de liens sur un plan epistemologique). On 
pourrait ainsi fort bienjumeler par exemple, milme si cela peut paraitre absurde, enseignement des 
mathematiques et enseignement moral ou encore enseignement des mathematiques et enseignement 
du franr;:ais au sein d'une milme formation. 
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D'autres arguments sont mis de l'avant, sans doute plus determinants dans les choix qui ont ete 
poses; on retrouve ainsi des motifs d'ordre economique associes aux possibilites d'affectations et 
reaffectations du personnel enseignant, l'enseignement des mathematiques pouvant alors etre donne 
par un enseignant forme dans un autre champ. On retrouve egalement des raisons renvoyant a 
l'encadrement des eleves, un meme groupe pouvant etre suivi dans deux matieres par un meme 
enseignant. 

b) Uneformation qui se veut integree: 

Les programmes de formation proposent de mettre de l'avant une formation davantage integree pour 
contrer l'eclatement et la fragmentation de celle-ci. Cette integration devra se manifester notamment 
dans l'amenagement et Ie contenu des cours et des activites, montrant des liens organiques entre 
ceux-ci. Ainsi notamment la formation pratique (nous reviendrons par la suite sur celle-ci ), la 
formation psychopedagogique et la formation dans les disciplines devront s'articuler. 

II est donc desormais impossible dIopter pour une formation disciplioaire suivie d'un certificat d'une 
annee en education generale; Ie ministere pose la des balises importantes en regard de ce qu'on 
retrouvait dans Ie passe au sein de certaines universites, il faudra toutefois respecter ces balises a 
tous les niveaux (de multiples exceptions ont belas eu cours). 

c) Une plus grande place reservee iz laformation pratique: 

Les nouveaux programmes de formation mettent l'emphase sur la formation pratique du futur 
enseignant en proposant entre autres un contact avec Ie milieu scolaire survenant tot dans Ie 
cheminement et des stages d'une duree totale d'au moins 700 heures. 

Quelles sont les recommandations plus specifiques par rapport aux diverses composantes de cette 
formation? 

La formation pratique met l'accent surtout, on l'a vu precedemment, sur une presence dans Ie milieu 
scolaire par Ie biais de stages, meme si celle-ci peut prendre, souligne-t-on par ailleurs, d'autres formes 
(ateliers, cliniques, laboratoires d'etudes de cas, d'experimentation, de simulation ... ). 

Pour favoriser une meilleure articulation entre formation pratique et theorique, un partenariat entre 
les universites et les commissions scolaires est favorise. 

Entin, Ie programme fait montre d'un equilibre entre la formation reservee aux matieres 
d'enseignement et la formation touchant les aspects pedagogiques et sociaux de l'education. Ainsi, Ie 
nombre de credits consacres aux disciplines ou aux champs d'etude d'une part, et Ie nombre de credits 
affectes aux stages, aux aspects psychopedagogiques ou sociaux de l'education et de la profession d'autre 
part, sont a peu pres equivalents. 

Ces recommandations font a priori ressortir une certaine conception de laformation pratique, avant 
tout assoc;ee iz une presence sur Ie terrain. Dans un tel contexte, quelle sera la place de la reflexion sur 
l'action conduite en classe en regard de l'enseignement dans un champ d'intervention donne? OU sera t-elle 
conduite et par qui sera-t-elle supportee? Ces recommandations soulevent aussi des interrogations sur la 
place de la didactique dans cette formation; la formation semblant faire appel avant tout, pour les 
concepteurs, a des composantes disciplinaires et psychopedagogiques qui n'apparaissent guere integrees 
dans 
les faits. 

59 



CMESG/GCEDM 1996 Proceedings 

Quel type de professionnel veut-on former? 

L'enonce" des politiques d'agrement reprend un certain nombre de competences attendues des 
personnes diplomees. Nous reprendrons certaines de ces competences professionnelles qui concernent 
plus specifiquement I'enseignement d'une matiere: 

• avoir une connaissance approfondie de deux disciplines d'enseignement, contenu et fondements 
epistemologiques; 

• etre initie aux methodes et a l'histoire des disciplines ou champs d'etudes, de meme qu'a leurs 
limites; 

• avoir la capacite de situer ces disciplines les unes par rapport aux autres et d'etablir des liens 
entre eIles; 

• avoir une attitude positive a l'egard des disciplines enseignees, ainsi qu'une bonne connaissance 
de l'ensemble des programmes d'etude; 

• etre en mesure de planifier des activites d'enseignement et d'apprentissage en lien avec les 
objectifs des programmes d'etude du secondaire et pouvoir utiliser a cette fin des ressources 
didactiques appropriees; 

• etre en mesure de proceder a l'evaluation formative et sommative dans les matieres enseignees; 

• avoir une maitrise de la langue d'enseignement; 

• etre en mesure de deceler les besoins pedagogiques des differentes categories d'eleves. 

L'enonce de politique reprendra egalement des competences attendues a l'egard de la maitrise de 
!'intervention pedagogiquee (con/yue ici de maniere generale, independamment du champ d'intervention 
specifique ou elle se deroule, on reRre par exemple a l'apprentissage de l'eleve, ala gestion de classe). 
Or, peut-on vraiment parler de gestion de classe et de maniere de creer un milieu propice a l'apprentissage 
des eleves sans prendre en compte Ie domaine specifique dans lequel se fera l'intervention? Plusieurs 
etudes montrent en effet Ie role determinant que joue Ie rapport au savoir dans l'elaboration de strategies 
pedagogiques en classe, dans la maniere de cadrer Ie savoir, de gerer l'activite avec les eleves (Bauersfeld, 
1980; Voigt, 1985; Schubauer Leoni, 1986). 

II. Comment cette formation s'actualise-t-elle dans chacune de nos institutions? 

Nous parlerons ici plus specifiquement de deux modeles de formation des enseignants en 
mathematiques au secondaire, l'un graduellement mis de l'avant a l'Universite du Quebec a Montreal et 
l'autre, plus recemment, a l'Universite de Montreal. 

11.1. Quelques caracteristiques du modele de formation graduellement mis de I'avant a I'UQAM. 

La prise en charge de la formation des enseignants en mathematiques au secondaire remonte dans 
Ie cas de l'UQAM a plus de 20 ans. Elle fut prise en charge des Ie debut par une equipe de didacticiens 
et didacticiennes des mathematiques. L'intervention de ces didacticiens dans les COUTS de mathematiques, 
de didactique des mathematiques, les stages d'enseignement des mathematiques, les COUTS d'informatique, 
etc. a conduit a une articulation progressive des activites du programme sur la maitrise par Ie futur 
enseignant de I'intervention pedagogique en mathematiques. 
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Le programme elabore vise ainsi Ie developpement, Ii travers l'ensemble de ses activites (voir Ie 
tableau qui suit), de com¢tences professionnelles Ii l'intervention en mathematiques au niveau secondaire 
(on permet Ii une competence d'intervention de se developper et de gagner, au til de la formation, une 
certaine maturite). 

Baccalaureat en enseignement secondaire: concentration Mathematiques 17954 
OptiOIlS: II1/ormatique, Physique et Il1itiDtioll Ii III technolog~ 

1 ere annee 2e ann6e 
A-95 Ses.l H-96 Ses. II A-96 Ses.ll1 11-97 Ses.IV 

Tel 3 cr. EDU 1000 TO 3 cr. psy 2010 TC43cr. EDU2102 TC6 3 cr. EDU SOlO 
Introduction et initiation l L'adoIesct.II(Z Relation 6ducative et tMIuation des apprentissages 
l'intervention p6dagogique gestion des situatioDS au seooodaire 

d'aDlirentissal!e (illluuin 
MAT 1024 3 cr. TO 2cr. EDU 2005 MAT 2026 2 cr. MAT 3035 3 cr. 
Atelier d'exploration de Fondements de 1'6ducation et Didactique de ~ell 
I'activit~ math~matioue ensei2llCmellt au secondaire l'a1~bre 
MAT 1030 3 cr. 6 cr. MAT 2226 3 cr. DIN 2200 Programme 3 cr. 
GOOmetrie I MAT 2024 Raisoonement proportion- PHY IOSOMecanique 

Didactique des nel et conceptS associes 
(intell.if) , 

PHY 2000 Mecanique 

MAT 1801 3 cr. III3lhematiques DIN 2812 3 cr. DIN 3200 Multimedia 3 cr. 
Programmation dans et laboratoire Applications p6dagogiques PHY 2230 ~ectronique 
I'enseignernent des de l'infonnatique dans PHY 2005 ~ectronique 
IIIlllhematiques I'enseignements des maths 

(jntend() 
4 cr. STAGE 2 3 cr. 3 cr. 

MAT 1005 ESM 3202 Math. Choix HiSloire OIl socie~ 
Algebre - a1gebre Iilll!aire Initiation lla pratique de PHY 2270 Optique 

l'enseignement (24 pm) EDU 2085 Archil 
STAGE 1 2 cr. 
ESM 2000 ESM 3201 I cr. 
Immersion milieu scoIaire Pre stage 
(7 ioun lrron disciDlinain 

14 crMits 15 crMits 15 c:rMlts 15 c:ridlts 
3eannee 4eann6e 

A-97 Ses. V H-98 Ses. VI 
MAT 3225 3 cr. TC 13 3 cr. 
Didactique de Ia variable et Cultme g6IeraJe 
des fonctions ( illtensif) 

MAT 2700 3 cr. MAT 3224 3 cr. 
Structure oumeriques Didactique des maIbs 0 

(illtendfl 

DID 3200 Programme 3 cr. MAT 1085 3 cr. 
PHY 1710 Ondes Probabilites et stratistiques 
EDU 2080 Dem. techniaue (intens;() 
DIN 3300 Inforoute 3cr. 
PHY 2500 Thennod. 
DIN 3300 Inforoute 
DIN 5200 Did info. 3 cr. DIN 6200 Proj. 3 cr. 
PRY 2270 Simulation ESM3511 Did 
MIC 3000 Svs inforrnatioue ESM 3515 Did (jllten.i() 

STAGE 3 3 cr. 
ESM 4200 Inf. 
ESM 4S01 Physique 
ESM 4502 lnit. T .. 

15 c:rMlts 15 cridlts 
, TCX:Cows du tronc commun en psychopedagogJe 
MATH: conc.:Cours disciplinaires et de didactique 
INF., PHY.,INIT. Tech Option 

A-98 Ses. vn H-99 Ses. vm 
TC92cr. EDU6002 TC 103 cr. EDU6005 
ProbIematiques inten:ul- B1ucatioo, q,istemologie et 
tmelles ll'ecoIe secondaire metacognitioo 
(jlltell.in 
TC5 3a. FDU3060 TC8 3 cr. 
L'adoIescaIl en ~ HlS-SOC-PHI 
d'adaplation et formaIioo fondamentale 
d'a . e (jlltellsin 
MAT 6221 3cr. TC 11 2cr. EDU6025 
HiSloire des maths Profession enseignante en 
(intell.in milieu scoIaire 

TC 12 2cr ESM6210 
seminaire de syn~ 

DIN 4300 lnL art. 3 cr. 
FSM 3500 Histoire 
FSM 3500 HiSl. 

STAGE 4 7 cr. Choix info, 3a. 
ESM 6201 Math. PHY 5260 Phys. mod. 

PHY 2020 Materiaux 

15 c:ridits 16 c:ridlts 

STAGEX Stages en milieu scoI. 

=> 30 cn!dilS -
=> 47 cn!dilS -
=> 27 cn!dits -
=> 16 credits TafAL: 120 cn!dits oct.9S 
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Cette preparation ne se fait pas It vide, elle s'articule sur une reflexion It propos de concepts 
mathematiques precis, sur leur apprentissage et leur enseignement. La formation y est donc des Ie depart 
integree: on retrouve ainsi une integration constante des dimensions theoriques et pratiques dans 
l'ensemble de la formation (l'implication des didacticiens dans la supervision des stages et la prise en 
charge parallele des cours de didactique et de mathematiques rendent possible cette integration). 

Ainsi les competences qu'on cherche It developper sont reprises It travers plusieurs cours. 

• Apprendre It observer, questionner avec pertinence, tirer partie des intervehtions et des 
productions des eleves, etc. sont des competences touchees par plusieurs cours. 

• Le cycle propre It l'intervention pedagogique (planification, realisation, analyse et 
reinvestissement) est repris par chaque etudiant It plusieurs reprises. 

• La reflex ion sur l'activite mathematique, son enseignement, son apprentissage (entrevoir 
differents moyens de mettre en pratique des situations It propos de concepts precis) fait l'objet 
de la quasi-totalite des cours. 

• Entin un modele de partenariat entre intervenants universitaires et praticiens du milieu scolaire, 
mis en place It travers certaines activites du programme (nous reviendrons sur celui-ci par la 
suite), contribue au developpement d'une competence professionnelle chez l'etudiant. 

11.2. Quelques caracteristiques du modele de formation mis en place it l'Universite de Montreal. 

A l'Universite de Montreal, Ie programme de formation des enseignants du secondaire releve de la 
Faculte des sciences de l'education et ce quelles que soient les disciplines concemees. Les trois 
departements composant cette faculte (departement de psychopedagogie et d'andragogie; departement 
d'etudes en education et administration de l'education; departement de didactique - regroup ant toutes les 
didactiques s¢cifiques, didactique des mathematiques, du fran/yais, de la physique, de la biologie, de la 
geographie, etc.) se partagent la formation en education. La gestion de ce programme est assuree par Ie 
Centre de formation initiale des maitres cree par la faculte. 

Avant lareforme des programmes de formation des enseignants, l'universite offrait un certificat en 
enseignement, lequel faisait suite It une formation disciplinaire, generalement un majeur ou un 
baccalaureat, re/yue dans Ie departement disciplinaire conceme (maths, fran/yais, etc.). Dans Ie nouveau 
programme, les formations disciplinaires et en education se veulent integrees. L'importance disciplinaire 
en termes de credits est decroissante au fur et It mesure du programme de 4 ans tandis que celIe de la 
formation en education est croissante. Le tableau suivant donne l'organisation de l'ensemble des cours 
et des stages dans Ie programme de formation des maitres au secondaire. 

La formation mathematique disciplinaire se fait par des professeurs du departement de 
mathematiques. Les contenus de cours sont les memes que les etudiants soient inscrits au programme de 
formation des maitres ou It un programme de mathematiques, It l'exception de deux cours con/yus plus 
specifiquement pour les etudiants en formation des maitres (mathematiques fondamentales et geometrie 
euclidienne). Le choix des cours de mathematiques It suivre s'est fait en collaboration entre les 
didacticiens des mathematiques et les professeurs du departement de mathematiques. Quant It la 
formation en didactique des mathematiques elle se fait au departement de didactique. 

Dans la perspective d'une formation polyvalente, les etudiants sont formes pour enseigner deux 
disciplines. Si les mathematiques sont choisies comme discipline principale les disciplines comple
mentaires peuvent etre la biologie, l'informatique, la physique, la chimie, ou l'economie. Les seules 
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Baccalaureat en education Option enseignement secondaire U. de M. 

t\nn~e Stages de formation PMagogle - Didacdque - 2 disciplines Total 
pratique l Foodements - Formation enselgnHs aa 

I'enseljtoementeo pratiqne l I'unlversltf secondaire 
milieu scola Ire (Facall~ des sciences de (F.A.s. et Fac. de 

Ndncallon) tbEoloJ!ie) 
Ure I crMlt 5 cridlts 14 crMlts 30 cr. 

EDU 1010 ETA 1121-finalites de I'~ucation et 
Stage de familiarisation 1'&oIe secondaire 2 er. Discipline principale 
a l'koIe secondaire PPA 1210-L'adolescent et 
(6:!uivalent 1 une (I) I'ex¢rience scolaire 3er. 
semaine) 

35 h. 
2e 3 cridlts 10 crMlts 18 crHlts 31 cr. 

DID 210l-lntrolla didactique 2er. 
EDU20IO ETA 25IO-lnuoduction 11'I!va1uation Discipline principale 9er. 
Slage d'assistanat des apprentissages 2 er. 

PED 4OOS-Sbninaire d'intl!gration: Discipline compll!mentaire 
(6:!uiiva1ent 1 quatre Ie dossier professionnel (d&ut) 9er. 
(4) semaines) PPA 2000-Labo d'enseignement 3(2)cr. 

PPA 2220-Apprentissage scoIaire 
140 h. au secondaire 3 er. 

3e 4 crHlts 11 crMlts 15 crHlts 31 cr. 
DID I de la discipline principale 2(1)cr. 

EDU30IS DID I de la discipline campi. 2(1) er. Discipline principale 6er. 
Stage d'enseignemmr 1 ErA 3730-Technologie de 

l'infonnation et de la communication Discipline complementaire 
(S semaines) en~uc. 2er. 

ETA 3920-Analyse du sysreme 9er. 
Discipline scoIaire du Qu&ec 2er. 
compl6nentalre PFJ) 400S--S6ninaire d'in~gration: 

Ie dossier professionnel (suite) 
PPA 3230-P6fagogie en milieu 
urbain 2(\) er. 
PPA 3236-Modeles de gestion de 
c\asse au secondaire 2er. 
011 

175 la. PPA 3238-L'enseignant et la relation 
~ucative au secondaire 2er. 

4e , crHits 16 cridits , cridits 34 cr. 
DID U de la discipline prine. 2er. 

EDU400S DID U de la discilpline comp\. 2er. Discipline principale 6er. 
Stage d'enseignemenrll DID 4000-Labo. de didactique 2(2)cr. 

PED 4OOS-Sl!minaire d'in~gration: Discipline compll!mentaire 
(10 semaines) Ie dossier professionnel (rm) 3 er. 

ETA 4SOO-Pratiques de 1'l!valuatiOll 3er. 
en milieu scoIam I er. 

Discipline principale ErA 400S-Pratiques ~tives 
et recherche 2er. 
ETA 410S-Fondements thOOriques 
del'~tion 2er. 

350 b. PPA 4400-DifflCUltes d'ad3ptation et 
d'3DDreIltissaee au seCondaire 2( I )cr. 

Total 17 crfdits de stage 43 crHlts 66 crHits 126 cr 

(700 heares l 240 beures de laboratoire 
I'fcolel d' eusel2nemeat 
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disciplines principales acceptant les mathematiques comme discipline complementaire sont la chimie et 
la physique. 

Jusqu'a la reforme, la formation pratique avait surtout un caractere psychopedagogique. Avec Ie 
nouveau programme, une place plus grande est accordee a la didactique dans la formation pratique. Cette 
importance s'exprime de diverses fa~ons: 

• par des cours de didactique comportant des credits pratiques, permettant Ie travail en groupes 
restreints avec I'aide d'un assistant; 

• par la prise en compte explicite des aspects didactiques dans les stages avec une supervision 
didactique alliee a la supervision psychopedagogique; 

• par la mise en place de laboratoires de didactique durant Ie demier stage OU peut se faire I'analyse 
des situations d'enseignement et de leur deroulement effectif. 

La formation pratique ne se restreint donc pas a une presence en stage. 

Par ailleurs, peu de credits sont consacres aux COUTS de didactique de chacune des deux disciplines. 
Au total 12 credits sont reserves a la didactique pour les deux disciplines: 

• Un COUTS (2 credits) d'introduction a la didactique par secteurs (ici, Ie secteur mathematiques et 
sciences) en deuxieme annee. Celui-ci devrait permettre, entre autres, de voir les liens entre les 
deux disciplines choisies par les etudiants et aussi de developper un questionnement par rapport 
a I'enseignement qu'ils recoivent en mathematiques et en sciences et par rapport a leur propre 
apprentissage de ces disciplines. 

• Deux cours de didactique des mathematiques (2 credits chacun), soit un en troisieme et un en 
quatrieme annee; 

• Deux cours de didactique de la discipline complementaire (2 credits chacun); 

• Un laboratoire de didactique (2 credits) dont nous avons parle plus haut. 

Ce programme de baccalaureat en enseignement secondaire ««vise laformation d'enseignantes et 
d'enseignants professionnels, capables d'analyser et de com prendre la complexite de !'intervention 
educative et de faire preuve d'autonomie dans la prise de decision.» (Programme de B. Ed. option 
enseignement secondaire de I'U de M, 1995, p.l) 

11.3 Formation pratique: un exemple d'intervention realisee dans Ie programme de formation des 
enseignants en mathematiques au secondaire de I'UQAM. 

Nous parlons ici d'une formation a I'intervention en mathematiques au secondaire plutot que d'une 
formation pratique, dans un souci de refleter la conception plus large que nous en avons, qui depasse, et 
de beaucoup, la simple presence en cIasse autour des stages. 

Cette formation a I'acte d'enseigner va etre visee tout au long du programme, elle est ainsi deja 
presente des la premiere session a I'interieur d'un atelier d'exploration de I'activite mathematique, dont 
I'objectif est avant tout de questionner les idees qu'ils ont developpees tout au long de leur scolarisation 
anterieure a I'egard des mathematiques, de leur apprentissage et de leur enseignement et de les rendre 
receptifs au questionnement didactique qui suivra lors de leur formation. II s'agit ici de sensibiliser les 
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etudiants aux structures cachees d'un champ complexe, tout particulierement en regard de leurs propres 
experiences en tant qu'eleves (en retrospective) et des limites de celles-ci, et ce, pour continuer it 
developper un habitus mathematique altematif (Bauersfeld, 1994, p.182 ). 

Confrontes a diverses formes de questionnement, de situations-problemes, ils se retrouvent 
eux-memes dans Ie role de l'eleve et se questionnent ainsi sur l'apprentissage. lIs ont a expliciter leurs 
solutions aux autres, a verbaliser celles-ci pour les communiquer, a argumenter sur la validite de solutions 
presentees par d'autres ... (pour plus d'informations sur ce cours, voir Bednarz, Gattuso, & Mary, 1995). 

Ce premier contact avec une maniere differente de voir l'apprentissage et l'enseignement des 
mathematiques sera repris dans les differents cours de didactique ( didactique 1; raisonnement 
proportionnel; didactique de l'algebre; didactique de la variable et fonction; didactique 2 ... ). Dans ces 
diverses activites, on ne parle pas d'intervention, de gestion de classe au sens large, celle-ci est toujours 
ciblee, elle s'articule sur un certain contenu mathematique a enseigner. Nous expliciterons plus 
precisement cette formation a travers un exemple d'intervention, apparaissant en debut de formation 
(2eme session, I ere annee, avant les stages), qui illustre bien la pedagogie mise en place et Ie modele de 
formation que nous priviIegeons. 

Le cours didactique I et son laboratoire ( 6 cr ) 

Cette activite est un premier pas important dans Ie sens d'une preparation du futur enseignant a 
l'intervention en mathematiques. 

Les preoccupations de l'enseignant dans sa classe sont presentes dans ce cours, plus particulierement 
sous les aspects suivants: 

L'ell~ve, avec ses difficultes, ses raisonnements, ses conceptions: on travaille dans Ie cours a partir 
de vraies productions d'eleves; on dispose de videos de leurs propos, de leurs actions en situation; 
les etudiants iront aussi interroger des eleves et reviendront avec Ie compte rendu de leurs 
observations dont ils rendront compte aux autres (differents themes sont ici abordes a ce propos, 
exposants, algebre, moyenne, fractions, decimaux ... ) 

La/ormation au diagnostic dans i'action (SchOn, 1983, 1987): les etudiants sont appeIes a faire de 
l'analyse d'erreurs, de raisonnements d'eleves a partir de traces de leurs productions ou de ce qu'ils 
disent en classe et a elaborer des strategies d'intervention possibles face a l'erreur, ou prenant en 
compte les differents raisonnements elabores (les fractions, les decimaux et les operations sur ces 
nombres seront par exemple une occasion de reflechir sur ces interventions). 

Des situations sont proposees, utilisees, analysees, les objectifs sont questionnes: on travaille ici a 
faire en sorte que les etudiants soient en mesure de faire un choix de situations pertinentes face a 
l'enseignement d'un sujet mathematique donne (par exemple, en travaillant la resolution de 
problemes en secondaire I, les etudiants doivent composer eux-memes des problemes a contexte 
impliquant une multiplication ou une division en respectant certaines contraintes; conjointement 
l'analyse de series de problemes deja composes ameneront a etablir des criteres qui permettront de 
juger de la complexite de problemes proposes aux eleves) .. 

L 'utilisation de la langue dans i'enseignement: l'etudiant est appele a verbaliser constamment son 
raisonnement ou une idee en mathematiques, on travaille ici sur un aspect particulierement deficient 
de l'enseignement des mathematiques (Bauersfeld, 1994) en amenant les etudiants a pouvoir jouer 
avec differents niveaux de langage (pouvoir expliciter une idee, un raisonnement, un symbolisme 
en utilisant une verbalisation accessible aux eleves). 
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L 'utilisation de materiels, de representations, de corltextes pour appuyer cette verbalisation et la 
construction de sens est aussi presente. Ce travail de verbalisation, de contextualisation et de 
representation sera effectue par exemple lorsqu'on aborde les fractions. On verbalise entre autres 
les fractions equivalentes dans un contexte qui refere au sens partie d'un tout, au sens quotient ou 
au sens rapport de la fraction. 

On forme enfm a une premiere rejlexion sur ['action (ScMn, 1983, 1987), lors de l'elaboration et 
realisation d'une intervention pedagogique sur un sujet mathematique donne, dans Ie laboratoire jumele 
au cours: preparation d'une suite de 3 le~ons consecutives sur un sujet donne (introduction a l'algebre et 
construction de formules, resolution d'equations, constructions geometriques-bissectrice, mediatrice ... , 
introduction a l'addition de fractions, a la multiplication de fractions, etc.), realisation d'une des le~ons 
devant Ie groupe, analyse et reinvestissement dans une nouvelle le~on. 
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• Les themes retenus sur lesquels va s'articuler ce travail sont tous des themes qui s'enseignent par 
la suite dans la periode des stages (decimaux, fractions, operations dans Ie cadre de la resolution 
de problemes, introduction a l'algebre ... ). 

• Tout ce travail est supporte par un partenariat bien articuIe autour des etudiants debutants (cf. 
figure 1). 

Etudiants 
fimssants ~~---------------------------~~~ 
Conseillers 

Recherche 
Rencontre conseil 
Critique en c1asse 

Professeur 
de didactique 

Etudiants 
debutants 

Reprise d'une I~on 
amelioree en c1asse 
Analyse critique 

InteIVenants 
du milieu 
scolaire 

Figure 1: Le cours de didactique I et son laboratoire 
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Ainsi une equipe fonnee d'etudiants finissants Gouant Ie role de conseillers aupres des etudiants 
debutants dans la preparation des le~ons), de didacticiens des mathematiques (responsables du cours et 
supervisant eux-memes les conseillers dans Ie cadre d'une activite qui leur est creditee), et d'intervenants 
du milieu scolaire, enseignants en mathematiques au secondaire, conseillers pedagogiques ... (responsables 
de la partie laboratoire associee au cours) va travailler a supporter l'etudiant en fonnation dans ce 
cheminement. 

Les etudiants debutants ont a preparer une sequence de 3 le~ons consecutives sur un sujet precis. lIs 
sont aides dans cette preparation par un conseiller, etudiant fmissant, qui agit alors comme tuteur aupres 
de lui. Ces etudiants presentent devant Ie groupe de leurs camarades une des le~ons qu'ils ont preparees. 
lIs sont alors critiques par leur conseiller, leurs pairs, quijouent Ie role d'eleves lors des presentations, un 
praticien du milieu scolaire (ces critiques ont trait a la maitrise du sujet, a la gestion de classe, a la 
participation des 
eleves dans la classe, au questionnement du professeur ... ). A l'occasion, Ie professeur de didactique 
reinvestira dans Ie cours lui-meme les observations et discussions qui ont surgi de ces presentations. 

A travers l'avis de ses pairs, d'intervenants du milieu scolaire et de didacticiens, l'etudiant se construit 
ainsi progressivement un repertoire d'interventions pedagogiques possibles lui pennettant d'avancer sur 
la voie d'une reelle fonnation.( pour plus de details sur Ie contenu de ce cours, voir Bednarz, Gattuso, & 
Mary, 1995). 

On peut entrevoir a travers cet exemple les visees de ce programme de fonnation qui s'eloigne des 
modeles dominants de fonnation des maitres, et notamment du cadre ministeriel qui associe 
essentiellement fonnation pratique a presence en stage, et qui differencie fortement, meme s'il souhaite 
une integration de ces diverses composantes, les composantes disciplinaires et psychopedagogiques de 
cette fonnation. Ce programme met au contraire de l'avant une fonnation integree visant constamment 
a la fois une appropriation des contenus a enseigner et la preparation a l'enseignement . 

m. Quels sont les fondements sous-jacents it ces programmes de formation? 

Les diverses activites elaborees reposent sur une certaine pratique educative mise de l'avant de la 
part des fonnateurs, coherente avec les buts que nous visons. II s'agit ici de developper chez Ie futur 
professionnel de l'intervention en mathematiques une autonomie, une capacite de prendre des decisions, 
de s'organiser, de faire des choix appropries, de mettre en place une culture de classe alternative en 
mathematiques, de developper des la fonnation initiale une retlexion critique en regard de sa propre 
pratique, une attitude a la 
recherche, qualites essentielles a l'exercice de sa future profession. 

Ce modele privilegie ainsi la participation a une certaine culture dans laquelle Ie questionnement, 
l'explication des points de vue, les interactions entre etudiants et professeurs vont jouer un role important. 
Nous organisons la fonnation des enseignants comme une "culture" qui actualise elle-meme les 
caracteristiques desirees. Nos pratiques de fonnation vont s'articuler en ce sens sur les raisonnements et 
idees developpees par les etudiants maitres en situation a l'egard des mathematiques, de leur apprentissage 
et de leur enseignement et essayer de les faire evoluer. 

Les theories de la didactique des mathematiques ne sont pas exposees comme telles. On ne tient pas, 
on l'a vu precedemment, un discours sur l'action mais on fait en sorte que l'etudiant construise dans 
l'action (appuye par les discussions avec les autres etudiants et les interventions du professeur) les 
connaissances qui lui pennettront d'aborder sa future profession. II ne s'agit pas d'exposer la didactique 
mais de fonner par la didactique. En fait nous cherchons la coherence entre notre discours et nos propres 
pratiques d'enseignement. II ne suffit pas a notre avis d'exposer des concepts pour que ceux-ci soient 
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developpes par les etudiants (autant eleves en mathematiques que futurs maitres en formation). C'est a 
travers l'action, les interactions et la reftexion sur celles-ci que se construisent les connaissances et c'est 
sur ce modele nous nous appuyons. Aussi, la didactique sert de cadre de reference a nos interventions 
comme formateurs. Par exemple, lorsque nous travaillons l'introduction a l'algebre avec les etudiants 
maitres, nous avons en arriere-plan toute une reflexion didactique qui nollS permet de choisir les situations 
propices a une reflexion et a une discussion de la part des etudiants; dans un autre domaine, Ie choix de 
problemes additifs ou multiplicatifs soumis aux etudiants pour fins d'analyse repose aussi sur un cadre 
de reference qui nous permet de juger de leur complexite relative. 
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PREAMBLE 

David Noss (University of London) 
David Pimm (The Open University) 
Hassane Squalli (Universite Laval) 
David Wheeler (Vancouver) 

Action and expression: what a considerable distance separates these two activities in the 
mathematical domain. I do, I reflect, I try to understand, I express the state of my understanding. Can I 
express my understanding of what I have done? Do I have a language to do it before I have understood 
or expressed myself formally? Is formalisation an end result of activity: or can judicious uses of new 
technologies draw together formal and informal in productive ways? Our idea in the workshop was 
straightforward. Let's engage with some card tricks; try to reproduce the actions on the cards; build a 
formal model (using Logo) of the tricks, by re-presenting them in the form of programs; and try to use 
the model to understand, perhaps generalise the trick. What do we gain from building and running the 
model? Does the construction of a program, a kind of (dynamic) algebra in itself, uncover the structure 
of the trick, or its underlying mathematical structure? Perhaps David Wheeler is right; maybe algebra 
"never performs an explanatory function". These are difficult questions, and I think the contributions 
below show that our workshop engaged with some of them. I cannot pretend that we came near to 
providing answers. But everyone, to the best of my memory, succeeded in some or all of the modelling 
tasks. It was certainly fun: but was it mathematics? 

STATEMENTS OF THE PARTICIPANTS 

Tom Kieren 

On Two Experiences With Modeling 

The two "problems" as I saw them were veneers of the two "card tricks" with our task being to 
reason from the veneers to the tricks underneath. With respect to "trick one" I joined a group in progress 
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at the machine. Because the machine/software were available and we had the "trick one" task before us, 
we mostly acted and reflected on those actions almost independently of the problem or task itself. This 
led us in the end to have an alternate model for accomplishing the trick; an alternate representation for 
the veneer, but little insight into the "mathematics" beneath that veneer. We had mathematized the 
performance, but had not yet at least pried beneath that; rather like modeling an action as the copywriter. 

With "trick two" in one trial we got the trick to work. We repeated and talked about several alternate 
tricks, each which worked. In this case we got an image of the trick (e.g., what happened to the order of 
cards under moves) for specific cases. My partners generalized a notation: EOEOEOEOEOEO which 
gave us a method for doing the trick without reference to the cards. This led us to try to see all the possible 
different cases (we found four, I think) which led us to "prove by exhaustion" that the trick worked. We 
felt that we knew that the mathematics worked, but not how. Marty offered us an alternate version 
notation (an alternate formalization), which allowed him to at least show us how the mathematics worked, 
and offered us a proof that the process worked and not just that it worked. We still needed to work this 
for ourselves and certainly had not generalized, but we felt little need to computer model anything at this 
point. 

Hassane Squalli 

I preferred the second activity to the first. For me, in the first activity, we went too rapidly to the 
computer. We did not take enough time to "appropriate" the problem, and then be able to understand 
what happens and to try some conjectures. In the second activity, on the contrary, we were able to 
appropriate the problem, make conjectures, try to validate them, and try to make proofs. Later, when we 
were satisfied with the solution we had found, we tried to frod some interesting generalizations. 

Have we done any mathematics? I really don't know if I had in the first activity. In the second 
activity, I had the impression that my mathematical experience helped me in understanding the problem 
and making conjectures and generalizations. I frod it interesting to try to "modelize" concrete actions in 
a language of "codes" (symbolism?); focusing only on the "pertinent variables", and translating the study 
of the problem to paper. But, where is algebra in all of that? In the first activity, I did not have time to 
see it. In the second, although we resolved the problem and made some generalizations, in my sense, I 
haven't done any algebra. 

Sandy Dawson 

Working with Tom Kieren and Judy Barnes, we studied the second card trick, and by chance found 
an immediate solution. We did not, however, know why it worked. We undertook an exhaustive 
examination of cases, and convinced ourselves that the solution we had stumbled upon did in fact work 
in all instances when beginning with 2n cards. 

However, I still did not know why it worked. We had a proof, we were convinced that the proof was 
valid, and that there were no counter-examples to it, but still I did not know why the solution worked. It 
was only when Marty came by, suggested a straight shift in terminology, and visually showed us his 
solution that I got a glimmer that a "flip plus slide" left matters unchanged as to the sequence of correct 
and incorrectly facing cards. Then I understood. 
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Moral of the story: 

1. You can have a complete and convincing proof, but still not have meaning and understanding, 
and 
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2. When understanding is achieved, further action may cease, at least for a time. 

It was also clear to me that working with others was a distinct advantage for me. 

Jacqueline Klasa 

"What is dynamic algebra?" 

This workshop was devoted to problem solving and consequently, "Dynamic Algebra". Few 
discussions ran on to determine if we really worked with algebra. Algebra was expressed here as a model 
of a real situation with card games. 

During the ftrst morning, it was proposed that we model the problem with Logo. As many of us 
were unfamiliar with Logo, some frustrations arrived. We were handicapped by Logo and felt that we 
were asked to communicate a complex message in a language that was neither our mother tongue or even 
a language that we could be fluent in. 

Before the second morning, I decided to use a few of my own tools of modelization: ta
bles(triangular), and modular arithmetic. My model was clear to me and so my frustration disappeared. 

From that situation where I did not feel at ease, I learned that sometimes I may impose too much on 
my own students. I may be too restrictive of the mode of expression for a given problem; (sometimes 
we are in computer labs, sometimes we work in clinical ways). 

A good modelisation or algebrisation may take some time and use various tools of communication, 
back and forth (e.g., Do pencil work ftrst, set up tables for small cases, discuss with team members. 
Observe some patterns and infer a structure. Then check your claim with more powerful tools: Graphical 
calculators, use of mathematical software, etc. At some time, you may take again your pencil and sketch 
a "proof'.). I understood "dynamic algebra" as this composite behavior and communication. 

I thank Martin Hoffinan and Richard Noss for this very interesting and stimulating working group. 
When I go back to my college, I intend to propose activity I (and II, later) to the students visiting our 
Mathematics Resource Center as a competition. They will be allowed to use any mode of work and 
communication: penci~ blackboard in groups, computers with Maple and maybe the Windows version 
of Logo as Richard Noss proposed to give to me. Of course they will also have the night to search 
through the Internet if they may fmd some references of such games! This activity could be over a few 
months. (I could report back this experiment!) 

Ralph Mason 

Authority and Authoring 

LOGO: Does it serve as author support or authority? 
Computer: Does it serve as author support or authority? 
Algebra Curriculum: Does it serve our students to support their authoring of their words/world, or 

do they answer to its authority? 

My glasses help me see the world (be in the world) better, because they are so transparent and 
convenient while changing how I view things (do things). Is LOGO (the computer, algebra) like a pair 

71 



CMESG/GCEDM 1996 Proceedings 

of glasses ultimately, or does it remain the object of my students' immediate attention, blocking my 
students' autonomy? 

Barbara Jaworski 

Working on the second cards problem was different to the fIrst. It was not at all clear what we had 
to do with it, whereas in the fIrst problem the processes seemed clear. We just had to fmd a way to 
express them in LOGO in order to get an answer. The challenge was in creating the Logo program, but 
this was slow because we did not have the tools ready at hand. 

In the second problem, the task was to fInd some way of representing visually what occurred when 
the pack was cut and the cards turned over. After three or four manual attempts with the cards and 
recording by hand the resulting sequence, we needed some way to produce this record quickly and 
reliably. The computer was clearly a tool which we could use for this. Thus, creating a program was a 
necessary step in being able to have en~lUgh data to analyze in order to see a way through to understanding 
the problem. 

In the second problem the way we programmed the computer provided transparency to the problem. 
In the fIrst we had not done so, although on reflection it might have been valuable if we had, in order 
better to understand the mathematics involved. 

We talked in the larger group about where the mathematics lay in our activities. One possibility is 
that we were doing mathematics when we were writing programs. Clearly we were engaged in 
algorithmic thinking. We were specifying variables and establishing relationships between them. The 
computer then performed the manipulations. 

However, in order to see the mathematics behind the problems we were using the computer as a tool. 
The process here was one of modeling the situation in order to gain insights which would then lead to 
further mathematical thinking. Because we did not fmish our programs, we did not reach this stage. 
However, it seems clear that the thinking involved in theses activities was multi-layered, and that different 
parts of it could be justifIed in mathematical terms. 

Richard seemed aware that the time of his inputs and the effects they might have on our decisions 
and progress. It was not always clear to us what actions from him would be most helpful, and he had to 
take responsibility for what he offered or didn't offer. I should have preferred some more overt input 
(maybe in written form) of the Logo primitives which were available and possibly helpful in these 
problems. 

Tasoula Berggren 

For both tricks I was very interested to fmd out how and why they worked and enjoyed the hands 
on activity with the cards, computers, and working with people. The fIrst day, however, the use of Logo 
created negative feelings in me and I thought of my students, how they feel sometimes when they are 
asked to explore problems using software without knowing the necessary language. 

Because I did not know how to use Logo the challenge for me was mainly to fIgure out the new 
language while expanding on the solution of the trick. I received some insight into the trick from the 
computer interaction but I saw no direction, no way leading to a mathematical solution, so I went back 
to the paper and pencil-a sure way. 
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The second day, the trick was easier to explore using the cards so I did not want to use the computer 
to build a model. Through observation, elimination and simplification the trick was clear. David Lidstone 
and I worked together and we discovered that the ascending order was not important and in fact the odd 
and even could be replaced by red and black and that the cutting of cards made no difference. I do feel 
that the use of the computer will add an experimental approach to problems and tricks; especially when 
the manipulation requires many computations. 

Ed Barbeau 

First Card Trick (16 Cards): 

The computer played the role of a flunky to provide the data from which the pattern could be 
inferred. It also served as a catalyst; figuring out what to get the computer to do helped organize one's 
thinking about the problem. However, I essentially solved the problem without the computer. 

Second Card Trick (10 cards): 

The trick became completely transparent once I had my own deck of cards in hand and I could work 
through the effects of cutting and reversing the consecutive cards, followed by reversing alternate cards. 
The computer played no role whatsoever. 

Some Issues: 

The use of LOGO was ancillary to the whole exercise, but my unfamiliarity with LOGO distracted 
from the task at hand. This raises the general question of how prerequisites are handled. Does one 
separate them out and secure them in advance, with the danger that this separation may not allow for any 
context for them? Or does one weave prerequisites into the situation at hand, with the danger that focus 
is lost? This is related to the "back to the basics" movement. 

Is this algebraic? There certainly was mathematical thinking going on, but I would not describe it 
as algebraic in the sense of carrying out formal operations on symbols or dealing with a structure 
abstractly. The first card trick has scope for getting into algebra. There are some parameters to deal with 
and the formulation of the remaining card in terms of parameter. One can think of this in operational 
terms, as a functional relation. Iff(n,m) is the remaining card when we have an original stack ofn cards 
from which m have been removed, establish when fen, m) = m? In particular, establish this when 1 ~ m 
~ 8 and n = 16. In the second trick, the algebraic content was basic-looking at the effect of composing 
transformations of certain types. Giving this a symbolic form is a challenging task. The crux of the 
matter is revealed by looking at two consecutive cards. 

Eric Muller 

The How and Why 

In activity 1 (the 16 card trick) I never reached the stage of exploring the why. By moving away 
from the actual situation to the computer environment I spent my time trying to model the situation in a 
different medium-simulating the trick in a different environment. I felt it was more an exercise in 
learning the language than one of exploring why the trick worked and whether it would work under 
different conditions. Was there any mathematics in this simulation exercise? Certainly there was some 
logic and ability to follow instructions, but mathell\atics? To me the mathematics would have started once 
the simulation was working to explore patterns and other properties. Certainly the simulation could have 
either hidden the display of patterns or enhanced it for larger displays. So what we simulated would be 
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important in the end but was not an initial preoccupation as I struggled with the language. There was no 
AHA! or enlightenment on the why. 

In activity 2-by staying with the actual card situation- the situation was manageable and I was 
able to get quickly to how the trick worked. Getting to the why did not take long as card patterns on both 
sides were explored and their relationship as you move from one side to the other. A shorter mathematical 
notation was developed and "what if' questions were explored· both with the cards and with the 
mathematical notation-both were easily and often interchanged when looking for solutions and reasons. 

DavidPimm 

With my companions, I worked most on two (numbers 1 and 3) of the three-card tasks. The fIrst 
invoked a fIxed procedure (after a random cut and discard) and claimed a predictable invariance in the 
result; the second asked us to discover a procedure to produce a given invariance (odds one way up, evens 
the other) after another procedure had been applied an indeterminate number of times to ten cards in a 
given order; the third offered simply a procedure (a 'perfect' riffle shuffle) to explore, though Richard 
suggested one question that also implied an invariance, namely which root of the identity the perfect riffle 
shuffle was. 

There was also the not-unrelated tension between the task being one of confIrmation/determination 
and that elusive/illusory goal of understanding. I had not seen so clearly before the dismissive nature of 
understanding, that once I feel I have understood 'why', there is nothing more to be done. So 
understanding too closes down the problem space dramatically, as much as any belief in there being one 
'right' answer. In both tasks, I felt I was looking for a 'pivot' (a term Leron uses in his description of 
structuring mathematical proofs), a central fact, reason or awareness that forced each 'trick' to work in 
the manner claimed. For task 1, I needed a way of showing both that it did, and then exploring why it did. 
The pivot would allow me to think about it without doing the trick anymore and see into the mathematical 
structure of the task. 

I fInd it unproblematic to acknowledge the power of the computer to generate data in the face of a 
mathematical investigation of some kind. I feel it is an open question as to for which tasks programming 
the active task itself helps provide insight into identifying the pivot. I felt a familiar tension as we worked 
at these tasks between the computerlLOGO as fIeld and as ground. In conjunction with David Henderson's 
earlier 
remarks about theoretical computer science being the home of formal algorithms, and Richard's 
acknowledgement of algorithmic thinking being somewhat distinct from mathematical thinking, I am still 
pondering why I am resisting recursion as a fundamentally mathematical notion. Because I do. 

Certainly in task 1, trying to program the procedure, once again I came across my feelings about 'the 
LOGO aesthetic', privileging certain seeings as being computationally elegant (no 'make' statements, 
recursion over repeat, no 'do' loops). After all, if! only wanted to have the output, any way that 'worked' 
would be as good as any other. But if it mattered how I porogrammed it in terms of producing insight, 
then why is 'good LOGO' the same as 'insightful programming'? Pencil and paper are aids to making 
evident certain relationships among elements, as well as recording a sequence of results. Our inability to 
structure the LOGO-generated output in the riffle shuffle also highlighted the need for surveyable data. 

But this work also allowed me to see similar processes at work in algebra. David Wheeler's 
comments about algebraic restlessness immediately taking you somewhere else rather than encouraging 
gazing reminded me how much and how rapidly I had averted my gaze from the cards themselves. And 
perhaps, because in mathematics 'we attend to the relationships themselves', we are never able to gaze 
at what we would like to, 
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there is no mathematical 'thing' to contemplate, mathematics always involves a deflection, a looking 
elsewhere. 

One of the highlightings that occured was seeing that the word 'dynamic' in 'dynamic algebra' meant 
more than "fast", and dynamic notation was an aim, one where the manipulation kept pace with the 
structure of the procedure applied to the cards. By putting in 'windows' into the recursive programs, more 
traces (albeit static ones) were available for subsequent consultation. 

Marty provided the best instance for me of mathematical understanding at work. First by offering 
the Gattegno-film inspired heuristic/way of working of 'run the film backwards', in order to identify where 
the card must have come from in order to end right, then by developing a notation/description that showed 
why most of the apparently-salient variables in Task 2 actually were themselves indifferent to what we 
were attending to, highlighted for me the power of staying with the objects but converting them into a 
working symbolism. 

I am left thinking about differences between 'mere' notation and a working symbolism (one where 
I can manipulate it dynamically for my own mathematical ends). And the transformation that occurs when 
the objects 'themselves' are used symbolically (which is to do with the placing of human attention, as 
much as 'marking' cards). 

David Wheeler 

I hook my remarks onto three key words: "algebra", "model", and "experiment". In the plan of the 
task for the Working Group, algebra was invoked as the form of mathematics that underlies the puzzles, 
or "tricks", with playing cards that we were given to explore; in our discussions the observation was made 
several times that we were working alternative models of the phenomena under consideration; and 
Richard suggested that programming the Logo software to represent the puzzle might have the 
pedagogical effect of encouraging an experimental approach to an investigation. 

Algebra 

The word "algebra" has had many historical shifts of meaning. With or without the advantages of 
hindsight, we are likely to find Al Khwarizmi's algebra substantially different from Boole's algebra. 
Looking in another direction, there are arguments of an ontological sort which distinguish between 
"developed", "genuine" algebra and "immature" forms: pre-algebra or proto-algebra. But "algebra" is also 
frequently used quite loosely in conversation as a virtual symptom for mathematics, and it seemed that 
this usage kept surfacing in the discussions, and perhaps in the groups' title. 

"Algebra" performs this function (of standing in for mathematics in common parlance) because it 
is (a) patently esoteric, as mathematics as a whole is felt to be, and yet (b) well-nigh inescapable in the 
long-term elaboration of any mathematical context. Algebra is called on to extend arithmetic and to 
mechanise geometry, and ultimately it can't be prevented from invading every non-algebraic part of 
mathematics. 

I happen to think that algebra never performs an explanatory function, so even if the behavior of the 
phenomena we were exploring could be expressed algebraically, that in itself would not lead to a 
'~ustification" of the behavior. Indeed, one can only give a mathematical reason in algebraic when one 
already knows what that reason is. The title "Dynamic Algebra" seems to me a tautology since the one 
property that is common to all forms of algebra (including traditional "school" algebra) is its dynamism, 
its restlessness. Once algebra is called in, it immediately tries to take the situation somewhere else. 
Algebra allows a user to set up an equation, but it wriggles desperately until the equation is solved. A 
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function can be defmed algebraically, but then immediately cries out for inputs. Algebra is quint
essentially a go-getter; it doesn't stand and stare. It refuses to allow the user to gaze, to brood, to reflect. 

Model 

Some of our discussions suggested we saw three different models, or embodiments of the card 
puzzles: 

• the cards themselves, with certain "natural" operations 
• "pencil and paper" symbolic manipulations 
• Logo procedures. 

The status of these alternative models is very different. The fIrst seems less like a model than a 
"universe" within which the puzzles are situated. The second is a general-purpose model, of a familiar 
type, and is invested with considerable power. Once we represent a deck of cards by a linear array of 
numerals we have immediately available to our perception a wealth of mathematical experience, drawn 
from our considerable familiarity with the relationships between these numerals, and amplifIed by the 
geometrical perceptions that are triggered as soon as we begin to repeat and transform the arrays on paper. 
It is doubtful a priori if any single model of the behavior of a deck of cards could be more powerful or 
comprehensive than this. 

"Pencil and paper", endowed with arrays of numerals and the usual elementary arithmetical 
operations, seems to me to qualify as a microworld. How far the Logo microworld stacks up against this 
in terms of complexity and flexibility is an interesting question that I have not enough know-how to 
answer. 

Experiment 

I agree that learners should be encouraged to take an experimental attitude to mathematics. How 
will they acquire the important skills of making "thought experiments" (the heart of mathematical activity) 
if they don't fIrst have plentiful experience of making trials in concrete investigations? But I didn't 
personally get close enough to fluency with programming to have much inkling whether this ,tactic would 
in fact facilitate experimentation with the puzzle situations. Indeed, for me, it was the programming that 
was the subject of experiment since the only way I could make progress with it was to "try something and 
adjust it", and this activity ate up most of the time available. I experimented very little with the puzzles, 
and not at all with them in Logo form. 

Postscript 

The experience of working with Logo (after a long enough interval to have forgotten most of what 
I once knew) made me aware how difficult it is to construct a procedure out of the available primitives 
of the software, especially when one has no clear picture why that particular collection of primitives has 
been made available. Representing a cut in a deck of cards with Logo requires one to construct an "action 
procedure" out of a set of "actions" that are not obviously related to the re-ordering of a linear 
arrangement of cards. I understand that one cannot expect a software to provide a primitive for every sort 
of "real" action one might want to model (and it would be unmanageable in its multiplicity if it did), but 
what I lacked was any sense of the general form of the mental model that guided the designers and made 
them provide "these" primitives rather than "those". Logo operates with lists, I know, but I don't recall, 
and I can't reconstruct, what the designers supposed people would variously want to do with lists. 
Without a better idea of the nature of the designers' model(s), I could only stumble blindly about trying 
to use the software to produce the highly specifIc models I needed for the puzzles. 
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INTRODUCTION 

Sophie Rene de Cotret (Universite de Montreal) 
Pat Rogers (York University) 
Keith Roy (Lakehead University) 
Suzanne Seager (Mount Saint Vincent University) 
Rick Seaman (University of Regina) 
Pat Stewart (Dalhousie University) 
Harry White (Charlesbourg, Quebec) 

Before the Working Group met the following questions were distributed in order to facilitate some 
thoughts on the role of proof in post-secondary mathematics. 

1) What is the point of rigour in mathematics? 

2) What is the connection between proof and understanding? 

3) Can you do mathematics without introducing the idea of proof? 

4) Is it necessary to introduce proofas a distinct topic or course within the curriculum? If so, what 
should be the mathematical context: abstract or linear algebra, a ftrst course in analysis, or a 
course on the structure of number systems? 

5) Should mathematics departments have streams (or majors) in which mastery of proof is 
minimized or omitted? 

DISCUSSION 

The session began with brief descriptions of two programs, one at Concordia University and the 
other at Simon Fraser University, which introduced the notion of proof in a separate course. A complete 
description of Concordia's program appears in Byers and Hillel (1994). The Working Group decided to 
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divide into two subgroups - one concerning proofs and proving for pre-service high school teachers, and 
the other for students taking calculus, linear algebra, etc. The two groups met separately to discuss 
difficult questions and then shared their thoughts with each other at the end of the sessions. 

We agreed that there should be a shift of emphasis from proofs to the act of proving. The act of 
proving refers to "habits of mind" (Cuoco, Goldenberg, and Mark, 1995) which involve questioning, 
anticipating, asking "what happens if', etc. More succinctly, proving has to do with the business of 
"inquiry with confirmation". Later, the notion of 'proving' was refmed to include deduction. An act of 
proving is an inquiry with confmnation by means of deduction. 

This line of discussion led to a flood of questions. Are such habits of mind unique to mathematics? 
Does writing a term paper in sociology or history not constitute an inquiry with confmnation? What is 
the difference between confmnation in mathematics and confmnation in, for example, history or 
sociology? 

How can we tell whether a particular action of proving really involves deduction on the part of the 
person showing a proof? Could it just be a rote reproduction of an argument (even if logically correct)? 
Is the requirement of being able to communicate a result to another person a sufficient indicator of 
deductive reasoning? 

Having shifted the focus from the originally proposed set of questions, the Working Group decided 
that they would rather consider the following questions. 

1. What kind of results should we prove? 

2. What would be considered as a convincing argument in a given context? 

3. What is the difference between written proof and the students' understanding? 

4. Are there technical differences between the terms validation, justification, confmnation, 
verification, proving, and convincing? 

What Kind of Results Should We Prove? 

The first question needed clarifIcation as to who is we. We could refer to university mathematics 
teachers and teacher trainers, or to their students (mathematics majors, or to pre- and in-service teachers) 
or to elementary and high school students. The group realized that at certain times in our discussions, we 
were shifting from one set of "we" to another. Clearly, what we should prove depended on the people 
involved. 

The proof of the Chain Rule in elementary calculus proved to be an excellent example. Clearly the 
audience is calculus students. Why do we bother with sucIya proof and do we need to make it rigorous? 
What's wrong with the naive version of the proof using .1:::.._ ? We spent time "unpacking" the proof and 

J:1x 

pointing to some of its features that are worth highlighting. What emerged was a consensus that the 
question is not whether the Chain Rule should be proved but how to go about it. The proof can be a focus 
of discussions, experimentation and group activities that can last several lectures. 

Are There Technical Differences Between the Terms Validation, JustifIcation, Confirmation, 
VerifIcation, Proving, and Convinciug? 
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We didn't get very far with the fourth question - there was an attempt to distinguish the terms 
conviction and justification as they are used in philosophy of science, but this didn't help to clarify the 
issue. After some fruitless discussion, the question was dropped. 

What Would be Considered as a Convincing Argument in a Given Context? 

Question 2 was more central to the discussions. It was noticed that there is a social side to proving, 
which requires a shared repertory, and a personal side, which does not. Both of these aspects must be 
considered when discussing the act of proving for prospective teachers. 

For high school teachers, one of the most important attitudes to foster is that of being curious and 
questioning. Therefore, high school teachers should have a strong background in mathematics so that they 
can play with the mathematical proofs in a didactical way. They should be able to give many different 
proofs ofa result so that they are able to understand, justify, and explain high school material. They need 
to understand proofs, to be able to explain a result without betraying the proof. 

Therefore, we should have prospective high school teachers approach proof in the manner of Lakatos 
(1976). Namely, have them attempt proofs of results and then enable them to gradually unveil the reasons 
why the initial attempts were incorrect. The aim of this approach is that teachers can detect where their 
proofs are not valid, can construct proofs on their own, can validate their reasoning or intuition, so that 
their students can validate or show as invalid, the results they obtain. 

What, then, constitutes a convincing argument? The group decided that a convincing argument or 
proof is one such that the person should be able to produce a similar proof and explain it to others. As 
an example, consider the standard proof that Ii is irrational. Given a proof of this fact, the students 
should be able to produce a proof that Ii is irrational. 

What if an algorithm is involved? One thought was that the person convinced should be able to 
explain it to someone else who would then be able to use the algorithm correctly. This view may still 
beg the question as to whether any deduction is involved in the explanation, or is it merely a repetition 
of something seen. We were left with the question as to whether this constituted an "inquiry with 
confrrmation by means of deduction." 

The discussion then moved to presenting "proofs by example" instead of giving very formal proofs. 
It was felt that in some cases, using a well-chosen example is more effective in convincing or in 
conveying a result or a technique than giving a formal, decontextualised proof. It was pointed out that 
some mathematicians who were known for their formal and pedantic writing of mathematics, behaved 
very differently in their lectures and when they supervised graduate students. Proofs by example raise 
the issue as to whether students can extract the generalized features of such proofs or whether they focus 
too much on the specific example 

We asked the question-What would be a convincing argument in the context of mathematics for 
teachers? The answer depends on the teacher's background. What is "obvious?" What is the "acquired 
knowledge?" 

As noted earlier, the act of proving has both a social side and a personal side and the former relies 
on a shared repertory of things which are taken for granted which, in tum, determines if a proof is 
convincing or not. This raised the question of whether software tools such as Cabrie and Logo bring about 
a change of what constitutes the shared repertory. For example, consider a Logo procedure for generating 
three consecutive integers and then checking that their sum is divisible by 3. Is this a precursor to a 
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formal proof? These thoughts pose more general questions. Are commonly accepted facts changing with 
Logo? With Cabrie? Is what we consider to be obvious changing? 

The Working Group recognized that many people understand a concept or proof fonnally before 
the concept or proof is properly understood or internalized. The discussion then turned to formal proofs. 
It was felt that arguments that are formal may be easier to accept by students because of their perception 
that these proofs are given by someone in authority. 

We closed our work by trying to decide what constituted a convincing argument. Two examples 
highlighted the discussion. The fIrst was the illustrative proof that the sum of two odd numbers was even 
(see C. Hoyles, Figure!, in this monograph). We all agreed that, given the appropriate audience, this 
would be a convincing argument. 

There was a more heated discussion as to whether the following student's proof that the sum of the 
angles in a triangle is 180 degrees was acceptable as a convincing explanation. The proof relied on 
tessellation of the plane by triangles (Figure I). 

Yorath's answer 

I drew a tessellation of triangles and marked all the equal angles. 

I know that the angles round-a point add up to 360°. 

So Yorath says it's true. 

Figure I 
Yorath's Answer 

Some found it novel and convincing, others pointed out the circularity of the argument (l:1eing able 
to tessellate by triangles presupposes the result) and others argued that we have to suspend judgment until 
we know what the student's starting points were. 
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What is the Difference Between Written Proof and the Students' Understanding? 

Time didn't permit our discussing this question. 

CONCLUSION 

The separation of the Working Group into two subgroups, one for proofs and proving for pre
service high school teachers, and the other for students taking calculus, linear algebra, etc., seemed 
natural enough. However, many of us worked with both kinds of students and had some difficulty 
choosing one of the subgroups to the exclusion of the other. More interesting, the two groups were in 
agreement almost all of the time, and even chose some of the same illustrative examples when they met 
separately. Finally, it was noted that many of the issues about proofs and proving that were discussed 
in the Working Group are hardly ever discussed with mathematics students or student-teachers, thus 
leaving a serious gap in their mathematics education. 
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Rivieres) 

Afin de faciliter la reflexion sur Ie rOle de la preuve dans l'education post-secondaire, les questions 
suivantes ont ete distribuees avant Ie debut de la rencontre du Groupe de travail. 

1. Pourquoi la rigueur en mathematique ? 

2. Quel est Ie lien entre preuve et comprehension? 

3. Peut-on faire des mathematiques sans introduire l'idee de preuve? 

4. Faut-il introduire la notion de preuve comme un sujet distinct ou encore un CoUTS specifique dans 
les programmes? Si oui, dans quel contexte? Un COUTS d'algebre ou d'algebre lineaire ? Le 
premier cours d'analyse ? Un cours sur les systemes de nom.bres ? 

5. Les departements de mathematiques devraient-ils offrir des cheminements ou des programmes 
de majeures dans lesquels la maitrise des preuvesserait minimisee ou meme omise ? 

DISCUSSION 
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La seance debute par une breve description des contenus de deux cours portant sur la notion de 
preuve: run a I'Universite Concordia et I'autre a I'Universite Simon Fraser. Une description complete du 
contenu du cours de I'Universite Concordia est contenue dans Byers et Hillel (1994). 

Le Groupe de travail se divise ensuite en deux groupes qui se penchent sur les preuves et sur l'action 
de prouver, run dans les programmes de formation des mru.rres pour Ie secondaire, et I'autre dans les cours 
de calcul, d'analyse, d'algebre lineaire, etc. Les deux groupes se reunissent separement pour discuter de 
questions bien difficiles, et partagent par la suite leurs reflexions a la fm des seances. 

Nous nous entendons pour mettre I'accent sur ['action de prouver et non sur les preuves. L'action de 
prouver est reliee a des habitudes mentales (Cuoco, Goldenberg et Mark, 1995) qui comprennent Ie 
questionnement, I'anticipation, se demander "ce qui se passe si", etc. En bref, prouver est relie a un 
questionnement avec confrrmation. Par la suite, la notion de prouver est precisee pour inclure Ie 
raisonnement deductif. L'action de prouver a eu lieu lorsqu'il y a eu questionnement avec confrrmation, 
et ce au moyen d'un raisonnement deductif. 

Cette ligne de discussion amene plusieurs questions. Ces habitudes mentales sont-elles specifiques 
aux mathematiques ? L'ecriture d'un essai en sociologie ou en histoire ne constitue-t-elle pas une enquete, 
un questionnement avec confrrmation ? Quelle est la difference entre confirmation en mathematiques et 
confirmation en histoire ou en sociologie, par exemple ? 

Comment peut-on dire si une personne qui presente une preuve est vraiment en train de faire un 
raisonnement deductif? Peut-il s'agir d'une reproduction machinale d'un raisonnement (par ailleurs 
logiquement correct)? Etre capable de bien communiquer un resultat a une tierce personne est-il un 
indicateur suffisant d'un raisonnement deductif? 

Ayant ainsi devie des quatre questions initiales, Ie Groupe decide de se pencher sur les questions 
suivantes. 

1. Quels types de resultats devrait-on prouver ? 

2. Dans un contexte precis, qU'est-ce qui serait considere comme un argument convaincant ? 

3. Quelle est la difference entre la preuve ecrite et la comprehension des etudiantes et etudiants ? 

4. Y a-t-il des differences techniques entre valider, justifier, confirmer, verifier, prouver et 
convaincre? 

Quels types de resultats devrait-on prouver ? 

Pour repondre a cette premiere question, on doit preciser de qui il s'agit. Parle-t-on de professeurs 
d'universite, de ceux et celles qui enseignent aux futurs enseignants, des etudiantes et etudiants en 
mathematiques, de ceux et celles qui etudient en enseignement secondaire ou primaire, ou encore des 
etudiantes et etudiants du secondaire et du primaire ? Dans nos discussions au sein du groupe, nous 
changeons parfois de groupe-cible sans Ie dire explicitement. II nous apparait evident que ce qui doit etre 
prouve depend de qui il s'agit. 

La preuve de la regIe de derivation en chaine s'avere un excellent exemple. Le groupe-cible est ici 
constitue des etudiantes et des etudiants d'un cours d'analyse ou de calcul. Pourquoi s'obliger a faire une 
telle preuve? Doit-on alors faire une preuve rigoureuse ? Qu'y a-t-il de mauvais a donner une preuve 
naive en utilisant f(x,y) ? Nous decortiquons la preuve de ce resultat pendant un certain temps et nous 
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soulignons un certain nombre de points importants. En ressort un consensus: la question n'est pas de 
savoir si on doit donner la preuve de la regIe de derivation en chaine, mais bien comment on doit Ie faire. 
La preuve de cette regIe peut etre un sujet de discussions, d'experimentations et d'activites de groupe qui 
peuvent durer plusieurs cours. 

Y a-t-it des differences techniques entre valider, justifier, confirmer, verifier, prouver et convaincre? 

Nous n'approfondissons pas la quatrieme question. Apres un essai pour distinguer conviction et 
justification tels qu'ils sont utilises en philo sophie des sciences, nous abandonnons la discussion. 

Dans un contexte precis, qu'est-ce qui serait considere comme un argument convaincant ? 

La question 2 prend une place importante dans nos discussions. On remarque qu'il y a un aspect 
social a la preuve, qui requiert un repertoire de connaissances partagees, et un aspect personnel qui n'en 
requiert pas. On doit tenir compte de ces deux aspects lors des discussions dans Ie cadre de la formation 
des enseignants. 

L'une des attitudes les plus importantes parmis celles dont il faut favoriser Ie developpement pour 
les personnes qui enseignent au secondaire est celIe d'etre curieux, de se questionner. Afin de pouvoir 
jouer avec les preuves tout en tenant compte de l'aspect didactique, ces personnes doivent avoir un fort 
bagage mathematique. Elles doivent pouvoir donner plusieurs preuves d'un resultat de maniere a pouvoir 
comprendre, justifier et expliquer les mathematiques du secondaire. Elles doivent comprendre les preuves 
de maniere a pouvoir expliquer sans trahir la preuve. 

Nous devrions donc favoriser, chez ces personnes qui enseignent ou enseigneront au secondaire, une 
approche de la preuve a la Lakatos (1976). Nommement, les amener a essayer de prouver des resultats 
et, par la suite, leur permettre de decouvrir pourquoi leurs essais initiaux etaient incorrects. Cette approche 
vise a leur permettre de voir oil leurs propres preuves sont erronees, de faire des preuves par elles-memes, 
de valider leurs raisonnements ou leur intuition; de cette maniere, eUes pourront valider ou invalider les 
resultats obtenus par leurs etudiants et leurs etudiantes. 

Qu'est-ce qui constitue alors un raisonnement convaincant? Un raisonnement convaincant ou une 
preuve est un raisonnement tel que la personne convaincue peut alors produire une preuve similaire et 
l'expliquer a d'autres. Comme exemple de cela, on peut penser a la preuve habituelle de l'irrationnalite de 
1a racine carree de 2. Etant donne une preuve de ce resultat, les etudiants devraient pouvoir produire une 
preuve de l'irrationnalite de la racine carree de 3. 

Qu'en est-il s'il y a un algorithme ? Une idee emise est que la personne convaincue devrait pouvoir 
l'expliquer a une tierce personne de teUe maniere que cette personne puisse l'utiliser correctement. Cette 
idee nous amene cependant a demander si l'explication implique necessairement un raisonnement 
deductif. Peut-il simplement s'agir d'une repetition? La question demeure: s'agit-il d'un questionnement 
avec confirmation au moyen d'un raisonnement deductif? 

Nous discutons ensuite des "preuves a l'aide d'exemples" au lieu des preuves formelles. On pense 
que dans certains cas, l'utilisation d'un exemple bien choisi est plus efficace pour convaincre ou faire 
comprendre un resultat que ne l'est une preuve formelle et sans contexte. On fait remarquer que certains 
mathematiciens connus pour leurs ecrits tres formels se comportaient de maniere fort diiferente dans leurs 
COUTS ou lors de leurs supervisions d'etudiants gradues. Les preuves a l'aide d'exemples permettent-elles 
aux etudiants d'extraire les principes generaux de ces preuves ou est-ce que ceux-ci concentrent leur 
attention sur l'exemple precis? La question est posee. Qu'est-ce qui constituerait un argument convaincant 
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dans I'enseignement des matbematiques aux futurs enseignants ? La reponse depend du bagage de ces 
enseignants. QU'est-ce qui est evident? QueHes connaissances font partie de l'acquis matbematique ? 

Tel que nous I'avons remarque plus tot, l'action de prouver comporte aussi bien un aspect social 
qu'un aspect personnel, Ie premier requerant un repertoire partage de choses que I'on peut prendre pour 
acquises, ce qui, a son tour, determine si une preuve est ou non convaincante. Les logiciels tels Cabri et 
Logo sont-ils en train de changer ce qui constitue ce repertoire partage ? Par exemple, la procedure de 
Logo qui permet de generer trois entiers consecutifs pour ensuite verifier que leur somme est bien 
divisible par 3. Est-ce la un precurseur a une veritable preuve formeHe ? Ces idees amenent des questions 
plus generales. Est-ce que les faits communement acceptes changent avec Logo? Avec Cabri ? Est-ce que 
ce que l'on considere evident est en train de changer? 

Le Groupe de travail reconnait que plusieurs comprennent un concept ou une preuve avant que ce 
concept ou cette preuve soit correctement compris ou interiorise. Parlant ensuite des preuves formeHes, 
il nollS apparait que des argumentsformels peuvent etre plus faciles a accepter par les etudiants parce que 
ces arguments sont pen;:us comme etant donnes par quelqu'un en position d'autorite. 

Nous concluons notre travail en essayant de decider ce qui constitue un argument convaincant Deux 
exemples sont les points de mire de la discussion. 

Le premier est I'illustration du fait que la somme de deux nombres impairs est un nombre pair (voir 
C. Hoyles, Figure I, dans ce monogramme). Nous nous accordons pour dire que cela constitue un 
argument convaincant (avec un groupe approprie). 

La discussion est plus animee pour ce qui est de savoir si la "preuve" donnee par un etudiant ou une 
tudiante du fait que la somme des angles interieurs d'un triangle est de 180 degres constitue une 
explication convaincante. La preuve est basee sur Ie pavage du plan par les triangles (Figure I). 

Yorath's answer 

I drew a tessellation of triangles and marlced all the equal angles. 

I know that the angles round a point add up to 360·. 

So Yorath says it's true. 

Figure I 
Preuve donne par un etudiant(e) 
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Alors que certains la trouve nouvelle et convaincante, d'autres soulignent la circularite du 
raisonnement dans cette preuve (Ie pavage du plan repose sur cette propriete des triangles). D'autres 
encore eSQrnent que I'on ne peut enjuger sans connaitre Ie point de depart de I'etudiant(e) en question. 

QueUe est la difference entre la preuve ecrite et la comprehension des etudiantes et etudiants ? 

Nous n'avons pas eu Ie temps de discuter de cette question. 

CONCLUSION 

La division du Groupe de travail en deux groupes, I'un pour les preuves et prouver dans les 
programmes de formation des maitres pour Ie secondaire, et I'autre, dans les cours de calcul, d'analyse, 
d'algebre lineaire, etc., nous est apparue assez naturelle. Cependant, plusieurs parmi nous travaillons avec 
ces deux types d'etudiants et avons eu une certaine difficulte it choisir I'un des deux groupes au detriment 
de I'autre. n est interessant de remarquer que les deux groupes etaient presque toujours en accord, et que 
certains des exemples choisis pour illustrer les propos etaient les memes. 

Finalement, on note que beau coup des questions discutees dans Ie Groupe de travail sont rarement 
I'objet de discussion avec des etudiants en mathematiques ou en formation initiale comme enseignant, 
laissant ainsi un serieux manque dans leur education mathematique. 
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PROBLEM, PUZZLES, GAMES 

Edward J. Barbeau 
University of Toronto 

Topic Session A 

The more I get involved with introducing so-called "lighter" mathematical material to my students 
and the public, the harder I fmd it to draw the boundary line between serious and recreational 
mathematics. On the one hand, regular curricular material occasionally lends itself to more playful and 
exploratory treatment; on the other hand, recreational problems, puzzles and games often go to the heart 
of mathematics in a way that the regular curriculum does not. I would like to begin by listing particular 
benefits that may accrue from their use. 

1. Insight into mathematical structure and its significance. It is the nature of good mathematical 
puzzles to be economical in their formulation and solution. School mathematics encourages the 
categorization of problems into types and systematically establishes techniques for dealing with 
these; often this inhibits the examination of a problem on its oWn merits so that its essence is lost. 
In recreational mathematics, one should assume as little formal background as possible, so a greater 
appeal to native ability is required. Mathematical tricks and puzzles often highlight some aspect of 
mathematical structure in their explication. 

2. Sensitivity to detail, pattern recognition. One attribute of a good mathematics student is to be 
observant and solicitous as to detail. Games and puzzles, especially those exhibiting pattern or 
symmetry, foster these characteristics. 

3. Reasoning, analysis, use o/strategy. Some mathematical problems remain puzzles until one adopts 
an appropriate mental attitude. Once one begins to analyze the situation, it may be realized that in 
fact there are only a few ways to proceed and that systematically going through these must 
inevitably lead to a solution. This is so for example in traditional river-crossing problems or 
problems of transferring fluids among jugs. 

4. Motivation/or skill development. Some mathematical situations may give rise to conjectures, whose 
verification may motivate the use of computational and proof techniques. 

5. Linkages with other eras and cultures. The best problems have a long history or arise in a particular 
set of circumstances. River-crossing puzzles appear in many ancient cultures, as do games with often 
simple rules but interesting mathematical structure. Some recent problems like the "Monty Hall 
Car-and-Goats Problem" have become notorious. Thus, through mathematics, we can tap into the 
long and varied human saga. 

6. Surprising applications and insights. Mundane facts often take on a new light when they are the 
basis of some mathematical trick or puzzle. 
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7. Mathematical marvels and beauty (elevating taste). It is often said that mathematics is not a 
spectator sport. This is not completely true, as mathematics does provide some occasions for 
showmanship. There is nothing wrong with putting on a "concert" for our students occasionally. 

8. Examples of how a mathematician operates. It is often outside of the curriculum that we can best 
demonstrate how mathematicians approach and solve problems, and how they formulate ideas. The 
public tends to see mathematics in terms of mechanical processes or presentation of data, and we 
need to find occasions to present both the aesthetic and power of analysis and argument. 

Let us explore some examples in the light of these comments. 

The rotating table problem 

Symmetrically placed in the top of a square table are four deep wells, each containing a drinking 
glass. The glasses are not all the same way up and they cannot be seen. The table rotates and stops at 
random. The observer can thrust her hand into exactly two of the holes, feel the state (upright or inverted) 
of the glasses and change thestate of 0, 1 or 2 of them. When the hands are withdrawn, the table rotates 
and stops at random, at which time another move can be made. The task is to ensure, after a finite number 
of moves, that all the glasses are in the same state (at which point, a bell sounds). 

One variant of the problem is to have a robot perform the moves as instructed by the observer (who, 
thus, does not know the initial state of the glasses). A second variant, used by Peter Taylor, is to generalize 
the situation to h holes and g hands, determining those situations for which the problem is solvable. 

Indeed, it is not clear the problem is solvable in the present situation. For it is conceivable that some 
hole could always escape attention. However, a careful reading of the problem makes it clear that there 
are 
two possible endpositions-all glasses upright, or all glasses inverted-so we just have to make sure we 
match the glass in any elusive hole. At ftrst, we may be confounded by the randomness of the situation. 
Even so, there are two distinguishable alternatives; pick an adjacent or a diagonal pair of holes. From this 
point on, the analysis becomes quite straightforward because of the small number of options available. 

This problem can be given to any high school student. The only requirements are to avoid facile 
conclusions, read the problem carefully, and then canvass the possibilities diligently using a small amount 
of reasoning. 

The very divisible ten digit number 

Construct a ten-digit number with all digits distinct for which the number formed by the left k digits 
is divisible by k for each k with 1 ~ k ~ 10. 

This problem has the advantage that it is easy for students to get into. Working from the left, by trial 
and error, one can make the number work without too much trouble up to the ftrst ftve or six digits. While 
this strategy is not very productive, it does have the potential advantage of immersing the students into 
the situation and perhaps suggesting that one should go after certain digits ftrst. It is not hard to see that 
the last digit has to be zero, so that the ftfth digit from the left must be 5. The ninth digit can be left until 
last, since any entry forced at this stage must work (by "casting out nines"), and the ftrst digit will be 
governed by considerations other than divisibility by I. The number of possibilities can be greatly reduced 
by some preliminary reasoning. Since the even digits go in even positions, the remaining positions must 
be occupied by odd digits. The divisibility of a number by 4 depends only on the last two digits, by 8 on 
the last three. One can get at the third and sixth digit using the test for divisibility by 3. It is interesting 
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that the solution is unique. As an extension, students could be asked to look at the analogous problem for 
other bases. 

Late elementary students should be able to tackle this problem. One could simplify it initially by 
dropping the requirement that the digits be distinct, so as to guarantee widespread success. What is its 
value? Since the number often digit numbers is enormous, the students are forced to devise strategies to 
reduce the number of possibilities. Effective solution requires them to consciously address divisibility 
rules. Reasoning and systematic analysis and, if the students work collaboratively, communication are 
fostered. Finally, success is easily recognized without needing recourse to an outside authority. 

The self-descriptive ten-digit number 

Find a ten-digit number for which the (k + l)th digit from the left indicates the number of 
occurrences of the digit k for 0 ~ k ~ 9 . 

This is a much tougher problem, as its self-referential character can be confusing. It does illustrate 
the advantage of employing a notation to make the analysis more transparent. Generalize the problem to 
the following: Determine a vector (ao. al> ... , a.,) whose entries are integers from 0 to n inclusive so that 
the integer k occurs exactly ak times. By adding the terms in two ways, we arrive at the crucial equation 

ao + a1 + a2 + ... + a., = a1 + 2az + 3a3 + ... + na., = (n + 1). 

(To understand the right hand side, think of a shopkeeper counting the day's receipts by ftrst sorting 
the coins into piles of coppers, nickels, dimes, quarters, half dollars, loonies and toonies.) This yields 

ao = az + 2a3 + 3a + ... + (n-l)a.,. 

from which a careful delineation of cases will lead to all solution. When n is sufficiently large, there is 
a systemic unique solution, while for small values of n there are a few oddball cases. 

If this were the only way to do the problem, one might quail at foisting it on a whole class. However, 
there is an alternative trial-and-error approach which mirrors iterative solution techniques useful in many 
areas of modern mathematics. Suppose we are given a ten-digit number. Consider a mapping that takes 
it to a new ten-digit number whose (k+ l)th digit is the number of occurrences ofk in the original number. 
For example, we have 

8715300149 -+ 2201110111 . 

The problem can be reformulated to ftnding a number that is carried by this mapping into itself. Let 
us try to fmd such a number by "successive approximation" through repeated iteration (as for example 
is used in the Newton-Raphson method for solving equations). Applying, this to the foregoing example 
yields 

8715300149 -+ 2201110111 -+ 2620000000 -+ 7020001000 -+ 7110000100 -+ 

-+ 6300000100 -+ 7101001000 -+ 6300000100 -+ ••• 

As you can see, the sequence eventually cycles (as indeed it must; why? use the Pigeonhole 
Principle) and we do not get a solution. However, there are other starting points that will lead to a ftxed 
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point for the mapping; it will not take long for some pupil to find one. The advantage of this approach is 
that it does not 
rely on a sophisticated argument; the disadvantage is that it does not dispose of the question of 
uniqueness. But note how many essential mathematical issues can be dealt with for quite young children. 
Where in the standard curriculum is such a thing possible? 

The standard magic square 

Construct a magic square with three rows and three columns using each of the nine nonzero digits 
exactly once. (The sum of the numbers in each row, column and diagonal are to be the same.) 

This problem has a long history and a wide amateur following, so it is worth doing for cultural 
reasons alone. But we can squeeze a lot more juice out of it. Again, we need some reasoning to cut down 
the plethora of possibilities that one might have to consider. Focus on the magic sum; one can argue that 
it has to be 15. 
There are various ways of determining that the middle entry is 5. One way is to note that 5 is the only digit 
that figures in four different ways of obtaining 15 as the sum of three digits: 15 = 1 + 5 + 9 = 2 + 5 + 8 
= 3 + 5 + 7 = 4 + 5 + 6. More deduction will lead to putting the even digits in the comers and the other 
odd digits in the middle of the sides. The answer is (438/95 1/276). 

Is this solution unique? Strictly speaking, no. However, we can engage in a discussion of what it 
means for two mathematical objects to be essentially the same, and fmally agree that, up to certain 
rotations and reflections, the solution is unique. Having got the magic square, we can then show off some 
pyrotechnics. The three row products are 4 x 3 x 8 = 96, 45 and 84, while the three column products are 
72, 105 and 48. The row products and the column products have the same sum, 225 = 152

• This can be 
generalized. Let { !in} be any second order linear recursion (i.e., it satisfies a relation of the sort !in+l = b!in 
+ C!in.l; the Fibonacci sequence is an example). Arrange nine successive terms al> ~, ... , ~ in a square 
array using the magic square to place the indices. Then we have 

so that the three row products and the three column products have the same sum. While the second order 
recursion may appear to be formidable garbed in the standard notation, I have found that it is not difficult 
to get the idea across to children through examples and getting them to extend sequences from the first 
two terms using "multipliers". 

But there is more. Consider the following game between two players who play alternately. Each 
player selects from the numbers from 1 to 9 inclusive a number that has not previously been chosen. If 
any player finds among the numbers she has selected three (not necessarily picked consecutively) that add 
up to 15, then she wins. In this form, the game is unfamiliar to virtually everyone I have tried it on. 
However, it turns out to be isomorphic to (has the same mathematical structure as) noughts-and-crosses. 
To see the relationship, let the choices of the first player be indicated by an X in the corresponding 
position in the magic square and of the second player by an O. Three numbers sum to 15 if and only if 
they are in the same row, column or diagonal of a magic square. I have found this illustration of 
isomorphism to be meaningful to children and have made the point that the number game can be more 
conveniently analyzed when reformulated as a game of noughts-and-crosses. Indeed, I have used this 
example also with university students to convey an understanding of isomorphism that is hard to dig out 
of the formal definition. 
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The problem of the lion and the Christian 

Into a large closed circular arena are introduced a lion and a Christian whose respective maximum 
speeds ar~ u and v; both are tireless and very agile. The lion wishes to meet the Christian for lunch, but 
the latter demurs. Assuming that each adopts an optimum strategy, determine whether the lion will 
succeed in catching his quarry or whether the Christian will continue to evade the lion. 

This is a very nice problem for class discussion and gets into some quite different mathematical 
issues, including the notion ofa strategy. At its face value, it seems to be a tough pursuit problem, suitable 
only for upper year university mathematics specialists. But it can be pegged down to the school level. If 
the speed of the lion exceeds that ofthe Christian, it seems evident that the lion will soon be licking his 
chops. But how can this conveniently be argued? The simplest argument, giving a strategy that is 
successful but less than optimal, involves a blind lion who sniffs around until he picks up the trail of the 
Christian. He then follows the same track as the Christian, and, being able to run faster, will soon catch 
up. If the Christian can run faster, he can succeed by heading to the periphery of the arena. To catch his 
quarry the lion must simultaneously attain the same distance and same direction from the centre of the 
arena; unfortunately, trying to achieve one of these forces a loss of ground in the other. The most 
interesting case is when both have the same maximum speed. If the Christian sticks to the periphery, he 
will be caught by the lion starting at the centre in the time taken by the Christian to go quarter the way 
around the outside. However, the Christian can adopt a strategy to keep the lion at bay, although the lion 
will come arbitrarily close. 

A card trick 

A pack of 27 cards is dealt face up into three columns. A person is asked to think silently of a card and 
indicate to the dealer which column contains the card The dealer collects the columns up, and then 
redeals the cards face up into three columns. The person indicates which column now contains the card 
This is repeatedfor a third dealout, after which the dealer knows the card 

This is a nice trick to do for children, since the explanation is easy and they can learn how to perform 
it for others. It makes the point that with three choices among three options, one can isolate one of 
twenty-seven possibilities. The secret is in the dealing. After the fIrst dealout, the dealer knows which of 
nine cards it is, and ensures that the nine cards are dealt evenly into three columns on the next round. This 
narrows the possibilities down to three, and for the fInal dealout, the dealer makes sure the three cards go 
into different columns. What makes the trick work .is that most people are not prepared for 33 to be as 
large as it is. 

A comparison of ages 

Record the date of your birth and that of afriend or relative. Assume that both of you will live a long 
time. (a) When will the age of the older be exactly twice the age of the younger? (b) When will the age last 
birthday (a whole number) of the older be exactly twice the age last birthday of the younger? (Fry this 
with several pairs of people and make a conjecture.) (c) What happens with twins? 

The answer to (b) is striking: for any two people, the time over which one's age last birthday is twice 
the other's is one year, although this period will be in general broken into two parts. This is true even for 
twins, who will bear the required relation when both are 0 years old. Students looking at this situation will 
need to make a careful computation, devise a suitable wa y of formulating the situation, and be observant 
enough to arrive at a conjecture. This problem has the additional advantage that it relates easily to people 
they know, such as parents and siblings. I suspect that most children have a natural curiosity about matters 
of aging. 
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A reasoning question 

You are told that on one side of each of four cards is written a letter of the alphabet and on the other 
side a positive whole number. The four cards rest on a table with one side of each visible; you read the 
symbols I, 2, A, B. How many, and which cards, should be turned over to verify whether the following 
assertion about the four cards is true: 

If a vowel is written on one side, then an even number appears on the other side. 

If you want a hot discussion in a classroom situation, then this is the item that should deliver it. Most 
students will ask for the card marked A to be turned over. From there on, opinions will diverge and you 
will fmd that this is a good occasion to get into such issues as implication and logical equivalence. There 
is no point turning over the card marked B as the hypothesis is not satisfied; there is no point turning over 
the card marked 2 since it cannot falsify the assertion, but may support it. If a vowel appears on the other 
side of the card marked 1, then the assertion would be falsified; thus, this card should be checked. Out of 
this analysis, one can see that the given assertion is equivalent to the assertion that if an odd number 
appears on one side, then a consonant appears on the other. 

Patterns 

Below is given the fIrst few terms of three sequences { xn}, { Y n} and { z,,}. Given two successive 
terms of the x- and y- sequences, the following terms are obtained according to the recursion 

xn+1 = 2xn + Xn.1 

Yn+l = 2Yn + Yn-l. 

The third sequence satisfIes z =x,l 
n n 

n Xn Yn z" 

0 1 0 0 
1 1 1 
2 3 2 6 
3 7 5 35 
4 17 12 204 
5 41 29 1189 

Continue all three sequences for a few more terms. List all of the general relationships that you can 
detect among the terms of the three sequences. 

The detection of patterns in modem pedagogical practice has a"flavour-of-the-day'''character to it, 
and many of the patterns given as exercises are arbitrary without any reason, apart what the teacher 
expects, for extending the pattern in a particular way. The ability to recognize patterns should be fostered. 
However, patterns should come up in a context. One good context is a succession of geometric figures, 
where there is a natural progession of generalization. For example, one could look at the number of 
matchsticks required to build a large equiiateral triangle partitioned into unit equilateral triangles and ask 
pupils how many matchsticks are required if, say, there are 50 matchsticks along the side of a triangle. 

The sequences given above arise in a number of contexts. For example, the x- and y- sequence terms 
occur as the numerator and denominators in the convergents for the continued fraction expansion for the 
square root of2. I have chosen to take certain relationships as basic in order that there is a well-defined 
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way for all of the sequences to continue. This is a marvellous trio of sequences, almost as good as the 
Fibonacci sequence, for harbouring a number of interesting properties. For a class, this has the advantage 
that some relationships are quite transparent, so that most students should be able to make some progress. 
However, there are others that take quite a while to discover, so the quicker students do not have to be 
bored. I invite the reader to spend some time with this trio. Senior students can be given the task of 
proving general properties of the sequences; in most cases, this can be achieved by induction arguments 
of greater or lesser delicacy. 

The problem of the four couples 

Four couples meetfor dinner. As they greet, some individuals shake hands with others, although of 
course no individual shakes hands with either his (or her) self or spouse. After this is done, one of the 
husbands asks each of the other seven how many people that person shook hands with and gets seven 
different responses. How many people does the {lit wife} of that husband shake hands with? 

This is a good warm-up problem for a group, and lends itself to role-playing. Occasionally, someone 
will even give the correct answer out of the blue based on some kind of intuition. Usually, the group 
realizes quite quickly that the seven different anwers must be 0, 1,2,3,4, 5, 6. The key step is to focus 
on the person who shakes hands with six people and that person's spouse. The reasoning required to solve 
this problem is significant but probably accessible to most classes. Note that the solution proceeds by a 
"method of descent." 

This provides a small sample items that would be useful in class. There are many puzzle books on 
the market that will provide both new and traditional material. In fact, it would be nice if many problems, 
puzzles and games, accompanied by a suitable analysis, were to become part of the middle school 
curriculum. Apart from adding some spice, students would derive a more authentic view of mathematics 
and through their play develop important skills and modes of thinking. 

However, it is unfortunate that where games and puzzles are used in current teaching, they are often 
artificial and superficial. I have seen situations in which they are introduced without being followed up 
on and proper mathematical points made; this is counterproductive and leads students to the belief that 
mathematics is fragmented and inconsequential. It is important to introduce sound material with full 
awareness of the mathematics teaching that is to be done through it. 
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Topic Session B 

{PARENTS}n{CHILDREN}n{MATHEMATICS}: 
RESEARCHING THE INTERSECTION! 

Elaine Simmt, University of Alberta, Edmonton 

Educators place a great deal of emphasis on parents and children reading together; but the same 
emphasis is not placed on parents doing mathematics with their children. Working Group C at CMESG 
1994 noted that families were a potential target group for popularizing mathematics. Programs and 
activities such as Family Math, Math Packs, Math Trails and Math in the Mall (see discussion in Hodgson 
and Muller, 1994) are examples of the ways parents and children can interact together with mathematics. 
These various programs and activities point to some alternative conceptions of what it means for parents 
to do mathematics with their children, who teaches and learns mathematics, and where and how 
mathematics can be taught and learned. Unfortunately, there is not much research in the area offamily 
mathematics with which educators can explore such alternative conceptions. 

The purpose of my topic group was to bring forth and explore research being conducted in the 
context of parents and children doing mathematics together at the University of Alberta. For the topic 
group, I had proposed to do three things: describe the parent-child mathematics program; share some of 
the research that is being done in conjunction with this unique context; and consider what it means for 
parents to be involved with their children's mathematics education. In this paper I will discuss each of 
these in light of the interaction I had with participants2 in the topic group. 

THE PROGRAM AND THE PARTICIPANTS 

Math Connections is an extracurricular mathematics program for parents and children. Once a week, 
for ten weeks, parents and children together engage in mathematical activity. The program was developed 
in conjunction with a local school board in response to a need expressed by parents to enhance their 
children's school mathematics. Math Connections was designed for children between the ages of 8 and 
14. To date, the program has run three times. 15 of the 21 children have been girls whereas participation 
by the parents has been equally split between mothers and fathers-in some ofthe cases the mother and 
father took turns working with their child. 

IThe research for this work was supported by a Social Sciences and Humanities Research Council 
of Canada Doctoral Fellowship and Elk Island Public Schools-Continuing Education. 

2 I would like to thank those members of CMESG who participated in the topic group. I am grateful 
to have had the opportunity to share my work with such an insightful group of educators. 
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There are a number of reasons children say they attend the program. Some children come because 
they like mathematics and want to be challenged, others come because they are having difficulty with 
school mathematics and want to be tutored, yet other children come because their parents bring them. The 
adults too have a variety of reasons for participating in the program. All of them express a desire to help 
their children with mathematics, but there are subtle differences in why they use this context to provide 
that help. Some parents express a dislike or fear of mathematics and they see the program as a way of 
helping their children with mathematics-something they believe they cannot help with on their own. 
Others, although they are comfortable with mathematics, claim they do not know how to help their 
children with it and want advice in this regard. Some of these parents really enjoyed mathematics when 
they went to school and expressed the desire for their children to have a similar positive experience in 
mathematics. Yet others just want to spend time with their children and felt doing mathematics with them 
was a unique opportunity to do this. 

FACILITATING DIVERSITY AND ADDRESSING NEEDS 

The program is designed to encourage and challenge children and their parents to engage in 
mathematical thinking and problem solving and at the same time give parents pointers for helping their 
children with school mathematics. The 1.5 hour sessions are composed of two parts. Each session begins 
with a short opener such as a number trick, a game of strategy, or a puzzle which takes the fIrst 10 to 15 
minutes and is followed by a single prompt which is intended to provide the context for the rest of the 
evening. The warm-up activity makes time for all the participants to arrive and it gives parents ideas for 
mathematical play with their children. The second part of the session might be thought of as problem
solving, although this is a simplifIcation of what seems to happen when parents and children engage in 
this kind of activity together. 

In order to facilitate the diversity among participants-in terms of their ages, background knowledge 
in mathematics, and experiences in mathematics-I use variable-entry prompts (Simmt, 1996b) as a 
means of triggering the main activities for each night. These are prompts which can be accessed at 
varying levels of mathematical sophistication and by a variety of actions. They do not require specialized 
background knowledge or specifIc mathematical skills; but the prompts must be interesting to persons 
with such knowledge and skills and they should lead to important ideas, concepts, and processes in 
mathematics. (See Appendix A for a selection of some ofthe prompts I have used in this program.) 

The handshake problem is an example of a variable-entry prompt. I use it on the fIrst night of the 
program. As each participant walks in I greet him or her with a handshake. Once the group is assembled 
I ask, "If all of us greeted each other with a handshake, how many handshakes would there be? Try to 
fIgure that out." Rather than saying anything more, I leave the parent-child pairs to begin talking about 
the prompt. Even the youngest child and the most insecure person in the room are usually able to enter 
into mathematical activity without much trouble. There are many different ways the parents and children 
engage the prompt and formulate the problem. The following are examples of the things that the parents 
and children have done when given this prompt. 
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• role playing - each person shakes hands with the other people and keeps track of how many 
handshakes there were; 

• talking it out - "If I shake every body's hand, that makes 9 handshakes, if my mom shakes 
everyone's hand that is 9 shakes ... " (this is not an uncommon pattern of reasoning); 
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making a picture of the people in the room and drawing lines between them to indicate the 
handshakes and then counting the number of lines; 

simplifying the given situation by considering the number of handshakes for 1, 2, 3 ... n people 
and then looking for a number pattern. This usually includes using a table or a chart of some 
form. 

Of significance here is that the participants are acting in ways that are sensible to them. Clearly, 
there is range in the mathematics used and developed by the participants. Some children and some adults 
are unable to formalize their thinking and when asked the same question but given a different number of 
people these participants have to start from the beginning all over again. Yet there others (including 
children as young as 9 years of age) who can articulate a means of finding a solution for a general case 
but do not (or can not) use conventional (algebraic) notation. There have also been cases where parents 
use their children's pattern noticing as a springboard for developing an algebraic solution to the problem. 

The forms of activity that parents and children engage in not only require that the participants act 
in ways which lead to resolutions for the given prompts but also provide the space for ample "practice" 
of basic skills, number facts, algorithms, and so on. This dual nature of the activity, to facilitate problem 
solving and practice, is important in light of the fact that many of the children who participate in the 
program do so because they are not doing well in school mathematics. But it is just as important for the 
students who come because they are good at mathematics, they are challenged with interesting prompts 
and are provided wih opportunities to develop alternative and effIcient strategies for doing mental 
computations. Consider the following two examples. One night the students were given bingo chips and 
graph paper and were asked to fmd the triangular numbers. I demonstrated making a triangle from the 
chips; then I counted the chips and sugested that this was a triangular number. The participants were then 
instructed to carry on. As Steven (an 8 year old) worked with a handful of bingo chips arranging them 
into triangles, his mother kept track of the number of chips in the triangle. From viewing/reviewing the 
records his mother was keeping Steven noticed a pattern; take the number of chips you had before and 
add how many are in the new row. When I asked him if he could predict the number of chips if there 
were ten rows, he used his mother's chart and began to add, "1 plus 2 is 3 and 3 plus 3 is 6 and 6 plus 4 
is 10 ... " He continued adding out loud until he got to 55. For a child that came because his mother was 
worried about how slow he was on speed tests, Steven was doing some much needed practice-but 
practice that was, for him, grounded in a meaningful context. 

On that same night, Wayne, a 5th grade boy who was quite good at school mathematics, learned an 
efficient strategy for adding this sequence of numbers. I dem()nstrated to him that each number from the 
front of the sequence could be paired with a number from the back and when added together equaled 11. 
Since that happened 5 times, we could multiply 5 times 11 to quickly obtain 55. Wayne spent the rest of 
the session proving to himself this method would work for any sequence of numbers from one to an even 
number. He came up with the formalization, "take one more than the number and multiply it by the 
number divided by 2." Although Wayne was good at mental arithmetic he was very excited about having 
a more efficient strategy for adding the sequence of numbers. Given the same prompt, these two students 
with different backgrounds and needs were occasioned to act in ways that fostered growth in their 
mathematical knowing. These examples demonstrate some reasons why using variable-entry prompts in 
this setting has been valuable. Not only can all the participants find a meaningful way and context to act 
but in acting they lay down paths unique to their interests, actions, and past experiences-paths on which 
they further develop their mathematical understandings. 
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As I already mentioned, another dimension of the program was to help parents develop ways to 
interact with their children which would encourage and facilitate mathematical thinking in many contexts 
not just when helping them with homework. For many parents this meant that they had to start thinking 
mathematically. Participating in the program and doing mathematics with their children was a meaningful 
context to facilitate this. Throughout the sessions I took advantage of opportunities as they came up to 
talk to the parents about issues concerning the teaching and learning of mathematics and school 
mathematics: issues such as practice embedded in meaningful contexts, the value of inductive and 
deductive reasoning; and how to encourage children to reflect on their actions and to explain to others 
what they are doing. These pedagogical concerns are not new to educators however they are something 
that many parents do not have any experience with in terms of mathematics. The parent-child 
mathematics program was a useful site for addressing the parents' concerns. 

RESEARCH INTO P ARENT-CIDLD MATHEMATICAL ACTIVITY AND INTERACTION 

The parent-child mathematics program has become a research site for a number of researchers 
interested in a variety of issues related to mathematical cognition and mathematics education. Lynn 
Gordon Calvert (1996) has been studying the nature of mathematical conversations; Tom Kieren (1996) 
has been investigating mathematical cognition in the context of the parent-child interaction; and David 
Reid (1996) has considered the role of the need to reason when parents and children engage in 
mathematical activity. I have been thinking about the interaction between the parent and the child and 
with the environment (Simmt, 1996a); the way(s) in which the parent-child pairs bring forth mathematics 
with their interaction (Simmt, 1996b); and the reciprocal learning that goes on in this context. 

In the topic group, we considered 1) how two parent-child pairs made sense of and developed 
mathematics given a variable-entry prompt and 2) the nature of the interactions within the parent-child 
pairs and the implications the type of interaction had on the nature of the mathematics that they brought 
forth. In particular, we explored the interaction and mathematic,s of two parent-child pairs-Dave (father) 
& Krista (10 year old daughter) and Robin (mother) & Casey (9 year old daughter}-who spent 
approximately 1.5 h working with the prompt: 

How many paths can you tile with a given number of dominoes (2x 1 tiles) if the path must be two 
units wide. For example: 

D [JJ B BJ [E [J]J 
1 tile 1 way 2 tiles 2 ways 3 tiles 3 ways 

Right from the beginning of the session, the two pairs worked quite differently with the prompt. 

Dave and Krista immediately began by looking for a relationship between the number of tiles and 
the number of tilings that could be made from that set of tiles. "Maybe we should look for a pattern," 
Krista suggested. They worked together, Krista arranging the tiles and calling out the tilings to her dad 
(Transcript 1) who was keeping the records (Figure 1). The piece of transcript taken from the session 
reveals a high level of interaction between the daughter and her father. Notice the rhythm of their 
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conversation (Gordon Calvert, 1996) and how they occasioned each other's actions (Kieren, 1996) (lines 
7-14,60-75). 

Their highly interactive means of working with the prompt was key to the mathematical 
understanding they constructed. For example, it led to a need to fmd an efficient way to communicate the 
tilings to each other. Throughout the session Krista called the tilings out to Dave who recorded them by 
using vertical and horizontal ticks ( as noted on the right side of Figure 1). Once Krista started calling 
the tilings for 5 dominoes Dave had trouble knowing to what she was referring and thus had trouble 
keeping up with her. Krista called out the vertical tiles as "one" and the horizontal tiles (which always 
exist as pairs) first as "going going," then as "2 sideways" (Transcript 1, lines 53-62). Her language was 
clumsy and the rhythm of their conversation was interrupted. However, it did not take long for this 
clumsiness to transform into a more efficient and smooth communication when they created a new word, 
"blip blip," to describe the move of two horizontal tiles (lines 62-69). Once they had this new word, we 
see an interesting transition in their actions. They began to treat the pair of horizontal tiles as an object 
and that changes the way they think about the task. For example, later in the session they diverted from 
finding all the arrangements for a given set of tiles to fmding how many of the arrangements involve x 
"standing" (vertical) tiles (Figure 1, bottom right hand comer}-an interesting side issue which involved 
some deductive reasoning. 

Transcript 1 - Dave (father) and Krista (daughter) 

D: Okay. So 3, there was 3. 
K: Next 4. 
D: Four seems like a good number. 

Good as any to do next. 
K: If I am right about this, then, if 4 fol-

lows my theory -- Okay, let's see. 
Do this. 

D: Do that? Okay. 1,2,3,4. Okay, got 
it. [Dave draws] 1111 

10 K: Okay let's see. You can do that. 
D: Okay. 1,2,3,4. 11= 
K: Do that. 
D: Okay, 1,2,3,4. = II 

It's good that we are being consistent. 
Like if we are treating those as being 
different ones then. Okay, now what 
do we do -- Oh, I think that I can see 
another way. 

D: Oh, Yeah, I didn't see that one. 

20 That's not the one I was thinking of. 
That's 1,2,3,4. Yep, that's good. 

K: What's the one you were thinking of? 
D: Oh see if you can get it. 
K: Hmm 
D: Yeah, we have that one. 
K: Yeah, I know 
D: Oh, you're good. That's the one I 1=1 

was thinking of. 
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Okay, so we have 1,2,3,4. 

30 K: Okay, I don't think there's any others. 
R: [Researcher] I think that's a neat one. 

It's kind of a frame--picture frame 
one. 

D: It's kind of symmetrical isn't it? 
R: Oh, it's really nice. 
D: So how many do we have? 

[D&K say together] 1, 2, 3, 4, 5. 

K: Shoot! That doesn't follow my the-
ory. 

40 D: No. So far it just blew it out of the 
water. 

K: See I thought, 1 - 1,2 - 2, 3 - 3, 4 - 5. 
0: It looked pretty close. I guess we 

can't stop yet, but we might fmd a 
pattern yet. Okay -- one with five. 
Unless you want to try something 
else? 

K: 1,2,3,4,5. [She counts out five dom-
inoes.] 

SO D: Okay. 
K: Okay, you could do this one. 
0: Okay. What is that one? 

Okay,l- 1=11 
K: I, going, going. 
D: 1, going, going, going, going. Okay. 
D: Okay, you got your going, going. 

Yeah, that's the same as your other 
one, just turned around. 

0: Okay, so what do you have? 
60 K: 1,1,1--

D: I, I, 1--
K: 2 sideways. 
D: Blip blip. 111= 
D: Okay, what do you call the one side-

ways or something else? 
K: Blip, blip. 
D: Okay, the blip, blips. 
K: Blip blip, 1, 1, 1. 
D: Blip blip, 1, 1, 1, =111 

70 K: Comma. 
D: Comma. Thanks. That's a good re-

cording technique. What are we do-
ing now? 

K: 1,1,1,1,1. 
D: 1, 1, 1, 1, 1, okay. 11111 
K: I think that's it." 
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Robin and Casey, on the other hand, worked in parallel (Kieren, 1996) each finding arrangements 
and keeping records. Immediately after the prompt was given, Casey indicated she wanted to do 4 tiles 
(Transcript 2, line 4). Robin understood this to mean that they would look for patterns with 4 tiles and 
began doing so. A few minutes into the task Casey realized that she and her mom were doing the same 
thing (lines 20-30). Surprised by this, Casey asked her mom what she was doing. Once she confirmed 
her suspicion, she convinced Robin to do the patterns for 5 tiles instead of 4 so they wouldn't be doing 
the same thing. Robin and Casey, like Dave and Krista, shared the task but notice how differently. 

Robin and Casey's misunderstanding is not surprising given their style of discourse. Their language 
was quite cryptic and a good portion of their talk was often not directed to the other. Robin (and to some 
extent, Casey) spoke to herself out loud as she worked. Since they did not have to interact given the way 
the task was divided, these utterances were important to triggering what little interaction they did have. 
It made it possible for each of them to follow along and participate in the other's activity. In a short piece 
of transcript it is difficult to demonstrate how their individual actions wove together for brief periods 
throughout the session (lines 35-49) and then apart again. Clearly, their discourse did not have the same 
conversational features that Dave and Krista's had; it lacked both the high level of interaction and the 
rhythm but it did allow them to bring forth mathematical understanding in the context of the prompt they 
were given. 
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R: 

E: 
C: 
R: 

C: 

R: 

10 
C: 

E: 
C: 
R: 

Transcript 2 - Casey (daughter) and Robin (mother) 

Okay, so we are going to work on this starting 
from4? 
[Researcher] Check 3. 
I want to do 4. 
You want to do 4? 

Yeah, I want to do 4. [Casey turns to the 
paper in front of herself.] 
[Robin talking to herself-] Okay you can actu
ally take these out and see what you are do
ing. So, there's your 4. 1,2,3,4. 
[Casey to herself-] Cool. This is obviously 
one way. It is obviously - [Turning to the 
researcher-] Are you taping us here? 
Uhum. 
Let's see. 
It doesn't matter if I use a pencil or a pen, I 
guess. Okay so we will draw it on our graph 
paper. [She looks over at Casey's paper.] 
Follow Casey. 

20 C: What are you doing mom? 
R: Okay, well, I'm doing this one. 
C: Which? 
R: This one. 
C: Four too! 
R: Yeah. 1,2,3,4- see. Look two up and two 

this way. 
C: Oh. so you are doing 4 too? 
R: Oh. You want me to do 5 and you do 4? 



30 C: Yeah, that's what I was thinking. So you are 
doing 5. 

40 

50 

R: Okay. 5 tiles. 

R: 
C: 

R: 
C: 
R: 
C: 
R: 

C: 
R: 
C: 
R: 

[Some time passes as Robin and Casey each 
look for more of the tilings. As they do they 
talk out loud to themselves.] 
Okay, if you stay straight up, you've got
[Casey looks over her mom's page and fmds 
an arrangement her mom did not yet have.] 
Oh. How about this one? 
Oh yes, right here. 
Oh yeah. How about- No-
We have all five. Here's all five. 
1,2,3,4,5. Can you go like this? 
No because you want it to be a- right there. 
That's the way. And then move it in here and 
see if you've got that one. 
No you don't. 
Right there. 
Okay. You do. 
Okay, now let's move it over one more. 
[They continue to check Robin's tilings.] 

Topic Session B 

The mathematics that the two parent-child pairs brought forth was as distinct as the nature of their 
discourses. Dave and Krista deliberately looked for a number pattern. My past experiences with them 
leads me to suggest they are pattern seekers. Given many different prompts, Dave and Krista have 
frequently begun by setting up a table in order to look for a function that describes their number pattern. 
Robin and Casey, are also pattern seekers but of a different kind. In this session they noticed the 
geometric patterns and were concerned with the way in which the tiles were arranged-the mirror 
images and the placement of the horizontal tiles in relation to the vertical ones. Instead of seeking out 
the relationship between the number of tiles in a set and the number of arrangements that could be made 
with them, Robin and Casey focused on ways of fmding all the arrangements for a set by using 
geometric properties. 

The differences in the mathematics is reflected in the records they kept as well as in the focus of 
their interactions. Whereas Dave and Krista's records had 3 parts: the number of tiles in the set, the 
number of arrangements possible from a set, and the tiling patterns (Figure 1), Robin's and Casey's 
records simply consisted of sketches that resembled the actual tiles (Figure 2). Not until they were 
asked to make a table did Robin and Casey even consider the sequence on which Dave and Krista's 
efforts were focused. Even then, Robin and Casey considered the table only briefly and then turned 
back to the geometry of the tilings. It is important to note here that this difference between the two 
pairs is not based on either pair's capabilities. Dave and Krista could understand what Robin and Casey 
were doing and vice versa; they simply seemed to be interested in different mathematics. Given a 
variable-entry prompt and a learning environment which encourages people to act in ways that they fmd 
meaningful, we should expect individuals to act differently, that is do different things, and not be 
surprised when their doing leads to different mathematics; after all tJiese people each have different 
experiences, skills, aptitudes, and interests. 
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Figure 2 - Casey's (left) and Robin's (right) Records 
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PARENTAL INVOLVEMENT IN CHILDREN'S MATHEMATICS EDUCATION 

At a time when math educators are looking for ways to popularize mathematics and at the same 
time parents are looking for ways to enhance their children's mathematics knowing there is a need to 
consider the parent's role in mathematics education. Mathematics educators might begin by recognizing 
what a valuable resource parents are-ask any literacy teacher. Further, we must acknowledge parental 
concerns about mathematics education.3 As educators, we need to ask ourselves, what might we do 
to assist parents in their efforts to help their children. The work that my colleagues and I have been 
doing suggests a much more active role for parents than we have come to expect them to play in their 
children's mathematics education. It challenges the notion that helping a child with mathematics means 
simply helping with his or her homework. This research demonstrates the potential for fostering 
mathematical understanding when parents engage in complex and meaningful mathematical activities 
with their children rather than simply helping them memorize basic number facts or do long division. 

Mathematics when grounded in shared activity and experience has the potential to become a "topic 
of conversation" (Gordon Calvert, 1996) between parents and children. It provides a unique opportunity 
for them to share an intellectual intimacy that is often neglected in an era when teachers are 
overwhelmed with the more public and social issues in education such as high failure rates on school 
mathematics exams, comparative international testing, funding cuts and large class sizes. Mathematics 
educators (from both the public and private sector) need to encourage parents to do mathematics with 
their children-to engage in purposeful, meaningful, and significant mathematical activity-as frequently 
as they read with their children. Thus, there is a need for programs and materials which could facilitate 
such activity. However, it is important that these programs and materials include the parents not in the 
role of monitor, proctor, or even teacher but as fellow learner-that is, a person whose thinking 
stimulates the child's and whose thinking is stimulated by the child's. 
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APPENDIX A 

SAMPLE OF PROMPTS USED IN PARENT-CIllLD CONTEXT 

Handshake Problem: How many handshakes would there be if twenty people were in this room and 
each person shook hands with each of the others just once. 

Mobius Bands: Take a strip of adding machine tape and tape the ends together. Now trace the path an 
ant would take walking along that path. How many sides does the band have? Cut the band along the 
ant's path. How many bands do you have now? Now do the same things but put a twist in the band 
before you trace and cut the ant's path. Can you predict what will happen. What if the number of twists 
changes? 

Tiling Paths: How many paths can you tile with a given number of dominoes (2xI tiles) if the path must 
be two units wide. There is one path for one tile, two paths for two tiles and three paths for three tiles. 

o rna BJ[EDJ] 
I tile I 2 tiles 2 ways 3 tiles 3 ways 

Rectangular Numbers: Using bingo chips find the numbers which form rectangles. Example, 5 chips 
can only form a Ix5 line whereas 6 bingo chips can be arranged in a 2x3 or 3x2 rectangle as well as the 
Ix6 line. We will call those numbers of chips for which we can form a rectangle-other than the Ix 
n case-rectangular numbers. 

Pentominoes: Using graph paper, you are to make as many shapes as you can using five squares. The 
squares must be touching another square on at least one edge. How do you know if you have them all? 

93 D 
I I I I I 

This is an example. This is a non-example. 

Common Letters: What do you think is the most common letter used in the English language. Using a 
book or newspaper or magazine, try to determine the most common letters. 
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Halloween Statistics: Without showing each other your candy bag, fmd a way to show the rest of us how 
much candy you collected on Halloween and the various kinds of candy you collected. 

Square Take-away4: Cut a rectangle (not a square) from a sheet of graph paper. What is the largest square 
that can be cut from your rectangle? How many squares can you cut away from left over rectangles 
before you are left with two squares? Try this for a number of different rectangles. What do you notice? 

Straw Polyhedrons: Given a handful of plastic drinking straws participants are instructed to construct a 
polyhedron. A set of data, including faces vertices and edges, is complied from the group. The parent
child pairs look for a relationships based on the data. 

Diagonal Intruder: Mark off a rectangle on a piece of graph paper. Draw in one of the diagonals. How 
many squares does the diagonal pass through? 

Rosette: How many lines will you construct if you mark a set of points on a circle and join them to each 
other with straight lines. 

Allowance: Which way would you like your allowance computed, $1.OO/week or beginning with 1 ¢ the 
ftrst week and then after double what you received the previous week. 

Rings ofPermies: Take a permy and around it place a ring ofpermies. How many permies did it take? 
Now place another ring around that ftrst ring. How many permies did that take? Predict how many 
permies it will take to make the tenth ring. 

Lego Towers: How many different Lego towers can you make if you have ftve different colours of blocks 
and you must use each colour just once in any particular tower? 

APPENDIXB 

RESOURCE LIST OF BOOKS FOR PARENTS AND CHILDREN 

4 This activity was taken from Mason, Burton and Stacey (1982). Thinking Mathematically. 
Wokingham: Addison-Wesley Publishing Company. 

5 This activity was modifted from one in Stevenson, F. (1992). Exploratory Problems in 
Mathematics. Reston: National Council of Teachers of Mathematics. 
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I have found the following resources to be suitable for parents and children. Although not all of the 
prompts, questions, problems, and concepts are what I have called variable-entry, these books are quite 
accessible to parents and children (especially if consider by a parent and a child acting together). 

Thinking Mathematically, by J. Mason, L. Burton and K. Stacey. Published by Addison-Wesley, 1982. 

Investigations/or Your Classroom, by S.E.B. Pirie. Published by Macmillan Education Ltd., 1987. 

The Joy 0/ Mathematics and More Joy 0/ Mathematics, by T. Pappas. Published by Wide World 
Publishing/Tetra, 1991. 

Math/or Smarty Pants (and other titles), by M. Burns. Published by Little, Brown an Company, 1982. 

Family Math, by 1. Stenmark, V. Thompson and R. Casey. University of Cali fomi a, Lawrence Hall of 
Science, 1986. 

Exploratory Problems in Mathematics, by H. Stevenson. Published by the National Council of Teachers 
of Mathematics, 1992. (Look for other resources by the NCTM.) 
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INTERNET AND MATHEMATICS EDUCATION 

Linda Gattuso 
Universite du Quebec it Montreal 

Topic Session C 

The aim of this topic session was to look at the possibilities of Internet for mathematics education. 
First it was necessary to give an idea of what this new media offers to researchers, mathematics educators, 
mathematics teachers and fmally mathematics students. Secondly, it was also important to examine the 
advantages and to discuss possible difficulties linked with new media. But ftrst of all let us summarize 
and introduce Internet and the various kind of resources that are found on the Web. 

To start with, some elementary information is needed. We frrst have to know how you get linked to 
Internet and what can be found on this "highway". The frrst step is to connect your computer (by modem 
or Appletalk or ethernet links) and load the necessary software: Netscape or Mosaic, Eudora or Pegasus, 
Telnet, etc ... depending on your needs. Technical help is probably available through your university or 
a commercial server. 

Most of you have already heard about electronic mail which has been in universities for many years. 
The e-mail.asitiscalled.wastheprecursoroftheInternet.Initially communicating by mail was 
sometimes awkward and disorienting. It was necessary to learn bits of programming language but, 
nevertheless, it made it possible to keep in touch with researchers all over the world. Now the mail is, 
more and more, part of our daily life and its use is greatly facilitated by friendly user software such as 
Eudora which permit us not only to send messages to one, or a group of persons, but also to send all kinds 
of files that can be directly opened by the receiver at the other end of the line. 

But let us get at the World-Wide Web. The "browser" is the software which permits you to "surf" on 
the Web. It is nowadays very accessible and this fact contributes to its popularity and its development. 
How can we describe the Web? It is in some way a huge library where you have access not only to 
written information, but also to graphics and pictures, to animations, to free software and to interactive 
connections. However, it is not simply a copy of what we could ftnd as printed matter because of the new 
possibilities offered by hypertext and hypermedia links. A hypertext link creates a connection between 
any part of a text and any another part related to it. Afterwards, it is very easy to go backward and 
continue where we previously left off. This changes our way of reading. It is not as linear at it would be 
in a book. A hypermedia link joins the site actually visited to any other site in the world that could be of 
similar interest. This means that there is no end to your "visit" on the Web, and from one site you hop onto 
another and so on. 

Because new sites are opened everyday, the resources offered on the Web are always increasing. Just 
as when you enter a library, it is essential to use some searching tools. The searching tools found on the 
Web operate like data bases and give you the opportunity to fmd sites starting with descriptors, or 
categories, as wide as "Education" or "mathematics". However, these searching tools are like a directory 
and each have different lists of sites and also different ways of classifying them. The frrst one in line is 
directly on your browser: for example, on Netscape you can start by looking at "Net Search" or "Net 
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Directory". "Yahoo" is one of the most popular searching tools (http://www.yahoo.coml) but you may 
have a particular aim and search, for example, for French sites by using Francite, (http://www.i3d.qc.ca) 
or Outils de recherche, (http://www.quebectel.com/gt/FOOOfr.htm). Liszt: Searchable Directory 0/ e-Mail 
Discussion Groups, another searcher, will get you, as its name suggests, to e-Mail Discussion Groups 
(http://www.liszt.com). Each of these searching tools has its particularity, and will help you fmd the 
source you are looking for and connect you to it by a click of the mouse! 

Before thinking about what can be e with Internet or how Internet can support or improve mathematics 
education, we must explore different types of sites found on the Web: references resources, mathematical 
sites, courses, statistical data and others. For example, literature research can be greatly facilitated by 
using Netscape. One of the most popular data base in the field of education, ERIC, is accessible on a 
number of sites. Not only can you look for references yourself and search with the usual descriptors by 
subject, author, type of publication, etc., but afterwards you will be able to download the results of your 
research onto your hard disk. You then have a list of references ready to print . Various other databases, 
like Current Content, are also available. Having the references is not enough, you subsequently need to 
fmd the book or journal listed. You might fmd it in your library but it is also very easy to consult the 
index of libraries all over the world, including your university's, to fmd the publication you want. Start 
by looking at the library index (Catalogues de bibliotheques: http://www.bib.uqam.ca/Catalogues.html). 
Most of the time, the connection with the library computer you want to consult will be made through 
Telnet which is a software you need to install at the beginning. 

However, you can fmd sites where there is already a list of references related to subjects in math 
education (Paul Ernest's Page, Balacheff) or a list of sites related to mathematics and mathematics 
education (see Math-resources: annexed list). On the other hand, if you are looking for a particular 
researcher you might want to look at the Mathematics Education Directory (http://acorn.educ.nottingham. 
ac.uk//SchEd/pages/gates/names. html). Mathematics associations are also on the Web (ATMhttp://acorn. 
educ.nottingham.ac.uk//SchEd /pages/atm/we1come.html) and most of the conferences now have their 
sites (ICME8, http://icmeS.us.es/icmeS#ICMES-english). There you can find all the information on the 
papers presented and facilities related to the conference, etc. 

Some journals like JRME have a Web page where they advertise their pUblications, describe their aims 
and summarize some recent articles (JRME Links to Mathematics Education Sites, http://www. indiana. 
edul-jrmelMathEdSites.htm). Other journals are entirely electronic. One example is Journal of Statistics 
Education (Journal o/Statistics Education Home Page, http://www2.ncsu.edulncsulpams /statlinfo/jse 
/homepage.html) where not only can you fmd and publish articles related to statistics teaching but also 
download some experimental software mentioned in the articles. Finally, you can also visit different 
schools and universities and get to know their projects, their personnel, and the courses they offer. 

One of the innovations that comes with Internet is courses available to every one in the world. These 
courses come in different formats. You can find undergraduate or doctoral courses in statistics, for 
example. For some of them, you may enroll at the university offering the course but for others opening 
the page and reading is all you have to do (Statistical Education Workshop, http://www.stat.mq. 
edu.aulsewl). The type of support provided also differs. Some courses are very similar to fue ones offered 
by mail, and consist mostly of written explanations followed by exercises or problems. On other pages, 
you can ask for help, or send your solutions bye-mail. More and more, the particular possibilities 
presented by the net are exploited. Dr. Kenneth Tobin, for example, has installed a Web page from which 
he conducts a doctorate course (Dr. Kenneth Tobin, http://garnet.acns.fsu.edul-ktobinl). Visiting his 
homepage you will see that it uses various forms of interactions. The students are invited to comment on 
the text presented on the page. Their comments are registered and other students may reply. It is also 
possible to communicate by mail with the professor or the other students. There is also what we could call 
an «electronic class» where at some fixed time in the week there is direct interaction via electronic written 
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conversation. Since it is only recently that vocal communication became possible on the Internet, we can 
already imagine the same class, with people from all over the world, discussing together. 

However, it is not necessary to give a course on the Internet to use Internet for mathematics education. 
A simple option is to have the students look for information on the Web. For example, many pages 
present some statistical data that are related to everyday life. You can fmd some on the Statistics Canada 
page (http://WWW.StatCan.CAlDocuments/Francais/Faq/Glance/Tables/dem03j.htm). or if you want 
something lighter you can look at sport pages (Jacques Villeneuve Fan Page, http://musicm.mcgill. 
cal-marcl http/jv.html). Many countries display geographic and economic data that can be very useful 
for a statistics class or for trying to fmd functional relationships! (Population des pays, 
gopher:llgopher.undp. orgiOO/ungophersipopin/wdtrends/popl994 ), Cabri geometre is present on many 
sites in French and in English (Cabri Geometry, http://forum.swarthmore.edulcabrilcab rLhtml). At the 
"Cabri-theque" you will discover geometry problems with their solutions that can be used in the 
classroom. 

Mathematical problems of all kinds can be found on many pages. There are some of every level of 
difficulty. For some problems, you can see solutions given by students (Richard Briston: Math 
Assignments, http://forum.swarthmore.edulbriston/). Given the opportunities of the Web, it would be 
possible and very interesting to look at interactions between pupils of different schools and of different 
cultures. 

The electronic highway also provides a vast documentation on the history of mathematics and the 
history of mathematicians (Birthplaces of mathematicians, http://www-groups.dcs.st-and.ac. 
ukI-historylSensitive MapslEuro_Map.html). On one of the pages listed, just by pointing at a spot on the 
world map and clicking, you will fmd a biography of a mathematician that lived there. 

Teachers may rely on the Web to prepare new lessons. All kinds of ideas for lessons, activities and 
problems related to various topics in mathematics and in science can be found. The possibilities are 
unlimited. Another example is the CRAMS which offers on the page visited various example s of exams 
for secondary level mathematics in Quebec (CRAMS, http://www.synapse.neti-euler/crarns.htm and also, 
http://cq-pan.cqu.edu.aulschoolslsmad/smad.html ). 

Some pages address the students themselves. They can fmd help with their mathematics problems (Ask 
Dr. Math, http://forum.swarthmore.eduldr.mathldr-math.html) or they may play games. You can find a 
Chess'n Math page and also a quiz game about Pi, The Pi Trivia Game. Finally, there is free educational 
software that can be downloaded also for use by students. 

If what you want is to get in touch with people who have interests related to yours, you might want 
to subscribe to a listserv. The listserv is similar to the mail but every message is sent to everyone on the 
list. The discussion usually focuses on a particular subject. If you want to find the listserv on a particular 
topic, you can look into a directory of listservs (Listservs, gopher:llericir.syr.edu:70!1llListservs). 

We limited ourselves to pages linked to mathematics and mathematics education and we can already 
see that there is an overwhelming variety of resources. The question is, now what can we do with the 
Internet? First, we have to accept, that like the FAX, the calculator, the vocal box and the video, it is here 
to stay. We must look at it positively and explore the development it can bring into math education. 
However, it is necessary to maintain a critical eye and examine closely some of the possible drawbacks. 

The Internet brings together a great amount of information often in a very attractive format, with 
pictures, graphics and even animations. However, the sources are not controlled and almost anyone can 
install a Web page. As with paper publications, we have to rely on the reputation of the publisher, ifnot 
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the author. For theWeb, the same thing must be done. Some people have expressed reserve and suggested 
that there should be some kind of guides. Certainly, it could help, but it is better to teach our students to 
be cautious about what they use. Another point is that it is very easy to download any text from the Web 
and forget to mention the reference. Still, all these objections, and others, must have been used at the time 
of Guttenberg. They are important, but they should be seen as cautions rather than negatives. There are 
opportunities that appear today, and probably more will come. 

Internet is not only a source of information, it is also a source of communication. This aspect might 
be the one that will be more significant for mathematics education. Internet is a tool that can create new 
types oflinks. We have already seen that it facilitates communications between researchers all over the 
world. Contacts are easier because communicating by mail is more informal than a letter and very quick. 
We can now imagine undertaking collaborative research with teachers in schools even if they are at some 
distance. Material can be installed on the net, discussion and reflection can travel by electronic means. 
Everything can be recorded, and data about the development of the discussion can be analysed. We can 
also think of situations where the students themselves could use the net and interact with their teachers 
or with students in other schools and countries to collaborate on a project. Installing Internet in the 
classroom could provide more material and easy access to problems ,or mathematics competitions or 
collaboration. 

As teacher trainers, we can install electronic links between schools and universities particularly in the 
context of teaching practice. All the requirements and information needed for student teachers and their 
host teachers could be on the net. The person in charge of the practice at the university could 
communicate with the student teachers or their host teacher in an instant. More continuous support could 
be provided by the supervisor and reflection-on-action (SchOn, 1983) could be fostered and so on. We 
have already mentioned university courses given on the Web; they are yet further possibilities. For 
example, sick children who have to stay in the hospital could be followed so that they can continue with 
their schooling. In fact, the uses of Internet are limited only by our imagination. 

Is Internet a new fad that will slide away or will it insidiously slip into our daily lives. It is more 
probable that it will stay, and we have to ask ourselves if we want to take account of it, and moreover, 
if we want to manage this new tool to our advantage. We have already explored existing facilities and 
conjectured on its future usefulness; we must also use our critical faculties and sort out the good from the 
bad. There are many obstacles still to overcome. How do we defme copyright? Does anything installed 
on the Web become universal property? How does one perceive the quality of information? Should some 
sort of authority, like a professional association, guide the surfers? In fact, as with books, journals or radio 
and television documentation, critics and surveys might help to provide some guidance, yet, we should 
be careful about extreme decision leading to censorship. Our role as educators is to look for the usefulness 
of this new media, to experiment, to prepare our student teachers adequately, and to support teachers and 
schools willing to benefit from our expertise. 

Searching Tools 

Yahoo 

BOOKMARKSl 

http://www.yahoo.com/ 

lThe bookmarks can be sent bye-mail ifyoucontacttheauthor:gattuso.linda@uqam.ca 
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Francite http://www.i3d.qc.ca 

Outils de recherche http://www.quebectel.comlgtlFOOOfr.htm 

Liszt: Searchable Directory of e-Mail http://www.liszt.com 
Discussion Grbups 

Recherche d'information sur Ie WWW http://www.risq.qc.ca/info/table/rechirech_01.html 

Welcome to Magellan! http://www.mckinley.com/ 

Inktomi Web Services http://inktomLberkeley.edui 

References 

ERIC Query Form 

Welcome to AskERIC 

Instructions 

UTLink: University of Toronto and 
Local Libraries 

Catalogues de bibliotheques 

Mathematics and Education 

http://ericir.syr.edulEric/ 

http://ericir.syr.edulindex.html 

gopher:llericir.syr.edu:70/00IDatabaselInstructions 

http://www.library.utoronto.ca/www Ilibrarylist.html 

http://www.bib.uqam.ca/Catalogues.html 

Yahoo! - Science:Mathematics http://www.yahoo.com/SciencelMathematics/ 

Geometry Forum Web Site Index http://forum.swarthmore.edul-sarahlwebindex.html 

Forum Internet Resource Collection http://forum.swarthmore.edul-steve/ 

Mathematics Archives WWW Server http://archives.math.utk.edul 

Math Forum Home Page http://forum.swarthmore.edul 

Quebec Science vous accueille (Mars http://www.QuebecScience.qc.ca/ 
1996) 

Mathematics Education Directory http://acorn.educ.nottingham.ac.uk//SchEdipages/gates/names.ht 
ml 

Mathematics education sites http://acorn.educ.nottingham.ac.uk/Maths/other/ 

JRME Links to Mathematics Educa- http://www.indiana.edul-jrmelMathEdSites.htm 
tion Sites 

DRD - Menu principal 

Balacheff 

Paul Ernest's Page 

ATM 

http://www.eduq.risq.netIDRD/ 

http://Ieibniz.imag.fr/CABRI/CabriWebIEIAHlEIAH.Balacheff.ht 
ml 

http://www.ex.ac.uk/-PErnesti 

http://acorn.educ.nottingham.ac.uk//SchEdipages/atmlwelcome.ht 
ml 
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ICMES 

Canada's SchoolNet 

La toile du Quebec 

Journals 

http://icmeS.us.es/icmeS#ICMES-english 

http://schoolnet2.carleton.calfrancais/ 

http://www.toile.qc.cal 

Journal of Statistics Education Home http://www2.ncsu.edulncsulpams/statlinfo/jse/homepage.html 
Page 

Yahoo! - http://www.yahoo.comlScienceiMathematics/Journals/ 
Science:Mathematics:Journals 

E-Journals 

Bienvenue sur Ie Web de La Recher
che 

Schools 

School and Faculty of Education 

Adresses 

WWWdel'UQAM 

Departement de mathematiques 

Math Education 

http://www.lib.lehigh.edulejournals.html 

http://www.LaRecherche.fr/ 

http://acorn.educ.nottingham.ac.uki 

http://cyberscol.cscs.qc.calEcolelEcole.csbd?fonction=genera1& 
c 1 =RESS&c4=SERE 

http://www.uqam.cal 

http://www.math.uqam.cal 

Math Forum - Mathematics Education http://forum.swarthmore.edulmathedlindex.html 

Courses 

Dr. Kenneth Tobin 

Statistical Education Workshop 

excite NetDirectory: 
GenerallEducationiTeachingiStufC for 
_ TeacherslTeacher _ Trainin gI 

Page Internet de Denis Hamelin 

Statistical Data 

Assignment to Topic Groups 

pop1994 

lIS 

http://gamet.acns.fsu.edu/-ktobin/ 

http://www.stat.mq.edu.aulsew/ 

http://www.excite.com/SubjectlEducationiTeachingiStufC for _ Te 
achers/Teacher _ Trainingls-index.h.html 

. http://dimcom.uqac.uquebec.cal-dhamelinl 

http://icmeS.us.esIICMES/conttg.html 

gopher://gopher.undp.orgiOO/ungophers/popin/wdtrends/pop 1994 
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demo3 f.htm http://WWW.StatCan.CAlDocumentslFrancaislFaq/Glance/Tables/ 
dem 03 f.htm 

demo4 f.htm http://WWW.StatCan.CAlDocumentslFrancaislFaq/Glance/Tables/ 
dem04Jhtm 

demo5 f.htm http://WWW.StatCan.CAlDocumentslFrancaislFaq/GlancelTables/ 
demo5 f.htm 

heal3 f.htm http://WWW.StatCan.CAlDocumentslFrancaislFaq/GlancelTables/ 
hea13Jhtm 

heal 1 Jhtm http://WWW.StatCan.CAlDocumentslFrancaislFaq/GlancelTables/ 
heallJhtm 

heal2 f.htm http://www.StatCan.CAlDocumentslFrancaislFaq/GlancelTables/ 
heal2 f.htm 

Server Statistics @ Where-no-one-has- http://where-no-man-has-gone-before.mit.eduIW ebStat.html 
gone-before.mit.edu 

Server Statistics http://mlab-power3 . uiah.fI/usage/statistics.html 

Lists 

Listservs 

README 

Problems 

gopher://ericir.syr.edu:70/11IListservs 

gopher://ericir.syr.edu:70/00IListservsIEDNET-ListlREADME 

Richard Briston: Math Assignments http://forum.swarthmore.edulbriston/ 

Secondary Mathematics Assessment http://cq-pan.cqu.edu.aulschools/smad/smad.html 
and Resource Database 

Erdos for Kids http://csr.uvic.cal-e4k1 

Internet Center for Mathematics Prob- http://www.mathpro.comlmathimathCenter.html 
lems 

Meeroh's Online Collection of Math 
Problems 

http://where-no-man-has-gone-before.mit.edulomap/competitions/ 

Cabri 

Start 

Cabri Geometry 

TeleCabri.html 

http://www-cabri.imag.fr/CabriW ep/Start.html 

http://forum.swarthmore.edulcabrilcabri.html 

http://www-cabri.imag.fr/CabriW eblTeleCabri.html 
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Lessons and Activities 

Math 

Yahoo! -
Science:Mathematics:Courses 

Yahoo! - Science: 
Mathematics: Statistics:Courses 

Math Forum Internet Collection
mathlessons (Outline) 

Lessons by Susan Boone 

Newton's Apple Lesson Plans 

Yahoo -
Science:Mathematics:Numbers 

Mathematics Archives - Lessons and 
Tutorials 

Math Forum: Web Units 

History 

The Mathematical Museum - History 
Wing 

Canadian Society for the History and 
Philosophy of Mathematics 

History of Mathematics 

The History of Mathematics 

Math Help and Activities 

Yahoo! - Science and Oddities:Math 

Ask Dr. Math 

Chess'n Math: Homepages 

The Pi Trivia Game 

EIAH. TeleCabri-CHU .html 

Software, etc •.• 

The MathWorks Web Site 
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http://www.csun.edul-vceed009/math.html#Lessons 

http://www.yahoo.com/Science/Mathematics/Courses/ 

http://www.yahoo.comlScience/Mathematics/Statistics/Courses/ 

http://forum.swarthmore.edul-steve/steve/mathlessons.html 

http://www .cs.rice.edul-sboonelLessons/lptitle.html 

http://ericir.syr.edulProjects/Newton/ 

http://www.yahoo.comlScience/Mathematics/Numbers/ 

http://archives.math.utk.edultutorials.html 

http://forum.swarthmore.edu/web.units.html 

http://elib.zib-berlin.de:88/Math-NetILinks/math-museum.hist.h 
tml 

http://www.kingsu.ab.ca/-glen/cshpm/home.htm 

http://www-groups.dcs.st-and.ac.ukI-history/ 

http://www.maths.tcd.ie/publHistMath/ 

http://www.yahooligans.comlScience _and _ Oddities/Math/ 

http://forum.swarthmore.eduldr.math/dr-math.html 

http://www.netgraphe.qc.ca/chess-n-math/index.htm 

http://cid.coml-eveander/trivia/index.cgi 

http://www-cabri.imag.fr/CabriWeb/TeleCabriITeleCabri
EIEIAH.T eleCabri-CHU-E.html 

http://www.mathworks.coml 
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Mac Education Software: Chemistry http://www.sciedsofi.com/ 
Math Latin Greek French Spanish 

Free Adobe Acrobat Reader Software http://www.adobe.com/acrobat/readstep.html 

Assessment 

CRAMS http://www.synapse.net/-euler/crams.htm 
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TEACHING FROM A PROBLEM-SOLVING PERSPECTIVE: 
A REPORT OF MY DOCTORAL RESEARCH 

Rick Seaman 
University of Regina, Saskatchewan 

I would like to thank the Canadian Mathematics Education Study Group for the opportunity to share 
my dissertation results (Seaman, 1995) and, in particular, Yvonne Pothier and her host committee for 
making the visit to Nova Scotia such an enjoyable one. 

My talk today will center on three phases: How I arrived at my question; the results; and the 
discussion of the results. 

PHASE ONE 

When I undertook my study I had over 20 years of teaching experience in secondary and post
secondary mathematics instruction. I had, over those years, realized that teaching mathematics needed 
to emphasize more than knowledge-base skills, such as algebraic manipulations. Instruction of 
mathematical thinking skills was lacking, and needed more emphasis. I thought that using P61ya's four
step problem-solving strategy would help answer my concerns. 

Our high school at this time was implementing an accelerated, internationally recognized 
mathematics curriculum called the International Baccalaureate. This program stretched the high school 
curriculum to post-secondary topics such as calculus, statistics, linear algebra and abstract algebra. I 
realized that because of time constraints we might have to rely on mastery learning and assign questions 
incrementally as John Saxon had done in his textbooks. That is, instead of assigning questions for only 
one lesson they could be spread out over two or three weeks. Now, instead of problems located at the end 
of the chapter they could be assigned incrementally. I was beginning to think that we could teach from 
a problem-solving perspective, introduce the knowledge base as needed, and assign homework questions 
incrementally. 

If I were going to teach from a problem-solving perspective, the students might need an example 
ofa cognitive strategy. Perhaps one bearing a similarity to P61ya's, but emphasizing the importance of 
representing a problem and then solving it (Figure 1). Aha! Maybe teaching from a problem-solving 
perspective, assigning questions incrementally, designing lessons that feature the representation of 
problems, and introducing knowledge base as needed to solve the problems would work. It would also 
be necessary to make the students aware of different representational strategies and where such strategies 
fit in the students' cognitive strategy. 

Although the students would have a cognitive strategy to be used regularly and a representational 
strategy to help the students problem solve, it would be important to show them how to use it. This could 
be achieved by introducing a classification strategy that would have the students classifying the problems 
according to the underlying mathematical procedures needed to solve the problems (deeper structure). I 
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PROBLEM REPRESENTATION I II. fIND A PLAN (Deeper Structure) 

READ QUESTION FOR ANALYSIS I 
I. DO you UNDERSTAND THE PROBLEM? '-------------~ 
(Swface Structure) 

I READ QUESTION FOR UNDERSTANDING I 

DO YOU UNDERSTAND WHAT ALL THE 
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PROBLEM SOLUTION 

m. CARRY OUT PUN 

SOLVE 

IV. EXAMINE THE SOLUTION 

FIND MORE SOLUTIONS 

CHECK 

Figure 1 
Cognitive Strategy 

GENERAllZE SOLUTIONS 
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was getting closer to the formulation of my question, but how would I assess the effectiveness of my 
approach? I decided to make problem worksheets that used the cognitive strategy as a template to assess 
problem solving analytically. 

PHASE TWO 

Phase one led to a prescription for instruction that provided a cognitive strategy, representational 
strategy, classification strategy and an analytic scoring system based on these strategies. As part of the 
prescription it was intended that students would problem solve regularly and be taught knowledge base 
as necessary to solve their problems. 

This prescription led to a quasi-experimental study that used a two-group comparison of intervention 
and comparison groups. The groups were made up of volunteer university students from two fall semester 
sections of an introduction to fmite mathematics class that satisfied a degree requirement for the Faculties 
of Arts and Education. The comparison group was taught by a colleague in the mathematics department, 
and the intervention group was taught by me, and had the added element of systematic emphasis on 
representational strategies. Both classes had instructional blocks of75 minutes plus an optional weekly 
mathematics lab. The instructional blocks for both groups were 26 lessons in length with two lessons 
taught per week.An evaluation task was administered upon completion of the study to both groups to 
analyze the problem understanding, representation and solution when solving word problems. A 
pretestiposttest was given to look at the difference in heuristics between the two groups. 

The following hypotheses were tested: 

HO (1): There will be no significant difference in problem understanding between the comparison 
group and intervention group when solving word problems. 

HO (2): There will be no significant difference in mathematical problem-solving representation 
and solution between the comparison group and intervention group. 

HO (3): There will be no significant difference in heuristics between the comparison group and 
instructed group. 

In this study all three null hypotheses were rejected. 

PHASE THREE 

The main purpose of this study was to look at the effects of instruction from a problem-solving focus 
on problem understanding, representation, solution and heuristics. Cognitive, representational, and 
classification strategies were part of the regular classroom routine and they had implications for the 
teaching of mathematics. 

One way to help students understand a concept is to provide an example. The automatization and 
regular applications of a cognitive strategy will give students an example of a thinking strategy and 
control over their problem solving. For the teacher, instruction from such a problem-solving perspective 
will provide a model from which to teach with representation and solution of problems the template for 
each lesson. Implied is that lessons may be constructed that emphasize the representation of problems 
on a concrete-to-abstract continuum with the knowledge base necessary for problem solution introduced 
as needed. Students will gain a better understanding of the usefulness of representational strategies in 
solving problems and in recognizing that problems may be represented in more than one way. 
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Classifying problems according to their deeper structure will give students a powerful strategy that 
will allow them to make mathematical connections concerning how mathematical ideas are related. 
Students will become aware of how isomorphic problems might be used as a vehicle to develop their 
analogical reasoning in mathematics and eventually across the curriculum. However, it would be helpful 
if a mathematics course were developed with this underlying concept as a basis. 

Such courses might be developed more systematically with regard to deeper structure, with 
knowledge base introduced when necessary to solve the problem. Any textbooks used for such courses 
would have to support such a systematic development of representation and solution skills. A different 
view of assessing! evaluating mathematics, then, becomes necessary. 

Analytical scoring may be necessary to assess these skills using a template based on the students' 
cognitive strategy. This evaluation might lead to different levels of evaluation where students receive a 
grade for their work on problems equivalent to those in their course. Evaluation would include comments 
made on problems that are isomorphic, similar and unrelated to those studied. This could make 'gotcha' 
questions on exams a thing of the past. Finally, students using feedback from the analytical scoring of 
problems might be able to locate weaknesses in their use of a cognitive strategy and could negotiate help 
from their teacher. Implied is the need to develop mathematical instruction through inservice or teacher 
education programs focusing on teaching from a problem-solving perspective. As well, teachers would 
have to experience the process of teaching from a problem-solving perspective using cognitive, 
representational, and classification strategies to gain a full understanding of what they are instructing. 
Romberg (1994) acknowledges such a distinction between "doing" and "knowledge about" by means of 
an analogy with basketball . 

... when students learn to play basketball, they are always aware that their goal is to play the 
game. What is being argued is that in mathematics, the "game" is to solve non-routine 
problems. Basketball practice is important for skill development, learning strategies, and so 
forth. However, a coach would never get anyone to practice if they never played a game. 
Furthermore, practices are tailored to the needs of the team and the individuals. Today, in 
school mathematics all students practice skills, whether needed or not, spend almost no time 
learning strategies, and never get to play the game (p. 289). 

This has implications not only for students and teachers but also teacher educators, curriculum 
planners, textbook writers and public perception. 
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EXPLORING THE THEORY OF MEASURE: 
ITS IMPLICATIONS FOR CLASSROOM LEARNING 

Marjorie McCaul 
University of Guelph, Ontario 

Topic Session E 

Despite a long tradition of research, the ways in which children construct their own understandings 
of standard arithmetic remains elusive. A major difficulty for teachers could well be their own familiarity 
and ease with numbers and operations in arithmetic which obscures for them many of the issues that face 
children in their efforts to build their own arithmetical knowledge. Weinzweig's (1995) theory of measure 
provides a way of understanding the ideas and mechanisms involved in the practice of arithmetic, how 
they arise, and how they evolve as means and tools in mathematical practice. He argues that the 
generation and evolution of arithmetical knowledge in measurement situations has strong parallels to the 
building up of this knowledge by learners, and has used the theory to design a series of instructional 
modules. This paper outlines aspects of the theory that provide a framework for viewing the nature of 
experience in the construction of number understanding and the operation of addition. It explores how· 
this view can be applied to understanding how a series of activities using a bead frame has been designed 
to facilitate knowledge building and provides an analysis of the experiences of children working with 
these activities. 

Weinzweig's theory of measure provides an analysis of mathematical constructs related to number 
and the operations on number in arithmetic. It identifies a collection of mathematical ideas and 
mechanisms or, what he calls, "ingredients" operating in such situations. It defmes what we measure 
when we measure something, why we measure and how units are introduced to facilitate measurement 
activities and how numbers are introduced to create quantities. It thus provides operational defmitions of 
important and often poorly understood constructs such as measure or magnitude, number and quantity 

Weinzweig's learning activities are carried out in specially designed contexts in which the 
ingredients arise and can be recognized. There are a series of tasks associated with each context that 
engage children in the use of the ingredients in problem solving. The study reported here (McCaul, 1996) 
was undertaken to explore how the theory could be used as a lens for viewing the nature of experience 
in instruction and in viewing the progress of knowledge building in children in the course of these 
experiences. 

THE THEORY OF MEASURE 

Aspects of the theory are discussed below in general terms to provide an overview of some of its key 
features. The discussion is limited to aspects of the theory dealing with the derivation of whole numbers 
and the operation of addition. The details of each ingredient are presented in mathematical terms in the 
theory and are not easily applied to an understanding of the nature of experience and the progress of 
knowledge building. One objective in the study was to identify a more general framework for 
understanding how ideas arise in specific experiences and how they subsequently evolve to higher levels 

127 



CMESG/GCEDM 1996 Proceedings 

of abstraction in the course of specific types of experience. The report briefly outlines this framework, 
applies it to one ofthe instructional contexts used in the study (the bead frame) and uses it to analyze 
some of the experiences of children engaged in activities in the bead frame context. 

The theory is an account of the derivation of numbers from their origins in experiences in the 
manipulation of physical objects and thus addresses the learning challenge that faces young children. It 
is a key feature of the theory that the defmitions are operational, that is, given in terms of how an idea 
arises in an action in a physical context and subsequently how this idea is built up and incorporated into 
mathematical operation at higher levels of abstraction. It is this type of definition that leads to the 
identification of specific experiences that can facilitate a similar or parallel building up of ideas by 
learners. An assessment of the progress of children's knowledge construction is made in these terms as 
well. A careful examination of how they deal with a task in a context indicates whether they have 
recognized an idea and whether or how well they have been able to use it as an effective means in dealing 
with a problem more efficiently. 

The theory organizes mathematical practice into levels or spaces. Operation in a space is determined 
by the understanding of the object that is being used to deal with a problem. The theory defmes how the 
understanding of an object used in each space leads to a new understanding of the object at the next level 
or space of operation. In this way the object at each level corresponds in some way to the object at the 
level below it and to the object that derives from it at higher levels. Similarly the ideas generated at each 
level fmd a correspondence at every level in the hierarchy of spaces. This idea is similar to the idea of 
reciprocal structure preserving systems discussed by Kaput (1989). The following discussion looks briefly 
at each system in the series to try to present an overview of how ideas arise and how they evolve to higher 
levels of abstraction. 

SPACES OF OPERATION 

The General Measurement Situation 

The general measurement situation is a fIrst level or threshold space of operations where the objects 
being manipulated are physical ones but where in the course of manipulating physical objects specific 
mathematical ideas with respect to them are generated. The collection of these mathematical ideas and 
mechanisms or "ingredients" is identified in the theory for the general measurement situation. The 
ingredients identified here are common to all measurement situations in all measure domains. The term 
domain refers to the set of objects which share the same measure property, for example, the domain of 
line segments and the measure length, the domain of sets and measure numerosity, the domain of regions 
and the measure area, etc. In the instructional contexts, children are introduced to a variety of these 
situations, especially situations involving line segments and the measure length, sets and the measure 
numerosity and regions and the measure area and recognize the common ingredients and how they are 
manifest in each. 

Any level or space of operation should be considered frrst in terms of the understanding of the object 
that is manipulated in it. In the general measurement situation the object is a physical one that comes to 
be understood in terms of its mathematically relevant property, its measure. The idea of measure is 
difficult to defme. Weinzweig's operational approach resolves the problem by considering measure in 
terms of the procedure used to determine what the measure of an object is. Thus the measure numerosity 
for example, arises in the one-to-one correspondence of the elements of two sets, the measure length in 
the congruent match of two line segments. Measure is the property shared by both objects in an 
equivalence relation generated in this procedure. All objects that can be included in a particular 
equivalence relation share the same measure and are grouped into the same class of measures. These 
measure classes become the new objects in the next space of operation, the measure system. In the 
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measurement situation the idea of measure is a property of the physical objects being manipulated. In the 
measure space the idea of measure has been separated from the object and is understood as common to 
any object that can be placed in a particular equivalence relation. 

Other ingredients identified and defined in a measurement situation, are procedures carried out on 
objects and properties of these procedures. The operational defmition of each indicates an action or 
experience that gives rise to the idea that can be incorporated into an experience for learners. The 
procedure to establish equivalence (comparison), gives rise to an equivalence relation and properties of 
the equivalence relation, transitivity, reflexivity and symmetry. Dissection leads to the creation of 
partitions and unit partitions and consolidation leads to the addition of measures in the measure system 
and of numbers in the quantity system and the properties of associativity and commutativity that are 
associated with them. 

The Measure System 

The measure system is a next level of abstraction and, as noted above, the object manipulated in it 
is a measure class object. An example in the Cuisenaire rod context attempts to clarify what is meant. 
Cuisenaire rods provide an example in the domain for the measure length. The objects in this domain are 
the individual rods. Rods of the same length have the same colour and rods of the same colour have the 
same length. Children working with the rods soon cease to refer to individual rods but refer to the colour 
of the rods where in effect the colour designates the length of any rod. What has happened here is that the 
children have divided the rods into what we have defined as measurement classes and each class is 
denoted by a colour. They compare the, length of a specific yellow rod to the length of a specific blue rod. 
However they describe this situation by saying the blue rod is longer than the yellow rod. Implicitly they 
are assuming that this statement refers not to individual rods but to any blue and any yellow rod, Le., the 
class of blue rods and the class of yellow rods. All rods of the same colour have the same length and hence 
are equivalent and all rods of the same length have the same colour. The colour serves to designate the 
collection of all rods of a given length. When children begin to talk about the colour rather than the 
specific rods they have inadvertently started to use a new object, not individual rods but rather the 
collection or equivalence class of all rods of a certain length, an equivalence class measure object. 

An equivalence class measure object is a conceptual entity. It is built up in the understanding of the 
equivalence of objects sharing the same measure and the idea of transitivity of that relation. For any 
equivalence class measure object in the measure system it is possible to fmd a particular measure object 
in the general measurement situation that belongs to the equivalence measure class. In this sense an object 
in the general measurement situation is said to correspond to an object in the measure system and vice 
versa. Similarly for any procedure or property of the procedure in the general measurement situation there 
is a procedure and property of that procedure that corresponds to it in the measure system. 

The Quantity System 

An object in the quantity system is a quantity, a composite entity comprised of a number and a unit. 
The generation of quantities is traced from the general measurement situation for numerosity. An object 
in the domain of sets is a unit partition, a set of unit segments. The measure of this unit is the unit 
component of a quantity and the count of this set is the numerical component of the quantity. If the units 
are the same it is possible to compare the measure of two measures by comparing two quantities and we 
can compare the quantities by comparing their numerical components. The unit partition of the object, 
the set, belongs to the measure class of all objects that can be matched to it. The number derived in 
counting the set is now used to identify the measure class to which the set belongs. The number, 
understood in this way, is the new object manipulated in the quantity system. As in the measure system, 
for every procedure and property of procedures in the general measurement situation for the domain of 
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sets and numerosity their is a corresponding procedure and properties of procedures in the quantity 
system. 

THE THEORY AS A LENS FOR VIEWING INSTRUCTION AND LEARNING 

The account of the generation and evolution of mathematical ideas provides a view of what 
mathematical ideas children need to appropriate into their own practice in terms of how these ideas are 
generated in measurement situations, thus providing a rationale for the design of instructional experiences 
for children. The approach focuses on how experiences facilitate the building up of mathematical 
knowledge and as such is not interested per se in the changing cognitive structures of the mind. The theory 
describes how ideas arise in measurement situations and how they evolve as means and tools in 
mathematical problem solving. The building up of mathematical ideas by children is thought to have 
important parallels to this process. In setting a situation in a physical context of some sort, the conditions 
that originally led to the generation of an idea can be recreated. Tasks which directly call for the use of 
an idea can be presented to provide the necessary exposure and practice that are needed to ensure the idea 
is well established and "reversed", that is, used as a means in dealing with a situation. Progress is followed 
in terms of whether or not the idea was recognized and how well the child was able to develop an ability 
to use it as a means of dealing with a problem situation. In cases where a child is not progressing as 
expected, the theory directs attention to what idea might be missing and to the kind of experience that 
would be required to facilitate its development. 

The theory of measure provided the rationale in the design of instructional modules that would 
facilitate the recognition and appropriation of specific mathematical ideas into practice. First a context 
was provided where specific ideas arise. Weinzweig designed six of these; bus, bead frame, the number 
track, Cuisenaire rods, count sheet/fact rectangle, and number balance. The contexts were constrained in 
the sense that they reduced as much as possible any physical or social aspects of the situations that are a 
distraction to children. They were however presented much like a game so that they would be interesting 
and engaging for children. Activities in the contexts provided focused experiences, that is, experiences 
which focused attention on a specific idea or ideas operating there. Tasks carried out in a context focused 
attention on using the idea as a means of dealing with the situation more efficiently. 

The activities introduce a language to describe a situation in a context. The language is unique to 
each context and reflects the activity going on there. The language allows the children to communicate 
about the context in a way that is understood by everyone. It also focuses attention on what in the context 
is being communicated. Children engage in record keeping activities in which the language is used to 
describe a situation. In notation "reading" activities they learn to read a notation and recreate what is 
going on in the context. 

A look at the bead frame context and some children's experiences with it, is used here to explore 
some implications of the theory of measure for understanding the nature of experience in instruction and 
the progress of children's mathematical knowledge building. The bead frame consists of 25 beads strung 
on a stiff horizontal wire between two supports with 5 yellow beads alternating with 5 red beads. 

Building Measure Objects 

Initial tasks in the bead frame context are designed to assist children in identifying a segment of 
beads with a number without counting. The context presents an object that can be considered in either the 
domain ofline segments and the measure length or, the domain of sets and the measure numerosity. 

Children are asked to identify segments of n (5, 7, 9, 10, etc.) beads without counting. Initially they 
count the number of beads in a segment but soon realize they can identify the segment with a number 
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without counting. Segments of 5 and 10 are pushed over more often and became a base for other numbers 
so that 7 is 5 yellow and 2 red, 9 is 10 minus 1, etc. A number is always used to identify a segment of 
beads having a specific measure so a number begins to be associated with the object or measure it is used 
to identify, and its meaning is always considered in terms of this object. Once children can identify 
segments without counting they can focus on other aspects of the context without being distracted by the 
need to count. 

In a second task children identify segments of n beads starting at different places on the bead frame. 
For example there are three different colour combinations for 7: 5 yellow and 2 red; 1 yellow, 5 red and 
1 yellow; 3 yellow and 4 red. This exercise helps children when they begin to do consolidations of two 
segments. They can readily identify the first and third segments but usually have to count the second 
segment. Practice with task 2 allows them to identify different configurations so that they can identify a 
second segment without counting. 

The tasks assist in building the idea of equivalence class measure objects for sets, an idea not easily 
recognized by children and which needs to be built gradually in the course of a variety of experiences. 
In the bead frame children are encouraged to identify a segment of beads visually by its colour 
configuration. Implicitly they recognize that any similarly configured segments are the same in the sense 
they share the same measure and therefore belong to the same equivalence class. They learn to identify 
the segment with a number. As an understanding of the segment as an equivalence class measure grows, 
the number used to identify it also incorporates this understanding as well and leads to an understanding 
of quantities for whole numbers in the quantity system. 

In the study, four of the children in the group were able to identify numbers to twenty by the end 
of the sessions. They used this ability in subsequent record keeping and recreating tasks. These children 
also seemed to develop a good sense of a set as collective entity. In their actions they would directly 
identify a segment and think of it in terms of its color configuration. This was understood to indicate a 
recognition of the segment as a measure that could be identified by its colour configuration and the 
number determining it in counting. Two of six children progressed much slower than the others in the 
group to identify segments with a number. All the tasks presented greater difficulty for these children than 
for the others and more time was needed to assist their progress. Unfortunately the conditions of the study 
did not allow for this. 

Understanding the correspondence between a context and a notation 

A central feature of the theory is the defmition of the way in which each ingredient in the general 
measurement situation tIDds its correspondence in any other system and vice versa. In the instruction, an 
understanding of this correspondence is built up effectively in the building up of a notation to record 
information about a context. Numbers in the notation for the bead frame first identify, and subsequently 
are understood, to correspond to specific bead segments. Numbers also encode and correspond to the 
relations of objects in the context and special features of the notation correspond to actions carried out 
on objects in the context. 

When working in the bead frame context children are quickly introduced to a notation that allows 
them to communicate easily about what they are doing. A dice is rolled and the result recorded in the first 
wedge. A second is rolled and this result entered in the second wedge. The fmal result or consolidation 
of the two segments is recorded in the circle. The bead frame notation is designed to relate the action of 
pushing over the bead segments and recording the result of their consolidation. 

The number in the fIrst wedge indicates the number of beads in the fIrst segment, the number in the 
second wedge indicates the number of beads in the second and the number in the circle indicates the 
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number of beads in the consolidation. A child records the activity in the notation, and understands it in 
terms of the activity in the context, and can communicate with everyone else using it. They can "read" 
a record and recreate the action in the bead frame context. The relation between the action in the context 
and the notation used to record it, needs to be well understood. Later if a child has a problem 
understanding the notation they can return to the context and figure out what they need to know. 

Once children are able to fill in the record sheet they are introduced to missing information tasks, 
a) missing sum, b) missing first addend, c) missing second addend. The sheets show a record of several 
dice trials but some of the information is missing and children are asked to find the missing information. 

Understanding the correspondence between the context and the notation is critical to knowledge 
construction. Once children are familiar with the context and what to do there, they are free to explore 
other ideas operating in it and to notice how these are recorded or preserved in the notation. Gradually 
they begin to recognize that number combinations repeat and they just know them without needing to 
refer to the context. If they don't know a combination however, they know how to figure it out in the 
context. When children use numbers without reference to the context but where the meaning of the 
number and notation in the context is well understood they are said to be operating in the quantity system 
fo~ whole numbers. There is much more they need to understand about the derivation of units in 
multiplication and fractions but that can be built up similarly in activities that focus on where these special 
units come from. 

Recognizing Ideas: Some Examples 

At the beginning of the instruction the children were at the stage of meaningful counting. They could 
use a number derived in counting an object to identify another object matched to it but did not readily use 
this skill in problem solving. In the instruction they learned to use a number to identify an object (a 
segment) in the context and to understand a number notation in terms of the context. When children 
recognized how an event in the context corresponded to the record of it in the notation they were free to 
notice certain relations and properties arising in the context. The following example demonstrates how 
Ali's understanding of the correspondence between the context and the notation, allows him to recognize 
the invariance of addition. The invariance of addition is the idea that the disjoint union of two specific 
measure objects for sets will always yield the same result. In the following example Ali notices that the 
result of consolidating I bead and I bead is the same on two consecutive trials. He notes that the notation 
repeats as well. The fact that the notation and the context correspond seems to both focus his attention on 
this idea and to reinforce his confidence in the ability of the notation to encode the context. 

Ali and Suresh: (they have noticed that a roll of 1 and 1 on the dice gives a fmal result of 
2 on two separate trials, Ali seems amazed that this is true) 

Ali: Mrs. McCaul!, Mrs. McCaul! Look! 1, 1,2 (points to one recorded sequence 
then another), 1, 1, 2! 

That the two trials have repeated in exactly the same way is purely serendipitous but1t has the happy 
consequence of directing attention to the fact that what was repeated in the context was also repeated in 
the notation and that the notation was a reliable means of recording the event. 

In the following example John's understanding of the reciprocal relation between the context and 
the notation seems to trigger an exploration of the interesting features of both and a discovery of 
ingredients. He notices that a different ordering of two measures yields the same result. The following 
example shows how he is using his understanding of the correspondence between the context and the 
notation to confirm his intimations of associativity. 
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Trial: 7,6,_ 

John: (pushes 7, counts 6 more, counts total) 1,2,3,4,5,6, 7, 8, 9, 10, 11, 12. 

Thandi: (starts to record 12, she does not question the result) 

John: (checks beads visually) no that's 11.... It's wrong, it's one more than 12. It's 13. He 
redoes the series. 

John: (pushes 7 and counts 6) Altogether makes 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13. 

Trial: 6, 7, _ 

John: The next one is 6 and 7.6 (pushes 6) and 7. Is that the same? Ya it goes 13. Gabs 
the sheet) 7,6 (reads one series left to right) 7, 6 (reads next series right to left) is 
13. 

Thandi: No it's 6, 7 ... 7, 6. 

John: It's the same thing 13. 

John is now convinced and he uses this knowledge from this point on. Thandi on the other hand is 
not sure of how the notation and context are connected and does not see what John has seen and is very 
annoyed at his determination to insist that it doesn't matter. 

SUMMING UP 

The exploration reported here was carried out to identify a general framework that could be used 
as a lens for viewing how the building up of mathematical ideas was facilitated in the instructional 
modules and to view the progress of mathematical knowledge building by the children in the course of 
using the modules. The exploration identified two features of the theory that seemed particularly useful 
in viewing this process, the changing understanding of objects manipulated in mathematical practice and 
the operating spaces they defmed. The analysis highlighted how the design of the instructional contexts 
and the experiences associated with them, facilitated the construction of new objects, measures, measure 
classes and quantities and operations in the operating spaces defmed for these objects. It further identified 
how the view could be applied to understanding children's progress in terms of a movement from one 
operating space to another as the understanding of the object changed and developed. 

In the study, it became clear that understanding the way in which an event in the context 
corresponded to the language used to communicate about it, was a critical aspect in learning. The 
understanding allowed children to establish the truth of their record or, vice versa, to verify a situation 
recreated from the record. When a child noticed that an event in a context corresponded to the record of 
it in a notation, his attention was directed to the idea that the event w~ being expressed in both. For 
example, Ali noticed the invariance of addition. John discovered the associativity of addition when what 
he noticed in the context was confirmed in the notation. When the correspondence was recognized, the 
child could "use the context" to find out what he needed to know and later to verify ideas being formed. 

It iss not possible within the limits of this paper to consider the building up of other ingredients 
identified for the measurement situation. In future it will be necessary to examine each of the ingredients 
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identified for the general measurement situation to better understand how it develops in instructional 
experiences and whether some ingredients pose greater difficulty than others for some children. It will 
also be necessary to explore how the theory of measure can be used to understand the derivation of new 
units and the building up of knowledge of multiplication and fractions in instructional experience. Many 
of the ideas contained in the theory are not easily expressed and future efforts need to explore how to 
make these ideas relevant to teachers in classrooms. 
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MATHEMATICS ENRICHMENT IN AN 
OUT-OF-SCHOOL SETTING 

Ann Kajander 
Lakehead University, Thunder Bay 

Ad Hoc Session 1 

The relationship between mathematical creativity and school achievement in mathematics is not a 
direct one (Kajander, 1985; 1989). Although students in writing or art class may be asked to write their 
own poem or draw their own flower, creativity is almost never addressed in school mathematics. This 
lack of creativity may be connected to the structured approaches of teachers and the lack of exploration 
in mathematics classrooms. Davis describes mathematics classes as "perhaps the least playful" (1996, 
p.212). The mathematical flowers drawn in school are often red with green stems. 

Carter (1994) feels our aims should be "to give the young a feeling for the beauty and eloquence of 
mathematics and its profound relationship with the real world" (p.93). Students need "early to begin 
consideration about what they think is beautiful and creative [in mathematics]" (Keswani, 1996, p.3). 

The result of a program that does not encourage deeper mathematical thinking is that talented 
students never practice thinking intuitively and creatively. Generalisations come easily to the students 
better in school mathematics, and hence they may later lack the experience, strategies and ability to "fiddle 
around" with mathematical ideas to achieve these generalisations. Their desire for immediate grasp is 
strong (Le., it has always been achievable) and their lack oflearned manipulative skill may cause them 
to give up easily later on (Davis and Hersh, 1981, p.283). 

It may also be difficult for teachers to recognise (Kajander, 1989) and thus stimulate (Taylor 1985, 
p.1) mathematical creativity in a school setting. A bright child may have the germ of a new mathematical 
idea, but the teacher must be willing and able to follow it up. This requires both a reasonable mathematical 
knowledge on the part of the teacher, as well as time. The teacher must also feel comfortable saying "I 
don't know-let's fmd out" Not all teachers have the confidence to take such risks (McDougall, in press). 
In fact, the tendency may be to lead the student toward the "right" or standard answer instead of their own 
creative but not quite correct idea (Feikes, 1995). Also, if the student's idea is very different from a 
standard method (we could call this "highly creative"), it may be difficult for the teacher to accept these 
methods as being valuable (e.g., Henderson, 1996, p. xxiii). 

Zack (1995) cites two reasons for her students' improved progress in her classroom, namely, her own 
exposure to deeper mathematical ideas, and her growth in awareness of "the mediating roles played by 
peers for each other, such as rephrasing, interpreting, resisting closure, and serving as a receptive 
audience" (p.106). However, facilitating such interaction may leave the teacher with a sense of loss of 
control of the class (McDougall, in press). 

A problem for teachers of brighter students is that an environment rich in social interaction of an 
appropriate nature may be hard to achieve. A teacher at University o/Toronto Schools CUTS), a Toronto 
school for the gifted, once said to me "if we do nothing else here, we at least bring these students together 
[to stimulate each other's minds]." Many enrichment programs in classrooms are 'pullout' programs-the 
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students go off by themselves to work on an idea. How do we get these students together? If social 
interaction is to take place as suggested by the social constructivist perspective, an appropriate social 
environment with peers of similar ability must be provided. 

Kindermath was designed in response to parental dissatisfaction with the lack of creative stimulation 
their children were receiving in school mathematics. Parents wanted a visual focus, a hands-on 
environment, social interaction amongst the brighter children, and most of all, they wanted to see their 
children excited about mathematical ideas. "My child is bright but isn't stimulated in school math" was 
something I heard often. Having failed a number of times to stimulate interest in enrichment programs 
through the school system, I decided it was time to create my own enrichment program. 

A pilot project was conducted involving four 7-8 year olds. The children (two girls and two boys) 
worked with the teacher in a group or in pairs for two sessions of an hour and a half in length. At the end 
of each session parents were invited to participate. After a brief explanation of the day's activities and the 
philosophy of mathematics behind the activities, parents could work with their child on the computer, play 
a mathematical game with them, or look at their geometric creations. The response was very positive and 
an expanded program was planned for 1996/97. 

Separate sections were offered for 7-8 year olds, 9-10 year olds, and 11-12 year olds, with up to 
eight children in each group and two facilitators. Children were encouraged to work in pairs both on one 
of the four computers and in other tasks. 

Sessions were one hour and a quarter in length with a 15 minute "sharing time" at the end, during 
which the parents were invited to participate by trying some of the days' activities with their child. Weekly 
take-home activities are described during sharing time, many of which require some parental involvement. 
This also allows parents the opportunity to "talk about" mathematical ideas with their children. 

Several criteria are used for choosing topics for Kindermath. Topics must be fun and interesting, and 
lend themselves to collaboration as much as possible. Visual elements are also kept in mind. An 
underlying goal is that the projects hint at deeper ideas in mathematics as well as its underlying beauty 
and structure, and an attempt is made to choose topics with this in mind. For example, drawing polygons 
with a larger number of sides until the polygon resembles a circle hints at the idea of limits and the formal 
definition of a circle. Cutting out fractal cards gives a sense of the inherent beauty and infmite patterning 
of structures in fractal geometry. Escher tilings allow children to create visual patterns of their own with 
some geometric beauty and symmetry. 

The program has benefitted from great enthusiasm from my students in a mathematics course for 
elementary education majors, several of whom have asked to be able to observe and facilitate sessions. 
Since they have already been exposed to the social constructivism perspective in mathematical learning 
through my course, they are ideal partners in the venture. Not only is it helpful to the children involved 
to have additional facilitators, but it provides an ideal forum for these pre-service teachers to experience 
some alternative learning strategies in a supportive environment. In other words, Kindermath provides 
a forum for trying some alternatives to traditional learning methods without being evaluated by an 
associate teacher who mayor may not agree with such ideas. 

Kindermath may prove a more useful environment for studying mathematical creativity than the 
regular classroom. I have found two difficulties with encouraging mathematical creativity in classrooms 
in the past. The fIrst is that once students have been shown the traditional method of doing something, 
they appear to be less likely to come up with novel alternatives than if they were shown no methods. The 
second is that students who know that they will be evaluated with traditional measures at the end of a 
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program appear to be less likely to engage in exploratory activities than they are if the explorations 
themselves are evaluated (Kajander, 1989). Kindermath avoids both of these difficulties. 

As with any enrichment program, it is hoped that the field tested ideas will become simply good 
mathematics learning environments, and that Kindermath will have some use and influence in an 
improved system of learning mathematics in school. 
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STUDENTS' DIFFICULTIES WITH THE NOTION OF ISOMORPHISM: 
SOME PRELIMINARY RESULTSt 

Caroline Lajoie and Roberta Mura 
Facuite des sciences de I'education, Universite Laval, Quebec 

The first abstract algebra class in the undergraduate mathematics curriculum confronts students with 
special difficulties, even though their failure rate may not be very high. Informal observations indicate 
that even those who pass the course may harbour an uneasy feeling of not really understanding what it 
was all about. Some claim that they were only able to make sense of it years later. Many students 
complain that the course is "abstracf' (small wonder since it deals with abstract algebra!) and "difficult," 
and develop a dislike for abstract mathematics. Such a reaction is no doubt due to the fact that this type 
of course is among the first which deal with formal systems rather than numbers or geometric figures and 
which rely heavily on proofs rather than computations and constructions. Some might argue that the 
course acts as a test, serving to select the students who enjoy formal mathematics and have the potential 
for becoming mathematicians. As mathematics educators, however, we are curious to learn in greater 
detail what exactly students fmd difficult or unappealing about abstract algebra. We hope that such 
insights will eventually help teachers foster achievement and enjoyment among greater numbers oftheir 
students. 

The research questions that we have set ourselves are the following: 

a) What are the difficulties that students encounter concerning the first notions of group theory 
(group, subgroup, isomorphism, etc.)?; and 

b) How can these difficulties be explained? 

Let us clarify what we mean by "difficulty," for this word is used in two rather different ways. On 
the one hand, difficulty refers to the quality of things that are difficult, and in this sense difficulty belongs 
to (difficult) concepts. On the other hand, a difficulty may be something that a person has, as in "having 
difficulty in breathing" or "having difficulty in understanding a concept." Of course the difficulty of a 
concept is always relative to an individual: the idea of quotient group, for instance, may be difficult for 
a beginning student or may have been difficult for a 19th century mathematician, but it is easy for 
contemporary algebraists. However, we believe that the notion of difficulty is not totally SUbjective: some 
concepts are "objectively" more difficult than others. In spite of the fact that just about anything can 
appear easy once it has been grasped, there exists something like "intrinsic" difficulty. We consider these 
two viewpoints (difficulty residing with the concept or with the person) to be complementary, and we 
intend to integrate both within our research. Accordingly, our method must be twofold: we must carry out 
a theoretical conceptual analysis of the notions that we wish to study, and we must also make empirical 

1 Parts of this article have been published in French in Lajoie and Mura (1996). 

141 



CMESG/GCEDM Proceedings 1996 

observations of students confronted with these same notions. In the following, we provide a small sample 
of both approaches toward understanding the difficulty of the notion of isomorphism. 

1. A BRIEF CONCEPTUAL ANYLYSIS OF THE NOTION OF ISOMORPHISM 

The notion of isomorphism is central to abstract algebra. Most properties of interest in any algebraic 
theory are those which are invariant under isomorphisms, and in most situations isomorphic systems 
(groups, rings, etc.) are viewed as one and the same object. Historically, the idea of isomorphism was 
instrumental in the transition from "concrete" theories of groups (permutation groups, transformation 
groups, etc.) to a general abstract group theory, a change in perspective that took hold gradually-and not 
without resistance among the mathematical community-over the second half of the 19th century 
(Kleiner, 1986, p. 208-210). 

Let us consider the defmition of this important notion: 

An isomorphism between two algebraic systems is a one-to-one correspondence between the 
underlying sets that preserves the algebraic operations. 

On the basis of this defmition we can already see that we are dealing with a difficult concept, 
combining the set-theoretical idea of one-to-one correspondence (which is rather difficult in itself, since 
such a correspondence must satisfy four distinct but easily confused conditions-namely, that each 
element of the first set is associated with one and only one element of the second set and that each element 
of the second set must likewise be associated with one and only one element of the first set) and the 
algebraic idea of preserving the operations. It should come as no surprise that some students make the 
mistake of concentrating on only one of these two aspects. 

It should be noted that the term "isomorphism" is also used in a more general sense, as in the title 
of the present article, where it does not refer to any specific mapping. Or, if we know that two groups are 
isomorphic, we may speak of "their isomorphism"-meaning, "the fact that they are isomor
phic"-without referring to any specific isomorphism between them. 

Closely related to the concept of isomorphism is the concept of isomorphic systems, that was 
previously mentioned. It is defmed as follows: 

Two algebraic systems are isomorphic if there exists an isomorphism between them. 

In less formal language, it is customary to say that two algebraic systems are isomorphic if they are 
essentially the same-i. e., if they have the same structure, although their elements and operations may 
differ in nature. While this description is probably a salient feature of an expert's image of the concept, 
we cannot assume that beginners will find it more instructive than the formal defmition, for what does it 
mean to be "essentially the same?" What are the "inessential" features that one must learn to disregard? 
Such questions are at the heart of the process of abstraction. 

The formal definition of isomorphic algebraic systems, compared to the definition of isomorphism, 
introduces a new layer of difficulty due to the conditional existential quantifier "if there exists .... " Leron, 
Hazzan and Zazkis (1994, p. 153) have observed that some students act as if they took this phrase to mean 
''there exists a unique function" or ''there is a canonical, algorithmic way to construct a function." We too 
have found evidence of this kind of misinterpretation, together with a few others as well, some of which 
were quite unexpected. Although our main data collection has not yet begun, our preliminary observations 
have already provided some fresh insights into the difficulty of these defmitions. 
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The preliminary data that we have collected so far are of two kinds: exam questionnaires and 
recordings of pilot interviews. We shall present here an example taken from each of these two sources. 

2. EMPIRICAL DATA: EXAM QUESTIONNAIRES 

We have collected over 300 exam questionnaires from ten different exams given in three 
universities. All the exams belong to the ftrst course in abstract algebra that must be taken by students 
enrolled in an undergraduate program in mathematics. Depending on the university, this may be a ftrst
or second-year course. 

We shall discuss here three different responses to one of the exam questions.2 The question read "as 
follows: 

Are the fields (Q, +,.) and (R, +,.) isomorphic? Justify your answer. 3 

Fourteen out of 48 students (29%) answered correctly. The expected answer was that no 
isomorphism between the two ftelds can exist since the set of rational numbers (Q) and the set of real 
numbers (R) have different cardinalities. It may be remarked from the outset that the question is difficult 
on two accounts: ftrst, one must know the result concerning the cardinalities ofQ and R (it is not the kind 
of result one may hope to reconstruct during an exam!), and second, one must think of using it in a context 
(an algebra exam) where one would expect to perform algebraic manipulations rather than make use of 
purely set theoretical considerations. In fact, the students who were asked this question had been taught 
the result concerning the cardinalities ofQ and R and should have been prepared to see it featured on the 
exam. 

This question prompted several interesting responses. Let us look at three examples . 

.Answer #1 
No, because it is not bijective. 
injective: yes, surjective: no (-./2, 11, ... )4 

Answer #2 
The function is unknown, therefore it is not possible to say whether it [the function] is isomorphic 
or not. 

Answer #3 
(Q,+,.) and (R,+,.) "isomorphic?? 
homomorphic + bijective = Isomorphic. 
(Q,+,.) is not isomorphic because addition is not injective. 

f(2,4) = 6 
f(1,5) = 6 andf(2,4) 1tf(I,5) 

(R,+,.) is not isomorphic because addition is not injective. 

2 For further examples, see Lajoie and Mura (1996). 

3 The question and the answers, as well as the interview excerpts that follow, have been 
translated from the French original. 

4 We have strived to reproduce the answers as faithfully as possible, including their layout. 
Each answer is reported in its entirety, without any omissions. 
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What does "it," in the first line of answer #1, refer to? We may surmise that it is the mapping called 
"inclusion," by which each element ofQ is assigned to the same element considered as an element ofR. 

However, the author of this excerpt did not bother to state this, as ifhe or she believed that inclusion 
was the only possible function between Q and R, or the only one that it was necessary to consider in order 
to decide whether the two fields were isomorphic. It appears as if the student concluded that the two fields 
were not isomorphic on the basis of the observation-that inclusion is not surjective (for numbers like../2 
and II lie outside its image). The conclusion is correct, but the reasoning is not, since there are infinitely 
many other mappings from Q to R, and one has to prove that none of them is an isomorphism in order to 
conclude that the two fields are not isomorphic. This student's behaviour is similar to the one reported by 
Leron, Hazzan and Zazkis (1994) which we quoted earlier, and it may be explained by their hypothesis 
that the student believes that there is a unique, canonical function (in this case inclusion) responsible for 
making two systems isomorphic or not. The same behaviour may also be explained by the following 
alternative hypothesis: without necessarily believing that only one (canonical) function must be 
considered in order to decide whether two systems are isomorphic, the student may simply believe that 
the existence of a (reasonable) function that is not an isomorphism is sufficient to show that the two 
systems are not isomorphic. Unfortunately, the data at our disposal do not allow to test these hypotheses. 

In a sense, answer #2 exhibits a point of view opposite to the previous one. Far from taking for 
granted the mapping to be considered, the author of this excerpt asserts that it is impossible to answer the 
question because "the function" is not given. Other students gave similar answers, for example: "it 
depends on the application/that is given," and "I cannot say whether these 2 fields are isomorphic 
because I do not have any function linking them together." These students act as if they believed that 
being isomorphic is not an intrinsic property of a pair of algebraic systems, but a property of two systems 
linked by a particular function. Thus the same two systems could be isomorphic or not depending on the 
function being considered. This conception in turn may be explained by a misinterpretation of the 
conditional existential quantifier in the definition of isomorphic systems: "if there exists an isomorphism" 
may have been replaced by "when there exists an isomorphism" ("when" implying that the two systems 
may at times be isomorphic and at other times not) and understood to mean "when an isomorphism is 
given." 

Answer #3 is rather surprising. It gives the impression that its author was trying to decide whether 
each field was isomorphic in and of itself, independently of its companion, as if being isomorphic could 
be a property of one algebraic system, like being finite, cyclic or commutative. Is answer #3 simply the 
effect of a student panicking during an exam and writing phrases at random? Again, alas, we are unable 
to satisfy our curiosity on the basis of a written questionnaire. 

3. EMPIRICAL DATA: INTERVIEWS 

Interviews offer an opportunity to probe further into students' thinking. We shall present here three 
excerpts taken from an interview with a second-year mathematics student.5 In order to preserve her 
anonymity, we shall call her "Brigitte." At the time of the interview, Brigitte had passed her required 
abstract algebra course with a fmal grade of C+, and was enrolled in a further elective course in group 
theory. She said that she had found the algebra course relatively easy compared to her other courses. 

5 All interviews comprised two sessions of approximately one hour each. They were 
videotaped and transcribed. The excerpts presented here belong to the first session. 
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Excerpt #1 

Caroline: How would you explain to a first-year student what "isomorphic groups" are? 

Brigitte: I don't know what they are. 

Caroline: It doesn't mean anything to you? Nothing at all? 

Brigitte: Maybe, hold on ... An isomorphic group ... means that it is a homomorphism ... which is 
bijective. This means that... It has nothing to do with homomorphism. The homo
morphism isf(a) ... withf(b) ... it belongs to ... it doesn't work, it's no use showing ... 
homomorphism. You have to prove that it is bijective. Maybe if G, if your group is 
commutative, it is isomorphic. Is that a possibility? I don't know. I would put that out 
as a hypothesis. 

Caroline: If your group is commutative, is it isomorphic? 

Brigitte: Because ofbijectivity, because an isomorphism is a homomorphism which is bijective, 
but in the group ... Of course, a group is a homomorphism in itself, unto itself. 

As with the author of answer #3 above, Brigitte spoke of "an isomorphic group," in the singular. For 
her, "being isomorphic" seems to be a property of one structure rather than a relation between two 
structures. Her remarks are as nonsensical as talking about one identical object or one parallel line. This 
exchange with Brigitte has made us realize that familiarity with the ways in which mathematical terms 
can or cannot be used linguistically is part of understanding mathematical concepts. "Isomorphic" belongs 
to a small family of relational attributes, like "identical," "equal," "equivalent," "similar," etc., which 
cannot be applied to objects by themselves, but only to objects in relation to each other. For experts, this 
is almost a linguistic reflex, but obviously it must be acquired, it cannot be taken for granted. Students 
who hear the expression "isomorphic groups" may not be aware that it must be understood "to each 
other," and may treat it as functioning in a way analogous to, say, "cyclic groups." Then, by analogy with 
"a cyclic group," they may (eventually) arrive at "an isomorphic group." In French, the difficulty may 
be compounded by the fact that in spoken language the singular and the plural sound identical, so that one 
may become accustomed to hearing the phrase "groupe(s) isomorphe(s). " 

As can be seen in excerpt #1, Brigitte went on to advance a hypothesis as to what "an isomorphic 
group" might be: she suggested that a commutative group is isomorphic. Where does this astonishing idea 
come from? Notice that only prior to formulating this view, Brigitte had been struggling with the notion 
ofhomorphism and had come to the conclusion that she had to prove that something was bijective. It is 
precisely at this moment that she introduced the notion of commutativity. Possibly, she associated 
bijectivity and commutativity, since both notions imply some kind of reciprocity, symmetry or reflexivity. 

The following dialogue took place earlier in the interview. It opens with the first question that we 
asked Brigitte concerning isomorphic groups. The student had three groups of order four in front of her. 

Excerpt #2 

Caroline: Are some of these groups isomorphic to others? 

Brigitte: Isomorphic ... 

Caroline: [Laughs] You gave me a funny look! 
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Brigitte: 

Caroline: 

Brigitte: 

Caroline: 
Brigitte: 

Caroline: 

Brigitte: 

Caroline 

Brigitte: 

Caroline: 

Brigitte: 

[ ... ] 

Brigitte: 

[Laughs] [ ... ] I'll tell you, the defmition of isomorphic ... It is a homomorph ... An 
isomorphism, no homomorphic ... Now, does isomorphic mean that there are the same 
number of elements? 

Does isomorphic mean that there are the same number of elements? 

I don't remember if that's what it is. 

A little while ago, you told me what an isomorphism was ... 
An isomorphism is a homo ... a bijective homomorphism. Does it mean that isomorphic 
has something to do with an isomorphism? 

Yes. 

A homomorphism is ... I have to fmd a group that's going to be ... homomorphic to the 
other one? 

Ok. You don't remember how ... 

Isomorphism ... 

... how to verify that [two] groups are isomorphic? 

No. 

I'll tell you ... I can tell you whether a homomorphism is an isomorphism, but I can't tell 
you ... 

Caroline: Really? 

Brigitte: To do so, I'll check whether it's bijective, I will say it is bijective, so then it's an 
isomorphism, but I can't tell you what makes two groups isomorphic to one another. 
I don't know. 

Like many students, Brigitte was baffled by the task of deciding whether two groups were 
isomorphic when no mapping was provided. "Having the same number of elements" seems to be the frrst 
idea that occurred to her, maybe simply because this property does not depend on a function, or maybe 
because she remembered this property as having been featured in some theorem or problem involving 
group isomorphism. 

When Caroline mentioned the word "isomorphism," Brigitte asked whether "isomorphic" had 
something to do with "isomorphism," a very surprising reaction, since the two words sound so much 
alike! The next excerpt confrrms that Brigitte indeed had not made the connection between the two ideas. 
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"If one of the groups is multiplicative and the other one is additive, then they are not 
isomorphic." 

[ ... ] 

Brigitte: I don't know what it means to say that [two] groups are isomorphic. [ ... ] You have two 
groups: does he give you a function to show ... with them? When we saw homomorph
ism [in class], we always had a function and it's with that function that we checked 
whether if it was a homomorphism. Here, if you give me two groups, is there a function 
that goes with them? 

Caroline: Let's say that here, you don't have any. 

Brigitte: You don't have any. I wouldn't know what to do. 

Caroline: You wouldn't know what to do. And if you had one? 

Brigitte: Well, that may help... Isomorphic, the way I see it, it means 'almost the same,' 
'almost... alike.' That's what isomorphic makes me think of. 

Caroline: 'Almost the same,' you mean the groups? 

Brigitte: Yes. 

Caroline: Almost the same? 

Brigitte: Now, maybe saying that they're ... Since one is mUltiplicative and the other one is 
additive, it means that they are not the same, for sure they can't be ... they don't have the 
same law and maybe they don't look alike ... 

Caroline: When you say 'almost the same' .,. 

Brigitte: This is what isomorphic brings to my mind ... Isomorphic doesn't make me think of 
isomorphism, it makes me think of ... 'almost identical.' 

In this exchange, Brigitte gave clear evidence of her discomfort with discussing isomorphism when 
no function is given between two groups, an attitude similar to the one expressed by the author of answer 
#2 in the previous section. At the same time she rather inconsistently claimed that for her the idea of 
isomorphic groups did not evoke the idea of isomorphism, but instead made her think of "almost 
identical." By itself, the last assertion could be interpreted as evidence that Brigitte has the right intuitive 
understanding of the concept; however, the rest of the interview, in particular the dialogue reproduced in 
excerpt #1, suggests the opposite. 

4. CONCLUSION 

One of the uncontested results of the research carried out over the past decades in mathematics 
education has been to document the extent and depth of elementary and secondary school students' 
misunderstanding of mathematics. Could a similar phenomenon be observed even among university 
students who have chosen mathematics as their field of specialization? The preliminary results that we 
have reported raise the possibility that the gap occurring between what is taught and what is learned in 
undergraduate algebra may be greater than most teachers suspect. It is sobering indeed to think that some 
students conceive of one isomorphic group alone or of two fields that mayor may not be isomorphic 
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depending on the occasion. We were surprised, to say the least. Was our surprise justified, or should we 
have anticipated that constructing new concepts does not get any easier with age or with experience, and 
that "elementary" concepts are such only from an advanced standpoint? 

Over the course of exchanges with student participants, we were also able to verify another fmding 
of mathematics education-namely, that concept images6 are usually made up of contradictory 
components. Brigitte (and she was not exceptional) managed to verbalize several inconsistencies during 
an interview which lasted but one hour. Different ideas sprang to her mind in response to what we said 
or as the result of her own chains of association. Often she was unaware of the inconsistencies, or, if she 
was, they did not make her overly uncomfortable. Research might be easier if, at a given moment, each 
individual held one clear-cut coherent conception of a given notion, and if we could study and describe 
it as though it were a well-defined object. However, reality is not like that, and we have to live with the 
fuzziness of ... life! 

Finally, our preliminary observations have highlighted the complexity of the notion of isomorphism. 
In particular, both the exam questionnaires -and the interview data indicate how much harder it is to 
determine whether two algebraic systems are isomorphic than to verify whether a given mapping is an 
isomorphism. In the latter case, one has to check whether the mapping is bijective and whether it 
preserves operations, a task which is essentially algorithmic. By contrast, in the first case, one must start 
by choosing between two possible goals: showing that the two systems are isomorphic or showing that 
they are not. Later, should one's efforts prove fruitless, one must decide either to persist or switch to the 
opposite goal. There is nothing to guide these decisions but intuition and heuristic considerations. 
Furthermore, whichever goal is chosen, the task is far from being algorithmic in nature. In order to prove 
that two systems are isomorphic, one generally (but not necessarily) must construct an isomorphism: a 
task for which no recipe is readily available. As to the opposite goal-i. e., proving that two systems are 
not isomorphic-it requires proving that no isomorphism can exist between them-i. e., that no bijection 
can exist or that no bijection preserves operations. This is usually achieved indirectly, by pointing to some 
difference between the systems that could not exist if they were isomorphic. 

In the light of the foregoing analysis, it is not surprising that beginning students confuse the two 
strategies, try to make them fit some algorithmic mold (e. g., a canonical mapping, like inclusion), or 
reject the task completely, declaring it impossible and demanding that a function be given together with 
the two systems. We suggest that students would benefit from extended experience with this kind of task 
and from being made explicitly aware of its nature and intricacy. 
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WHEN SILENCE SAYS IT ALL: AN EXPLORATION OF STUDENTS' 
MATHEMATICAL TALK 

Jo Towers 
University of British Columbia, British Columbia 

The issue of students' mathematical talk is addressed widely in the mathematics education literature 
(Richards, 1991; Pirie 1991). In the current climate of refonn, emphasis is placed on encouraging students 
to discuss mathematics in pairs or groups (NCTM, 1989, 1991). Naturally, researchers hoping to collect 
data on students' mathematical talk may choose to focus their tape-recorders and video-cameras on 
students who are gregarious, or who, at least, can be relied upon to talk. While I have sometimes 
employed these same tactics myself in gathering video-taped classroom data, my attention has 
increasingly been drawn to the quieter students. 

Noddings (1982) has pointed out that we know little about the thought processes of quiet children 
and that maybe they learn quite a lot in group discussions. Perhaps the time has come for us to look harder 
at such children. In this paper, I propose not only that we look harder at them, but that we listen harder 
to them, too. Davis (1996) is leading the call for a movement towards a more participatory, henneneutic 
listening in the classroom, a stance which I suggest also extends to researchers who study those 
classrooms. In lending an ear to (rather than turning the spotlight upon) these quieter students we must 
consider their reasons for choosing to remain silent. 

THE STUDY 

The classroom episode described here was video-recorded as part of my research into students' 
understanding of mathematics. The data were collected in my own classroom in a British high school at 
a time when I was a full-time teacher of mathematics, simultaneously engaged in a study of my own 
practice. Three pairs of Grade 7 and 8 students (corresponding to Grades 6 and 7 in North America) were 
video-taped during several weeks of mathematics lessons, and each student was then video-taped in a one
to-one interview with me at the end of the series oflessons. During the research project, which focused 
on students learning to fonnulate and manipulate algebraic expressions (Towers, 1994), the students were 
introduced to the notion of fonnulating algebraic expressions within the context of perimeter and area. 
The episode described here focuses on the attempts of two students, Kayleigh and Carrie (North American 
Grade 6), to fmd the perimeter of the shape shown in Figure 1. Working together, these students had 
earlier demonstrated their ability to cope easily with such a shape (again with missing values) when all 
the given infonnation was numerical, not algebraic. When presented with this problem, Kayleigh 
immediately noticed that there was a missing value (the horizontal section) and articulated her problem 
as "We need to take c and b off twelve". Their conversation continued: 

C: What happens if we go ten ... 

K: We don't know that length so we don't know what to do. 
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C We do, 'cause that's twelve and then that's like what you said ... oh ... yeah, I see what you 
mean, see what you mean .... oh, it's just... 

K: Well, how are we supposed to know what c .... what the value of c and b is? 

c 

4 
10 

12 

Figure 1 

At this point both girls raised their hands to ask for help. Kayleigh articulated their difficulty to me 
as "We know we've gotto take c and b from the value of twelve to get that [pointing to the horizontal line 
section with the missing value] but how do we write that' cause we don't know the value of c and b to 
take away from twelve". Together we started to work on how that might be done: 

K: So if we make all that twelve there... [pointing to the three upper horizontal sections] 

IT: It certainly is. It certainly is all twelve, isn't it? The c and the b .... 

I believed at this point that Kayleigh had 'seen' that she didn't need to use the b and the c at all, and 
that she simply needed to add two lots twelve, but Kayleigh interrupted: 

K: 

K&C: 

K: 

JT: 

Wait a minute, if we did twelve add ten add four add three is what, 
is .... sixteen .... nineteen .... 

Twenty-nine. 

So if we had twenty-nine add one ... well, let's just say add twelve .. .no, that doesn't make 
sense does it? We need to make ... add another twelve to ... 

Twelve to where? Which bit's twelve? 

I had two reasons for asking this question. Firstly, I wanted to clarify for myself that Kayleigh really 
had realised that the three upper horizontal sections together were equal to twelve units, but also I hoped 
that by insisting that she consider this relationship again,> Kayleigh might this time hear the significance 
of my continued interest in this feature of her explanation. 

K: Along there [pointing to the three upper horizontal sections] 
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C: Along there 'cause if you'd pushed it all up .... 

K: And then we're going to take away c and b. 

At this point I realised that Kayleigh knew that the upper three horizontal sections totalled twelve, 
but was only using this infonnation as a means to work out the missing horizontal value, so I did not push 
the notion any further and we continued to work together to find an expression for the perimeter of the 
shape. 

JT: OK, yes that's fme, I'm happy. 

K: Twelve and twenty-nine .... and twelve and twenty-nine is going to give us our grand total 
which is .... 

C: Forty-one. 

K: Forty-one .... ah, and then you have to take away c and b. So, it's forty-one take away one 
c plus .... [writing 41 - lc + Ib]. Does that make sense? 

JT: Well, you've taken away c but added on b at the moment. [Kayleigh adds brackets to her 
expression to give 41 - (Ic + Ib)] Yeah, that's more like it. Can you see what she's done? 

C: Oh, yeah, yeah. 

At this point we had accounted for all of the sides with numerical values attached, and for the 
horizontal line section with the missing value. I then attempted to bring into play the vertical line section 
with the missing value which seemed to have been overlooked, and the girls quickly accounted for this 
value by adding three on to their current expression to give 41 - (lc + Ib) + 3. Things then became a little 
complicated. Kayleigh believed that everything had been accounted for, but there was still the matter of 
the sides marked b and c on the diagram. 

JT: But you've not added on the c and the b yet, have you? 

C: Yeah! 

K: Yeah, but if we had .... 

JT: No. Hang on, let's think. All you've done is you've added all the number bits that you 
could .... 

K: Oh, right. I see .... 

JT: Including this three [referring to the vertical line section with the missing value] and then 
you've found that missing length [pointing to the horizontal line section with the missing 
value] which is the twelve take away the b and the c .... 

K: So, we need to add .... and now we need to add .... 

JT: So we still need ... 

JT &K: The b and the c. 
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At last everything had been accounted for, and I moved away. The students' fmal expression for the 
perimeter of the shape was: 41 - (Ic + Ib) + 3 + lb + lc. During the one-to-one interviews, both girls 
were presented with the following two diagrams (Figures 2 and 3) and asked to fmd the perimeter of each. 
In a marmer consistent with the method she articulated in class, Kayleigh solved the first of these 
problems by fmding the missing values on each of the sides and then totalling where appropriate to reach 
an answer of 14p + 2Ox. This solution method was inadequate on the second of these problems, and 
Kayleigh initially could not solve it. 

lOx 

7p 

3p 

6x 

Figure 2 Figure 3 

With help, she saw that it was not necessary to know the values of the separate line sections and was 
able to produce an answer of 1 Of + 16k. Carrie, on the other hand, wrote down a correct solution to the 
first problem (20x + 14p) in complete silence and so quickly that an observer is left with the distinct 
impression that she did not work out the missing values, but instead added two lots of lOx and two lots 
of 7p. This impression is further reinforced by her rapid solution to the second problem (16k + 10f), again 
completed in silence, with no hint that she might have found this problem in any way a challenge. 

DISCUSSION 

Issues concerning how I, as the teacher, rather than privileging the more articulate Kayleigh, might 
have listened differently in the classroom episode presented here, and the consequences of that altered 
mode of attending, are addressed elsewhere (Towers, in press). In that paper I critique my own listening, 
and, while acknowledging the difficulties raised for the busy teacher, suggest that teachers must adopt a 
more hermeneutic (Davis, 1996) orientation to listening. My claim is based on the notion that there were 
indications in the classroom interaction which should have alerted me, as the teacher, to the possibility 
of Carrie having an alternative strategy. This, in turn, is based on the assumption that Carrie may have 
been using a more efficient alternative strategy during the interview. As Carrie did not speak while 
solving the problems given in Figures 2 and 3, however, one might raise the question of whether it is valid 
to make (even tentative) assumptions about students' understanding based not on what they say, but on 
what they don 'I say. (It should be noted that although Carrie's silence is compelling, it is not the only 
evidence on which the assumption about her solution method is made. Body language, speed in reaching 
a solution, and other factors also play their part.) However, if we wish to assume that Carrie was using 
the more efficient ahernative strategy in solving the problems given in Figures 2 and 3 (and it is difficult 
to see how she could have solved the problem in Figure 3 so rapidly in any other way), and that she was 
in the process of formulating that strategy while working on the problem given in Figure 1, we must 
consider why she might have chosen not to reveal that strategy earlier. 
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Though Easley and Taylor (1990) suggest that children seem to be able to communicate novel ideas 
to each other more easily than to the teacher, such communication is only possible if there is a "listener 
as well as a speaker" (pirie, 1996, p. 105). The opening dialogue suggests that Carrie tried, and failed, to 
persuade Kayleigh to listen to her. Had Kayleigh been prepared to listen, rather than insisting she be 
heard, both students may have benefited from Carrie's emerging image. 

Carrie may have been further frustrated in her attempts to formulate her method by my continued 
interest in helping Kayleigh to fmd the missing horizontal value. Though Carrie may have seen that search 
as superfluous, the fact that the teacher continued to show interest in it may have been enough to make 
her unsure whether her own method was valid, and therefore unlikely to present it as an alternative. Rather 
than hearing Carrie's silence as a reluctance to speak, however, perhaps, instead, we ought to ask 
ourselves whether she was being silenced by poor listeners. Davis (1994) refers to such listeners as those 
people with whom we are all acquainted who, when we talk with them, give us the uneasy feeling that 
even though we are within the interaction, we are not part of it. I suggest that this was Carrie's experience 
in the classroom episode presented here, a notion supported by observation of Carrie's body language on 
the video-tape. I am thereby fully implicated in Carrie's silencing. Clearly, my mode of listening was not 
hermeneutic (Davis, 1996). With no example to follow, it is little wonder that students like Kayleigh are 
unable to adopt this orientation themselves. It is, therefore, imperative that teachers model the kind of 
listening behaviour they wish to encourage in their students. 

It is also interesting to consider Carrie's acceptance of the expression 41 - (lc + Ib) + 3 + Ib + lc 
as a complete and correct solution to the problem shown in Figure 1. If, as I suggest, Carrie was in the 
process of formulating a more efficient solution method, which in this case would have involved adding 
together two lots often and two lots of twelve, she might have been expected to object to this complicated 
expression as a fmal answer. We should remember, though, that, for the reasons elaborated above, 
Carrie's belief in her method may have been on somewhat shaky ground by this point in time. Not only 
was I continuing to signify the importance of the missing horizontal value by taking a great deal of time 
to make sure it was included in the expression, but also, at the moment that the students produced their 
expression, I moved away. This action seemed to be interpreted by both students as indicating that the end 
had been reached, and they paid no further attention to the expression they had produced. It appears that 
rather than giving them the opportunity to discuss the expression further, my action closed down the 
conversation. If Carrie had any lingering doubts about the completeness of their answer, she seemed to 
take my leaving as a cue that the problem was fmished to my satisfaction. It is important, therefore, to 
realise that what teachers don't say is often as strong a cue for students as what they do say. 

CONCLUDING COMMENTS 

Though I have been somewhat critical of my own practice in analysing this episode, I take heart 
from the fact that however poorly I listened, Carrie still appeared to hold on to her image strongly enough 
to be able to put it to use when left to her own devices in the interview. In doing so she has taught me a 
great deal, and my hope is that this paper will inspire others to listen to the quiet students, for they have 
a great deal to say. 
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Ad Hoc Session 4 

"WHY DOES A LETTER ALWAYS ARRIVE AT ITS DESTINATION?": 
OPENING UP LMNG SPACE BETWEEN PROBLEM AND SOLUTION 

IN MATH EDUCATION 

Susan Gerofsky 
Simon Fraser University, British Columbia 

I am interested generally in opening up our culture's widely-held tacit preconceptions about 
mathematics education. I want to suggest new ways of making our view of mathematics broader and our 
teaching more inclusive. In particular, I am interested about opening up spaces for mathematical 
exploration. 

Mathematics education, as much as it emphasizes the existence of problems, has traditionally 
entailed a race to the end of those problems--an emphasis on solution, on dissolution of the problematic. 
In most mathematics classes, students are presented with a great many problems and required to :fmd a 
solution to each as quickly as possible, then to discard both problem and solution. The rhythm of many 
school mathematics classes, with their repetitive cycle of problemSo/ution, problemSolution, ... does not 
allow for a space to linger in the messiness of the unknown, the paradoxical, the problematic. There seems 
to me to be an impulse towards cleanliness; exclusion of the ambiguous, dreamlike, poetic or uncertain; 
and a wish for fmality, closure, self-containedness, crystallinity. Desire in traditional mathematics 
education seems to be for an immediate closing down of messy living spaces, foreclosure on the 
unknown. 

In this paper I would like to argue for the possibility of an alternative approach, one which allows 
for an opening of exploratory space between problem and solution, for allowing lingering in a space of 
uncertainty and ambiguity as a legitimate practice in math classes. I will frame my argument in terms of 
an idea taken from Jacques Lacan's psychoanalytic critique of culture. 

Lacan's work is well known in France,where it has been an important source for much of the work 
of post structuralist and "new French feminist" philosophers like Helene Cixous, Luce Irigaray, Jacques 
Derrida and others. His work has lately become influential in the rest of Europe and North America as 
well. Lacan's work is a reinterpretation of the most subversive and revolutionary aspects of Freud's 
writings, particularly the concept of the unconscious, and extends the scope of psychoanalysis to a general 
framework for understanding culture. His writing is notable for its densely-written, teasing style full of 
tremendously generative aphorisms, the most famous of which is ''the unconscious is structured like a 
language." 

In this paper, I will focus on another of Lacan's aphorisms, "a letter always arrives at its destination." 
This idea has mUltiple interpretations as elaborated by Lacan and those influenced by him. For Lacan, the 
idea of "the letter" was related to his reading of Edgar Allan Poe's story The Purloined LeUer, in which 
a stolen letter takes on significance according to the relationships of the three people who obtain it, 
although the letters content is unknown to all of them and to the reader. For Lacan, "the letter" came to 
mean the message with no fixed meaning, a purely formal signifier without a stable relationship to any 
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signified, which could be related to the intrinsically meaningless letters of our alphabet as well as to the 
"writing" of the unconscious which does not attach in any fixed way to objects. 

For my purposes, one of Slavoj Zizek's interpretations of "a letter always arrives at its destination" 
was most useful. Zizek, a researcher at the Institute for Social Sciences in Ljubljana, Slovenia writes about 
Lacan's theories in relation to film, popular culture and contemporary politics. In Enjoy Your Symptom! 
(Zizek, 1992) he offers three possible interpretations of Lacan's "letter which always arrives at its 
destination": -

1) -an approach pointing to "imaginary misrecognition," in which one misrecognizes oneself as the 
. addressee of a message and accepts it as having uncannily arrived at the right place (rendered 

succinctly by Barbara Johnson as quoted in Zizek (1992) as "A letter always arrives at its 
destination since its destination is wherever it arrives." (p. to» 

2) a symbolic interpretation, in which "the sender always receives from the receiver his own 
message in reverse form," and "the repressed always returns" (p. 12). At this level of 
interpretation, the letter or message always says more than it intends to, and the unintended 
effects of a signifier cannot be known until its consequences are enacted-that is, ''there is no 
repression previous to the return of the repressed" (p. 14). 

3) a further symbolic interpretation related to the Lacanian concept of the Real-that the "letter 
which always arrives at its destination" can be interpreted to mean that "one can never escape 
one's fate," or ''the symbolic debt has to be repaid" (p. 16). It is this third level of interpretation 
I would like to examine here. 

Zizek says that the letter which always reaches its destination for all of us, the fate which we all must 
meet, is our own death, "the letter which has each of us as its infallible addressee" (p. 21). We are all 
aware of our own mortality from a young age, and in some way we are always aware of the closure, the 
end that no one can evade. Zizek points out the ambiguity of the English word "end", which indicates at 
once "goal" and "annihilation", and relates it to Derrida's emphasis on the lethal dimension of writing, 
where "every trace is condemned to its ultimate effacement" (p. 21). He quotes the story of the Iranian 
president Ali Hamnei, speaking about the death sentence on Salman Rushdie: "the bullet is on its way," 
he said," sooner or later, it will hit its mark." The same could be said for all of us-that as soon as we are 
born, the bullet with our name on it has been shot, and will eventually reach its mark. Yet it is in that 
space between the bullet leaving the gun and reaching its destination that we live. 

I want to draw attention to this living space, between the birth of things and their end, in education 
generally and in mathematics education in particular. A space for living is a space of uncertainty, 
ambiguity and multiple interpretations. Dwelling in this space involves taking chances; it is messy, it 
means messing in with the stuff of life. This messiness can be horrific because it is amorphous. Zizek 
characterizes the Lacanian Real as a source of existential horror, a "grey and formless mist, pulsing slowly 
as if with inchoate life" (Zizek, 1991: 14). Yet contact with the messiness of the Real is also the source 
of possibility and renewal, inspiration and life. 

The emphasis on rapid and repeated closure in mathematics education can be seen as a desire for the 
letter to arrive as quickly as possible at its destination-in Zizek's interpretation, as a wish for some form 
of death. The wish to solve or dissolve problems as quickly as possible comprises the death, at the very 
least, of the problematic, of our interest in the mathematical question, of engagement in making 
mathematics, and perhaps a kind of death wish or wish for closure in some stronger sense. 
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Robert Early (1992) has written about students' accounts of their school mathematical experiences 
in terms of their similarity to images from alchemy. Early uses these alchemical images as a basis for a 
psychoanalysis of student writings, based on the Jungian idea of universal themes in dream imagery. Early 
asked his undergraduate students to write about fantasy images which captured their feelings about a 
recent math problem which had challenged them. Their responses were emotionally highly charged, and 
included images that Early read as parallel to alchemical/psychological processes such as the prima 
materia (the amorphous primal matter, "worthless and despised, yet full of potential" (p. 16), corre
sponding to the Lacanian Real); calcinatio, the burning off of impurities in the prima materia; mortificatio 
, death, shattering or murder; sublimatio, an ascendence of spirit in which a new point of view becomes 
possible; solutio, a dissolution or drowning, sometimes also viewed as a baptism; and coagulatio, the 
coagulation of the prima materia into something hard, fIXed and substantial. Both solutio and coagulatio 
were associated with finding "solutions" to a mathematical problem, as in these examples: 

I felt as though I knew everything, then the exam came. Everything changed, my mind went 
blank ... The sweat began to flow out of me like I was a water faucet turned on full blast. 
Within minutes I was drenched and I felt as though I could swim in my pool of sweat like you 
swim in the pool at the YMCA. Then things changed, I started to panic, the water was getting 
too deep. I couldn't move, I felt as though I was chained to the chair, the water kept rising, it 
wouldn't stop. It was up to my neck and getting higher and higher, faster and faster. The water 
was now over my head and I couldn't breathe. It was like someone was smothering me. I 
couldn't do anything about it, no matter how hard I tried there was nothing I could do. Finally 
it was all over, I was at peace again. I thought I knew everything once more, but little did I 
really know because I was dead. (Early, 1992: 18) 

The image of dissolution is clear here, although it is the student who is being dissolved by the 
problem, rather than the problem solved by the student. Nonetheless, the implication of "death by 
solution" is evident. 

The prima materia of the Real, of the problem, is often seen in these student writings as formless, 
swirling clouds similar to Zizek's "grey and formless mist." Resolution of the mathematical problem often 
takes the form of coagulatio, coagulation of the formless into a hard, tangible object as in the following 
example: 

The fmal try at the problem brought me out of the clouds onto a fIXed place and the equation 
with the correct solution was in my grasp. (Early, 1992: 19) 

Early notes the ultimate futility in seeking an ultimate coagulatio (in a style reminiscent of Lacan's 
insistence that the signifier cannot ultimately attach to the signified): 

Only in the easiest problems would coagulatio seem to represent fmal solutions, by the way. 
To achieve coagulatio a problem must be taken literally on some level, its meaning fixed. This 
limits it, binds it in time. The solution today may not hold tomorrow-either a flaw will be 
discovered or an extension will suggest itself. Solutio, mortificatio or another process may 
follow. (Early, 1992: 19) 

School math classes work at the level of "taking problems literally," fixing meanings and binding 
them in time, specifically to avoid the recurrence of the Real, the ambiguous, the messy space of living. 
The desire to solve or dissolve the problem without allowing a space for play involves shutting down the 
space to think mathematically, to struggle with the ambiguities of the Real, to have patience and courage, 
and to know as a mathematician that no problem is ever more than provisionally solved. 
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How could an idea like "dwelling with ambiguity" be translated in the practices of mathematics 
classes? I think there is no single method that will guarantee this-it is more a question of attitude and 
an approach. But a willingness to keep a problem alive, with all its irritations and uncertainties, should 
make a difference. Mathematical problems, like parables in philosophy, religion and literature, point to 
many possible human worlds, including worlds of lived experience and conceptual, culturally mediated 
worlds of human-made abstractions and metaphor. Ifwe treated math problems as we do parables, for 
example, and attended to their multiple associations, resonances and paradoxes, we could live with the 
problematic and engage with it on many levels simultaneously, before invoking a provisional and 
temporary closure. I suggest that a mathematics education which provided such a living space would be 
far more inclusive and relevant, and allow many more of our students to live with mathematics as well. 

I propose that we begin to play with the messiness that has long been suppressed in school math 
teaching, that we acknowledge that the answers are not usually of much significance to anyone, but that 
interesting questions lead to connections with other questions and to the nature of curiosity and inquiry 
itself. Rather than requiring students to quickly solve sets comprised of many similar problems, I suggest 
we take the time to live with a single problem for days or weeks, keeping open that space that lets us be 
curious and engaged with the problematic without requiring it to dissolve, reach a climax, die. 

Talk about finding the Final Solutions, in mathematics or physics, evokes horrific images in terms 
of genocidal campaigns of contemporary history-and well it should, for such impulses spring from the 
same desire for sterility and ultimately a world of "everything always already dead." 

The dream of an ultimate mathematical solution that would do away with life's messiness and 
uncertainty is at least several hundred years old and is intimately connected with a fantasy of an all
powerful rationality and determinism. It is perhaps best expressed by the eighteenth-century mathemati
cian Laplace, who dreamed of "solving" the universe and time with a single mathematical formula: 

Given for one instant an intelligence which could comprehend all the forces by which nature 
is animated and the respective positions of the beings which, compose it, if moreover this 
intelligence were vast enough to submit these data to analysis, it would embrace in the same 
formula both the movements of the largest bodies in the universe and those of the lightest 
atom: to it nothing would be uncertain, and the future as the past would be present to its eyes. 
(Laplace, quoted in Moritz, 1942: 328) 

Laplace's dream is of a single mathematical formula which, taking account the state of the universe 
in a particular present moment, could extrapolate forwards and backwards in time and know all past and 
future states of the universe. This is the dream of determinism, a dream of a universe "always already 
dead" because it contains no uncertainty, no unpredictability. Mary Midgley, in her book Science as 
Salvation (1992) notes the futility and desperation felt by physicists who accept a completely deterministic 
model of the universe. "The Second Law of Thermodynamics is held to ensure that some day the success 
of the human race [and indeed the entire universe] will end, and this is found intolerable," she writes. 
"Without permanence, said [physicist] Stephen Weinberg ... 'the more the universe seems comprehensi
ble, the more it also seems pointless.' [Another physicist, Freeman Dyson,] like Stephen Weinberg, thinks 
that the prospect of an eventual end to human life, however distant, is so awful as to deprive life now of 
all meaning." (Midgley, 1992: 148,21) These physicists have felt driven to postulate a rather absurd 
technologically-achieved immortality for human intelligence, supposedly through transferring 
disembodied human mind to clouds of interstellar dust after the apocalypse. Midgley writes, " Instead of 
asking why Weinberg took the meaning of human life to depend wholly on its going on for ever, his 
colleagues therefore looked for ways of proving that in fact it will go on for ever." (Midgley, 1992: 148 -
149) A letter always reaches its destination, even a letter addressed to the whole of our universe. Yet it 
seems that to deny the living space between the sending of "the letter" and its destination, to fix one's 
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efforts on reaching an end as quickly as possible, is to deny life in all its wonder and horror. Fixity on 
ends can become a kind of death wish, a suicide, if not literally than at least the death of interest, 
engagement, pleasure, vitality. 

Some students express an appreciation of traditional mathematics classes for just these 
qualities-they are tidy and orderly, predictable and closed off from the world. One high school math 
teacher told me that she had gone into mathematics teaching precisely because there was a "right answer" 
to every problem in math, unlike those messy humanities subjects like English literature and history. 
Undeniably there is some comfort to students in escaping the messy, chaotic, often incomprehensible 
world for an hour of tidy rationality, right answers, clear rules and closure in math class. Such comfort 
is closely related to the satisfaction some people feel in completing crossword puzzles or jigsaw 
puzzles-although the puzzle may be meaningless in itself, and will be discarded as soon as it is done, 
there is a strong urge for its achievement, its completion, its closure. Without denying a human need for 
the occasional tidy moment or "properly" completed task, I question the identification of a truly protean 
field like mathematics, founded on paradox and dealing in such notions as various-sized infmities, 
multidimensional spaces and non-Euclidean geometries, with such a closed view. 
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WHAT THE "FAILURE" OF THE WHOLE LANGUAGE MOVEMENT 
CAN TELL US ABOUT THE DESIGN OF A WHOLE MATH CURRICULUM 

Peter Taylor 
Queen's University, Ontario 

I incorporate in this summary my ideas from my brief presentation, as developed and sharpened by 
the excellent discussion that followed. 

Our starting point was an article in the current Globe and Mail by Robyn Sarah on the failure of the 
whole language curriculum. Two of the points made in the article were: 

1) That the amount and the level of the student's reading was less than it might be, and 
consequently the quality of her writing suffered. In effect, the student was given pen and paper 
and told to write from the heart, and was praised for whatever she produced. 

2) That her technical writing skills were poor, such skills as grammar, sentence structure, 
coherence, and flow were not given their due place in the classroom. 

In short, these criticisms concern the importance of (1) a high artistic standard in the curriculum, and 
(2) attention to technique. These problems may not have been as serious or as widespread as the Globe 
article suggested, but they do serve as timely warnings to the redesign of the mathematics curriculum, and 
I will say more about each of them. 

1) In both literature and mathematics, the curriculum should be based on what I might call works 
of art-problems which embody what is best in the sUbject-and the student must make a 
serious study of these. This does not mean that the material need by unnecessarily sophisticated, 
though I believe that a higher level of sophistication is possible than is currently found in 
mathematics curricula. [Here, literature has got it right-the students study works which are 
technically beyond most of them.] Indeed, "art" seems to nie to be conspicuously missing from 
most school math texts. Fundamentally, art is really the only way to convince the student that 
what he is studying is important, and to encourage him to produce works of high quality himself. 
In the first instance, the material should be chosen without regard to technical skills, in that it is 
the art that must drive the curriculum. 

2) Given (1), the art will provide a context for the technical skills, which will encourage the student 
(and the teacher!) to foster them with the care and reverence they deserve. They must be seen 
as gifts that will allow us to develop our power as artists. They should be developed as needed, 
but when they arise they must be thoroughly rehearsed. Technique is certainly important, as is 
memory work and drill, but it is not nearly as important as is commonly supposed to be 
comprehensive or to cover technical skills "in the right order." In an art-based curriculum, the 
skills get their context not from their place in a hierarchy of techniques, but from the art which 
engendered them. This gives them meaning and allows them to be effectively used in the future. 
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The idea of a whole math curriculum is quite radical, and we are in fact a long way from it, 
especially in the senior grades and introductory undergraduate years. The first requirement is perhaps for 
new teaching and learning materials which present a selection of problems (like an anthology) and 
interpret or "fashion" them in a way that allows them to "work" in a classroom. That presents a challenge 
to each of us individually, and to CMESG as a group. 
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CuruuCULUM CHANGES IN THE ATLANTIC PROVINCES 

Curriculum Panel 

What forces are driving mathematics curriculum? In the Atlantic Provinces it is politics, politics, 
politics that is driving towards a common curriculum. There have been numerous statements from 
politicians about visions of a "world class" curriculum and careful avoidance of the realities of the 
complexities of developing and implementing curriculum. There have been many statements about the 
benefits of this common curriculum such as "the outcomes based approach improves learning", "common 
assessment in the Atlantic Provinces will improve learning" and "common curriculum will cost each 
province less." 

Without discussion of these statements, I will take a few minutes to give an overview of what is 
happening in the move to a common mathematics curriculum in the Atlantic Provinces. 

The Maritime Provinces have been part of many cooperative education projects since 1982 with the 
establishment of the Maritime Provinces Education Foundation (MPEF). Most of these projects were 
focused on the development of resources to support courses and programs-not on the development of 
a common curriculum. In 1993, the Ministers of Education of the Maritime Provinces recommended that 
the provinces develop common curriculum in core areas (language arts, mathematics, and science) as well 
as common assessment in these areas. This recommendation was approved by the premiers in April 
1994. The clearly stated goaJ of the premiers was to develop "world class" curriculum. Newfoundland 
and Labrador became full members of the group in 1995. This group is now the Atlantic Provinces 
Education Foundation (APEF) with common curriculum in mathematics being developed at three levels 
(P-6,7-9, 10-12). All three levels are under development at the same time with each level being developed 
by a different province. There are very short time lines given for program development, piloting and 
implementation. These time lines severely limit the opportunites for piloting and for curriculum changes. 
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At the same time as the beginning of the APEF mathematics curriculum development, there have 
been school board amalgamation, the elimination of the positions of board mathematics consultants and 
mathematics department heads in many areas. 

For most teachers of mathematics in these provinces the APEF common curriculum development 
has added one more layer of confusion to the layers of piloted MPEF mathematics units, partially 
implemented recently published provincial mathematics guides and to the partially completed adoption 
of new mathematics textbooks and support materials. 

Teachers report that they feel left out of the APEF common curriculum initiatives and that the rush 
to complete the mathematics curriculum development and start APEF assessment leaves no time for 
teachers to have input into the common curriculum. 

The final straw for many teachers is the news of a Pan-Canadian common mathematics curriculum. 
Teachers report that they feel confused, discouraged and see little hope of help or support. Many have 
decided to close their classroom doors and wait till it all goes away. 

There are several possible roles for CMESG in the move to a Pan-Canadian curriculum. But is 
CMESG ready to playa role in curriculum leadership? Do we want a leadership role, a seat at the table 
where the decisions about the Pan-Canadian mathematics curriculum will be made or do we want to 
respond to the initiatives with one strong CMESG voice? CMESG has a national face that can 
legitimately address issues related to the Pan-Canadian common mathematics curriculum. 

Panelist: Harry White 

THE QUEBEC CURRICULUM PERSPECTIVE 

For this panel, I will concentrate my talk on the following points: 

1. System of Education (Quebec) 
2. Reform 
3. Comments about the statement (see the program) 
4. Alternate ways 

1. System of Education (Quebec) 

For the benefit of some persons who are not familiar with the system of Education in Quebec, I 
would like to give an overview of our system of Education. The length for the Primary level is six years. 
Afterwards, the Secondary level has a duration of five years. We call each year as secondary I, secondary 
II, and so on. It is possible for a student to go for a vocational training at the end of the secondary school 
(e.g., mechanics, hairdressing, ... ). I would like to mention that mathematics is compulsory at the primary 
and secondary levels. 

After the secondary, there is the College level (we say «cegep .. ). It is two years for the students who 
plan to go to university and three years for the ones who take a technical program. The University level 
requires a minimum of three years for a baccalaureate degree. A master's degree requires a minimum of 
45 credits, and doctoral studies a minimum of 90 credits. 

168 



Curriculum Panel 

2. Reform 

The primary level has the same programs (content) since 1980-81, however, programs are being 
revised and new programs should take place in the near future. At the secondary level, it is basically the 
same content since 1980-81. Modifications are in progress with revisions mainly concerning methods 
of teaching and learning (re: NCTM's Standards). 

For the college level, there is no official (Le., coming from the Ministry of Education) changes for 
the content but the calculus reform in many places is about application. At the university level, there is 
an important reform concerning the primary and secondary programs for pre-service teachers. The new 
programs require four years instead of three and the pre-service teachers for the secondary level must have 
two specialities (e.g., mathematics and biology). During their studies, students will do about one year of 
teaching practice in schools. 

Essentially, the orientation of the school mathematics reform is based on constructivism, solving 
problems and new technologies. 

3. Comments About the Statement (see the program) 

"The agenda driving the development of the mathematics cu"iculum, K to post-secondary, all 
across the country, seems to be one generated by ... 

a) governments to meet election promises, 

It seems to me that the politicians in Quebec don't do any election promises about mathematics 
education. Maybe this is not a politically profitable issue. On the other hand, a vast public 
consultation about education is in process. We call this operation Etats generaux. Many groups 
are heard at this forum and it's quite difficult to say presently what will be the consequence on 
the development of the mathematics curriculum but it might have an influence regarding what 
it should be. 

b) business and industry in the pursuit of the holy grail "applicability," 

This assertion might be true for some technical options at the college level and also in specific 
programs (e.g., engineering) at the university but it doesn't seem to be the case for school 
mathematics (primary and secondary). 

c) universities and colleges as an "elitist" selection mechanism of those capable offurther studies 
in mathematics and technologies, 

In Quebec, the general tendency is the opposite of this elitist selection mechanism. There is some 
social pressure for fewer prerequisites in admission to programs. For example, in some 
universities the student population interested in studies in pure mathematics and in the sciences 
is stable or decreasing (it happens ... ),therefore, it becomes awkward to require more prerequisites 
in such a case. 

d) provincial mathematics associations as a means of protecting the jobs of secondary maths 
teachers. " 

There are four mathematics teachers' associations in Quebec: APAME (Association des 
promoteurs de l'avancement de lit mathematique a l'eIementaire), GRMS (Groupe des 
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responsables en mathematique au secondaire), AMQ (Association mathematique du Quebec), 
and QAMT (Quebec Association of Mathematics Teachers). These associations don't have any 
influence on jobs which depend on a provincial collective agreement. Their interests concern the 
improvement of in-service programs for teachers and the conditions of teaching and learning. 

4. Alternate Ways 

This brief analysis of each premise of the statement lets me believe that overall this statement does 
not apply very much to the situation in Quebec. But the context is not so simple. We are confronted with 
this choice concerning the agenda driving the development of the mathematics curriculum: we wait for 
administrative directives or we take an active part of our professional development in being more 
involved in the mathematics teachers' associations. For instance, in Quebec, there is a regrouping of the 
mathematics associations called CQEM (Conseil quebecois de l'enseignement des mathematiques). This 
group is consulted by the government when a change is to be made and conversely, this group can do 
some lobbying when modifications are needed. Grouping strengths together is essential if we want to be 
involved in the decisions. What is the role for the CMESG I GCEDM ? This will be the focus of the 
general discussion. 

Panelist: Gary Flewelling 

WHO DETERMINES THE MATH AGENDA IN YOUR PROVINCE? 

In Ontario, I believe it is illegal to possess the answer to that question. If it is legal then I'm pretty 
sure that trafficking in it is not. Quite honestly, I have no idea who determines the math agenda in our 
province (I asked my colleagues and they don't know either). I think the math agenda just happens and 
everybody is surprised when it does. 

I have no idea, for example, just how influential the CMEC (Council of Ministers of Education) is 
in influencing the agenda in this province. Nor do I know how significant is the influence .of indifferent 
or disappointing results achieved on large scale assessment initiatives like the Second and Third 
International Mathematics and Science Studies. Western and Atlantic curriculum initiatives have, or will 
have some influence on our math agenda. The NCTM Standards, at least the spirit of them, seem to be 
having a big impact on the mathematics reform agenda in this province. 

Typically, the Ministry of Education gets the ball rolling with the (often hasty, often ad hoc) 
publication of a curriculum policy document, such as, The Common Curriculum: Policies and Outcomes, 
Grades 1-9, 1995, or the assessment document, Provincial Mathematics Standards, 1995 (insufficient 
time, planning, and resources in the construction and implementation of such documents blunting their 
effectiveness). In anticipation of such documents, provincial mathematics organizations, such as the 
Ontario Association of Mathematics Educators (OAME) and The Ontario Mathematics Coordinators 
Association (OMCA) playa significant role in setting the mathematics agenda with the proactive 
publication of documents, such as, Focus on Renewal of Mathematics Education, 1993. This document, 
for example, an Ontario interpretation of the NCTM Standards, has significantly influenced the contents 
of the Provincial Mathematics Standards. (More often though, these provincial organizations are asked 
by the Ministry to send experts, in ad hoc fashion, to help fix flawed, hurriedly-constructed policy 
documents.) 
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More and more the mathematics agenda in this province will be influenced by provincial assessment 
initiatives, especially those developed or managed by the Education Quality and Accountability Office. 
Hopefully, in the future, more and more of the agenda for math reform will also be set by groups, such 
as, the Fields Institute Mathematics Education Forum and The National Mathematics Education Institute. 

Panelist: Florence Glanfield 

THE ALBERTA CURRICULUM PERSPECTIVE 

In the fall of 1993 the ministers of education from the four western provinces and two territories met 
together and signed the Western Canada Protocol for Basic Education. The purpose of signing this 
protocol was for the ministries of education in each province and territory to work together in developing 
and implementing curriculum. The mathematics curriculum was the frrst curriculum to be considered. 

In August, 1994, a group of approximately 60 teachers and ministry representatives met in Regina 
to put together the first draft of a Western Canada mathematics program for kindergarten to grade 12. The 
intent was to look at content from a kindergarten to- grade 12 perspective. Looking at the mathematics 
curriculum from this perspective was not what had been practiced previously in Alberta where there 
would be a curriculum development process for grades 1 to 6; one for grades 7 to 9; and then one for each 
of the three programs in grades 10, 11, and 12. The work of that committee included looking at how 
number and number operations; shape and space; patterns and relations; and statistics and probability were 
developed throughout the thirteen years of schooling. The fmal version of the kindergarten to grade 9 
program was completed in June, 1995 and the grades 10 to 12 program was completed in June, 1996. 

I was working at the Alberta ministry of Education at the time that this protocol came to be and was 
able to participate in the committee work in August, 1994. There was much negotiation around the tables 
that week-negotiation around what it means to teach mathematics, what experiences students should 
have to learn mathematics, and what outcomes students should have to demonstrate that they have learned 
the mathematics. I was reminded at that time of all the different voices that are involved in creating drafts 
of curricula documents. The direction of conversations in our groups were dependent on each participant's 
own experiences with teaching and learning mathematics and with mathematics itself. The manner in 
which topics were presented for inclusion in the curriculum again were influenced by each participant. 

In Alberta, there were several other voices that provided input and critique to draft versions of the 
document. The voices of our colleagues in mathematics and mathematics education departments at post
secondary institutions, representatives of business and industry, parents, and of course numerous other 
teachers. Ultimately, although all the voices might have had a chance to provide input and critique in the 
development of the document, the ministry consultants from the six jurisdictions wrote it. So in the 
interpretation of the committee work, the ministry consultants brought their own beliefs about teaching 
and learning mathematics and about mathematics into the picture. 

Although there may have been several voices in the development of this curriculum document, it 
is the voice of the teacher that is heard loudest by students. It is the individual teacher's perspective of 
teaching and learning mathematics and of mathematics itself that resonates in their voice-the voice that 
is shared with students. 

The Western Canada Protocol mathematics program is currently being implemented in Alberta: 
grades 7 and 9 in the 1996 - 97 school year, kindergarten to grade 6 and grade 8 in the 1997 - 98 school, 
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and grade lOis scheduled for the 1998 - 99 school year. Implementation is another issue that needs to be 
considered. 
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APPENDIX A 

WORKING GROUPS AT EACH ANNUAL MEETING 

1977 Queen's University, Kingston, Ontario 
Teacher Education programmes 
Undergraduate mathematics programmes and prospective teachers 
Research and mathematics education 
Learning and teaching mathematics 

1978 Queen's University, Kingston, Ontario 
Mathematics courses for prospective elementary teachers 
Mathematization 
Research in mathematics education 

1979 Queen's University, Kingston, Ontario 
Ratio and proportion: a study of a mathematical concept 
Minicalculators in the mathematics classroom 
Is there a mathematical method? 
Topics suitable for mathematics courses for elementary teachers 

1980 Universite Laval, Quebec, Quebec 
The teaching of calculus and analysis 
Applications of mathematics for high school students 
Geometry in the elementary and junior high school curriculum 
The diagnosis and remediation of common mathematical errors 

1981 University of Alberta, Edmonton, Alberta 
Research and the classroom 
Computer education for teachers 
Issues in the teaching of calculus 
Revitalising niathematics in teacher education courses 

1982 Queen's University, Kingston, Ontario 
The influence of computer science on undergraduate mathematics education 
Applications of research in mathematics education to teacher training programmes 
Problem solving in the curriculum 

1983 University of British Columbia, Vancouver, British Columbia 
Developing statistical thinking 
Training in diagnosis and remediation of teachers 
Mathematics and language 
The influence of computer science on the mathematics curriculum 

1984 University of Waterloo, Waterloo, Ontario 
Logo and the mathematics curriculum 

175 



CMESG/GCEDM 1996 Proceedings 

The impact of research and technology on school algebra 
Epistemology and mathematics 
Visual thinking in mathematics 

1985 Universite Laval, Quebec, Quebec 
Lessons from research about students' errors 
Logo activities for the high school 
Impact of symbolic manipulation software on the teaching of calculus 

1986 Memorial University of Newfoundland, St, John's, Newfoundland 
The role offeelings in mathematics 
The problem of rigour in mathematics teaching 
Microcomputers in teacher education 
The role of microcomputers in developing statistical thinking 

1987 Queen's University, Kingston, Ontario 
Methods courses for secondary teacher education 
The problem of formal reasoning in undergraduate programmes 
Small group work in the mathematics classroom 

1988 University of Manitoba, Winnipeg, Manitoba 
Teacher education: what could it be 
N aturallearning and mathematics 
Using software for geometrical investigations 
A study of the remedial teaching of mathematics 

1989 Brock University, St. Catharines, Ontario 
Using computers to investigate work with teachers 
Computers in the undergraduate mathematics curriculum 
Natural language and mathematical language 
Research strategies for pupils' conceptions in mathematics 

1990 Simon Fraser University, Vancouver, British Columbia 
Reading and writing in the mathematics classroom 
The NCTM "Standards" and Canadian reality 
Explanatory models of children's mathematics 
Chaos and fractal geometry for high school students 

1991 University of New Brunswick, Fredericton, New Brunswick 
Fractal geometry in the curriculum 
Socio-cultural aspects of mathematics 
Technology and understanding mathematics 
Constructivism: implications for teacher education in mathematics 

1992 ICME-7, Universite Laval, Quebec, Quebec 

1993 York University, Toronto, Ontario 
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New ideas in assessment 
Computers in the classroom: mathematical and social implications 
Gender and mathematics 
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Training pre-service teachers for creating mathematical communities in the classroom 

1994 University of Regina, Regina, Saskatchewan 
Theories of mathematics education 
Preservice mathematics teachers as pruposefullearners: issues of enculturation 
Popularizing mathematics 

1995 University of West em Ontario, London, Ontario 
Anatomy and authority in the design and conduct of learning activity 
Expanding the conversation: trying to talk about what our theories don't talk about 
Factors affecting the transition from high school to university mathematics 
Geometric proofs and knowledge without axioms 

1996 Mount Saint Vincent University, Halifax, Nova Scotia 
Teacher education: challenges, opportunities and innovations 
Formation a I'enseignement des mathematiques au secondaire: nouvelles perspectives et detis 
What is dynamic algebra? 
The role of proof in post-secondary education 

177 





1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

AJ. Coleman 
C. Gaulin 

T.E. Kieren 

G.R. Rising 
A.1. Weinzweig 

J. Agassi 
lA. Easley 

C. Cattegno 
D.Hawkins 

K. Iverson 
l Kilpatrick 

P.J. Davis 
G. Vergnaud 

S.1. Brown 
P.J. Hilton 

A.J. Bishop 

L. Henkin 

H. Bauersfeld 

H.O. Pollak 

R. Finney 
A.H. Schoenfeld 

P. Nesher 
H.S. Wilf 

C. Keitel 
L.A. Steen 

Appendix B 

APPENDIXB 

PLENARY LECTURES 

The objectives of mathematics education 
Innovations in teacher education programmes 
The state of research in mathematics education 

The mathematician's contribution to curriculum development 
The mathematician's contribution to pedagogy 

The Lakatosian revolution* 
Formal and informal research methods and the cultural status of school 
mathematics* 

Reflections on forty years of thinking about the teaching of mathematics 
Understanding understanding mathematics 

Mathematics and computers 
The reasonable effectiveness of research in mathematics education* 

Towards a philosophy of compuation* 
Cognitive and developmental psychology and research in mathematics 
education* 

The nature of problem generation and the mathematics curriculum 
The nature of mathematics today and implications for mathematics 
teaching* 

The social construction of meaning: a significant development for 
mathematics education?* 
Linguistic aspects of mathematics and mathematics instruction 

Contributions to a fundamental theory of mathematics learning and 
teaching 
On the relation between the applications of mathematics and the 
teaching of mathematics 

Professional applications of undergraduate mathematics 
Confessions of an accidental theorist* 

Formulating instructional theory: the role of students' misconceptions* 
The calculator with a college education 

Mathematics education and technology* 
All one system 
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1989 

1990 

1991 

N. Balacheff 

D. Schattsneider 

U. D'Ambrosio 
A. Sierpinska 

J .J. Kaput 
C. Laborde 

Teaching mathematical proof: the relevance and complexity of a social 
approach 
Geometry is alive and well 

Values in mathematics education* 
On understanding mathematics 

Mathematics and technology: multiple visions of multiple futures 
Approches tMoriques et methodologiques des recherches Francaises en 
didactique des mathematiques 

1992 ICME-7 

1993 G.G. Joseph What is a square root? A study of geometrical representation in different 
mathematical traditions 

J Confrey Forging a revised theory of intellectual development Piaget, Vygotsky 
and beyond* 

1994 A. Sfard Understanding = Doing + Seeing? 
K. Devlin Mathematics for the twent-frrst century 

1995 M. Artigue The role of epistemological analysis in a didactic approach to the 
phenomenon of mathematics learning and teaching 

K. Millett Teaching and making certain it counts 

1996 C. Hoyles Beyond the classroom: The curriculum as a key factor in students' 
approaches to proof 

D. Henderson Alive mathematical reasoning 

*These lectures, some in a revised form, were subsequently published in the journal For the Learning of 
Mathematics. 
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APPENDIXC 

PROCEEDINGS OF ANNUAL MEETINGS OF CMESG/GCEDM 

Past proceedings of the Study Group have been deposited in the ERIC documentation system with call 
numbers as follows: 

Proceedings of the 1980 Annual Meeting .................... ED 204120 

Proceedings of the 1981 Annual Meeting .................... ED 234988 

Proceedings of the 1982 Annual Meeting .................... ED 234989 

Proceedings of the 1983 Annual Meeting .................... ED 243653 

Proceedings of the 1984 Annual Meeting .................... ED 257640 

Proceedings of the 1985 Annual Meeting .................... ED 277573 

Proceedings of the 1986 Annual Meeting .................... ED 297966 

Proceedings of the 1987 Annual Meeting .................... ED 295842 

Proceedings of the 1988 Annual Meeting .................... ED 306259 

Proceedings of the 1989 Annual Meeting .................... ED 319606 

Proceedings of the 1990 Annual Meeting .................... ED 344746 

Proceedings of the 1991 Annual Meeting .................... ED 350161 

Proceedings of the 1993 Annual Meeting .................... Not yet assigned* 

Proceedings of the 1994 Annual Meeting .................... Not yet assigned* 

Proceedings of the 1995 Annual Meeting .................... Not yet assigned* 

There was no Annual Meeting in 1992 because Canada hosted the Seventh International Conference on 
Mathematical Education that year. 

*These Proceedings have been recently submitted to ERIC. 
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