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Introduction 

INTRODUCTION 

Je suis tres fier, Ii titre de president du GCEDMICMESG, d'ecrire quelques mots en guise 
d'introduction Ii ces Actes de la rencontre annuelle de 1997. Fier, car une fois de plus vous avez entre les 
mains un document d'une grande qualite materielle, grace au labeur de la directrice de publication,Yvonne 
Pothier-grands mercis, Yvonne! Fier aussi, car ces Actes renferment des textes varies et de grande 
qualite, dont plusieurs sauront sans doute susciter votre interet et favoriser votre reflex ion; n'hesitez pas 
a parcourir les pages qui suivent, vous y trouverez des tresors--et merci Ii tous les auteurs qui ont 
contribue au present document. Fier enfin, car jetant un coup d'oeil Ii la tablette de rna bibliotheque OU 
reposent les differents Actes des rencontres du GCEDMICMESG produits au til des ans, je ne peux 
m'empecher de me rejouir Ii la fois devant I'apport de notre groupe Ii la reflexion sur I'enseignement et 
I'apprentissage des mathematiques, et devant Ie chemin que nous avons parcouru ensemble depuis 1977, 
annee de la rencontre qui, dans la foulee du rapport Coleman sur les sciences mathematiques au Canada, 
s'est tenue Ii I'Universite Queen's et a mene Ii la formation du GCEDMICMESG. 

Je ne reprendrai pas ici Ie recit des origines du GCEDMICMESG, exposees par David Wheeler dans 
Ie document Les recherches en cours sur l'apprentissage et l'enseignement des mathematiques au Canada, 
publie en 1992 Ii I'occasion d'ICME-7, non plus que la presentation de la "philosophie" sur laquelle repose 
I'organisation de nos rencontres annuelles, presentation faite par mon predecesseur, Sandy Dawson, en 
introduction aux Actes des deux dernieres annees. Je voudrais cependant mentionner que, bien que nous 
formions un groupe relativement petit, nous pouvons etre fiers du succes de notre activite principale, les 
rencontres annuelles. La plupart des participants s'entendent pour vanter Ie cadre assez unique de travail 
et de collaboration foumi par ces rencontres. Un document tel celui que vous tenez presentement entre 
vos mains se veut un peu Ie reflet de ces rencontres-sans pretendre, bien sur, recreer I'extraordinaire 
climat d'echanges et d'interaction qui peut y regner. 

The annual meetings of CMESG/GCEDM are very successful events, much valued by participants 
because of their organizational features. They allow, through the working groups structure, in-depth 
treatment of specific themes on which a small group of participants can do "real work" in thinking and 
reflecting over an extended period of time. They allow, as well, through various semi-formal or informal 
sessions, the generation of ideas and discussion around developing research projects. They finally provide 
for each participant an exceptional forum for exchanges of ideas and interactions with others, especially 
with the two plenary speakers who are, in this respect, bona fide participants, working alongside other 
members throughout the meeting. All these aspects, and others, are crucial to the success of our meetings 
and to the exceptional working atmosphere encountered there. This can hardly be conveyed through 
Proceedings such as the ones you are holding in your hands now, but maybe those who know about the 
group will fmd therein a little bit of the spirit of our annual gatherings. 

En plus du materiel habituel des Actes du GCEDMICMESG, ce volume renferme un document 
remarquable sur lequel j'aimerais attirer votre attention: Ie texte de la conference donnee par notre 
collegue Thomas E. Kieren lors de la rencontre de 1997 a I'occasion de son depart Ii la retraite. Acteur 
majeur en didactique des mathematiques au plan international depuis de nombreuses annees, Tom figure 
parmi les membres-fondateurs de notre groupe et iI en est I'un des anciens presidents (et Ie principal pilier 
d'une activite fondamentale de notre groupe, la "tournee des pizzas"). Son texte fournit un temoignage 
exceptionnel sur I'evolution de certains volets de la recherche en didactique des mathematiques au cours 
des deux demieres decennies et iI met en lumiere les liens entre ses propres travaux et les activites du 
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GCEDMiCMESG. La rencontre de 1997 a d'ailleurs permis aux membres du GCEDM/CMESG, au cours 
d'un diner memorable, de temoigner Ii Tom leur reconnaissance et leur admiration. 

These Proceedings provide a record of the various scientific activities of our 1997 Annual Meeting 
which took place at Lakehead University, from May 23 to 27. As such, they add to the collective 
contribution of CMESG/GCEDM to mathematics education and they offer a link with future work of our 
group. 

Bernard R. Hodgson 
President (1997-98) 
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Plenary Lecture 1 

Plenary Lecture 1 

WHAT DOES IT REALLY MEAN TO TEACH MATHEMATICS 
THROUGH INQUIRY? 

Raffaella Borasi, University of Rocbester, New York 

1. INTRODUCTION 

To start with, let me briefly address the question "Why is it worthwhile to engage in a discussion 
about 'What it means to teach mathematics through inquiry'?" I think it is important to clarify that my 
interest here is not in engaging in a philosophical disquisition about the term "inquiry" so as to detennine 
the "correct" definition for that tenn, nor to come to some consensus on such definition. Rather, my 
interest stems from the concern that the consensus surrounding refonn documents such as the NClM 
Standards (NC1M, 1989, 1991, 1995) may have led us to believe that there is a strong consensus in the 
field of mathematics education today about not only the need for radical school refonn, but also the 
direction that such refonn should take. While I would agree with the first point, I am not sure about the 
second. Indeed, it is my experience that too many people today use the same tenns-such as student
centered, constructivist or inquiry-based instruction-with very different interpretations; so different, in 
fact, that one begins to wonder if we are trying to achieve the same ends when engaging in school 
mathematics refonn. 

I know that I am not alone in this feeling-for example, in a paper she recently prepared for the 
National Science Foundation, Deborah Ball (1997) identifies the "vagueness" of the vision for school 
mathematics promoted by the NClM Standards as one of the main challenges of putting into practice the 
refonn called for by these documents. More specifically, she wrote: 

The air is filled with words about which' there has been little discussion-problem solving, 
understanding, meaningfulness, autonomy, authenticity, inquiry . ... Explicating the vision 
more fully is certainly an important challenge of the refonn. And it would help to have more, 
and better specified, articulations of the ideas and their mterpretations. (Ball, 1997, p.80) (my 
emphasis) 

The ultimate goal of my presentation has been to contrIbute to the kind of articulation called for by 
Ball. My plan for achieving this goal was to begin by articulating my own vision of what should happen 
in mathematics classes-what I will refer to as a "h1Jtrlanistic inquiry approach to mathematics 
instruction"-and then inyite the participants to do the same in the discussion session that traditionally 
follows the two main lectures at this conference. . 

Let me further clarify, however, that my goal has never been to "convince" anyone of the 
appropriateness of my own interpretation of what it means to teach mathematics through inquiry, nor to 
come to a consensus even just within this group of mathematics educators about what should be the 
"correct definition" of such an instructional approach. Rather, I hope that by examining in depth some 
specific examples each of us can all come to make more explicit our own vision for the kind of instruction 
that we would like to offer to mathematics students (no matter how we end up calling it!) as well as the 
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reasons supporting it. I believe that this, in tum, could contribute more generally to the need for 
identifying the characteristics of mathematics instruction that we would like to promote in schools. 

With this goal in mind, my presentation at the conference consisted of three main parts: 

1. a first brief articulation of the theoretical basis for my interpretation of "teaching mathematics 
through inquiry"-which, given the time constraints, was limited to the identification of the key 
theoretical assumptions informing my work; 

2. an illustration of that approach "in action", achieved by showing a 45 minutes video-almost in real 
time-of an inquiry experience involving the mathematical topic of tessellation; note that this 
experience was intended to play the role of a shared example that the group could then examine in 
depth and refer to as an illustration of, or in contrast to, specific characteristics of mathematics 
teaching that would be identified and discussed in the course of the lecture and its follow-up 
discussion; 

3. a first commentary on that instructional experience, intended to highlight the characteristics of 
''teaching mathematics through inquiry" that I thought that example illustrated and, .thus, provide 
the basis for further discussion in the follow-up session. 

Given the unusual format of such a presentation, it was difficult to translated it into a written paper 
for the Conference Proceedings. In the end, I decided to simply report on the main points made in the first 
and third components of my presentation, along with a brief description of the instructional experience 
so as to still provide some sort of a shared example (although not as effective as the video itselfl). 
Interested readers could find more information on that experience as well as a copy of the video in the 
package for teacher educators I have just completed (Borasi & Fonzi, in preparation). 

2. A BRIEF ARTICULATION OF THE THEORETICAL FRAMEWORK INFORMING MY 
"HUMANISTIC INQUITY" APPROACH TO MATHEMATIACS INSTRUCTION 

As discussed at more length in other publications (Borasi, 1992; 1996), my own intepretation of 
what it means to teach mathematics through inquiry has been informed by the following set of 
assumptions about the nature of knowledge, mathematics, learning and teaching: 

• a view of knowledge as provisional and continuously refined through a process of inquiry motivated 
by uncertainty-as suggested by the work of Dewey and Peirce; 

• a view of mathematics as a humanistic and contextualized discipline, i.e., as the product of human 
activity, shaped by personal and cultural values, purposes and context- as suggested by several 
mathematicians and mathematics educators belonging to the Humanistic Mathematics Network, and 
by philosophers of mathematics education supporting a social constructivist view of mathematics; 

• a view of learning as a process of meaning-making requiring personal construction as well as social 
interaction, and shaped by context and purposes, i.e., a social constructivist view of learning; 

• a view of teaching as creating a stimulating and supporting environment for the students' own 
inquiries. 

These assumptions are in sharp contrast with those that have characterized traditional mathematics 
instruction, and which have been often identified as follows: 

4 



Plenary Lecture I 

• a view of mathematical knowledge asa body of established facts and techniques, hierarchically 
organized, context-free and value-free (logical positivistic view o/knowledge); 

• a view of learning as the successive accumulation of isolated bits of infonnation and skills, 
achieved mainly by listening/observing, memorizing and practising (behaviorist view 0/ learning); 

• a view of teaching as the direct transmission of knowledge from experts to novices (transmission 
view 0/ teaching). 

In the mathematics education community today there is considerable consensus against such a set 
of the assumptions (often refered to as a "transmission paradigm") as well as about the following 
alternative assumptions: 

• learning as a process of meaning-making requiring personal construction (constructivist view 0/ 
learning); 

• teaching as orchestrating and facilitating students' constructions. 

At the same time, this does not mean that the set of theoretical assumptions I presented at the 
beginning are necessarily shared by all those calling for school mathematics refonn today. Rather, there 
is still considerable debate at the very least about the following areas: 

• the role played by social interaction in the process of learning; 

• the influence and roles played by the context in which the learning occurs; 

• the interpretation of what constitutes mathematical knowledge; 

• the goals articulated for mathematics instruction; 

• the nature of the experiences within which students are expected to "construct" their knowledge. 

Therefore, it is not surprising that mathematics educators supporting the NCTM Standards and the 
most recent calls for school mathematics refonn may have quite different visions about what such a 
refonn should entail. For this reason, in the following sections I will try to complement the articulation 
of my theoretical framework with an example as well as with the explicit identification of what I think 
are key characteristics of instruction infonned by such a framework as portrayed in my illustration. 

3. "EXPLORING TESSELLATIONS TO LEARN "GEOMETRY": AN ILLUSTRATION OF 
TEACHING MATHEMATICS THROUGH INQUlRyl 

With the goal of providing an image of what teaching and learning mathematics through inquiry 
could look like, I would like now to share the key elements of the following "unit" which was designed 
and field-tested with middle school students in a variety of iDstructional settings, and was also used to 

INOTE: This experience and the videotape featuring it (Borasi & Fonzi, 1995) were made possible 
by a grant from the National Science Foundation (no. TPE-9153812 and DUE-9254475). Any opinions, 
conclusions or recommendations expressed in the video as well as in this paper, however, are solely the 
author's and do not necessarily reflect the views of the National Science Foundation. 
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create "experiences as learners" for teachers participating in professional development programs offered 
at both the in-service and pre-service level. The unit usually takes anywhere between 3 and 6 weeks of 
instruction in middle school settings, and 4 to 6 hours in a professional development setting. 

In this unit, the learners explore tessellations to experience the power and excitement of doing 
genuine mathematical inquiry and to learn some important geometric concepts, such as properties and 
relationships of specific geometric figures, geometry transformations, theorems and properties about 
angles,justto mention a few. To stimulate interest in the topic of tessellations and to make it problematic, 
the learners are given the task of fmding examples of tessellations based on this given definition: "A 
tessellation is the repeated use of anyone closed figure that covers a flat surface. The figures do not 
overlap or have gaps between them." As the learners share and discuss their examples in class, they 
discover some problems with the defmition and, consequently, understand the need to come to some 
consensus about the meaning and definition of "tessellation" before they can proceed. This preliminary 
activity not only challenges the learners' conceptions of the nature of mathematical defmitions and 
mathematics more generally, but it also begins to raise questions about tessellations that individuals might 
want to investigate further.2 

Once the class agrees upon a definition of tessellation, the learners, in small groups, generate and 
then explore specific questions and conjectures of their choice about tessellations. The instructor supports 
the groups by modeling how to generate and test mathematical conjectures, making a variety of 
manipulatives and other resources available, and leading a series of whole-group discussions about the 
process. Small groups do a final project, such as exploring a set of student-generated conjectures or 
creating some new tessellation pattern, and present it to the rest of the class. This project offers learners 
an opportunity to synthesize and demonstrate what they learned. 

4. LIST OF CHARACTERISTIC ELEMENTS OF INQUITY-BASED MATHEMATICS 
INSTRUCTION PROPOSED FOR DISCUSSION 

The following list was derived from the in-depth analysis of the Tessellation inquiry experience 
described above as well as of another inquiry experience on the topic of area. Therefore, I offer this list 
not as exhaustive of the characteristics of teaching mathematics through inquiry, but rather as a first 
attempt at identifying such characteristics and as a stimulus for further thinking and discussion. 

Also note that, while at the Conference I was able to illustrate this list with specific examples taken 
from the video the participants had just seen, I do not think that doing so would work here. Therefore, 
I have instead attempted to articulate why I think that these are important elements of inquiry-based 
instruction in light of the theoretical assumptions stated in Section 2, and then highlight controversial 
issues within each of these elements that I think require considerable more discussion and study. 

1. Students actively engage in the construction of mathematical knowledge by trying to make personal 
sense of the mathematical rules, concepts and problems they encounter. If one accepts the basic 
tenet of constructivism that learning results from attempts at making sense of situations and requires 
an act of construction on the part of each learner, indeed this is the kind of behavior that one would 
wish students to demonstrate in schools. This point does not seem to be controversial among 
supporters of school mathematics reform. 

2The video showed at the Conference featured only this part of the unit, in the case of an 
implementation that took place within a professional development context.) 
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2. Students develop ownership of their learning by participating in the generation/choice of the 
questions and/or problems to be studied. This is an element that is not necessarily shared by all 
examples of "constructivist-based" teaching, but rather seems more unique to inquiry experiences. 
Making personal sense of situations often involves generating new problems and sub-questions. The 
importance of this kind of "problem posing" has been demonstrated by research on mathematical 
problem solving. Its motivational value is further supported by recent research on motivation that 
has identified autonomy and choice as important elements for increasing students' engagement in 
learning and schooling. Yet, it is important to note that "developing ownership" on the content of 
an inquiry does not necessarily mean that the students need to have full choice on every aspect of 
the inquiry. Indeed, the role played by choice within math inquiry experiences and the different 
decisions that could be made to this regard by teachers are issues worth discussing further. 

3. Students engage in inquiry not in isolation, but as a community of inquirers that build on each 
other's ideas and results, and continuously negotiate meanings. This practice is consistent with the 
recognition of the important role played by social interactions in learning, and aims at creating a 
"community of practice" that could both support and "socialize" students to the new expectations 
of an inquiry math classroom. At the same time, the tension between individual constructions and 
social interactions within an inquiry experience is an element that may be worth further examination. 

4. Mathematics is portrayed as the product of human activity, i.e., students come to realize that 
mathematical knowledge (both the one achieved by mathematicians in the past and their own) is 
tentative and dependent on context and purposes. As stated earlier, a "humanistic" view of 
mathematical knowledge is a key element of the theoretical framework I articulated in Section 2. 
I believe that it is important to communicate such an image to students, as supported by research 
on the negative impact of a dualistic view of mathematics on students' attitudes and approaches 
towards this discipline (e.g., Borasi, 1990; Schoenfeld, 1992). Some important implications of this 
point for me are also that, as an important part of their schooling, students should experience 
"engaging in mathematics as mathematicians do" and, also, should explicitly examine issues about 
the nature of mathematics as a discipline-as done for example in our Tessellation unit. Not 
everybody, however, may agree with such a position and it is indeed worth discussing to what extent 
and why we would want students to act like mathematicians (e.g., Brown, 1997). 

5. Anomalies, ambiguity and controversy are valued as potential stimuli for inquiry. This is a logical 
corollary to Peirce's view of anomalies as the seed for the kind of doubt that can promote questions 
and inquiry, as well as the constructivist tenet that learning is stimulated by the desire to reduce 
cognitive disequilibrium. Note, however, that this realization has some radical consequences for 
instruction: "clarity" has often been held as a key criterion of teacher effectiveness (especially in the 
case of mathematics teachers); in contrast, I am suggesting that within an inquiry approach 
difficulties, ambiguity and confusion are not to be avoided, but rather should to be interpreted as the 
stimulus for inquiry and exploration. 

6. Priority is given to instructional goals such as becoming mathematical problem solvers/inquirers, 
understanding the .nature of mathematics and "big ideas" in mathematics, and developing 
mathematical confidence. Arguments in favor of assuining these instructional goals have been 
presented both on an "economic" ground in reports from influential organizations (like NRC's 
Everybody Counts [National Research Council, 1989]) and a more "cultural" ground by mathematics 
educators taking a humanistic perspective on mathematics. It is important to realize that this shift 
in instructional goals is likely to change not only how we teach, but also what we teach and what 
we value as learning in the mathematics classroom-something that many school administrators and 
community members seem to find much more difficult to accept than a change in teaching approach 
and, therefore, need to be more carefully articulated and supported than we have done so far. Also, 
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such changes in curriculum contents and emphasis needs to be supported by a consistent change in 
the way we assess and evaluate student leaming. 

7. The teacher orchestrates opportunities for students' inquiry and learning by setting up "rich" 
mathematical situations, and developing activities around them which are meaningful, complex, and 
open-ended Unlike what many people may think at first, inquiry teachers don't just "sit back" and 
let their students inquire; rather, I would argue that the teacher's job is even more important and 
challenging within an inquiry approach than in traditional math classes. Note, in fact, that the 
teacher's responsibility for stimulating and supporting students' inquiries was an integral part of the 
assumption about teaching characterizing an inquiry approach. The activities that a teacher designs 
to fulfill this role need first of all to be meaningful to the students, so that students can truly try to 
"make sense" of them as part of their leaming experience, and engage with them on a personal level. 
Meaningful and realistic tasks/situations, in turn, are likely to be complex-especially if they are 
expected to present students with some genuine puzzlement and challenge. At the same time, in 
order to be accessible to students with diverse backgrounds and abilities, these tasks need to be 
sufficiently open-endedto allow for multiple solutions approaches (and, possibly, multiple solutions 
as well). How such planning can be effectively done (and learned!) by mathematics teachers is 
certainly a question that calls for more study. 

8. The teacher facilitates students' inquiries and learning in the classroom through the use of 
appropriate teaching practices and techniques. As another crucial dimension of "stimulating and 
supporting students' inquiry," teachers need to facilitate their students' work as they carry out their 
inquiry and/or engage in other leaming activities in the classroom. To do so most effectively, 
inquiry teachers should take advantage of the instructional strategies-such as cooperative leaming, 
"writing to learn", etc.-that have been developed and tested in many research studies. Once again, 
how this can be done effectively it is not straightforward, as sometimes these techniques may need 
to be modified in order to respond to the different social· norms and intellectual demands of an 
inquiry leaming environment. 

9. The teacher listens to students and takes their input into consideration in all pedagogical decisions. 
This can be seen as a direct consequence of assuming a constructivist view of leaming and a view 
of teaching as supporting the students' own inquiry and learning. Indeed, if teachers truly value the 
knowledge learners already possess and try to fmd ways to build on such knowledge (Bames, 1985; 
Confrey, 1991), listening to students seems a necessary frrst step. It is also an important prerequisite 
to ensure students' participations in key decisions about a learning activity! inquiry, which in turn 
can contribute to the students' feeling of ownership discussed earlier in this list. 

10. Genuine inquiries are long and intensive. Finally, let me point out how genuine inquiry always take 
considerable instructional time. This may raise a number of practical issues, not only in terms of 
"covering the curriculum" (though we know that to be upmost in teachers and administrators' 
concerns!), but also in terms of gaging students' ability to stay on task and involved over a long 
period of time. 

5. CONCLUDING mOUGHTS 

I believe that the principles articulated so far, when taken together, provide a first characterization 
of what an inquiry approach to math instruction may look like-although I am open to challenges to this 
regard as well! At the same time, I also believe that there are many alternative and complementary ways 
to put these principles in practice in the context of instruction. 
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To conclude, I hope that both the example of inquiry instruction I shared (especially for those who 
were able to watch the video) and the analysis reported here have provided seeds for further reflection and 
discussion within this group about how inquiry can play out in mathematics classrooms and how this can 
contribute to improving mathematics instruction. I also hope that such a discussion will enable each of 
us to better articulate and refine our vision for the future of mathematics instruction and, thus, provide a 
contribution to our continuing efforts to make such a vision a reality. 
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THE IDGH SCHOOL MATHEMATICS CURRICULUM 

Peter Taylor 
Queen's University, Ontario 

Plenary Lecture I 

No invitation to speak is so wonderful as that which comes from your own group. I feel privi
leged and honoured to be here tonight among so many friends and colleagues who represent so many 
years of fine work that we have done together-in fact twenty years of fine work if I have my num
bers right. I think 1977 was the first CMESG meeting I attended. It was I believe the founding meet
ing of the organization. 

On the down side, there's a problem talking to a body like this about math education. 
Everything that I might say, you already know. On the other hand, perhaps it is simply my responsi
bility, in standing here tonight, to find the words that we would all speak, and to say the things that we 
all feel should be said at this time in the life of our country and our world. 

I have just recently put out this high school text that you may have been admiring or criticizing, 
hopefully some of each, and although it is only the first of 101 drafts, it does in fact say much of what 
I would try to say. There's much more to be done--conceptual gaps to be filled, technical results and 
exercises to be assembled, etc. I must face the question of how this document is to fit into a whole 
curriculum. 

The form of this book has been strongly influenced by an analogy-one that, as most of you 
know, I have been talking about for a few years-an analogy between the shape of curricula in the 
sciences and the arts, more specifically between mathematics and English. There are two main factors 
here, one has to do with organization and the other with sophistication. 

Curricula in the arts and humanities ,are organized around works of art, and that is the 
organizational principle behind this book, whereas in the sciences, especially in mathematics, they are 
organized around technical skills. If this book were to be used in today's classroom, teachers would 
require a detailed "map" of its technical terrain. One can imagine requiring such a map in the study of 
literature, but teachers generally do not feel the need for this. This actually gives them a certain 
amount of professional freedom that math teachers generally don't have. With such freedom comes a 
certain responsibility, of course, but these open the way to real professional growth. 

Curricula in the arts and humanities work at a much higher level of sophistication than is usually 
the case in the sciences. And most of the problems in this book are more sophisticated than we would 
normally find in a high school math classroom. Some teachers have told me that the problems are too 
"difficult," but "sophisticated" is a better word. Richard III is sophisticated-but there are easy things 
that a student can do with this play, and there are difficult things. It depends on where you are and 
what you want. The same is true of these problems. 

For many years I have struggled with the question of style-how are mathematics problems to be 
written?, how are we to model inquiry, exploration?, and for whom, teachers or students, or both? 
This is still an ongoing question for me, and the various styles I have played with in this book are still 
tentative and experimental. 
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Two weeks ago I presented this book at the annual meeting of the Ontario Association of Mathe
matics Educators (DAME), the professional association of high school math teachers in Ontario. In 
two different sessions I worked with two problems, Sum of cubes and Trains. I got many interesting 
reactions. One teacher compared me to Da Vinci. "Your book can be compared with Leonardo's 
sketches of airplanes. The good part is that they gave us the idea that we could fly. The bad part is 
that those particular planes could not fly." He went on to invite me into his classroom, or better yet to 
spend the next four years at his school coping with a full teaching load instead of the paltry two 
courses I have at the moment which are furthermore delivered to students who are already committed 
to their studies. Fair comment. 

Indeed, these are interesting times in Ontario in high school curriculum reform. There's lots of 
idealism in the air, lots of frustrated teachers, and a government who is determined to make some real 
changes, though the shape of the final outcome of all this is quite unclear. One thing that is receiving 
a lot of attention all of a sudden is the idea of a problems-based curriculum, and that's nice for us be
cause we have been advocating a movement in this direction for many years, even before the NCTM 
Standards emerged. 

The various debates that I witnessed or presided over at DAME seemed to focus on five ques
tions. 

1) How does the organization and mastery of technical skills fit into a problems-based curriculum? 
2) Are these problems accessible to all students? 
3) Are these problems accessible to all teachers? 
4) How do we evaluate the students? 
5) How do we evaluate the curriculum? 

What I will do is comment on all these questions, but not in a comprehensive way and not quite 
in the above order. The issues at stake here are ones that we have all talked about again and again, 
and we have come to know one another's views so well, that I'm sure you could all go away and write 
out exactly how I would try to respond. 

But first let me run very quickly through an example from the book, just so we have something 
to hang the discussion on. Most of our fellow citizens do not entirely understand what mathematics is, 
for example, they sometimes confuse it with arithmetic. Now mathematics and arithmetic have a 
close and wonderful relationship, and to set the stage for my subsequent remarks, I will take a moment 
to examine this relationship, using the frrst problem in the book-Sum of cubes. This is appropriate as 
the problem was given to us exactly a year ago in Halifax by Ed Barbeau in his topic group. 

Start by studying the following tables (see figure 1). We are struck that the sum of the second 
column is the square of the sum of the frrst. This nice pattern emerges from a collection of summation 
formulae that we all met long ago (see figure 2). The sum of consecutive integers, their squares, and 
(perhaps) their cubes. 

The last of these is less well known but it has the striking property that the sum on the right is the 
square of the frrst sum, and that certainly fascinated me when I frrst laid eyes on it. And of course I 
immediately wrote it as: 
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numbers cubes 
1 1 
2 8 
3 27 
6 36 

numbers cubes 
1 1 
2 8 
3 27 
4 64 
10 100 

numbers cubes 
1 1 
2 8 
3 27 
4 64 
5 125 
15 225 

Figure 1 

n(n+l) 
1+2+3+ ... +n=-2-

Figure 2 

til 
(jJ 

n(n + 1)(2n + 1) 

6 
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And then at our meeting last Spring in Halifax, Ed Barbeau presented a remarkable divisor 
construction. Ed asked for a number from the class (with lots of divisors) and got 72 (see figure 3). 
He then listed the divisors of 72 (col. 1) and then the number of divisors of each divisor (col. 2). Then 
he remarked that the second list has the property that "the sum of cubes is the square of the sum." 

Table for N = 72 
Divisors #of cubes of 

of 72 divisors col 2 
1 1 1 
2 2 8 
3 2 8 
4 3 27 
6 4 64 
8 4 64 
9 3 27 
12 6 216 
18 6 216 
24 8 512 
36 9 729 
72 12 1728 

SUM: 60 3600 

Figure 3 

There's that curious property again, and right away a mathematician wants to know how it re
lates to the more familiar example we already have. Is this really a new result, or is this just the old 
property dressed up in unfamiliar clothing? 

The frrst thing to do is to look at a number of simple examples (see figure 4). 

Well, there are certainly some patterns to be accounted for. For example, the N=5 table is small, 
having just a 1 and a 2. When will that happen?-precisely when N is prime. There's one result. But 
the striking observation belongs to the tables for N = 8, 9 and 16. For these, column 2 is a set of the 
original type (the integers from 1 to n) and so the "sum of cubes" property we have here is just the 
original one. Well now that's very encouraging. But there's more-Look! Look at tables 8 and 9. 
What are the sums?-JO and 6. And their product is 60, which is the sum for 72. And the column 3 
sums of 100 and 36 also multiply to give 3600 which is the column 3 sum for N=72. And 8 and 9 of 
course have product 72. Holy cow. 

Noticing these patterns, appreciating their possible significance, and tracking them down-that's 
what a mathematician does; that's when arithmetic becomes mathematics. 

First of all, when will column two have the familiar form-the integers from 1 to n? The answer 
is that this will happen when N is a prime power. If N = ]I, for some prime p, then column one will 
consist of the powers of p from 0 to k (these are the divisors of ]I), and column two will therefore con
sist of the integers from 1 to k+ 1. But when N is not a prime power (e.g., 72), column two is of a dif
ferent kind and we want to see how this case fits in with the familiar one. And we start with the fact 
that 72 is a product of prime powers 8 and 9. Does this make the 72-table in any sense the product of 
the 8- and 9-tables? 
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Table for N = 5 Table for N = 9 
Divisors #of cubes Divisors #of cubes 

of5 divisors of col 2 of9 divisors of col 2 
1 1 1 1 1 1 
5 2 8 3 2 8 

9 3 27 
SUM: 3 9 SUM: 6 36 

Table for N = 8 Table for N = 10 
Divisors #of cubes Divisors #of cubes 

of8 divisors ofoo12 of 10 divisors of col 2 
1 1 1 1 1 1 
2 2 8 2 2 8 
4 3 27 5 2 8 
8 4 64 10 4 64 

SUM: 10 100 SUM: 9 81 

Table for N = 12 Table for N = 16 
Divisors #of cubes Divisors #of cubes 

of 12 divisors of col 2 of16 divisors of col 2 
1 1 1 1 1 1 
2 2 8 2 2 8 
3 2 8 4 3 27 
4 3 27 8 4 64 
6 4 64 16 5 125 
12 6 216 

SUM: 18 324 SUM: 15 225 

Figure 4 

We need to start by asking how the divisors of 72 are related to the divisors of 8 and 9. And be
cause this is a prime power decomposition, the divisors of 72 are exactly the products of the divisors 
of 8 and the divisors of 9. It's important to be careful here.. Certainly if I take a divisor of 8 and a di
visor of 9 and mUltiply them together, I'll get a divisor of 72, but I'm saying more than that. I'm say
ing that if we make a list of the divisors of 8 and of the divisors of 9, and then take all possible prod
ucts of one list with the other, we'll get exactly the divisors of 72, with no repeats. [To make this ar
gument, we need some lore here about how the divisors of a number are obtained from its prime 
factorization-a good chance for some careful technical work.] 

So now, let's ask about column two. To take an example, consider the divisor 12 of 72. I ask 
how many divisors 12 has, but I am going to try to find the answer, not by looking in column two in 
table 72 (where there's a 6 sitting right beside it) but by trekking over to tables 8 and 9. To do that, I 
write 12 as a product of prime powers: 12 = (4)(3) so we look at the 4-row in the 8-table and the 3-
row in the 9-table. Now column two in those two tables tells us how many divisors there are of each 
factor-4 has 3 divisors and 3 has 2 divisors. How many divisors does that give for 12?-well, 
(3)(2)=6 because the divisors of (4)(3) are all the products of the divisors of 4 and the divisors of 3. 

What has this told us?-that each column-two entry in the 72-table is the product of the corre
sponding column-two entries in the 8- and 9-tables. 
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To emphasize this, I rewrite the 72-table replacing the entries by the appropriate products. This 
also prompts me to reorder the rows to make the structure easier to see. 

Table for N = 8 Table for N = 9 
Divisors #of cubes Divisors #of cubes 

of8 divisors of col 2 of9 divisors of col 2 
1 1 1 1 1 1 
2 2 8 3 2 8 
4 3 27 9 3 27 
8 4 64 

SUM: 10 100 SUM: 6 36 

Table for n = 72 
Divisors #of cubes of col 2 

of 72 divisors 
1=1-1 1=1·1 1=1-1 
2=2·1 2=2·1 8=8·1 
4=4·1 3=3·1 27=27·1 
8=8·1 4=4·1 64=64·1 

3=1·3 2=1·2 8=1·8 
6=2·3 4=2·2 64=8·8 
12=4·3 6=3·2 216=27·8 
24=8·3 8=4·2 512=64·8 
9=1·9 3=1·3 27=1·3 
18=2·9 6=2·3 216=8·27 
36=4·9 9=3·3 729=27·27 
72=8·9 12=4·3 1728=64·27 
SUM: 60=10·6 3600=100·36 

Figure 5 

The way we have written the 72-table shows in a very precise sense what it means to assert that 
this table is the "product" of the 8-table and the 9-table. What this shows is that the "sum of cubes = 

square of sum" result for column 2 of the 72-table, follows directly from the familiar result for the 
sum of consecutive integers-as found in column 2 of the 8- and 9- tables. 

The calculations can also be set out in equation format, and in fact this form is probably the or
thodox mathematical approach, but the table argument is quite rigorous and more transparent to me. 

What's the bottom line?-there's lots of arithmetic here and there's lots of mathematics. Each 
one by itself is arid and without meaning. But together, they explode into life. 

I) How does the organization and mastery of technical skills fit into a problems-based curriculum? 

I'm not going to answer this question. The reason is that it's not problematical-it's something 
that has to be done, but we can .all imagine how to do it. The real problem for me is that the person 
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who asks me this question has decided that I don't think technical skills are very important and that 
makes him uncomfortable for all sorts of reasons. Isn't it just what he'd expect from some high and 
mighty university person who sets himself above the bread and butter, well at least the bread, of his 
modest high school classroom? 

So I will say this to him. What I have done is to put problems rather than skills at the centre of 
the curriculum. Now you think that I have done this because I do not think very highly of technical 
skills. But it is the reverse that is true. I have done this because I value these skills even more highly 
than do you. Without technique I could not move forward in my work. When a new technical result 
comes along, and this does not happen quite as often as you might think, it is celebrated by the whole 
community because it opens up new possibilities. Technical skills are so wonderful that they deserve 
a context to allow students to see this wonder for themselves. And that's what we have done here. So 
though it may not appear so to you, this book actually celebrates and honours technical skill. 

3) Are these problems accessible to all teachers? 

A teacher must serve two masters-her subject and her students. So that the teacher who says 
with pride: "I don't teach math, I teach students!" has only described half her job. It's worth noting 
why she might have proclaimed this-she's trying to demonstrate the human face of her classroom, 
and she has failed to fmd that in her subject matter. If she could have found that, she would have 
encountered no essential conflict or tension between the two masters. 

I'll say something here about serving mathematics, and I'll talk about serving the student under 
question 2. 

Elizabeth, who was in my working group at OAME asserted that 8 out of the 10 mathematics 
teachers at her high school would never use these problems in their classroom and would object stren
uously if they were required to do so. You have no idea, she said, looking at me sympathetically. 

Certainly we must change our expectations of what teachers need to do with these problems. 
The analogy with English, in which the teacher almost always works with material that is beyond her 
in its level of sophistication, is only partial; but there are some valuable insights we can gain from it. 
It is not true that the student needs to master these problems, nor is it true for the teacher. It is enough 
that the teacher be aware of the importance and the sophistication of the material, be able to appreciate 
it, work with it, think clearly and honestly about it, and understand the ideas of her students. [Having 
said that, this is still quite a bit to ask of the teacher.] 

And what can we do to help them in this? There has been lots of talk of new forms of profes
sional development written right into their contract, gigantic ever expanding world-wide webs of rich 
resources, computers in every classroom. But actually the first thing they need from us is to get off 
their case. Already they serve too many masters-government, university professors, principals, par
ents, guidelines, text books ... We all know what it's like to serve a multitude of conflicting or even if 
not conflicting simply no.isy demands or even if not demands simply suggestions made in the quietest 
most respectful way. Ifwe have our professional integrity intact, as most of us do, then these sugges
tions and even these demands are not threatening and need not limit our freedom. But otherwise they 
can be real burdens, and can erode what little integrity we have managed to garner over many years of 
teaching. 

Once a teacher has managed to get some control over her own working environment, she will 
need some help from us, for example to discover how to get some richness out of these problems in an 
elementary way-without feeling that she has to completely solve them in the conventional mathe-
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matics sense. As Judith Fonzi remarked in Rafaella's tape: we can't teach it differently ifwe haven't 
experienced it differently. 

And what of Elizabeth's 8 teachers? She's probably right-I have no idea. I think that many of 
you here have a better idea than I. 

2) Are these problems accessible to all students? 

Teachers assure me that these problems are much too hard for most of their grade 12 students let 
alone grade 10. And for their general students-well, forget it. 

As you have seen, these are mathematics problems. Perhaps they are telling me that mathemat
ics is too hard for their students. Maybe so. I'm not sure. But if that's the case, then we should not 
advertise ourselves as math teachers but teachers of something else. And maybe we should be happy 
to teach something else. Maybe our students don't need math, maybe most of them need something 
else-something closer to plain arithmetic. 

Of course I feel that our students do need mathematics, not so much to get by in their job or the 
day-to-day business of life, but for other reasons-reasons having to do with what it means to be fully 
human-and we teachers of mathematics have a responsibility to provide it for them. 

Just last week I talked for a while with one of our M.Ed. students, Lorayne-an experienced 
teacher who is currently tested to the limit by her alternative math class at Gananoque Secondary 
School. These students represent a huge array of abilities and backgrounds and share only the distinc
tion of having been unable to make it in a nonnal classroom. We agreed that in many ways those stu
dents need these problems perhaps more than anyone. 

Mathematics has the power to elevate. It gives us a particular glass through which to see the 
world, and to see inside of ourselves. There are of course lots of glasses with different hues and 
points of view. But mathematics constitutes a pole, an endpoint of a fundamental continuum. In its 
purity and its independence, it has an easy friendship with a world it really does not need. Of all disci
plines, it is the outcast. Of all the subjects it is the one that can thumb its nose at the world if it 
wants-hey, I don't need anything from you, I can get along just fine, so leave me alone will you? 
just leave me alone! For this reason it is needed most of all by the outcasts of our student body. It has 
the capacity to provide light and hope to those who are mired in social or cultural confusion. So in 
many ways the students who need mathematics most are the ones from whom it is withheld. Not re
sponsive enough to cope with an advanced stream, they are relegated to job-oriented skills that ma
chines can perfonn. They must feel unspeakably insulted. And beware of deciding that they are not 
clever enough to engage these problems. 

This is a difficult point and I want to say more about it. James, my son of 18 years, is struggling 
for the third time with grade 12 general English-this time he really needs to pass it. He's also taking 
OAC physics-just why I am not sure as he has no other OAC's and is unlikely ever to take another. 
His heart is not in either of these subjects. In fact his heart has not been in anything in high school 
except the one tenn in grade 12 in an alternative program where they spent half their time traveling, 
talking with the native people who live beside the James Bay Hydro electric dam, living in the dead of 
winter with Inuit families on Baffin Island, and trading guitar melodies with the miners in Nova Sco
tia. 

James, don't you think we might do a couple of physics problems tonight? It would really be a 
great idea to pass this course. 
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Silence. Yeah, I guess. 
Well, I'm around. 
But a short while later he's on his way out. 
Got a band practice over at Casey's. 
Okay, see you later. Don't be too late, eh? 
I won't. Hey, Dad? 
Yeah? 
Alright if the band practices here tomorrow night? In the basement? 
Sure. You know the rules. 
Seeya. 

Plenary Lecture I 

He knows the score as well as anyone. He sees me in my office. He sees me always (ob
sessively) typing away at home. He sees computers everywhere. He knows that the world belongs to 
those who embrace science and technology. He knows all of that. 

But what world? Exactly what world? He talks about James Bay as if it was named after him. 
Funny 'cause he was named James Taylor because his namesake was singing Sweet Baby James when 
he was born. Lots of worlds there. When I talk to him about the world, exactly which one do I have 
in mind? Our view of the world is so tied up with bigger faster better, that we hardly recognize the 
critical assumptions that lie behind our educational pronouncement. That lie behind our educational 
pronouncements. 

That whole technology thing-th~ LIST of technical skills. My god, you need math to do 
everything-your income tax, figure out your mortgage, and if you don't know your way around 
computers, you'll be lost. Listen to us! Just listen. 

It may all be true, but he knows all that. And anyway the worst thing is probably for me to tell 
him what he already knows. 

What can I do for him? Well for starters I can get off his case too. I've done that already- be
ing after him all the time just doesn't work. My duty to him as a parent is to show him my true self, 
and try to behave in a way that accords with this. For me that means that I have to reveal to him the 
artist that is inside me, the best and the worst and hopefully more of the former. And in turn I have to 
try to understand the one that is inside him. And we do this with an exchange of art-my mathemat
ics, his music, my oatmeal raisin cookies with cranberries instead of raisins, his toasted egg and bacon 
and cheese and mayonnaise and salsa sandwiches. And for the rest, I have to trust him to figure out 
the future for himself. 

For me, one striking aspect of James has to do with focus-when he has it and when he doesn't. 
At the moment in high school we spend a huge amount of time trying to teach ideas and skills to stu
dents that they are not prepared to focus on. And for this task focus is almost everything. So it's a 
huge waste of time. For us and them. Whereas if we bring art and music into the classroom, the stu
dents who are focused will actually perceive and master the skills. Maybe the ones who aren't will 
find a reason to change. . 

The last two questions are difficult. They are tied up with ideas of standards and certification, 
and I don't really have answers to most of that. 

4) How do we evaluate the students? 
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In a course last year I gave the Handshake problem as the second assignment. The problem is 
that you have n people in the room and they all shake hands with everyone else and you ask for the 
minimum time required to get all the shaking done if you can only shake with one person at a time. 

Well one student, Joanne, who is a visual artist, submitted a video tape of a native community 
having their handshaking ceremony where you go around in two circles, and shake everybody's hand. 
And getting it done in the minimum time really isn't the objective here at all. By some quirk offate 
this happened to be the same native community in Ouje-bougoumou that my son James had visited the 
year before. Joanne then wrote an essay on the significance of the ceremony. At the end of it she in
cluded an apology. I'm sorry-I know this isn't what you wanted. I just don't have the technical 
skills to answer your question. But I do enjoy the classes a lot. 

How am I to mark that? That's not actually an easy question. There was a little arithmetic in her 
answer, a smidgeon of mathematics, but mostly it was other stuff. Technically she was not ready for 
the course, but the course was a wonderful experience for her, much better than a more basic course 
with a narrow technical aim. 

It is certainly true that as we broaden the scope of our math courses, we will have to broaden the 
criteria of evaluation. 

Generally I don't worry so much anymore about the certification aspects of the marks I assign. 
The teacher on the next rung up will want to demand that a 75 mean a 75 as far as readiness for his 
subject is concerned, but in my experience he is as often likely to abuse that information as to make 
proper use of it, and so that's one thing I am happy to let go of just a bit. And I would give senior 
high school teachers the same advice. 

What's important is that the student is not fooled-and many are being fooled right now. The 
mark I gave Joanne was not great but it was a pass. Even so she was not fooled by it. And if she goes 
out into the world thinking that mathematics is a bit different from what it really is, well, she's got lots 
of company. Actually she just might have a better idea than most. 

5) How are we to evaluate the curriculum? 

Let me give two examples of the debate around this question, both of which I encountered at the 
OAME conference, and both concern the NCTM "Standards." The first is from Stephen Leinwand 
who is the president of NCSM (the National Council of Supervisors of Mathematics) and this is the 
lead article in their July 1996 newsletter. By the way, John Saxon is an author and advocate who 
writes sometime successful "how-to" math textbooks. 
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I was as disgruntled as anyone with the barrage of obnoxious ads that John Saxon ran dur
ing the past year, but those of us committed to reform have to admit that we have left our
selves wide open to John's attacks. Like him or hate him, John Saxon is not wrong when he 
asks us 'Where is your data?' and 'Where is the evidence of your success?' He's not wrong 
when he taunts 'if gains were possible, the NCTM would have been able to find a teensy
weensy gain somewhere and would have shouted the results to the world.' 

So I think we ought to thank our Number One Critic for reminding us that it's time to prove 
our case with data and with real results. I believe it's time for us to begin providing clear 
answers to his questions and to begin showing the critics, the naysayers, and the skeptics 
that this reform movement is, in fact, beginning to make a difference in student achieve
ment. 



Plenary Lecture I 

Let me start the ball rolling. One of the new NSF-funded secondary mathematics curricu
lum development projects is the Math Connections project being developed under the lead
ership of the Connecticut Business and Industry Association's Education Foundation and 
the Hartford Alliance for Mathematics and Science Education. Like its sister projects, it is 
an attempt to create classroom tested materials that reflect the spirit of the NCTM Stan
dards. That means a significant focus on realistic problems and narrative answers, a reli
ance on graphing calculators, and integration of content, and a significant reduction in sym
bol manipulation skill- all the components that John Saxon abhors! So, after two years, is 
such a program working? 

Well, what they did was to take two groups of students in grade 8, tested them and found no 
significant difference between the groups, gave one group the traditional math program for two years, 
and the other group the reform program, and at the end of grade 10, the reform group tested signifi
cantly better. I assume the test was reasonable, etc. So Leinwand continues: 

Yes, this is but one small picture of reform. But it is also one clear picture of success that 
needs to be expanded and replicated and then joined with similar success stories that arise 
across the country. 

So I challenge each and every one of you to begin gathering the data and sharing the results 
of reform at work. This Newsletter is an ideal place for this sharing to begin. What better 
way to channel your anger at John Saxon's cheap shots than helping to build the case about 
how wrong he is and how well our "Standards" are beginning to work! 

The next article was given to me by a teacher who I have known for some years. As he was 
leaving my talk he pressed it into my hand as said "you oughta read this." It's the transcript of an in
vited address to the California Board of Education last month by E.D. Hirsch, Jr. After three pages we 
get this: 

Let me tum to math education. I read a recent report in Education Week which stated that 
there were two rival math groups in California vying for your approval. On the one side 
there is what Education Week called the "reform" group who want to put in place the stan
dards of the National Council of Teachers of Mathematics (NCTM), and on the other, the 
so-called "anti-reform" group that calls those standards variously "fuzzy math" and "whole 
math." I thought that the tone of the Ed Week report was typical of current educational re
porting in that the NCTM approach, which reflects the dominant view among educators, 
was labeled "reform" while the dissident group that IS trying to effect change was labeled 
"anti-reform." That kind of ideological bias in reporting is characteristic of the education 
world, and it well illustrates the need for constant vigilance. 

To this Board I hardly need to restate the details of the math debate. The NCTM group 
stresses conceptual understanding over mindless drill and practice, while the dissident 
group stresses the ~eed for drill and practice leading to mastery. To resolve the issue, 
which researchers should you listen to? Here are three suggestions: John Anderson, David 
Geary, and Robert Siegler--three highly distinguished scientists in the psychology of math 
education. What are th~y likely to tell you? I believe you will get strong agreement from 
them on the following points: that varied and repeated practice leading to rapid recall and 
automaticity is necessary to higher-order problem-solving skills in both mathematics and 
the sciences .... They would provide you with reliable facts, figures, and documentation to 
support their position, and these data would come not just from isolated lab experiments, 
but also from large-scale classroom results. If these two scientists agreed on all these 
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points, that is the consensus you should trust, no matter how many pronouncements to the 
contrary might be made by national educational bodies. 

In both articles science is invoked to make a case. Leinwand cites a statistical study which 
shows that students in a reform program test better than students in a traditional program. And Hirsch 
mentions the word "scientist" again and again and urges the board to heed the advice of the "top sci
entists" and even quite generously tells them who these might be. 

Well I am a scientist myself. I am awed by the power of science to unlock the mysteries of the 
world, not only physics, but behaviour, even that of us humans. Science has been successful, so suc
cessful that there is a certain cachet in being called a scientist. With such success, we would certainly 
want the tools of science to be employed in the evaluation of our curriculum. 

But let's be careful. The point for me is this. What if Leinwand's tests had come out the other 
way? What if the reform students had done worse? It wouldn't change my view that these are the 
problems I should be giving my students. I'd likely ask exactly what I think I'm doing and how I'm 
doing it, what really are my objectives, exactly what those "tests" are actually measuring, etc. and sci
ence is an excellent tool for that process-forcing us to ask good questions, keeping our concepts pre
cise, and keeping us honest about our answers. And it might well lead me to better ways of writing of 
presenting of organizing, to a better pedagogy. But if you ask me if there is there any test I could de
vise whose negative result would convince me that the material is wrong I would answer no. It is an 
unfalsifiable hypothesis. And therefore it's got nothing to do with science. Ah, you will say, then it is 
simply a religious belief. I think it is not religion but art. When an artist is sure of his work, a viewer
response test does nothing to convince him that the work is wrong, though it may be an occasion for 
him to question his objectives or his relationship with others. The knowledge, of what is right, comes 
from a deeper place than science and we must honour that. Science has a lot to offer us in this quest 
for a new curriculum, but it cannot change what I know mathematics to be. 

In an e-mail message Lorayne sent me right after our talk she said: 

Beyond that, one of the closing remarks you made has relieved a even more pervasive and 
onerous burden. You assure me that I don't need to worry my head about justifying my 
approach. When I share with students the fascination I have in the relationships and the 
mathematical wonders imbedded in all aspects of our world, I 'know' we are doing real 
mathematics. The dilemma to date has been how to justify this approach. I can provide 
empirical evidence to demonstrate that attitudes towards mathematics, science, art, history, 
and poetry, for example, change dramatically in a relatively short time when we 'play' with 
relationships. I have neither been able to afford the time to justify this position nor had any 
real clues as to where to start. 

One important thing that Lorayne has going for her is that she really does have the freedom to do 
what she feels is right-because society has already in some sense written her students off. Thus the 
door is open for her to develop as a true professional. Happily for her students, she understands better 
than most of us that we mathematicians have an important role to play in helping them to become 
fully human. Not only for the richness of their own lives, but for the quality of the conversations that 
go on in politics, business, law, medicine, and even education. 
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SpeciJa Plenary Lecture 

IMAGINING EMBODffiD MATHEMATICAL KNOWING: 
SOME THOUGHTS ON MATHEMATICAL KNOWING IN ACTION, 

INTERACTION AND IN THE CMESG/GCEDM 

ABSTRACT 

Tom Kieren, Professor Emeritus 
University of Alberta, Edmonton, Alberta 

Mathematical knowing is very often associated with the noun "mathematics" - that is, as something 
captured in a text or in expressed form on paper. To the extent that it is thought of as a process it· is 
frequently thought of in personal terms as a construction or an acquisition or perhaps as problem solving. 
In this essay 1 look at such knowing not as "in the book" or "in the head" but in ongoing embodied 

actions and inter-actions in the temporal "now". To think about such knowing or such .embodied actions 
is to interrogate them for their intra-personal structural dynamics; inter-personal social and environmental 
inter-actional dynamics; as well as the mathematical/cultural dynamics of the practices occurring in such 
actionslinter-actions-all-at-once. 1 have been characterising this stance as thinking about mathematical 
knowing in action and inter-action as triply embodied. Such an interrogative and interpretive stance is 
related to a particular view of mathematical knowing. Although such knowing includes performing 
discrete mathematical acts such as constructions, computations and proofs and indeed involves engaging 
in solving particular problems it is more than that. Using ideas derived from Maturana and Varelal 

mathematical knowing on this view is the bringing forth of and dwelling in a world of mathematical 
significance with others in a sphere of possibilities. 

Because it is beyond the practical scope of this brief essay to allow for the perusal of mathematical 
actions 1 am taking the liberty of asking you to imagine several examples of such actions and then to 
consider my triply-embodied interpretations in light of your own imaginings. These examples are based 
in actual events. But what you read here are only my brief imaginings and not a reportage of such events. 
These imaginings include with my imaginings and interpretations of the on-going and historical 
functioning of our organization from this triply embodied perspective. 

This essay concludes with a postscript in which I briefly trace the genesis of the sense in which 1 
imagine these mathematical knowings and the genesis more particularly of the triply embodied view of 
mathematical knowing that 1 bring to my interpretations.2 What follows is both an essay and a 

I H. Maturana and F. Varela, The Tree of Knowledge. Boston: New Science Li brary. 1987. 

21 would like to thank CMESG/GCEDM and especially the 1997 executive for giving me the 
opportunity to make the presentation at the Thunder Bay meeting. 1 could think of no greater honor that 
1 have ever received or could receive. In the spirit of that presentation - this essay is not a research paper. 
Although like much of my professional life in action the writing of this paper represents rese'arch for me, 
this paper has none of the trappings of a typical research paper. 1 offer it simply as possibly providing 
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commentary-it is aimed to inform you about a particular view of mathematical knowing. But it is also 
a personal commentary on that view, on our organisation, and on my own intellectual history. 

IMAGININGS 1: FOOTPRINTS OF MATHEMATICAL KNOWING 

Ralph Mason had contrived an activity-which he brought to Thunder Bay-so that his pre-service 
teachers could both enter a space of mathematical possibility themselves and could also observe and 
interact with children while those children acted in such a space. The activity goes something like this: 
Imagine that a child has 27 2 cm cubes; imagine further that the child builds a "garage" that is a cube 8 
em on an edge with an open door on one face. The general task facing this child-perhaps in inter-action 
with others and possibly a teacher-is to build objects by gluing together the 27 cubes in such a way that 
cube faces match and the created objects fit in the "garage". The child is then challenged to re-present 
and describe such objects, to compare each with other such objects, and to make up mathematical 
statements about them. 

As might be expected with either 10 year old children or pre-service teachers, it might be useful to 
prompt mathematical activity with suggestions or questions. Some of Ralph's questions resembled the 
following: 

• Can you draw a 3-d sketch of your object using dotty paper or grids? 

• Can you draw front, side, and top views? 

• Can you describe the "layers" of your object? 

• If you gave some or all of this information to a friend could they build your object without 
seeing it? What information would you think to be most useful to them? 

Now imagine that I was talking to Ralph and Lars Janssen about the activity and engaging with them 
in some mathematical play with "garageable" forms. After some minutes I left and ran into Elaine Simmt. 
Because of her interest in parents and children working together on mathematical tasks I suggested that 
she see Ralph's activity. She went to Ralph's room and was joined by John Mason in building and 
studying objects. They became especially interested in the "footprints" of the objects (the mark the faces 
of the object would make on a sheet of paper if it were dipped in a paint or ink of some kind). David Reid 
inserted himself into what was now a small roomful of mathematics in action. He convinced the others 
to think about objects with of up to six fold "footprint symmetry" ... 

Now let your imagination move to one of my favourite research venues, our off-campus pizza-run 
location. Elaine has now drifted off to talk about the role of history of mathematics in her parent/child 
research. But David and John, cubes in hand are hard at it in "footprint" space. Tommy and Marty join 
in and Marty questions the restriction of glueability. That is 

• must cube faces in an object be glueable face-to-face? 

• will glue able edges or vertices do? 

• what impact does this have on footprints and symmetries? 

occasions for your further thinkings about mathematical knowing. 
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After more than an hour oflong range kibitzing Frederic adds some topological insights and queries, 
but then abandons the group which has grown in number and has spread cubes and objects across the table 
and their imaginations. Many theorems later the pizza is gone but the mathematics lingers ... 

This brief imagining prompts me to ask some questions which have formed an important part of the 
agenda especially of some of the working groups and topic groups of CMESG/GCEDM over the years: 

• Where was the mathematical cognition in all of this and how might such cognition(s) or 
knowing(s) be characterised? 

• Where was and what was the mathematical curriculum3 in all of this? 

So where was the mathematical knowing? 

• Was it simply in the heads of each of the participants in the scenes that prompted my imagining? 

• Was it in the blocks and questions posed on paper? That is, was it in ''the book"? Was it pre
determined by the materials and questions? Neither of those two points of view seems to 
satisfactorily capture the knowing as I remember it and have imagined it. Nor does either view 
capture mathematical knowing in general. Following Maturana and Varela, it seems more 
useful to think of such knowing as the bringingforth ofa world of mathematical significance 
with others and the dwelling in that world. Rather than look at that which was mathematical 
in terms of abstract and disembodied "ideas"-for example, the idea of "glueability"- I am 
suggesting that we think of the mathematical in terms of fully embodied personal mathematical 
knowing. I am further suggesting that such knowing is embodied in three ways all-at-once. 

The first embodiment focuses on the person in action and asks how that person's structure or lived 
history determines the person's mathematical actions mid how that structure is changed by the actions. 
That is, the first embodiment is concerned with personal structural dynamics. How was the person 
thinking/acting and how does thinking/acting change?4 

The second embodiment recognizes that the person is acting in an environment and in interaction 
with others. Mathematical knowing does not simply emerge as a product of brain or other personal 
functioning. It is co-emergent. The environment and others in it are fully complicit in such knowing. 
This embodiment calls our attention to the nature and role of the inter-actional dynamics of mathematical 
knowing. 

The third embodiment, embodiment in the body of mathematics is a take ofIfrom the work of Brent 
Davis who first brought it to my attention in those terms.s A person acting mathematically is embodied 

3Susan Pirie in our working group was careful to distinguish the curriculum from the syllabus. I am 
adhering to this distinction here and not trying to identify a list of topics or objectives or ... underlying 
the imagined actions. Curriculum as used here points to the "curare", the running - the knowing in action 
and the setting for that action. 

4Susan Pirie and I have been thinking about and researching along these lines for a number of years 
as we have built our Dynamical Model for the Growth of Mathematical Understanding. In some what 
different ways this question has also been on the agenda for other constructivist or interactionist 
researchers such as Confrey" Sierpinska, Artigue, Sfard all of whom have addressed CMESG/GCEDM. 

5Brent Davis in his 1996 book Teaching Mathematics: A Sound Alternative (Garland Press) 
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in the mathematical practices of her or his surround such as the classroom or provincial or mathematics 
departmental syllabus but such actions can also be viewed in relationship to the historic and contemporary 
practices of mathematics. The embodiment in the body of mathematics prompts us to think about the 
cultural dynamics of mathematical knowing in action. As suggested above since I am thinking of 
mathematical knowing in terms of building and living in a mathematical world then it is both useful and 
necessary to think of the personal/structural; the inter-personal/environmental inter-actional; and the 
mathematical/cultural dynamics all-at-once however hard that is. 

Lets look back at our imaginings in terms of these dynamics. As was suggested by the original 
prompt (which tended to get lost in the later world building) a number of mathematical actions were 
possible. The physical building of objects; the reflection on both the objects and the building process; re
presentations of the objects in various forms; noticing local (and more general) properties; formulating 
defmitions; relating properties to one another and to properties from other mathematical systems; 
formulating and proving theorems-these were only some of the actions in which individuals engaged 
and which one could observe their mathematical knowing. I hope they are visible in your imaginings. 

But the materials and the settings themselves as well as the work, talk, questions, re-presentations 
and properties of others all were fully implicated in any individual's knowing actions. Of course some 
of this interaction was "competitive": Whose idea was "right"? Who could verify some conjecture fIrst? 
But like mathematical "competition" everywhere, this competition had a peculiar feature. Rather than 
being defeated by the actions or words of another, persons here were occasioned by those discovering 
or explaining or verifying actions of others. They were likely to adopt the idea of the other but in so doing 
they likely engaged in some new thinking and re-presenting and world changing of their own. These are 
but some aspects of the inter-actional dynamics that might be noted in interpreting the lived mathematical 
knowing in the imagining above. 

Because the persons involved in the story were members of CMESG/GCEDM, the historic and 
contemporary practices of mathematics were at the very heart of what was going on in the imaginings 
above. While it is easy to identify the mathematical cultural impact on these actions of persons with long 
histories and involvements in mathematics and to see how they in their actions are part of or captured by 
the "body of mathematics", these impacts could also be studied in the actions of pre-service teachers or 
children engaging with the prompt and materials that Ralph brought us. 

What I am suggesting by making this interpretation of Imagining 1 is that as researcher/teachers 
or teacher/researchers we can think in this triply embodied way when we try to interpret the mathematical 
activity of our own students, when we build settings for them or even make presentations to them, and 
when we interact with them and witness their interactions. 

The mathematical knowing in my imagining above is well seen as bringing forth a mathematical 
world with others. People moved in and out of the activity, brought personal and mathematical cultural 
things to it and were changed by their participation in it. But what of more "mundane" mathematical 
activity in schools? Can it be interpreted in this way? To think about that we turn to another 
imagining-one based on work that I engaged in with Elaine Simmt, Joyce Mgombelo of the University 
of Alberta and Bob Frizzell, the classroom teacher with a class of 15 to 18 year old high school students 
in a school in Edmonton with poor performance histories in mathematics. 

IMAGININGS 2: NOTICING POLYNOMIAL DISTINCTIONS 

discusses this phenomenon by n~e. He has presented this explicit idea in our forum as have many others 
at least implicitly such as Coleman, Agassi, Schatschneider and Henderson. 
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Imagine a class of25 high school students who previously have done poorly in mathematics. Some 
are even taking this course for the third time in hopes of getting a mathematics credit towards a high 
school diploma. In a special intervention in polynomial algebra the students have been using special 
polynomial tiles and blocks as well as particular schemes for re-presenting certain polynomial phenomena. 
For example with respect to multiplying and factoring polynomials they have engaged in such actions as 
building rectangular polynomial tilings; sketching such rectangles; identifying geometric elements of such 
sketches in algebraic terms; using multiplication grids (see figure following); using expressions using 
standard notation; as well as acting to inter-relate the results of some of these acts. 

Now imagine two of these students who are working in class. Donny, one of the two, claims to 
"suck at math". Jen suggests that she has always previously been in "LD" classes. They are working on 
the following variable entry prompt devised by Elaine sitruDt: 

The following polynomial is required to form a rectangular design as ordered by a client who 
wants a rectangular tiling. However you cannot read the coefficientfor the x term. Before you 
can pass on the order to your client you need to find out what the missing term might be, 
Offer a possibility or a list of possibilities to go over with your partner. 
2x2 + ?????x + 24 

Imagine that Donny takes out the tiles and isolates two "x2
"" tiles and starts to count out 24 unit 

squares. In this act and that of picking up some "x" tiles he notes to himself that it will be way too 
complicated and messy to try to use tiles to find rectangular polynomials that fit. In the meantime Jen has 
translated the request for polynomial rectangles into a search for items in a list of factorable polynomials. 
She is using the grid scheme and has found two such polynomials-the first two polynomials in the figure 
below. Donny looks over at Jen's work and abandons his physical modeling. In fact you can imagine 
that he looks at the details of the results and starts suggesting other factorings that they might test based 
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on factors of 24 as they occur to him. In each case Jen creates the grid, perfonns the computations 
necessary, identifies the polynomial and prepares to move on to another possibility. By this time a list 
of four or five polynomials has been created, the teacher is looking in on what they are doing. Donny is 
asking what happens when you for example create the ''reverse'' of(x+4)(2x+6) [B in the figure] by trying 
(x + 6)( 2x +4) [F in the figure]. Donny and Jen were surprised that this ''reverse'' polynomial was not 
the same as the original. They are equally surprised and excited by the fact that the polynomial in F did 
generate the same polynomial as (x + 2)( 2x + 12) [C in the figure]. They now start looking for local 
relationships among factorings. Donny later remarks: " That actually scares me! Just by putting it in 
a different part and you get a different answer. " 

To me this is indeed interesting mathematical work especially as generated by supposedly "weak" 
students. But our point here is not to comment on the quality of the work but to try to interpret it. It is 
clear that the prompt does not "cause" or detennine student behaviours. Each responds on the basis of 
her or his own histories of action. Even in this brief imagining one can sense that not only is Donny (and 
for that matter Jen) acting in the setting based on his structure-not only that, but his way of acting 
mathematically is changing as well with every action he takes even in this short time period. 

It is also clear that these students' inter-actions (as well-as interaction with the teacher which is only 
hinted at here) are implicated in their mathematical knowings. For example Jen's work first acts to 
provide Donny with a potential alternative to working with the tiles. Because of his structure or lived 
history, Donny is able to take up this alternative and turn it into an occasion for his own actions. Then 
Jen's carefully labeled re-presentations in her work provides a ground for Donny's seeking and finding 
relationships. Thus not only are the personal structural dynamics involved in the mathematical knowing, 
but as was the case in the interpretation of Imaginings 1, the inter.actional dynamics between Donny and 
Jen and the teacher were fully implicated in that knowing as well. Mathematical knowing in this situation 
can be observed as doubly embodied. 

But what of the embodiment in the body of mathematics? Certainly the cultural tools that were 
developed in this classroom figure heavily in the practices of both students but particularly for Jen. For 
example, consider her careful use of grids. This practice is clearly her own, but is traceable to and a part 
of the mathematical symbolic culture of this classroom.6 While there is very limited evidence in this 
imagining, 1 think we can still ask, "In what ways do the students' actions reflect the practices of big 'M' 
Mathematics?" The practices of mathematics are best observed in Donny's deliberate attempts to notice 
relationships and in his emotional reactions to fmding them. At least in that sense these students were 

. embodied in the body of mathematics in their knowing action. Any account of mathematical knowing 
in this setting would be missing an essential ingredient if this cultural component were ignored. 

In Imaginings 1 I tried to portray the mathematical actions of members of our organisation-persons 
with significant and successful histories of working with mathematics and its tools-by pointing to the 
complicit effects of personal mathematical structures; of inter-actions among them; and of historic and 
contemporary mathematical practices observable in those actions. In turning to Imaginings 2, 1 simply 
wanted to point out that the mathematical actions of persons whose own mathematical histories were not 

61t could be argued that the use of the grid mechanism enabled these students to engage in 
mathematics that might otherwise been unavailable to them. But by the same token, the use of grids may 
have inhIbited their use of other notations such as standard algebraic expressions and identities. Thus the 
particular choice of cultural tools at once promotes and limits the mathematical actions of students. Elaine 
Simmt and 1 are currently work~g on this issue with data from the study from which Imagining 2 is 
drawn and another study conducted in a regular Grade 9 class studying algebra. 
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rich and certainly not laden with success also could be considered as triply embodied as well. I turn now 
to a more speculative venture by looking at CMESG/GCEDM through this lens as well. 

CMESG/GCEDM IN ACTION: TRIPLY EMBODIED?? 

Although the term would be unusual when applied to an organisation, I do not think it a stretch to 
think of the functioning of CMESG/GCEDM as "embodied". The heart of its meetings are the working 
groups. By design and by operation such groups are not about the presentation of abstracted disembodied 
knowledge. No, they are always sites for mathematical actions and inter-actions. Similarly our plenary 
speakers are not selected simply for their abstracted disembodied ideas found in journals. No, we insist 
on developing living and embodied relationships with these scholars. We ask them to participate in 
mathematical actions with us and ask that their words be thought of as generating the possibilities for 
inter-actions with us. Thus by design, the doubly embodied natures of our engagement with the plenary 
speakers and our working groups are apparent to me. 

A review of the topics of the working groups over the years and the titles of our plenary addresses 
reveal, at least at a nominal level, embodiment in the body of mathematics as well. That is, it is apparent 
that the planners of our meetings have deliberately sought to have brought before us for our study both 
the mathematical practices of contemporary mathematics curriculums at many levels but also the practices 
of historic and contemporary mathematics (and, of course, including the practices of mathematics 
education, and other related disciplines as well). 

In its deliberate diversity our programme and especially the selection of working group topics has 
worked to maintain the triply embodied flavour to which I am pointing. A review of the titles of the 
groups, and I would venture interviews with participants as well, shows a deliberate attempt to develop 
groups which focus on the personal mechanisms of knowing mathematics - that is on personal structural 
dynamics. There are also working groups which focus on the role of inter-actions and how these relate 
to mathematical knowing. There are groups which focus on communication and mathematics. The focus 
in such groups is not simply on communicative acts which re-present one's mathematical thing/knowing 
for oneself, but on the roles that inter-personal and ecological concerns play in mathematical action and 
inter-action. Such sessions fit well with the idea of inter-personal, social and ecological dynamics. 
Finally, there always have been sessions that deal with mathematics per se. To the extent that I have 
participated in such groups, I have found their focus to be on practices in mathematics and how such 
practices impinged on mathematical knowing and the curriculum. While any of these groups might 
nominally focus on one of the three embodiments, all three-the structural, the inter-actional and the 
cultural-necessarily figure in the actions of the group. 

And what of the ambiance of our meetings? What does attendance at one of our meetings imply? 
One may "gain knowledge"-as in a list of disembodied ideas or even sources for finding such ideas-by 
participating. Or one may be able to present ones well developed, if disembodied ideas, in a friendly 
forum. But I do not think that either of these activities captures what this organisation is nor what 
participation in it implies. As I tried to illustrate in Imaginings 1, I believe that participation in our 
meetings is a bringing forth of a world of mathematical educational significance with others in a truly 

7 Although I am sure that he would not think of the organisation in these terms, as I write this 
section I see it as a tribute to the imagination of David Wheeler who provided much of the grounding for 
our organisation and who for many years insisted that in our planning we maintain the features that would 
occasion our meetings to exhibit a unique and what I am here calling an embodied nature. 
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potentially rich sphere of possibilities. Such participation is a way of being in the world. Such triply 
embodied knowing is a way ofliving at least for a few days a year. 

POST SCRIPT: IMAGINING A GENESIS OF IMAGINING EMBODIED KNOWING 

The writing of this signals some 20 years in this organisation, over 30 years of working in 
mathematics education in Canada, nearly 40 years of working as a teacher of mathematics at least in some 
way, and well over 50 years of being a student of mathematics. The lived ideas-only hinted at 
above-<:ome out of living in all of those contexts. While much of the influence of those livings is 
indirect and much of that is such that I am not conscious of it, I fmd it useful to provide at least a trace 
of the genesis of the view that I have sketched out above. On the following page you will find a diagram 
of that trace. This trace suffers on two counts. First it is necessarily static. But the pathway of the 
growth of my understanding of embodied knowing is dynamic-it bas and is changing in ways that cannot 
be captured in the diagram. Further, the necessary inter-relationships and complicities among "cells" in 
the diagram are not apparent either, except for a few meager attempts to connect a few of them. Secondly 
this trace is incomplete in many ways. But the way I want to highlight it here is personal. That is, this 
trace is a necessarily incomplete re-presentation of my reflections on living with a large number of people 
who have influenced my mathematical educationalIife and are continuing to influence it as I write this. 
This trace does not reflect all that living and more importantly does not reflect all of the persons and ideas 
that have served as wonderful occasions for my mathematics education living. There are likely very 
significant omissions. Perhaps even more importantly, the influences of persons and ideas that are 
mentioned is understated in this trace. 

For the most part I will leave this trace as an artifact for you to think about as you will. It is certainly 
beyond the scope of this commentary to write about all of the cells, their connections and the intended 
dynamics of the lived history so re-presented. Even were it not, I have already indulged myself long 
enough in this essay. Still a few comments are in order. 

My sense of embodied knowing really had its start for me in that portion of the diagram labeled the 
Body of Mathematics. The name Hjalmer Anderson is that of a remarkable high school teacher who 
created a very special community for doing mathematics in the small mining community in which I grew 
up. The names May, Shuster and Coxeter are representative of teachers and writers who exposed me to 
big ideas. Rather early in my career as a graduate advisor I worked with Dawson and Higginson who 
really stretched my views on such ideas as well as the sphere of my embodiment in the body of 
mathematics. The second phase of my interest in embodied mathematics could be called my constructivist 
phase. Here I have to add my special tribute to the contributions of Doyal Nelson my former 
colleague-he pushed me to focus on and interpret the work children engaged in mathematical action. 
This work was refmed by long intellectual friendship with Les Steffe whose work and life have 
occasioned much of the constructivist work that I did on fraction knowing and who introduced me to 
Emst vonGlasersfeld and his work. As can be seen at the top of the diagram a central concern which grew 
out of my interest in how students came to know mathematics, essentially a constructivist concern, is 
labeled the Dynamical Model and represents work of the last ten years done with Susan Pirie. A central 
feature of this work is its operational nature-:-that is we saw understanding not as an acquisition, but a 
dynamical embodied process. Under Susan's influence, our work turned to the implications of interactions 
especially with the teacher in the changing understanding of the student. At the same time I was reading 
the work of Maturana and Varela and was in interaction with the likes of Al Olson, Daiyo Sawada and 
Sandy Dawson about these writings. It was under these influences and based on my history of 
experiences with potentially rich situations, constructive mechanisms and dynamical understanding that 
the notion of mathematical cognition as coemergent took root. Thus, I was enticed to look beyond the 
mechanisms that an individual used in engaging in mathematical action to try to understand the ways in 
which the environment and others in it occasioned such actions. The word co emergence itself signals 
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more than 10 years of work which I have discussed elsewhere in more detail. Since 1990 I have been 
working with several colleagues especially Brent Davis and Dennis Sumara on elaborating Maturana's 
essentially biological ideas in educational term. As· mentioned above it is Brent's notion of Body of 
Mathematics which served as a take off point for me as I created a circle in my own intellectual history 
by connecting my other theoretical and research interests back to my original interests in the body of 
mathematics. I have named this new but old theoretical, research and pedagogical enterprise the study 
of mathematics knowing as triply embodied. The names of a large number of graduate students pepper 
this trace, particularly as it re-presents this recent enterprise. They have figured heavily both in my work 
and in my thinking. Although I haven't pointed out all of their influences here nor those of other 
colleagues mentioned or unmentioned in the trace, my imagining of embodied cognition would have been 
fundamentally constrained or perhaps non-existent without them. 
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ABSTRACT 

Pursued in the spirit of a philosopher and not of a shopkeeper, arithmetic has a very great and 
elevating effect, rebelling against the introduction of visible or tangible objects into the 
argument. (plato, The Kepub/ic) 

We must distinguish (if we can) between new ideas that have come to stay and new ideas that 
arise from chance and change--ideas which are in the fashion, and have in consequence a 
certain air of smartness, but come off badly when subjected to the wear and tear ot-the class
room. The worst of it is, when one idea gets into fashion it pushes another idea out of fashion. 
And the other is often the better of the two. [Ballard 1928, preface] 

Over time, generality has been expressed in different ways. The principal influences, such as 
Babylonian and Egyptian scribes, Diophantos, medieval abacisfs, Cardano, and Viete, to name only a few, 
each offered a form of generality, but the implicit and explicit ways in which they expressed generality 
is also part of what generality is, or was, for them. Authors of arithmetic and algebra teaching textbooks 
from the 15th century to the present have similarly reflected differing awarenesses of generality. By 
looking at how selected authors have worked in the past, participants will be urged to reflect on their 
awareness of generality when 'doing examples' and enunciating theorems, and how they explicitly (or 
implicitly) indicate generality in their teaching. 
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OUTLINE OF ACTIVITY 

The approach adopted was to stimulate current 'taken-as-shared' experience with the intention of 
triggering access to similar experiences in the past, in order to provide a rich supply of examples of 
generality and the expression of generality to feed observation and discussion. 

In each session, participants were invited to undertake one or more tasks, drawn from draft notes 
prepared in advance (Mason 1997). Usually this involved work on one or more mathematical problem, 
but sometimes it was more concerned with style of presentation of a mathematical argument Participants 
worked on the task individually or in concert as they felt moved, followed by a short period of reflection 
and reporting to the whole group on observations and emerging issues. At the end of the session there 
was further reflection, and an invitation to make notes. The following session began with further 
observations and discussions, in the expectation that what had remained with a person was likely to be 
of ongoing significance. Our role as leaders was not to obtain consensus but to provide stimuli for 
individuals and groups to bring to expression conjectures and observations for further consideration. 

Comments and observations by participaNts have been integrated into the report, except in the last 
section where fmal reflections are listed separately. 

DAYIA 

The opening task was a silent presentation of the following sequence taken from Peter Taylor's draft 
book distributed at the meeting: 

2{f=~2~ 

3~={3I 

4{fs =~41~ 

It was suggested that everyone present knew (or expected) what would be written next. It was 
observed that a sense of what was coming next was not the same as a sense of form, which was different 
again from having a sense of a formula. In other words, one can have a sense of nextness without a sense 
of individual pattern, a sense of pattern without an explicit expression of that pattern, and expression of 
pattern may require several versions before the expresser is satisfied with it as an expression of perceived 
generality. Furthermore, expressing perceived generality often leads to awareness of further possible 
generality. Thus the initial task set the scene as intended, for the larger issue is whether one can detect 
awareness of generality in the way in which arithmetic and algebra are presented in textbooks through the 
ages. 

The first main task was a choice between the following. 

Initial Task: 
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To express any fraction as the sum of distinct unit fractions. To express any 
fraction as the sum of two other fractions whose numerators are given. 
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To express any fraction as the sum of two other fractions whose numerators are given. 

Suggestion: 
First, work at these yourself. For a real challenge, try using words but not symbols! When 
you have worked at these for yourself, try expressing any result you have in words, as a rule. 
Then consider the following rules given in the Ganita-Sara-Sangraha of Mahaviracharya 
(c.830 AD), and consider what you are called upon to do in order to make sense of them. 

"The denominator (of the given fraction) when combined with an optionally chosen 
number and then divided by the numerator so as to leave no remainder, becomes the 
denominator of the first numerator (which is one); the optionally chosen quantity 
when divided by this and by the denominator of the sum is the remainder. To this 
remainder the same process is applied." [Datta & Singh 1935 p20 1] 

"Either numerator multiplied by a chosen number, then combined with the other 
numerator, then divided by the numerator of the sum so as to leave no remainder, and 
then divided by the chosen nuinber and multiplied by the denominator of the sum 
gives rise to one denominator. The denominator corresponding to the other 
(numerator), however, is this (denominator) multiplied by the chosen quantity." [op 
cit. p202] 

Alternative Initial Task: 
A good runner walks 100 paces (a ), a bad runner goes 60 paces (or b). Now 
the latter goes 100 paces (or c) in advance of the former, who then pursues the 
other. In how many paces will they come together? 

A hare runs 100 paces (a) ahead of a dog. The latter pursues the former for 
250 paces (b), when the two are 30 paces (c) apart. In how many further 
paces will the dog overtake the hare? 

Suggestion: 
First, work at these problems yourself. They are taken from the Chiu-chang Suan-shu 
(Arithmetic in Nine Sections, at least as early as 500 BC) [Mikami 1913 pI6]. For a real 
challenge, try using only words, not symbols. Express in words as rules how to solve other 
problems of 'that type'. What constitutes 'type'? Perhaps construct your own variants. 

The original text may not have inserted symbols to suggest generality as Mikami has done, but the 
solution would have been given in words, using names for the quantities the numbers particularise. 

In the event, all but one group chose the first task. It proved to be rich in revealing different 
approaches and different ways of conceiving the expression of an algorithm. It also required some sort 
of validation or proof, whereas the second task was more straight forward and did not seem to require 
'proof'. No-one who worked on the first task got as far as examining the Indian solution. 

Observations 

One group developed and shared an algorithm without ever explicitly stating it, through sharing 
considerable mathematical expertise and experience. This might be precisely the state of a group of 
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scribes who shared specific examples but never actually articulated the generality. It might also be the 
intention of an author offering chosen examples to students that the students develop a general algorithm 
through contemplation of particular examples. Other groups worked at expressing a general procedure 
and then deciding if it would terminate. 

For some, starting to generalise introduced tension while staying with the particular was 
comfortable; for others it was all too easy to try to out-generalise others. Generalising too quickly, and 
sometimes even at all, can prove futile when the symbols become too hard to handle, or when they fail 
to capture the essence of the problem. This tension is present in most classrooms and lecture halls too. 

One group started with numbers and reached for generalisation, while another started immediately 
with symbols. For some, numbers were particular, for others, generic and the same was true for symbols: 
for some groups which used symbols quickly, those symbols were at first only of very limited generality, 
while for others, the symbols were an expression of perceived generality. It is only when the need to 
prove a conjecture arises that the symbols were seen as essential to the generality of the argument. What 
is important is that you start with confidently manipulable entities and use them to try to get a sense of 
what is going on. 

Questions arose as to what constituted a suitable generality. Generality involves both the statement 
of something as invariant and a statement of what is permitted to change, and over what domain. Often 
the domain of change is overlooked or understressed, as in geometrical statements which often do not 
emphasise or even omit altogether the domain of changeability: 'for all triangles ... ' or 'for all cyclic 
quadrilaterals .. .'). Instead of stating the domain, one can take a Lakatosian perspective (Lakatos 1976) 
by telling students that some objects (e.g., triangles) satisfy such and such a property; and asking them 
to find those which do not satisfy it. This opens up possibilities for the natural propensity for finding 
counter-examples and for exploring boundaries (Michener 1978; Dyrslag 1978). 

People working on the hound-and-hare problems found themselves having to make assumptions 
which made the problems tractable, and so trying to enter the culture of the setter and perhaps the culture 
of an activity of the time. This demonstrates one of the potentials for work on word-problems from 
different periods: stimulation to discuss cultural differences. A further difference with the fIrst task was 
that the two problems posed did not generate a direction for investigation. The group members got stuck 
on seeking similarities and differences between the problems, and so did not explore common generalities. 
Generality was clouded by the apparently practical or concrete nature of the problem contexts. 

In the fIrst task, some who had gone for symbols on the fractions had written immediately that 
1 1 sum -+---
N N + 1 - product . and found it useful to have names for chunks. At times people 

talked geometrically, or at least employed a spatial metaphor: 'take out the largest liN'. Some reported 
not being able to follow details of what others were saying, but construed a general sense. 

An aim of these tasks was to generate an encounter with generality and with the challenge to express 
that generality. Interpreting other people's generality, such as the Indian 'solution' exposes the difficulty 
in expressing generality in words as a pedagogic device. The importance of recognising generality is no 
modem idea, as the following extract suggests. In response to a student who, having been told that 
knowing how to calculate was all that was required ifhe applied his thoughts appropriately, returned to 
ask for further instruction, Master Chen said in the Zhoubi Suanjing (fIrst century BC): 

38 

That is because you are not familiar with your own thought. ... but you have still not 
got things clear, that is to say, you still cannot generalize what you have learnt. The 
method of calculation is ve.ry simple to explain, but it is of wide application. This is 
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because 'man has a wisdom of analogy' that is to say, after understanding a particular 
line of argument one can infer various kinds of similar reasoning, or in other words, 
by asking one question one can reach ten thousand things. When one can draw 
inferences about other cases from one instance and one is able to generalize, then one 
can say that one really knows how to calculate. The method of calculation is therefore 
a sort of wisdom in learning . . . The method of learning: after you have learnt 
something, beware that what you have learnt is not wide and after you have learnt 
widely, beware that you have not specialized enough. After specializing you should 
worry lest you do not have the ability to generalize. So by having people learn similar 
things and observe similar situations one can fmd out who is intelligent and who is 
not. To be able to deduce and then to generalize, that is the mark of an intelligent man 
... If you cannot generalize you have not learnt well enough . . .. [quoted in Li and 
Shinm, 1987 p28]. 

Conjectures 

The conjecture was offered (supported as it turns out by Gillings (1972) and by Hoyrup (1990) that 
Egyptian and Babylonian scribes might have been well aware of generality but chose only to present 
particular examples, which are often posed as questions, perhaps as a pretext for showing off the 
intellectual skill of the scribe. Perhaps it was through experience of having tried to express generality in 
words and fmding it ineffective and lengthy that scribes knew not to waste their precious scribing 
energies. Perhaps it was assumed that students would be in the presence of a scribe who could read 
generality in the particularity and so provide students with forms to follow and access to generality. It 
is reasonable to assume therefore that how and when to express generality to students (not colleagues) has 
been an issue since before written records. 

Participants were invited to consider a number of conjectures concerning the appearance of implicit 
and explicit generalisations in historical texts, with a view to considering the same issues in their own 
teaching. Of particular interest are the transitions which students are called upon to make, and ways in 
which teachers can support and provoke those transitions. In school, technique is the focus of each topic: 
technique is examinable, and provides a procedure for resolving a class of problems. But are students 
aware of the class of problems it resolves? Co~ld they express this generality? 

The historical role played by word or story problems in the development and teaching of algebra 
is complex and intricate. Word problems were initially ari~etic in nature, but people soon found that 
algebra often helped in the resolution of more difficult ones, and that instead of resolving a particular 
problem only, one could formulate (literally) and resolve a generalised version (as suggested for example 
in the way Mikami offers letters with numbers in the second initial task above). For example, Diophantos 
posed number problems in general but solved them in the (presumably generic) particular; Newton posed 
and solved each problem in general symbols, and then offered a particular example. But historically, 
algebra texts rapidly turned into textbooks on the 'arithmetic of polynomials', and word problems 
remained in the domain of practical arithmetic texts, reappearing in recreational texts from the 17th 
century and sporadically in algebra texts, particularly in the early 1900s. Word problems offer a rich 
cultural and pedagogic means for stimulating students to perceive and express generality, in preparation 
for later algebra (polya 1962; Swetz 1987; Gerofsky 1996, 1997). 

DAYID 

On return from coffee break, participants were directed to the following 
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Babylonia 
7: I found a stone but did not weigh it; after I added one-seventh and added 
one-eleventh, I weighed it: 1 ma-na. What was the original weight of the stone? 
The original weight of the stone was 2/3 ma-na, 8 gin, and 22 112 se. 

9: I found a stone, but did not weigh it; after I subtracted one-seventh, added 
one-eleventh, and subtracted one thirteenth, I weighed it: 1 ma-na. What was the 
original weight of the stone? 

The original weight of the stone was 1 ma-na, 9 112 gin, and 2 112 se. 

(x -~)+ mx-~} m(x -~)+ mx -~))= 1,0 

x = 1,9;30,50 gin [Extracts from Tablet R. YBC 4652 p. 100] 

Bearing in mind that Babylonians used base 60, work out the meaning of ma-na, gin, 
and se. Is there any mathematical or pedagogical consequence of the choice of 
numbers? 

Various authors have put forward the notion that Babylonian scribes knew general methods, and that 
the tablets we have are examples of those methods being applied. Some seem to be the workings of 
students; others could be examples for students to follow. This raises the deep and eternal pedagogic 
question of the role of generality and of particularity in teaching students. Students are driven by 
assessment, which, 

if problem-oriented, focuses student attention on methods and classes of problems, and may divert 
them from appreciating underlying structure; 

if theory oriented, may focus student attention on memorising theorems and proofs; 

In the spirit of Babylonian mathematics, in which fractions are always written as sums ofrecipro
cals apart from 2/3, describe in words how to 'do' an Unweighed-Stone problem, and describe the 
class of problems which your general method will solve. 

Unfortunately people got bogged down in trying to reconstruct the units, and so did not always focus 
attention on the implied (pedagogic) generality. It is interesting to note that the participants did not 
attempt to produce a single generalisation despite the fact that there were two problems as in the previous 
task. The unfamiliarity of the context appeared to inhibit completely any desire to generalise. This state 
is shared by students: unfamiliar contexts can stifle the freedom needed to consider generality. 

Reflection 

In retrospect we wish we had instead drawn attention to the succeeding page of the notes taken from 
the Rhind Papyrus in which generality is even closer to the surface: . 

Problems 24-27 ofRhind Mathematical Papyrus 

-A quantity and its 7 added becomes 19. What is the quantity? 

A quantity and its 2 added becomes 16. What is the quantity? 
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A quantity and its 4 added becomes 15. What is the quantity? 

A quantity and its 5 added becomes 21. What is the quantity? [Gillings, p. 154] 

Problem 28 of the Rhind Mathematical Papyrus (1650 BC) by the scribe Ahmes (1620? 
BC - 1680? BC): [Think of a number]. Two-thirds is to be added. One-third [of that] is 
to be subtracted. There remains 10. 

Make 1 0 of this, there becomes 1. The remainder is 9. 3 of it, namely 6 is added. The 
total is IS. '3 of this is 5. Lo! 5 is that which goes out, and the remainder is 10. The 
doing as it occurs! 

In modem terms 

Think of a number, add two-thirds of it. Take one-third of that away. What remains? 

From your remainder I take one-tenth: that is the number with which you started. 
[Followed by a check of this] That is how it is done! [Gillings, p.182] 

Note that Gillings has introduced a generality, reading the given answer 10 as generic, and converting 
a specific problem into a think-of-a-nmnber game. 

The observations which followed work on the Babylonian task indicated that participants had come 
up against the historian's problem of interpreting what an author meant, by making use of the solution 
to reconstruct the problem's intent. We also discovered that in reading historical texts it is easy to make 
unwarranted assumptions, such as that a word for a unit of measure always has the same meaning! 

DAY2A 

We began by reviewing issues which had arisen the first day (summarised above). Participants then 
broke into groups to consider either a collection of problems related to Diophantos' first problem, or to 
consider Chuquet's courier problems and try to construct a generalised courier problem. 

Diophantos (200?-284?) and His First Problem 

van der Waerden (1983) finds that when Diophantos solves determinate problems, he uses methods 
that are identical to those used by the Babylonians, though Diophantos uses a symbol for the unknown 
(examples of which are found in an Egyptian papyrus pre-Diophantos op cit. p. 104, p. 108-109) and so 
leads the reader to a solution, whereas the Babylonians only recorded the method-formula. But 
Diophantos also introduced indeterminate equations, and developed clever methods of resolving these, 
with the use of only one unknown. 

Thomas Heath (1861-1940) translated some of Diophantos as well as Euclid (Heath 1885). The 130 
problems are solely about finding numbers, and just iIi the ftrst of the six extant books (there were 13 
originally), the problems range from 

1. To divide a given number into two having a given difference. (e.g., given 100 and 
difference of 40) 

through 
32. To fmd two numbers in a given ratio and such that the sum of their squares also has to their 

difference a given ratio. (e.g., given 3:1 and 10:1) 
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to 
39. Given two numbers, to fmd a third such that the sums of the several pairs multiplied 

by the corresponding third number give three numbers in arithmetic progression 
(e.g., given 3 and 5). 

Generality is implied in the verbal statements of the problems but his resolutions were specifIc; later 
Arab sources employed symbolic methods to resolve them generally. Diophantos' first few problems 
appear in most problem collections and textbooks, but few authors draw explicit attention to the fact that 
many apparently different problems can be seen as contexts for Diophantos' fIrst problem: 

What is it that enables you to recognise some of the following as variants ofDiophantos' fIrst 
problem, or extensions? What does structural awareness consist of? 

A bottle and a cork cost 24d The bottle cost 2d more than the cork. What was the price 
of the cork? [Ballard 1928, Chapter XX) 

A man rows down the stream at the rate of 6 miles an hour, and against the stream at the 
rate of3 miles an hour. What is the rate of the stream? [Ballard 1928, Chapter XX) 

A man pays with a $5, (d), note two bills, one of which is six-sevenths, (alc), of the 
other, and receives back in change seven, (h), times the difference of the bills. Find their 
amounts.( p.236) [Anonymous text from Waterloo library). 

A boy, being asked his age and that of his sister, replied, "If! were 3, (a), years older, 
I would be 3, (n) times as old as my sister; but, if she were 2, (b), years older, she would 
be one-half, (Ve), as old as I am." How old was each? (p.236) [Anonymous text from 
Waterloo library) 

Thought in retrospect: It seems to be more effective to offer participants a set of problems and ask 
them to sort them in some way (before actually solving them), and only then to work at solving them and 
reclassifying them, than it is to offer the task as given here. In previous workshops, sorting first and then 
solving later brought a subsequent awareness to the fore that underneath the context, the problems have 
the same structure. In our case, it turned out that participants who were used to immediately expressing 
Diophantos' problems in symbols were prevented from pushing deeper into the question oflocating what, 
in the following problems, blocks emergence of an awareness of commonality between problems. The 
relatively recent emphasis on how to read and interpret word problems has actually blocked access to 
underlying generality. This phenomenon will also playa role for those who attempt the following 
problems. 

Chuquet's Courier 

22. Two men depart on one day and in one hour, that is to say, one leaves Paris to go to Lyon 
which is a hundred leagues by road, and the other man leaves Lyon to go to Paris and makes 
the journey in 7 days. And the one who is going from Paris to Lyon makes the journey in 
9 days. To determine after how many days they will meet each other. [Flegg et al. note that 
Chuquet gets the answer wrong, but gets other similar ones correct.) (Flegg et al. 1985, p. 
204) 

Problems 98-100 and 103-108 illustrate the case where one or both men travel not at a constant rate, 
but increasing their daily journey in arithmetic progression, while the other problems between 125 and 
128 introduce the implausible complication of travelling backwards at night, familiar to most readers in 
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the guise of the 'frog in the well'. (p. 204) [But it might be noted, often the answer given fails to take into 
account what happens on the last night!] 

If a log starts from the source of a river on Friday, and floats 80 miles down the stream 
during the day, but comes back 40 miles during the night with the return tide, on what 
day of the week will it reach the mouth of the river, which is 300 miles long'? [Ans: 
Friday] (Jones 1912, p. 10) 

What variations might Chuquet have included? Is there an all encompassing generality for courier 
problems? 

An appendix in the notes offered a range of courier problems, with the intention that participants 
might later see whether their generality encompassed the variations offered in various later texts. It was 
our deliberate intention to obscure the boundary between variation, extension, and generalisation. 

The Courier group soon went well beyond the canon of the problem, by thinking geometrically. 
Since the oourier problem can be resolved by drawing a graph and locating where two straight lines cross, 
this approach generalises to setting such as: 

if two people set out from different places and or at different times to undertake 
continuous journeys such that eventually their paths will cross, find the crossing place 
or time. 

This places the problem in the domain of functional analysis, but perhaps loses some of the attraction 
of courier-based variants. It does show up Hare-and-Hound problems as courier problems. The form 

dt VI . th' . f' d d' l' . d 2 = V 2 permits e msertion 0 couner-type ata,an so m some sense represents a genera IsatlOn. 

Certainly it provides symbolic expression of underlying structure, though whether you need to appreciate 
the structure in some deeper way in order to decode and recognise it in a fresh context is another matter. 

Because we are already familiar with algebra, it is difficult to experience what it might have been like 
without algebra to pose and resolve some of these questions. Certainly the extensive and varied attempts 
by text authors in India and in Europe to routinise the use of the rule of three and of false position 
suggests that a majority of the population preferred to have a formula rather than to think through the 
structure for themselves. There is ample evidence that teachers in every generation have resorted to 
routinising problem methods for their students in the hope that this will enable them to obtain correct 
answers. Perhaps teachers have always found it difficult to teach students to think or, put another way, 
to release their powers of thought. 

DAY2B 

Lookiag at Texts and Word Problems 

It was suggested that in looking at arithmetic texts, there were three different ways in which 
generality was invoked: 

Generalisation through repetition: 

Students do enough examples to become familiar with doing 'that type of problem'. Of course they 
have to abstract 'that type of problem', and attend to the technique rather than simply doing each 

43 



CMESG/GCEDM 1997 Proceedings 

'example' in turn. Recognising something as an example means it must be an example of 
something, so there is an element of bootstrapping in this approach. It was popular in many texts, 
especially in North America in the 18th and 19th century. 

Generalisation through particularising a stated generality and re-generalising 

One common style in arithmetic books (as early as 15th century if not before) stated a general rule 
in words first, then offered worked examples. Gradually texts added commentary and observations 
to these. It became common to then restate the general rule, perhaps in symbols, before (perhaps) 
offering exercises to attempt. 

Generalisation through using a single (or perhaps afew) generic examples 
This requires students to be able to read the general in and through the particular, and was what most 
of us did when working on the Babylonian tasks. 

Word problems are disappearing as a genre of mathematical activity, and even where they are still 
used, they most often appear as challenges at the end of a topic to keep the faster students occupied while 
the slower ones catch up. One aim of the working group leaders had been to draw attention to the role 
and value of word problems as a device for stimulating and supporting the expression of generality. 
Support for this can be found from Polya: 

I hope that I shall shock a few people by asserting that the most important single task of 
mathematical instruction in the secondary schools is to teach the setting up of equations 
to solve word problems. (Polya 1962, vol. I p. 59) 

Polya must have had in mind fostering thinking, not routine application of technique. Yet since the 
1950's authors and researchers have tried to routinise solution of word problems by offering devices (such 
as tables) and rules of thumb for translating words into symbols, for the most part with little success. For 
us the word problem not only offers an opportunity to extract a mathematical question, but the chance to 
experience the recognition of a 'type' or 'class' of problem, and to express a method for solving anything 
in that class. 

Ifa student enters an examination with little idea of the types of problems which will appear, they 
are at the mercy of the examiner and of their own fears; if they enter it able to say of any particular 
question: 

Is that the best they can do? I can state and solve much harder versions of that silly 
problem! 

they are in a much stronger position. Hence the value in working on typing and classifying problems. 
One useful technique is to make a collection of cards each with a problem on it, such as might appear in 
a revision exercise. Asking students to sort the cards in anyway they like usually produces several 
different approaches. Inviting students to then describe the basis for other people'S sorts brings them into 
contact with other ways of perceiving the questions, and offers them an opportunity to consider a more 
mathematically effective perspective. 

Observations 

The notion of generalisation itself becomes ambiguous, especially as it was being used to incorporate 
variation and extension, not to say abstraction. 
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Generalisation may appear to be more of an individual matter than a group matter, because each 
person's expressed generality may have to be reconstructed by each individual through its 
particularisations, unless it is expressing the insight of all members of the group. When the task becomes 
a challenge, collaborating strangers are more likely to turn inwards to their own thinking than to stick with 
the ebb and flow of the group. Certainly sometimes it is necessary for individuals to work for and by 
themselves; coming back to collective activity afterwards requires disciplined practices. 

When one person suddenly sees something they are then in the position of trying to explain or 
convince others. Effective generalisation in a group requires real co-thinking, so that what is said captures 
what each member of the group is thinking. It takes effort to develop the working practices which support 
this collective (l1otjust collaborative) action. Collaborative working produces individual generalisation 
and the force of the group to check and test conjectures until there is a collaboratively constructed 
convincing argument. 

In the world of teaching mathematics, the dominant ideology disparages repetition, and hence one 
of the routes to experiencing generality. Instead, generalisation through a single, or perhaps a few generic 
examples is favoured. Justification for this is based on issues of motivation and representation. Stressing 
generality emphasises verbal description of the general, and hence supplies natural support for stimula
ting discussion. 

Inviting others to generalise runs the risk that they will move in unforseen directions, as happened 
in the workshop, and perhaps miss a fruitful but more limited domain of generalisation. Some means is 
needed for indicating boundaries in a sensible domain of generalisation before students give full rein to 
their powers of abstraction. The existence of general objects which the activity is intended to bring to 
attention must be perceivable by the participants. To fmd the energy to search for something you need 
confidence that it exists. Generalisations occur to mathematicians, but to experience this, students need 
to be urged to seek them. The role of counter-examples must also be kept in mind. 

When students are given a series of problems, the task may be interpreted in different ways by 
students: 

• as solving problems which are distinct and unrelated; 
• as solving problems by application of a previously studied technique; 
• as solving problems with the aim of seeing what is common to them and appreciating both the 

class of problems solvable by a common technique, and a sense of that technique and what it will 
solve. 

DAY3A 

Again, participants were invited to recall and report on issues and observations which had arisen the 
previous day (reported above). 

DAY3B 

Previously we had been looking at the presentation of arithmetic and the use of word problems for 
introducing algebra. It was time to look at tertiary practice. We each read an extract from Herstein (1964) 
in which he proves that a commutative ring with unit element but no non-trivial ideals is a field, and an 
extract from Loomis (1974), in which he illustrates a differentiation of a quotient of two polynomials. 
Then we discussed our reactions in smaller groups. The focus of attention was the nature and type of 
generality involved in the extracts. It took most of the session to read individually and then work through 
one extract. 
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One group working on Herstein noted that individuals would have found it very difficult to 'get into' 
the Herstein, despite having had facility with such theorems in the past, but the presence of the group 
helped focus attention and make sense of the theorem. We noted the many different ways in which 
generality was indicated, as in 'for any .. .', 'every .. .', and how in English there is 'any', 'all', 'a', 'every', 
'always' whose construal in mathematics requires induction into the register. 'Let .. .' is often a sign of 
particularity, but 'Let ... be ... ' signals a generality or generic object. It was noted that Herstein's proof 
contained no indication of boundaries, of why the different conditions are needed. Herstein's text was 
and is still famous for its interchange between advance organiser, content, and meta-comment. 

PLENARY REFLECTIONS 

Indented text are observations made by participants, grouped under various headings. 

General and Particular 

The idea that struck me most was the value, once a particular solution is achieved, in 
generalising. It is so vital to teaching and learning mathematics. 

A general statement can guide students to reconstruct it, but it can also freeze them out; 
it hides the process by which it was obtained (the experience, the scope, what was 
stressed and what was consequently ignored). 

I was struck by the role of the particular as providing something concrete on which to 
reason (contributing to positive affect), and creating my own data in which to seek 
patterns; the role of symbols to organise the data, to make certain features explicit, but 
that it does not always help. 

Different perspectives might be obtained by asking both 'Does this always work?' and 
'What works this way?'. Generalisation seen as invariance amidst change reinforces the 
notion that boundary examples are important for appreciating the nature and scope of 
a generalisation. 

Generalisation goes beyond arithmetic-algebra, for it includes the geometric. 

In the working group we wanted to stay with the arithmetic-algebra borderline, but of course people 
found it useful to draw diagrams and graphs. Geometric generalisation has to be 'picked up' because it 
is not formalised the way it is in the symbols of algebra. Dynamic geometry software has opened up 
possibilities for physical-virtual manipulation of geometric generality, and it is to be hoped that there will 
be significant further developments in this direction for other areas of mathematics. It is an interesting 
question as to what it might mean to undertake geometric manipulation by analogy to algebraic 
manipulation, with the possibilities now afforded electronically. 
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Working in the group helped me 'see' that students move between general and particular 
all the time; that what is general for some may be particular for others. Thus I was 
reminded of things I had stopped noticing. 

Are we trying to isolate generalisation and give it a special status? Are we trying to 
classify types of awareness? If so, why? Are some awarenesses better than others? Do 
we seek a hierarchy? 
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Certainly it was the leaders' intention to focus on generalisation, and to give it special status, as being 
at the heart of appreciating mathematics (with proof being a central theme). Awareness of generalisation, 
of opportunities for students to try to express generality themselves, is central to effective teaching. As 
for hierarchies, that was not our intention. It is not that some awarenesses are better than others, but rather 
that the more one is or can be aware of, the more one notices and the more sensitive one can be to 
students. Furthermore, if appreciating and understanding mathematics is based on appreciating and 
expressing (and then manipulating) generality, developing sensitivity to generality is useful to us as 
teachers. Mathematics proceeds by routinising the problematic; from a constructivist perspective, it is 
important to problematise the routine in order that students de-problematise for themselves (collectively 
and individually) by re-constructing the routine. To a mathematician a solved problem is like a broken 
sword on the battlefield, as the Sufi proverb has it. Whereas a method for solving a class of problems can, 
it is assumed, be handed to a colleague for their effective use, it cannot usually be successfully handed 
to a student unless the student is well primed with appropriate past experience and appreciates the 
problematicity of the problem being solved. To a teacher, a solved problem is a potential stepping stone 
to extending appreciation of type, of particularity and of generality, and even of fonnula. 

The art of generalising enables you to see connection, relations, oommonalities, etc. that you don't 
see before. It also helps hold seemingly disparate things together. Whether we generalise from one 
genuine example (generically) or from a host of examples (which are not actually examples until they 
are recognised as examples-of something), what aspect we stress is crucial. The fruitfulness of 
generalisation in mathematics lies in the consequences of that generalisation, and not from 
generalisation for the sake of it. 

Two possibilities arise in teaching: (a) start with a generic example, or with many examples; (b) start 
from the general and move to examples. 

The most oommon strategy in textbooks through the ages is to offer a general rule and then a few or 
many examples, with or without practice exercises, and then a restatement of the general rule. Some 
authors offer justification either early, or later, in the exposition. Just in working with examples, the 
presence of a general can help direct students to reconstruct the general for themselves from examples. 
T{} treat a single instance as a generic example requires knowing what is generic (changeable) and what 
is invariant, and this is not always obvious. A useful exercise introduced by Brown and Walter (1983) 
is to take a statement (such as 'the sum of the angles ofa triangle is 180 degrees') and to read it-out loud 
placing extra stress on a .single word. The effect of the stressing is to invite asking 'what if that were 
different-wbat might it also be?' . 

Word Proh1ems 

Are word problems like cartoons in some ways? They refer to typical or recognisable everyday 
situations but are often exaggerated and unrealistic in detail. What is it about animated cartoons and 
comics that appeals to children, and in what way might this appeal be invoked in word problems? 

Geaeralisation tttrouglt the generic 

Are word problems akin 10 jokes and riddles, even fairy tales? these are forms which through generic 
examples -defme culture and its categorisation of the world:? 

Generalisation througb repetition: 
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Language is leamed through enculturation; embedded in language, children live the rules, structures 
and vocabulary. Can word problems function this way? Can mathematical generalisation be 
enculturated? 

Categorising and Connecting 

Pigeon-holing problems by the technique used to resolve them seems a familiar and un-mathematical 
activity. More important is to make mathematical connections. 

Is the categorising of problems a form of generalisation? Is any classification scheme a generalisa
tion? 

Some attempts by texts and teachers to classify problems by providing very narrow categories would 
appear to work against generalization. Often categories of problems (Le., related rates in calculus) 
which possess general schemes both for presentation and solution are broken down into subcategories 
based upon surface context features (i.e., tanks or troughs filling with water). This approach works 
to improve examination results since questions will always come from one of the identified 
subcategories, but students are left to construct overarching views of the problems and general 
solution schema. Research (Reed, 1989) shows that developing general solutions from analogous 
cases is not an easy task, and may require some direct intervention that identifies parallels and 
common features. (GoeffRoulet) 

Certainly seeing generalisation is a personal matter, however supported by collective discourse and 
practices. Ownership of generalisation often seems difficult. Yet 'seeing generality through a 
particular' is a frequent and sudden process, and fundamental to the functioning of and to functioning 
in language. 

Behold 

Reference was made to Bhaskara's diagrammatic proof of Pythagoras, with the single word Behold! 
It also appears in the reading of a phrase cited by Gillings (1972, p. 233) which comes at the end of the 
statement of a problem: Behold! Does one according to the like for every uneven fraction which may 
occur. Examination of the possible etymology (no claims were made or are being made!) suggests an 
interpretation as to be held by, to stay with, that is, to gaze at and see through the diagram; experience 
generality indicated by the particular. One is beholden to someone who has done you a favour, and 
perhaps beholden to an author or teacher who has focused attention in such a way as to enable you to 
behold. There is also a sense of seeking a particular state, not just glancing and then proceeding without 
really taking it all in, itself an interesting metaphor, akin to St. P~ul's admonition, to read, leam, and 
inwardly digest. 

To behold requires an openness which is not usual. Recent research has suggested that leaming can 
release endorphins in the same way that physical exercise, food, and sex can. This would confmn 
an ancient theory that seeing generality through particularity (and also seeing particularity in 
generality) can release energy which can then be transformed into further wqrk or effort. So the role 
of a teacher is to assist students in using the energies effectively. 

Voice 
David Pimm mentioned that Euclid (in the translations we have) shows no evidence of a sense of 

audience. There is no pronoun such as 'we' which might include the reader. Indeed, Euclid's objective, 
timeless tone is a model for sub~equent axiomatisation. 
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Someone commented that they have always loved geometry but hated Euclid, and wondered if the 
tone was the source of their experienced disparity. It is often difficult in reading text to distinguish 
between the voice of the author as individual, the voice of the author as representative of a community 
of experts, and the voice of the author trying to encompass the reader in a collective 'we'. 

Presentation 

When contemplating the problems on p. 25: Are these unconnected or is there some subtlety in their 
presence, even in their order? This is one of the issues in texts from all periods, including today's. There 
was an extract from Carr (1886) in the notes which was reputed to be an inspiration for Ramanujan. Carr 
provides another example of how it is easy to see a list as a list, but possible to detect underlying structure 
and hence a suggestion of further unstated or implicit possibilities. How might students be supported in 
locating and appreciating underlying structure, in working on exercises rather than merely working 
through them? 

Teaching 

Is there something to be gained from relating teaching to the telling of parables? 

Should into Could 

There was a strong element of should in observations: Should one ... ?; Should we ... ?; We should 
.... In working with teachers, many of whom similarly use should, it has proved liberating to suggest 
replacing should by could, transforming the moral imperative into a possibility to be considered. There 
is no one perfect or best way to teach, or to act in a classroom; there are only possibilities. Working on 
mathematics for oneself can, with appropriate reflection, enhance the possibility of noticing opportunities 
when working with others. For example, becoming aware of personal shifts from partiCUlar to general 
and from general to particular can sensitise us to the possibilities of provoking or noting similar shifts for 
students. 

Ways of working 

The group as a whole seemed content with mathematical generalisation in a global sense, but did not 
get down to sorting out categories of content which might perhaps require different forms of 
generalisation: rules, concepts, problem-solving involve different goals and or processes. Similarly, 
problem solving was used as if everyone knew and agreed what it meant, whereas this is problematic, 
especially within the context of generalisation. 

Strangers thrown together in problem-solving mode contrasts the ease with which acquaintances can 
get started. 

In the first task (unit fractions) we all understood the problem and worked on it collectively. In the 
second (Babylonian units) there was no common understanding of the problem and it was difficult to 
work collectively, to exchange productive ideas. 

The working group renewed my personal confidence in my mathematics ability, by being able to do 
some mathematics, supported by compatible and convivial people. 

I am frustrated (locked up energy) at trying to classify awareness, particularly as it seems to be 
intellectual, ignoring bodily, social, and community aspects of awareness. We are playing male 
games of , my awareness can top your awareness'. 
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I do not think that we really listened to each other, but rather, prepared what we were going to say 
next. 

As leaders we can only work with what people offer. Depth of insight depends on individual and 
group focus, only so much of which can be sustained by the leaders. 

We could have worked for three days on the unit fractions, allowing ourselves to experience our 
selves, individually and in group, communally and socially. We shy away from the becoming, the 
beholding of our awareness of our awareness 

LEADER REFLECTIONS 

For JM this was the first attempt to use historical materials as the basis for a working group. There 
certainly were difficulties! Whereas a mathematical problem can usually be stated succinctly so that 
individual and group work can begin immediately, historical material has to be read, construed 
mathematically as well as historically, and perhaps set in context. It would be desirable to have the 
original sources, and to have time for people to read and contemplate them, but this would be time 
consuming and indeed often difficult to arrange. 

As expected, there was more material than could be worked on during the time, but the notes offer 
participants an opportunity to extend the work they did at the meeting without having to go to other 
sources in the frrst instance. 

No explicit attention was given to getting participants to get to know each other except as they 
worked together on tasks. Some fmd this a good way to meet, others wish for more gentle and explicit 
introductions. 

In the general introduction it was suggested that each person would have brought what they wanted 
to work on, and at the time this seemed perhaps a little odd, as participants came to work on the 
working-group topic. But the comments show the considerable range of issues and sensitivities which 
participants bring: each person views the event through their own concerns and personal stressings, so that 
in very real sense, each person is working on their own issues, however related to the communal theme. 
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COMMUNICATING MATHEMATICS 

Susan Pirie, University of British Columbia 
Douglas Fr.anks, Nipissing University 

participaDts: 

Pat Bamson, University of Manitoba 
Mary Crowley, Mount Saint Vincent University 
Gord Doctorow, Scarborough Board of Education 
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Israel 
Wayne Fletcher, Lakehead Board of Education 
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Australia 
Kgomotso Garekwe, University of Manitoba 
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INTRODUCTION 

Faroon Goolam, Univ. of Durban-Westville, 
S.Africa 

Chinh Hoang, Lakehead University 
Tom Kieren, University of Alberta 
Lloyd Lawrence, University of Manitoba 
Vi Maeers, University of Regina 
Ralph Mason, University College of the Cariboo 
Susan Pirie, University of British Columbia 
Yvonne Pothier, Mount Saint Vincent University 
Jo Towers, University of British Columbia 
Vicki Zack, st. George's School, Montreal 

Writing this report poses an immediate dilemma for us: how to communicate through written text 
alone the pwposeful exploration of a wealth of other means of communication? How to do justice to the 
intense co-emergence and co-working of ideas that took place? Perhaps we, Doug and Susan, need fIrst 
to examine our interpretations of the purpose ora Working Group. For us, a CMESG Working Group is 
a starting point, a pause in the hurly-burly of nonnallife, an opportunity that can occasion deep thought, 
personal reflection and most importantly, considered, yet uninhibited, sharing of ideas. We had no aim 
to produce some "artefact-as-outcOlDe." I The outcome for all participants was distinct and yet the same: 
personal interpretations of a shared fragment of history; a questioning anew of individual thinking through 
communal provocation. Our intention was to explore the intersection of representation, communication 
and mathematics- while bearing in mind that as a group we would have no common and dear defInition 
of any of these terms! We did not see our role as chairing a discussion that would produce its own 
dynamic and go where the group would take it. We saw our role as guides through a structure that we 
hoped would challenge the thinking of the group participants and was based in Pirie's notion of "liberating 
constraints and constrainitig liberation." We aimed to blow apart the jigsaw puzzle of communication and 
focus on an examination of the individual pieces. So, faced with the tyranny of sequential text, we will 

IPersonal communication with B. Davis and T. E. Kieren. 
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do our best to give the reader a flavour of the multiple and coincident workings of the group. It is clear 
to us that a "we did ... they said ... the conclusions were ... " report would impose a totally inappropriate 
strait jacket on the proceedings. Instead, much of the report will be quotations from group members, 
gathered at the meeting and through their subsequent reflections. Because we respect the trust and safety 
of the group environment as one in which to try on different ideas to see if they "fit," we will not attribute 
any of the comments to named individuals.3 And because we have been asked to write the report we will 
not refrain from indulging in personal comments from time to time.4 This, then, is our re-presentation of 
the living history of Working Group B. It will not make straightforward reading, but then the group did 
not work in straightforward ways. 

To attempt to create the feelingS of the environment in which the participants initially found 
themselves, we will start at the very beginning .... 

A "RE-PRESENTATION" OF THE EXPERIENCE 

Susan's Introduction: 

To give you some idea of whether you wish to stay here or move at this point, let me give you some 
rough idea of what we have in mind for the three sessions. The working group title is "Communicating 
Mathematics" but we would like to get away from the over-worked, catch-all phrase of "mathematics is 
a language" and concentrate on the role of representations- whatever they might be- in the 
communication of mathematics. Our aim is to alert you to the notion of "problematising mathematical 
representation and communication in the classroom" and from there to provoke your thinking, possibly 
to even address the questions "what is 'mathematics' and what is a 'representation of a mathematical 
idea'?" 

Some of the other "big" questions might be: In what ways can mathematics be communicated? When are 
particular modes of communication especially powerful? Do certain representations of mathematics have 
the power to conceal meaning as well as communicate mathematical understanding? Always in the 
background must be: What assumptions underpin any attempt to communicate? 

2S: Aha, now there's a means of communication that we did not consider! What is the flavour of 
mathematics? Sharp and cold like lemon sorbet, or warm and buttery like Werthers? 
0: Certainly beats tofu! And what is the complementary scent of mathematics? 

3 ••• but yes, participant, you really did say that! These were your very words - though of course your 
facial expressions, gestures, and tone of voice cannot be conveyed here. 

4S: Doug and I had never worked or even really thoughtfully engaged with each other before we were 
thrown together by the CMESG committee in their wisdom, but out of the challenge to lead a group 
came a continuing working together - via e-mail, during breakfast, on holiday, across a hospital bed, 
around many cups of coffee, spanning two continents .... and, most importantly, we hope, over time. 

5S: That reminds me of the possibility of communication through touch. If I handled mathematics 
what would it feel like? Oliver Sacks offered me an interesting metaphorical insight into linear 
equations through a tale of seeing and feeling (pirie & Martin, 1997). But I digress. 
0: One of the privileges of being a leader! Ihde (1979) explores embodiment relations in technology 
such as "(human-machine)-->world". Suppose we metaphorically 'replaced' the "machine" with 
"mathematics"; then what feeling? 
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To get us started Doug and I will each present a classroom incident and pose some of the questions 
that they raise relating to communication of mathematical meaning. We hope that you too will have 
anecdotes of critical classroom episodes of communication that you will share as we seek to defme and 
characterise the variety of ways we have to communicate mathematics. 

The incident I am offering concerns two students, Kevin and Dave, who were working together, 
making tables of values and plotting graphs. One of the equations given on the worksheet was y = 2x+ 3. 

Kevin You fiU it. [Referring to their table] 
x - one, x squared - two, x squared plus three - five. 
x - two, x squared - four, x squared plus three - seven. 
x - three, x squared - six, x squared plus three - nine. 
x - four ... Wait, we need.some minuses ... er ... do minus three. 

Dave Easy-peasy. Minus three, x squared - minus six, minus three. 
- minus two, x squared - minus two, ... no ... minus four, - minus one. 
- minus one, x squared - minus two, - plus one. 

At this point the teacher passed by and hearing IX squared". stopped 
Teacher Hang on. Go back a bit. You said "if x is three then x squared is six?" 
K Yeah. 
T OK. Hang on a minute ... 
He then proceeded to draw a 3x3 square. divide it up into unit squares. and count them. 
T So it's nine, isn't it? 
K What? 
The teacher then repeated the explanation and demonstration with a 4x4 and a 5x5 square. 
K Oh, yeah. [doubtfully] 
T Can you carry on now? 
K Yeah. 
The teacher moved away. 
K What's he on about? I know all that stuff about areas and counting things. 
D Yeah, what we've got here's lines. 
K Just ignore him. Your tum. You do x squared minus three [writing 2x-3] 

The obvious modes of communication here are spoken language, symbolic representation and 
drawing. Kevin and Dave appear to be co-communicating mathematics with meaning, namely they are 
communicating verbally about the process of evaluating a symbolic equation. What 'assumed to be shared' 
knowledge is involved? 

The communication between Kevin and Dave and the teacher is less straightforward. There is 
evident misuse of the conventional language to be accorded to a particular symbolic expression. Does this 
resonate, for the teacher, with a common student error? 

The teacher's talk aDd drawing resonates with some existing understanding that Kevin and Dave 
have. The drawing communicates meaning associated with the calculation of area, but not the intended 
verbal association of "square" with "squared". Why? 

There is evidence that K and D have created links between graphical and symbolic representations, 
so we might say that the symbolic representation has communicated mathematical meaning, namely that 
y = ax + b can be graphically represented by a straight line. What assumed shared knowledge is there in 
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this interaction? Assumed and shared by whom? What are the effects on the understandings ofK and D?6 

Over to you, Doug. 

Doug's Introduction: 

My scenario has to do with teachers, but teachers as students. I have a middle school pre-service 
mathematics methods class and this incident occurred a few, 'extremely creative' classes into the geometry 
topic that we'd been doing. I drew a, so-called routine, symbol on the board, that is, a triangle, and 
actually I'd say that it turned out to be an acute angle scalene triangle but I realised when trying to draw, 
that it's not necessarily :thru;7 routine. Nevertheless here it is, on the board, something like so: 

And I asked the clever question, "What have I 
drawn on the board?" 

The intent of this open question was to solicit a range of responses and really open up a discussion 
of communication through pictorial representation. The teachers having gone through this period of 
classes with me, I anticipated that what I would get would be a variety of responses on this. Well, what 
I got in fact, was a fair bit of silence, looking around, anywhere but the front, and some of them thinking 
"there is possibly a trick question here." Eventually the response from somebody in the room was: "a 
triangle?" 

I was trying to put them in a context where they were the teacher and they had grade six children 
in their class and they're going to be interpreting all kinds of possibilities and I hoped they would really 
get into "the experience."B Well, it didn't work like that! After the hesitant response-question of "a 
triangle?" I stopped asking questions. I'm not sure whether today, I would do it differently, but I decided 
then that I was not going to ask any more questions because I began to realise that they would be rather 
leading questions, that I'd have to start trying to get more specific in terms of what I was looking for, so 
I stopped, and I began a discussion- which I'm not going to get into here.9 

Instead let me just pose some questions for you as part of your deliberations: 

In a middle school class, what might the figure on the board represent? In a pre-service teacher 
methods mathematics class, what might the figure on the board represent? What's the potential for 
confusion? 

How is it possible to determine "appropriate" representations or representation of representations? 

Let me also pose a few questions about the question that I asked: What assumptions were imbedded 
in it? What strengths (if it had any) did it have? What weaknesses did it have? What might have been 

6For further discussion on this topic, see Pirie (accepted). 

7A conventional attempt to convey tone of voice in written reporting. But how many other subtle 
inferences have already been lost to the reader? 

BSee foot note 5. 

9See Franks (1995) for more discussion. 
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asked instead? 

S: .... and I would add to that: Is this (pointing to the board) actually a "representation of 
mathematics" or is this "mathematics"? What is representation in there? 

S: With the theme of communication and representation, what we would like to do now is 
brainstorm as many different ways of "representing" as possible. We've clearly come up with some 
of them just in the two incidents we've shared. What we'd really like now is for you to think of all 
the possible ways that communication could happen. Communication of mathematics. 

D: I'll write them on the board. 

M: Are we putting down ways of communicating mathematics? [S: (nodding) Hmm] ways 
mathematics can be represented? [S: (nodding) Hmm] external representations? [S: (nodding) Hmm] 
internal representations? [S: (nodding) Hmm] all of them? [S: (nodding) Hmm] 

M: Yes? 

S:Yes! 

M: Yes! [laughter] Silence. 

S: OK, let's hold it there for a minute then, because what we wanted to do now was have you pair 
up and have you focus on some of these in your pairs, and what we'd like you to do with the 
representations that you're going to get , is discuss what can be communicated through your 
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particular representation and what can't be communicated. So, what's your particular representation 
good for, and what isn't it good for? Then we'll come together and at that point then we'll start 
unpicking these and talking about what we mean by representation and communication. 

The Leaders 

The allocation of forms of communication was 
totally random, because we wanted them to be 
jumbled and possibly incompatible. So we just 
numbered the groups 1 to 8 and then continuously 
numbered the words 1 to 8 until they were all 
allocated. 
D: It is interesting that at least two of them have a 
strong urge to try to group the forms-not really 
sure what criteria though. 
S: No, it is just a need to tie together that we are 
going to have to gently resist, since it is exactly 
counter to our intentions! 
D: Do you notice that we use 'representation' and 
'communication' almost interchangeably at times? 
S: Yes, but I think that just points up the subtlety 
between the two in this circumstance. 
D: 'Concept' and a 'pile of buttons': a bit out ofleft 
field ... 
S: ... and most of the groups were hoping that they 
would not get landed with the buttons! 

Groups - Working Separately 

List of the "forms" that each group had: 

Group 1: talk, silence, visualizations, computer 
programmes, movement, proof, curriculum guides. 
Group 2: action, tables, journal writing, mental 
models, mental images, algorithmic procedures, 
concepts. 
Group 3: diagrams, cheers, singing, transforma
tions, mental operations, thoughts. . 
Group 4: picture, sounds, pile of buttons, poetry, 
talk (mathematical language), riddles. 
Group 5: gesture, graphs, computer screen image, 
intonation, talk (informal language), metaphors. 
Group 6: facial expressions, video, numbers, test 
scores, algebraic expressions, analogies. 
Group 7: text, cartoons, chanting, physical models, 
matrices, real life applications. 
Group 8: symbols, story, objects, body language, 
story questions, simulations. 

When we came back together again, each group did a verbal presentation using flip chart sheets (at 
the instigation of the leaders) and talk. The following snippets are to allow you access to some of the 
comments that arose during this activity and proved to be thought provoking-for us at least! (W=female, 
M=male) 
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W: An issue we had was the meaning of the term of "representing something that somebody 
expresses" versus the "interpretation of something that is being represented by somebody else." They 
are two different ways of using communication. Mathematical symbols can represent mathematical 
objects, and operations and relationships and so on. They don't necessarily communicate an 
understanding. 

W: We found this was really embryonic thinking around these [representational forms]. We were 
noting that we weren't using the same sorts of words to talk about the different forms. 

W: So we got sort of confused when we got "objects" [on our list] because we realised that when 
we talked about symbols, the first thing we said was "mathematical objects," so we said wel~ objects 
could represent mathematical entities, and we were talking here about physical objects. The trouble 
is we both did a lot of work with Logo a while ago [engendering] a very ipteresting discussion for 
us around "objects." 

W: [Story questions] It's not just with the questions or the context but having kids write stories about 
mathematical ideas and their perceptions of the mathematical ideas and so becomes a way of 
communicating their meaning. 
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M: You pointed with your body language to feelings. 

M: I'm convinced that you can't dissociate them, mathematics, at least at the personal level, from 
those feelings. [During a recent experience] just my feeling suggested to me that there was 
something about dealing with real numbers, especially with real numbers as computational entities, 
which was very distinctly different from dealing with things as abstract algebraic things, and that 
feeling wasn't dread but I went" [gasps} you know I was surprised. 

M: [indicating the flip chart] We ended up going to symbolic forms [pictures, algebraic expressions, 
etc.] here [because of] the fact that we couldn't agree on the words we were going to use! Facial 
expression doesn't exactly communicate content of mathematics, it tends to communicate the 
relationship between the mathematics, how you think about it, and you tend to reflect value by the 
expression on your face. 

M: [video] To try and put [a mathematics lesson] on tape means that you would have to somehow 
imagine what your class would do in response. You can transmit information using video, but you 
can't really have a co-construction of mathematical knowledge. 

M: I can't think of a single thing in mathematics that numbers can't communicate. 

M: I don't know if you can say that algebraic expression does or doesn't communicate interpretation 
if you simply take it out of context. 

M: The opposition [to mental operations] we saw here was that these were more for self
communication and I'm not usually ever properly communicating a thought directly to somebody 
else. 

M: Diagrams are one means of communicating to somebody else, and one thing we felt they were 
doing particularly well was work on relationships that helped you to show relationships and one 
thing we felt they were doing particularly badly was things which had to be very strictly linear, like 
a linear formed chain of argument, like a proof. 

M: [Cheers] was more like the intonation [which] by itself couldn't do very much. It's kind of an 
accessory, an overlay which can express the nature of math, beauty, motivation, relaxation, and the 
content is accessory. I mean the fact that I cheer doesn't convey any content. It gives a flavour to 
that content. 

W: There's nothing a mental model can't represent to people. We actually decided somewhere along 
the line in our discussion that in many ways the only thing we put up here [on chart paper] that's a 
representation is really internal because it was physical things, tables, charts, to us in the way we 
interpret things that mathematics isn't in them, it's in the way we interpret them. For all mathematics 
representations they're really up here [pointing to her head], in the way we interpret the things 
around us. It's not inherently in that pile of buttons. Sorry to disappoint you guys. 

W: Finally concepts. We just decided concepts themselves are not representations of anything 
therefore we're throwing that one off the list [laughter]. 

W: [The buttons]; that turned out to be our best category, for us anyhow. So, in the pile of buttons 
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we could see just about everything. They represented the mathematics. IO 

W: All the mathematics. 

W: We divided [text] into text as external objective authority which is monological and text which 
is of internal authority which is dialogical. So the ftrst one, the external authority, was the textbook 
stuff where there's not really much interaction or response. 

W: All the other ones we've written, they all came under the heading of an internal authority, and 
that includes informal writing, story writing, journal writing, and we thought with this internal 
authority comes a responsibility. If you've written the text you're the author of the text, you own the 
ideas in the text then you have the responsibility of justifying, convincing others of what you've 
written, so it becomes very interactive. 

W: We got into talking about instrumental learning as opposed to relational learning. We think 
maybe the purpose of chanting is in enforcing things that maybe people have to know. 

W: It's defmitely of an instrumental nature. 

M: The physical model can be used to represent most mathematical concepts. That's a big claim. 
Actually it's a statement of belief. 

M: The human imagination comes into play here so of course, one can argue that underneath this 
is all the mental imaging. Actually I would not agree with that. I have become an enactivist 
supporter in this. I don't think it resides in the head. 

W: We think, "Well, of course, real life applications." With our experience, and most mathematical 
concepts would probably be represented through some form of real life experience but then we 
thought, "Well, real life to whom?" Whose 'real life' are we talking about? 

M: We thought [silence] was a critical lubricant or catalyst for mathematical ideas. 

M: It seems to me that the silences in things can, in fact, at least invite one to contemplate the 
mathematics. 

M: I think that this idea here [proof] is-and all the ideas, chanting [for example], we were just 
starting to get at what chanting might be. 

M: So I think we've probably, in all of these, not gotten anywhere near where we could go. 

The next Working Group activity was to actually try to communicate some mathematics using only 
the forms of representation that each group had been allocated. Before this task was introduced, we, the 
leaders, looked carefully at the compositions of the groups and the forms of communication that they had 
been exploring and selected mathematical topics that we thought would be challenging to think about 
when one was constrained to use only the restricted set of means of communic!'ltion. 

Ion: Looks like the previous group doesn't need to "apologize" after all! 
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List of topics given to the groups, who could work 
only with the representational fonos assigned 
earlier (with some re-organization of groups): 

Group 2: trigonometry -- cosine law 

Group 3: division of fractions 

Group 4: flips, slides, and turns 

Group 5: addition of whole numbers 

Group 6: calculus - differentiation 

Group 7: area of a circle 

The Leaders 

Working Group B 

Math Topic Presentations 

Group 2 opened to us the diaries of two high school 
students writing to an ailing friend about learning 
the cosine law in math class that day. Group 3 
dramatically sang and vigorously sketched, under 
enthusiastic exhortation, to reveal comparison as 
fundamental to division of fractions. Group 4 
challenged us to flip, turn and slide poetic images, 
shiny transparent ducklings and a brightly coloured 
row of buttons. Group 5 asked us to enter the 
domain of computer images, graphs and video 
game skill development to gain an understanding of 
the addition of whole numbers. Group 6 moved 
silently about the room and into the limiting process 
and the notation of calculus. And en'chant'ing 
Group 7 textualized group activity procedures for 
understanding circle area as a transfonoation of the 
parallelogram (and struggled with limited voice and 
no diagrams.) 

D: One thing we had not allowed for was a group that had someone who was not familiar with the 
topic very strongly requesting a change. Lucky we had one to spare! 

S: But ~embers of another group were in the same situation and set about teaching the topic to their 
third member. 

D: Well, fate really defeated us in respect of one participant! 

S: You don't think he killed offhis two previous partners in order to get the topic of division of 
fractions? In any event, he claimed Chat the experieRCe had allowoo him to see rational numbers in 
a new light with respect to ratios. 

For the final part of the working group's time we re-convened as a whole group and tried to use the 
preceding days' working, thinking and listening to grapple with the bigger questions that were posed at 
the start of the sessions. Again we will simply give you, the reader, some of the highlights to enable you, 
too, to engage with the problematic areas that were our arenas for discussion. 

W: I thought to be able to represent something in a different fann we needed to mow our area quite 
well. It caused us to think about the concepts differeotly. I think that just sort of ties into what it 
means to understand. I found that very powerful, you know. Just thinking about it that way, was 
something I hado't thought about. 

M: So you really had to know the concepts involved in order to be able to go beyond giving back 
the standard routines. 

W: There was that communication where we were very much talking about our procedure, and then 
there were different types of communication happening here when we were looking at context. I 
don't know what it means, communicating mathematics, or mathematical communication or 
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communication about that math. 

W: I think maybe that there are fundamental differences and probably what as teachers we're trying 
to do is communicate mathematics. What was coming clearly out of those two letters [the group 
presenting journals as a way of communicating] was kids communicating about mathematics. And 
maybe we don't do that, in the classroom, we don't address the communicating about mathematics. 

M: If that letter was there from a teacher it might be quite hard from the sterile reading of a sterile 
letter to communicate sterile mathematics [laughter]. If it's from a friend and there is a relationship 
then the text might work. 

M: The constraints provided, I call it the pretext, for, at least for me, thinking about the mathematics 
differently ilian I had before. 

M: Maybe we wouldn't have made up a song if we didn't have these constraints. We felt we needed 
to say something with it [their diagram]. He said if the main word I need is "compare", how do we 
bring "compare" in? Well, we only had the song, but we might have done even better not in a song 
but in some other way. So I'm not sure the constraints helped a lot. 

W: Or was it having to do the song that made him focus on a word? 

M: I was just thinking about that You hit it right on the head. I was thinking you know this exercise 
was more valuable than I thought. [laughter] 

M: When their group presented the limiting process I felt they weren't given enough means and they 
could have done much better if they hadn't been so constrained. 

M: We know that all of us have been in mathematics classes where we have not been offered decent 
ways to think about anything, but we somehow said "well it's our job somehow to figure it out". We 
were secure, we already had enough knowledge about what was going on to say "well I think I can 
go in this way" but if you really don't perceive yourself as that, and you're insecure you'll say, "can't 
do anything here, I don't get it, the teacher's being unfair," and you start maybe building up other 
defence mechanisms. You take yourself out of the mathematics and put yourself into some other 
game. 

W: They actually do more than that, they don't say "I don't get it", they say "I can't get it". 

M: That makes it acceptable now. I'm not responsible for doing anything. 

W: Just as we've gone through an exercise here where we've been almost forced to think of other 
modes of communication and it's opened up for me a lot of ways I really hadn't considered using 
as a way of expressing mathematics, I think we need to do that with our students, too. When we got 
"text." I felt like this is great, we've got a super way of communicating, those poor people out there 
who didn't get text. But we realised that we didn't have pictures, we couldn't really draw. So it was 
very limiting but it was a very good exercise to see that poweilessness, almost, of text. It has power 
but in our situation, it wasn't that effective. . 

W: Text isn't an immediate form where you can see how the reactions are coming and then change 
it, the subtle changes that you need to make when communicating. 

M: Does representation become the mathematics, for many people? There is a question of meaning 
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inherent in the symbols versus meaning external, or in other words, these things don't have any 
meaning until we attach some meaning to them and obviously then it's a question of who we are and 
what we understand of the mathematics. There is the question of the mathematics versus 
representing the mathematics. And that leaves some questions that Susan had earlier, concealing 
versus revealing. Given that we were doing things that we would never normally do, we've in fact 
revealed more than we would often, or otherwise, reveal. 

M: In the instantaneousness of technology something is lost. 

M: Affect versus content. Some forms of communication, representation, are excellent for conveying 
affect but they don't convey content. 

M: There is the notion of show versus communicate. 

M: But maybe we just want to find other words that can communicate to generate not to represent. 
Maybe we say or write things to provide presence for mathematics. 

W: There is the situation as with Doug's triangle where the sketch is intended as some aide-memoire 
and the students take it literally. 

M: ... as if it were text, but this isn't meant as a representation. 

W: I think that gets to the heart ofit, because any representation must have things you don't want 
the kids to take with them. 

W: True of any form of representation and we don't stop and think what it is I don't want you to take 
out of this. 

M: True but any representation is also always missing part of what you would like it to say. 

M: Context is critic at in all this. This [Doug's] figure, it could just be a representation of any old 
triangle. As a triangle, it stands for all possible triangles that one could imagine. Or it could be, in 
fact, given the context, a representation of a particular triangle with those particular measurements, 
with those particular angles and lengths Of sides. Or it could be a representation of a particular of 
class oftriangJes, scalene triangles, or acute angle scalene triangles. 

W: [What are] tlae assumptions, we have? We made the assumption he doesn't want us to say just 
"triangle. " 

For other participants the image on tlae board carried a variety of meanings: 

W: ... the triangle was used to memU'ise how to work with interest equals PRT ... Maslow's 
hierarchy ...• my Ed. Admin. class ... 

Doug: Suppose I'd drawn an obtuse angle triangle, would you have not found those things? 

W: What I'm interested in is exploring and looking at how I've grown into what I've learned. 

By the end of the sessions there was still, however, this lone voice: 

W: I wanted to do a concept map, of all of these ideas on the wall, and I wanted us to cluster them, 
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I wanted us to think of different ways that we could group them. That would be a great way to report 
to other people who have not been a part of these meetings. 

W: I don't know that it would be a good way of representing what we did because it isn't actually 
what we've been doing for the past three days. 

M: Actually I tend to agree because I think that there's things that came out of here which totally 
surprise me, you know, my own response, I didn't think I would think about these things, putting 
myself in the mind of a student, trying to see the constraint problems from their perspective, and 
here we put ourselves in that position, and that to me seemed to be a more important issue than how 
you can connect these things. You know there's so many different ways in which you can break it 
up, communication, I was sceptical listening to "silence" and all this stuff. I hung in because I 
thought, well, you know, I've got confidence that people at CMESG are going to come up with 
something, and I think it was well worth the effort because what I saw was that people were 
genuinely coming to grips with a difficult question, and making things that we assume, very 
problematic. 

M: That's always a very useful thing, the problematics of the situation that we came to grips with. 

M: If anything should come out of here it's our understanding what the problematics are. 

We closed our report to the full meeting of the CMESG with a repetition of one group's presentation. 
That group had as their allowable forms of communication: diagrams, cheers, singing, transformations, 
mental operations and thoughts. We will close here with all that remains when we work with the further 
constraints of the mediums available in this report: 
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M: [singing:] We have some pizza, we 
have some pizza, we have three-fourths! 
W: [cheering:] Come on Tom, come on 
Tom! 
M: We wanna make pieces, we wanna 
make pieces! 
W: Come on, Tom! 
M: They should be of size one-eighth. 
M: How many pieces? How many 
pieces? 
W: Come on, Tom! Tommy! [shouts ha
di-ya!] 
M: We must compare! We must com
pare! 
W: Come on, come on Tom! [ha-di-ya 

sonneeee! ha-di-ya sonnee!] 
M: We have our portions, we have our 

portions. 
W: Come on, Tom! 
M: And it is six. It is six. 
W: That's it! We have made it. We 

have made it! Whew! 
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INTRODUCTION 

At the 1996 meeting ofCMESG a panel considered the question "Who drives the curriculum?" 
While it was clear that this question is a complex one, there was some agreement that CMESG/GCEDM 
could (and perhaps should) playa part in future curriculum change in Canada. In light of this, Malgorzata 
Dubiel and David Reid were asked to organize this working group on the theme "The Crisis in School 
Mathematics Content." 

David and Malgorzata had big hopes (and worries) that we would solve the crisis during the ftrst 
day, and be left with nothing to do for the remaining time. However, as often happens at 
CMESG/GCEDM working groups, the strong feelings and opinions the group members brought with 
them took over, and the result has only a slight resemblance to what was anticipated by the "leaders". We 
haven't reached the point, suggested in the conference announcement, of initiating a work towards the 
content for a curriculum appropriate to the foreseeable future. We concentrated, instead, on analyzing 
thoroughly complex aspects and components of the present crisis. We formulated many questions which 
arose in our discussions, but time did not allow us to provide many answers. We can only hope that our 
work will be continued at another CMESG meeting, and that our report will provide a background for a 
group who will take over. 

In our three days of meetings we heard reports of curriculum issues from across Canada and around 
the world, considered the many issues which form a part of the crisis of content, and discussed ways in 
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which we could effect changes which might alleviate the "crisis in content." This report does not attempt 
to reproduce everything that was said during the three days in Thunder Bay. Instead we have tried to 
present the ideas that were discussed. We have used participants' comments when needed to illustrate and 
explain these ideas. The report is not written in chronological order, but instead attempts to re-present 
the discussion around several themes. These include the nature of "content," the curriculum as intended, 
taught and tested, the need for and nature of "standards," the impact of universities on curriculum, 
preservice education of teachers, support for teachers in the field, and the impact of technology. During 
our meetings, we condensed parts of our discussions into short phrases to serve as seeds for further 
discussion. The section headings in this report are drawn (for the most part) from these seeds. 

A. WHO ARE "WE"? 

When we came to consider what we might do in order to address (if not solve) the "crisis in content," 
it became important to consider who we were, who we claimed to represent, and what our personal goals 
might be. One way of describing us would be to list our occupations. We include school teachers of 
mathematics and other subjects, school board consultants, university professors teaching mathematics and 
other subjects such as economics and biology, professors teaching mathematics methods courses to 
prospective teachers, and others. Another way of describing us would be to consider where we were. We 
had traveled to Thunder Bay from across Canada, and from France, Israel, Italy, Kuwait, and Singapore 
in order to participate in the annual meeting of the Canadian Mathematics Education Study Group. That 
indicates both our interest in mathematics education, and our interest in sharing ideas with colleagues 
from across Canada. It also indicates that most of us subscribe to views of mathematics and education that 
are different from those of many people, including government officials involved in curriculum design 
and describing us is as individuals, whose work in mathematics education and participation in the working 
group is motivated by a whole constellation of personal interests. 

We may have different opinions about many aspects of math curriculum in Canada, but we all share 
the determination to work towards improving it, making it more meaningful and relevant to students. The 
fact that we all traveled to Thunder Bay and became involved in this working group indicates that we 
agree that there is a crisis in high school curriculum, or at least are open to this possibility. What is not 
necessarily as clear is the nature of this crisis, and the remedy required. 

B. CURRICULUM CRISIS I: IS THE CRISIS 'IN' CONTENT? AND WILL CHANGING THE 
CONTENT CURE IT? 

Anna raised the question: "Why do we keep making changes in school curriculum?" She pointed out 
that we need to know the laws of the system we want to change before deciding what to change and 
whether it is possible to change it at all. We could look at an educational system of a country or province 
or a culture as a dynamical system with a number of fixed points. We have to know where these fixed 
points are and why some of them are strong 'attractors'. The reason why the changes that we introduce into 
the system (varying the content, introducing small group work in the classroom, other things like that) 
do not ultimately change anything in the system is because these changes do not destabilize the system: 
everything converges to a fatal fixed point! She mentioned some possible candidates for laws of the 
system: school mathematics is essentially different from research mathematics, teachers can be trained 
to be reflective practitioners but they will not be researchers in mathematics education (they want to have 
'life after schoor), any change whose beneficial effects can only be seen in the long run is not likely to 
be accepted by teachers, students! attitude towards knowing and value of education reflects the society's 
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culture, etc. Of course, whether these are actually "laws" and what their domain of validity might be is 
a problem for research. 

Many curriculum changes which were introduced over the last 30 (50?) years, seem, in retrospect, 
to be exercises which only brought confusion and frustration to students and teachers, and contributed 
more to creating a crisis than curing it. 

Questions of whether there is a crisis, and if so, what is/are the reasons for it, reflect both a need to 
understand the complexity of the present situation, and a frustration with outcomes of all the previous 
curriculum changes. We never managed to formulate a satisfactory answer to them (if there is one), but 
instead focused on discussing two of its components: content and delivery. 

Bl. WHAT IS CONTENT? 

During our discussion we began to distinguish between "the list" (roughly what is called the syllabus 
in the UK and Australia) and a wider sense of curriculum content. This distinction allowed the question 
to be raised (by Doug) whether our object was to change the content on the list (which we saw as largely 
skills and facts), or to integrate processes into the list so that it would reflect our larger vision of 
curriculum content. 

In order to distinguish between the limited content (exemplified by "the list") and a more process 
oriented vision of content, Gary proposed the word "protent." As Gary puts it: 

Protent = 'Pro'cess + Con'tent' + 'P'urposel/n'tent' + 'P'icture + 'P'erformance 

Process: problem-solving, creative thinking, logical reasoning, use oftechnology, connections 

+ 
Content: learning outcomes expressed as actions on objects (actions = explore, model, formulate, 
manipulate, transform, infer, conclude, communicate; objects = mathematical objects found in the 
various strands of mathematics) 

+ 
Purpose/intent: need/importance/relevance/application of concepts/skills/habits of mind self-evident 
through interaction with context/problem situation/rich learning task 

+ 

Picture: descriptions of sample context in action in a classroom, including actions and interactions 
of students and teachers with context 

+ 

Performance: sample learning/assessment tasks, including sample student responses and descriptions 
of levels of performance 

One of the reasons we do have a curriculum crisis is the narrow understanding of content as a 
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shopping list of skills to be mastered by children, which is held within many constituencies, notably 
politicians and some vocal parent groups, and pressures put on schools to reinforce these. As well, for 
some teachers who are not confident enough about their mathematics knowledge and understanding, such 
an approach may be the only possible one. Not to mention the fact that it is much easier to test "content" 
rather than "protent"; to test basic skills rather than problem solving, thinking and like. 

C. CURRICLUM CRISIS II: IS THE CRISIS IN DELIVERY? 

At many points in our discussion we came back to the difference between the curriculum as intended 
(roughly embodied by curriculum documents) and the curriculum as actually taught in classrooms. This 
issue was important in many ways. Clearly changing curriculum documents was meaningless if nothing 
changed in classrooms, because of teacher attitudes, lack of preparation, lack of resources or other 
reasons. Equally clearly is the fact that students' and parents' attitudes towards education constrain the 
effect that curriculum change can have. Perhaps paramount was the matter of testing, as we agreed that 
what is evaluated has a strong effect on what is taught, and how it is evaluated has a profound effect on 
how it is taught. A fmal issue related to delivery which we considered was the role of technology in 
changing what is taught and how. 

In order to better see how delivery can be a factor we looked at several different models of 
curriculum (content and delivery) in Canada and around the world. 

Cl. INTENDED VS. ASSESSED VS. IMPLENENTED CURRICULUM 

Lynda provided us with data from the recent assessment of grade 12 student achievement in 
Scarborough. Her data indicates a huge gap between intended curriculum and achieved curriculum, due 
to variations in implementation. About 50% of the curriculum was implemented, mostly at the skill level 
and an average of 17 out of 70 minutes of class time was actually used for instruction. About 30% of class 
time was taken up with tests and quizzes. This gap with the intended curriculum is not perceived by 
teachers, who reported that there is a lot of technology used and lots of active learning going on in their 
classes. Students, on the other hand, while being generally confident and positive, described math class 
as a very passive environment. 

Lynda's description and documentation of the problems in Scarborough were very useful to our 
group, and we all agree with Bill H.'s observation that Scarborough is very brave to actually show that 
there are problems. We all know that there are problems and in most jurisdictions the problems are 
actually worse. Lynda's proposal of this sort of assessment as a way to drive change in other jurisdictions 
was an important step towards establishing ways in which we can change the curriculum as implemented. 

An important implication of teachers' failure to implement parts of the curriculum, especially those 
related to higher level thinking, student activity, and technology use is that of student motivation. 
Traditional mathematics teaching methods are often dull, and in the absence of the sort of cultural valuing 
of education for its own sake seen in Singapore and other parts of Asia, this can leave students 
uninterested in mathematics. 
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C2. TEACHERS WITH PROBLEMS, PROBLEMS WITH TEACHERS 

While Lynda showed us that there were serious gaps between intended curricula and what was 
delivered, others observed that the intended curriculum can be an impediment to the delivery of 
mathematical protent. Tom observed that in British Columbia there is actually a lot of overlap between 
what is written in the curriculum document and what is actually taught. This works if we want a top down 
model for our educational systems, but given that one of Canada's strengths is its well educated teaching 
force (compared to many other nations), it might be wiser to distribute control of curriculum more 
broadly. A top down approach makes it difficult for teachers to act creatively. What we need is room in 
the curriculum for teachers to do something interesting to themselves and their students. Emilia 
commented that she had had the opportunity to teach in a program that gave her control over part of the 
content, and it was a great experience for her and her students. The real shame, she said, was that her other 
students couldn't have the same sort of experience because of the constraint of the provincial curriculum. 
Bill H. proposed that whatever curriculum model we might settle on should include a mix of structure and 
freedom. Tom O'Shea mentioned the idea of a curriculum that was relatively specific for 4 days and had 
a 5th day where the content was optional(but mathematics). This gives both the flexibility to meet 
"standards" as well as provide teacher controls. 

We cannot overlook the fact that teacher preparation has a big impact on what is happening in a 
classroom. Mark Twain's observation that "teaching is the fine art of imparting knowledge without 
possessing it" reflects many people's views of teaching, and, unfortunately, too often the reality. It is 
important to remember that, it is difficult to be creative if one does not have a sound knowledge of a 
subject and a lot of confidence. In Canada, in spite of the high level of education of teachers overall, there 
are a significant number of math teachers in the school system who do not have a strong mathematical 
background, and there is no adequate mechanism in place to help them. 

Malgorzata related that one of the amazing aspects of the Australian curriculum change, and 
probably the main reason for its success (if only relatively short-lived), was the teachers' enthusiasm for 
introducing it, for professional development opportunities, for the opportunity to use their creativity-and 
resources from the federal government to support professional development within individual schools. 
This shows that exciting things can happen-but only if teachers are part of the change. But the opposite 
is also true: teachers become part of the change only if they embrace it. 

C3. ROLE OF TECHNOLOGY 

The role of technology was part of the original description of the business of the working group 
prepared by Malgorzata and David and it was a recurring theme although one about which we were not 
all in agreement. Opinions ranged from George's comment that technology should be downplayed in 
curriculum to the initiatives in the curricula proposed by the Western Consortium and the Atlantic 
Provinces Education Foundation which assume extensive technology use in all classrooms. 

A key point was raised by Gerard in his description of curriculum change in France. He noted that 
calculators are everywhere and in some cases the calculators are ahead of the teachers. Students are doing 
their own mathematics with calculators which differs from the teacher's mathematics to such a degree that 
there is often no contact between the two. This has led to a debate on the impact of the calculators on 
concepts. Calculators have changed the concepts the students develop. Software like Derive increases this 
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problem. For example, because calculators and computers terminate decimal expansion of numbers after 
a fixed number of decimal places, the concept of infinite decimal expansion, of infinity, and oflimit, may 
be very different for a student and a traditionally educated teacher. This implication of technology use 
signals a danger, which is being felt in France, that teachers will be unaware of or unable to cope with 
students; technology based concepts. Moreover, we need to realize that overemphasizing technology has 
a potential to make mathematics itself disappear, if a tool becomes the content.· 

Another side of this danger is that technology is perceived by some (politicians, parents, even some 
teachers) as a panacea for all problems within the school system: belief that if schools have enough 
computers, internet connections etc., teaching and learning will instantly improve, and students will be 
better prepared for entering a workplace. While this all may indeed happen if we introduce the new tools 
wisely, we have to make sure that issues like problem solving, logical thinking, creativity and making 
connections-all which are high on most employers' wish lists-will not be neglected. 

The issue of the role of technology seems largely unresolved. In some cases there is little 
acknowledgment in curriculum planning of the effects technology has already had on the world within 
and outside the classroom (as Gerard noted). In other cases the curriculum has a large role for technology, 
in spite of the lack of resources in schools (as in BC and NF). 

C4. EXTERNAL STANDARDS 

Lionel pointed out that a significant feature of education in Singapore is the clear external standard 
which students are expected to achieve. Bill Otto related this to the external standard provided by 
provincial examinations, which change the dynamic of teaching from the teacher having control of both 
the resources available to students and the evaluation of them, to the teacher and students working 
together against a common enemy. The lack of clear external standards was one aspect of contemporary 
schooling in Canada which George had criticized. 

We spent a lot of time discussing different models with different approaches to standards or lack of 
them, without coming to a clear conclusion. Thfl examples of Singapore, Sri Lanka, and the IB program 
certainly showed that external exams do provide a standard, however these examples do not translate 
easily into the Canadian situation. There are significant cultural differences between Canada and 
Singapore. While both countries want a well educated population, they differ in the their approach, with 
Canada having a broader program for all students. The IB program cannot be extended to the whole 
population as one of its features is that the teachers and students involved are volunteers. Moreover, its 
standards and requirements may not be appropriate for all students, and possibly too demanding for many 
teachers. Doug also pointed out that the internet makes administering a common exam in different times 
zones difficult. This problem could occur even in cases where one jurisdiction held it exams in the 
morning while another waited until afternoon. 

An additional problem with external examination is the problem that the "protent" which we would 
like to see being a significant part of the curriculum is difficult to test in a large scale, externally 
administered examination. An area which might be worth more consideration is whether there are 
examples of external standards which do include protent. 
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D. FOR WHOM IS THE CURRICULUM? 

A natural way to answer this question is-or should be-that it is for students, to prepare them to 
live in the world they enter when they graduate; that it should make learning meaningful and exciting, and 
motivate them. 

Another way to read the question is in terms of the elements of society which can exert pressure on 
educational systems, and hence must be considered in designing curricula. Among these are politicians 
in ministries of education, politicians in ministries of fmance, and business and industry in their role as 
potential employers of students. 

A third way to read the question is in terms of the kinds of students curricula are designed for. This 
issue came up in a couple of contexts. One was the contrast between educational systems which are 
intended for an elite (as is currently the case in Singapore, and as was recently the case in France and parts 
of Canada), and an educational system for the masses (which is the current ideal in Canada). The other 
was the requirements of universities for particular content to be covered prior to university entrance. 

D1. STUDENTS' NEEDS 

When listening to various discussions about curriculum, one hears the voices of parents, teachers, 
educators, university professors and politicians but it often seems that those who are directly affected by 
the changes are somewhat neglected. Nobody asks the students' opinions--everybody seems to know what 
is best for them. When someone does ask (as Lynda did in Scarborough), it often turns out that those who 
claim to know what is best don't. In the Scarborough assessment, for example, the teachers thought the 
assessment was too hard for grade 3 students, but the kids liked it. So, at least in some cases, teachers 
don't know what students are capable of. 

From Marilyn's perspective as a teacher, however, it is parents that underestimate the kids; they don't 
want teachers to be too hard. At the same time most parents want their children to go to university and 
so put them in university oriented mathematics programs, when in reality only about 20% of students 
actually go to university, and the others might be better served by a different sort of program. Parents and 
politicians often believe that a magic formula of "back to basic skills" is what students need. They speak 
of raising goals, but as Gary pointed out, their idea of raising goals is to go from one digit long division 
to multi digit long division. What students actually think about this may be reflected by Bill Otto's 
observation that most students enter primary school eager to learn and liking math. Somewhere, somehow, 
they loose this and the attitude becomes a big problem. 

So, what do students need? Part of the answer was pointed out by Lionel: The big question is what 
math is needed to function in a society? And what should you teach to all? 

Gerard and Torri described the difficulties being faced in France and Italy as they attempt to move 
from an elitist educational system to mass education. As Bill Higginson pointed out, Canada's 
commitment to educating everyone to a fairly high standard is one of our strengths, but also a challenge 
in terms of curriculum. Should we teach university preparation courses to everyone? Should we ensure 
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that the mathematics required by certain professions is taught? If so which ones? Should we try to have 
students experience mathematics as mathematicians do (as Rafaella Borasi suggested in her plenary)? 
(While we did not come to definitive answers to any of these questions, having students experience 
mathematics as mathematicians do was generally supported.) 

The commitment to educate all students results in the problem of what to do with high school 
students who have not achieved as much as their peers in mathematics. The BC curriculum's two streams 
are intended to be different in focus, not differentiated in terms of prior student achievement, but many 
teachers are concerned that the applied stream will absorb most of the low achieving students, to the 
detriment of the program as a whole. Lars informed us that Manitoba extended the Western consortium 
curriculum by adding a third stream for low achieving students, to address this problem. The question 
could be asked however, whether having a special stream for such students lives up to the ideal of 
educating everyone in mathematics that will have significance for them in their lives beyond school? 

Mass education can also leave out students who achieve-or are capable of achieving-more than 
their peers. Some of these, not fmding enough challenge in class, drop out or don't do work they find 
boring. Others, in fear of being labeled as "nerds" by their colleagues, trade in high grades for social 
acceptance. Others again may even loose faith in their abilities after getting in trouble with overworked 
teachers who are not able to recognize the quality of their work. This is one of the reasons for popularity 
of programs such as IB, which are often a refuge for these troubled over/under achievers. 

D2. ROLE OF UNIVERSITIES 

In a system in which only the elite complete 12 years of academic education, most are likely to 
attend university. In such a system university entrance requirements have a strong influence on 
curriculum, as has historically been the case in the UK, the USA, Canada, France, and Italy, and as 
continues to be the case in Singapore, Sri Lanka and China. Given Canada's commitment to mass 
education, however, the questions arose "What do universities expect from schools?" "What Ishouldl 
universities expect from schools?" and "What should schools offer universities?" 

The issue of universities' influence on curriculum has recently been raised in BC as a result ofUBC's 
and SFU's reactions to the new Western consortium curriculum. The requirement of the Ministries of 
Education in western Canada that there be no more that 20% overlap between grade 12 courses in the 
Applied stream and the Principles of Mathematics stream makes Math 12 Applied unsuitable as 
prerequisite for calculus. In British Columbia, most universities do not accept it as one of the required 
entry courses. As a result of this, most students would opt for the Principles of Mathematics stream even 
though only 20% go to university. This undermines the planners' target of30% in the top stream. At the 
same time, lack of a third stream, suitable for weaker students, fuels the fears that the standards of the 
Applied stream will suffer. This has led Manitoba to add a third stream to the Western consortium's model. 

E. WHAT CAN WE DO? 

In the course of our discussions we came to some agreement on what "the crisis in content" meant, 
and what should be done about it. But this raised the question "Can we achieve it?," and a discussion of 
whom we should include followed. What should we become? Should one of our goals be for us to grow? 
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Should part of what we need to do be to keep in touch and involve more teachers and other educators? 

El. PRESERVICE EDUCATION 

One area in which we have a great deal of influence is preservice education as many of us are 
directly involved in preservice education. Ann suggested that pre-service "protent" must change hand-in
hand with any curriculum change-or even before it. As Rafaella's video pointed out, one can't teach in 
a way one hasn't experienced learning. Pre-service teachers must realize and experience this "protent" and 
see that it IS the content. Many of us have taught pre-service math courses in which the students all sigh 
and say 'but this isn't math' about our "protent." We need to convince them it is. 

E2. CURRICULUM TO CONSTRAIN TEACHERS OR EMPOWER TEACHERS? 

Concerning curriculum change, Gary suggested that, in part, we can help by: 

1. Sharing and discussing a vision of the math classroom with teachers, parents, politicians and 
business. Materials such as the four brochures developed at the 3rd meeting of the National 
Mathematics Education Institute (NMEI) are an example of this. 

2. Discuss/lobby for a more enlightened way of writing curriculum policy and related provin
ciallboardlschool documents, so they are not read or interpreted or implemented as an endless 
sequence of bits of content. 

3. Help disseminate and develop rich learning and assessment activities, compatible with the above. 
Examples can be found in the NMEI brochures, the proceedings of the 4th NMEI, and Peter Taylor's 
In Process textbook. 

4. Lobby for more appropriate resources (e.g., new generation oftextbooks) 

5. Proceed with organized abandonment of many sacred bits of old curriculum and challenge old 
myths. 

Several group members commented on projects (in addition to the work ofNMEI) which are in 
keeping with these aims. Lynda's proposal of the kind of assessment done in Scarborough as a way to 
drive change in other jurisdictions was an important step towards establishing ways in which we can 
change the curriculum as implemented. 

E3. RESEARCH IN CURRICULUM CHANGE 

A final, and self-referential, step toward curriculum change is the work of CMESG and other 
professional associations to disseminate information, conduct research, and provide fora for discussion 
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such as our Working Group. CMESG is uniquely positioned for this task: it is a national organization, 
its members include teachers, math educators, and mathematicians, and the main thing they all have in 
common is deep interest in the quality of mathematics education in Canada. 

In future, we hope that model curricula, research fmdings on the organization of school mathematics, 
research on the social context of curriculum change, and additional materials will come out of the ongoing 
work of the members of CMESG on content and curriculum. 
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Topie Se$sioa 1 

Topic Session 1 

ABSTRACTALGEBRA:APROBLE~NTREDAND 

mSTORlCALLY FOCUSED APPROACH 

Israel Kleiner 
York University, Ontario 

I want to describe a course in abstract algebra which I taught in an In-Service M.A. Programme for 
teachers of mathematics at York University. Students do not follow this course with another in abstract 
algebra, so I was fortunate in not .having to wony whether I had covered this or that material for the next 
algebra course. This presented an opportunity and a challenge: What are some of the major ideas of 
abstract algebra that I would want to impart? What algebraic legacy would I want to leave the students 
with? Since the students were high-school teachers of mathematics, I wanted the course also to have at 
least broad relevance to their concerns as teachers. 

All this suggested (to me, at least) that the history of mathematics should play an important role in 
the course. History points to the sources of abstract algebra, hence to some of its central ideas; it provides 
motivation; and it makes the subje(;t come to life. 

To set the context for the course, here is ... history of abstract algebra-in 100 words or less. 

Prior to the 19th century algebra meant (essentially) the study of polynomial equations. In the 20th 

century algebra became the study of abstract, axiomatic systems such as groups, rings, and fields. The 
transition from the so-called classical algebra of polynomial equations to the so-called modern algebra 
of axiom systems occurred in the 1 ~ century. Modern algebra came into existence principally because 
mathematicians were unable to solve classical problems by classical (pre-19th century) means. They 
invented the concepts of group, ring, and field to help them solve such problems. 

End of history; back to pedagogy. 

The. upshot of this mini-history of algebra is to help focus on the nuYor theme of the course, namely 
showing how abstract algebra originated in, and sheds light on, the solution of "concrete" problems. It 
is a coofirmation·ofWhitehead's paradoxical dictum that the utmost abstractions are the true weapons 
with which to control our thought of concrete fact. 

Schematically, what I do in the course can be represented as follows: 

/'Y So.tia •• of oriliall ,robie •• 

Problems ---... AbsirldioDS ',' 
,,-,,~ . 

SolutioDS of other problems 
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The item "Solutions of other problems" is intended to convey an important idea, namely that the 
abstract concepts whose introduction was motivated by concrete problems often superseded in importance 
the original problems which inspired them. In particular, the emerging new concepts and results were 
employed in the solution of other problems, often unrelated to, ~d sometimes more important than, the 
original problems which gave them birth. I will ~all the ~ohitions of such problems "payoffs." But now 
to the problems. 

PROBLEM I: Why is (-l){-l) = I? 

This problem is an instance of the issue of justification of the laws of arithmetic. It deals with 
relations between arithmetic and abstract algebra, and it gives rise to the concepts of ring, integral domain, 
ordered structure, and axiomatics. 

The above problem became pressing for English mathematicians of the 19th century, who wanted 
to set algebra (to them this meant the laws of operation with numbers) on an equal footing with geometry 
by providing it with logical justification. The task was tackled by members of the Analytical Society at 
Cambridge, notably Peacock. Before proceeding with a modem treatment of the topic, I discuss with 
students Peacock's work, Treatise of Algebra (1830), which proved very influential. Its significance, 
certainly from a modern perspective, was to have symbols take on a life of their own, becoming objects 
of study in their own right rather than a language to represent relationships among numbers. Some have 
said that these developments signalled the birth of abstract algebra. 

We next discuss a modem, Hilbert-like approach to the above topic. The idea is to defme 
(characterize) the integers as an ordered integral domain in which the positive elements are well ordered, 
just as Hilbert (in 1900) characterized the reals axiomatically as a complete ordered field. Of course, in 
the process we must defule the various algebraic concepts that enter into the above characterization of the 
integers. We can then readily prove such laws as (-a)(-b) = ab and a·O = o. 

Payoffs: 
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The following issues arise from the above account: 

(a) How can we establish (prove) a law such as (-1){-1) = I? This question leads to axioms. (We 
cannot prove everything.) 

(b) What axioms should we set dqwn to give a description of the integers? This question enables us 
to introduce the concepts of ring, integral domain, ordered ring, and well ordering (induction). 

(c) How do we know when we have enough axioms? Here we introduce the idea of completeness 
of a set of axioms. . 

(d) What does it mean to characterize the integers? This sets the stage for the introduction of the 
notion of isomorphism. 

(e) Could we have used fewer axioms to characterize the integers? (For e~ample, a + b = b + a is 
not needed.) Here we come face to face with the concept of in~ependence of a set of axioms. 

(t) Are we at liberty to pick and choose axioms as we please? This question permits us to introduce 
the notion of consistency, and more broadly, the issue of freedom of choice in mathematics. 

The innocent-looking problem (-I)(-1) = 1 can be a rich source ofideas! 



Topic Sessioa 1 

PROBLEM fi: What are the integer solutions ofx2 + 2 = y3 ? 

, The problem deals with relations between number theory and abstract algebra, and it gives rise to 
the concepts of unique factorization domain and Euclidean domain-important examples of commutative 
rings. 

The main idea in solving x2 + 2 = y3 is to factor the left side: we get (x + J2i){x - J2i) = y3. This is 
now an equation in the domain D = {a + bJ2i: a,b E Z}. We can show that 
x + J2i and x - J2i are relatively prime in D, and since their product is a cube, each must be a cube-in 
D. (Such a property holds in Z and one must show that it also holds in D.) In particular, x + J2i = {a + 
bJ2i)l. Simple algebra yields x = ± 5, y = 3. Of course it is easy to see that these are solutions ofx2 +2 = 

y3. What the above shows is that they are the only solutions. 

The Fermat equation x3 + y3 = 7! can be dealt with similarly: Zl = Xl + y3 = 
{x + y)(x + ywXx + yw2)-an equationin the domain E = {a+ bw: a,b E Z, w a primitive cube root of I}. 

There is, of course, considerable work to be done in justifying the "details" involved in the solutions 
of the above Diophantine equations. In particular, we need to introduce the notions of unique factorization 
domain (UFO) and Euclidean domain, and to discuss some of their arithmetic properties. The equations 
can be solved in the indicated manner because the respective domains D and E in which they were 
embedded are UFDs. 

PROBLEM In: Can we trisect a 60" angle using only ruler and compass? 

This is one of the three famous classical construction problems going back to Greek antiquity. It 
deals with relations between geometry and abstract algebra, and it gives rise to the concepts of field and 
vector space. It is a standard problem, usually given asian application of Galois theory. I put it centre
stage as a means of providing a "gentle" introduction to fields. 

The initial key idea was the translation of the (geometric) problem into the language of'cfassical 
algebra-numbers and equations. This occurred in the 17d1 century. Thus the basic goal became the 
construction of real numbers, often as roots of equations. How do fields and vector spaces enter the 
picture? 

lfa and b are constructible, so are a + b, a - b, ab, and alb (b ". 0}-a11 this is easy to show. Thus the 
constructJ.ble numbers fonn a field. But what are they? 

Ifa is constructible, so is Ja We can therefore construct the fieldQ{Ja) = {p + qJa: p,q E Q}. This 
introduces the important notion offield adjunction. The objective is to show that all constructible numbers 
can be obtained by an iteration of the adjunction of square roots. For this the classical algebra of the l?1h 
century is insufficient-we need the modem algebra of the 191il century: fields and vector spaces. 

Payoffs: 

(a) A characterization of the real numbers as a complete ordered field. 

(b) A discussion of algebraic and transcendental numbers. 

(c) A characterization offmite fields. 
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(d) Proof of a special case of Dirichlet's theorem on primes in arithmetic progression, namely that 
1, l+b, 1+2b, 1+3b, ... contains infmitely many primes. To show this we need cyclotomic field 
extensions. 

(e) Are complex numbers unavoidable in the solution of the so-called irreducible cubic? (This is an 
equation of the form x3 + ax = b, irreducible over Q, in which all three roots are real.) The answer 
is "yes." There is a proof using the considerable power of Galois theory, but the result can be 
established by means of elementary field-extension theory. 

PROBLEM IV: Can we solvexs - 6x + 3 = 0 by radicals? 

Problems such as this, dealing with the solution of equations by radicals, gave rise to Galois theory. 
They touch on the relations between classical and abstract algebra. 

Galois theory, in its modem incarnation, is a grand symphony on two major themes--groups and 
fields, and two minor themes-rings and vector spaces. Galois theory is thus a highlight of any course 
in abstract algebra. But to do it in detail would take most of an entire term. Moreover, the proofs of 
theorems are often rather long (and sometimes tedious), and the payoff is long in coming. The intent in 
this course is to get across some of the central ideas of Galois theory-for example, the correspondence 
between groups and fields and what it is good for-often with examples rather than proofs. 

PROBLEM V: Papa, can you mUltiply triples? 

This problem deals with extensions of the complex numbers to hypercomplex numbers, for example 
the quatemions. (The question in the title was asked by Hamilton's sons of their father to inquire whether 
he had succeeded, after years of effort, in obtaining an algebra of triples of reals analogous to the complex 
numbers.) The problem bears on relations between arithmetic/classical algebra and abstract algebra, and 
it gives rise to the concepts of an algebra (not necessarily associative) and a division ring (a skew field). 

Hamilton's quatemions-a noncommutative "number system"--was conceptually a most important 
development, for it liberated algebra from the canons of arithmetic. The history of their invention (in 
1843) is well documented and gives a rare glimpse of the creative process at work in mathematics. 

Are there "numbers" beyond the quatemions? (What is a number, anyway?) Cayley's and 
(independently) Graves's octonions (8-tuples ofreals) gave an affirmative answer, and raised the obvious 
question whether there are numbers beyond the octonions. A negative answer this time, given by 
Frobenius and C.S. Peirce (again independently). Implicit in these ideas are the notions of division ring 
and algebra. 

GENERAL REMARKS ON THE COURSE 
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(a) The first and last problems (and probably also the second) are atypical in an abstract algebra 
course, but I have found them to be pedagogically enlightening and rich in algebraic ideas. 
Historically, they signalled the transition from classical to modem (abstract) algebra. 

(b) The first problem begins with a "simple" numerical question. The idea is to ease students gently 
into the abstractions. 

(c) While the sequence of topics in algebra books (and therefore in algebra courses) is usually: 
groups, rings, and fields, our problems introduce students first to rings, then fields, and fmally 
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groups. I have found this order to be more effective. It leaves to the end the conceptually most 
difficult notion, that of a group ("unnatural" to students). 

(d) I have listed only five problems. This does not appear to be sufficient for an entire course, it 
might be argued. However, the problems are wide-ranging and rich in ideas, and they are extendable 
in various directions. 
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ALGEBRAIClINDERSTANDING 

Lesley Lee 
Universite do Quebec it Montreal 

TOPIC GROUP DESCRIPTOR 

The lusted after "mathematit:al understanding" of the education system continues to elude us though 
we all presume, or hope, we are teaChing for "it". This topic group began with a brief account of my, own 
quest for an educationally useful model of mathematical understanding in a key area of school 
mathematics, algebra. This four year project involved twenty-five people from six countries-education 
researchers, mathematicians, teachers and students-and their contributions through interviews (many 
at past CMESGs), follow..,up discussions, and references to the literature were extremely rich. 

After a brief presentation of the multi..,metaphoric model for algebraic understanding that emerged 
in this study, two of the metaphors were examined to demonstrate the understandings (including the 
debates and misunderstandings) of algebra and algebraic understanding that are brought to light by the 
various metaphoric Perspe£tives. 

Since a number of participants in the topic group had been involved in the project at some point over 
the four years, it was an occasion for me to present some of the results and launch questions for further 
research concerning the viability of the model, its usefulness, degree of applicability to other areas of 
mathematics and its links to other models of understanding. -

THE UNDERSTANDING SAGA BEGINS 

The starting point for this research was my own fruStration with the use of the word ''understanding'' 
in the field of mathematics education and most particularly in my field of research: the learning and 
teaching of algebra. The word was ill-defined yet increasingly peppered throughout education documents; 
it was mystified and tended to be associated with some inherent "thing" that some students had and some 
didn't. Yet it was being used to discriminate and exclude certain students and groups of students who, 
it seemed, did not "have it." I felt that there was little correspondence between what was being said in 
the literature concerning understanding and what 1 witnessed in the groping and growing understandings 
of my students. 

The available research tended mainly to explore and compile long lists of students' misunderstand
ings (as surmised from their errors), to create hierarchies or'dichotomies of understandings, or to explore 
the philosophical foundations of understanding. All of this work contributed to the increased 
mystification and, to use a now familiar word, ''reification" of the process of mathematical understanding. 
Like the "Emperor's new clothes," understanding had become a thing-and, moreover, measurable. 
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THEMES EMERGE 

Four and a half years ago, that malaise concerning algebraic understanding fused into a research 
project which I decided to undertake in the context of a doctoral program. It was clear from the start that 
my research question, What does it mean to understand algebra?, ought .to be addressed to the community 
which uses and gives meaning to the word "understanding" in mathematics today-a community that has 
taken on international dimensions. I decided to involve twenty-five people from the international 
mathematics education community in the study: four mathematicians!, four teachers of high school 
algebra2

, four exceptionally articulate students from Canada and the USA, an~ thirteen mathematics 
educators/researchers3

• 

After four years of a recursive process of interviews, analysis of protocols, follow up in the 
literature, meetings and email discussions with the group oftwenty-fiye, seven themes emerged which 
allowed me to group everything that had been said about algebra and algebraic understanding. These 
themes were based on very different views of algebra-and were, to varying degrees, metaphorical in 
nature. The themes provide both a model4 of algebra as well as a model of algebraic understanding. The 
seven perspectives on school algebra on which the model of algebraic understanding was built were: 
algebra is a tool, an activity, a way of thinking, a culture, a generalized arithmetic, a language, and a 
school subject. 

The richest of the seven were the language and activity metaphors for algebra with understanding 
involving fluency in the language and engagement in the activity. Algebraic understanding as a particular 
way of thinking and as expertise with the algebraic tools were also very productive metaphors. Although 
the metaphor involving generalized arithmetic drew considerable criticism, it too brought with it many 
reflections that might not have surfaced otherwise. Algebra as a school subject is probably the least 
metaphorical unless one considers it as being like (and unlike) any other school subject. Standing outside 
algebra in this sense and seeing its insertion in the school and society did afford other learnings and 
certainly the international- differences-particularly those involving the place of functions in 
algebra-were very important in showing the cultural differences in definitions of and attitudes towards 
both algebra and understanding. And finally, algebra as a community or culture, with understanding as 
belonging to (or insertion in) that culture, linked with the other metaphoric themes as well as bringing 
some perspectives of its own. 

These seven themes have been called metaphoric here. Without taking a position on the question 
of whether all our understandings-as, for example, Lakoff and Johnson (1980) would have us 
believe-are metaphorical, certainly the responses to the question concerning algebraic understanding 

I Of these, three are familiar to CMESG members: David Henderson, Bernard Hodgson, and Peter 
Taylor. 

2 George Gadanidis, a CMESG regular was among these. 

3 Many of these are familiar either as invited speakers or members ofCMESG: Michele Artigue, 
Jere Confrey, James Kaput, John Mason, Richard Noss, David Pimm, Susan Pirie: Alan SchOenfeld, Anna 
Sfard. 

4 I am using the word "model" here in Chevallard's sense: a machine to think with. The 7 metaphor 
perspective on algebra and algebraic understanding has been helpful to me in thinking about and 
analyzing educational literature, school curricula and textbooks, algebra classrooms, and the general 
discourse on school algebra within the school culture. 
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were. The nature of these responses tended to be of the form: "Algebra is X and therefore, algebraic 
understanding is Y" where Y was constructed around X. Awareness of, and belief in, the metaphoric 
nature of statements like "Algebra is X" varied from person to person. As well, it was clear that the 
metaphorical referent, X, was perceived very differently by the various interviewees and others referred 
to in the literature. Thus it is necessary when considering metaphoric expressions to keep in mind the X 
being referred to can be a very different thing according to the experience of the person speaking. One 
does, in fact, learn a considerable amount about the speaker's view of and feelings about X. But rather 
than continue a discussion of the metaphoric nature of the themes, let us examine two of them -the tool 
and language metaphors-in order to illustrate the nature of the model and get some feel for the type of 
learnings each brings or, to speak metaphorically, the light each of the perspectives throws on algebraic 
understanding. 

UNDERSTANDING ALGEBRA AS A TOOL 

The most obviously metaphoric of the themes for algebra was "algebra is a tooL" 

Algebra is a tool for life. Algebra is a tool for modeling, mathematizing, and meeting empirical 
needs. It's the penknife of science. It's one complex tool with all these little things that come into 
play. Very much like a pen knife would have a blade with a little screw driver on the end, algebra 
is the same. 

Those who used this metaphor mentioned a wide variety of tools-hammer, screw driver, 
knife---and very different users oftools from technicians, those who follow orders, to creative artisans. 
Very different attitudes-rom very negative to positive-towards tools and their users seemed to underlie 
what was being said Yet both produced a number of learnings about algebraic understanding. 

From the negative bias towards tools we saw the dangers of the algorithmic side of algebra, how 
much of algebra can become mechanized, automated, divorced from thought, how users can become 
drudges, or too connected to "reality" to "fly" and see the beauty of mathematics. We see the secondary 
or service role of algebra where its users only serve to point to, or are the handmaidens of, the real citizens 
of the mathematical realm. Algebra can be perceived as a service activity (in the service of other 
mathematics and mathematics activity) but meaningless in itself. Algebra here is for non mathematicians, 
beginners, the masses; it is neither beautiful, structural, nor aesthetic; it meets empirical needs but is not 
intellectually satisfying. 

Algebraic understanding from this perspective is either an oxymoron (i.e., there is nothing to 
understand) or involves only the low level of understanding involved in knowing when and how to use 
the algebraic tool or tools. Another opinion was that understanding must precede algebra (i.e., arithmetic 
understanding) and follow it while algebra itself is skipped over. 

From the positive perspective, we saw algebra is a tool that gives the user mathematical power and 
precision, helps in solving problems in science and life, makes our thinking more effective, carries and 
transforms messages. Users of the algebraic tool can become highly skilled artisans or crafts people, 
creators, artists. Here algebraic understanding involves being able to handle the algebraic tool with the 
flexibility, dexterity and sense of purpose of the artisan. 

The negative attitudes towards tools surfaced again in discussion of the tooVobject dichotomy. 
Whether or not it was expressed as a tooVobject or process/object dichotomy, there was a tooVother nature 
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to mathematics and, for most, to algebra. And in nearly all cases, it was the "other" that was valued.5 I 
summarized in this way: 

The tool is for the masses while the "other" is for the elite; the tool is for high school while the other 
is for university; the tool is useful, its other is beautiful. There are users of tools whose "others" are 
creative craftsmen. Tools are empirical while their "other" involves abstract thinking and 
understanding. (Lee, 1997, pp. 129-30) 

In the course of discussion around the tool/object theme, it became clear that there is a major cultural 
difference between what the French call the "outil/objet" or tool/object dialectic (coined by Douady) and 
what Sfard and others call the process/object dichotomy. In fact the former's tool seems to be the latter's 
object. While the dialectic movement between the two (tool <--> object; process <--> object) is 
recognized by all, it is considered from a sociological perspective by the French (the social process of the 
institutionalization of knowledge) and from the individual psychological perspective by Sfard and others. 
Yet there appears much is to be gained from looking at the "thing-ifying of tools" (and possibly the tool
ifying of things) from both of these perspectives. 

This leads to two very different perspectives on algebraic understanding. The first is a psychological 
process which is often seen as a single moment when the tool or process becomes an object in the mind 
(reification). Understanding is also seen as the ability to move back and forth between the two 
perspectives (process <-> object, or tool <-> object). The second view of algebraic understanding is 
more social than psycho-logical. Since objects, and the relationships between them are socially defmed, 
to understand algebra is to have those relationships to the tools and objects of algebra that are defmed and 
sustained by one's institution (class, school, school system, ... ). 

UNDERSTANDING ALGEBRA AS A LANGUAGE 

This second metaphor for algebra was perhaps the most ubiquitous and entrenched-not only among 
my research group of twenty-five but in the research and school literature. For some, algebra IS a 
language with no metaphor involved. 

You can think of school algebra as a language, notational framework, means for abstracting. It's 
very hard to abstract if you don't have a language with which to abstract. 

You see, I find it difficult to objectify algebra as a thing in this sense. I don't think it is a thing. It's 
more like a language than anything else. 

Probably the first thing I almost said was that algebra is a language. 

Everyone has some experience of language which is probably why this metaphor is so universally 
appealing. There is, in the shared experience of language-particularly in relation to one's mother 

5 We came face to face with a paradox in our discourse (particularly that of the reform movement) 
which would have algebra move away from the old "rote," mindless symbolic work of the past and use 
algebra as a problem solving or modeling tool. Yet the very denial of the old, means that students cannot 
work on the models they have built in order to produce new knowledge-or simply to answer the question 
posed in the problem. (The latest North American answer to this dilemma seems to be to propose numeric 
and graphic tools offered by the new technologies and to re-name the latter "algebraic" because they are 
being used to solve problems that were formerly solved by algebra.) 
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tongue-quite a list of features of language which makes discussion of algebra under this metaphor 
extremely rich. The generally acknowledged aspects of language that came out in my interviews and in 
the literature included: 

• its "naturalness" (learned easily and early and without any particular teaching-the "language 
instinct") 

• a certain automation or fluency is necessarily achieved 

• it has a grammar or syntax, a semantic or meaning aspect, as well as functions, aims, or 
purposes 

• it has both written and spoken form 

• it serves for communication and thought (the links between language and thought are strong) 

• it is best learned in a milieu where it is the major means of communication (immersion or 
enculturation) 

• second languages are much more difficult to learn than first languages (though early 
introduction is once again most conducive to learning) 

Discussion of algebra as a language generally began with one's mother tongue as the source of the 
metaphorical inspiration. The aspect of "naturalness" (the un-naturalness of algebra) led most to switch 
the metaphorical source to a second language and their experience of that. This is where a marked 
difference in the language metaphor appeared since very few people have a shared second language 
experience. International differences here were marked. For instance, Europeans tended to have a very 
rich, early and broad experience of second language (eiposure to several other languages from a fairly 
early age). Americans, and to a lesser extent Canadians, often referred to their considerably later 
experience oflearning a computer language in using the second language metaphor. These very different 
experiences (learning a spoken language of a region vs. learning a way of communicating with a machine) 
led, of course, to very different insights about algebra. 

Yet considering algebra as a first, second, or other language was certainly productive in many ways. 
We were reminded of how we learn a language and how algebra might more successfully be taught as a 
second language profiting from all the new pedagogical insights in the language teaching area: use of the 
language from the beginning to express oneself, the advantages of immersion, etc. New pedagogies in 
the field of music were alluded to as well. Research in the field of linguistics Was also felt to be rich in 
lessons for the learning and teaching of algebra. 

In as much as the language metaphor for algebra was seen to fit, the lessons for algebraic 
understanding were many and varied. Among these we find: 

• Algebraic underStanding, like language understanding grows best in an environment or culture 
where it is the language of exchange. 

• Algebraic understanding neither precedes nor follows work with the letter symbolic but grows 
in much the same way one's understanding of a language grows when one lives in a culture 
where it is spoken. 

• There are implicit as well as explicit understandings of algebra, formulated and unformulated. 
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A number of people in the field seemed to have given considerable thought to the semantic and 
syntactic features of algebra and this dichotomy wove in and out of discussions even when the language 
metaphor was not being consciously used. The syntax of algebra was seen to be the rules for 
manipulating symbols and the semantics of algebra was associated mainly with its referent meaning 
outside algebra itself (in other mathematics or the real world). When discussion on this was deepened 
there was some acknowledgment that algebra has an internal semantic as well and that without this 
symbolic manipulation is completely haphazard and unsuccessful. In fact, several people referred to the 
"semantic fields" of algebra, as well as to its social, local, and shared meanings. Thus the business of 
student involvement in "empty syntax" or mindless symbol juggling is questioned and the dynamic 
interplay between syntax and semantic in algebra is put forward for consideration. Weare reminded that 
algebra requires the learner suspend or ignore extra-algebraic semantic fields and concentrate on the 
"semantics of the syntax" in order to make headway in algebra. From this perspective, trying to 
constantly link algebraic manipulations to their "real world" or even mathematical referents is counter 
productive for the student and defeats the whole achievement of algebra. 

In fact one can sum up algebraic understanding under this metaphor as mastery of the algebraic 
language, its forms, its functions, its meanings. To understand its forms involves expertise in symbol 
manipulation, knowing the conventions of the algebraic language and achieving a certain level of 
automation. To understand its functions is to bring into play the wide range of its purposes or objectives 
and to understand its meanings involves mastery of the semantic fields (internal and external) of algebra. 

Here the metaphorical misfit between understanding algebra and understanding a language led to 
the expression of a number of other insights into the nature of algebraic understanding. Unlike a 
language, algebra provides its own meanings without any external referent while knowledge of the 
algebraic language automatically implies having a meta-awareness as well. Two kinds of algebraic 
understanding were, in fact, identified: external (where symbols refer to non-algebraic objects as in 
natural language) and internal (where the meaning of symbols comes from within the algebraic symbolic 
system. The special features of algebraic understanding that are not shared with any language are firstly 
this recursive, self referent, internal aspect and secondly the manipulative action aspect of algebra, algebra 
as "something you do". 

The manipulative or action side of algebra that did not fit well with the language metaphor led some 
to try combining or linking the tool and language metaphors and to speak of algebra as a language tool. 
Others moved on to exploration of another metaphor for algebraic understanding based on algebra as an 
activity. 

CLOSING WIm QUESTIONS 

We did not have time in the topic group session to explore this or the four other metaphors for 
algebraic understanding nor will we do so here. It is hoped that the two metaphors we have outlined give 
a sufficient hint of the nature of the multi-metaphoric model to allow for further discussion in the course 
of future meetings, for the reformulation of questions concerning algebraic understanding, and perhaps 
for an attempt at formulating a new metaphor for algebraic understanding that will take us into the next 
century. A second hope is that both the research method and the model might be taken into other areas 
of mathematical understanding. And [mally, it is hoped that this multi-metaphoric model with all its 
richness and conflict will push the mathematics education community to be more wary of its use of the 
word "understanding" in relation to all fields of mathematics. 
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STUDENT EXPLANATIONS IN COLLEGE LEVEL COURSES 
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COMPUTATIONAL AND CONCEPTUAL QUESTIONS 
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Students completing a first linear algebra course will probably be able to bring a matrix into reduced 
echelon form-otherwise they are likely to fail the final course examination. Consider, however, what 
they might answer to questions such as 

• Can any matrix be brought into reduced echelon form? Why or why not? 
• What does the reduced echelon form say about the rank of a matrix? 
• Would you typically want to bring into reduced echelon form the coefficient matrix of a system 

of linear equations or its augmented matrix? Why? 
• How and why can you tell from the reduced echelon form of an augmented matrix how many 

solutions a system has? 
• Is the reduced echelon form required for finding out how many solutions a system has? 
• If not, what is the reduced echelon form required for? 

In the above example, the mathematical content, linear algebra and, more specifically the reduced 
echelon form for matrices, is to a large extent incidental. Analogous examples could have been chosen 
from other topics in linear algebra, from calculus or from most other college or introductory university 
mathematics courses. On the other hand, the frequency with which the question "why?" appears in the 
list of questions is symptomatic rather than incidental. It is intended to draw the reader's attention to non
computational, conceptual questions which require an explanation or justification from the student. 

In typical college mathematics courses for, say, future engineers, students are expected to learn how 
to solve a certain set of problems and demonstrate that skill in exercises and examination papers. The 
large majority of these problems are computational. Often, they consist in choosing the correct formula 
or procedure and carrying out the corresponding calculations. In most cases, these calculations couid just 
as well be carried out by a computer algebra system; and often, they are· given more weight in 
examinations than the choice of the correct formula; and conceptual questions, if they appear at all, are 
considered a bonus. 

Recently, some college textbooks and teachers have begun to require students to write explanations 
for their computations; for example, Lay's (1994) textbook includes writing exercises; Lay states that such 
exercises are included because scientists and engineers need to be able to say precisely what they mean 
and why something is true. Similarly, Barnett (1992) has asked her calculus students in exercises and in 
tests to argue the truth or falsity of statements such as 'Iff is differentiable at a, then f(a) is defined' or 'If 
f is not differentiable at a, then the graph of f has a vertical tangent at a'. She used such problems to 
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replace fonnal proof questions; she found them to be quite a challenge for her students, and states that 
they are appropriate to test students' understanding of theoretical points including the logical fonn of 
theorems. 

It is to be expected that technical aspects become less and less important in our teaching (not least 
because of computer algebra systems), and that conceptual aspects become correspondingly more 
important. The question thus arises which kind of relationship between computation and reasoning 
college courses should aspire to. 

Apparently, college teachers who ask their students to explain do so out of a general feeling that the 
students will acquire better skills of communication and understanding. Schurle (1991), for example, 
asked his students to write because 'computational problems do not show whether a student really 
understands'. His data show that students feel writing assignments improve their understanding. He 
neither gives a detailed analysis of his aims, nor does he develop criteria for what constitutes a 
satisfactory, a good or an excellent explanation. 

It was the purpose of the session I led at the 1997 CMESG conference to raise the consciousness of 
the participants for the necessity of reflecting on such criteria. It is the purpose of this paper to report on 
the session and on some criteria which were proposed there and elsewhere. 

NON-COMPUTATIONAL QUESTIONS, STUDENTS AND TEACHERS 

Most students do not particularly like conceptual questions which require answers to "why?" 
questions nor are they especially good at them. For example, the following two problems were both 
assigned during the same week from the same textbook (Anton, 1994) to the same class of 57 students 
as homework assignment in the framework of a course I recently taught: 

PI: Show that the following set of vectors is linearly independent: 
({-3, 0, 4), (5, -I, 2), (1, 1, 3)}. 

P2: Show that if {VI> V2, V3} is a linearly dependent set of vectors in a vector space V, and V4 is any 
vector in V, then {VI> v2, v3, v4} is also linearly dependent. 

Twenty students handed in the assignment; all twenty solved PI by reducing an appropriate 3 by 3 
matrix; four made computational mistakes; out of the remaining sixteen, eleven explicitly concluded their 
work with a sentence like "the vectors are linearly independent"; none, however, addressed the question 
why their computation shows that the given vectors are linearly independent. From among the same 
twenty students, fifteen omitted P2; out of the remaining 5, two started with "Let's assume that {VI> v2, 

v3, V4} is linearly dependent .. "; none of the other three answers was satisfactory either. 

More generally, my observations over many years show that, in introductory calculus or linear 
algebra courses in which explanations are required and contribute to the course grade, four types of 
student behavior can be observed; typically, each behavior characterizes roughly a quarter of the students. 
One group of students understand what they are expected to do and start explaining with fair success; 
another group carefully describe their computations but neither show why they. do them, nor argue the 
truth or falsity of statements; a third group put some more or less meaningful words in between their 
computations 'because the teacher wants words'; and a last group, just present the computations as they 
are used to do from high school. It thus appears that a majority of students either do not have the abilities 
required to explain their computations and answer conceptual questions or they do not use this ability in 
mathematics courses, even when it influences their grade! 
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Some of the reasons for this situation have been analyzed elsewhere (Dreyfus, 1997). It appears to 
be partially due to the nature of mathematics, but more substantially to students' views of and experiences 
with the nature of mathematics. These, in turn, are based on the education they received. The task thus 
arises for teachers to communicate their expectations in this respect to their students. 

This is not an easy task; textbooks are a case in point. Problems PI and P2 above, for example, start 
with the words "show that"; the same textbook has many other questions which start with "show that ... " 
(as in 1 above, presumably meaning "compute"; or as in 2 above, presumably meaning "prove"), others 
start with "prove that ... ", or with "show by example that"; and still others require students to justify, 
explain (in some cases "by inspection"), verify, or prove a theorem in a special case. The different 
intention underlying these formulations are not spelled out and are presumably far from clear to many 
students. 

Most college teachers are excellent at explaining mathematics-it is after all their profession. 
Moreover, we usually know very well, in any specific case, what the value of a student's explanation is. 
In any given answer, we can point to what is awkward or missing or superfluous or plainly wrong. We 
may be less able, however, to provide helpful feedback to the student whose explanations are 
unsatisfactory or off target altogether. And we may be at a loss to communicate to a class what, generally, 
is required in conceptual problems and exercises. Ifwe find it difficult to make the criteria we use clear, 
even to ourselves, how can we take the next step, beyond giving and judging explanations, the meta-step 
of explicitly characterizing a good, and an excellent explanation! What are the general characteristics we 
would like to see in students' explanations? 

Language is a central feature of explanations. Morgan (1996) has observed that (high school) 
students found it difficult to produce written texts that 'were acceptable to their mathematics teachers; she 
further found it unlikely that the teachers are able to provide advice to the students on how to produce 
acceptable texts because of their inability to identify the linguistic features of student texts which 
influence their judgments. She has therefore concentrated on critical linguistic analysis of mathematical 
texts. 

If courses, and students' activity in them are to become less computational and more conceptual, if 
conceptual problems are to appear more frequently in assignments and examinations, and if student 
explanations are required more frequently, then it is a central task for teachers to not only assess and grade 
students' answers to such problems, but also to provide useful feedback of the requirements and criteria 
which are used in such assessment to themselves, as well as to successfully communicate them to their 
students. This necessarily includes an explicit clarification of the requirements and criteria. 

There are several reasons for the difficulty of this task; one is simply that it is relatively new and, 
as a community ofteachers, we lack experience. Another one is that the question 'what is an explanation?' 
is closely linked to the question 'what is understanding?' Explanations are given, at least by teachers, to 
promote understanding. Thus there is a large degree of subjectivity involved: One person understands 
a particular explanation, another does nof Thus, what is satisfactory to one is not to another. 

At least, a teacher's explanation usually has a well defined audience; but what is the audience of a 
student's explanation given in an assignment or an examination? Does it need to promote understanding? 
Does it need to convince? Convince as a proof does? Is it sufficient that it convinces the teacher? And 
of what does it need to convince the teacher? That the mathematical claim is correct? Or that the student 
is conscious of the most delicate aspects of the problem and their details? What level of detail is 
appropriate in which circumstances? What makes a certain aspect relevant and another superfluous, even 
disturbing? 
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Are there certain characteristics to a 'good' student's explanations? Correctness of the final result 
is certainly not the main issue. If it were, one would have to accept 26/65=2/5 whether it was justified 
by an educated guess, by cancellation of the factor 13, or by cancellation of the digit 6. 

In a paper written in support of writing as an important part of our students' education, Price (1990) 
gives some guidelines to his students: correct mathematics, complete but short sentences, balancing words 
and symbols (about equal amounts of each), using equality signs correctly, using different letters for 
different objects, defining terms, giving reasons, and answering the question; Price sees the ultimate test 
as: can someone learn from what the student wrote? The next section will attempt to address the problem· 
more generally, taking into account proposals by a large number of teachers rather than a single one. 

CRITERIA 

Most, ifnot all conceptual problems ask students to show, explain, justify or prove something. What 
criteria are teachers using for judging students' explanations and arguments? 

• What general characteristics do acceptable answers have? 
• What is the relative importance of these characteristics? 
• Can one formulate problem-independent criteria for acceptable student explanations? 

In this section, I compiled the outcomes of several attempts at generating criteria, including the one 
in the session I led at the 1997 CMESG conference. The result is not a well reflected and well structured 
arrangement of criteria but rather the somewhat edited and partially ordered outcome of repeated 
brainstorming; it is put at the disposal of the teaching and research community as a basis for further work. 
The structure within which criteria are presented and commented on below should be considered as 
preliminary; a presentation of criteria: in a multiple connected map structure, similar to a concept map, 
might eventually be more appropriate than the categorization which I have used here. 

Relativity and Subjectivity 

Very few of the criteria listed below are general in the sense that they are always appropriate. 
Criteria depend on the context and situation, on the (declared or undeclared) aims of the course, the 
teacher, the student, the particular assignment, and so on. With few exceptions, the criteria are thus likely 
to be appropriate in some cases but not in others. The few exceptions which might have some general 
validity are marked as "minimum criteria" 

The aims of a teacher when requiring an explanation, may range from the evaluation or assessment 
of students' skills and understandings over a diagnosis of their difficulties in order to plan further 
instruction to a planned learning experience or peer help for another student. Should an explanation 
whose aim is student learning have the same characteristics as one whose aim is assessment? 

When, as a teacher, I explain something, I explain it to somebody and I usually have a reason to 
explain it. My explanation will depend on this reason and on the audience. Often, my audience is 
students and my aim is to help them learn. The students' reasons for explaining something are often far 
less clear. Their audience may be "friend", "peer", "foe", "self", "teacher", maybe even "mathematician." 
What is their task? To whom do they explain? And why? Whom do they need to convince? And of 
what? Do they explain to their teacher, or to a fellow student? Does somebody need to learn from their 
explanation? Certainly not the teacher, at least not USUally. Do they need to convince somebody? Again, 
usually not the teacher, at least not of the fact that a given mathematical statement is true; but maybe they 
are supposed to convince the teacher of the fact that they understand a certain mathematical fact or 
process or relationship. And the teacher may have very subjective criteria for judging such understanding. 
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Explanations are thus relative to aims, audience and often also relative to a particular course in which 
the student happens to be enrolled. 

Content 

Nevertheless, there are some global characteristics which are likely to be valuable in any 
explanation. They include: 

• The relevant topic must be addressed. (Minimum criterion) 
• The question(s) must be answered. (Minimum criterion) 
• The explanation should show evidence of reasoning rather than be only prescriptive or 

descriptive. 
• The explanation should say why things are done, not only how. 
• The explanation should not only say that things are as they are, but why. 
• There should be no superfluous digressions. 
• The explanation should contain no incorrect mathematics (minimum criterion). 
• The underlying reasoning should be correct. 
• The result should be correct. 
• The explanation should show that the student is conscious of the main points. 
• The explanation should show that the student is conscious of delicate junctures in the argument. 

Many of these issues are further detailed below. The level of detail required is one of the issues 
which remains wide open. Some criteria which have been proposed in this connection are: 

• Newly learned material (content and process), which is relevant to the course should be 
addressed. On the other hand, material which has been learned earlier can be omitted. (For 
example, there might be a need for using some computational procedures with algebraic 
fractions in a linear algebra course but there is neither a need nor a point in explaining why these 
procedures are correct.) 

• The argument should be convincing; it should not require the reader to fill in gaps. 
• The standard symbolism is already an abbreviation and should not be shortened further. 

Language and Style 

Clarity and issues of language, style and elegance include: 

• Problem, examples, and solution should be stated clearly. 
• There should be a balance between words and symbols, between the verbal and the formal. 
• Short sentences contribute to clarity in mathematical writing. 
• Mathematical language, symbols, notations and conventions should be used accurately and 

correctly. 
• The connections between mathematical statements should be formulated explicitly and 

accurately. 
• Use of language (including symbols) should be coherent throughout. Coherence in language is 

a means for connecting related ideas. 
• The intended reader should be able to follow the presentation. One might remark that this is a 

very vague criterion because in many cases the "intended reader" of a student's explanation is 
not the teacher but a hypothetical reader who exists in the teacher's mind, and whose ability to 
comprehend the student's text is lower than the teacher's. 

• Jargon should be limited to what is well understood by the student as well as the intended reader. 
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• Redundancy may be used if it is done consciously and with a purpose. Otherwise, conciseness 
is preferable. 

• Elegance of the argumentation is desirable. 

Logic and Generality 

Criteria related to logic seem to playa predominant role in every discussion on student explanations. 
There are two reasons for this. One is that these criteria tend to be most familiar and easiest to formulate 
for many college mathematics teachers. The other is that at the beginning college level, explanation is 
often used as substitute for formal proof, and in proofs logical aspects are important. The criteria 
proposed under the present subtitle thus tend, on the whole, to be somewhat biased toward proof. 

• The reasoning should be presented according to a logical development. 
• Arguments should be valid (informally logical). 
• Statements should be supported by previous statements, defmitions, etc. 
• Defmitions should be used correctly. 
• Attention should be paid to the distinction between premise and conclusion, to sufficient versus 

necessary conditions. 
• Attention should be paid to the correct use of if-then and other logical connectors. 
• Counterexamples should be used appropriately. 
• Jumps in argumentation should be made judiciously; they should reflect transitions which are 

obvious to the students rather than gaps in their knowledge. 

But also: 

• The basic idea of an argument may be sufficient for an explanation; an explanation need not be 
a proof. 

• Showing understanding of the concepts under consideration may be more important than 
establishing a result via formal proof. 

• It may be acceptable that the logical flow remains vague, if a clear relationship between premise 
and conclusion is established. 

• If only a special case or a generic example is presented, its generalizability should be addressed. 
• Visual or diagrammatic arguments are acceptable if they are supported by appropriate reasoning. 
• Numerical examples may not be sufficient. 

Connectivity and Coherence 

The most complex and probably the most important aspect of explanations is their coherence. 
Explanations are meant to establish, rely on and make use of connections. Students are thus given the 
opportunity to show connections they have established between what is to be found or justified and what 
is given by means of the reasoning they use. In localized, small problems, only local connections can 
usually be demonstrated. More complex problem situations may elicit more elaborate connections. 
Larger projects may be even more demanding in this respect. Indeed, it is more difficult to ensure 
coherence of thought, language, reasoning the more complex a situation is being considered. The 
following criteria relating to connections and coherence have been proposed: 

• The explanation should be internally consistent. (Minimum criterion) 
• The explanation should show that the student understands the task or problem as a whole. 
• The explanation should make sense globally. 
• There should be a clear and appropriate manner to introduce and conclude the presentation. 
• There should be a logical argument for the entire problem. 
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• The argument should be valid and coherent. 
• Task-appropriate examples should be chosen. 
• It should be made clear why a particular way was chosen to solve the problem or present the 

reasoning. 
• Coherence in language is a means for connecting related ideas. 

CONCLUSION 

College students are increasingly being required to explain rather than just carry out their 
mathematical activity. They are thus given opportunities to demonstrate their understanding of the 
reasons for doing a particular computation and for doing it in a particular way. The underlying 
assumption seems to be that this contributes to the depth of their understanding and their power to use 
mathematics. The requirement to verbalize thus contributes to moving students from a descriptive to a 
justificative mode, from empiricism to rationalism, from a purely pragmatic to a more intellectual view 
of mathematics (Balacheff, 1987). 

This is a crucial transition for the students and we should not expect it to be easy for them. Teachers 
may support this transition by: 

• Regularly requiring explanations, 
• Giving many reasoning tasks, 
• Giving the result of a computation together with the problem, 
• Giving sample explanations to chose from, 
• Giving sample explanations to critique, etc. 

We should not expect success in this undertaking, though, unless we manage to clarify our goals to 
ourselves, which is difficult, and then to our students which is even more difficult. In this paper, I have 
attempted to make a contribution to the process of clarifying these aims. My aim was not to establish 
criteria, certainly not generally valid criteria, but to sensitize the reader to the need for making criteria 
explicit and to propose some possible criteria. 

Every course, even every didactic situation will have its own set of criteria, just like different 
subfields of mathematics, different journals, and different periods in history have different sets of criteria. 
This relativity, however, does not release the teacher from the responsibility to analyze the space of 
possible criteria, to become conscious of the criteria which are being used, to define these criteria for him
or herself with a suitable level of precision, to interactively constitute with the students what counts as an 
acceptable mathematical explanation and fmally, to properly apply the established criteria to the students' 
work. 
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MATHEMATICS TEACHING-HOW IT COULD BE DONE 

George Kondor, Lakehead University 

I think one of the crucial reasons why our system of education, including mathematics education, 
is in a critical state is that the profession itself has only a limited, and probably biased idea of what goes 
on in alternative educational systems. We all could do better by being informed about how things are done 
by others. 

In the past 15 years we have experienced a flood of self-appreciating comments from educational 
professionals in Canada. Results of the Second International Mathematics Study were frequently reported 
in a rather biased way (in using means, or medians) that favoured the Canadian results hence illustrating 
the "relative strength" of Canadian education. Not only were the bases of statistical comparison of the 
Study very different in the various countries, but the way of testing-multiple choice questions--could 
favour one group. While in North America testing is mostly done in this (multiple guess) way, this is done 
infrequently in some other countries. The choice of curriculum, in my opinion, also favoured the North 
American students. Had the test been based on, say, the Hungarian curriculum, the ranking would have 
been quite different. Since then I have found other comparative studies with serious inherent bias. One 
of them compared how much science (including mathematics) is taught in the last year of secondary 
studies in different countries without paying attention whether the same, or more, is taught in earlier years 
in other systems. 

This is why I found it important to objectively show you the apparent difference in educational 
approaches, expectations, quality of education (and teacher education) by showing you some of the 
problems students have been expected to deal with at the grade six level in Hungary. In the following, I 
present several (adapted) problems from a grade six Hungarian work-book [1]. As you will see students 
at that grade level are introduced to number theory, equations and inequalities, Descartian and polar 
coordinate-systems, and their transformations, two and three dimensional geometry, functions, 
optimization and logic, and it is done in an exciting and entertaining way. (The philosophy of education 
used to base this approach on was developed by Otto Varga, D.Sc., and is called "explorative 
mathematics".) Along the way students are actively involved in the development of thinking skills as will 
be illustrated. All public schools in Hungary used the same textbooks as prescribed by the Ministry of 
Education at least until the early 1990s. Their usage was compulsory. At each grade level a work-book 
was also published for take-home challenge problems. All pupils were expected to participate in solving 
such problems. From grade five there is subject teaching, and most teachers from grade five l.lP have, in 
their respective fields, the equivalent of a masters degree in Canada. 

Other ways to compare students are also possible. You could compare the amount of homework the 
average student needs to do in various countries [3] as measured by time; their respective results in 
international mathematics competitions; or the university entry exams in mathematics. 

Originally I intended to speak also about the socio-political reasons why the present "progressive" 
philosophy has been the ruling ideology for such a long time. Instead, due to limited space, I list some 
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recent critical works in the references. 

SELECTIVELY CHOSEN EXERCISES FROM [1) 

Note: In my talk some 40 problems were presented. Due to the limited space here only 25 will be shown. 

When some of these translations were made in the early 1980s Dr. W. R. Allaway of the School of 
Mathematics, Lakehead University, worked with me, and most of the initial work was done together. We 
intended to publish the translations, but for different reasons, we were discouraged to fmish our work. My 
comments, if any, are put in square brackets after each problem. 

1. The population of Thunder Bay in 1991, rounded to the next thousand, was 114 thousand. What 
might have the population of Thunder Bay been in 1991? 

2. 

102 

Check offwith a blue pencil those statements which give only possible answers; with green those 
which give all possible answers; with red those which give just all the possible answers. 

113 500 ~ popUlation of Thunder Bay ~ 114499 
The popUlation of Thunder Bay ~ 115 000 
The popUlation of Thunder Bay was surely more than 11 ,000 
The population of Thunder Bay was not larger than 113 000 
The population of Thunder Bay could not be larger than 114500 
The population of Thunder Bay fell between 113 000 and 115 000 
The population of Thunder Bay was exactly 114 000 
The population of Thunder Bay was larger than 115 000 
The population of Thunder Bay was between 114000 and 114499 
The population of Thunder Bay was less than or equal to 114 500 
The popUlation of Thunder Bay was at least 112000 
113 500 ~ population of Thunder Bay -< 114500 

Packages of equal weights are measured. 
The position of the scale looks like this: 

Write an open sentence 
on the position of the scale: 

I • 
a. Is it possible that the package weighs more than 2 kg? ___ _ 
b. Is it sure that the package weighs more than 2 kg ? _____ _ 
c. Is it possible that the package weighs more than lkg? ___ _ 
d. Is it certain that the package weighs more than lkg? ____ _ 
e. Is it possible that he package weighs less than 5kg? ____ _ 
f. Is it possible that the package weighs less than 4.5kg? ___ _ 
g. Is it possible that the package weighs less than 2.5kg? ___ _ 

r2Jr1l 
11111111 
11111111 
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Indicate on the number line the limits within which the weight of the package must be: 

o 5 10 15 

[Note that the underlined question makes the pupil synthesize hislher previous thoughts!] 

3. We take two measurements. The positions of the scale are as follows: 

First time: Second time: 

••••• • 6:J ~.6J •••• I: =-::I [ I • 
Indicate on the number line the limits within which the weight of the package must be. 

I" 11'1 I I I 1 I I I I I I I I I I I I I I I I I I I , I' J ,. 
o 1 2 3 4 5 6 7 8 9 10 11 12 w 

4. a. The scale is in balance. 
Write an open sentence that 
describes the position of the scale. 

~ •• 63 (i) •• (}3 
i 

I 
i 

How heavy maya package be? 

b. Draw a scale illustrating 
the open sentence below. 

W·6+13 = 20+ '11·2 

''''-
"'(kg) 

[Here, at first, the student are made to understand the concept of equation and that the weight is well 
defined. Then, he/she needs to create hislher first equation independently and conceptualize by showing 
the related scale.] 
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5. Of this picture: 

these are the distorted images: 

( > 

With which grid has each distorted image been made? Write beside each image the letter-nan-.:; 0f 
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the proper grid. 

Ell I I I I· I 

Write here the letter-name of the grid that 
transforms this rhombus to a proper square: 
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[First, the problem is to match transformed images with their transformations. Here to create a 
transformation with a given objective in mind!] 

6. A. Johnny has started to enlarge this pattern. 
Continue his work. 

What scale has he wanted to use? 

B. Alex wanted to enlarge the black shapes to similar forms, but he erred at each. 
Find his errors and correct those. 
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7. Andrew and Gabriel did this experiment: 500 cm3 cold water was poured into a glass bowl, and a 
glass with 100 em3 hot water was set in the glass bowl. They measured the temperature of water in 
both 'containers. 
Then Andrew drew the following diagram after 5 measurements: 

:tempera:ture ' 
t;S (0e) , , 

60 t-H~+;-t-rH""'t 

+,+-'-J.-J-''-' 

++-i-+-il-++ time (minute) 
L5 

n--H-t-+2 
lot) 

35 

30 " 

25 -

2C, 

1S 

10, 

5 

n -

A. What do you think $he :temperature oftheoold water was 

at the end of the i6!!l mimRe ......... ; aUhe end of the 7th minute ......... ; 
at1:he end.ofthe ,-tJ mirMe . __ .... ; at ·:the ,end M the 9th minute ......... ; 
atthe :,ilii m!fhei4tJl- minute .. __ .. ; at:the.endofthellth minute ....... ? 

Write your aaswers abeveoo the dottecllines. 

B. Gabriel wrote up the data he measured: 

llt the end of minute 0 1 2 3 4' 5 6 7' 8 '9 
the temperature of the cold 

water warmed !JI!.. to ~C~ 
19 24 31 37 41 43 45 46 46 46 

the temperature of the hot 66 60 56 54 53 52 51 50 50 49 
wBter cooled .etf to (CO) 

Continue Andrew's diagram using this data. 
[The pupil is made to create a graph based on data.] 
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45 
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c. From the diagram determine the following: 

(1) At the end of what minute was the temperature of the cold water the highest? 
(2) During what minute did the temperature of water increase the most? 
(3) For how long was the temperature of cold water constant? 
(4) At what time did the temperature of the water become equal in both containers? 

[Here the basic ideas are presented re: maximization, and the slope.] 

8. An ant is creeping along the second hand of the clock in a tower. It starts from the middle of the 
clock and advances by 0.5 m per minute. The hand is 1.5 m long. When it reaches the end of the 
hand the ant turns back immdediately. 

a. Indicate on the diagram 
where the ant is at 
different points 
oftime: 

0" 

30" 

b. Do the same in the rectangular coordinate system: 

~ distan ce 1m) 
-

1 

as .. 

0 1 2 3 '4 5 6 7 8 

~~ttUD15" 

9 1:t 11 2 13 1IT 15 .. time (m~nute) 
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c. Answer the following questions: 

(1) How many times does the ant go to the end of the hand and back in an hour? 
(2) How long does it take the ant to get to the end ofthe hand the first time? 
(3) How long does it take the ant to reach the end 15 times? 
(4) How long does it take the ant to get around the face of the clock once? 

9. Two candles are lit at the same time. One of them is 10 cm long. This will get shorter by 5 mm per 
minute. The other is 8 cm long. It burns down in 16 minutes. Draw a diagram showing the lengths 

of the candles. 

length of the candle 

10 

8 

-6 

4 

2 

o 2 6 8 10 12 14 16 

Now answer the following questions: 

a. When will the lengths of the two candles be the same? 
b. When will the second candle be twice as long as the first? 
c. When will the first candle be twice as long as the second? 

18 

time (minute) 

2 

[In this problem students solve equations, -verbal problems-, with the use of graph.] 

10. Between any two numbers as many lines are drawn as many common divisors they have (not 

counting 1). 

Attempt to find the smallest possible numbers for the blank spaces. 

a. b. 
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c. d. Position these numbers in the blank spaces: 99; 
117; 44; 52 . 

[These are not easy problems for the 11-12 years old! Try to solve them.] 

11. Peter went to do some shopping in the Safeway. His movement is illustrated by the graph below. 
What can you read off the diagram? 

Peter's 
movement 

I-+- em) 
300 II': 

200 

100 

o 1- 2 3 " 5-

a. How far is the Safeway from Peter's home? 
How long did it take to get to the Safeway? 
How long did he stay in the Safeway? 
On average, how far did he walk in a minute? 

... 
I I 

-r 

I , 
I 

I 

, tim e (minutes) 
I '" 6 7- 8 9 H-1Oj 

b. Peter's home and the Safeway store are along the same road. At the indicated places along the 
road calculate how long it took for Peter to get there. 

Peter's home 100m 

minute 0 

200m 
Safeway 
300m 
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c. Illustrate Peter's movement also on the diagram below: 

Peter's home 

/' 
~ 

J 

J v 
L 

L 

IL / 

-? 1 
I 

I I 

100 
I~ 

V 

3 
f 
I 

200 

4 
I 
I 

Safeway~ 

300 

n time ( minutes) 

~Li J 

12. Ann's mother was 24 when Ann was born. Six years from now Ann's mother will be three times as 
old as Ann. How old are Ann, and her mother, now? You may try to fmd the solution here: 

mother 

Now Ann 

In mother 

16 years Ann 

l3. I wrote up a 3-digit number twice. The number 7 is written to the beginning of one of them, and to 
the end of the other. In this way I got two 4-digit numbers. The first is larger by 2826 than the 
second number. From the following open sentences which one describes this problem correctly? 

a. x + 7 = 7 + x + 2826 b. lOx + 7 = 2826 + 7000 + x 

c. lOx + 7 + 2826 = 7000 + x d. lOx + 2826 = 7000 + x 

14. Nodes represent towns. Design a road network such that from each town exactly three roads should 
lead out. 

a. b. c. 

• • • • • • • 
• • • • • • 
• • • • • • • • 
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[With reference to problem b.: Note that the student should realize that solving this means to show 
that there is no solution to this problem. Since seven times three is odd, it cannot be divided by 
two!] 

From each town eight roads 
should lead out: 

From .each town, respectively, 
1, 1,2,4,4,5 roads should lead 
out: 

• • • • • • 
• • • 

• 
• • • • • • 

15. A. Continue drawing the pattern: 

• • • • • 

• • • • 

•• • 

• • • 

B. Measure the area on the right, 

if the unit area is D. 

16. Mitosis (division of cells). 
In this glass there is a cell. 
Cells divide into two in each minute. 
The first division happens at the end 

• 

of the fIrst minute. Cells are of equal size. 

• • 

a. In how many minutes will there be 64 cells in the glass? 
b. In how many minutes will there be 128 cells in the glass? 
c. In how many minutes will there be 256 cells in the glass? 

• 

• 

d. In how many minutes will there be about 1000 cells in the glass? 
e. In how many minutes will there be 1 ()6 cells in the glass? 
f. In how many minutes will there be 109 cells in the glass? 

• 

Draw a graph showing the growth of the number of cells on a graph paper. 
Then answer the following questions: 

• 

• 

I 

• 
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(i) In one hour, exactly, the glass will be full. When is the glass half full? 
When is it one-quarter full, and when is it 1/3 full? 

(ii) If the volume of a cell were Imm3
, about how large a glass would be filled up in 30 minutes? 

[Introduction to the concept of logarithm, without speaking about it.] 

17. 4 A. How many straight lines may be drawn through the four vertices of a tetrahedron 
such that each should go through at least two vertices? 

B. How many straight lines may be drawn through the eight vertices of a cube such that 
each should contain at least two vertices? 

[If your answer is 12, think again! The correct answer is 28.] 

C. How many ways can you write up 5 as the sum of three positive integers, if the order of the 
terms is relevant? 

D. How many ways can you write up 6 as the sum of three positive integers, if the order of the 
terms is relevant? 

18. Which is larger? Put the proper sign ofinequaIity, -< or >-, between the numbers. 

~E3~E3E3 
~~~~15912531 

19. In a chess tournament there are r participants. In case of a round robin, how many matches will be 
played? 
Fill the blank. 

The number of participants 2 3 4 5 6 7 8 9 10 
in a round-robin (r) 

number of games G) 

Illustrate the relation between r and j on both diagrams: 
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10 ,.. j 11 

9 45 45 

8 40 40 

7 35 35 

6 30 30 

5 25 25 

4 20 20 

J 15 15 

10 10 

5 5 

0 0 0 r 
2 3 4 5 6 7 8 9 10 

Which equation(s) describe(s) the relation correctly? 

/J=t.r-10 I 
Ii 

l=r+2j I 
r ( r-1) 

j 2 

/ 

r (~+ 1) I I 
~------1 

j1=f-¥ ] I 
I j = 1+2+~+ ... +(r-1) I 

j =1+2+3+ .. . +r/ I J+r = 1+2+3+ ... +r/ 

[In answering this question the student will realize that he is able to discover the general pattern between 
r andj: this is creative thinking! This may make the young enjoy mathematics.] 

20. a. How much is 118 of 4/6? 
Briefly: (4/6).{l/8) = 

Show your result on the diagram: 

b. How much is 3/8 of 4/6? 
Briefly: (4/6).(3/8) = 
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c. How much is 1/5 of 5/6? 
Briefly: 
Show your result on the diagram: 

d. How much is 3/5 of 5/6? 
Briefly: 

21. a. What part of 2/6 is 1/6? b. What part of 2/6 is of 5/6? 
Briefly: (2/6). = 1/6 Briefly: (2/6). = 5/6 
Show your result on the diagram: 

lilin "iHrllllllllllllllllllllll i 
c. What part of 4/6 is 1/6? 
Briefly: 
Show your result on the diagram: 

d. What part of 4/6 is 1/2? 
Briefly: 

11111111111111111111111111111111. . 

[Notice the gradual introduction to fraction multiplications.] 

22. Below are diagrams about four groups of people: persons are represented by dots and connecting 
lines show they know each other. 

'/l!\ 
, . 

A 

• 
• 

, 
• 

·4 , b 
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Write beside each statement the letter(s) of the group(s) for which the statement is true. 
Everybody knows everybody. . ................... . 
There is one who knows evberybody ...................... . 
Everybody knows somebody ..................... . 
There is one who knows somebody ...................... . 
There is none who knows everybody ....................... . 
There is none who knows nobody ..................... . 
There is none who does not know everybody ...................... . 
It is true that nobody knows anybody .................... . 
It is not true that nobody knows everybody ................... . 

Now connect those statements which have the same meaning. 

[To answer this underlined problem the basic ideas of Boolean algebra needs to be understood. If we 
want our children to learn these concepts at an early age, in my opinion we need to change our teacher 
education at the intermediate level.] 

23. A cube is distorted such that its height is decreased by 3 em, the two edges of its base are increased 
by 3 cm, while the other two edges remain unchanged as illustrated on the diagram: 

3 em 

Will 
a. its surface area; 
b. its volume; 
c. the sum of the lenghts of its edges 

be smaller, largert, or unchanged? 

Fill in the blank for a few values of the original length of the edge of the cube (x). 

The edge of the cube 
(cm.) 

The surface area of 
the cube (cm2) 

The volume of the 
eube (em3

) 

The sum of length 
of its edges (em.) 

Surface area of th~ 
new formation (em ) 

Volume ofthe 
new formation (em3

) 

The sum of the length 
of edges of the new 

formation (em.) 

[This problem helps students understand that surface area and volume change in opposite directions. That 
among such polyhedrons with the same surface area the cube has maximum volume, and among such 
polyhedrons with the same volume the cube has the minimum surface area.] 
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24. We have two machines .. One oftbem subtracts 2 from three times the inputed (in) number. The 
other adds 5 to twice the inputed number. 
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Now connect the two machines 
in this way: 

And the other "':1:. around: 

® 

a. Which efthe following open sentences describe(s) tbe operation of tile first. and the second, 
connected maehine? Write beside each open sentence the respective machine's number. Cross 
out those open sentences which bekmg to. neither of the madlines. 

I ·eut = 3>tfn.2 ... 5} - 2\ 

.f Out = 2·fIn4, 2) .. 51 [OUhdn .. 6J l Out = tn·6 .. 1 i 
, OUt = rn.~ .. 3 t [ Out = fn.6 ... 13 t t OUt = In.6 ... 91 

b. Illustrate the rule of machine 1 by a red pencil, the rule of machine 2 by a blue pencil: 

Ie 

-15.-14-13-'2-11-10-9 -s -, -6 -5 -4 -3 -2 -, 0 1 

[These questions are about composi1e functions. J 
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25. The following question is from the covers of the regular Hungarian mathematics textbooks, for 
grades 5-8: 

M A T 
A T H 
T H E 
H E M 
E M A 
M A T 
A T I 

H 
E 
M 
A 
T 
I 

C 

E 
M 
A 
T 
I 

C 
S 

In how many different ways can 
you read 
MA THEMA TICS 
going always either 
downward, 
or to the right? 

[It is a truncated Pascal triangle. How 
its coefficients are related to each 
other can be understood by a grade 
six student without too much diffi
culty.] 

The following question was published in The Globe and Mail (February I, 1993), quoting The Economist 
may be interesting, of course, for high school students in Ontarion Academic Credit (AOC) programs, 
and their teachers: 

Given a regular pyramid with a square base, there is a ball with its centre on the bottom of the 
pyramid and tangent to all edges. If each edge of the pyramid base is of length ~ find the following 
quantities: (1) the height of the pyramid; (2) the volume of the portion common to the ball and the 
pyramid. 

This problem, from an entrance paper to Tokyo University, is an example of the. short of thing that 
makes North American educators cringe. How many North American high-school students, applying 
to college for math. courses, they wonder, would be able to answer it? They are asking the wrong 
question. The problem comes from an entrance paper for humanities students. 

EPILOQUE 

After reviewing the above selected problems (most of them from a grade six Hungarian exercise 
book), I think you would agree with me that we have room to improve our education. We do face a crisis. 
During this Conference there was a section on the present criSis in cu"iculum. In my opinion even the 
title of the section was misleading. The crisis we face, being systemic, means that little could be achieved 
with changes in the curriculum only. 

There are two widely different economic systems: the planned (controlled) one, and the market 
system. Where there is no market system with its coordinating and incentive mechanism there should be 
control. In Ontario, and in Canada public schools represent a monopoly with a single philosophy of 
education. It has been long understood in economics that in case of monopoly, regulation and control may 
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be necessary. In education there would be a need f'Or a strong ministry that knows what it is doing. It 
would need tu establish a high minimum curriculum, and to enforce teaching, leaming, and teacher~ 
educational standards. On the other hand while breaking up monopolies and fostering competitive forces 
has been successful in tnanyareas of the economy with respea to improving efficiency, it has hardly been 
tried in Cattadian educatiQll. Such an alternative would be a more market oriented system with (partially 
or fully) publicly funded charter schools. There are several examples that indicate that such a system 
would be more cost efficient, and more conducive to learning especially with regards to the poor [3], (7], 
[8]. At present we have a Wilcuum: there is no, or only little, control in education, and little or no 
competition either. The result is a wasteful, inefficient system. Also, since it is the poor and the middle 
class who, at present, could trot affotd alternative (more academic) schools, the present system is 
conducive to maintaining the privilege of the tk;h. 

It is quite obvious that ·eadl country has an elite. It is not irrelevant how that elite is educated. In our 
systetn, a ~lthy social dynamit: that would offer the poor a way via education to become a part of the 
leading elite does not ~xist. With limited tesouroes the equality of condition ~ only be a dream. The 
equality of QWJGrlWlity requires the responsible use 'Of sooh opportunity, a simple fact our leaders, as it 
seems, do not keep in mind. We do not give a real chance to our brightest t'O become truly excellent. 

Today, the major educational chofues are not about wItar pedagogical c01'lCepts are more efficient, 
but rather about what phil(fJsophy of etiuc.ati01'J is best, keeping in rmtnd the socio-polUical processes it may 
create {9], {to]. In ow" sy~ of education the most subst.antial decisions concerning individual 
advancement are almost ~y {eft tl) self"Rl'Otivation. Individualism is absolute, the public interest 
is at most secondary (9). Teacher education 4s inadequate. While it is widely recognized that the 
semestered system in Qru;ario is simply bad (in my opinion an abolnination), it is maintained without any 
substantial resistatwe. tire system all'Ows free choice to the uninitiated, who in the absente of proper 
infonnation -canROt dwo'se well. As • result education beootnes chaotic in terms of quality and the system 
prodU'Ces a .gteat mass 'Of fiinotional iUiterak:s (9). "Each generation 'Of Americans has outstripped its 
parents in education, in literacy, .and in econotnicattainnleRt. For the first time in history of outQOUntry, 
the e~skills of one gel\eratioo win not sutpaSs, will not equal, will n0t even ~h) those of 
!heir parents." 1bou:gh this was:said by Pallt Copperman about the U.S. state of edttcali<>n mote than 15 
years ago as quoted m (2], I dUnk it is equally valid for Canada today. 

In 1983 The Globe .and Mell wrote [4): "[l]f we are to stun any rising tide 'Of mediocrity in Canada, 
a much t'fi(}ffJ 4erennined effutt ... will be required." So dren what are the rfiSOilS why the system has 
changed so little? Cleatiy, we teadten, and our organ~, are paati4i1y responsible for the status quo. 
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Finally, allow me ro ~ Gabor S~ ('Of Stanford University) who wrote in 1961: 

We should not forget that the solution of any worth~while problem very rarely <l0lfi'es to us easily 
and without hard W'Orl<:; it is Nther the result of u.ntrotual effort of days or weeks or months. Why 
sh'Ould the YoUng mind be willing to make this "SUpre.tfit effort'? The explimation is probably the 
instinctive preference for aftain values, that is, the attiUtde which r~es intellectual effort and 
spiritual achievement higher than material advantage. Such a valuation can only be the result of a 
long culttnl development of environment and public spirit wbith is difflCtlk t(J acceietate by 
governmental aid or even by more intensive training in mathematics. The 1110st effective means may 
consist of tranmitting to the young mind the beilUty of intellectual work ~d the feeling of 
satisfaction following a great and successful mental effort. 
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MATHEMATICS TEACHERS' NEEDS IN DYNAMIC GEOMETRIC 
COMPUTER ENVmONMENTS: IN SEARCH OF CONTROL 

Douglas E. McDougall 
Ontario Institute for Studies in Education, University of Toronto 

ABSTRACT 

The study sought to understand the needs of experienced teachers who, for the fIrst time, are 
teaching geometry in a computer-based exploratory environment rather than in the traditional 
environment of textbook, straight-edge and ruler. Insights into these needs were obtained 
through a qualitative case-study, in which data was collected by observation, as well as from 
interviews with teachers and students and from participant journal entries. Analysis of the data 
showed that the four teachers participating in the study experienced an initial loss of control 
due to the new environment, in three categories: (1) Management control (they believed the 
new environment impaired their ability to maintain discipline), (2) Personal control (they were 
unable to determine their own expectations of the students and to assess students' achieve
ment), and (3) Professional control (they felt they no longer had all the answers). As the 
teachers learned to use the new tools, however, they gained confIdence in their ability to teach 
effectively with the new methods, and were even moved to reflect upon their previous teaching 
practices. Despite the apparent lack of discipline, the absence of specifIc expectations, and the 
changes in their professional role, they came to recognize and accept that in the new 
exploratory environment the students were learning geometry and enjoying it. 

INTRODUCTION , 

There are many reasons why teachers teach the way they do. These include teachers' lack of 
knowledge about the mathematics content and lack of confIdence in the "new" teaching methods. They 
teach using techniques that are similar to those used when they were learning mathematics. 

The role of a mathematics teacher is to help students learn mathematics. Teachers have to create 
situations where students are 'psychologically safe', mathematical ideas are discussed, and students can 
work and think mathematically. Students will construct their own knowledge regardless of what the 
teacher does within the classroom. However, the teacher can influence which mathematical concepts are 
investigated. 

Teachers should listen to what students say about mathematical concepts. They should encourage 
discussion about mathematics in their classrooms. The teacher's role should be seen as one of facilitating 
the development of mathematical meaning within the mathematics classroom. This role may involve 
changing the way many teachers view mathematics teaching and learning. However, change is difficult. 
Change is similar to experiencing a loss. Something that you believe in is no longer true, available, 
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acceptable, or considered good educational practice. This loss affects people differently. How one deals 
with the loss determines, in some part, the success of the innovation or change. 

An assumption for many new educational programs has been the premise that teachers will adapt 
to change and that we need only to instruct the teachers on the nature of the new change: be they 
curriculum, teaching techniques or assessment methods. Unlike other curriculum changes in mathematics, 
this change does not come from within the mathematics community as a consequence of certain cultural 
developments of the discipline, but as the consequence of the great changes in the social and economic 
reality provoked by the impact of new information technologies (Bottino and Furinghetti, 1994). 
Research on the reactions of teachers facing curricula innovations by which teachers reorganize their 
pedagogical practice and beliefs is still in its infancy (Boufi, 1994; Bottino and Furinghetti, 1994). 
However, in order to bring desirable changes to the system, we need to [md out what is actually 
happening when teachers undertake changes in their teaching practice. 

Romberg (1985) has pointed out that the job ofteaching is to "assign lessons to a class of students, 
start and stop lessons according to some schedule, explain the rules and procedures of each lesson, judge 
the actions of students during the lesson, and maintain order and control throughout" (p. 5). Romberg 
believes that the mathematics curriculum is something that needs to be covered, and that few teachers see 
student learning and understanding as the primary goal of mathematics education. 

Management of the learning environment becomes an important issue for teachers trying to make 
changes in their teaching practice. The teaching role has been seen as one where the teacher controls the 
learning environment That control can be restrictive: directing, ordering, telling, and demanding. How 
teachers use this control within their classroom will clearly influence the learning environment. 

The management of the learning environment must allow for students to construct their own 
knowledge and to take responsibility for their own learning. Students also need the freedom to discover, 
through exploration, different ways to build solutions. They need to spend time working with problems 
and searching for solutions. This process may be organized and recorded according to the predetermined 
plan of the teacher whose role is to facilitate the student's exploration (Bums, 1992). As such, it is 
important that teachers provide students with the opportunity to explore, analyze, and demonstrate their 
skills. 

The use of the computer has been heralded as one teaching tool suitable to mathematics teachers to 
encourage exploration of mathematics. The expanded use of computers in mathematics education may 
create a shifting of roles for teachers. Assuming that teachers are willing to utilize computers in their 
classrooms (NCTM, 1989, p. 67) to encourage the students to explore mathematical concepts, there is a 
need to investigate how this utilization can be implemented. Even though the NCTM Standards (1991) 
have provided the impetus to change the curriculum, teaching, professional development methods, and 
assessment practices, there are many more factors to consider when teachers and curricula change. 

There are many societal influences that affect teachers and their teaching practice. The integration 
of the computer into our society, the beliefs and images of teachers, and how teachers change influence 
mathematics teaching practices. Computer technology is visible in almost every facet of our society. Its 
entry into schools, however, has been slow and this is especially true for mathematics classrooms 
(Kilpatrick and Davis, 1993). Many reasons exist for this lack of integrati~n into the mathematics 
curriculum: teachers' view of knowledge acquisition (Hannafin & Freeman, 1995), lack of availability of 
computer hardware (Becker, 1990), teacher anxiety towards computers (Rosen & Weil, 1995; Berebitsky, 
1985), and teacher control in classrooms (Cohen, 1989; Schoefeld & Verban, 1988). In fact, the 
interaction between computers, teachers and mathematics is complex (Noss, 1991). 
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Building on recent research on teacher change, this study investigated the use and implementation 
of geometric construction software in mathematics classrooms. This study examined the reactions of 
teachers as their students explored geometric constructions in a probing for understanding milieu. 

CONTEXT AND METHODOLOGY OF THE RESEARCH 

The setting for the study was four independent schools in a Canadian city. All participants were 
teaching Grade 8 students (age 13-14) and were selected in the following way: a male teacher in a boys
only school, a female teacher in a girls-only school and two other teachers (one male and one female) 
from two co-ed schools. 

A case study approach was used. The data was collected through three primary sources: classroom 
observations, interviews andjournal entries by participants. More specifically, the data was gleaned from 
my field notes, transcripts of interviews with teachers, students and Head of School, a questionnaire, 
transcripts of classroom conversations between students and teachers, and participant's journals. 

Each teacher was asked to teach the geometric construction unit, normally taught using compass and 
straight-edge tools, using the Geometer's Sketchpad computer program. I spent approximately three 
weeks with each teacher, observing their interaction with students and the computer software. 

All interviews and classroom visits were audiotaped and I made field notes of my observations. The 
teacher was asked to keep a daily journal to record his feelings, concerns, successes, failures and other 
teaching and learning experiences. Data collection was ongoing throughout the study. 

The teachers were interviewed at least four times during the study: twice before the first classroom 
session, at the midpoint of the in-class sessions, and at the conclusion of the classroom visits. A follow-up 
interview was held when the transcripts were delivered to the teachers. 

A questionnaire on teacher beliefs and attitudes was given to the teacher before the class sessions 
to provide me with additional information about the teacher. Additional questions were asked during 
interview sessions based on the responses to the questionnaire and on my field notes. 

Three students in each school were questioned about their interest, attitude and feelings in the areas 
of mathematics courses, content of this course, computers, teachers of mathematics, geometry, the 
software, their freedom to explore, and their anxiety about mathematics. 

Each Head of School was interviewed. Questions focused on the types of supports teachers receive 
in the school in the areas of computer hardware, computer training, teacher professional development 
opportunities, and teacher change. 

ANALYSIS OF THE CASE STUDIES 

Case Study 1 

The 1995-96 school year was Cathy's seventeenth year of teaching. She works in an all-girls 
independent school in a large metropolitan city in Canada. Cathy had experience teaching in a 
government school in the Bahamas and eleven years at another all-girls, independent school in this same 
city before beginning to teach at St. Francis School six years ago. 

The case of Cathy demonstrates that the need for control over the teaching environment is based 
on a personal philosophy towards instruction. Cathy's control over her environment required her to be 
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organized and to develop her own classroom activities. Cathy permitted her students to explore the 
software and share in the formulation of defmitions and the discovery of relationships. 

Cathy Karen Simon Mike 

No. of Years 11 3 3 14 
Teaching Math 
Math Experience extensive little extensive extensive 

Computer exten5ive limited extensive medium 
Experience 

Math Exploration extensive ID'II! J'D1e extensive 

Transition to integrated beginning beginning progressing 
Taken-as-Shared transition transition 

Perceived Role of Facilitator Transmitter of Provider of Provider of 
the Teacher Knowledge Information Information 
-Pre-study 

Perceived Role of Facilitator Transmitter of Facilitator Student-locused 
the Teacher Knowledge Guide 
- Post-study 

Control Needs low high moderate low 
-Pre-study 

Control Needs low moderate moderate low 
- Post-study 

Control designing inaeased own evaluation of designing 
Techniques worksheets proficiency students worksheets 

Control of comfortable nervous/ comfortable comfortable 
Technology an:emed 

Table 1: A Cross-Case Summary of the Four Teachers 

Cathy is a reflective practitioner who, through written and mental practice, makes adjustments to 
her pedagogical techniques before, during and after each lesson. 

Certain characteristics of Cathy's efforts to implement the geometry curriculum unit were 
noteworthy: 
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• Cathy is a reflective practitioner. 
• Cathy is an organized teacher. 
• Cathy felt comfortable in a "taken-as-shared meaning" (Wood, Cobb and Yackel, 1991) 

classroom setting. 
• Cathy's loss of classroom control was temporary and quickly resolved. 
• Cathy believes that student's becoming active independent learners is quite important. 
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Case Study 2 

The 1995-96 school year was Karen's eleventh year of teaching. Karen works in a Grade K-12 
independent school in a large metropolitan city. The school il co-educational environment, attra<..ting 
students from various areas of the city. 

The case of Karen demonstrates that the perceived need for control over the teaching environment 
is an important issue in teacher change. Karen's perception of the role as a teacher created a tension 
between having a structured classroom where the meanings are teacher-directed and a flexible classroom 
where taken-as-shared meanings are formulated. 

The variation of the teacher's need for and actual control over their teaching environment emerged 
from the data. Karen's transition from a traditional, structured and controlled environment to lack of 
control in the new environment and, fmally, to maintaining a new type of control was a significant 
fmding. 

As I studied Karen's efforts to implement the geometry unit, several characteristics began to emerge: 

• Karen was a structured teacher. 
• Karen found it difficult to reflect, in written form, on her teaching practice. 
• Karen was beginning to show some movement from teacher-imposed meanings towards a 

"taken-as-shared meanings" (Wood, Cobb and Yackel, 1991) with her students. 
• Karen's perceived role of the teacher had a major influence on her instructional techniques. 
• The degree of control Karen felt she needed in her teaching practice created a tension that was 

not resolved. 
• Karen felt a lack of control over her use of the technology. 

Case Study 3 

The 1995-96 school year was Simon's third year ofteaching. The school is located in a suburb of 
a large metropolitan city, surrounded by open fields on one side and a housing development on the other. 

At the start of this study, Simon viewed the teacher's role of teaching as a transmitter of information. 
After his work with the software, he saw a need for the teacher to become a facilitator whose job was to 
guide the students. 

My work with Simon revealed a number of characteristics: 

• Simon is becoming a reflective teacher. 
• Simon is a structured teacher. 
• Simon is aware that, in the process becoming an advocate of using taken-as-shared meanings 

with his students, he was often very tense in the classroom from a more traditional approach. 
• Simon uses evaluation of students to maintain control over his classroom environment. 

Case Study 4 

The 1995-96 school year was Mike's eighteenth year of teaching and his fifth year at Stevenson 
College. Mike teaches in a boys-only independent school in a large metropolitan city in Canada. Prior 
to moving to Stevenson College, he taught thirteen years at an all-girls independent school in the same 
city. Mike changed his view of the role of the teacher from that of a "provider of information" to that 
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of a guide. He believes that Middle School students should have the same opportunities to explore and 
share experiences in mathematics as those currently afforded his senior students. 

Mike had allowed them to take control of their own learning. This new class of 'explorers' and 
'experts' became the focus of Mike's use of the computer software. 

Throughout my study, certain characteristics of Mike's teaching practice were noteworthy: 

• Mike has a flexible approach to classroom management 
• Mike is an organized teacher. 
• Mike allows the students to participate in taken-as-shared meanings within his classroom. 
• Mike's perception of the role of the teacher allowed for students to take a more active role in 

their own learning. 
• There is a strong sense of exploration and discovery in Mike's teaching practice. 

FINDINGS 

Teacher Control 

The issue of control permeated the entire study. What were the teachers controlling? Each teacher 
had a number of objectives for their lessons. The teachers wanted their students to learn the geometric 
relationships and they wanted to be able to evaluate how well their students grasped the concepts. 
Jaworski (1994) recognized the issue of control in her research. In the present study, how the teacher 
reacted to this control issue contributed to their perceived degree of success of the program. 

Teaching strategies are closely linked to classroom management strategies (Keller, 1996). Teachers 
in Keller's study noted that students are more on task and self-managed in a computer classroom than in 
the regular mathematics classroom. Teachers also noticed that there was an increased noise level in the 
computer lab. These changes may not be directly linked to the use of the computer but as a result of other 
changes that were made to accommodate their use. Keller's teachers took more interest in their students' 
successes and allowed the students the freedom to explore learning materials. These changes were 
enacted by teachers 'letting go of the reins'. 

All four teachers in the present study faced the issue of control. Karen, Simon, and Mike made 
explicit reference to their temporary loss of control while Cathy made implicit reference to this issue. Of 
the four teachers, Karen's experience was most significant and will be used to develop a new 
understanding of the issue of teacher control. 

Karen perceived a significant loss of control early in the study. She felt uncomfortable with the 
software and felt that she was not in control of the learning environment. Karen's students, although they 
were conditioned to ask and expect Karen to answer their questions, recognized this loss of control. Her 
students began to take responsibility for their own learning. They began to share conjectures and to help 
each other develop the skills necessary to explore geometric relationships using the software. Karen 
regained her sense of control by the third day of the study through her successful interaction with the 
software the previous evening. By this time, however, her students were feeling comfortable with the 
software and helping each other. By the sixth day, Karen regained her confidence in her ability to teach 
geometric constructions using the software. Both Karen and her students were transformed by the 
experience. The students felt in control of their own learning and Karen regained her sense of control 
over the learning environment and her confidence as a teacher. 
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Karen's experience is similar to the experiences Frobisher (1994) noticed happening to teachers 
when a problem-centred classroom diverges from the traditional model. The sense of insecurity that 
teachers experienced using the computer software is consistent with the experiences of the teachers in a 
problem-based mathematics classroom. 

The issue of teacher control can be viewed from three perspectives: management control of the 
learning environment, personal control, and professional control. 

Management Control 

The most significant effect on the teaching pedagogy of the teachers involved in this study relates 
to their interaction with their students. The teachers were, to various degrees, inculturated into the 
traditional teaching paradigm where the teacher structures the classroom so that the teachers can be the 
authority. Berebitsky (1985) found that elementary school mathematics teachers have a low level of 
mathematical background. There are a number of problems inherent in this situation. Teachers are not 
confident in their mathematical ability and, therefore, the textbooks are taken as the authority for 
mathematics. Steffe (1990) suggests that the mathematical concepts and how they are taught seldom get 
questioned. 

Teachers having low level of mathematics background or those who depend on the textbook as if 
it were the curriculum, tend not to respond favourably to suggestions that they teach in an exploratory 
mode. They perceive this environment as being too difficult of control and that it requires the teacher to 
tolerate uncertainty about what the students are learning (Schoefeld & Verban, 1988; Cohen, 1989). 

The role of the teacher in mathematics education also influences the control mechanisms the teacher 
places on the classroom environment. When teachers chose various situations for their classroom, they 
make judgments about the relevance of the situation to their students and how likely the students are to 
"bump" into the appropriate mathematics in the course of investigating the problem (Lappan & Briars, 
1992). These activities will vary depending on the level of control and the tolerance level a teacher has 
within the classrooms. These levels of control and tolerance levels may restrict the use of coopera
tive/collaborative learning activities used by the teacher. Johnston, Johnston and Stanne (1986) found 
that students working in cooperative learning groups had increased achievement within computer-based 
environments. Even with these fmdings, teachers may choose to have students work one to one with a 
computer simply to minimize the noise. In so doing, the teacher may inadvertently lessen the 
opportunities for students' discourse and shared meanings within a small mathematical community. 

Personal Control 

Teaching can be an isolated activity. The teacher is expected to teach around 30 students, maintain 
control, and inspire the class to learn (Cuban, 1986). Compound this problem by introducing a computer 
software tool and tensions develop between the teacher's perception of their role as a facilitator within the 
classroom and their personal control needs for perceived control of the learning environment. 

These personal control needs are expressed in many forms. The need for mutual trust within the 
learning environment between the students and the teacher, the need of being the authority within the 
mathematics classroom and the ability to freely admit mistakes are within this category. How a teacher 
perceives herself within the classroom and how the teacher reacts to personal rather than professional 
change has an impact on the degree to which change is accepted by the teacher. 

Karen provides an interesting backdrop for the importance of personal control in an elementary 
school mathematics teacher's practice. While she had some concerns over the content of the geometry 
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program, she was most concerned with her personal control over her environment. She wanted to 
maintain a personal presence in the classroom and expects respect from her students. She felt that this 
respect was synonymous with her personal control within the classroom. Karen made some changes in 
her teaching practice. These changes, however, were closely related to her feeling comfortable with and 
in control of her personal acceptance of the need to share the authority of mathematics. She also felt 
comfortable to share her lack of complete understanding of the software with her students. It was at this 
point that she began to recogniZe her control over the teaching environment increase. 

Simon, as a new teacher, had similar hopes in the classroom. He wanted students to recognize him 
as an individual. He was not concerned about making mistakes but he was unable to freely inform his 
class that mistakes were part of life. He realized that he didn't have to know everything and that sharing 
knowledge with the students actually allowed his personal control to increase. 

Mike and Cathy appear to be very comfortable with their role both in and out the classroom. They 
have a personal interest in investigating mathematics and freely admit w their students that they make 
mistakes. They do I10t need to be the centre of attention and, perhaps as they have both taught for a 
number of years, felt confident in their abilities to make changes within their teaching practice without 
creating a loss of personal control over their environment. 

The issue of personal control is important 10 new teachers to the profession and those new to 
teaching mathematics. The need to be the centre of attention and 10 be the mathematics authority in the 
classroom does influence how a teacher reacts to change within their classroom. Students benefit from 
seeing teachers as evolving, learning members of the mathematics community. Rather than providing 
students with information and then determining if they have captured the concepts, knowledge and skills, 
teachers will need to become a part of a learning community and act as a model and a participant. 

Professional Control 

Prospective teachers enter a prof~ssion steeped in tradition Imd histoTy. As a profession, teachers 
are wen regarded in some communities and not in others and may experience some trepidation about their 
role within the community. Within the independent school system, teachers are usually well regarded for 
their hard work and dedication to the profession. 

All four of the teachers in this study agree that there are many roles for the teacher within the 
classroOM. They agree that being good in mathematics is important but not essential. The ability to 
motivate students is a key factor, according to Simon, while Cathy believes that teachers should ask 
questions to encourage students to expIore mathematics. Both Cathy and Simon, by the end of the study, 
saw the teacher's role as that of a facilitator while Mike used the word guide to descnbe his role in a more 
student-focused classroom environment. Karen continued to believe that her role was to 'teach'. That is, 
she should provide an environment where she is the transmitter of knowledge to the students. In each 
case, the perceived role of the teacher dictated the types of questions posed, the distribution of the 
worksheets, and the interaction between teachers and students. 

How a teacher perceives the role of the teacher will contribute to the type and degree of control used 
in the classroom. A teacher who believes that the teacher should be a facilitator will naturally maintain 
a different form of control over the classroom. A facilitator will have less difficulty with open-ended 
activities and will invite questions from the class that will be different in scope and depth than from a 
teacher who believes that students need to be told what to learn and under what conditions. The 
transmission-type teacher will be less likely to open the students 10 new questions and interaction, the 
building blocks of a mathematical community. 
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CONCLUSIONS 

Teachers playa central role in establishing the mathematical quality of the learning environment for 
students and in establishing norms for mathematical aspects of students' activity (Yackel and Cobb, 1996). 
This implies that the teacher does not take a passive role in the constructive perspective but plays a critical 
role as a representative of the mathematical community. Given this central role, what influences come 
to bear on the role of the teacher in mathematics education? 

The teacher's view of learning about mathematics and mathematics teaching clearly affects how 
teachers present the course material. The teacher needs to do more than just change the nature of the 
classroom task from teacher-directed to student-directed. Social constructivism implies that students need 
to communicate with each other. This communication could cause anxiety for teachers who feel that 
classrooms should be quiet, or that only one person should be talking at a time. 

The use of the word 'control' conjures up different images for each of us. It is an emotional word 
that can be used negatively to suggest that the teacher is not giving students any freedom to develop their 
own thoughts (Jaworski, 1994). It can also mean that the students take responsibility for their own 
learning. Classroom control is important for teachers and is used to influence the way students think and 
behave within the classroom. Teachers use of their inherent control within the classroom will influence 
the type and form of activities that take place within the classroom. This control can be used to limit 
interaction between student by reducing the noise level to a minimum or nil and by insisting on individual 
work. However, as Jaworski found in one of her case studies, control can also create an environment in 
which mathematics thinking is fostered. 

We need to develop a careful understanding of the settings that encourage teachers to learn to use 
these new teaching environments and materials. We need to determine the real costs of teachers learning 
to teach geometry. We also need to empower teachers to create an experimenting environment in their 
classrooms. Teachers need to be observed in computer exploratory environments so that we can 
determine their learning needs so they can provide this educational experience for their students. 

Teachers experienced an initial loss of control in this environment. As the teachers gained 
confidence in their own use of the software and recognized that students were experiencing success, 
teachers began to regain their sense of control. The investigation also reveals that teacher control can be 
expressed in one of three categories: management control of the learning environment, personal control, 
and professional control. 

The implication for teacher education is that preservice and inservice teachers should be given a 
mentor or coach to reinforce the premise that, although the teacher will experience a temporary loss of 
control, increased confidence in mathematics and experience in other software packages, will be helpful 
for teachers attempting to introduce dynamic geometric software packages into their classrooms. The 
implication for mathematics education is that students thrive in dynamic geometric software environments 
when teachers maintain control over the management of learning, their own personal expectations, and 
their role as a professional. 

Teacher education programs should include activities that piace teachers in learning environments 
where they can explore mathematics, interact with their peers though discussion and case studies, and to 
work with dynamic computer environments. These dynamic computer environments provide an 
environment where teachers and students can interact and share their conjectures and findings with each 
other. Educators of teachers should provide opportunities within their curriculum for teacher exploration 
using these computer-based tools. Moreover, research could be conducted to develop a better 

129 



CMESG/GCEDM 1997 Proceedings 

understanding of how the inservice and pre-service programs provide potential and current teachers with 
insight on creating a mathematics learning community within their classrooms. 

Suggestioas to Teachen iD Making the Shift in CODtrol 

From this study, a number of suggestions can be made to teachers, consultants, teacher educators, 
and other researchers which may assist them in implementing a geometric exploratory classroom using 
a dynamic geometric software program. In point-form, the following items would be most helpful and 
necessary for teachers attempting to make this shift: 

• the availability of a mentor. Having a coach available for technical and mathematical content 
support would be helpful. 

• that sufficient time be provided for teachers embarking on this process. 
• a valuing of the process by the administration of the school, the district officials, and the teachers 

themselves. In this study, the department Heads and Heads of the school were very supportive 
of the project. 

• reflection on the activity through journals and meetings with other teachers. 
• a willingness to focus on the shift in e-oMrol. These teachers participated freely and willingly 

in this project. What would have bappened if every teacher had to be involved in the program 
as is normally the case in curriculum reform? 

• specifically, teachers need to consider their noise tolerant:e level, class structure and the role of 
cooperative/collaborative activities in the mathematics classroom, the shift in control to the 
students, and ways still to feel tin control' as a facilitator as well as how effective student 
evaluation will be handled. 

SUMMARY 

Professional control is important in middle school mathematics teaching. Teacher educators can 
assist teachers to maintain a level of control over their professional lives by providing them with the tools 
to be mathematical explorers. Teachers need to be placed in learning environments where they can 
explore mathematics, interact with their peers though discussion and case studies, and work with dynamic 
computer environments. These dynamic computer environments provide an environment where teachers 
and students can interact and share their conjectures and findings with each other. Teacher educators 
should provide opportunities within their curriculum for teacher exploration in these computer-based 
tools. 
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TEACHERS TAKING ACTION: USING THE NATIONAL 
MATHEMATICS PROFILE TO IMPROVE TEACHING AND LEARNING 

Sandra Frid 
University of New England, Australia 

INTRODUCTION 

The National Professional Development Program (NPDP) was an Australian federal government 
program aimed at improving teaching and learning in Australian schools. Over a three year period, from 
1994 to 1996, $60 million funding was made available to assist state Departments of Education, teacher 
professional organisations, universities and other educational agencies to develop teacher professional 
development programs across all learning areas. Historically, the NPDP arose as a natural extension of 
efforts towards development of national curriculum guidelines. Development of National Statements and 
Profiles in eight key learning areas began in 1989; in English, mathematics, science, technology, 
languages other than English, health and physical education, studies of society and environment, and arts 
(for the mathematics documents, see Australian Education Council, 1991, 1994). 

The National Statements and Profiles were intended to provide a framework for curriculum 
development by education systems and schools, and a fdundation for courses that would meet students' 
needs while reflecting advances in knowledge of the particular learning areas and how students learn. In 
July 1993 the Australian Education Council agreed that use of the National Statements and Profiles would 
be the prerogative of each state and territory. Since that time most states have adopted to some Clegree 
some form of the Profiles. For example, Victoria developed modified versions of the Profiles, called 
Cu"iculum and Standards Frameworks (for mathematics, see Board of Studies, 1995), and are using them 
across the eight Key Learning Areas (KLA's). In Western Australia, a similar situation occurred, with 
the documents called the Student Outcome Statements (for mathematics, see Education Department of 
Western Australia, 1994). The National Profile in mathematics (Australian Education Council, 1994) and 
its state-developed counterparts provide a framework to conceptualise mathematics curricula with a focus 
on holistic, integrated teaching and assessment processes, and a developmental approach to interpretation 
of student learning. 

Within the context of this national program, this paper reports on how primary and secondary 
teachers in two states developed their understandings of and capabilities with: a new curriculum 
document, mathematics topics, innovative teaching and assessment methods, how students learn 
mathematics, and how a school staff can design, monitor and revise their own professional development 
program. The mathematics learning area of the NPDP projects in Western Australia and Victoria are the 
focus of analyses and discussions. 

In Western Australia the NPDP projects in mathematics were called NPDP Maths, while in Victoria 
they came under the project title Maths in Schools. In each state, a professional development program 
was established under the direction of a management or steering committee consisting of representatives 
from the mathematics teachers' professional organisation, the state department of education, Catholic and 
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independent school authorities, and universities. Also, in each state, funding allowed a project officer to 
be hired who acted as the person responsible for the running and monitoring of the programs on a daily 
basis. 

Schools were required to apply for participation in the NPDP, with those selected provided with 
funding for specified numbers of teacher relief days. Funding was also provided for the time of a 
'facilitator' assigned to each school. Facilitators were generally universitY based mathematics educators, 
but the group also included other mathematics educators with experience as a mathematics professional 
development consultant. The model of professional development adopted in both states was that of 
school-based, tailor-made programs that served in most <:ases in an action research capacity. 

MEmOD 

The primary principle of the NPDP Maths and Maths in Schools was that teachers be supported in 
working together to develop and direct their own professional development agendas. A team of teachers 
from a school, cluster of schools (i.e., located closely geographically), or school network (a regional 
grouping of schools by the state government for networked information and support mechanisms) would 
identify a local issue of concern in mathematics education, and then design and implement a series of 
professional development activities to address this issue. These activities could include any combination 
of workshops, discussions, classroom trialing, professional reading, resource collection or development, 
project documentation, or any other activities that encourage teacher collaboration or support teachers' 
efforts to make relevant changes in their teaching practices. A university based mathematics educator, 
called a facilitator, was appointed to assist each project team in whatever ways they mutually determined 
would be most appropriate and effective. Each project selected a key teacher who would act as the main 
liaison person between the project team and the facilitator or the project officer for NPDP Maths or Malhs 
in Schools. Since the entire program was under NPDP funding, use of the Mathematics National Profile 
(or state equivalent) was required by each project. The nature of this use was however determined by 
individual project teams. 

Development and Implemetltation of Projects 

All project groups were encouraged to develop a brief action plan indicating how they would tackle 
their <:hosen issue. This plan was developed in conjunction with the university facilitator, taking into 
account available <:urriculum days (i.e., student free days) and staff meeting times, additional possible 
meeting times, and the time availability of the facilitator. The plan also included consideration of the 
teachers' needs in relation to the chosen focus, along with the areas of expertise of the facilitator. It was 
required that the plans incorporate opportunities for teachers to meet and share, discuss and reflect upon 
activities and issues related to implementation of their project plan. 

The foci of the projects varied widely from school to school, as did the programs they designed to 
implement their plans. The project foci included: a topic strand that had been neglected in the school (eg. 
space or chance and data), use of technology (such as graphics calculators), the primary to secondary 
school transition, problem solving, integration of mathematics with other curriculum areas, improvement 
of teaching strategies and assessment, and reporting. 

Program Evaluations 

In Western Australia, formal evaluation of the projects was conducted across all NPDP learning 
areas by external researchers. NPDP Maths also conducted its own evaluations through discussions with 
participants, observations made by facilitators, reports from members of the management committee, 
project summaries and reports prepared by schools, and written feedback forms completed by 
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participating teachers, school administrators and facilitators. In Victoria, all fonnal evaluation was 
conducted by the project officer for Maths in Schools. The data sources were similar to those used for 
NPDP Maths. The data were analysed in the context of the overall goals of the NPDP Maths and Maths 
in Schools programs. In addition, inductive analysis (Glaser and Strauss, 1967; Powney and Watts, 1987) 
was used to identify common issues or happenings that emerged across projects. 

RESULTS 

This discussion will provide an overview of the happenings and outcomes of the NPDP mathematics 
projects in Western Australia and Victoria from 1994 to 1996. It is structured around the aims of the 
NPDP (the nature of outcomes and the mechanisms by which they were achieved), and how the action 
research professional development processes affected teachers. 

Use of the National Statement and Profile in Mathematics 

A stipulation of being awarded NPDP funding was that a school use the National Profile (or 
equivalent document) as a reference for the focus and subsequent development of their project. In 
Western Australia the state-developed version is the mathematics Student Outcome Statements (SOS) 
(Education Department of Western Australia, 1994), while in Victoria it is the mathematics Curriculum 
and Standards Framework (CSF) (Board of Studies, 1995). The degree to which schools used these 
documents and the nature of use of the documents varied considerably between schools. Some schools 
used them extensively, as a basis for their whole project, including using them as a guide for program 
auditing and planning, for re-writing units or planning learning activities, or for use as a guide to assess 
outcomes oftrialed activities. Other schools used the documents less comprehensively, for example, by 
using them to check school programs and activities against overall course advice and structure. The most 
common focus for projects across the three years was to deal with one mathematics strand in detail. For 
example, chance and data across the primary grades, or algebra in grades 7 and 8. In the final year of 
Maths in Schools, several projects (approximately one fourth of them) chose the use of technology as a 
project focus and thereby explicitly addressed the Tools and Procedures strand of the CSF. In that same 
year (1996) nearly one fourth more of the projects were focused on assessment or reporting. This latter 
focus was a strong reflection of the social climate of that time, where teachers would soon have t<Jreport 
to parents and other individuals by reference to the CSF. 

Most projects (greater than 80%) reported as a result of participating in NPDP to have attained 
greater familiarity with the content, language and structure of the SOS or CSF. They indicated that 
participation helped them focus on SOS or CSF outcomes, while concurrently developing capabilities to 
use the SOS or CSF for both planning and assessment of learning activities. Many schools also reported 
that as a result of the program they now have a new mathematics policy or mathematics scope and 
sequence in place that is consistent with the SOS or CSF, or new teaching and assessment methods that 
concur with SOS or CSF outcomes. A number of schools developed new school-based curriculum 
documents that follow the SOS or CSF and are already or will soon be using these documents extensively. 
Some of the primary schools reported that participation in NPDP provided them with the capabilities to 
commence professional development in other strands of mathematics, or even in other key learning areas. 
A few of the teachers reported that developing competence with use of the SOS or CSF was a very time 
consuming process that sometimes left them feeling overwhelmed, but which simultaneously enhanced 
their teaching practice and their students' learning. 

Renewal of Teachers' Discipline Knowledge and Teaching Skills 

Teachers reported that participation in the NPDP helped them to broaden their knowledge of 
mathematics and mathematics teaching in relation to a number of areas, including: (i) particular topics 
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(for example, space, algebra, or chance and data), (ii) the integration of technology into mathematics 
teaching (most commonly the use of graphics calculators), (iii) the use of a wider range of resources to 
support teaching (for example, more extensive use of manipulatives and other concrete learning 
materials), (iv) the use of a broader array of assessment tasks (in particular, more open-ended types of 
tasks), and (v) the use of more 'real' life mathematics activities that provide students with more 
meaningful learning experiences. 

Many teachers also reported that along with improvement in their teaching practice, participation 
in NPDP increaSed their confidence in mathematics teaching. Some teachers indicated that their enhanced 
teaching practice impacted on students' attitudes towards mathematics, with students becoming more 
positive and enthusiastic towards their mathematics learning and displaying more enjoyment of it. 
Most of the university facilitators indicated that part of their involvement with schools involved them in 
presenting workshops on various mathematics content topics (such as space), or various teaching 
techniques or assessment methods (such as use of task centres for problem solving experiences, or 
development of Rich Assessment Tasks (RAT)). A number of the facilitators were also involved in 
working with small groups or individual teachers in their classrooms, working on alternative teaching or 
assessment methods. An even greater number of facilitators indicated that their role involved them as a 
provider of information on the nature and potential of teaching resources not yet known to the teachers, 
or information from researcl1 in mathematics education that would be of relevance to the school's project 
focus. Thus, in these avenues of input from the university facilitator, teachers were further able to renew 
their discipline knowledge and teaching skills. 

Enhancement of the Professional Culture of Teachers 

Most schools indicated that involvement in NPDP impacted upon the professional interactions of 
teachers by providing a mechanism through which they worked together collegially in sharing and 
discussing ideas and events related to mathematics teaching. In this way, the program acted as a catalyst 
or focus for dialogue about a wide range of issues, both theoretical and practical. Some teachers were 
involved with in-servicing other teachers, while others, in particular the key teachers, served as mentors 
to less experienced or confident teachers. Key teachers indicated that they were able to develop their 
leadership skills as a consequence of taking on a leadership role. Many teachers explicitly indicated their 
participation in NPDP caused them to become more reflective in their teaching practice. Other teachers, 
although not stating explicitly that they had become more of a reflective practitioner, indicated implicitly 
that this was so because they commented that they had begun to think more extensively about curriculum 
issues and had become more questioning of their own teaching and the actual nature or extent of their 
students'learning. 

Key teachers noted that involvement in NPDP promoted such things as: greater respect and mutual 
support amongst teachers, greater awareness of what other teachers were doing· in their mathematics 
teaching, particularly those in other grade levels, greater interest in, awareness of and enthusiasm for 
issues related to mathematics teaching, and more willingness to talk about mathematics teaching. When 
asked what were the most valuable aspects of their school's project, teachers included the structure of the 
professional development program in that they worked as part of a team and shared and discussed things 
with other teachers. They felt this was a most rewarding and productive format for conducting effective 
professional development. In addition, they were of the opinion that an esseptial component of this 
growth was the input from a university facilitator, who served as a resource and someone with different 
expertise and perspectives, as well as a mentor and provider of support and encouragement. 

Promotion of Partnerships Between Groups Responsible for Education 

138 



Ad Hoc Session 1 

The NPDP Maths management committee and the Maths in Schools steering committee that served 
to oversee the mathematics projects in each state were composed of representatives from the government 
and Catholic school systems, representatives from each of the state's universities, and representatives from 
the host organisation, the mathematics teachers' professional organisation. Some of these representatives 
were also present at the orientation and evaluation seminars held for key teachers and facilitators. In these 
ways, virtually all formal authorities involved in mathematics education in Western Australia and Victoria 
contributed to the development and success of the NPDP projects. The contacts and networking that 
occurred as a result of this involvement increased awareness of each contributor's role in mathematics 
education in the state, while also strengthening communication links. It is anticipated that these links will 
be maintained in both formal and informal sharing of needs, plans and events. 

Through the association of a university facilitator with each project, both school and university 
personnel had opportunities to develop appreciation of the nature and role of each person's position in 
mathematics education. University facilitators commented that they had learned much from ongoing 
direct contact with teachers and students. Many stressed that this learning would impact significantly 
upon their own work as an academic since it gave them new insights into the realities and constraints of 
today's classrooms and new perspectives on the relationship between theory and practice in education. 
It simultaneously provided examples and activities for use in their university teaching or future in-service 
work with teachers. 

The program supported communication links between schools through the projects developed around 
school networks or clusters, and through provision of seminars in which teachers were able to meet and 
discuss project issues with teachers from other schools. In addition, communication links between schools 
and parents were enhanced because some schools conducted information sessions for parents to inform 
them of the project aims and outcomes, and other schOols involved parents through use of new reporting 
forms. 

Dissemination of Outcomes 

1. Development of resource materials 

The Maths in Schools program produced four resource manuals over the three year period of its 
operation that were distributed to all schools involved in the program, all facilitators and Mathematics 
KLA network leaders throughout the state. The NPDP Maths program produced a monograph containing 
accounts of teachers involved in using the Student Outcome Statements. 

2. Conferences 

The NPDP Maths organised a two day conference during the October school break during 1995 and 
1996. This conference was open to all teachers in the state, and plenary and workshop sessions were 
offered that focused on topics and issues related to becoming familiar with and using the Mathematics 
Student Outcome Statements. In March, 1996, the Maths in Schools host organisation, the Mathematical 
Association of Victoria (MA V), participated in a Victorian Teachers Network Coordinating Committee 
(VTNCC) Partnership Conference. Additionally, the MA V has an annual conference each December in 
Melbourne that is attended by about 2000 classroom teachers and others involved in mathematics 
education. Many of the schools involved in Maths in Schools prepared workshops or presentations for 
these conferences. In this way, the processes and outcomes of their projects were shared with other 
teachers from around the state as well as some educators from other states. 

3. Use of electronic communication 
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Use of electronic communication by Maths in Schools participants was encouraged, but optional, 
because not all schools, particularly primary schools, had easy access to the Internet. Use of electronic 
communication included: facilitators and project schools communicating by email, schools communicat
ing by email, facilitators or teachers communicating with the project officer by email, and access to useful 
material via the Internet. 

Teacher Involvement in Action Research Professional Development 

The form of self-directed professional development adopted by the NPDP projects could be said to 
be action research in that it was a cyclical model of planning, acting and observing, and reflecting 
(Kemmis and McTaggert, 1988). The outcomes of components of the program are outlined below, as 
are the enhancement of knowledge in mathematics education, and involvement of teachers and schools 
in cooperative endeavours. 

1. Identifying a Project Focus 

An aim of the professional development model was to have teachers work collaboratively to identify 
an area in mathematics teaching and learning that was mutually determined to be in need of attention or 
improvement. By having all teachers playa role in this decision making process it was believed they 
would feel more ownership of the project, and it would guarantee that each individual was working on 
an issue of personal relevance and interest. The degree to which schools involved all staff in the initial 
decision as to the project focus varied widely from school to school. In many cases the decision was made 
mutually by the entire project team, but it was more common for a subset of that team to make the 
decision. There were also situations in which the decision was made by only one or two people (for 
example, the key teacher and the principal or department head). In most cases where not all project 
members were involved in the decision about the project focus, there did not appear to be strong opinions 
that a different focus should have been chosen. In other words, the focus chosen, though not determined 
mutually, was mutually an issue of concern to staff and administration. 

2. Development and Implementation of an Action Plan 

All project groups were encouraged to develop a brief action plan indicating how they would tackle 
the chosen issue. This plan was developed in conjunction with the university facilitator, taking into 
account available curriculum days and staff meeting times, additional possible meeting times, and the time 
availability of the facilitator. The plan also included consideration of the teachers' needs in relation to 
the chosen focus, along with the areas of expertise of the facilitator. These programs varied substantially 
in content, distribution of meeting or workshop times, and overall length of involvement. An example 
of one plan is given below: 
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Suburban primary school: Development of mathematics teaching and learning strategies for 
multi-age (multi-grade) classrooms 

Actions: 
1. Develop a flexible planning model which takes into account catering for different levels. 
2. Plan a series of activities and the strategies to implement them using the planning format. 
3. Implement the unit in the classroom and observe. 
4. Meet regularly as an Action Research Team to discuss the progress of the trial. Modify plans, 

activities and teaching strategies as appropriate. 
5. Plan and implement a further unit of work based on the modifications. 
6. Develop a format for programming a two year cycle of maths using the planning model and 

based on the levels and strands of the CSF. 
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Although the model of professional development used in NPDP Maths and Maths in Schools focused 
on self-directed professional development in which all participants are involved in the decision making 
processes, it was clear that many teachers did not necessarily want to always be involved. That is, some 
teachers were content with having major decisions made by the key teachers or others, while they 
themselves were then the people who implemented these decisions and related ideas. It must, however, 
be noted that this form of 'top-down' decision making is much different to when a state Department of 
Education makes decisions that must then be implemented by teachers. In the first case, the decisions are 
being made by individuals intimately familiar with the school, the teaching situations, and the teachers 
and students who will be involved, and all the teachers are in a position in which they can question the 
decisions or processes being recommended. In the latter case, the decision makers are not able to consider 
the particular circumstances of the school and teachers who will be involved, and teachers are not able 
to follow-up with any comments or suggestions related to the proposed action plan. 

3. Increase in Teachers' Professional Knowledge 

Feedback indicated that participants' improved professional understandings were largely a result of 
the team approach encouraged by NPDP, where teachers had to talk and work together to advance their 
mathematics curriculum. Nearly every project commented favourably on this collaboration and placed 
it high on a list of things they would maintain for future professional development endeavours. With 
regard to positive effects of involvement in NPDP, teachers indicated that they now had increased 
knowledge of the SOS or CSF and related teaching or assessment skills, and they had developed the 
knowledge, skills and resources to implement a new mathematics program or new teaching or assessment 
methods (in line with the SOS or CSF). For example, in the integration of technology into mathematics 
teaching, or the use of more concrete-based learning experiences. 

4. Sharing with Teachers from Other Schools 

In both NPDP Maths and Maths in Schools, full or half day orientation seminars and follow-up 
feedback and evaluation sessions were held for facilitators and key teachers (and in some cases schools 
chose to send additional teachers for whom they funded teacher relief time). The objectives of the frrst 
seminar were to clarify the goals ofNPDP, outline features of the SOS or CSF that might be hew to 
teachers, meet other participants, and exchange ideas about professional development in mathematics 
education. Oral and written feedback from the sessions indicated these objectives were met. The sessions 
later in the year were intended to enable participants to share and discuss their project developments and 
outcomes. Feedback from these latter sessions indicated the participants found the sharing and meeting 
with other NPDP participants to be a valuable professional development activity. 

CONCLUSIONS 

Teachers highly valued a model of professional development that was flexible, based on local needs 
and contexts, and 'owned' by the teachers involved. In particular, they valued: 

• the opportunity to work on locally determined teaching problems 
• the productivity that results from teachers and university staff working collaboratively 
• the collaborative nature of the work conducted by the project team (often whole staff or 

departments) 
• the ongoing nature of the program, so that professional development activities are inter-related 

and conducted over an extended period oftime 
• the opportunity to work extensively with a new curriculum document, the Student Outcome 

Statements (SOS), or the Curriculum and Standards Framework (CSF) 
• the focus of the professional development on the improvement of teaching and learning 
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• the flexibility of the professional development model (so that individual projects have tailor 
made professional development, and the model can be adopted for use in other key learning 
areas) 

Most teachers who were involved in a 3-year evaluation, after their schools were no longer directly 
involved in NPDP, reported that the subsequent impact of their involvement in NPDP was positive and 
ongoing. Problematic aspects of the programs over the 3 years included difficulties associated with: 
scheduling teacher collaborative meeting sessions, maintaining communication between schools or 
between staff at larger schools, and involving all staff in a way that is non-threatening and supports their 
individual beliefs, past experiences and current teaching practices. 

The guiding curriculum documents in initiation of the NPDP programs are very much in the flavour 
and spirit of curriculum movements elsewhere in the world (e.g., National Council of Teachers of 
Mathematics, 1989). They provide a framework around which systems and schools can build their 
mathematics curricula, acknowledging the changing role of mathematics studies within students' lives 
and in society in general, and the need for all students to gain access and success in mathematics studies, 
regardless of gender, social class, cultural background, ethnicity, or geographical location. The goals for 
school mathematics outlined in the National Statement are compatible with the emphases of the 
Standards, including: student development of confidence and competence in applying mathematics in 
daily situations, development of positive attitudes towards mathematics, capacity to use mathematics in 
solving problems individually and collaboratively, communicating mathematically, learning use of 
technology and other tools and techniques that reflect modem mathematics, and experiencing 
mathematical processes and ways of thinking. Within the culturally diverse population that now 
comprises most western societies, the nature and role of social and cultural contexts are also emphasised. 
To achieve any of these goals, an essential frrst step is teacher professional development. Hence, the 
NPDP programs have provided a vital component of Australia's efforts to revise mathematics curricula 
and improve mathematics teaching and learning. 

An essential underlying rationale of Australia's National Mathematics Profile is that it respects the 
professional judgement of teachers. Since the Profile is structured so as to "emphasise the big ideas rather 
than the details of content and sequence" (Willis, 1994, p. 3), it respects the professional integrity of 
teachers in relation to facilitating student learning and determining when it has occurred. The Profile is 
a 'guide' as opposed to a 'recipe' for teaching and assessment because it is descriptive rather than 
prescriptive. It does not provide explicit advice on how or when to teach particular topics, opting instead 
to describe "characteristics, behaviours or understandings in the learner which have significance beyond 
the particular learning sequence or phase, indeed beyond school" (Willis and Kissane, 1995, p. 7). These 
decisions, as well as decisions related to students' backgrounds, learning styles, readiness for learning, 
and other personal and contextual factors, are left to the individuals best positioned to make 
them--classroom teachers. They also do not dictate the explicit behaviours (i.e., as with behavioural 
objectives) a student must display as indicators that a level has been achieved, allowing a teacher to 
determine when appropriate depth, breadth and consistency of performance and related factors have been 
demonstrated. 

A document such as the National Profile, in its overall focus on having teachers as the key decision 
makers with regard to topic, sequencing, teaching approaches and assessment methods, implicitly 
necessitates teacher professional development. This viewpoint on curriculum development is new, and 
perhaps threatening, to many teachers. Hence, teacher professional developm~nt activities that allow 
teachers to explore the use of a new curriculum document within a supportive and risk-taking 
environment are essential to the eventual success of any curriculum changes promoted by a new 
document. The NPDP Maths and Maths in Schools have provided such an avenue for professional 
development and they have been successful in achieving their goals. 
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MATERIALS TO STIMULATE MATHEMATICAL THINKING 
AT THE ELEMffiNTARY LEVEL-

A PROGRESS REPORT IN THE KINDERMATH PROJECT 

Ann Kajander 
Lakehead University, Thunder Bay 

In this session, materials were displayed for the after-school enrichment program called Kindermath 
which takes place in Thunder Bay. ' Since many of the materials were inspired by the work of other 
members of the Canadian Mathematics Study Group (CMESG) (Simmt (1996), Davis (1996), Csahoczi 
(1979) courtesy G. Kondor, and Zack (1995) for example), it seemed only fitting to have a hands-on 
session at CMESG '97 at which members could view the materials first-hand. And indeed, participants 
seemed to enjoy trying the activities as much as the children! 

Kindermath was described in the 1996 CMESG Proceedings (Kajander, 1996). Briefly it attempts 
to give children a sense of the beauty and creative potential in mathematics. It is an after-school program 
operated out of an elementary school, offering eight weeks of one-hour sessions. It attempts to make up 
for some of the "process deficits" in the curriculum referred to by Schoenfeld (1994, p.58). 

Peter Taylor (1997a) says of the mathematics curriculum that it: 

begins with a collection of general (and wonderful) aims, but then ridicules and annihilates 
these with pages and pages of closely specified technical skills - what we have come to call the 
LIST (p.5). 

Many researchers feel children learn better in a playful and exploratory environment (Davis, 1996; 
Richards, 1991; Zack, 1995 for example). However, creating such environments need more work, 
especially at the elementary level where chilclfen are both naturally motivated and naturally drawn to 
create. Such is the goal of Kindermath, which was designed as a possible response to the need for a 
richer, freer environment in which the children could play in an open-ended way without being bound by 
"the LIST" or by a formal evaluation for grading purposes. 

There is a continued emphasis in the child's own ideas and creations in Kindermath. The child is 
free to "make math". The goal of the activity is to give children the experience of actually doing 
mathematical thinking and visualizing. 

The following is an ,outline of some of the activities used in the Kindermath program. These plus 
about a dozen more similar activities were available at the Conference session for participants to try 
out-which they did with great enthusiasm! 

SAMPLE KINDERMATH ACTIVITIES 
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Activity 
1. Shape and 
tower construction 
with wood pieces. 

2. Square, 
rectangle, triangle, 
& parallelogram 
area measuring 

3. Block Building 
Game 

4. 3-D Tic Tac 
Toe 

5. Plasticine 
Shapes 

6. Magic Bugs 

7. Geometric 
Design Colouring 

Materials 
Wooden pieces 
about 2cm x 0.5cm x 
6cm (cut from 
purchased lengths 

Cardboard pieces: 
square about 20cm 
x 20cm, the same 
square cut 
diagonally to make 
two triangles, a 
parallelogram the 
size of the square 
and the 2 triangles. 
and finally 2 obtuse 
triangles ( a same
sized parallelogram 
cut diagonally) Also 
unit squares 5cm x 
5cm (about 30) 

6 cubes: 2 red, 2 
yellow, 1 blue, 1 
green and a clue 
cards. 

game chips and 
game boards made 
of four plexiglass 
squares about 10cm 
x 1 Oem and each 
with a 4x4 grid 
drawn on it, mounted. 
verticaJly . 

Plasticine and 
toothpicks 

Pre-cut moebius 
strips, about 4cm x 
aOcm, scissors, 
markers, glue and a 
plastic bug. 

Geometric deSign, 
fine markers. 

Description 
Children play with the pieces, and are 
encouraged to build towers, various 
polygons etc. While students work, teacher 
may form a triangle. square, pentagon, 
hexagon. etc. Until a student says "that 
looks like a circle". A discussion of a circle, 
or any other 'discovered' shape may follow. 

Again the children are encouraged to 
Investigate the materials. and then to 
measure the square and triangles with the 
Unit squares The teacher must encourage 
them to first measure the square, and then 
to combine pieces and use this information 
the measure the triangles (half the square), 
and then the parallelogram ( square plus 
two triangles). and finally the obtuse 
tnangles ( half the parallelogram). 

Four to eight students work together, each 
With one or two necessary but incomplete 
'clues All a clues are needed to make 
the shape (See McDougall and Kajander, 
1997) 

Students are encouraged to first simply 
play the game (trying to get 4 in a row in 
any direction). And then to develop 
strategies for winning (there are several). 

Students make 3-D shapes of their choice; 
teacher may provide a shape such as a 
tetrahedron as an example, and discuss its 
characteristics. 
Students are given the 'rules' for the bugs: 
they can only walk in the surface ofthe 
strip, but not cross an edge. They are 
encouraged to solve the problem by first 
tracing the path of the bug on one side, 
and then lifting the strip up off the table and 
playing with the possibilities. 

ChHdren are encouraged to design 'a 
pleasing colour pattern and colour it in. (eg. 
Burrows, 1992) 



8. Tessellations 

9. Fractals cards 

Paper, scissors, 
tape, cardboard, 
square about 4cm x 
4cm, markers. 

Paper, scissors 

Ad Hoc Session 2 

The children are encouraged to design a 
tessellation pattern of their own from a 
square, trace it, and colour in the shapes to 
make a tiling pattern. Discussions about 
the areas and other properties may follow. 

Two types of fractal cards are made and 
examined. While limits are not explicitly 
discussed, we do discuss whether the 
contained volumes would fit in a box and 
how small the box might be. 

Kindermath activities also include computer microworlds of various levels of difficulty designed 
in Logowriter. The simplest of these is a two command microworld, in which F means "go forward a 
little", and T means "turn" (90 degrees), which were inspired by Rina Cohen at the Ontario Institute for 
Studies in Education (OISE). The children are encouraged to draw whatever Logo designs they like but 
are also shown pictures of squares, rectangles, stairs, checkerboards, rectangular spirals, etc. To give them 
ideas. As the children gain confidence, more commands in full Logo can be given. 

Kindermath has been in operation for several years and some initial comments on student reactions 
to the sessions can now be made. 

The children are very enthusiastic. While this may be partly due to the fact that the children choose 
to come voluntarily, some do also come because their'parents choose it for them. Similarly, the children 
in the regular school classrooms in which these activities have been used are very enthusiastic, and 
students often ask to borrow the materials for use later in class. 

Children seem naturally to think in three dimensions. For example, younger children have been 
observed to stack blocks 'up' faster than older children who have been used to thinking on a planar 
surface. 

Children rapidly gain ownership of their own ideas. Stan, age 7, completed a geometric shape 
puzzle in which he had a large triangular space to fill. He had four small equilateral triangle pieces left, 
and was thrilled when he managed to fit them together to fill the space, calling it "my pattern". Later he 
was excited to fmd "his pattern" in a toothpick puzzle, and used it to solve the latter fairly challenging 
puzzle immediately. 

With each session I fmd myself encouraging the children to do more without me, and they 
continually surprise me with their capabilities. For example, I used to direct the 'magic bugs' (moebius 
strip) activity; now I encourage the children to lift the strip off the table and figure it out for 
themselves-and many do. 

It is difficult to say which Kindermath activities children enjoy the most. From informal observation 
as the teacher/researcher, the cooperative learning tasks such as the Block Building Game (Activity 3) and 
the other games such as the 3-D Tic Tac Toe (Activity 4) seem to generate even more enthusiasm than 
the other activities. While some children become extremely excited by the computer, this is not 
universally the case. 

Many of the Kindermath materials have been homemade with a limited budget. There is virtually 
nothing that could not be constructed by an enthusiastic teacher or group of teachers over a summer 
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holiday. For example, the 3-D Tic Tac Toe games were each made by cutting a square piece of pi exigi ass 
in quarters at the lumber store. These were then scored into 4 x 4 grids each with an indelible marker. 
Finally, purchased doweling lengths (we used about 4 cm pieces) were glued in the comers of each stack 
of four plexiglass pieces. 

Requirements for Kindermath tasks are that they be exploratory in nature and open-ended where 
possible, and allow for students to try out their own ideas. Activities which illustrate the field of 
mathematics as an exciting domain in which the child can create imaginative and beautiful ideas of his 
or her own are the most desirable. 

In terms of a broader implementation, many of the Kindermath materials have been successfully 
field tested in grade one to five classrooms. The children are more responsive if the groups are smaller, 
and pull out programs work well here if staff is available. 

Classroom management and control issues may be difficult for teachers when trying such new 
materials. McDougall reports that classroom teachers may initially experience a loss of control when 
beginning to use new exploratory learning environments (1996). He recommends journal writing, 
mentorships and peer support as possible ways to deal with this initial problem. Experience with the neW 
materials in a classroom setting is possibly the best way to gain confidence. 

Teachers need to allow their perception of mathematics to be broadened to include more than "the 
LIST" of technical skills. Many pre-service teachers I have worked with on activities similar to those 
used in Kindermath ask "is this really math?" and even more often "how will the children learn math?" 
(read 'math' = technical skills). Taylor (I997a) asserts that the best way to get the technical skills is to 
learn them as necessary for each particular task. A difficulty with such an approach in the elementary 
program may be that young children may not have the attention span to remember or remain interested 
in the original task after learning the skills. But the thoughtful teacher can alter fun and hands-on practice 
in the technical skills with the creative activities. The technical become more valuable when children 
can use them to create their own 'works of art'. 

The goal in Kindermath is the mathematical experience-that is the desired product. Students need 
to see for themselves how much fun it can be to create a new mathematical idea, without having to strive 
for "the" (= "our") solution. 

In summary, it does appear possible to provide rich experiences for children without a lot of high 
powered resources. Rather, it is a question of broadening our view of what valid mathematical 
experiences might be. 

We are reminded of Taylor's by now well-known comment that "It's not money that's lacking, not 
as long as there are enough small napkins around [to write on]. It's courage and imagination." (1996b) 
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TOMORROW'S MATHEMATICS CLASSROOM: A VISION OF 
MATHEMATICS EDUCATION 

Gary Flewelling, Arthur, Ontario 
Bill Higginson, Geoff Roulet and Peter Taylor, 

Queen's University, Ontario 

The National Mathematics Education Institute, based at Queen's University is, as its title suggests, 
a national organization dedicated to the reform of mathematics education in Canada. Most participants 
at the first two annual meetings of the Institute, held in the summers of 1994 and 1995 (and patterned on 
annual meetings of the CMESG), came to the conclusion that one major obstacle to reform in mathematics 
education lies in a weak or splintered vision of what a mathematics classroom should be like. They also 
concluded that this vision would have to include a clearer understanding of the nature of the learner, the 
nature of the teacher, the nature of mathematics as embedded in rich learning tasks, and the nature of the 
interaction among the three. A smaller group of peopl~ met at the third annual meeting in 1996 to develop 
such a vision ( in order to "clarify issues and to stimulate debate on desirable directions for curriculum 
reform in Canada. ") 

At the CMESG ad hoc session, the members listeCl above described four examples of this vision. 
They were constructed around four learning activities, one for each of the primary grades, the junior 
grades, the middle school grades and the senior grades. Each manifestation of this vision was (o! at the 
time of the ad hoc session, about to be) printed as a 6-panel, 4-colour, 3-page foldout brochure. The 
brochure said to the reader this is what the vision looks like in the classroom, this is what the math looks 
and feels like, this is what students do when they learn math and this is what teachers do when they help 
students learn. Contents of the brochures, their common features, the vision contained within the 
brochures, and possible uses of the brochures was discussed by those who participated in the ad hoc 
session. Two of the brochures were distributed (Junior:"Tracing Tracks"; Senior:"The Two Trees 
Problem"). 

We conclude tliis brief description of the ad hoc session with a restatement of the common last page 
of each vision brochure, a statement of the vision of tomorrow's mathematics classroom under the titles 
Mathematics, The Student, and The Teacher. For further information on these brochures or other activities 
of the National Mathematics Education Institute, contact Bill Higginson at Queen's. Study Group members 
wishing to obtain one set of the brochures should indicate this in an e-mail sent to 
'higginsw@educ.queensu. ca'. Larger quantities are available at cost. This ranges from $1 per brochure 
for small orders to $0.80 and $0.60 for larger and 'very large' orders. 

VISION STATEMENT 

In Tomorrow's Mathematics Classroom: 

Mathematics: 
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• is experienced as a diverse, powerful, and evolving discipline, as a way of thinking, as a way of 
communicating, and as a way of perceiving the world, with significant links to all aspects of 
human experience; 

• emerges from, and is made explicit through, exploration and interaction, using a wide range of 
technologies and resource materials; 

• is embedded in potentially-rich learning situations that are interesting and relevant for students 
and enable all to participate and grow; 

• plays three important roles; as a set of useful tools, as one of many disciplines which can 
contribute to the understanding of a situation, and as a field worthy of study for its own sake, that 
is, as servant, citizen and sovereign. 

The Teacher: 

• provides students with stimulating and well-designed learning activities to promote intellectual, 
emotional and social growth; 

• interacts with students to encourage, inspire, challenge, discuss, share, clarify, articulate, reflect, 
assess, and to celebrate growth and diversity; 

• shows the benefits that come from keeping abreast of developments in mathematics and 
mathematics education; 

• acts as someone who assists, someone who confirms and directs, and someone who animates 
and inspires students by epitomizing the curious, enthusiastic, passionate, and risk-taking learner, 
that is, as informer, facilitator and artist. 

The Students: 
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• build their own mathematical knowledge through a process of exploration, interaction, and 
reflection, centered on rich learning activities; 

• develop and refine skills in the areas of mathematics, communications, problem-solving, logical 
reasoning, creative thinking, technology, independence and interdependence; 

• use their skills to deal effectively, confidently, sensitively and objectively with situations 
involving complexity, constraints, diversity, novelty, ambiguity, uncertainty, and error; 

• act as individuals who select and use existing rules, understand the principles and patterns 
underlying these rules, and who create new rules to deal more effectively with situations, that 
is, as compliers, cognizers, and creators. 
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A MODEL FOR THE DEVELOPMENT OF ALGEBRAIC THINKING 

INTRODUCTION 

Mohamed Mosaad Nouh 
Kuwait University, Kuwait 

Mathematics, as a human activity, is a particular way of thinking and communicating: A 
mathematician is thoughtful. Mathematically, mathematics is a language of relationships, patterns, and 
inferences. It is not a body of ideas, but is a study of thinking. 

When we study mathematics, we see that algebra is the essence of mathematics. In fact, algebra is 
a language of mathematics and power (mathematical power). It is a way of understanding our real world. 
Dunne and Jennings (1996) consider that "the essence of mathematics is algebra," and they suggest that 
"algebra is central to using and applying mathematics." [3] 

The National Council of Teachers of Mathematics (1989) [4], presents a particular vision of school 
mathematics. It is a framework to developing and responding to changes in mathematics curriculum. In 
the NCTM standards, a great deal of emphasis is placed on mathematical thinking as algebraic, geometric, 
and probability reasoning. In Grades 5 to 8, the mathematics curriculum should include explorations of 
algebraic concepts and processes so that students can understand the concepts of variables, expressions, 
and equations.[4] . 

This paper presents a model for the development of algebraic thinking. The model supposes that 
thinking in algebra develops through a sequence of five levels. The levels begin with intuitive or familiar, 
and end with symbolic or formal thinking. 

RATIONALE 

The difference between the pedagogy of algebra in different times, grades, and countries is a 
difference in our vision of the nature of mathematics and how mathematics is taught. Early in the 
twentieth century, algebra was various systems of linear equations, algebraic methods and algorithms. 
Learning algebra focused on the mastery of algebraic skills. The main objective was to gain skill in 
algebra. In the 1960's, through "new math" movement, the focus of mathematics curricula began to shift 
toward investigating and understanding algebraic structures. Since the 1990's, algebra structure and 
language has been changing and new topics, such as computer based methods and mathematical modeling 
have been added to mathematics curriculum. 

The difference between this view is the difference between our vision of the nature of mathematics 
as a formal system and mathematics as a particular way of thinking. The difference between the record 
of thinking (as a structured body), and thinking-way is the difference between the formal vision and the 
constructivist vision of mathematical knowledge as Romberg. [6] 

In the formal vision, the mathematical knowledge is a structured body [1] ; structured and fixed, 
which is the science of mathematics. Thus, mathematics is a logical body of facts and ideas, that is, a 
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discipline. In this view point, algebra is a fixed body of experience that contains equations, polynomials, 
functions, axioms and theorems. The number systems are central to studying properties and proving rules 
and theorems that have been abstracted from the body. Abstracted experience is a good guide to making 
something, that is, mathematics. In the constructivist vision, mathematics knowledge is an activity of re
constructing experience in a successful and powerful way as discovering patterns, constructing 
relationships, making inferences, problem solving, proving theorems and modeling. I see mathematics 
in the way ofthinking. Then, algebra is a language and power of mathematics. As Wagner and Parker 
(1993) state, "algebra is a language for describing actions on and relationships among quantities."[7] 

The primary goal of algebra is to: 

• develop algebraic reasoning 
• understand language of patterns 
• study structures of number systems 
• problem-solving. 

In the higher grades, algebra is central to constructing mathematical modeling and studying 
axiomatic structures. In short, when we are studying mathematics, we see that algebra is a language of 
mathematics and mathematical power. The explicit message is that algebra is a way of studying patterns 
and mathematical modeling. When students have developed some confidence in using symbolic 
reasoning, they see mathematics as a real language. 

Algebraic thinking is a type of mathematical thinking that involves constructing relationships and 
patterns of quantitative variables, conjectures and symbolic reasoning, proving algebraic t.l}eorems through 
using inference and understanding and developing a logical system based on axioms. 

Because algebra is a symbolic language, symbolic reasoning is the essence of algebraic thinking. 
I think that algebraic thinking, as geometric thinking or proportional reasoning and probability thinking, 
starts intuitively in students' activities and in their own way and develops over time into formal 
symbolism, then at the deductive level. I see that intuitive ideas about patterns, variables and conjectures 
are the critical points (factors) in achievement of algebraic thinking. 

A MODEL OF ALGEBRAIC THINKING (MAT) 

A Model of Algebraic Thinking (MAT) is a vision for understanding how students think 
algebraically. The goals of the model are (1) to provide a framework for developing reasoning in algebra; 
(2) phases and processes to facilitate the understanding of the nature of thinking and the students' ways 
in algebra; and (3) to provide a base for developing teaching-leaming tasks in the algebra classroom. In 
general, MATis a language that is explorative and hierarchical for describing phases of reasoning in 
algebra. 

MAT has been formulated according to current thought on mathematics education, such as the van 
Hieles' perspective of reasoning in geometry [2]. The principal assumption in the model is that reasoning 
in algebra develops through sequential levels from the intuitive and familiar to the formal. MAT consists 
of five levels of reasoning in algebra: (1) intuitive level, (2) induction (famili!lT) level, (3) abstraction 
level, (4) deduction level, and (5) formal level. The characteristics of each level are given below: 

Intuitive 
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Characteristics. process 

exploratory, manipulative experiences 
free to conjecture 
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* relationships among objects 

Induction * familiar representations 

* symbolic manipulations 

* generalizations 

Abstractions * abstract concepts and expressions 

* higher abstractions of different functions 

Deduction * understanding of formal proofs 

Formal * study of axiomatic systems in algebra 

* different models 

THE LEVELS OF ALGEBRAIC REASONING 

The first level of algebraic reasoning is intuitive thought. In free-discovery and explorative settings, 
the students begin to learn pre-algebra concepts by their intuitions. The students reason about the 
relationships between and among real objects by their awareness and their expectations. In general, the 
students reason about various objects such as time, rate, distance and prices in intuitive ways more than 
in symbolic ways. Many elementary school students have difficulty using symbolic reasoning. 

If intuitive thought, or intuitive notions about relationships, is the natural approach to learning 
algebra, then the symbolic reasoning or symbolic:'induction reasoning is the essence of algebraic 
reasoning. Thinking about numbers and the use of symbols to represent different objects are basic 
characteristics of the second level. The induction level is pre-algebra level as a link between numbers and 
symbols. In this level, the students reason about the use of symbols as abstract objects, unknown quantities 
and variables or as numbers The students use symbols in formulating patterns, relationships, or for 
symbolizing mathematical generalizations. In short, this level contains pre-algebra reasoning and appears 
to be the critical entry level as the van Hieles' level 2 of geometric analysis. [5] 

The third level reflects abstract thinking in algebra. It is a transition from familiar experiences to 
formal methods in algebra. In short, it is a transition from familiar to abstract. At this level, students 
introduce the abstract forms of concepts of algebra such as defmitions and characteristics of functions, 
algebraic entity, solution of equations, operations on polynomials and equivalent expressions. Thus, 
students are able to learn algebraic methods and apply problem solving in algebra. Students sometimes 
have difficulty with more deductive proofs but they can prove a direct argument by direct proof. 

The fourth level reflects deductive thinking in algebra. It is a study of formal proofs or logic, in 
algebra. At this level, students are able to understand the deductive nature of mathematics; algebra or 
geometry. Thus, more students are able to construct conjectures, prove theorems, understand and use 
axioms, and understand direct and/or indirect proofs. In general, students are able to do deductive proofs 
by using the various components of axiomatic algebraic structures such as undefmed terms, axioms, 
theorems and definitions. Because the axiomatic structures are a formal logical system, students can learn 
deductive mathematics in high school and college. 

The fifth level reflects understanding offormal algebra; the structure of algebra is more formal and 
models of algebra are various systems. At this level, students reason about logical systems and are able 
to understand algebraically the difference between axiomatic systems. This level is problematic for most 
secondary school students and is, therefore, more suitable for university study. 
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According to each level, the appropriate mathematics experiences, concrete or abstract, intuitive 
notions or concepts, numbers or variables, are important tools to help teachers and students reflect on the 
levels. 

SUMMARY 

Mathematics is a way of thinking and communicating; algebra is a language of mathematics and 
mathematical power. Algebraic thinking is a type of learning algebra. Algebraic thinking, as process, 
develops through a sequence offive levels: intuitive, induction, abstraction, deduction, and formal. Most 
students need appropriate experiences for developing algebraic reasoning at all levels. 
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WORKING TOWARDS CURRICULUM RENEWAL IN 
UNDERGRADUATE MATHEMATICS 

Sandra Frid, University of New England, Australia 
Joanne Tims Goodell, Curtin University of Technology, Australia 

INTRODUCTION 

This report summarises two related projects that explore undergraduate mathematics teaching and 
learning. A number of factors led to development of these projects, including: (i) the need for a major 
evaluation of the mathematics units intended to service students in other departments (e.g., engineering 
and science departments), (li) the changed background skills offrrst-year students as a result of state-wide 
changes in secondary mathematics curricula, (iii) the more diverse student cohort in relation to 
educational, cultural, and socio-economic backgrounds, (iv) the upcoming mandated use of graphics 
calculators in secondary mathematics courses, and (v) changes in the employment environment of 
graduates, particularly in relation to the increasing prevalence of sophisticated technological aids. 

The main aim of the first study was: 

A. To investigate the role and relevance of undergraduate mathematics studies as perceived by students 
and lecturers in science and engineering. 

Results of this study provided avenues of consideration for development of the second study, which 
is a five-year curriculum renewal project in undergraduate mathematics. Overall, the curriculum renewal 
project aims to develop the teaching of undergraduate mathematics courses through identifying 
deficiencies in the mathematical background of entering students, utilising technology in lectures (such 
as computer-generated presentations and graphics calculators), and developing teaching and assessment 
practices that more fully meet the needs of the diverse range of students now studying mathematics. The 
project, starting with frrst-year students, would progress to other years over time. Initial stages of this 
five-year process are reported here, and specifically, results related to the following four research 
objectives: 

Bl. To determine the strengths and weaknesses of frrst-year science and engineering students' 
mathematics backgrounds. 

B2. To identify the level of confidence students have in their mathematics knowledge and skills. 

B3. To determine reasons for students' perceived lack of confidence in their mathematics background 
or current course work. 

B4. To determine faculty attitudes towards current and proposed curricula, specifically in relation to 
assessment changes and increased use of technology. 

FRAMEWORK 
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Four areas of research were useful in fonnulating the research. First, the world-wide calls for refonn 
in mathematics education from a variety of sources (Apple, 1995; Dubinsky, et aI., 1994; National 
Research Council, 1991; National Research Council, 1994). Second, the role of affect in mathematics 
learning, the effects of which are now clearly acknowledged (for example, see Leder, 1993). Third, the 
ideas of change processes as they apply to education. We chose to focus on faculty attitudes towards 
change because others (Elmore, 1995; Hargreaves, 1994) had shown curriculum renewal efforts to be 
dependent upon the willingness of teaching faculty to accept change. Fourth, notions related to integrated 
curriculum, which links the three components of syllabus, pedagogy, and assessment. Although the 
importance of this link has been highlighted by many educators (Burton, 1992; Parker, 1995) it has often 
been ignored in curriculum development projects (Burton, 1992). Consequently, professional 
development for faculty is essential in order to explicate this link and help faculty enact a refonned 
curriculum. The National Research Council (1994) also emphasised the need for faculty in higher 
education to participate in ongoing professional development concerned with both their disciplinary and 
teaching expertise. 

METHOD AND DATA SOURCES 

Part A. Perceptions of the Role and Relevance of Undergraduate Mathematics 

Part A of this research was concerned with both identification and description of individuals' 
perceptions of experiences, and therefore employed a blend of quantitative and qualitative research 
methods. In particular, the study was a survey project, with follow-up interviews to elaborate and broaden 
the survey fmdings. Survey data was analysed and summarised in tenns of prominent categories and 
patterns, while an inductive reasoning approach for data analysis was adopted for the interview data 
(Glaser & Strauss, 1967; Powney & Watts, 1987). Specifically, the data sources and data collection 
methods used the followed outline. 

(a) Survey: A survey questionnaire on views of relevant mathematics and the role and relevance of 
mathematics in university programs and later related employment was administered to 306 students 
enrolled IN a first semester undergraduate mathematics course, 151 students enrolled in their fmal 
year of undergraduate studies, and 38 lecturers from a range of disciplines whose undergraduate 
programs require some mathematics studies. 

(b) Interviews: A group of20 individuals comprised this more elaborated component of the study; 
6 first-year mathematics students, 6 fmal year students, and 8 lecturers, all of whom were in the 
fields of physical or natural science, computing science, or engineering (the programs which require 
a first-year course in calculus and linear algebra, and perhaps some statistics). The interviews were 
semi-structured in nature and the interview protocol was based on the questionnaire items, but with 
an aim to obtain more detailed and elaborated responses. 

Part B. Curriculum Renewal Project 

Part B of the research (first phases of the curriculum renewal project) was primarily concerned with 
identification of factors related to students' skills and experiences and faculty attitudes, and therefore used 
surveys, a diagnostic assessment instrument, and discussions with workshop an9 project leaders. All 23 
teaching faculty and 8 part-time tutors in the mathematics department, along with 350 undergraduate 
science or engineering students enrolled in a fITst or second semester course in calculus and linear algebra 
were surveyed. 

To address the fITst research objective, a twenty-item multiple-choice diagnostic test was developed. 
The items were designed to assess students' knowledge and skills in those topics considered essential 
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background for these first-year courses. Students completed the test before the beginning of the semester. 
In addition to providing data for this research, the results of the diagnostic test were used in the context 
of the larger curriculum development project to inform students of their weaknesses and direct them to 
appropriate remedial materials. 

To address the next two research objectives, a forty-six item questionnaire was developed which 
asked students to respond about their level of confidence with their mathematics background and their 
current mathematics course work. Responses were recorded on a four-point Likert scale ranging from 
"Very Confident" to "Very UnconfIdent", with an additional response point for students to indicate if they 
had not studied the topic. Two open-ended items were included to elicit responses about the reasons for 
any lack of confidence. The survey was conducted towards the end of second semester 1995. 

To address the fourth research objective, a fifteen-item questionnaire was designed to assess actual 
and preferred use by faculty of a range of reformed teaching and assessment methods, including their use 
of various forms of techno logy. Each question required two responses: one response about the actual 
frequency of occurrence in the respondent's teaching, and the other response about the preferred 
frequency. Responses were recorded on a dual five-point Likert scale ranging from "Very Often" to 
"Almost Never". An afternoon workshop, the first in a series, 'was held to work with faculty on issues 
related to students' backgrounds and learning needs, as well as current trends in mathematics assessment 
practices. Subsequent workshops were held to familiarise faculty with the technology available for use 
in their classes, and to discuss issues pertaining to the use of tutorial time. After each workshop, the 
presenters wrote a few paragraphs of reflections about the workshop documenting their perceptions about 
its success. 

RESULTS 

Part A. Perceptions of the Role and Relevance of Undergraduate Mathematics 

The results from both the questionnaires and interviews indicated that students and lecturers see 
mathematics as a very important subject of study, although they sometimes questioned the value of 
particular topics, theorems, or procedures. Across the various groups a number of common themes or 
issues emerged: relevance, time constraints, teaching issues, role of technology, content choices, and 
inter-communication between university departments. More detailed descriptions of these issues than are 
provided here can be found in Frid (1996). 

Relevance 

More than 90% of the nearly 500 individuals surveyed or interviewed mentioned the issue of the 
relevance or application of mathematics as a primary factor in its value as a subject to be taught at 
post-secondary level. That is, they emphasised the need for mathematics to be taught as an applied 
discipline in which students learn how to use mathematical ideas and techniques to solve real world 
problems encountered by a range of professionals. 

Many of the lecturers stressed that the mathematics actually used within their disciplines is 
somewhat different in nature to what is taught in many undergraduate courses. They saw this difference 
as arising from the fact that much use of mathematics requires mathematical modelling processes, for 
which high proficiency with a wide range of mathematical skills is not enough for success. Rather, 
success demands one work flexibly, sometimes using educated, experience-derived 'guesses' and a cycle 
oftesting and revision of mathematical models. Both the students and lecturers commented that some 
people had difficulties in some upper year science or engineering courses because they had achieved 
success in performing mathematical skills but had not grasped the underlying concepts and how the 
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related ideas are manifested or interpreted in relevant, real world, applied contexts. Thus, the issues of 
understanding mathematical topics and "having a feel" for them were also often commented on by 
lecturers. 

Time Constraints 

The issue of time constraints was mentioned by a majority of subjects (>80%). They expressed 
concern about what they saw as an 'overcrowded' mathematics curriculum. In particular, they saw the 
number oftopics and related skills covered in undergraduate courses as excessive in relation to the time 
allocated to teaching them. They felt this situation was not appropriate for supporting students to learn 
with understanding of concepts and the ability to apply these concepts flexibly. A number of people 
expressed views that an educationally beneficial alternative would be to focus efforts on understanding 
ideas and how to apply ideas, while simultaneously taking emphasis away from time consuming 
techniques that can now be done quickly and easily with the aid of calculators or computers. 

Teaching and Learning Issues 

Both in the comments made on the questionnaires and in the interviews people diverted from the 
focus of the questions (mathematics content) to related teaching issues. That is, without direction to do 
so, they naturally expressed a view that how things are taught is perhaps more important than the details 
of what is taught. They were of the view that mathematics teaching needed to be more fun, engaging the 
learner in meaningful, interesting, intellectual activity. 

Role of Technology 

There were mixed views on what role technology (specifically, graphing/programmable calculators 
and computer software programs) should take in mathematics teaching. Some first year students were 
uncertain as to whether or not technology would help or hinder learning, while most other people 
expressed views that it is essential that learning to appropriately use technology be an integral part of any 
undergraduate mathematics program. Their views are summed up by the statement: "These things are 
out there available for use in the workplace, so we might as well teach students how to properly use theM 
as tools to assist thinking and problem solving." 

Inter-Department Communication 

The role of communication between science or engineering departments and a mathematics 
department (or whoever is responsible for undergraduate mathematics teaching) was an issue introduced 
by individuals within each of the groups. They said that better communication needed to be established 
by all groups concerned with undergraduate mathematics education so that they could better identify the 
needs of various departments, as well as the constraints under which a course is offered. This sort of 
network would facilitate curriculum change that could address the other issues raised: relevance, time 
constraints, teaching issues, and the role of technology. 

Content 

People's views on what was appropriate content for first-year mathematics studies were extremely 
varied, with this variance related to the particular subject discipline in which they worked. For example, 
a biology lecturer felt her students "must be able to plan a research study and collect data which requires 
statistical procedures and graphical summary." In comparison, electrical engineers felt mathematics 
courses should "relate specifically to electrical engineering, not the masses" (fourth year electrical 
engineer). In general, students were quite vocal about specifying what they thought should or should not 
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be included in required mathematics courses, saying such things as: "Do not do the stuff irrelevant to 
chemical engineering (e.g., triple integrals and polar coordinates)" and "Gear it towards each course (e.g., 
chem engineers less dealing with line integrals, matrices, vectors). More dealing with relevant parts s\]ch 
as problem solving" (two fourth year chemical engineers). The general view of students was that 
mathematics courses should be geared towards the needs of their future professions. 

Part B. Curriculum Renewal Project 

Student Diagnostic Tests and Remedial Materials 

The student diagnostic test has now been run twice (early 1996 and early 1997). The first diagnostic 
test in 1996 was based on a test developed by Stephen Hibberd at the University of Nottingham (Hibberd, 
1995). It was designed for students who have cO.mpleted the British A-level mathematics, and as a 
consequence was aimed at much too high a level. Due to the way in which it was set up and implemented, 
there was no way of changing the content. It was a good pilot test for the second year which has proved 
to be much more productive. For the second test, the questions were written by faculty in the department, 
and were at a more appropriate level in terms of the students' skills. This neW test (called MQUEST) is 
available on the Internet and students can log on to do a test whenever they want from any appropriately 
connected computer terminal. Additional details on the development and use ofMQUEST can be found 
in Caccetta, Hollis, Siew and White (1997). 

Since introduction of the diagnostic test, enrolment has increased in courses that provide extra 
lecture and tutorial time to help students make up deficiencies in their mathematics backgrounds. 
Students who need it have also been directed towards printed and computer-based remedial materials. 
These materials were used effectively by some students throughout the first year of the project. During 
the second year (1997) the use of remedial materials has become more formalised through their 
incorporation into tutorials. 

Remedying deficiencies is considered as an essential first step in curriculum renewal because 
first-year mathematics courses are structured around large group lecture presentations supplemented with 
smaller group tutorials. Further, teaching is predominantly guided by textbook formats and practice 
exercises, and assessment is predominantly examination based. Students with mathematical deficiencies 
struggle in such an environment, and unfortunately, due to cutbacks in university funding, this 
lecture/tutorial structure is not likely to change. However, efforts are underway to provide all students 
with self-learning material designed to enhance lecture presentations. A number of self-learning modules 
have been written to assist students in first semester mathematics courses. In addition, current efforts are 
being directed towards the development of technology based tools to create an improved learning 
environment for all first year students. This will enable students to work through modules at their own 
pace, along with providing them with self-assessment tests for these modules. 

Student Survey 

From the survey given to students in late 1995 it was found that, regarding their mathematics 
background, students had a high level of confidence. Students were least confident with areas related to 
use of technology, specifically use of graphics calculators and mathematics computer software packages. 
Many students indicated that they had had little experience of these areas in their school studies. Students 
were reasonably confident with basic algebraic skills, but were less confident with graphing techniques 
and interpreting written mathematics explanations and problems. For current mathematics course work, 
students were least confident with those topics in which they had had the least background preparation 
in high school mathematics courses, namely sequences and series, and Taylor and Maclaurin series. The 
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open-ended responses, discussed below, illuminated students' perceived reasons for difficulty with current 
course work. 

Open-Ended Responses 

There were two open-ended questions at the end of the student survey. The first asked students to 
list reasons why they lacked confidence with their current course material. The second asked them for 
suggestions as to how these courses could be improved in future. The responses from both questions have 
been grouped into three areas: course material, delivery, and student skills and background. It is 
noteworthy that these three main areas overlapped strongly with areas of concern that emerged with a 
different sample of students (in Part A of the research). 

Course material 

Many of the students said they had weaknesses in their backgrounds that led to present difficulties. 
Sequences and series, and Taylor and Maclaurin series were most frequently mentioned as causing 
problems. These are done late in the course, and students found the concepts difficult. Many just don't 
bother to study these topics as they feel the cost to outweigh the benefits. Some commented that there 
was too much repetition of high school material and not enough time spent on new material. Some 
commented about the number of formulae to remember. Many commented that they could not see the 
relevance of much of the course material to their own major course of study. A few mentioned that the 
text was hard to understand and should be updated .. 

Delivery 

Most of the comments about the delivery of courses were about the speed of lectures, the amount 
of material students were expected to copy down in one lecture, and the difficulty of simultaneously 
copying and listening to the lecturer explain concepts. They would have liked to have had the course 
notes available in some accessible printed form. Many commented that they would have liked more 
practical and relevant (and in some cases more complicated) examples in lectures, and would have liked 
more tutorial time and more examples worked by the tutor during tutorials. A few mentioned that in the 
bigger lecture theatres a microphone is needed, and that the white board in some of the lecture theatres 
is hard to see. Some requested that the assessment structure be changed to include more course work and 
less weighting on the exam. Some suggested that using graphics calculators and computer software 
packages would enhance understanding. 

Student skills and background 

Those students who didn't have the prerequisites or had not recently studied maths had considerable 
problems with the speed of the course. A few requested more lecture time. Many cited the number of 
courses they were required to take in their programs as reasons for not having sufficient enough time to 
study mathematics as much as they needed. Mathematics is not a priority for them. If they are sick, miss 
lectures or otherwise fall behind, it is very hard for them to catch up. Lecture notes and worked examples 
provided before the lectures, or at least in printed form after the lecture, would greatly facilitate the 
making up of work. A number of these factors overlap with those that have been categorised under course 
material and delivery, indicating that there is interplay between various aspectS of students' learning. 

Staff Surveys 

The first staff survey was given to all teaching staff in the mathematics department. With such a 
small proportion of the staff involved with first-year units, we were pleased with the number of responses. 
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The second survey was given in March 1997 to only those staff involved with teaching first-year courses. 
Names were optional. Each response was given a score to facilitate analysis, with "Almost Never" given 
a score of 1, "Seldom" a score of2, "Sometimes" a score of 3, "Often" a score of 4, and "Very Often" a 
score of 5. The lowest frequency score was 1 rather than zero, as non-responses were not included in the 
calculation of means. The mean scores for actual and preferred use, as well as the differences between 
means, were calculated for each survey (see Table 1). Due to the low numbers completing the survey, 
further statistical analysis was not feasible. 

We viewed the results of this survey quite positively, with the highest differences between preferred 
and actual use in 1995 in the areas of assessment (individual project, group projects, student assessments, 
investigations) and use of technology (graphics calculators and computer demonstrations). This indicated 
that many of the staff saw a need for change. The most worrying feature of the 1995 responses was the 

Table 1 

Mean scores for staff survey ratings of use of teaching and assessment methods 

Teaching and assessment methods Actual Pref. Diff Actual Prior Diff 
'95 '95 '95 '97 to '97-

n=13 n=5 '97 prior 
Scientific calculators 3.0 3.1 0.1 4.2 4.2 0 
Graphics calculators 1.6 2.5 0.9 1.8 1.4 0.4 
Videos 1.6 2.3 0.7 2.0 1.4 0.6 
Computer (demos) 2.1 3.1 1.0 3.0 2.4 0.6 
Computer (student) 2.6 3.3 0.7 3.2 3.0 0.2 
Individual projects 2.7 3.9 1.2 3.4 3.8 -0.4 
Group projects 1.4 2.3 0.9 2.6 2.2 0.4 
Investigations 2.0 2.8 0.8 3.2 2.8 0.4 
Student presentations 1.8 3.0 1.2 3.4 3.0 0.6 
Negotiation of assessment type 1.7 2.1 0.4 1.2 1.2 0 
Negotiation of assessment weights 1.6 1.9 0.3 1.4 1.4 0 
Library tasks 1.9 2.6 0.7 2.2 2.0 0.2 
Written tasks 3.4 3.8 0.4 4.0 3.8 0.2 

low actual use of graphics calculators, given that the use of graphics calculators was soon to become 
mandatory in secondary school examinations. On the 1997 survey staff reported using more of all the 
listed reformed teaching and assessment practices except 'individual projects' and 'negotiation of 
assessment type and weight'. Clearly, some changes had taken place. 

Staff Development Initiatives 

The first workshop (late 1995) focused on the background experiences of frrst-year students. The 
content and sequenceot' secondary school mathematics classes were outlined with implications for 
first-year students being discussed. A small investigation, typical of the type of activity encountered by 
students in secondary school, was given to the faculty during this workshop. From workshop feedback 
and from the reflections of workshop leaders, it was clear that faculty were unaware of the mathematics 
background of the majority of their students, and they were unfamiliar with the types of activities 
encountered by students in secondary mathematics classes. These activities include open-ended 
investigations, group projects, writing projects and problem-solving exercises. Although many first-year 
students currently had some experience with technology in their secondary mathematics courses, faculty 
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made limited use of technology in their current teaching practices, whether it be sophisticated graphics 
calculators or computer software packages, or more readily accessible scientific calculators. 

The second and third workshops (1996) focused on familiarising staff with technology such as 
graphics calculators, software such as Power Point, and multi-media presentations modes usirig CD 
ROMs. The fourth workshop (1997) was an open forum for staff and students to discuss the use of 
tutorial time. There were presentations from staff and students with a considerable degree of discussion 
generated. The main concern seemed to be the difficulty tutors have in dealing with the wide variety of 
students' capabilities. No consensus was reached but this topic certainly has implications for staff 
development. 

In the current phase of the five year project efforts are being made to assist staff in integration of 
appropriate software packages into their teaching practices. Commercial software packages that are being 
considered include Maple, MA TLAB, Derive and Mathematica. It is expected that this aspect of the 
project will take considerable time to develop and fully implement. To keep up with the technological 
advancements will require staff to rethink their notions about how mathematics should be taught, as well 
as how mathematics curricula can be made more relevant. These features of the impact of technology are 
a main component of a need to provide support for the teaching and learning of undergraduate 
mathematics. 

CONCLUSIONS 

There are a number of issues concerning curricula that need to be addressed by curriculum 
developers. First, is the issue of how much content is really needed in undergraduate mathematics 
courses. Many courses are so crammed with content, that instructors naturally use the easiest and fastest 
mode of transmitting information, namely large traditional-type lectures that assume knowledge is a 
knowable truth that can be transmitted to passive dependent students. The speed at which students 
perceive that material is presented to them was the most prevalent issue students commented upon. 
Clearly, if students see lectures in their present format as ineffective and inefficient, then lectures are not 
successful in assisting students in their mathematics learning. Alternative and additional avenues for 
instruction and learning need to be explored. 

Second, is how to incOrporate relevant practical real-world applications into all areas of 
mathematics: students have the right to expect that what they are learning has some relevance to their 
other c:;ourses, and staff have the obligation to help them make those connections. The main criticism 
students had of course material was that it did not connect to their other studies and in particular did not 
give them any sense of where the concepts and skills could be applied in real world, practical situations. 
How to use contexts that are applicable to all students' interests and experiences is a challenge curriculum 
developers will have to face. 

Third, is how to better communicate between departments the requirements for students' course 
work so as to avoid overlQading: mathematics departments provide service courses for many other 
departments at the university and curriculum developers need to be aware of the course loads of those 
students. Communication about the nature of the mathematics used in other disciplines is also important, 
as highlighted in Frid (1996). 

Fourth are considerations as to how to better prepare students for a technological society: new 
approaches to mathematics require new syllabi, pedagogical and assessment practices. Students are 
expected to. know how to use computer graphing packages, for example, in courses other than 
mathematics. It remains to be decided as to whether it is the responsibility of the mathematics department 
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to teach these skills. These new approaches will not happen by themselves, and curriculum developers 
must give due thought and consideration as to how to implement change. 

Fifth, is how to ensure university staff are more informed of the mathematics background of their 
students: they should both avoid repeating content adequately covered in high school, and make sure that 
there are no gaps in areas that are essential pre-requisites for understanding. Last, is how to improve the 
awareness of staff of current trends in mathematics education at all levels: stronger links need to be made 
between schools and universities. 
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A CONJECTURE ON THE HISTORY OF MATHEMATICAL WORD PROBLEMS: 
WERE WORD PROBLEMS EVER PRACTICAL? 

Susan Gerofsky 
Simon Fraser University, Vancouver 

Ifound a stone, (but) did not weigh it; (after) I subtracted one-sixth (and) added one-third of 
one-eighth, I weighed (it): 1 ma-na. What was the origin(al weight) of the stone? BC 4652, 
21, (Fauvel & Gray, 1987, p. 26) 

Three sailors and their pet monkey are shipwrecked on an island. they spend all day gathering 
a pile of coconuts and decide to divide them in the morning. But in the night, one sailor awakes 
and decides to take his third He divides the pile into three equal parts, but there is one 
coconut extra, which he gives to the monkey. He then takes and hides his third and puts the rest 
back in a pile. then another wakes up and does exactly the same, and then the third in the 
morning, they divide the pile that remains into three equal parts, again finding one extra 
coconut, which they give to the monkey. How many coconuts were there at the start? (from 
Ganita-sara-sangrata by Mahavira, 850 AD, in Olivastro, 1993, p. 180) 

Two men starting from the same point begin walking in different directions. Their rates of 
travel are in the ratio 7:3. The slower man walks toward the east. His faster companion walks 
to the south 10 pu and then turns toward the northeast and proceeds until both men meet. How 
many pu did each man walk? (Chiu-chang suan-shu, in Swetz & Kao, 1977, p. 45) 

A carpenter has undertaken to build a house in 20 days. He takes on another man and says: 
''If we build the house together, we can accomplish the work in 8 days. " Required is to know 
how long it would take this other man to build it alone. (A Renaissance problem quoted in 
Swetz, 1987, p. 162) 

Curriculum writers sometimes justify the inclusion of word problems in school mathematics courses 
by saying that these problems are practical applications of mathematics to the situations of everyday life. 
Yet a closer examination of word problems and the solution of "real" problems in everyday life shows 
that the two are often very far apart (see, for example, Lave, 1992; Gerofsky, 1996). In this paper I will 
look at word problems dating back as far as ancient Babylonia and Egypt and ask whether word problems 
were ever practical problems. Related to this question, I will make a conjecture about the pedagogic 
purposes of word problems, and whether such purposes have changed historically. 

Mathematical word problems have a very long history, perhaps as long as the history of human 
written records. Many of the mathematical cuneifonn writings discovered earlier in this century on 4,000-
year-old clay tablets from ancient Babylon consist of solved word problems, as do the 3,500 year old 
writings on the Rhind papyrus from ancient Egypt. We have recorded examples of mathematical word 
problems from Ch'in Dynasty China (c. 300 BC), ancient and medieval India, and medieval Europe and 
the Islamic world, and a continuous record of word problems from early Renaissance Europe to present
day textbooks used in school mathematics around the world. 
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Some of the word problems still in circulation have been shown to be identical in their mathematical 
structures, and often similar in their story "dressing" to problems that are thousands of years old. No one 
has set out deliberately to preserve these problems, yet while many other mathematical and literary forms 
have been lost or discarded over time, these word problems have persisted. Why? 

BABYLONIAN WORD PROBLEMS: WERE THEY PRACTICAL? 

As a sixth-form student, I once got into an argument about applied mathematics at a university 
interview. Although I found the subject relatively easy, I did not like the way that problems 
were superficially about the 'real world', but in fact were so contrived that they were 
meaningless. The interviewer, who of course turned out to be an applied mathematician, 
responded rather indignantly that if the problems were not contrived they would be impossibly 
difficult (for mere students) to solve. This was in the early nineteen-seventies, long before the 
notion of modelling became fashionable in school or university mathematics. Neither I nor the 
interviewer had any vocabulary available to bridge the gap between our differing perspectives. 

- Mathematics educator Janet Ainley on word problems as 'real' or 'unreal', a debate echoed 
in discussions of 'pure' versus 'applied' Babylonian mathematics. 
(Ainley, 1996, p. 1) 

Hundreds of clay tablets containing "problem texts" from ancient Babylon have been found by 
archaeologists, most of them dating from the period 2000 to 1600 B.C. These problem texts are the second 
most frequently found text type on Babylonian tablets, after "table texts" containing multiplication, 
reciprocal, square root and other tables presumed to have been used as references by scribes. Another 
frequently found text type is "teachers' lists", which list alternative number sets which give integral 
answers to particular problem types. These are hypothesized to have been used by teachers in composing 
new word problems in standard forms. 

The problem texts include word problems, often many on the same topic, along with instructions 
for solution, the answer and/or a diagram. They are believed to be textbooks from Babylonian scribal 
schools, which trained young people in literacy, bookkeeping and a variety of administrative duties. At 
fIrst glance, the word problems appear to deal exclusively with practical problems of agricultural, 
commercial, legal and military administration-questions about grain stores, irrigation, inheritance, the 
construction of buildings and siege ramps. On account of the superfIcial "everyday" quality to the stories, 
and the fact that the scribal schools were vocational training institutions, Babylonian mathematics has 
been characterized as "merely practical" as opposed to later Greek abstract, theoretical mathematics. 

Some scholars who have looked more closely at the corpus of Babylonian word problem texts have 
come to different conclusions. The problem of deixis or reference in contemporary word problems 
appears to originate in the very earliest word problems, those from ancient Babylon. While some of the 
problems included in the problem texts could conceivably refer to practical situations encountered in the 
day-to-day working life of a Babylonian scnbe, others are very far-fetched in terms of the numbers and 
dimensions used, the extreme simplifIcation of a potential practical problem, or the nature of the unknown 
elements and the question posed. The impractical nature of these stories calls into question their 
referentiality in pointing to "real world" situations, and casts doubt upon the serious practicality of even 
those more plausible problems. 
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Eleanor Robson, an Oxford Assyriologist with a mathematical background, writes, 

Should we think of [Babylonian mathematics] merely as a practical training for future 
overseers, accountants and surveyors? .. Take the topic of grain-piles as a starting point. In the 
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first sixteen problems ofBM 96954 [a Babylonian mathematical tablet in the British Museum] 
the measurements of the grain-pile remain the same, while each parameter is calculated in 
turn ... The first preserved problem concerns fmding the volume of the top half of the pile. One 
could imagine how such techniques might be useful to a surveyor making the frrst estimate of 
the capacity of a grain-pile after harvest. However, then things start to get complicated. The 
remaining problems give data such as the sum of the length and the top, or the difference 
between the length and the thickness, or even the statement that the width is equal to half of 
the length plus 1. It is hardly likely that an agricultural overseer would ever fmd himself 
needing to solve this sort of a problem in the course of a working day. 

[In two other sets of problems] the pile is 10 nindan (60m) long and 36 - 48 cubits (18 - 24 m) 
high. It is difficult to imagine how a grain pile this big could ever be constructed, let alone 
measured with a stick. (Robson, 1996) 

Besides grain-piles as large as an eight-storey office building and clearly impractical calculations 
involving unexpected combinations of their dimensions (recalling the "guess my age" word problems 
whose applicability continues to perplex many practical-minded students), Robson cites a Babylonian 
preference for integral measurements, even when it was clearly known that such measurements were 
inaccurate. For example, she refers to eight problems about right-angled triangles, which demonstrate 
three methods for finding the length of the diagonal of a 2- by 8-unit rectangle. Each of the three methods 
produces a different length for the diagonal, and when the length of the diagonal is given at the start of 
the problem, it is not the most accurate measurement which is given, but the one which will give an 
integer answer. 

Robson argues that it is inappropriate to draw a dichotomy between "pure" and "applied" or 
"practical" Old Babylonian mathematics since the problems functioned on two levels. On one hand, they 
taught practical skills and tested methods to future scribes; on the other hand, "many of those methods 
no longer had real-life applications", and the problems extended originally-practical skills to story 
situations that were clearly not referring to everyday life. 

Robson's concept of a Babylonian mathematics which was at once potentially useful and obviously 
impractical is appealing, and can be used to analyze contemporary mathematics. Her deliberately 
ambiguous view of ancient mathematics offers a way out of our current dualistic "pure! applied" 
categories which seem unsatisfactory ways to describe the work of most mathematicians. In looking at 
the history of word problems, it is also interesting that the question, "Are they real-life problems ?" can 
be extended back to the earliest examples of the genre, and that ambiguous answers to that question can 
be traced in a continuous line back to the origins of written mathematics. 

Jens Heyrup, a Danish Assyriologist and historian of mathematics, refers to a Babylonian problem 
about the construction of a siege-ramp in his argument about the non-applied nature of some Babylonian 
problems. Although the problem appears on the surface to have a practical military application, H0yrup 
notes that the problem solver is supposed to be able to know the "amount of earth required for its 
construction together with the length and height of the portion already built, but not the total length and 
height to be attained." He comments that "many [second-degree problems in Babylonian problem texts] 
look like real-world problems at first; but as soon as you analyze the structure of known versus unknown 
quantities, the complete artificiality of the problems is revealed ... As scribal discourse in general, 
mathematical discourse has been disconnected from immediate practice; it has achieved a certain 
autonomy." (H0yrup, 1994, p. 7) 

Heyrup characterizes Old Babylonian mathematics as based on methods where Greek mathematics 
grew out ofproblems--and this despite the fact that nearly all the Babylonian texts we have are problem 
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texts, which delineate methods only through repeated solved examples. H0)'lUp's distinction is between 
Babylonian scnbal school mathematics, which aimed to train students in methods available at hand rather 
than in an understanding of these methods, and Greek mathematics, which aimed to solve problems (like 
doubling the cube, trisecting the angle and squaring the circle) by extending mathematics and devising 
new methods. He comments that many of the "useless second-degree problems" included in the 
Babylonian texts "appear to have been chosen not because of any inherent interest but just because they 
could be solved by the methods at hand." (Heyrup,1994, p. 7) 

This analysis appears to use an anachronistic application of contemporary valuations of "training" 
and "education" (Le., skills training as inferior to educated understanding). But I think that H0)'lUp's 
point is a more subtle distinction in terms of discourses available to the Babylonians and the Greeks. It 
is important to remember that Babylonian documents predate Greek ones by some 1500 years, and that 
the Babylonians may have been the first people in the world to conceive of mathematics as a unified and 
distinct area of study. H0)'lUp writes, 

There were no social sources, and no earlier traditions, from which a concept of mathematics 
as an activity per se could spring, and there was thus no possibility that a scribe could come 
to think of himself as a virtuoso mathematician. Only the option to become a virtuoso 
calculator was open; so, Babylonian "pure mathematics" was in fact calculation pursued as art 
pour l'art, mathematics applied in its form but disengaged from real application. (Heyrup, 
1994, p. 8) 

He does not imply that the Babylonians were incapable of "pure mathematics", but that they had no 
other discourse available but that of practical problems to express abstract mathematical ideas. "Even 
when Old Babylonian mathematics is 'pure' in substance, it remains applied inform.," writes H0)'lUp. 
" In contradistinction to this, the prototype of Greek mathematics is pure in form as well as in substance." 

On the other hand, Jacob Klein, writing about Diophantus, reserves the notion of "purity of form" 
for modem symbolic algebra. For him, Diophantus' mathematics was an intermediate stage bridging the 
"rhetorical algebra" of problems stated in words and ordinary language, and the abstract symbolic algebra 
of modem mathematics: 

We must not forget that all the signs which Diophantus uses are merely word abbreviations ... 
For this reason Nesselmann (Algebra der Griechen, p. 302) called the procedure practiced by 
Diophantus a "syncopated algebra" which, he said, forms the transition from the early 
"rhetorical" to the modem "symbolic" algebra (according to Nesselmann even Vieta's mode 
of calculation belongs to the stage of syncopated algebra). (Klein, 1968, p. 146) 

Again the questions raised in discussion of Babylonian word problems can be viewed in a way that 
reflects on our use of word problems in contemporary school mathematics. Are word problems used 
primarily to train students in the use of methods, without necessarily understanding those methods? Are 
problems chosen simply to illustrate the "methods at hand"? 

Similarly, we could ask whether our need for the concrete imagery of word problems has changed, 
since we have access to post-Greek abstract mathematical discourse and symb,?lic algebra. 

THE RELATIONSHIP BETWEEN THE HISTORY OF WORD PROBLEMS AND RIDDLES, 
PUZZLES AND RECREATIONAL MATHEMATICS 

I have argued elsewhere (Gerofsky, 1996) that mathematical word problems are gene~ically non
referential and that it is inappropriate to assign truth value to them-they flout the Gricean maxim of 
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quality. That is to say, even when word problem stories appear to refer to aspects of the "real world", their 
links to the world of lived experience are ambiguous at best. So why are these rather fanciful stories 
included at all? 

I raised this question in correspondence with mathematician David Singmaster of South Bank 
University, London. Singmaster, who has done extensive research into the history of recreational 
mathematics, replied: 

Many problems in recreational mathematics are embellished with a story which is often highly 
improbable and this is partly what makes the problem memorable and recreational. However, 
I don't know which came first, the problem or the story. In many cases, the story is essential 
to make the problem interesting. E.g., I once saw an exam schedule where 6 2 112 hour 
exams was typed as 62 112 hour exams. The fIrst takes 15 hours and the second takes 31 
hours. When can they be equal? This formulation is much more interesting than, "Find 
numbers a, b, c, d such that a * (b + c/d) = ab * c/d". (Singmaster, 1996) 

Singmaster's comments raised several issues, including the question of the sheer pleasure of story, 
and particularly nonsensical story, in word problems, and the historic and generic relationship between 
word problems in schools and orally-transmitted riddles in social settings. 

Heyrup has addressed both these questions to some degree in his writing on Babylonian word 
problems. He quotes Hermelink (1978, p. 44) describing recreational mathematics as "problems and 
riddles which use the language of everyday but do not much care for the circumstances of reality". "'Lack 
of care' is an understatement," writes Heyrup, and echoes Singmaster in saying that "a funny, striking, or 
even absurd deviation from the circumstances of reality is an essential feature of any recreational 
problem. It is this deviation from the habitual that causes amazement, and which thus imparts upon the 
problem its recreational value. " (Heyrup, 1994, pp. 27- 29) 

Using "the language of everyday" but "not much caring for the circumstances of reality" is also a 
very apt characterization of the non-referential nature of both word problems and parables as genres. As 
shown above, a "lack of care for the circumstances of reality" has been a feature of word problems as 
early as the Old Babylonian period. Heyrup posits a continuum of non-referential story problems ranging 
from the most delightful mathematical recreations to the dullest of school exercises: 

One function of recreational mathematics is that of teaching ... This end of the spectrum of 
recreational mathematics passes imperceptibly into general school mathematics, which in the 
Bronze Age as now would often be unrealistic in the precision and magnitude of numbers 
without being funny in any way. Whether funny or not, such problems would be determined 
from the methods to be trained... Over the whole range from school mathematics to 
mathematical riddles, the methods or techniques are thus the basic determinants of 
development, and problems are constructed that permit one to bring the methods at hand into 
play. (Heyrup, 1994, pp. 27- 29) 

Work by the German mathematics historian Troptke (1979), Singmaster (1988) and others has 
established the often ancient provenance and wide historical, geographic and cultural distribution of a 
large number of famous word problem! recreational problem types. For example, the "cistern problem", 
the "purchasing a horse" problem, the "100 birds" problem, and the "crossing a river" problem have 
appeared in ancient India and China, medieval Byzantium and the Islamic world, and in medieval and 
Renaissance Europe. The familiar children's riddle in English, "As I was going to St. Ives," has been 
traced back to a problem in the Rhind papyrus and is related to a problem from Sun Tzu in ancient China; 
and the famous Islamic-Indian "chessboard problem" can be traced to Babylonian origins, as well as 
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related problems in China and in Europe (in Alcuin, for example). As H0yrup points out, "the same stock 
[of widely-known story problems] was also drawn upon by Diophantus, who, of course, stripped the 
problems of their concrete dressing."{H0yrup, 1994, p. 35) 

H0yrup relates the very wide distribution and longevity of these famous problems to an oral tradition 
of recreational problem riddles transmitted by merchants along the Silk Route: 

Like other riddles, recreational mathematics belongs to the domain of oral literature. 
Recreational problems can thus be compared to folktales. The distribution of the "Silk Route 
group" of problems is also fairly similar to the distribution of the "Eurasian folktale", which 
extends "from Ireland to India" ... However, for several reasons (not least because the outer 
limits of the geographical range do not coincide) we should not make too much of this parallel. 
Recreational problems belong to a specific subculture -- the subculture of those people who 
are able to grasp them. The most mobile members of this group were, of course, the merchants, 
who moved relatively freely or had contacts even where communication was otherwise scarce 
(mathematical problems appear to have diffused into China well before Buddhism). (H0)TUp, 
1994, pp. 34-35) 

The notion that recreational mathematics problems were orally transmitted across Europe and Asia 
is supported by observations from other writers on the history of mathematics. Dominic Olivastro cites 
the following examples of problems from Alcuin: 

A certain gentleman ordered that ninety measures of grain were to be moved from one of his 
houses to another, thirty half-leagues away. One camel was to transport the grain in three 
journeys, carrying thirty measures on each journey. A camel eats one measure each half
league. How many measures will be left, when all has been transported? (Alcuin of York, in 
Olivastro, 1993, p. 131) 

A merchant in the East wanted to buy a hundred animals for a hundred shillings. He ordered 
his servant to pay five shillings for a camel, one shilling for an ass, and to buy twenty sheep 
for a shilling. How many camels, asses, and sheep were involved in the deal? (Alcuin in 
Olivastro, 1993, p. 133) 

... and comments: 
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Camels appear often enough in these puzzles to raise a few suspicions ... Why would an English 
monk [Alcuin] frame his puzzles in terms of an animal he probably never saw? The answer is 
that the puzzle, like many in the Propositiones, originated in the Middle East. The Arabs had 
already learned of the positional number system from the Indians, who in turn may have 
received it from the Chinese. The puzzles are from a very talented people; the solutions [that 
Alcuin gives] are not. .. [Alcuin] gives the wrong answers, or misunderstands the problems, or 
fails to f'md the general principle behind them. (Olivastro, 1993, p. 133) 

Olivastro also quotes the following variants on the "crossing the river" problem from Alcuin: 

Three men, each with a sister, needed to cross a river. Each one of them coveted the sister of 
another. At the river, they found only a small boat, in which only two of them could cross at 
a time. How did they cross the river, without any of the women being defiled by the men? 
(Alcuin, Propositiones problem 17, in Olivastro, 1993, p. 136) 
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A man had to take a wolf, a goat, and a cabbage across the river. The only boat he could fmd 
could take only two of them at a time. But he had been ordered to transfer all of these to the 
other side in good condition. How could this be done? (Alcuin, Propositiones problem 18, in 
Olivastro, 1993, p. l38) 

... and reports the following, unattributed, anthropological lore: 

In the Swahili tradition, a visitor from another region visits a sultan but refuses to pay tribute. 
He is confronted with a challenge: He must carry a leopard, a goat, and some tree leaves to 
the sultan's son who lives across a river, and he must use a boat that will hold only the visitor 
and two other items. The problem, of course, is that no two items can be left on the shore 
together ... The visitor, after mulling over the problem, decides to carry frrst the leaves and 
goat, return with the goat, and then carry the goat and the leopard together to the son. 

A similar idea is found in Zambia. This time there are four items to transport: a leopard, a goat, 
a rat, and a basket of corn, where each is likely to eat the one following it. The boat can hold 
only the man and one item. The story tells us that the man considers leaving behind the rat or 
the,leopard, and thus reducing the problem to the one of the Swahili tradition, but, the story 
goes, the man finally realizes that all animals are his brothers-so he decides not to make the 
trip at all! (Olivastro, 1993, p. l39) 

I would have viewed these unattributed "exotic tales" with some degree of skepticism had it not been 
for a similar report, this time from the Atlas mountains of Morocco, from Eric Muller in a recent CMESG 
newsletter (Muller, 1994). Muller visited several remote villages in the Atlas mountains on a number of 
occasions, accompanied by a Moroccan colleague, Professor Ha Oudadess of Rabat. In 1979 Professor 
Oudadess had carried out a survey of oral mathematics traditions in the Atlas, and was able to translate 
conversations from Berber into French for Dr. Muller. 

Here is Eric Muller's account of his experience of a living oral tradition of mathematical problem 
solving: 

It was in [the isolated village of] Tizi n'Isli, on the terrace of the only cafe in town, over the 
inevitable cup of sweet mint tea, that we talked to Qlla Ikhlef. He speaks only Berber, which 
[Professor] Ha [Oudadess] translates for me into French ... He was born in 1962, in a small 
village higher up in the mountains ... He has no formal education but recalls that at the age of 
fourteen he was allowed to sit with some elders who would spend time inventing and solving 
problems. Can he recall any of the problems? "Oh yes." 

"Three people own 30 she-goats. In the spring 1 0 of them bear 3 kids, 10 bear 2 kids and 10 
bear 1 kid. The three owners decide to split the herd equally so that they have the same number 
of goats and kids. No kid is to be separated from its mother. How can we do this?" ... 

Qlla recalls a social 'problem competition' between men from his village and others from a 
different village. This would be held at the time of the sauk (the travelling market which, in 
small villages, is held once a week.) On warm nights, before the souk, men would gather in an 
open tent, drink sweet mint tea, talk and sometimes pose problems for members from the other 
village to answer. We wonder where this tradition comes from. What in this culture makes 
mathematics problems solving a social activity? We know it is quite old because Ha 
remembers that as a youngster, in the Atlas, he was stopped and challenged by elderly men 
from the village to solve problems. It is also quite extensively spread throughout the Moroccan 
Atlas ... 
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The word has spread that these strangers, in shorts, are interested in problems. A group of men 
come forward, one of them wants to share a problem. It is a version of the river-crossing 
involving a boat, a wolf, a goat and a cabbage, reworded for the local situation. No one else 
in the crowd has a problem to share .... 

Here are a couple more problems gathered by Ha [elsewhere in the Atlas]: 

1) A person wishes to purchase 100 birds using exactly 20 rials. For one rial the person can get 
either one hawk, or two pigeons or five sparrows. The person must buy at least one bird of each 
type. How many of each type can the person buy? 

2) Three people go to the barber. To pay each person opens a drawer and places a payment equal 
to what is found in it and then closes the drawer. After the customers have left the barber finds 
10 rials in the drawer. He wants to know how much each person paid. (Muller, 1994) 

A CONJECTURE ABOUT THE PEDAGOGIC PURPOSES OF WORD PROBLEMS 

Looking at the examples above, it seems clear that mathematical word problems, from their very 
inception, have not simply been applications of mathematics to real-life problem situations. Rather, word 
problems as a genre are complexly and ambiguously related to parables, riddles and folktales. They also 
seem to have served the purpose of "bodying forth" particular mathematical ideas and methods in the 
guise of stories about purportedly real things, although their contact with the world of mathematical ideas 
often seems to be closer than their contact with the "things" of our lived experiences. 

My conjecture is that the need for such stories has changed historically, particularly with the 
introduction of algebra, and that the current emphasis on the purported practicality of word problems 
developed in reaction to their change of purpose. 

In a pre-algebraic world, there is no explicit and compact way to state many mathematical ideas in 
a general form. The most convenient and effective way to convey the idea of a mathematical 
generalization, particularly in a pedagogic setting, may have been by heaping up repeated examples of 
a particular concept or method, in the form of numerous, slightly differing stories. This is in fact what we 
find in mathematics teaching texts, from Babylonian times onward. I speculate that mathematics 
instructors from pre-algebraic times must have hoped that their students would eventually be able to "see 
through" the language of the stories to the mathematical gene~ons that they pointed to. (And in this 
discussion, it is important to remember that even now, students up to the senior years of secondary schoo I 
may be considered "pre-algebraic"!) 

With the introduction of algebra to western Europe in the early Renaissance, it became possible to 
state mathematical relationships in a concise form which did not depend on story or example. 
Coincidentally, justifications of word problems as examples of practical, useful problem solving for the 
world of work began to appear in many Renaissance texts, and have continued to feature prominently in 
curriculum writing since then. 

My conjecture is that the pedagogic purposes for word problems changed with the introduction of 
algebra. Before algebra, word problems were inseparable from mathematics because they provided the 
only way of talking about many mathematical ideas-that is, by talking "through" a parabolic example. 
With the advent of algebra, word problems became detached from this formerly self-evident purpose. 
Algebra provided a more direct, elegant means of expressing mathematical generality, yet the word 
problem genre continued to appeal to mathematics teachers. Perhaps in lieu of other explanations, the 
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pretext of word problems as practical, useful applied mathematics arose to justify the continued use of 
word problems in mathematics teaching. 

And why have word problems continued to appeal to teachers, even if one of their principal original 
purposes disappeared with the introduction of algebra? Perhaps mathematics teaching is simply a 
tremendously conservative enterprise. Perhaps there is a sense of a link with a long, unbroken tradition 
which extends across four millennia and many widely-separated cultures. Perhaps word problems provide 
a connection, though sometimes a tenuous one, between schooling and the pleasurable worlds of riddle, 
puzzle and game. Perhaps there is a basic human need to clothe abstractions in the guise of story, a need 
as familiar and strange as the world of our own dreams ... 

I would be very interested in hearing from anyone whose research might shed light on these 
conjectures! 
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DESPERATELY SEEKING SOMETHING: DILEMMAS 
SURROUNDING THE INTERPRETATION OF TEACHERS' INTERVENTIONS 

Jo Towers 
University of British Columbia 

This paper considers the dilemmas that educational researchers face in analysing video data of 
classroom activities. In particular, I am concerned with dilemmas surrounding the interpretation of 
teachers' interventions. I In analysing the data I have collected during my research I have employed the 
Pirie-Kieren Dynamical Theory of the Growth of Mathematical Understanding as a theoretical tool. Susan 
Pirie and Tom Kieren have been refining their theory of the growth of mathematical understanding for 
many years, and have published their reflections and findings widely (pirie and Kieren, 1989; Pirie and 
Kieren, 1994a; Pirie and Kieren, 1994b). It is not my intention to furnish a complete description of their 
theory, although I encourage an interested reader to gain a deeper understanding than I am able to offer 
here by reading Pirie and Kieren's own reflections. There are, however, a number offeatures of the theory 
which are pertinent to the discussion I wish to pursue, and so, although this may be repetitious for some 
readers who have closely followed the development of the 'Growth of Mathematical Understanding' 
model over the last decade, I will take a few moments to explicate the critical notions. 

A MODEL OF THE GROWTH OF UNDERSTANDING 

Figure 1 shows a diagrammatic representation of the Pirie-Kieren 'Growth of Mathematical 
Understanding' model. This representation shows the various levels or modes of understanding that 
Kieren and Pirie have identified. It should be stressed at this point that Pirie and Kieren have been at pains 
to indicate that they do not believe that understanding is a uni-directional phenomenon. Rather, Pirie and 
Kieren (1994a, p. 39) have observed understanding as a "whole, dynamic, levelled but non-linear, 
recursive process." The innermost mode of understanding has been termed Primitive Knowing (PK). This 
knowing is the history or experiences that the student brings to the situation. The second mode or level 
of understanding is termed Image Making (1M). Here the student is observed to be engaged in activities 
aimed at helping him or her develop particular images. The learner is being asked to make distinctions 
in her or his previous abilities and use them in new circumstances or to new ends. After engaging in such 
activities a student may be able to replace those activities with a "mental plan." This is Image Having 
(IH), which frees the student from the need for partiCUlar activities or examples. The remaining modes 
of understanding will not be relevant to my discussion. 

A further critical feature of the model is the notion of/olding back. The model is a set of unfolding 
layers, suggesting, both visually and conceptually, that each layer enfolds, unfolds from, and is connected 
to, each inner less formal layer. Despite the visually seductive image of "growing" rings embodied in the 
diagrammatic representation of the model, it is Pirie and Kieren's espoused belief that understanding does 
not happen that way (in other words, it is not a linear,uni-directional process). They argue that growth in 

II am using this term in the same manner as it has been applied by Kieren and Pirie (1992), and I 
will defme it in a moment. 
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Key: 
PK Primitive Knowing 

1M Image Making 
IH Image Having 
PN Property Noticing 

F F ormalising 

o Observing 
S Strucnning 

Inventising 

Figure 1 

understanding entails repeated/olding back to inner, less fonnal understandings (pirie and Kieren, 1994b). 
It should be stressed that this returned-to mode of understanding is not the same as the previous 
understanding observed at this level. It has now been shaped by the more sophisticated understandings 
generated at an outer level. 

I now wish to turn to the feature of the model in which I am particularly interested, both in tenns of 
the issues I wish to raise in this paper, and also in tenns of my own research. This feature is the nature of 
Pirie and Kieren's treatment of the role of the teacher. Kieren and Pirie (1992) have identified three kinds 
of interventions: provocative, invocative and validating, which may be recognised in the behaviour and 
talk of both teachers and students. Invocative interventions are those which result in the student/olding 
back to an inner level of mathematical understanding. Provocative interventions are those which result 
in a movement to an outer or more sophisticated level of understanding. Validating interventions are those 
which serve to check a student's understanding, andlor encourage the student to express (verbally, 
symbolically, etc.) their current mathematical ideas. Pirie and Kieren note 
that they believe that it is the response of the student, and not the intent of the teacher, which detennines 
the nature of the intervention. 

As I have begun to work closely with my video-taped data I have been faced with a number of 
episodes which resist this categorisation. It is one such episode that I have chosen to discuss in this paper. 
I intend to provide more detail about the students, the teacher, and the activity in a moment, however, I 
first wish to explain what interests me about the episode. The episode features a teacher working with a 
pair of students, one of whom is having difficulty finding the perimeter of a given shape. Though the 
teacher continues for some minutes to help the struggling student, it is clear by the end of the episode that 
the student still does not understand the concept being discussed. My interest was piqued by this episode 
in particular due to the dilemma I faced in trying to categorise the teacher's interventions. As I have 
indicated, Pirie and Kieren categorise interventions based on outcome. In this case it is possible to discern 
from the video that the struggling student makes little progr~ss. In tenns of the theoretical model his 
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actions and verbalisations indicate that he is Image Making throughout the interaction. He appears neither 
to move outwards to a more sophisticated understanding, nor to fold back to an inner mode of 
understanding. As his actions and language enable us to verify his current level of understanding (Image 
Making) we are lead to the conclusion that the teacher's interventions should be labelled validating. It is 
here that I begin to be troubled by this classification. I am faced with a dilemma. Though categorising 
teachers' interventions by student outcome seems, in most cases, to further the analysis, I remain troubled 
by some episodes. A more detailed rendering of the particular episode I have mentioned may now inform 
the discussion. 

THE TROUBLESOME EPISODE 

The classroom episode I am about to describe was video-recorded as part of my on-going inquiry into 
the influence of teachers , interventions on the growth of students' mathematical understanding. The data 
from which this episode is selected were collected in my own classroom in a British high school at a time 
when I was a full-time teacher of mathematics, simultaneously engaged in a study of my own practice. 
Three pairs of Grade 7 and 8 students (corresponding to Grades 6 and 7 in North America) were video
taped during several weeks of mathematics lessons, and each student was then video-taped in a one-to-one 
interview with me at the end of the series of lessons. The selected episode focuses on a Grade 8 student 
(equivalent to Canadian Grade 7), Donny (0), and his classmate, Sula (S), and features Donny attempting 
to frnd the perimeter of the shape in Figure 2. Donny calls over the teacher (J) and asks "What do you put 
for this bit?" pointing to the horizontal line section with the missing value. The interaction continues: 

I 17 

to 
8 

20 

Figure 2 

J: Ab, well now. We've got to work that out. 
D: Do you think that's ten, or twenty you put? 
J: No, it's neither of those. Tell me the whole length of the rectangle. The whole thing, of the 

picture, the whole length. 
S: You've already got the answer down, Donny. 
D: Eight? 
J: No, well, no. [Pause] Tell me the length of the whole shape. [Donny picks up his ruler] No. 
S: No, you don't need your ruler, Donny, you've got it written down. 
J: Read it off. [Pause] What's this distance? [POinting to the bottom of the shape] 
D: Twenty centim ... 
J: Twenty. Twenty something. We don't know what, but twenty. OK and what's this part? 

[Drawing her finger along the section marked 17] 
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D: Eight. 
J: No. 
D: Seven ... seventeen. 
J: Seventeen. So what's this part? [Pointing to the horizontal line section with the missing 

value] 
D: Seventeen. 
J: [Shakes head] 
D: Twenty! 
J: No, the whole thing is twenty. That much is seventeen. [Pointing to the length marked 17] 
D: Oh, thirty seven. 
J: [Shakes head] 
D: Is it ten, then? 
J: No. 
D: Eight? 
J: No, no don't guess, don't guess. 
S: Can I tell him the easy way of working it out? 
J: No. I want him to get there for himself. The whole distance is twenty to there, do you agree? 

And the distance to there is seventeen, so how much must that be? 
S: Oh ... God! 
J: No, it's all right, Sula. Donny'll get there. The whole distance is twenty ..... 

The following few minutes of video-tape show Donny desperately seeking the answer to his question, 
and the teacher desperately seeking to provide the answer without directly 'telling'. It is clear by the end 
of the extract tha~ neither party is entirely satisfied with the outcome. Donny, I am convinced, would have 
appreciated a simple and straight answer to his question, as there is ample evidence later in the extract to 
suggest that he is able to work out the perimeter of the shape given all the dimensions. The teacher (I 
know, for it was me) would, at least once during the episode, have liked to give Donny the straight answer 
he sought. And yet the dance continued, Donny never directly re-stating his question, the teacher never 
directly answering it. The frustration for both (and for Sula who is desperate for Donny to grasp the 
connection between the three horizontal line sections) is evident on the video. My point in this paper, 
though, is not to explore the dilemmas for the teacher who wishes to refrain from immediately telling her 
students the answers to their questions, although these dilemmas are real and worthy of exploration. 
Instead, I aim to explore the dilemmas faced by the researcher who seeks to make sense of particular 
classroom interactions captured on videotape. In this particular instance I am interested in the interaction 
between a teacher and her students. One difficulty with categorising teachers' interventions solely by 
considering the subsequent actions and verbalisations of the student is that it renders the role of the 
teacher secondary to that of the student. I am not implying that we should treat the role of the teacher as 
any more significant than that of the leamer, rather that in privileging one we run the risk of diminishing 
the other. To be true to the essence of the interaction (of which I was a part) I cannot neglect the intent 
of the teacher, which most definitely was not simply to encourage Donny to verbalise his current 
mathematical thinking (suggesting validating intent), but to extend his working image of measure by 
helping him to see the relationship between the various line sections of the shape (suggesting, perhaps, 
a provocative intent). I therefore want my theoretical mapping of the incident to reflect not only the 
actions and verbalisations of the leamer, but also those of the teacher. Dealing with the intent of a research 
participant is a thorny issue, to which I will return in the next section. No ma~er what my intent at the 
time, though, the fact remains that I was not successful in my teaching effort. What I might have done 
differently to help Donny to understand is the subject of another paper currently in preparation2• Here, I 

2 I am currently collaborating with Keith Roy, who was a participant in my Ad Hoc session at Thunder 
Bay, on an article devoted to this issue. 
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wish to continue to address the issue of what, as a researcher, I might gain from a study of this episode. 
There are, I think, several choices before me. 

CHOICES AND DILEMMAS 

In research we are always faced with choices, and what we choose is ultimately reflected in the data 
we obtain, and the findings we generate. My research is no different in this respect from any other study, 
however, the choices researchers make, and the struggles they have with their data are not always 
explicitly formulated in academic articles. Increasingly this bias is being corrected. As long ago as 1966, 
in his Nobel Lecture, Richard Feynman commented on this very issue: 

We have a habit in writing articles published in scientific journals to make the work as 
fmished as possible, to cover up all the tracks, to not worry about the blind alleys or 
describe how you had the wrong idea first, and so on. So there isn't any place to 
publish,·in a dignified manner, what you actually did in order to get to do the work 
(quoted in Mackay, 1991, p. 91). 

Fortunately, thanks in part to organisations such as CMESG/GCEDM, we now have the opportunity 
to think-out-loud, to work with our peers on a stimulating but thorny issue and later to publish, in a 
dignified manner, the results of those deliberations. I have chosen to discuss my struggles here because 
I believe that my reflections might resonate with others and open an interesting discussion of possibilities, 
not only for myself, but for others present at the Ad Hoc session or reading this paper later in the year. 
It seems that there are a number of possibilities open to me for proceeding with categorising the chosen 
episode. 

I could simply label this episode, and other similar ones, as 'resisting categorisation', and, at least for 
the moment, leave it at that. However, I am intensely curious about this episode and to reject it, even 
temporarily, from the data simply because it is troublesome seems not only cowardly, but also foolhardy. 
My gut reaction is that it isjust such an episode which strikes at the heart of my area of interest (the role 
of teachers' interventions in influencing the growth of students' mathematical understanding). So, for the 
moment, I am reluctant to bypass this episode. I have shown this video extract to numerous groups of pre
service and practising teachers, and to teacher educators and fellow researchers. Their overwhelming 
impression has been that the teacher is clearly trying desperately to teach, but that Donny does not seem 
to learn. As a teacher I am fascinated by such episodes, and believe that they can speak volumes about 
the role of the teacher in influencing the growth of understanding. As a researcher I am struggling to 
articulate those beliefs. 

So, if I am not willing to abandon this episode, I need to be comfortable with the categorisation I 
make concerning it. Because I know what I intended as the teacher in this situation (which was to 
encourage Donny to move to a more sophisticated level of understanding, in other words, to encourage 
him to "see" the connection between the various horizontal line sections of the diagram) I could propose 
that my actions be labelled as an "unsuccessful provocative intervention". From my researcher-perspective 
this produces a further dilemma, however, concerning the amount and type of data which must be 
collected. Each time I view videotape recorded in my own classroom I am, as a researcher, in the 
privileged position of knowing what was intended by the teacher featured on the video each time she 
made an intervention. However, when the video features a teacher other than myself I am immediately 
at a loss (without resorting to extensive video-stimulated recall sessions) to know the teacher's intention. 
With each step, then, the dilemmas seem to grow. At the heart of each dilemma is a research question 
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worthy of serious consideration, such as 'Can we infer intent?' and 'What kind of evidence would enable 
us to do so?' Such questions raise further and deeper questions about the research process, such as 'What 
is the difference between an inference from the data and an interpretation of those data?' and 'Is one any 
more valid than the other?' I am still wondering about answers to these questions. 

For the moment I will go no further with my deliberations, but leave it to the reader to reflect on the 
appropriateness and consequences of the choices I have already made and am still considering. Whilst for 
me this dilemma remains unresolved for the moment, I hope that in deliberating on paper in this way I 
have reminded my readers of the value of reflecting aloud, and enabled readers to explore the varied 
possibilities for dealing with dilemmas in their own work. I conclude with thanks to Donny for his 
patience when mine was running out, and with a favourite quote from poet Rainer Maria Rilke which I 
mentally invoke whenever the dilemmas of research seem to be mounting: 

Be patient toward all that is unsolved 
in your heart 
Try to love the questions themselves. 
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SCARBOROUGH REVIEW OF GRADE 12 MATHEMATICS 

INTRODUCTION 

Lynda Colgan, Peter Harrison and Clara Ho 
Scarborough Board of Education 

The Scarborough Board of Education is committed to review key curricular areas at the end of each 
division on a four to five-year cycle for the purposes of accountability and program improvement to 
enhance student learning. The Scarborough Reviews are designed to look at the entire program at a grade 
level in a subject area and a wide range of student skills and abilities. All students registered in a Grade 
12 Mathematics course in all semestered and full year secondary schools in Scarborough participated in 
the Mathematics Review in April-June, 1996 and all Semestered 1 students registered in a Grade 12 
Mathematics course in all semestered secondary schools participated in the review in November, 1996 
to January, 1997. 

THE MATHEMATICS CURRICULUM 

The 1996/97 Scarborough Grade 12 Mathematics Review tests were based on the Ontario 
Secondary/Intermediate School Guidelines for Mathematics (OS:IS) (1985). The MA T4A courses are 
further elaborated and supported by the MAT4A coursefor Scarborough (1992). The MTB4G courses are 
supported by the Mathematics for Business and Consumers, Grade 12 General Level while the MTT4G 
course is further elaborated by the Scarborough Curriculum document written in 1989, Mathematics for 
Technology (Applied Mathematics), M1T4G, Grade 12. The curriculum and assessment standards fostered 
in the NCTM Curriculum and Evaluation Standards for School Mathematics (J 989) are also incorporated 
in the assessment activities of the teaching units. 

The content and topics included in the Review were selected from course outlines submitted by 
teachers teaching the relevant grade 12 courses to ensure they were core content areas in the OS:IS 
Guidelines and the mathematics curriculum in most Scarborough schools. The areas tested were: 

• MAT4A 
- Algebra 
- Logarithms and Exponents 
- Algebra of Functions 
- Trigonometric Functions 
- Cumulative Numeracy 

• MTT4GIMTB4G 
- Numerical and Algebraic Methods (including Cumulative Numeracy) 
- Geometry 
- Trigonometry 
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- Forces and Vectors 

• MTL4BIMTW4B 
- General Numeracy 
- You and Your Money 
- Math on the Job 
- A Place of Your Own 

THE MATHEMATICS REVIEW INSTRUMENTS 

The Scarborough Grade 12 Mathematics Review used several distinct instruments to generate a 
description of the Grade 12 Mathematics program in Scarborough. The instruments included: 

• a School Questionnaire which provided a profile of the total school environment and instructional 
philosophy for mathematics; 

• a Teacher Questionnaire which provided information about the teachers' backgrounds and the 
teachingllearning strategies used in delivering the mathematics program; 

• a Student Questionnaire which provided information about students' attitudes towards school, as well 
as the mathematics program; 

• a Teacher Opportunity-to-Learn Form which provided information about the extent to which the 
mathematics program was being taught. 

Student achievement was evaluated through a 2-week assessment unit and a paper-and-pencil test. 
Although every student in Grade 12 participated in the assessment, there are no scores for individual 
students. The review used a multi-matrix sampling approach whereby different groups of students 
responded to different sets of items and projects. Although teachers were asked to use information from 
the project and paper-and-pencil assessment to allocate 10% of the term mark for each student, the 
emphasis was on providing a system-wide portrait of the performance of the group of students in Grade 
12 in relation to the expected outcomes. 

Teaching Unit 

Three model assessment units were designed to give students direct hands-on instruction in the 
selected topics, through specific activities and assignments. The units were developed using an integrated 
approach to learning to make mathematics more concrete and relevant for students. 

• MA T4A: the focus for the advanced level unit was on Mathematical Modelling. Students analyzed 
the relationship between two variables using exponential or power functions to model some 
phenomenon, and then applied the derived model to elicit appropriate information and make relevant 
predictions for future events based on the model. 

• MTT4GlMm4G: the focus for the general level unit was on the Stock Market. Students actively 
tracked stock prices using a personally-selected portfolio to learn the basics of investment. 

• MTL4BIMTW4B: the focus for the basic level unit was on Percentages ant! Interest. Students were 
given step-by-step instruction in the application of percentages and interest using money. Being able 
to use money correctly gives these students a practical advantage in understanding consumer 
mathematics. 
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Paper-and-Pencil Test 

The paper-and-pencil component of the review included a test comprised of a variety of question 
types, e.g., multiple-choice questions, numerical problems, and problems that required full written 
solutions. Also, included in the paper-and-pencil booklets were questions that required students to create 
charts, tables, and graphs from given data and/or formula, and that required them to interpret data from 
given charts, tables, and graphs to solve problems. 

THE SCORING OF STUDENT WORK 

The Scoring Process 

The scoring of the work of the 1995/96 cohort was conducted centrally at the Scarborough Board 
offices over a 3-week period in July, 1996. The marking of the 1996/97 semester 1 students' work was 
conducted in December, 1996 and in Jan. 1997. The projects and all problem-solving questions on the 
paper-and-pencil booklets were scored by teacher-markers. Simple responses from the paper-and-pencil 
instruments were coded by clerical staff or student markers. Markers were grouped into teams and worked 
under the direction of trained group leaders. The group leaders were trained by the staff of the 
Mathematics Department prior to the July scoring period. Twenty teachers from the secondary panel 
participated in the scoring process. Several checks were built into the process to ensure reliability and 
accuracy. 

Scoring Scales 

Student achievement in the teaching unit was measured against holistic scoring scales developed by 
Scarborough educators for each outcome category. The development of the scoring scales was based on 
the model developed by the Ministry of Education for the Grade 12 Provincial Writing and Grade 9 
Provincial Reading and Writing Reviews, the model developed for the Scarborough Review of Literacy, 
Primary and Junior Divisions, 1993-94 and the Scarborough Review of Science, Intermediate Division 
1994-95. The Grade 12 Mathematics outcomes were regrouped into four reporting outcome categories. 
The projects were evaluated four times, once for each of the outcome categories. 

Outcome Categories 

Communication 
TechnologylMathematics Conventions 
Mathematics Applications 
Overall Mathematics Performance 

Scoring Scale 

three-level scale 
three-level scale 
four-level scale 
six-level scale 

The holistic scales that describe levels of performance in the four reporting outcome 
categories are outlined on the following pages. The strongest level in each category was assigned the 

highest level, and the weakest was assigned level 1. The levels include descriptions of what the respective 
categories "look like". They should not be equated with marks, percentages, grades, or pass/fail. The 
student work was scored according to these descriptive levels of achievement, and not in comparison to 
other students. 

Each question in the paper-and-pencil instruments was assigned a level depending on the skills and 
thinking required to arrive at the "best response". The highest possible level was assigned to the "best 
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response" while partial responses were also recorded. Most of the Short Answer questions had an obvious 
"best answer" and were scored according to this method. In addition, common errors that were made by 
students were analysed and coded. 

SCORING SCALES FOR THE FOUR OUTCOME CATEGORIES FOR MAT4A 
TEACHING UNIT 

Outcome CGtellorie8 Levell Level 2 Level 3 

Communication The performance The commUDication The performance 
demonstrates a fragmented demonstrates adequate demonstrates an effective 
organiwion of the project organization of the project to organization of the project 
which prevents the commUDicate most of the to commUDicate the 
communication of the e1ements of the investigation investigation clearly to the 
investiption to the readers. to the readers. Data. results readers. Data. results and 
Data, results and conclusions and conclusions are presented conclusions are clearly 
are presented with minimal or with limited support. presented and supported 
no support. 

Technology The performance The performance The performance 
demonsUlteS minimal demonstrates adequate demonstrates a good 
command of the technology. command of the technology. command of the 
The report of the project are Parts of the report of the technology. The report of 
prepared using the minimal project ue prepared USing the project ue effectively 
capabilities of the softwue. some fundamental capabilities prepared using the full 

of the softwue. capabilities of the software. 

Application and Student demonstrates minimal Student demonstrates partial Student demonstrates a 

Comprehension grasp of the vel)' basic undentsndinl of some basic leneral understanding of 
mathematical concepts and mathematical concepts of the fundamental 
little evidence of applying modelling and often unable to mathematical concepts and 
them to other situations. Most apply them to new situations. applies them satisfactorily 
of the steps of modelling are Some basic steps of modelling to similar situations. Most 
unslrUCtU!ed, incomplete and are partially completed and of the steps of modelling 
solutions to inveltigations ue solutions to the investigations are adequately completed 
not understandable or omitted. _ simplistic with minimal, and solutions to the 

inco.asisteDt, incomplete or no investigations (including 
explanations. Ml\jor caors part of the extensions) _ 
distract the meanings. presented with some 

explanations. Minor errors 
do not distract from the 
mesning. 

Overall Mathematic. Doll not achln, ~ llMJlliraalfb of th. wi nDI I.imiUd Compr.tio" of th. 

Performance MJ""""" oftlw tl&Ik. co"",.,. nqulnm"." oftlw wi. 

Student work demonstrates Student work demODStrates Student work demonstrates 
minimal mathemaIical limited mathematical thinking some mathematical thinking 
thinkins and tittle or no and little Ullderstanding of and partia1 understanding of 
UllderstaDdiDl of madlematical ideas. While mathematical ideas. Some 
mathematical ideas. response to some basic responses are correct; 
Responses show little or DO illementl _ sometimes however. gaps are evident 
accomplishment of correct, student work often and representations (for 
mathematical tasks. faIla ahort of providing example, tables, formulae. 

workable solutions. equations, graphs) need 
elaboration. 
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SCORING SCALES FOR THE FOUR OUTCOME CATEGORIES FOR MAT4A TEACHING UNIT 

Communication 

TecbnololfY 

Application and 
Compreheneion 

Overall Mathematic. 
Performance 

Student demonstrates good 
~a~8ofanof~e 
mathematical cooccpts of 
modeUingand applies ~em 
suc:c:esstlJlly to new siruatlons. 
Allm~e~m~ 
are conBiBtendy completed 
and solutions 10 most parts the 
investigations (including 
extensions) are presented wi~ 
clear. coherent and 
UIIlUIlbiguous explanations. 

Sulnttmtlal eonllil6l1o" oft. 
nlJuin",."" of"" Imi. 

Student work demonsttates 
substantial mathematical 
thinIcina and understanding m 
essential mathematical ideas. 
RespolllCll meet moat 
expectations: they are 
basically complete and comc;t 

~ough the work may 
contain minor flaws: and. 
include appropriate 
representations (for example, 
tables. formulae, equations. 
graphs). 

Student work demonsttates 
solid ma~ematical thinking 
&lid full underatandiJIg of 
matbeDtatical ideas. 
Responses tIJIly meet 
expectatioDa: tlley are usually 
com:c:t and complete: and use 
appropriate representations 
(for example, tables, 
formulae. equations. graphs) 
&lid technology. 

SDliII work tlulllIItIY go 
hyond tit. nlJfllrwm.1IU 0/ 
,,"lmi. 

Student work demonstrates 
rigorous mathematical 
~g and in-de~ 
understanding of essential 
mathematical ideas. 
Responses meet and often 
exc:eed expectations: ~ey 
are consistently correct and 
complete, &lid use 
appropriate representations 
(for example, tables, 
formulae. equations. 
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SCORING SCALES FOR THE FOUR OV'l'COMB CATEGORIES FOR M7"l'4GTEACHING UNIT 

Outcome Categorle. Leuell Leuel :l Level 8 

Communication The perfonDlllll:ll TIle COJIIIDIIIIicalion 'lbe performance 
demonstrates a fragmented demoIIstraIes adequate delDOlllttatCS an effective 
orpnization of die project orpnizatiim of the project to organization of the project 
wbidl preven .. tho c:ommuaiI:atD most of tho to communicate the 
c:ommuniratiOll of the . e1emen1ll of the investigation investigation clearly to the 
investip1ion to the readers. . to the readers. Data. results readers. Data. results and 
Data. results and c:oJIGll!liou _ c:oncluaioDa are presented conclusions are clearly 
are presented with minimal or with limited npport. presented and supported. 
no support. 

Mathematical TMperf_ The perf_ The perfOl'lll8llCO 

Conventioll8 demonsuares minimal demonstrates adequate demonstrates a good 
command of tho tOcImo101Y. COIIIIIIIIId of tho tecbnoJ0lY. c:ommand of1lle 
The report of the project are ParIII of the report of the tec:hnoIOlY. The report of 
prepared using lbo minimal project are prepared usina tho project are effectively 
c:apabiliIios of the software. IICIIIIO fimdamontal capabilities prepared using the full 

of the software. capabilities of the software. 

Application and Student domonsttatos minima1 Student demonstrates partial Studont demonstrates a 

Comprehell8ion pup of tbo very basic IIIICIentandinl of some basic general understlllding of 
mathcmalical c:om:cplS 8IId mltbomaric:al c:onocpll of the fundamental 
littlo ovid_ of applying IIIIlIIeIIing and often unablo to mathomatical CODCopCS and 
tbem to other situIIIcmI. Most IPPiY tbem to new situations. applies tbom satisfactorily 
of lbo steps of modelling are Some basic stops of modolling to aimilar situations. Most 
IJIIIInICIUrod, inc:omplote 8IId are partially completed 8IId of the steps of modelling 
solutions to investigations are IOlIl1ioDs to the investigations are adequately c:ompleted 
not undontandlblo or omitted. are simplistic witb minimal. and solutions to tbe 

inc:ousistont. incomplete or no investigations (including 
ap1aDatIODl. Major mon put of tho extensions) are 
distract tho meanings. pnaented with somo 

explanations. Minor mon 
do not distract from the 
moaning. 

Overall Mathematics Doa '"" tIdIin. tllt1 ~ o/IM IlIU; '"" Umlt.d COmplftio1l o/Ib. 

Performance rq ..... Jtto/tIu _i. etIJIflIt.,.", rwfUirnunh a/1M 1tUk. 

Student work demonstrates Student work demonstrates Student work demonstrates 
minimallll8tlleWical limited math_-tical thinking some mathomatic:al thinking 
tbinking 8IId liUlo or DO 8IId littlo llllllerslanding of and partial understanding of 
UIIderstandina of m!dbem'rical ideas. Whilo mathematical ideas. Some 
matbematic:al idoas. ftIPOIIle to IOI1ID basic responses are correct; 
Responses Ibow liIde or no oiemonca are sometimes bowevor. gaps are ovident 
lICCOIIlp1isbmellt of c:orrect. .tndont work afton and representations (for 
matbematlc:al tIIkI. faIIa ilion of providing example. tables. formulae. 

worbblo solutions. equatiODl. graphs) need 
elaboration. 
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SCORING SCALES FOR THE FOUR OUTCOME CA.TEGORIES FOR M7'T4G TEACHING UNIT 

Communication 

Mathematical 
Conventions 

1\ A]~pU.cat.ion and 
Comprehension 

Overall Mathematics 
Performance 

Student demonstrates good 
undentand!ng of the 
mathematical concepts 
involved in the investiptlons. 
AUoftbeapprupriatll 
calculations are shown and 
conclusions and answers to 
que.tioDi are presented in 
clear and ccnrect ways. 

SubltlultilJl cO"'Pktioll nf tlu 
nqutrrm.nII O/IM faSk. 

Student work demonstrates 
basic understanding of 
essential mathematical ideas. 
Responses are usually 
complete and correct although 
the work may contain minor 
flaws; and, Including 
appropriate representatIons 
(tables. formulae. equations. 
wapha). 

Student work demonstrates 
full understanding of essential 
mathematical ideas. 
Responses fully meet 
expectations; they are usuaUy 
cOrTed ~d complete; and 
include appropriate 
representauons (tables. 
formulae. equauons. graphs). 

Solill work that 1IIlI} 110 

""OM tllfl n",lnImflnll 0/ 
thewk. 

Student work demonstrates 
a thorough understanding 
essential mathematical 
ideas. Responses meet and 
often exceed expectations: 
they are consistently correct 
and complete. and have 
include appropriate 
representations (tables, 
fnrmulac. eqWltiODS. 

For the paper-and-pencil tests, there are three levels of difficulty for each Grade 12 course. While 
there will be differences in the specific questions for each course with respect to content, language and 
structure, the descriptions of the three levels are common. 
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LEVEL 1 - 90% of all students should be able to complete the tasks at this level. Students will: 

complete paper-and-pencil manipulative skill work; 
perform routine one-step problems; 
solve problems categorized by type; 
answer questions that require, for example, yes/no, a word, a simple sketch, definition, or a number 
as a response. 

LEVEL 2 - 70% of all students should be able to complete the tasks at this level. Students will: 

solve word problems that involve more than one step; 
use explicitly stated strategies to solve problems within the range of specified mathematical content; 
recognize equivalent representations of the same concept; 
prepare solutions in full and proper form, using the appropriate notation, organizational skills and 
mathematical structure. 

LEVEL 3 - 30% of all students should be able to complete the tasks at this level. Students will: 

solve non-routine problems; 
apply mathematical processes, skills and techniques in novel problem situations; 
connect mathematics to other subjects and to the world outside the classroom; 
present solutions descriptively, numerically, graphically, geometrically, or symbolically selecting 
the most appropriate mode and using rigorous mathematical form, terminology and representations. 

THE SCARBOROUGH CONTEXT 

Every secondary Scarborough school offering Grade 12 mathematics courses participated in the 
Mathematics Review in March-June, 1996. Semestered secondary schools offering mathematics courses 
also participated in the Review in November-January, 1997. For the 1995/96 Mathematics Review, a total 
of23 secondary schools with 80 Grade 12 MAT4A classes, 38 MTT4G classes and 4 MTL4BIMTW4B 
classes, participated. Ninety teachers teaching 122 Grade 12 mathematics courses in 1995/96 were asked 
to administer the review to their students. Seventy-one teachers (79% return rate) teaching 103 classes 
(84% return rate) completed the teacher questionnaires and opportunity-to-Iearn forms (O.T.L.). There 
were 2486 Grade 12 students tested in 1995/96, including all ESLIESD, and Special Education students 
as identified by themselves or their teachers. 

School Characteristics 

The information on schools was collected from the school questionnaires completed by the principal 
or his/her designate. Slightly more than one-half of the principals of Collegiate Institutes (C.I.'s) (return 
rate of 53%) and all principals of Business and Technical Institutes (B.T.I.'s) and High Schools (H.S. 's) 
(return rate of 100%) returned their questionnaires for the 1995/96 Review. Because of the differences 
between C.I.'s and B.T.I.'s and H.S.'s, they were grouped and analysed separately. 

• About three-quarters of the respondents were C.I. principals (76%) and one-fifth were B.T.1. and 
H.S. principals (20%). 

• Slightly more than one-half of the C.I.'s (54%) have almost all of their courses semestered while all 
of the B.T.I.'s and H.S.'s (100%) have almost all their courses semestered. 

• The average total number of students in the C.I.'s (1393 students) was almost three times the 
average total number of students in B.T.I.'s and H.S.'s (495 students). 
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• On average, 12% of the total student population for C.I.'s was classified as ESLIESD and 3% was 
classified as special education students. In the B.T.I.'s and H.S.'s, the average percentage of 
ESLIESD students was 14% and of special education students was 25% of the total student 
population. 

MAT4A 

Levell - Algebra 

Determine if x=213 is 
a root of 3x1-6x-2=0. 

Show your work. 

Level 2 - Trigonometry 

U.ing tan x == al b, find a 
simplified upres.ion for tan 2" 

Level 3 - Logarithms and 
E:x:ponent. 

Solve for x: 

log, 4" 

logl'S" 

SAMPLE lTBMS 
Paper-and-Pencillnstrument. 

Le".ll • Geometry 

Circle the upreB8ion that correctly 
represents the measure of L SRP. 

(AJ 180' - a - b 
(B)a·b-1BO" 
(C)lBO" - a + b 
(D) 1BO" + a - b 

p R 

Le".l2 - Trigonometry 

T 

L1 ABC has sides a, b, e. Solve 
the triangle given 
a = 12 em, b-17 em and 
LC= 120" 

Level 3 - Forctl and Veclors 

The intended destinc#ion {or a 
flight is Sl400 km away from an 
airport. The airspeed of the 
airplane is 660 kml h., and its 
heading NBO"E. A wind of 56 
kml h from the lJOuthecat affects 
the plane'. wlocity. Find the 
arrival time (10 the MG7'8Bt 
minute) iftake-offwastJt 7:85a.m. 

MTL4BIMTW4B 

General Numerac;y 

Using the graph below, estimate the 
monthly car production in Germany 
in 1990. 

•• nlllir Car Product/ •• (1 ••• , 

........ _ • .,....... u.s. 

You and Your Money 

A typical family .pend8 9% of gra •• 
income for transportation-If the 
family's income is $85 000, what is 
the amount spent for transportation? 

Math on the Job 

A kitchen floor 8.B m by 4.7 m will 
be covered with tiles. It takes 16 tile. 
to cover 1 square metre. Find the 
app7'Oldmate number of tile. to cover 
the whole floor. 

A Place of Your Own 

Rent charges .hould not be more 
than 80% of one' •• alary. What 
should be the mtu:imum rent for a 
person making $2600 per montM 
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• More special programs were offered by the B.T.I.'s and H.S.'s than C.I.'s except the French 
ImmersionlExtended French program which was offered by 9% of the C.I.'s but not offered by the 
B.T.I.'s and H.S.'s (0%). 

- About two-fifths of the B.T.l.s and H.S.'s (40%) offered Adult programs while one-quarter of 
the C.I.'s (27%) offered Adult programs. 

- In addition, two-fifths of the B.T.l.s and H.S.'s (40%) offered Booster classes and three-fifths 
of the B. T.I.' s and H.S. ' s (60%) offered special programs to their students compared with about 
one-tenth of the C.I.'s (9%). 

• On average, three times more mathematics sections (Grade 9 to OAC) were offered by the 
Mathematics Department ofC.I.'s (57) than B.T.I.'s and H.S.'s (18) in 1995-96. 

• At the Grade 12 level, the average number of mathematics sections offered by the C.I.'s (22 MA T4A 
courses and 11 MTT4G courses) were ten times more than the sections offered by B.T.I.'s and 
H.S.'s (2 MTT4G courses and 1 MTL4G/MTW4B). 

• There were no MAT4A courses offered by the B.T.I.'s and H.S.'s. 

• The average number of full-time mathematics teachers in the C.I.' s (8) were more than those in the 
B.T.I.'s and H.S.'s (2) which depended more on part-time mathematics teachers (8). 

• The average percent of annual school budget that was allocated to mathematics was 3 % for C.I.' s 
and l%forB.T.I.'s andH.S.'s. 

• School principals estimated that the rate of absenteeism among MA T4A students to be 9% and 
MTT4G/MTB4G students to be 13-14% in all school types. 

• Eighty percent or higher of all students (80% ofC.1. students and 87% ofB.T.I. and H.S. students) 
who initially registered in a grade 12 mathematics course would stay on to successfully complete 
that course. 

• Principals of C.I.'s expected an average of 35% of student graduates would go to community 
colleges and 51% would go to universities. Principals ofB.T.I.'s and H.S.'s expected 11% and 0% 
of their students to follow these respective routes. 

Teacher Characteristics 

Of all the Grade 12 mathematics teachers surveyed, 71 teachers (return rate of 79%) teaching 103 
Grade 12 Mathematics sections returned their completed questionnaires for the 1995/96 Review. 

• Most of the teachers who returned the teacher questionnaires were from C.I.'s (93%). 7% were from 
B.T.I.'s and H.S.'s. 

• More male teachers taught mathematics in the B.T.I.'s and H.S's (75%) than C.I.'s (53%). 

• Most of the teachers teaching Grade 12 mathematics were ones with 20+ years of teaching 
experience (68%). Most of their total teaching experience was gained in teaching mathematics. Only 
5% of the Grade 12 mathematics teachers had between 0 to 5 years of teaching experience. 
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• In the past 10 years, two-thirds of the teachers teaching the MA T4A course had taught this course 
more than 5 times (66%). There was a smaller percentage of teachers teaching the MTT4G course 
(33%) and the MTB4G course (14%) more than 5 times. All of the teachers teaching 
MTW4BIMTL4B had taught these courses (100%) fewer than 5 times. 

• Slightly over three-quarters of the teachers in C.I.'s indicated that they had specialized in 
mathematics in university (77%) while one-half of teachers ofB.T.I.'s and H.S.'s stated that their 
specialization in university was mathematics (50%). 

• Most of the C.I. teachers were qualified in senior division mathematics (83%) and 64% had their 
mathematics specialist. In addition, 23% had a post graduate masters degree, and 18% were 
qualified in computer studies. 

• One-half of the B.T.I. and H.S. teachers were qualified in senior division mathematics (50%), and/or 
had their mathematics specialist (50%). In addition, 50% had post graduate masters degree and 50% 
were qualified in computer studies. 

• About one-quarter of the teachers said that they were members of professional mathematics 
organizations (e.g., SAME 25%, OAME 24% or NCTM 11%).64% ofC.1. teachers and 75% of 
B.T.I. and H.S. teachers belonged to no professional mathematics organization. 

• The three most valuable sources of professional development experiences that C.I. teachers had 
during the past five years were classroom experiences (24%), advice of colleague (22%), and 
Program Department Inservice workshops/seminars (15%). The most valuable sources of 
professional development experiences for B.T.I. and H.S. teachers were Program Department 
Inservice workshops/seminars (25%), school (17%), university (17%), and classroom experience 
(17%). 

Fig. 1 Teacher Training and Challenge 

University Specialization 
• mathematics 76% -.-.. - ... __ • 
• physics 11% 
• biology 6% 
• physical education 6% 
• chemistry 4% 
• business 4% 
Professional Development 

• classroom experiences 23% -.--
• advice of colleague 21% ----
• Program Department workshops/seminara 115% 
• school 99& 
• teacher m~ual and resource binder for texts 8% 
Professional ChalleDge Teaching Mathematics 

• students' lack ofbasic skills 359f> J:-:'-:',,-.-
• student absenteeism. 30'1& r 
• large classes 10'1& 
• studenta' lack of motivation 6% 
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• The greatest professional challenge that all teachers claimed to have in teaching grade 12 
mathematics were students' lack of basic skills (35% for C.1. teachers, 38% for B.T.!. teachers), 
student absenteeism (30% for C.I.teachers, 25% B.T.1. teachers), large classes (10% for C.1. 
teachers, 13% B.T.1. teachers), and lack of computers (&'10 for C.!. teachers,13% B.T.!. teachers). 
In addition, Students' lack of motivation (10%) were other challenges cited by C.I. teachers while 
total teaching workload (13%) were the other challenges facing B.T.!. and H.S. teachers. 

• About one-fifth of the C.1. teachers (21 %) said that they had visited the Mathematics Centre during 
the school year and 15% of the teachers found the resources of value. 

Classroom Charaeteristies 

The information on classroom characteristics was collected from the 103 questionnaires returned 
by the teachers. 

• 96% of the classrooms were in C.I.'s and 4% of the classrooms were in B.T.I.'s and H.S.'s. 

• There were more MAT4A courses (70%) offered by the schools than MTT4GIMTB4G courses 
(30%). 

• Slightly more mathematics courses were semestered (55%) than full year (43%) in C.I.'s. All 
mathematics courses in B.T.I.'s and H.S.'s were semestered (100%). 

• The average number of students in a C.I. mathematics classroom was 21, and in a B.T.1. and H.S. 
mathematics classroom, it was 15. 

• There were similar average numbers of male (12) and female students (11) in C.I. mathematics 
classrooms, and in B.T.!. and H.S. mathematics classrooms (8 male and 7 female students). 

Student Characteristics 

A total of 2284 Grade 12 stu~ts completed the student questionnaires in 1995/96. When 
interpreting the information, readers are cautioned that 98% of the respondents were from C.I.' s (return 
rate of 93%) and 2% fromB.T.I.'s and H.S.'s (return rate of 58%). In fact, none of the students from the 
two MTL4BIMTW4Bcourses returned the student questionnires. 

• Three-quarters of the students from the C.I. 's were taking MA T4A courses (76%) and the remaining 
(24%) were taking MTT4G courses. All students from B.T.I.'s and H.S.'s who completed the 
questionnaires were taking MTT4G courses. 

• 5% of students from C.I. 's (5%) were re-taking a Grade 12 course while 13% of students from 
B.T.I.'s and H.S.'s were re-taking a Grade 12 course. 

• Approximately one-third of the students obtained a grade of 80% or higher in the last math course 
(31 %) they had taken. Two-thirds obtained a grade between 50 and 79% in the last math course 
(66%). 

• 87% of students completed their last math course at a regular Scarborough day school, 6% reported 
earning the credit at a Scarborough summer school, and only 1 % reported earning the credit at night 
school. 
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• 10% of the students had a gap of more than one semester between their last math course and their 
current Grade 12 math course. 

• There were slightly more male students (52%) than female students (48%). 

• 72% of the students from C.l's were born on or after 1978 compared to only 12% of the B.T.I. and 
H.S. students who were born on or after 1978. 

• The average number of years that students had attended secondary schools was 3.8 years. 

• There were more students who said they spoke other languages most often at home taking grade 12 
math courses from the B.T.l's and H.S.'s (56%) than students from C.I.'s (35%). 

• On average, 11% of the C.I. students taking grade 12 mathematics were classified as ESLIESD and 
3% of the students were classified as special education students. In the B.T.I.'s and H.S.'s, the 
average percentage of mathematics students who were classified as being ESLIESD was 27% and 
for those who were special education students, the figure was 3%. 

• A number of the students in the B.T.I.'s and H.S.'s were attending adult classes (19%) compared 
to none in the C.I.'s (0%). 

• 69% of the students watched more than 1 hour of TV programs each day at home. 

• About one-half of the students had a part-time job (46%), with 21 % working between 1 to 1 0 hours 
per week, 18% working 11 to 20 hours and 7% working more than 20 hours. 

• Most C.l students (91%) planned to attend a community college or a university while 1% of 
students from B.T.I.'s and H.S.'s had the same plan. 

CLASSROOM INSTRUCTION AND PRACTICE 

Instructions 

• More than half of the instructional periods for the whole course (average 83 periods) were spent on 
Lecturing/Direct Instruction (57%), while other periods were spent on review for tests or exams 
(11 %), tests (10%), student projects and/or investigations (8%), quizzes (7%) and other (2%) 

• Teachers estimated that during a typical class (average 74 minutes), more time (in minutes) was 
spent on applying the Socratic method (18), followed by helping individual students (17), and taking 
up homework (15). Other time was spent on lecturing (9), supervising group work (9), taking 
attendance and other administrative duties (6) and other (2). 

• Student's term mark -was determined mostly by final/term. exam (33%), unit tests (33%), and quizzes 
(11%). 

• For 46% of the courses, final exams were optional. The grade students had to maintain to get 
exemption ranged from 50% to 70010. 
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• Students from about one-half of the classrooms were assigned less than 1 hour of homework each 
day (53%), 32% were assigned 1-2 hours of homework, while very few were assigned more than 
2 hours of homework every day. 

• The textbooks used by MA T4A classes were Mathematics 12 (30%), Applied Mathematics 12 (2%) 
and others (47%). The textbooks used by MTT4G classes were Math Matters Book 4 (75%), 
Applied Mathematics 12 (6%) and others (13%). 

Use of Technology 

• Over 80% of teachers said that their students used a scientific calculator (83%) in their math class 
almost everyday. About one-half said that their students used a computer (52%) once in a while. 
About one-third of the teachers said that their students never used a computer (30%) and over one
half said their students never used a graphing calculator (57%) in class. 

• On average, there were 29 PC's and 15 Macintosh's available for students' use in each school. 

• The computer programs that teachers found most useful were Zap-A-Graph (53%) and 
ClarisWorkslMicrosoftlPC Spreadsheets (44%). 

• Other resources and/or visual aids that teachers used in their grade 12 mathematics classes were an 
overhead projector (57%), alternate text books (48%), newspapers! magazines (35%), games (21 %) 
and videos (20%). 

STUDENT ATTITUDES TOWARDS MATHEMATICS 

Attitudes towards Mathematics 

• Most students strongly agreed or agreed that they liked mathematics (70%). 

• Students recognized that mathematics helped them with other courses (70%), helped them at work 
(76%), and was an important skill in daily life (86%). 

• About one-half of the students thought they were good at mathematics (56%) or mathematics was 
not difficult for them (48%). 

• A large majority of students strongly agreed or agreed that there was usually more than one way to 
solve a mathematical problem (91%), but the main trouble some students had in solving 
mathematical problems was understanding what the sentences said (40%). 

• The main strategies that students used when they did not understand a problem in mathematics 
included trying different ways on their own (61%), asking another student for help (67%), and 
asking their teacher for help (54%). 

Mathematics Learning 

• In the mathematics class, almost all students said that they listen to the teacher presenting to the 
whole class (89%), used a scientific calculator (87%), and work at solving mathematics problems 
on their own (69%) almost everyday. 
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• In addition, a lot of students said that they wrote quizzes (46%), wrote tenn tests or unit (topic) tests 
(23%), and worked at solving mathematics problems in small groups (20%) once a week in the 
mathematics class. 

• Most students indicated that they used a scientific calculator to help with their mathematics 
homework almost everyday (81%). Very few students said that they used a graphing calculator (3% 
almost everyday, 2% once a week), a computer (2% almost everyday, 3% once a week), or got help 
from someone in their family (7% almost everyday, 10% once a week). 

• On average, two-fifths of the students spent less than 1 hour on mathematics home work each day 
(43%) than between 1-2 hours (39%). Very few students spent more than 2 hours (11%) or never 
spent anytime on homework (6%). 

• About two-fifth~ of the students spent between 1-2 hours to study for a term test in mathematics 
(38%), than less than 1 hour (19%),2-3 hours (24%) or more than 3 hours (14%). 

• Above one-half of the students said that they spent more than 3 hours studying for an exam in 
mathematics (52%), with fewer students spending between 2-3 hours (22%), between 1-2 hours 
(17%) or less than 1 hour (7%). 

Fig. 2 Mathematics Learning 

In Your Math Class, how often do you: AlmW ~ 
Evervdu: lYeI:k 

• listen to your teachinc preaenting to the whole cilllll! 89')f, 4$ 

• uae a aei.entific calculator 87$ 

• work at aolvm, mathematics problema on your 0WJ1 69$ 15$ 

• write quizzea 12$ 46$ 

• work at lolvine mathematics problems in small group 15$ 20'l1! 

• write term teste or unit (topic) tests 5$ 23$ 

• do mathematics in &ont of the whole ciIIlII!? 12$ 18$ 

• UIIe a computer K 7$ 

• work on mathematics projec:t.s 6'J& 9% 

• uae a pphing calcu1ator 8'1& 2'l& 

LEARNING MATHEMATICS IN SCHOOL AND ATTITUDES TOWARDS THE COURSE 

• When students were jiSked about how they would like to learn mathematics in school, most preferred 
to listen to the teacher (81%), followed by to work on mathematics problems from textbooks (60%), 
to solve mathematics problems in small groups (48%), and to read from textbooks (40%). 

• About two-fifths of the students from C.l's felt that the mathematics course this year was just right 
for them (40%), slightly more students found the course difficult or very difficult (42%), and fewer 
students found it easy or very easy (17%). 
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• About two-fifths of the students from B.T.l's and H.S.'s who found the mathematics course this 
year easy or very easy (38%), about one-third of the students found it just right for them (34%), and 
fewer students found the course difficult or very difficult (27%). 

STUDENT AClBEVEMENT 

The achievement of students in mathematics were evaluated by grading demonstrated performance 
on a two-week assessment unit and paper-and-pencil test items that covered the core content areas 
articulated in the 08:18 Guidelines/or Mathematics (1985). 

Achievement at the MA T4A Level 

Teaching Unit 

The focus of the teaching unit was on mathematical modelling to elicit appropriate information and 
to make relevant predictions for future events. The completion rate of the exercises and quizzes included 
in the teaching unit was between 83% and 98%. 

Student achievement in the teaching unit was measured against holistic scoring scales developed by 
Scarborough educators for four outcome categories communication, technology, mathematics applications 
and overall mathematics performance (See figure 3). 

All students are expected to achieve at level 2 and higher in the categories communication and 
technology. Students are expected to achieve level 3 and higher in mathematics applications. In the 
category overall mathematics performance, students are expected to achieve level 4 and higher. 

Fig. 3 Summary Student Achievement for MAT4A Teaching Unit 

Oaleo".. CaI4I~ ~tHlLe".' BiRherLevel 

Communication Leuel2+ Level 3 
74% 21% 

Tech.nolo6Y LerJel2+ LerJel3 
83% 11% 

Mathemo.tica Applications LerJel3+ LerJel4 
39% 14% 

Overall Mathe1l1Glic3 Per{oT7TU1.ncB Lew14+ Level 5+ 
38% 1% 

• Approximately three-quarters of the students achieved level 2 and higher (74%) and one-fifth of the 
students achieved level 3 (21%) in communication. 

• Most students performed at level 2 and higher (83%) in the technology category but only 11 % of 
the students performed at level 3. 

• Close to two-fifths of the students achieved level 3 and higher (39%) and 14% attained level 4 in 
the category mathematics applications. 
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• In the overall mathematics performance category, 33% of the students achieved level 4 and higher 
while 7% achieved level 5 and higher. 

Paper-and-Pencil Test 

A variety of question types were included which required students to solve problems and provide 
full solutions in the five core content areas: algebra, logarithms and exponents, the algebra of junctions, 
trigonometry and cumulative numeracy. 

Achievement 

• Over one-half of the students correctly answered the level 1 items (56%) on Algebra and about one
third of the students (30%) correctly completed the level 2 items. One-seventh of the students were 
able to provide partially correct answers to both level 1 (14%) and 2 items (15%). 

• For the items on Logarithms and Exponents, more than three-fifths of the students were able to 
answer the level 1 questions (62%) and 6% more gave partially correct answers. Slightly more than 
one-quarter of the students were able to answer the level 2 questions (28%) and another 10% were 
able to give partially correct answers. 

• Close to one-half of the students accurately answered the level 1 items (48%) on Algebra of 
Functions and another 10% of the students were able to complete the questions partially. About one
third provided correct answers to the level 2 items (30%) while an additional 12% provided partial 
solutions. 

• Slightly less than one-half of the students correctly answered the level 1 items (47%) on 
Trigonometric Functions and another 16% gave partial answers to the questions. More than one
quarter of the students (27%) correctly answered the level 2 items and another 7% of the students 
gave partial solutions to the items. 

• Cumulative Numeracy items included basic numeracy skills accumulated through the lower grades. 
Fewer than one-half of the students correctly answered the level 1 items (44%) and 3% more 
provided partial solutions. About one-third of the students answered the level 2 items (31%) and 
another 9% of the students answered these items partially. 

• Only 10% of the students were able to complete the, level 3 items of all strands accurately and 
another 5% provided partial solutions to the questions. 

Opportunity-to-Learn the Paper-and-Pencil Items 

• Fewer than one-half of the teachers said that they had taught or reviewed the content of the Algebra 
items in the year of the review (34% for level 1 items and 48% for level 2 items). Close to one-half 
of the items were cQnsidered prerequisites for grade 12. 

• The content area of Logarithms and Exponents was well addressed by most of the teachers in the 
year of the review (88% for level 1 items and 77% for level 2 items). About 10% of the items were 
assumed prerequisites for grade 12 by the teachers. 

• In the content area Algebra of Functions, more than one-half of the teachers said that they had taught 
or reviewed the level 1 items (55%) and slightly more teachers said that they had taught or reviewed 
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the level 2 items (68%). 26% of the level 1 items and 11 % of the level 2 items were considered 
prerequisites for grade 12 by the teachers. 

• The content area of Trigonometry was addressed by more than 80% of the teachers (82% for level 
1 and 81% for level 2 items). Less than 10% of the items were prerequisites for grade 12. 

• Very few teachers reviewed the items in Cumulative Numeracy (3% levell, 18% level 2). 80% and 
more of the items were assumed prerequisites for grade 12. 

• Slightly more than one-third of the level 3 items (35%) of all of the strands were addressed by the 
teachers and 21 % of the items were considered prerequisites for grade 12. 

Fig. 4 Summary Student Achievement MAT4A Paper-and-pencil Test 

Category Correctly or Cometly Opportunity-to-Learn 
(hpeoted performllDoe) Partially ADawered <Taushtor (Auumed 

Anawered reviewed) Prerequisites) 

Algebra 

· Levell (90%) 70% 56'lf1 34'lf1 64'lf1 

· Level 2 (70%) 46% 30% 484)(. 48% 

LoBarithma and E:CPOnsntB 

· Levell (90%) 68% 62'lf1 88% 11% 

· Level 2 (70%) sa% 28% 77% l2% 

Algebra ofFunctio1lll , Levell (90%) 58% 48% 55% 26% 
• Leve12 (70%) 42% 80% 68% 11% 

Trigonometric Funetio1lll 

· Levell (90%) 68% 47% 82% 9% 
• Leval2 (70%) 34% 27% 81% 6% 

Cumulative NWfUlrac;y 

· Levall (90%) 47% 44% 3% 87% 
• Level 2 (70%) 40% S1'lf1 18% 79% 

AlIStranda 

· Level 3 (30%) 16% 10% 35% 21% 

ACHIEVEMENT AT THE MTT4GIMTB4G LEVEL 

Teaching Unit 

The focus of the general level teaching unit was the Stock Market. This unit actively involved 
students in the tracking of stock prices from newspapers and then creating charts and graphs to track the 
stocks. 

All students are expected to achieve at level 2 and higher in the categories communication and 
mathematics conventions. Students are expected to perform at level 3 and higher for mathematics 
applications. In the category overall mathematics performance, students are expected to achieve level 4 
and higher. 

• Two-thirds of the students achieved level 2 and higher (65%) and one-sixth of the students achieved 
level 3 (16%) in communication. 
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• Over 80% of the students perfonned at level 2 and higher (83%) in the mathematics conventions 
category and 34% of the students perfonned at level 3. 

• Slightly less than two-fifths of the students achieved level 3 and higher (39%) in the category 
mathematics applications ehile very few students attained level 4 (9%). 

• In overall mathematics performance, 25% of the students achieved level 4 and higher while 2% 
achieved level 5 and higher. 

Fig. 5 Summary Student Achievement for MTT4GIMTB4G Teaching Unit 

Outcome CalI!1I0ria -" LeD.I Hittlter LeD.I 

Communication Level 2+ Level 3 
66'if1 IB'ifI 

Mathematic. Conventions Leue12+ LevelS 
83'if1 34'if1 

MatheT1ll1.tb ApplicGtionI LeveIS+ Level 4 
39'if1 9'ifI 

Ouerall MatheT1ll1.m. Performance Level 4+ Level 6+ 
25% 3'ifI 

Paper-and-Pencil Test 

A variety of question types were included that required students to solve problems and provide full 
solutions in the four core content areas: Numerical and Algebraic Methods, Geometry, Trigonometry and 
Forces and Vectors. 

Achievement 

Overall, less than 40% of the students gave correct or partially correct answers to the questions in 
all four content areas tested. 

• The highest achievement was in Numerical and Algebraic Methods where more than one-third of 
the students were able to give correct (30%) or partially correct (7%) solutions to the level 1 items. 
Slightly lower percentage of students gave correct (23%) or partially correct (9%) solutions to the 
level 2 items. 

• Slightly more than one-quarter of the students answered the level 1 items in Geometry correctly 
(22%) or partially correctly (5%). Close to one-quarter of the students answered the level 2 items 
correctly (14%) or partially correctly (9%). 

• The percentage of students who could answer the level 1 Trigonometry items was 29% (24% 
correctly, 5% partially correctly) and 23% for the level 2 items (15% correctly, 8% partially 
correctly). 
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• About one-quarter of the students answered the levell items in Forces and Vectors correctly (19%) 
or partially correctly (5%) while less than one-sixth answered the level 2 items correctly (7%) and 
partially correctly (7%). 

• Very few students could answer the level 3 items of all strands (3% correctly, 4% partially 
correctly). 

Opportunity-to-Learn the Paper-and-Pencil Items 

• Approximately one-half of the teachers claimed that they had taught or reviewed the items in 
Numerical and Algebraic Methods (42% for levell and 52% for level 2). Many teachers assumed 
these items were prerequisites for the course (56% level 1 and 32% level 2). 

• Similar percentage of teachers said that they had taught the items in Geometry (44% for levell and 
43% for level 2). About one-third of the items were considered prerequisites (35% levell and 29% 
level 2). 

• The content area of Trigonometry was covered by most of the teachers. About 80% of the teachers 
said that they had taught or reviewed the levell (83%) and level 2 items (76%). 

• Slightly more than one-half of the teachers said that they had taught or reviewed the items in Forces 
and Vectors (54% for levell and 55% for level 2). 

• Slightly more than one-half of the teachers said that they had taught or reviewed the level 3 items 
in all of the strands (53%) in the year of the review. 

Fig. 6 Summary Student Achievement MTT4GIMTB4G Paper-and-pencil Test 

CateFr7 Correctly or Correc&ly OpportUDi'Y •• Learn 
(Ezpeeted Perl_) Partiall:r ADa_red (Tauptor <Aaum.ad 

ADawencl reviewed) Prel'eq1l1a1te) 

Numerical and Algebraic Methods 
• Levell (90%) 37% 30% 42% 56% 
• Level 2 (70%) 32% 23% 52% 32% 

Geometry 
• Levell (90%) 27% 22% 44% 35% 
• Level 2 (70%) 23% 14% 43% 29% 

Trigonometry 
• Levell (90%) 29% 24% 83% 6% 
• Level 2 (70%) 23% 15% 76% 4% 

Forces and Vectors 
• Levell (90%) 24% 19% 54% 8% 
• Level 2 (70%) 14% 7% 55% 7% 

AllStrand.s 
• Level 3 (30%) 7% 3% 53% 8% 

AcmEVEMENT AT THE MTL4BIMTW4B LEVEL 
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Teaching Unit 

The focus of the basic level teaching unit was on Percentages and Interest Rates. Students were 
given step-by-step instructions to solve problems related to the handling of money using everyday life 
examples. Included in the two-week teaching units were exercises, quizzes and two unit tests. 

• The items included in Unit Test #1 were simple problems involving percentages, decimals and 
fractions; 52% of the students correctly answered the items and 15% gave partial solutions to the 
items. 

• There were more word problems and more complex calculations involving fractions, decimals or 
percents in Unit Test #2; 26% of the students provided correct answers and 20% provided partial 
answers to the questions. 

Paper-and-pencil Test 

Achievement 

In the paper-and-pencil test, student performance in the content areas tested was 33% in You and 
Your Money, 30% in General Numeracy , 28% in A Place o/Your Own and 25% in Math on the Job. No 
students were able to complete any of the level 3 items (0%). 

Opportunity-to-Learn the Paper-and-Pencil Items 

• Teachers said that they taught or reviewed 31 % of the items on General Numeracy. 20% of the items 
were considered prerequisites for grade 12. 

• Most of the items in You and Your Money (69%), Math on the Job (71%), and A Place of Your 
Own (74%) were taught or reviewed by the teachers. Some of the items were assumed pre-requisities 
for the course. 

• All of the level 3 items for all strands were not taught or reviewed. 

Fig. 7 Summary Student Achievement MTL4BIMTW4B Paper-and-Pencil Test 

C_tepn-y Correctly Au8wered OpportuDity·to-Learn 
(Ezpected Perf __ oe) a_qht <As_ed 

or reviewed) Prerequillite) 

General Numeracy 
• Levell (90%) 8()'J1, 31% 20% 

You and Your Mons:JI 

· Levell (90'1&) 33'1& 69% 23% 

Math on the Job 

· Levell (90%) 25% 71% 10% 

A Place o/Your Own 

· Levell (90%) 28% 74% 5% 

AllStrrmds 

· Level 3 (30'1&) 0% 0'1& ()'JI, 
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CONCLUSIONS 

The Grade 12 Review of Mathematics has provided a rich body of empirical data that will enable 
Scarborough's mathematics educators to make informed and reflective decisions about future directions 
with respect to the continuation and implementation of the sound pedagogical requirements and process 
components specified in both the OS:IS Guidelines for Mathematics (J 985) and the NCTM Curriculum 
and Evaluation Standards for School Mathematics (1995). 

When interpreting the findings, it must be recognized that this was the fIrst time that mathematics 
teachers from the secondary panel has been involved in a performance-based, holistically-scored review 
of mathematics. The process, the format and the outcome categories assessed in the Teaching Unit were 
new for everyone involved, from the Research and Program staff, to teachers and students. 

In assessing the Advanced-level (MAT4A) and the General-level (MTT4GIMTB4G) Teaching 
Units, the Mathematics outcomes were grouped into the following four reporting categories: 

Reportinl Catelories for Teachinl Unit 
Communicating 
TechnologylMathematics Conventions 
Mathematics Applications 
Overall Mathematics Performance 

Expected Performance Level 
Level 2+ 
Level 2+ 
Level 3+ 
Level 4+ 

Student achievement in the MAT4A Teaching unit was highest in technology (83% at level 2+), 
followed by communication (74% at level 2+), mathematics applications (39% at level 3+), and overall 
mathematics performance (33% at level 4+). 

In the MTT4GIMTB4G Teaching unit, students performed well in mathematics conventions (83% 
at level 2+), followed by communication (65% at level 2+), mathematics applications (39% at level 3+), 
and overall mathematics performance (25% at level 4+). 

In all three of the paper-and-pencil tests, the core content areas from the OS:IS Guidelines and the 
mathematics course descriptions from most Scarborough schools were included. It was expected that 
almost all (90%) of the students would correctly answer all level 1 questions; 70% would answer the level 

. 2 questions and 30% would solve the level 3 items. 

In the MAT4A Paper-and-pencil test, about 70% of the level 1 items in Algebra (70%) and 
Logarithms and Exponents (68%) were correctly or partially correctly answered by students. About 60% 
of the Levell items in Algebra of Functions (58%) and Trigonometric Functions (63%) were answered 
correctly or partially correctly. About one-half of the students provided partial or correct answers to the 
Levell items in Cumulative Numeracy (47%). Level 2 items in all of the strands were answered correctly 
or partially correctly by more than one-third of the students. 15% of the students provided correct or 
partial answers to the level 3 items of all strands. 

The information collected from the Teacher Opportunity-to-Learn forms indicated that there were 
gaps in the coverage of the paper and pencil test items. MAT4A teachers addressed most of the paper-and
pencil items in Logarithms and Exponents (88% for levell, 77% for level 2) and Trigonometry (82% for 
levell, 81% for level 2). The coverage of items was lower in Algebra of Functions (55% for levell, 68% 
for level 2) and Algebra (34% for levell, 48% for level 2). Very few teachers reviewed the items in 
Cumulative Numeracy (3% for levell, 18% for level 2). Level 3 items of all strands were taught or 
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reviewed by one-third of the teachers (35%). About 80% of the items in Cumulative Numeracy and 50% 
of the items in Algebra wer~ considered prerequisites for Grade 12 by the teachers. 

Student achievement in the General Level MTT4GIMTB4G Paper-and-pencil test items was much 
lower. One-third of the students answered the level 1 items in Numerical and Algebraic Methods (37%) 
and Trigonometry (29%) correctly or partially correctly. About one-quarter of the students were able to 
complete the level 1 items in Geometry (27%) and Forces and Vectors (24%) correctly or partially 
correctly. 14% to 32% of the students could complete the level 2 items in all strands correctly and 
partially correctly. 7% of the students were able to complete the level 3 items in all strands correctly or 
partially correctly. 

The information collected from the Teacher Opportunity-to-Learn forms indicated that there were 
large gaps in the coverage of the paper and pencil test items at the General level. MTT4GIMTB4G 
teachers reported that they reviewed most of the test items in Trigonometry (83% for level 1 items and 
76% for level 2). However, the other content areas were taught or reviewed by about one-half of the 
teachers (42-55%). About 40% of the items in Numerical and Algebraic Methods and 30% of the items 
in Geometry were considered prerequisites for the course by the teachers. 

In the Basic Level MTL4BIMTW4B Paper-and-pencil test, about one-third or fewer of the level 1 
items were correctly answered by students (25-33%). None of the students were able to complete the level 
3 items (0%) of all strands. Teachers teaching the MTL4BIMTW4B courses indicated on the opportunity
to-learn forms that they addressed or reviewed about 70% of the level 1 items in all content areas except 
General Numeracy (31 %). They reported that none of the level 3 items were addressed in the basic level 
course. About 20% of the items in General Numeracy and You and Your Money were considered 
prerequisites for the course by the teachers. 

Responses from the Teacher Questionnaire indicated that 76% of the teachers had mathematics 
specialization in university, 83% of the C.I. teachers were qualified in senior division mathematics with 
64% holding specialist qualifications. 63% of the teachers did not belong to a professional mathematics 
organization. The valuable sources of professional development experiences cited by teachers were 
"classroom experiences" (23%), "advice of a colleague" (21%) and "Program Department work
shops/seminars" (15%). Findings from questionnaires on classroom instruction and practice showed that 
for 46% of the classes, fmal exams were optional provided that students maintained average grades 
ranging from 50% to 70%. In addition, students from over one-half of the classrooms were assigned less 
than 1 hour of homework in mathematics each day (53%). 43% of the students reported that they did less 
than one hour of home work per day. 

Findings from the Student Questionnaire showed that 31 % of the students earned grades above 80% 
in their last mathematics course and 66% received grades between 50 and 79%. Despite this, 35% of the 
grade 12 teachers cited "students' lack of basic skills" as a professional challenge in teaching 
mathematics. About three-quarters of the students indicated that they liked mathematics (70%) and higher 
percentages of students recognized that "mathematics is an important skill in daily life" (86%), 
"mathematics will help m~ at work" (76%) and "mathematics help with other courses at school" (70%). 
40% of the students found that the main trouble they had in solving mathematical problems was 
"understanding what the sentences said". There were over one-third of the C.I. students (35%) and one
halfofB.T.I. and H.S. students (56%) who said that they "spoke other languages at home". 11% ofC.1. 
students and 27% ofB.T.1. and H.S. students were ESLIESD students. 

The findings of the Mathematics Review clearly suggest that student achievement was higher when 
they were given opportwiities to work on applications to solve real life problems in non-traditional 
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instructional settings (i.e., in the teaching unit) as compared to the paper-and-pencil tests. Most of the 
students possessed the technical/computer skills and analytical skills necessary to tackle the challenging 
problems/activities in the teaching units. The findings reinforce the direction that, "the learning of 
mathematics should be guided by the search to answer questions - frrst, at an intuition, empirical level; 
then by generalization; and finally by justification (proot)" as stated in the NCTM Curriculum and 
Evaluation Standards. 

The findings reaffirm that Mathematics in Secondary schools is in need of realignment with the 
OS:IS Guidelines and the NCTM Standards. Furthermore, the Review findings and the recommendations 
they elicit, reinforce the need to apply and extend the style of mathematics education currently being 
required by the Common Curriculum: Mathematics Standards K-9 to the specialization years program. 
The issues related to curriculum, classroom instruction and practice as well as the relationships between 
summative assessment and retention of skills and knowledge will be addressed in the Action Plan. The 
Action Plan will also identify areas where we should place emphasis in the planning of curriculum, 
allocation of resources and professional development. The availability of such rich baseline data about 
the elements directly affecting mathematics teaching and learning will enable the Mathematics Division 
of the Program Department to work with schools, Mathematics Heads and teachers in a creative and 
collaborative manner in order to improve mathematics education in Scarborough. 
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Ad Hoc Session 10 

TEACHING OF GRAPH THEORY FOR HIGH SCHOOL AND COLLEGE 

I BACKGROUND 

Abraham Bar-Shlomo Turgman 
Hebrew University, Jerusalem 

Graph Theory-Development and Characteristics 

Graph Theory began in the year 1736, with an article by L. Euler that discussed "The Koenigsberg 
bridge problem" (Fujii [5], p. 1). After about a one hundred year break, the theory was revived due to 
problems in the field of science, like electricity networks (Kirchoff, 1847 [6], p. 3), chemical isomers 
(Cayley, 1857 [6], p. 5), the/our colors problem that was presented by De-Morgan in 1850, as well as 
additional problems that were translated and presented in terms of graph theory (Harary [6], p. 2-4). 

In the last half-century, development of the theory has accelerated in various fields, mathematical 
and non-mathematical, in research areas, and practical areas. For example, Operations Research, Linear 
Programming, Computer Science, Networks, Transportation, Communications, Economics, and much 
more (for detailed examples see section A.5, Chapter A, in Turgman (1996) [13]). 

Graph theory is considered to be an elegant branch of mathematics, which is easy to learn, based on 
few principles, not requiring previous mathematical knowledge, and having many practical applications 
(see for example H.N.V. Temperly's book [12]). These characteristics of graph theory, the recommenda
tions of The Committee on Undergraduate Math Programs (CUPM) [4] and many others, convinced us 
to develop a new systematic course on graph theory for high school. 

But in fact there is no course like this, and all the existent material deals on puzzles and games like 
the bridge problem, the problems of the knight piece on the chess board and drawing using a single line 
(see the chapter "What Is Mathematics?" in Tamur [10], and Fujii, [5]), the booklet "Graphs, Polytops 
and Maps" [1] by A. Altshuler, which, according to him, is made for 10-12 meetings of youth activity 
groups. Even the book "Graphs and Their Uses" by O. Ore [8] is designed for excelling high school 
students. No written work, including the above, was accompanied by systematic research, which included 
experimentation and assessment in the field, at different leaming levels. (In Israel there are 3 levels called 
- 3 units, 4 units and 5 units). Among the reasons for this are: 

a. Students spend very little time on systematic proofs of geometry or induction. 

b. Important theorems on graph theory which are in university textbooks rely on ability to prove, 
that the high school student doesn't have. 

c. Theorems in university textbooks rely on knowledge and tools that the high school student 
doesn't have. 
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II GENERAL VIEW OF THE RESEARCH 

Some Goals of the Research 

We have constructed a course in graph theory for the high school level, which is "an integration of 
new subject and new teaching method"--one of the characteristics of researches of science teaching by 
P. Tamir ([11] p. 250). Its aims are: 

a. Development and writing a course in graph theory, with an emphasis on the practical 
aspect-graph theory as a mathematical model for high school students at the 3, 4 and 5 levels. 

b. Testing the program by Formative and Summative evaluation in the field ( M. Scriven in [7]) 
so that the following questions will be answered: Can graph theory be taught? To what level of 
depth and of understanding is it possible or desirable to reach? Is it possible to do so within a 
reasonable time frame? 

c. Based on the results, to suggest a syllabus and teaching styles for an elective course, with 
objectives, subjects and teaching methods. 

d. To be aware of typical mistakes in learning the theory and difficulties in teaching it. 

e. To check iflearning this theory has an influence on the student's achievements in problem 
solving and his attitude towards learning mathematics. 

f. To check learning achievements. 

The Population of the Research 

During the research we used several kinds of populations for any stage as follows: 

1. Preliminary Experiments - two years 

The Length of 
The Experience N Population Experiment 

Advanced study for teachers, Tel- 40 Teachers ofJunior two days 
Aviv University High School (8 hours) 
High School in Ofakim 18 Pupils of 11 th 40 hours 

grade (2 hours/week) 
Youth Science Center 25 Pupils of 7 -9th academic year 
lst year Uni. of Jerusalem grade (2 hours/week) 
Youth Science Center 17 Pupils of 9-11 th academic year 
2nd year, Uni. of Jerusalem grade (2 hours/week) 
Seminar at Tel- Aviv University 25 Academic staff in one day 

science teachin~ 
total 125 
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2. Main Experiments - two years 

. 
Institution of Mark Kind of Class 

Learning Group Class Level N 
First year Kfar Maymon High 4-5 

School. 6 hours/week A 11th grade points 14 
First year Sapir College, Pre-Academic-

6 hours/week B Humanities 3 points 32 
Second year KfarMaymon 11th grade 4-5 

6 hours/week C points 20 
Second year Sapir College Pre-Academic-

2 hours/week D Humanities 3 points 25 
Second year Sapir College Pre-Academic-

2 hours/week E Natural Science 4 points 16 
Second year Sapir College Pre-Academic -

2 hours/week F Exact Science 5 Jl_oints 16 
total 6~o~s 123~~ls 

3. Control Classes (High School, All levels, Two years) 

1. Sapir College: 
2. Kfar-Maymon: 
3. Ashdod City: 
The total number: 

2 classes (each year) 
1 class (each year) 

2 classes (each year) 
193 pupils. 

4. Other groups - (after the main experiment) 

Institution of The 
Learning N Population 

Weizman Institute of 15 Youth Activity 
science - Rehovot Group 
Tel-Aviv University 20 Youth Activity 

Group 
Levinsky College, 35 Students College 
Tel-Aviv for Elem. School 
Levinsky College, 10 Students College 
Tel-Aviv for Junior Hi~ S. 
High School of 50 Student of 
Technoloav. Jerusalem Engineering 

Some Main Results of the Research 

We believe that: 

Length of The 
Experiment teacher 

One academic year Eran 
(2 hours/wee~ 
One academic year Dr. Shemer 
~ hours/weekl 
One academic year A Turgman 
[2 hourslweek) 
One acadm.nic year A Turgman 
(2 hours/week) 
One academic year Jonathan 
(2 hours/week) Stoop 
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1. This research showed how it is possible to lower the level of an important, interesting and 
practical subject, to the level of high school. 

2. Learning this subject improves students' attitudes towards the disciplinary sciences. 

3. Learning this subject strengthens a student's ability to build models and realistic practical 
situations. 

The Course and its Teaching Aims 

Because graph theory has a very wide scope that certainly cannot be covered in the framework of 
a high school course, and other considerations- mathematical, didactic, the nature of the topics, and 
more, we chose subjects that covered various aspects of the theory and principles of its foundation. 
Subjects that have a variety of applications, such as puzzles and games. Subjects that can be explained 
to and practiced by high school students. These are the topics that were decided upon by the end of the 
project (see [15]): 

a. Definitions, Examples and Basic Concepts - First meeting for the student with Graph Theory. 

b. Paths and Circuits on Graph - Systematic discussion on the subjects: paths, connectivity and 
circuits (including Eulerian graphs and Hamiltonian graphs). 

c. Trees - Definitions and basic properties, including spanning tree and optimal tree. 

d. Networks - Discussion on directed graphs, shortest path, the One-way Street Problem, flows in 
networks and the Min-max Theorem. 

e. Puzzles, Games and Graph Theory - Description of 7 puzzles and games, translating each of 
them to a graphic model, analysis each one and finding all the mathematical solutions by graph 
theory. 

The Teaching Aims of the Course 

Students who will learn the course will: 

1. Know basic concepts and theorems of the theory in various topics. 

2. Can solve non complicated problems connected to Graph Theory. 

3. Know what is a mathematical-graphic model, its roles and applications. 

4. Can translate practical problems to graphic model. 

5 Can apply graph theory in problem solving. 

6 Be familiar with mathematical discipline which has practical applications in various subjects. 

7. Have enjoyable learning. 

ill DESCRIPTION OF THE THESIS AND SOME RESULTS 
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The flow chart (next page) describes the research step- by- step from the preliminary experiments 
until the final conclusions. Below is a brief description of the work (For details, see "Turgman, Chapters 
A and B [13]). 

A. Introduction - General background of graph theory and its importance to high school. 

B. The Methodology - Characteristic of researches in science teaching and description of the stages of 
the work; preliminary experiments, the syllabus of the course, the main experiments, the textbook, 
the summaries of the research, the results and conclusions. 

C. The Preliminary Experiments - Full report of each experiment (see [14] appendix 1.0) 

D. The Main Experiments - The framework of the experiments, their stages, their characterizations and 
the populations of the research. 

Each one of the next four chapters (E, F, G, H), which discuss the chapters of the course (see [15] 
the textbook), has the same structure with four stages as follows: 

1. Description of the chapter - Review of the new concepts, the theorems and the exercises. 

2. The Teaching - Mathematical and didactic analysis of the topics in the chapter with emphasis 
of new proofs, special examples or exercises et ceteras. 

3. The Exercises - Analysis and review of the exercises including goals (according to Bloom [2], 
Tamir [10] and Chohen [3]). 

4. The Learning Achievements - Analysis of the examinations, representation of the results, 
summary, conclusions and recommendations. 

Some of the results in each of the four mentioned preceding chapters are presented here: 

E. Graphs - Defmitions, examples and basic concepts (see Table 1). 

1. The concepts - Planar graph and isomorphic graphs were found out to be difficult concepts 
especially for 3 units students. However, the checking of "if given graphs are isomorphic or are 
planar" was found to be difficult even for 4 and 5 units students. Therefore we recommend to 
deal only with the concepts and simple examples. 

2. Theorem A.2 and its proof are an example of our method of teaching and representation that 
doesn't exist in literature, and which is our contribution to the research. ([13], p. E-14) 

3. The students understood well the concepts and the various types of graphs (Table 1). 

4. The achievements of the 4 and 5 units students were better, especially in solving problems. ([13], 
p. E-14 and Table 2) 

F. Paths and Circuits on Graphs (see Table 2). 
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Tl'uching of Graph Theory - Flow Chart of the Research 

( ... PreIImiDary Esperimeotl I 
.- I -+ 

( Youtb Science Center, I ) (Higb School, ll-tb Class) ( Teachers Groups) 

( Prellmiaary Evaluation + CoJJJUltatiool ) 

-- -+ 
( Youth Science Center, II ) ( First Textbook ) 

( 11m Main Esperiment - Start ) 

3 Point Class, 1 HourlWeek 

( Acbievemeat Test ) __ -t(.:B::agrat::~(Fin=a1:!.) :Enm=i:Oati:·:::on:,), ___ ~===,::=:..I 

1 
( Formative Evaluation )---L.::::::=::;===~I-------t.:==:..J 

( Summa". Conchuionl "Recommendationl + Textbook l-nd Edition) 
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Table I 

ACHIEVEMENTS 
Chapter A: The Average Success Rate. 
I I I I 

I IV II I II I I I N I 
I Prob- I ITypes of IConc- I I 
I lems I True or Falsel Graphs lepts I IPopulationl 

I I I I I I I 
I 78.7 I 80 I 90.6 I 98 I 141 A (4-5) I 

I I I I I I I 
I 77.36 I 80.8 I 83 I 96.8 I 321 B (3) I 

I I I I I I I 
I 86.5 I 89.5 I 94.5 I 86.661 201 C (4-5) I 

I I I I I I I 
I 78.87 I 78.8 I 77.691 82.4 I 221 ° (3) I 
I I I I I I I 
I 77.75 I 42.91 I 79.2 I 89.2 I 401 E-F(4-5) I 

I I I I I I I 
I 80'23 I 82·4 I 84'9 I 90'6 11281All Groups I 

Table 2 

Chapter B: The Average Success Rate. 
I -I 

IV III II I I N I 
Problems ITrue or Falsel Theorems I Concepts I IPopulationl 

I - I I I I I 
93.5 I 88.74 I 91.02 I 91·67 I 34IPoi.4-5-ACI 

J I I I I I 
86'4 I 78.09 I 86·65 I 94.44 I 54lpoi. 3 -BOI 

I I I I I I 
86'75 I 83.42 I 88·83 I 93.05 I 881 All -ABCOI 

- I 
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This chapter contains 14 theorems which represented and proved in different ways than those of the 
academic textbooks that don't fit the high school students (see for example Theorem B.2 [13] p. F-12 and 
Peterson Graph p. F-50). The chapter includes also nearly 100 exercises. In fact we have needed more 
hours for teaching this chapter than we had conjectured. Below we list some of the results: 

1. This chapter helped very much to understand the concepts of models and .mathematical models. 

2. The students at all levels understood very well the topics paths, connectivity and circuits as well 
as the Eulerian graphs. But, some of the proofs on optimal circuit and on the Hamiltonian 
graphs (Dirac Theorem) were difficult even for the 5 units students. 

3. More than 90% of the students understood well all the concepts (Table 2). 

4. Some of the theorems were difficult (only 71% proved them completely). 

5. The achievements of the 4 and 5 units students on solving problems were much better than those 
of the others. The same was found in the College classes. 

G. Trees (see Table 3). 

In this chapter the student meets with an important branch of graph theory, including nine theorems 

and algorithms. Teaching this chapter showed: 
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1. All the concepts were understood very well by all the students, therefore, we stopped checking 

concepts in the next chapter (Table 3). 

2. In spite of the difference in the examinations, the achievements of the 4 and 5 units students 
were better than those of the 3 units students (Table 3). 

3. Some of the proofs were difficult and unnecessary for the understanding of the chapter (Table 
3). Therefore, we recommend omitting them from the course, especially for the 3 units students. 
For example, Cayley's Formula: The number marked spanning trees ofKn is nn-2. 

Table 3 

Chapter C Trees: The Average Success rate. 
r 

I IV I III II I I I 
I I True or N I Popul- I 
I Problems I False I Theorems I Concepts I I ation I 
I I I I I I I 
I 95.1 I 87.4 I 95.7 I 96.3 I 32 I AC I 
I I I I I I I 
I 83.8 I 87 I 72.1 I 87.6 I 54 I 8D I 
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H. Networks, Games and Puzzles (see Table 4). 

1. In this chapter we discussed two chapters (D,E of the textbook [15]) of the course. Because of 
the restriction on the outline of the PhD work, and because of the outline of the course the full 
discussion on these topics was moved to [14] Appendix 2.0. 

2. Almost all of the chapter on networks is intended for 5 units students and only part of it is 
intended for 4 units students (Table 4). 

3. In this chapter we used our idea of stretch and constriction in graph, which was very useful. 
([13], p. H-2) 

4. The main theorem in this chapter is the min-max theorem, which was proved and used (Table 
4). 

Table 4 

Chapter D Networks: The Average Success Rate. 
Population - AC N=34 

, 3 , 2 , 1 ,Theorem , Max Flow , c(H) s v(f) , Robin"s , 
, & Min Cut , , Theorem , Category, , , , , , 
, 90 , 91. 7 , 100 ,Full Answer' , , I I , 
, 10 , 8.3 , IPartial Ans.1 , , I I I 
I , / ,Wrong Answer/ 

I I , I I , 23.1 , 7.7 , 69.2 INa Answer I 
I , , , , 
, 100 , 100 , 100 , Total , 

I. Comprehensive Evaluation (see Tables 5, 6, 7). 

This chapter, the last one in our work, contains a general position in the three levels: Achievements 
on graph theory, attitudes in respect to graph theory and mathematical studies, and achievements in 
examination on concepts and skills in mathematics. Some of the main results are: 

215 



CMESG/GCEDM 1997 Proceedings 

216 

I. The achievements on graph theory are close to those in other parts of mathematical studies 
(Table 5). 

2. The achievements of the 5 units students were the best and those of the 3 units were the next 
(Table 5). 

3. It is possible and preferable to teach graph theory at all levels of the high school, and even in 
the middle school. 

4. The attitudes of the students in the experiments classes and in the criticism classes in respect to 
mathematics were similar (Table 7). 

5. We found a clear modification on the attitudes, in any population, between levels especially 
when comparing the attitudes at the beginning of the year to its end (Table 7). The attitudes of 
the 4 and 5 units students were more positive (Tables 6 and 7). 

6. There was more improvement at the end of the year compared with the beginning on attitudes 
in respect to graph theory than in respect to mathematics (Table 7). 

7. There is influence of graph theory on mathematical studies (comparison between experiments 
classes and criticism classes) (Table 7). 

8. The achievements in the "Test - Concepts and Skills in Mathematics" (see Appendix 2) at the 
end of the year were better (in all classes) than at the beginning of the year (Table 8). 

Table 5 

Global Achievements: 
Bagrut (Finals) Examinations - The Average Success Rate 
A Comparison between Graph Theory and Algebra/Math. 

I Algebra/Mathematics I Graph Theory 

I I 
I Wrong I Partial I Full I Wrong Partial Full 

I Answer I Answer I Answer I Answer Answer Answer 

I I I I 
I 8 I 22 I 70 I 14 86 

I I I I 
I 9 I 22 I 69 I 22 78 

I I I I 
I I 27 I 73 I 10 90 

I 3 Poi I 
I I 
I 4 poi I 
I I 
I 5 poi I 
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9. Theimprovement in the experiments classes was more significant than that of the criticism 
classes (Table 8). 

10. The achievements of the 4 and 5 units students were better than those of the 3 units students 
(Table 8). 

Table 6 

Attitudes of 4-5 points Pupils, 2nd Experiment, N=15 
I I I I I 

INegativlPositi. IV. Pos.INo Ans·1 Subject Question I. 
I I I I I I 

0 I 66.7 I 33.3 I 0 I Algebra Interest I 
13.3 I 46.7 I 33.3 I 6.7 I Geometry I 
13.3 J 53.3 I 33.3 I 0 I Graph Theory I I 
33.3 I 46.7 I 20 I 0 I TrigonometryI I 

I I I I I I 
20 I 73.3 I 6.7 I 0 I Algebra I Difficulty I 
33.3 I 40 I 20 I . 6.7 I Geometry I I 
20 I 53.3 I 26.7 I 0 I Graph Theory I I 
20 I 60 I 6.6 I 13.3 I TrigonometryI I 

I I I I I I 
0 I 80 I 20 0 I Algebra IUnderstandingl 

13.3 I 66.7 I 13.3 6.7 I Geometry I I 
20 I 53.3 I 26.7 0 I Graph Theory I I 
20 I 53.3 I 26.7 0 I Trigonometryl I 

I I I I I 
0 I 33.3 I 66.7 0 Algebra I Need Of The I 
6.7 I 46.7 I 40 6.7 Geometry I Subject I 

13.3 I 66.7 I 20 0 Graph Theory I I 
26.7 I 40 I 26.7 6.7 Trigonometryl I 

I I I I 
20 I 26.7 I 53.3 0 Algebra I Assistance I 
40 I 40 I 13.3 6.7 Geometry I To solve I 
26.7 I 40 I 26.7 6.7 Graph Theory I Problems ofl 
60 I 26.7 I 0 13.3 TrigonometryI Other Areas I 
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For examples of verbal atitudes of students see appendix 1. Appendices 2, 3 and 4 are only 3 
examples of many tools we have developed and used in the research. 

Table 7 

Attitudes:Comparison of the Experiments Classes and Control Classes 

MATHEMATICS I TRIGONOMETRY I GRAPH THEORY I GEOMETRY ALGEBRA ITime I Lev. I Populi 
I I I I N I of I I lationl 

INEG.IPOS.IV.P·INEG.IPOS.IV.P.INEG.IPOS.IV.P.INEG.IPOS.IV.P. I NEG. IPOS.IV.P.1 IChe·IPoi·1 I 

I I I I I I I I I I I I I I I I I 
I 25 I 33 I 41 I - I - - I 46 I 34 I 19 I 31 I 28 I 39 I 19 I 38 I 43 I 221 I I 3 I 

I I I I I I I " ! I I I I I I I I I I 
I 81411491- I - - I 30 I 43 I 26 I 14 I 43 I 42 I 3 I 40 I 57 I 231 II I 3 I 

I I I I I I I I I I I I I I I I I 

8 I 

I 
B I 

I 
I 14 I 45 I 40 I 19 I 44 I 37 I 25 I 19 I 56 I - I - I - I 10 I 46 I 44 I 121 I 14-5 I A I 

I I I I I I I I I I I I I I I I I I 
I 25 I 50 I 25 13 8 I 49 I 11 I 13 I 51 I 36 I - I - I - I 11 I 51 I 38 I 91 II 14-5 I A I 

I I I I I I I I I I I I I I I I I I I 
I 32 I 35 I 31 I 34 I 38 I 26 I" 26 I 48 I 24 I 38 I 30 I 30 I 24 I 38 I 38 I 20 I II I 3 I 0 I 

I I I I I I I I I I I I I I I I I I I I 
I 20" I 52 I 24 I 32 I 47 I 12 I 19 I 53 I 27 I 21 I 49 I 23 I 8 I 56 I 36 I 151 II 14-5 I C I 

I I I I I I I I I I I I I I I I I I I 
I 21 I 44 I 29 I 27 I 44 I 25 I - I - I - I 26 I 44 I 21 I 11 I 43 I 41 I 6410ne 14-5 ICon.XI 

I I I I I I I I I I I I I I I I I I I I 
I 25 I 35 I 36 I - I - I - I - I - I 31 I 31 I 32 I 20 I 39 I 40 I 41 I 181 I I 3 ICon.YI 

I I I I I I II I I I I I I I I I 
I 18 I 36 I 20 I 33 I 44 I - I "- I - I 23 I 45 I 28 I 29 I 13 I 42 I 43 I 211 II I 3 ICon.YI 
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V,P_ - Very Positive. Po~. - Positive. Neg. - Negative 
Con-X - Control Classes. Sapir College. 
Con-Y - Control Classes. Kfar Haymon. 
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Table 8 

Tab 1-22, The Achievements on The Test of Skills And Concepts at Mathematics 

IV. Solving Problems III. Find Model For II. Describe The Model I. Determine The Concepts 
Kind ... .3 .2 .1 .5 ... .3 .1 .1 ... .5 ... a2 3 .2 .1 .6 . 5 ... .3 .2 .1 of 

Divi. Numb. Dicy. Area S.V. Doule Mult. Rec. Even x=(-bt +b~ Mat. Graph Mat. Pra. Hod- Pha- Answ-
1400 l'rob: Itidcr I'ro. T. Di.Nu of! 5 Area NUIII. .f(J)/2a 2rn .. c2 3n 2n+l Hod. l'unc. Pro. Pro. e1 rase er 

'3-1'010I:u, Virul: Time, (At The Deginning Of The «oar) 

9.7 22.6 41.9 9.'1 90.3 9." 6.5 61.2 12.9 61.3 29.0 31.5 - 6.5 6.5 25.8 16.1 6.5 12.9 16.1 Full 

- 9.7 19.4 12.9 - 9.7 32.2 6.5 9.7 - 6.5 3.2 - - 3.2 - 6.5 6.5 - 3.2 Part. 

6.5 19.3 29.0 35.5 6.5 19.4 9.7 22.6 41.9 3.2 25.8 22.6 19.4 12.9 3.2 3.2 - - - - Wrong 

No 
63.8 48.4 9.7 41.9 3.2 61.2 51.6 9.7 35.5 35.5 38.7 38.7 80.6 80.6 87.1 71.0 77.4 87.0 87.1 80.7 Answ. 

.J 'Points, 200 Time, '(At The End Of The Year) 

21 ·1 89'4 100'0 10'5 94.7 -78.9 26.3 89.4 57.9 89.5 10.5 89.4 21.1 42.1 36.8 52.6 36.8 47.4 42.1 15.8 Full 

10.5 5.3 - 21.1 - 5.3 10.5 5.3 10.5 - - 5.3 5.3 5.3 - - 15'8 10'5 10'5 10'5 Part. 

5.3 - - 26.3 5.3 5.3 15.9 5.3 5.3 - 84.2 - 21.0 5.3 - - 5.3 - 15.8 21.1 Wrong 

No 
63.1 5.3 - 42.1 - 10.5 47.3 - 26.3 10.5 5.3 5.3 52.6 47.3 63.2 47.4 42.1 42.1 31.6 52.6 Answ. 

4-5 Points, First Ti.. (At The Be9innin9 of Th Year) 

- 47.3 73.7 42.1 73.6 47.4 21.1 78.9 57.9 100.0 42.1 89.5 63.2 78.9 - 63.1 52.6 57.9 10.5 47.4 Full 

15.8 15.8 10.5 15.8 5.3 - 5.3 10.5 21.0 - - 10.5 15.8 5.3 5.3 31.6 26.3 5.3 5.3 26.3 Part. 

5.3 5.3 10.5 5.3 15.8 15.8 52.6 10.5 5.3 - 52.6 - 10.5 5.3 94.7 5.3 - 10.5 - 15.8 Wrong 

No 
78.9 31.6 5.3 36.8 5.3 36.8 21.0 - 15.8 - 5.3 - 10.5 10.5 - - 21.1 26.3 84.2 10.1i Answ. 

'----_. 

O .. b2-4ac ... 

:> 
Co 

== = n 
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~ 
g' 
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Tab 1-22, Contino 

IV. Solving Problems III. Find Model For II. Describe The Model 

Six.5 .4 .3 .2 .1 .5 .4 .3 .1 .1 * .5 .4 a2 3 .2 .1 
Peop. Divi. Numb. Bicy. Area S.V. Doule Mult. Rec. Even x=(-b:l: +b~ 
&Rec. 1400 Prob. Rider Pro. T. Di.Nu of 5 Area Num. -/(;)/2a 2m =c2 3n 2n+l 

. 4-5 points, 2nd T~e (At The End of The Year) 

71.4 21.4 64.3 85.7 57.2 92.8 64.3 64.3 85.7 100 100 64.3 100 71.4 100 

14.3 42.9 7.2 - 21.4 - 21.4 14.3 7.1 - - - - 7.2 -
---------I-

- - - - - 7.2 - 14.3 7.2 - - 35.7 - 21.4 -

14.3 35.7 2B.5 14.3 21.4 - 14.3 7.1 - - - - - - -
Control Classes, First Time, (At The Beginning ot'The Year) 

- - - 6.3 - 37.5 - - 37.5 37'5 62.6 1B.7 68.B - 6.3 

- - - 12.5 6.3 - - - 12.5 12.5 lB.7 - - 25.0 18.7 

- 6.3 - 18.7 25.0 37.5 56.3 6B.8 43.7 37.5 - 25.0 12.5 37.5 43.7 

100.0 93.7 100.0 62.5 68.7 25.0 43.7 31.2 6.3 12.5 18.7 56.3 18.7 37.5 31.3 

-Control Classes, 2nd Time. (At The End Of"TheYear) 

- - 28.6 33.3 4.8 66.7 23.8 9.5 52.4 38.1 66.7 38.1 80.9 19.0 23.8 

9.5 - 4.B 9.5 4.B - 4.B - 4.8 9.5 23.B 9.5 4.8 4.B 4.B 

23.8 42.9 14.3 42.9 23.8 14.3 47.6 66.7 33.3 33.3 - 38.1 -1.8 -17.6 42.8 

66.7 57.1 52.3 14.3 66.6 19.0 23.B 23.B 9.5 19.1 9.5 14.3 9.5 2B.6 2B.6 

.6 
Mat. 
Mod. 

50.0 

14.3 

-

35.7 

6.3 

-
6.2 

87.5 

-
9.5 

4.8 

85.7 

I. Determine The Concepts 
Kind' 

.5 .4 .3 .2 .1 of 
Graph Mat. Pra. Mod- Phr- IInsw-
Fuoc. Pro. Pro. e1 rase er 

---
85.7 92.8 100 50.0 42.8 Full 

14.3 - - 7.2 14.8 Part. 
-- -- -" 

- - - 21.4 14.8 tlnm', 

No 
- 7.2 - 21.4 28.6 IInsw. 

31.3 50.0 31.3 6.3 37.5 Full 

37·5 25'0 18'7 6·3 50·0 Part. 

18.7 6.2 18.7 6.2 - Wrong 

No 
12.5 lB.B 31.3 81.2 12.5 IInSw. 

9.5 14.3 33.3 9.5 33.3 Full 

2B.6 47.6 19.1 4.B 19.1 Part. 

38.1 7.3.8 7.0.5 4.0 30. I Wroll" 

No 
23.B 14.3 19.1 80.9 9.5 Answ. 

--- -.-- . 
6~b2-4nc 
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TWO (BRIEF) EXAMPLES OF THE TEACHING METHODS 

A. The Climb on the Infinite Ladder 

As a mathematical tool for teaching the principle of mathematical induction. 

1. Mathematical induction is used to establish with logical certainty the correctness of theorems 
and problems. 

2. Many proofs in graph theory make use of math induction. 

3. Many students of all levels (including university students) do not completely understand the 
principle of induction. 

4. Many of the students are not convinced that the principle is valid. (The Assumption is exactly 
what is needed to prove.) Because of that, we developed the idea of the infinite ladder as follows: 

The Problem 

Suppose there is an infmite ladder which is lying 
on the ground with its top pointing to the sky. 

In addition, we know nothing about the height of the 
ftrst step from the ground nor the distance between 
any two steps on the ladder. 

Moreover, the distance between any two steps on the 
ladder is not uniform! 

Can you climb the ladder endlessly? 

Obviously a practical check isn't possible! 

However, we can ensure that we can climb the ladder 
endlessly if: 

a. It is possible to climb the frrst step. 

Sky 

co 

n+l 

n 

1 

1 

Ground 

b. It is always possible to climb from the n- step to the next one, n + 1 step, for any integer n . 

The analogy of this idea to the principle of induction is clear. Students, of all levels, understood it 
easily. 

This demonstration was found to be a very useful tool to help students, of all levels, to understand 
the principle of mathematical induction. 

B. The idea of constriction and stretch in graphs for finding the shortest path between two 
vertices in graphs. 
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Suppose that the edges of a given graph are plastic but not elastic and suppose that the graph was 
constricted. According to the Euclid's Theorem: "The shortest distance between two points is the straight 
line." 

Let us pick up two vertices u,v of the given graph and stretch them until we get a straight line. 

u v 

This is the shortest path between u and v because all the other paths are longer. With this idea in 
mind let us describe the idea of constriction and stretching of graphs, for finding the shortest path in a 
graph. (for more details see [14]) 

IV SUMMARY AND RECOMMENDATIONS 

Our research showed that the main goal of the research-developing and writing a syllabus on graph 
theory for high school-was achieved. Therefore we recommend the following: 

1. To teach graph theory within mathematical studies in high school in all levels. 

2. In 3 units level, to teach only the fIrst three chapters of the textbook. 

3. To prepare a guidebook for the teacher including mathematical and didactic instructions, as well 
as more examples and more solved problems. 

4. To integrate suitable topics of graph theory as enrichment chapters for the middle school, and 
even for elementary school. 

5. To train teachers in colleges or by schooling to teach graph theory, at all levels. 

APPENDIX 1 

Examples of Verbal Attitudes of Students Towards Mathematics in General, 
and Graph Theory in Particular 

Is the subject interesting? 
3-pt Students, At the Beginning of the Year: 

- No, whoever created math didn't have me in mind. 
- Yes, it exercises logic and thinking processes. 
- Very, I think it's very interesting, even though it's difficult for me. 
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3-pt Students, At the End of the Year: 
- No, it doesn't advance me in further studies, so I would give it up. 
- Very, difficult world problems can be solved in a graphical way. 
- Very, it's a new way of mathematical thinking that I was hardly aware of. 

4-pt Students, At the Beginning of the Year: 
- Very, because I can apply this theory to my everyday life. 

4-pt Students, At the End of the Year: 
- Yes, because I really like its nature - the proofs and the logic. It's a bit like geometry 
- Yes, sometimes you can use graphs for real things in life, and it's very interesting to see that there's 
"lawfulness" (=rules) for these things. 

Should graph theory be taught? 
3-pt Students, At the Beginning of the Year: 

- No, what will I do with it? 

3-pt Students, At the End of the Year: 
- Yes, for enjoyment. 
- DefiIiitely, interest, challenge and success bring satisfaction. 

4-5 pt Students, At the End of the Year: 
- No, it's worthless, a waste of time. 
- Yes, it develops students' thinking 
- Yes, because sometimes it develops your intelligence 

What's your opinion on mathematics in general, and graph theory, in particular? 
3-pt Students 

- The topic of graph theory isn't as monstrous as I pictured it at the beginning of the year. It's 
possible to understand it if you want to because it's only based on a few principles. It's worth 
continuing to teach it, even though not too many people know what it is. 
- Graph theory is a new subject that seemed horrifying at the beginning, but after, most of the 
students got used to it, and found out it wasn't so bad. 
- Graph theory should be practiced more, so that the material will be understood etter, like algebra 
and statistics. 

4-5 pt. Students 
- Graphs are a good subject, that can help us in many areas, like roads. And even for a lot of things 
that I wanted to know, but I didn't know, and today I know a lot. 
- Math is usually a very interesting subject that helps us in the far future, but it is also irritating. 
Graph theory is a very interesting subject, that helps in many areas in the present and the future, but 
some things in it are very difficult. 
- I think graph theory is like a new language; until you master it you have no interest in it. 

APPENDIX 2 

Test - Concepts and Skills in Mathematics 
1. Determine the following concepts. 

a) phrase d) mathematical problem 
b) model e) function graph 
c) practical problem f) mathematical problem 
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2. What do the following formulas express? 
a) 2n+l from n integer 
b) 3n from n integer 
c) a2 + b2 = c2 (a, b, c -- the sides of an orthogonal triangle) 
d) 2m ( r -- the radius of a circle) 
e) x = -b ±v'(b2 -4acl 

2a 

3. Find a formula that expresses: 
a) An even number. 
b) The area of a rectangle. 
c) A number which is divisible by 5, with remainder of 1. 
d) A two-digit number. 
e) The relationship between time, velocity and distance .. 

4. Solve the following problems: 
a) A square and a rectangle have the same perimeter. 

The width of the rectangle is 113 of its length. 
The area of the square is greater by 4, than the area of the rectangle. 

Find: 1. The length of the sides of the square. 
2. The area of the square. 

b) A bicycle was ridden at a constant speed for 4 hours. After that, it was 
ridden for another 3 hours, at a speed 5 kmIh greater than before. In all, 51 
Ion were traveled. What was the initial speed? 

c) The first digit of a two-digit number is greater by 2 than its tenth digit. If we 
will exchange the places of the digits in the number we will get a smaller 
number by 27 than the given number. Find the given number. 

d) How many different divisors does the number 1400 have? 

e) Show that in any group of six people there are always at least 3 people who 
know each other, or at least 3 people who don't know each other at all. 

Good Luck ! 

APPENDIX 3 

Diary of Teaching - Structured Observation 
Diary of the lesson on Graph Theory 

Date:_'_'--, Class ___ , 1 0 2 0 lessons. 

The subject of the lesson. _________________ _ 

A. From the point of view of the pupil 
1. Understanding of the material (Theorems, Exercises .. ) in the 

class. Notation of special difficulties, flashes of understanding, etc. 

224 



Ad Hoc Session 9 

2. The atmosphere in the class. 
Interest level: ____________________ _ 
VVorhload: ____________________ ___ 
Level of difficulty: __________________ _ 
Comments of pupils: _________________ _ 

B. From the point of view of the teacher - didactical aspects 
1. Notation of difficulties in explaining the subject, specific theorem, or 

exercise -----------------------

2. Is it preferable to expand, to omit, or to leave the subject as it is? Should an 
exercise be added? Are explanations for the exercises necessary or 
unnecessary? Is there a need to add solved examples? etc. 

C. Discussions, Interviews and General Comments 

APPENDIX 4 

Test - Graph Theory, Chapter B 
Path and Circuits In Graphs 
(4-5 points, Kfar Maymon) 

A. Determine the following concepts: 
1. ~onnected graph. 4. Semi-Hamiltonian gJ:aph. 
2. Simple path. S. Eulerian graph. 
3. Optimal Circuit. 6 .VVeighted graph. 

B. Prove 2 of the 3 following Theorems: 
1. A complete bipartite graph - Ku..n is Hamiltonian graph if and only if (iff) m = n ~ 2. 
2. If a graph G is bipartite, hen G doesn't contain any odd circuit. 

Give the opposite theorem. Is it true? Give a reason. 
3. If not all the vertices of a given graph G are of even 'degree, then it is possible to draw G with 

number oflineswhich equal to half of the number of the vertices of odd degree in G. 

C. Determine "True" or "False" for each of the following Phrases. 
If "true" prove it. If "false" give a contrary example. 
4. Every graph which contain an odd circuit isn't bipartite graph. 
S. Every graph which contain an cut-edge contains at least two cut-vertex. 
6. Every Eulerian graph is Hamiltonian graph and vise versa. 
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7. A graph G which all its vertices are of exactly degree 2 contains one and only one circuit 
which contain all G. 

D. Problems: Give a full proof to each of the following problems. 
9. Prove: Ifa simple graph G with n vertices has (n-I)(n-2)/2 edges, then G is connected graph. 
10. Eleven friends had a tour. Every night they had supper together around a round table so that 

every evening each one sat between two friends which he didn't sat between them before. 
How many days the tour was? 0 

Name the theorems you use at your proof. 
11. Check the present graph if it is: 

Prove any answer you give! 
a. Is G Eulerian graph? 
b. Is G Semi-Eulerian? 
c. How many lines needed to draw G? 
d. Is G Hamiltonian graph? 
e. Is G Semi-Hamiltonian graph? 

Good Luck! 
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APPENDIX A 

WORKING GROUPS AT EACH ANNUAL MEETING 

1977 Queen's University, Kingston, Ontario 
Teacher Education programmes 
Undergraduate mathematics programmes and prospective teachers 
Research and mathematics education 
Learning and teaching mathematics 

1978 Queen's University, Kingston, Ontario 
Mathematics courses for prospective elementary teachers 
Mathematization 
Research in mathematics education 

1979 Queen's University, Kingston, Ontario 
Ratio and proportion: a study of a mathematical concept 
Minicalculators in the mathematics classroom 
Is there a mathematical method? 
Topics suitable for mathematics courses for elementary teachers 

1980 Universite Laval, Quebec, Quebec 
The teaching of calculus and analysis 
Applications of mathematics for high school students 
Geometry in the elementary and junior high school curriculum 
The diagnosis and remediation of common mathematical errors 

1981 University of Alberta, Edmonton, Alberta 
Research and the classroom 
Computer education for teachers 
Issues in the teaching of calculus 
Revitalising mathematics in teacher education courses 

1982 Queen's University, Kingston, Ontario 
The influence of computer science on undergraduate mathematics education 
Applications of research in mathematics education to teacher training programmes 
Problem solving in the curriculum 

1983 University of British Columbia, Vancouver, British Columbia 
Developing statistical thinking 
Training in diagnosis and remediation of teachers 
Mathematics and language 
The influence of computer science on the mathematics curriculum 

1984 University of Waterloo, Waterloo, Ontario 
Logo and the mathematics curriculum 
The impact of research and technology on school algebra 
Epistemology and mathematics 
Visual thinking in mathematics 
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1985 Universite Laval, Quebec, Quebec 
Lessons from research about students' errors 
Logo activities for the high school 
Impact of symbolic manipulation software on the teaching of calculus 

1986 Memorial University of Newfoundland, St, John's, Newfoundland 
The role offeelings in mathematics 
The problem of rigour in mathematics teaching 
Microcomputers in teacher education 
The role of microcomputers in developing statistical thinking 

1987 Queen's University, Kingston, Ontario 
Methods courses for secondary teacher education 
The problem of formal reasoning in undergraduate programmes 
Small group work in the mathematics classroom 

1988 University of Manitoba, Winnipeg, Manitoba 
Teacher education: what could it be 
Natural learning and mathematics 
Using software for geometrical investigations 
A study of the remedial teaching of mathematics 

1989 Brock University, St. Catharines, Ontario 
Using computers to investigate work with teachers 
Computers in the undergraduate mathematics curriculum 
Natural language and mathematical language 
Research strategies for pupils' conceptions in mathematics 

1990 Simon Fraser University, Vancouver, British Columbia 
Reading and writing in the mathematics classroom 
The NCTM "Standards" and Canadian reality 
Explanatory models of children's mathematics 
Chaos and fractal geometry for high school students 

1991 University of New Brunswick, Fredericton, New Brunswick 
Fractal geometry in the curriculum 
Socio-cultural aspects of mathematics 
Technology and understanding mathematics 
Constructivism: implications for teacher education in mathematics 

1992 ICME-7, Universite Laval, Quebec, Quebec 

1993 York University, Toronto, Ontario 
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Research in undergraduate teaching and learning of mathematics 
New ideas in assessment 
Computers in the classroom: mathematical and social implications 
Gender and mathematics 
Training pre-service teachers for creating mathematical communities in the classroom 
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1994 University of Regina, Regina, Saskatchewan 
Theories of mathematics education 
Preservice mathematics teachers as pruposefullearners: issues of enculturation 
Popularizing mathematics 

1995 University of West em Ontario, London, Ontario 
Anatomy and authority in the design and conduct of learning activity 
Expanding the conversation: trying to talk about what our theories don't talk about 
Factors affecting the transition from high school to university mathematics 
Geometric proofs and knowledge without axioms 

1996 Mount Saint Vincent University, Halifax, Nova Scotia 
Teacher education: challenges, opportunities and innovations 
Formation AI'enseignement des math6matiques au secondaire: nouvelles perspectives et d6fis 
What is dynamic algebra? 
The role of proof in post-secondary education 

1997 Lakehead University, Thunder Bay, Ontario 
Awareness and Expression of Generality in Teaching Mathematics 
Communicating Mathematics 
The Crisis in School Mathematics Content 
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1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

A.J. Coleman 
C. Gaulin 

T.E. Kieren 

G.R. Rising 
A.I. Weinzweig 

J. Agassi 
J.A. Easley 

C. Cattegno 
D.Hawkins 

K. Iverson 
J. Kilpatrick 

P.J. Davis 
G. Vergnaud 

S.I. Brown 
P.J. Hilton 

A.J. Bishop 

L.Henkin 

H. Bauersfeld 

H.O. Pollak 

R. Finney 
A.H. Schoenfeld 

P. Nesher 
H.S. Wilf 

C. Keitel 
L.A. Steen 

AppendixB 

APPENDIXB 

PLENARY LECTURES 

The objectives of mathematics education 
Innovations in teacher education programmes 

The state of research in mathematics education 

The mathematician's contribution to curriculum development 
The mathematician's contribution to pedagogy 

The Lakatosian revolution· 
Formal and informal research methods and the cultural status of school 
mathematics· 

Reflections on forty years of thinking about the teaching of mathematics 
Understanding understanding mathematics 

Mathematics and computers 
The reasonable effectiveness of research in mathematics education· 

Towards a philosophy of compuation· 
Cognitive and developmental psychology and research in mathematics 
education· 

The nature of problem generation and the mathematics curriculum 
The nature of mathematics today and implications for mathematics 
teaching· 

The social construction of meaning: a significant development for 
mathematics education?· 
Linguistic aspects of mathematics and mathematics instruction 

Contributions to a fun~~nta1 theory of mathematics learnin~ and 
teaching 
On the relation between the applications of mathematics and the 
teaching of mathematics 

Professional applications of undergraduate mathematics 
Confessions of an accidental theorist· 

Formulating instructional theory: the role of students' misconceptions· 
The calculator with a college education 

Mathematics education and technology· 
All one system 
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1989 

1990 

1991 

N. Balacheff 

D.Schattsneider 

U. D'Ambrosio 
A. Sierpinska 

J.J. Kaput 
C. Laborde 

1992 ICME-7 

1993 

1994 

1995 

1996 

1997 

G.G. Joseph 

J Confrey 

A. Sfard 
K. Devlin 

M.Artigue 

K. Millett 

. C. Hoyles 

D. Henderson 

R. Borassi 
P. Taylor 
T. Kieren 

Teaching mathematical proof: the relevance and complexity of a social 
approach 
Geometry is alive and well 

Values in mathematics education* 
On understanding mathematics 

Mathematics and technology: multiple visions of multiple futures 
Approches theoriques et methodologiques des recherches Francaises en 
didactique des mathematiques 

. What is a square root? A study of geometrical representation in different 
mathematical traditions 
Forging a revised theory of intellectual development Piaget, Vygotsky 
andbeyond* 

Understanding = Doing + Seeing? 
Mathematics for the twent-first century 

The role of epistemological analysis in a didactic approach to the 
phenomenon of mathematics learning and teaching 
Teaching and making certain it counts 

Beyond the classroom: The curriculum as a key factor in students' 
approaches to proof 
Alive mathematical reasoning 

What does it really mean to teach mathematics through inquiry? 
The high school math curriculum 
Triple embodiment: Studies of mathematical understanding-in-inter
action in my work and in the work of CMESG/GCEDM 

*These lectures, some in a revised form, were subsequently published in the journal For the Learning of 
Mathematics. 
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APPENDIXC 

PROCEEDINGS OF ANNUAL MEETINGS OF CMESG/GCEDM 

Past proceedings of the Study Group have been deposited in the ERIC documentation system with call 
numbers as follows: 

Proceedings of the 1980 Annual Meeting .................... ED 204120 

Proceedings of the 1981 Annual Meeting .................... ED 234988 

Proceedings of the 1982 Annual Meeting .................... ED 234989 

Proceedings of the 1983 Annual Meeting .................... ED 243653 

Proceedings of the 1984 Annual Meeting .................... ED 257640 

Proceedings of the 1985 Annual Meeting .................... ED 277573 

Proceedings of the 1986 Annual Meeting .........•.......... ED 297966 

Proceedings of the 1987 Annual Meeting .................... ED 295842 

Proceedings of the 1988 Annual Meeting .................... ED 306259 

Proceedings of the 1989 Annual Meeting .................... ED 319606 

Proceedings of the 1990 Annual Meeting .................... ED 344746 

Proceedings of the 1991 Annual Meeting .................... ED 350161 

Proceedings of the 1993 Annual Meeting .................... ED 407243 

Proceedings of the 1994 Annual Meeting .......... ' .......... ED 407242 

Proceedings of the 1995 Annual Meeting .................... ED 407241 

Proceedings of the 1996 Annual Meeting .................... Not yet assigned* 

There was no Annual Meeting in 1992 because Canada hosted the Seventh International Conference on 
Mathematical Education that year. 

*These Proceedings have been submitted to ERIC. 
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