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INTRODUCTION 

Elaine Simmt – President, CMESG/GCEDM  

University of Alberta 

It is my pleasure to take this opportunity to reflect on CMESG 2011.  Without a doubt our 

colleagues at Memorial University and the people of St. John’s, Newfoundland were 

wonderful hosts to us mathematics educators from across Canada. The hospitality of the 

people was most certainly one of the highlights of the experience for me. On behalf of our 

membership, I would like to officially thank the Dean of Education, Dr. Alice Collins for 

financial support and for welcoming us to Memorial University. Thanks also go out to Dr. 

Mark Abrahams, Dean of the Faculty of Science and Dr. Chris Radford, Head of the 

Department of Mathematics and Statistics, for their financial contribution to the conference. 

At this time we would also like to acknowledge the financial support for graduate students 

from AARMS. A very special thank you to Mary Stordy and Margo Kondratieva for agreeing 

to host CMESG 2011. Your local organizing team provided us with an exceptional level of 

support. Thank you to graduate student Sharon Facey, undergraduates, Christina and Mandy, 

and staff members Bernadette Powers, Cathy Madol, Glenda Goulding and Helen Manning, 

for their tremendous help. Lastly, we raise our glasses to Gene Power for sharing the 

traditional Newfoundland Screech-In Ceremony with us. 

Having thanked the local organizing committee and its supporters I would like to turn our 

attention to the scientific program and extend our appreciation to all of the people who gave 

presentations and facilitated sessions. This year our plenaries both offered presentations that 

spoke directly to applications of mathematics and mathematics education. We had the 

pleasure of learning about the kinds of mathematics that underlies and is expressed in Chris 

Palmer’s art-making with his talk, Pattern Composition: Beyond the Basics.  Pessia Tsamir 

and Dina Tirosh demonstrated for us a strategy that they use in their team teaching practice, 

The Pair-Dialogue Approach in Mathematics Teacher Education.  Working groups provided 

participants opportunities to work together on themes such as mathematics and climate 

change, procedural knowledge in mathematics learning, emergent methods for mathematics 

education research, using simulation to develop students’ mathematical competencies, art and 

mathematics, and tasks for future mathematics teachers. Read on in the proceedings to learn 

more about the conversations that ensued in the working groups. The topic session speakers 

took on the challenge of how mathematics is represented in our teaching and experienced by 

learners. As well, we were fortunate to learn about the work of six new PhDs in our 

community. The conference was rounded out with opportunities for members to form ad hoc 

groups to have conversations about emerging ideas with colleagues. Finally, we added a new 

element, the Math Gallery Walk so that we could have the opportunity to catch up on the 

mathematics education work our members from across the country are doing.  

As it always is for me, I fly home from CMESG rejuvenated and grateful because I am part of 

a vibrant and thoughtful mathematics education community in Canada. 
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PATTERN COMPOSITION: BEYOND THE BASICS 

Chris K. Palmer 

Shadowfolds 

A principle of recursion developed by medieval artisans of the Middle East is demonstrated 

with sequential diagrams that reveal the steps of construction. Sequential diagrams with few 

abstract symbols are used to show how to make origami models. They can also be used to 

show paths to orderly complexity through small steps. These drawings attempt to show with 

solid colour and line weight the steps of the construction [Figure 1], the principle of 

substitution where different patterns can be inserted into the skeleton [Figures 2 and 3], and 

the recursive structure where a polygon is placed on its own corners in a ring [Figure 4] and 

the final composition [Figure 5] that combines two related tilings in a kind of checker pattern. 

This kind of tiling was described by Alicia Boole Stott as the expansion operation.1 

 
 

Figure 1 
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Figure 3 
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Figure 4 
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Figure 5 

FURTHER READINGS 

Bain, G. (1973).  Celtic art:  The methods of construction.  New York: Dover. 

Conway, J. H., Burgiel, H., & Goodman-Strauss, C. (2008).  The symmetry of things.  

Wellesley, MA: A. K. Peters, Ltd. 

 

 
1  http://www.ams.org/samplings/feature-column/fcarc-boole  

http://www.georgehart.com/virtual-polyhedra/conway_notation.html  

http://www.ams.org/samplings/feature-column/fcarc-boole
http://www.georgehart.com/virtual-polyhedra/conway_notation.html
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THE PAIR-DIALOGUE APPROACH 
IN MATHEMATICS TEACHER EDUCATION 

Pessia Tsamir and Dina Tirosh 

Tel-Aviv University, Israel 

In this paper, we describe the Pair-Dialogue (P-D) teaching approach. We then 

illustrate how we use this approach in professional development programs, working 

with kindergarten teachers on definitions of triangles and with secondary school 

teachers on validating and refuting elementary number theory statements. Our focus 

in these two examples is on issues related to mathematical content knowledge. Other 

P-D episodes pertain to pedagogical content and to curricular content knowledge 

issues. Special care is taken, in our interactions with prospective and with practicing 

teachers, to the sensitive, emotionally loaded situation which may result from working 

on incorrect responses. 

There is a wide agreement that teachers may play a significant role in learners’ mathematical 

development. Consequently, various attempts have been made to design, implement and 

evaluate professional programs that influence the nature and quality of teachers’ knowledge 

and practice (Ball, Thames, & Phelps, 2008; Borko, Eisenhart, Brown, Underhill, Jones, & 

Agard, 1992; Cooney, 1994; Ebby, 2000; Hiebert, Morris, & Glass, 2003). We have devoted 

substantial attempts during the last two decades to promote teachers’ mathematical knowledge 

needed for teaching. These attempts are accompanied with explicit discussions of the 

interplay between knowledge, reflective-practice and related affective issues. We have 

worked with individual teachers, small groups, as well as large groups of prospective and 

practicing teachers (e.g., Tirosh & Tsamir, 2004; Tsamir & Tirosh, 2005). 

In the last decade, we have developed the Pair-Dialogue (P-D) approach and implemented it 

in various professional development programs in mathematics teacher education. The P-D 

approach is a specific form of team teaching in which we teach cooperatively. Team teaching 

approaches are forms of instruction in which at least two instructors work purposely, regularly 

and cooperatively to help a student or a group of students learn (Buckley, 2000). Various 

types of team teaching are described in the literature; a common type is that of a team of 

experts, each with a different expertise, sharing the responsibility for an interdisciplinary 

course (e.g., Gosetti-Murrayjohn & Schneider, 2009; Sandholtz, 2000; Shibley, 2006). A 

quite unique aspect of our approach is that the two of us have essentially the same expertise 

and status (professors of mathematics education with common fields of interest). 

Our P-D approach is based on three major didactical components: (a) continuous, formative 

assessment of the participants’ knowledge needed for teaching mathematics (b) teaching-

learning interactions, addressing issues that are known to be challenging, i.e., errors or 
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dilemmas, and (c) discussions of teachers’ related, reflective practices. In our interactions 

with teachers we use a blend of pair performances (e.g., thought-provoking dialogue episodes) 

and discussions that involve the teachers (segments of “inviting the audience”, prospective 

and participating teachers, to express their views on different ideas that are presented and to 

“help us out” in resolving the dilemmas that we raise). The dialogues are semi-structured, 

allowing for both prepared-in-advance and in-action adaptations to different populations of 

teachers. We employ various modus operandi of the P-D approach: sometimes, both of us 

offer correct (or erroneous or a mix of correct and erroneous) ideas. In other cases, one 

teacher educator acts as a “model learner”, presenting students’ dilemmas, and the other acts 

as the knowledgeable guide. The roles are altered occasionally, to refrain from creating a 

“clever, always-right” character and a “puzzled-erring” character, thereby avoiding irrelevant 

hints that may take away the mathematical essence of the situation. The activities have several 

modes of implementation: individual work (occasionally handed in to us), small group 

communications, and whole class discussions. A main gain of our approach is that the 

teachers are confronted, in a gentle and respectful manner, with their incorrect responses, and 

the P-D opening serves as a springboard for a thorough discussion of common errors. 

The P-D approach has been implemented with prospective and practicing teachers from 

preschool to Grade 12. The durations of the professional development projects have ranged 

from one week to three years and have often engaged both the teachers as well as the children 

in their classes. In this paper we briefly describe and illustrate the P-D approach regarding 

two central, mathematical structures: definitions and proofs. 

WHY DEFINITIONS AND PROOFS? 

Definitions and proofs are two central constructs that play a crucial role in mathematics. Yet, 

studies have shown that learners often face difficulties when working with these mathematical 

entities and that intuitive obstacles are a main cause for these hurdles (e.g., Alibert & Thomas, 

1991; Fischbein & Kedem, 1982; Harel & Sowder, 2007; Tall & Mejia-Ramos, 2006; Tall, 

1999; Vinner, 1991). Many mathematics educators have recommended that developing a solid 

mathematical foundation, including references to definitions and proofs, should begin as early 

as possible. For example, according to the Principles and Standards for School Mathematics, 

mathematical definitions, reasoning and proofs may be and should be nurtured continuously 

from a young age: “Instructional programs from prekindergarten through grade 12 should 

enable all students to recognize reasoning and proof as fundamental aspects of mathematics” 

(National Council of Teachers of Mathematics, 2000, p. 122). Thus, classrooms performances 

should provide opportunities, even for very young children, to address definitions and proofs 

in a natural, systematic and coherent manner. Students should be encouraged to raise 

questions and assumptions, to suggest solutions, to provide acceptable justifications to explain 

their ideas and to consult definitions and proofs (e.g., Fischbein, 1993).  

One may wonder what types of explanations, definitions and proofs are expected at different 

developmental stages. Evidently, the types of reasoning and justifications suitable for young 

children may differ from those appropriate for older children. At early ages we may focus on 

informal explanations, based on students’ real-world experiences, rather than (or much more 

than) on formal explanations that consist of rigorous, symbolic representations. Levenson 

(2008) based on Koren (2004) differentiated between Mathematically Based (MB) 

explanations that employ only mathematical notions and rules, and Practically Based (PB) 

explanations that may also use daily references. Mathematics education researchers have 

illustrated how young children offer MB explanations in classroom discussions (e.g., Ball & 

Bass, 2000) and they have shown that many elementary and secondary school students 



Tsamir & Tirosh  The Pair-Dialogue Approach 

11 

understand, use and even prefer such explanations (e.g., Levenson, Tirosh, & Tsamir, 2006; 

Tsamir, Sheffer, & Tirosh, 2000).  

Clearly, a major aim for mathematics educators is to promote learners’ ability to produce and 

communicate MB and formal explanations. That is, to enhance students’ capacity to justify 

and explain his/her mathematical solutions by using definitions and theorems. For instance, 

when being asked “Is this a …?” (e.g., “Is this a triangle?”), it is important to base one’s 

answer, ‘yes’ or ‘no’, on the definition.  Similarly, when being asked “Is this [mathematical 

statement] true?” (e.g., “Is the sum of three consecutive numbers divisible by three?”), the 

answer ‘yes’ or ‘no’ should be justified either by a validating or by a refuting proof.  All in 

all, accepting that mathematical concepts are terminology-based entities and that 

mathematical theorems are rule-based entities are two pivotal constructs of the mathematical 

realm; consequently, concepts, definitions, theorems, and proofs play a central role in doing 

mathematics and in discussing mathematical issues. 

In the following sections we describe and analyze episodes taken from two teacher 

professional development courses, one with preschool teachers regarding definitions of 

triangles, the other with secondary school teachers regarding proofs by validating or refuting 

Elementary Number Theory (ENT) statements. In this presentation we focus on several P-Ds 

relating to Subject Matter Knowledge (SMK) (Shulman, 1986). 

WORKING WITH PRESCHOOL TEACHERS ON DEFINITIONS OF 
TRIANGLES 

Recently, the issue of mathematics education for preschool children has come to the fore. A 

growing number of position papers, books and articles attest to the importance of early 

childhood mathematics education (e.g., Bartolini-Bussi, 2011; Clements & Sarama, 2011; 

Ginsburg, Inoue, & Seo, 1999; Levenson, Tirosh, & Tsamir, 2011; Tsamir & Tirosh, 2009). 

However, there is consistent evidence that many preschool teachers have limited knowledge 

of mathematics and of young children’s mathematical reasoning, and that geometry is a major 

hurdle (e.g., Clements, 2003; Clements & Sarama, 2007; Lee & Ginsburg, 2007). 

Consequently, professional development programs for early childhood teachers that focus on 

the mathematics knowledge needed for teaching geometry have been initiated in various 

countries (e.g., Clements & Sarama, 2011; Levenson, Tirosh, & Tsamir, 2011; Pitta-Pantazi & 

Christou, 2011; Tirosh, Tsamir, Levenson, & Tabach, 2011). Yet, few studies have addressed 

the types of instruction that have the potential to enhance preschool teachers’ geometric 

knowledge (e.g., Clements, Sarama, & DiBiase, 2004).  

We have devoted, in the last decade, extensive efforts to working in low-income areas in 

Israel, in an attempt to meet the challenge of making geometry friendlier to preschool 

teachers. In one of these professional development courses, 17 preschool teachers participated 

in six, four-hour sessions. The participants stated that they were suffering from geometry 

anxiety, and that in their preschools geometry was commonly neglected.  

In this paper we focus on the first session, in which we addressed the topic: triangles. The 

teachers were initially asked to reply in writing to a questionnaire (formative evaluation). 

Teachers’ responses were then used in the design of later lessons. We begin by briefly 

describing the data that led to the formation of the questionnaire. 
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DESIGNING THE TASK: IS THIS A TRIANGLE? 

The tasks that we formulated for the triangle-sessions and the related P-Ds were based on 

reported research findings from our past studies on students’ and teachers’ geometrical 

knowledge, and on the accumulated data that we collected from this specific group of 17 

teachers. 

The collected data led us to consider two dimensions when discussing examples and non-

examples of triangles:  the mathematical dimension and the psychological dimension (see 

Figure 1). The mathematical dimension is based on mathematical definitions, and therefore 

consists of two well-defined, disjoint sets of figures: examples and non-examples. The 

psychological dimension consists of two sets of figures: intuitive and non-intuitive, a 

distinction based on studies of children’s and adults’ conceptions and misconceptions when 

addressing each figure (e.g., Tsamir, Tirosh, & Levenson, 2008). Intuitive triangles are easily 

identified as such (e.g., the triangles that have one side parallel to the ‘down edge’ of the 

paper, see Figure 1, Cell 1), while non-intuitive triangles are commonly misjudged as non- 

triangles (e.g., upside down triangles, thin triangles, see Figure 1, Cell 2). In the same vein, 

intuitive non-examples of triangles are easily identified as not being triangles (e.g., circles or 

squares, figures for which learners tend to be familiar with their images and with their names, 

e.g., Figure 1, Cell 3). Non-intuitive non-examples of triangles are figures that are not 

triangles, but learners tend to identify them as triangles (e.g., a seemingly triangular shape 

with one bent side, see Figure 1, Cell 4). 

Non-triangles Triangles  

Cell 3 

 

 

Cell 1 

Intuitive 

Cell 4 

 

 

 

Cell 2 

Non-

intuitive 

Figure 1.  Examples of intuitive and non-intuitive triangles and non-triangles. 

A worksheet that included intuitive and non-intuitive examples and non-examples of triangles 

was administered to the preschool teachers, and they were asked to determine if each of the 

figures was a triangle and to justify their assertion. Examples of the items that were included 

in the questionnaire are presented in Table 1. The questionnaire included additional items that 

are not reported on here (e.g., how confident they were in their answer). 

This worksheet was designed to assess teachers’ responses to identification-of-triangle tasks, 

as well as their tendency to refer to the critical attributes of a triangle in their justifications 

(van Hiele & van Hiele, 1958; Hershkowitz, 1990). 
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EVALUATING THE TEACHERS’ CONCEPT IMAGES OF TRIANGLES 

Table 1 indicates that all preschool teachers correctly identified the intuitive triangle and the 

two intuitive non-triangles (the circle and the hexagon). However, all 17 teachers incorrectly 

identified the “pizza-‘triangle’” (Shape 7), and the “road-sign ‘triangle’” (Shape 4), as 

triangles. There was also a tendency to incorrectly view the “arcs-‘triangle’” (Shape 5) as a 

triangle, and some hesitations regarding the “open-‘triangle’” (Shape 3).  In the latter two 

cases, teachers further described entities as “sort of” triangles, and as “almost” triangles. Such 

expressions might suggest that they were unaware of the sharp mathematical distinction 

between examples and non-examples of triangles. After studying the data regarding the most 

frequent errors and the correct and incorrect responses of each participant, we conducted the 

following P-D. 

The Figure Triangle?  Why? Comments... 
1 Yes 

 It has three sides 

 No explanation 

17  

15 

2 

 

2 No  
 It's a circle  

 It has no sides  

17  

16 

1 

 

3 No 

 It's missing a part 

Yes 
 It has 3 sides 

 No explanation 

Almost 
 It’s triangular with 3 sides 

14 

 

2 

 

 

1 

 

14 

 

1 

1 

 

1 

 

I am not sure. 

 

One side is a bit too short.  

 

 

One side is a bit broken.  

4 Yes 
 It has three sides 

 It’s the shape of a triangle 

 No explanation 

17 

 

 

13 

2 

2 

 

Like the triangular road-sign  5 

1 

5 Yes 
 It has 3 sides 

 It has 3 bent sides 

 No explanation 

No  
 No explanation 

Sort of 
 It’s triangular with 3 sides 

9 

 

 

 

7 

 

1 

 

3 

3 

3 

 

7 

 

1 

 

 

 

 

 

I’m not sure. It may still be a 

triangle. 2 

The sides should be more 

stretched. 
6 No 

 It’s a hexagon 

 It has 6 sides 

17  

9 

8 

 

7 Yes 
 It's like a pizza triangle 

 It has three sides 

 No explanation 

17  

15 

1 

1 

 

Table 1.  Preschool teachers’ responses to “Is this a triangle? Why?” 

PAIR-DIALOGUE: HOW CAN I KNOW WHETHER THIS IS A TRIANGLE? 

The aims of this session were (a) to challenge the preschool teachers’ images of triangles, 

aiming at encouraging them to develop triangle-images that are consistent with the related 

mathematical definition (the notions concept images and concept definitions are taken from 

Tall & Vinner, 1981) and (b) to increase the teachers’ awareness of the need to consult the 

definition when making decisions about the nature of the figures (whether it is an example or 
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a non-example of a triangle).  Several P-Ds were employed for this purpose. Here we present 

the first part of the dialogue “How can I know whether this is a triangle?” (In the dialogues, P 

and D stand for Pessia and Dina, respectively.) 

P: I feel a bit confused about triangles… I mean… the identification of triangles, 

can you help me?  

D: Sure. 

P: Please draw a triangle. 

D: [draws] 

 

 

P: This seems to be easy… I… kind of know that it is a triangle; I see it’s a figure 

that has three sides. OK. It has to have THREE SIDES. 

D: Right. So, this [draws a square]           is not a triangle. 

 

P: Sure. It’s a square. 

D: Yes. It’s a square, and therefore, it has FOUR and NOT THREE sides. And this 

[draws a circle]             is also NOT a triangle.  

 

 

P: Sure.... It’s a circle…  

D: It has NO SIDES. 

P: Ah… I believe I get it… a figure with THREE SIDES… right? Like this… [Draws 

a “road-sign” shape]  

 

 

D: No… No… No… This is not a triangle.  

P: Why? It has three sides. 

D: But the corners, the vertices are round… 

P: So what? We said nothing about vertices… Do we need to? 

D: Yes. There should be three vertices…. Sharp corners… 

P: OK. OK. OK... If I get you right… you mean that a triangle is a figure with three 

sides and pointy vertices, right?  

D: Yes.  

P: OK. So the traffic-sign triangle is ALMOST a triangle. 

D: No. No. In geometry there is no “ALMOST”. It is either YES… I mean a 

triangle... an example, or NO. 

P: [mumbles quietly as if to herself] either yes or no... [turns to D] I can surely 

draw a good example now… [draws] like this pizza triangle—It’s even called [in 

Hebrew] a pizza TRIANGLE… 

 

 

D: No… No… No… This is not a triangle. Not in geometry. 

P: WHY? It has three sides and three vertices... and EVERYBODY calls it a pizza 

TRIANGLE… 

D: But one side is not really a side… not geometrically… it is NOT STRAIGHT… 

P: Still… It’s a side… I don’t get it. Every time you add conditions… I’ll never know 

what a triangle is…  

D: You need to address the definition… I mean ALL the critical attributes… 

P: ALL? What do you mean by ALL?? How do I know that I addressed ALL 

attributes? And suddenly you added another term… What is this CRITICAL thing 

that you mentioned? [Turns to the class] Can someone else help me? Do you agree 

with Dina? [P writes on the side of the blackboard, under the title: Dilemmas and 

Assumptions]: 

1. How do we determine that a figure is a triangle? 

2. What are critical attributes? 
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This dialogue challenged the justification: “it has three sides” that most preschool teachers 

provided to justify their correct as well as their incorrect responses to their assertions that 

some of the shapes shown in Table 1 are triangles. The participants erroneously regarded this 

explanation as sufficient or as a definition, and many used the term ‘side’ in an everyday 

manner, employing the concept image of a wall or a fence that is not necessarily straight.  

This episode illustrates one possible way of working with the preschool teachers on incorrect 

or incomplete responses. In this P-D one teacher educator (P) acted as a ‘model learner’, 

presenting students’ opinions, dilemmas, and questions; the other (D) acted as a 

knowledgeable guide. A main gain is that the preschool teachers were confronted, in a gentle 

manner, with their incorrect responses.  

This opening served as a springboard to a thorough discussion of the common errors. At this 

stage, Gal, one of the preschool teachers said: 

Gal: I agree with you [P], the pizza triangle is DEFINITELY a triangle. It’s even 

called so! 

Here we see a member of the ‘audience’ cutting into our pair-dialogue, expressing her 

position. Gal felt confident to interrupt us and to declare that “the pizza triangle is 

DEFINITELY a triangle”. Her confidence in her erroneous solution is evident by her bursting 

into the dialogue, the terminology that she used (“definitely”), and her tone when voicing this 

word. The episode continued with one of the teacher educators (D) opening the discussion to 

the entire class, asking all participants to vote (triangle/not triangle) for each figure. 

D: Wait a minute. [D smiles at P.] I see that we have some disagreements here. 

[Turns to the class] Let’s do what my friend asked us to do... let’s have another look 

at each of the figures and vote... Let’s think about each of the figures [draws on the 

board the figures and the outline of Table 2]. You can vote for each figure only once 

– ‘Yes’ it is a triangle, ‘No’ it isn’t, or ‘I have not decided yet’. 

P: Why can’t they vote twice, if they feel like... that it... I mean, if someone thinks 

that a certain figure in a way IS a triangle, but in another way it IS NOT? 

D: That’s an important question. [D turns to the class.] What would you say? 

[Giggles and voices]: No. No it can’t be. If it’s a triangle then it’s not a NOT 

triangle. 

Galit: But it can be SIMILAR to a triangle. 

D: If it’s ONLY SIMILAR, please vote NO. We’ll discuss it further later. OK. OK. 

So... let’s vote. 

During this invitation (to vote), the other teacher educator (P) raised a substantial question: 

Can a figure simultaneously be a triangle and a non-triangle? And in general terms, can 

‘something’ simultaneously be an example and a non-example of a mathematical concept?  

This encouraged Galit to use the problematic notion of “similar to”. At this stage Dina guided 

the participants to vote ‘no’ when it’s “only similar”, exemplifying that a teacher in entitled to 

leave a discussion on some issues (in this case, the status of “similar to” in mathematical 

definitions) for later on.  A profound discussion of this issue followed in a session that is not 

presented here. 

DISCUSSING THE TEACHERS’ CONCEPT IMAGES OF TRIANGLES 

Table 2 shows that after this preliminary P-D, before a more profound discussion, eight and 

four preschool teachers, respectively, changed their minds (in the correct direction) regarding 

the ‘rounded-edges’ shape, and the ‘pizza shape’.  Two stated that the rounded-edges shape is 

NOT a triangle, and six confessed “I don’t really know”. One of the latter said that “it’s 

almost a triangle, so by Dina’s guidance I should vote that it is not, but I don’t feel good about 

it”. 
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The Figure It’s a triangle It’s not a triangle Don’t know / almost 
1 

17   

2 
 17  

3 
9 2 6 

4 
13 1 3 

Table 2.  The preschool teachers’ vote on “Is this a triangle?” 

IN BRIEF: THE TEACHERS’ SMK AT THE END OF THE COURSE 

In the final assessment, the preschool teachers were asked to address a rich collection of 

figures, to state, for each figure, whether it is a triangle, a quadrilateral, a pentagon or none of 

the above, and to justify their judgments. The 17 teachers correctly identified all of the 

triangles, and only one of them wrote that to her the ‘pizza-triangle’ feels like a triangle 

although she knows it is not. They also provided mathematical, correct, although not always 

full definitions to justify their answers. However, when addressing the pentagon, six of them 

incorrectly claimed that Item 4 in Table 1 is not a pentagon, because “it seems like a triangle” 

(2 teachers), “it does not look like a pentagon” (4 teachers); when addressing the 

quadrilaterals, nine participants argued that the square is not a quadrilateral “because it is a 

square” or “because it is called ‘square’” (7 teachers).  These findings indicate that the 

preschool teachers’ concept images of polygons at the end of the course were: (a) more 

consistent with definitions than before the course, (b) still not always complete and not always 

consistent with the mathematical definitions, and (c) vulnerable when a figure could be 

labelled by more than one term (e.g., a square that is also a quadrilateral). 

WORKING WITH HIGH SCHOOL TEACHERS ON ENT PROOFS 

Proofs are often addressed in high school mathematics. Studies have shown that students 

often face various types of difficulties when requested “to prove”. Various researchers have 

reported that students are not always aware of the necessity for a general, covering proof 

when proving the validity of a universal statement for an infinite number of cases (e.g., Bell, 

1976) and that they tend to encounter difficulties in constructing a complete proof based on 

deductive reasoning (e.g., Healy & Hoyles, 1998; 2000). When refuting a statement, students 

tend to relate to a counter example as an exceptional case rather than as sufficient to refute a 

universal statement (e.g., Balacheff, 1991).  

Several studies have focused on teachers’ content knowledge of proofs (e.g., Knuth, 2002; 

Dreyfus, 2000), but only a few examined teachers’ related knowledge with reference to 

“prove” tasks (i.e., produce a proof) versus “evaluate a proof” tasks (i.e., is the proof correct 

or incorrect?) (e.g., Barkai, Tsamir, & Tirosh, 2004). Here we briefly address the latter two 

issues with reference to ENT statements. 

DESIGNING THE SESSIONS: PROOFS—VALIDATING AND REFUTING ENT 
STATEMENTS 

The tasks that we formulated for the Validating and Refuting sessions were based on relevant 

publications, on our studies of students’ and teachers’ conceptions of proofs and on the data 

that we collected from the 23 secondary school teachers that participated in our program.  The 
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participants were first asked to answer a questionnaire consisting of six ENT statements (see 

Table 3: validity is determined by the combination of predicate and quantifier). 

Predicate 

Quantifier 

Always true Sometimes true Never true 

Universal S1: The sum of any 5 

consecutive numbers is 

divisible by 5.  

 

True 

S2: The sum of any 3 

consecutive numbers is 

divisible by 6.  

 

False  

S3: The sum of any 4 

consecutive numbers is 

divisible by 4. 

 

False  

Existential S4: There exist 5 

consecutive numbers so 

that their sum is 

divisible by 5. 

 

True 

S5: There exist 3 

consecutive numbers so 

that their sum is 

divisible by 6. 

 

True  

S6: There exist 4 

consecutive numbers so 

that their sum is 

divisible by 4. 

 

False  

Table 3.  Classification of statements. 

The teachers were asked to determine, for each of the six statements, if they were true or false 

and to prove it in various ways (see also Tirosh & Vinner, 2004; Barkai, Tsamir, & Tirosh, 

2004).  All knew which statement was true and which was false, and all provided correct 

proofs to validate or refute the statements (frequently using only algebraic representations for 

proving the universal true statements). These findings are consistent with our findings in an 

extensive study that we carried out with the support of the Israeli Science Foundation (ISF, 

900/06) with fifty secondary school teachers (e.g., Tsamir, Tirosh, Dreyfus, Barkai, & 

Tabach, 2008; Tabach, Barkai, Tsamir, Tirosh, Dreyfus, & Levenson, 2010; Tabach, 

Levenson, Barkai, Tsamir, Tirosh, & Dreyfus, 2010). Here we focus on a P-D that presented 

teachers with two attempts to prove the same statement, asking them to state their opinions 

regarding the correctness of each suggestion. 

PAIR-DIALOGUE: LET’S PROVE THE STATEMENT IN DIFFERENT WAYS 

The aim of this session was to challenge secondary school teachers’ tendency to accept 

algebraic attempts to prove universal statements and to reject numeric ones. We provided two 

proofs that were written by students, for validating the statement “the sum of any 5 

consecutive numbers is divisible by 5”. The first proof was a numeric, valid, cover-proof and 

the second was an algebraic representation of an attempt to prove. In this latter attempt, no 

reference was made to the domain for x. 

D: It might be interesting to find several proofs for a statement. For instance to 

prove that ‘the sum of any 5 consecutive numbers is divisible by 5’...  

P:  I like that idea... 

D: I’d like to show you a nice numeric proof that a student once gave… The sum 

1+2+3+4+5 is 15, right? So, it’s divisible by five. To advance to the following five-

consecutive-numbers you need to add one to each of the original numbers. So you 

have 2+3+4+5+6.      

P: That’s 20 and it’s divisible by 5. 

D: The idea is NOT to look at the 20, but at the process, when advancing from one 

5-consecutive-numbers to the next 5-consecutive-numbers you add one to each 

number so all in all you add FIVE to the sum. So, the new sum is again divisible by 

5, and so on. [P has a puzzled expression.] Let’s call it “The Numeric ‘Adding Five’ 

Proof” [D writes on the board]: 

The Numeric ‘Adding Five’ Argument 

The sum of the first 5-consecutive numbers is:  
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1+2+3+4+5 is 15 and it’s divisible by 5. 

The sum of the next 5-consecutive-numbers is:  

2+3+4+5+6 = 

(1+1)+(2+1)+(3+1)+(4+1)+(5+1)= 

(1+2+3+4+5)+(1+1+1+1+1)= 

(Divisible by 5)+ 5= 

Divisible by 5 

P: I n t e r e s t i n g… I’d rather have an algebraic proof; it gives a stronger sense 

of generality… This is also a solution that was once given by a student. Look: the 

first number is presented as 5x, then 5x+1… and so… the sum is [writes on the 

blackboard]: 

The Algebraic 5x+n argument 

5x+(5x+1)+( 5x+2)+( 5x+3)+( 5x+4)= 

(5x+5x+5x+5x+5x) +(0+1+2+3+4)= 

25x +10 

Divisible by 5 +   10 

Divisible by 5 

D: To me, NOT using algebra and still addressing the generality is stronger...   

P: Perhaps we should consult our friends here [turns to the class]. What would you 

say? Is the numeric proof correct? Is the algebraic proof correct? Would you 

present and discuss both in class? Which one do you prefer? 

At this stage, the teachers were asked to write and submit their opinions regarding each of the 

suggested proofs.  We report on the main findings. 

EVALUATING THE TEACHERS’ KNOWLEDGE REGARDING ARGUMENTATIONS AND 
REPRESENTATIONS 

The teachers analyzed the two arguments according to their mode of argumentation and their 

mode of representation (Stylianides, 2007). Regarding the numeric representation, they 

expressed unease, and all but three stated that “it doesn’t seem right”. In response to the 

question: “Could a numeric representation be a correct proof?” ten teachers wrote “yes”, eight 

of which added “but” (“not really”, “not in high school”, “I wouldn’t use such a proof and/or I 

wouldn’t like my students to use it”). Seven teachers wrote “no”, explaining that “it isn’t 

general”, and occasionally adding comments like “we can’t know about REALLY LARGE 

numbers...”. Six teachers claimed that they could not state whether it is correct because “it’s 

strange” or “I never use such methods”.  

When referring to the algebraic suggestion, all 23 participants stated that “algebra is the right 

way for proving that such statements are valid”. Seven teachers praised the given algebraic 

proof: “it’s good”/”interesting” because “it brings forward the divisibility by five, right from 

the first expression”. Three of those teachers added “it is definitely better than the other 

[numeric] one”. Five teachers wrote, “they are not sure” or “I never used such a sequence”. 

The other 11 teachers referred to the presented “proof” as “partial”, not covering all cases; yet 

five of them added that it is general and thus better than the numeric one.  

By the end of the course all participants accepted numeric representations, which cover all 

cases, as valid proofs and rejected algebraic representations that failed to provide the needed 

cover. They were also very careful about the examination of the domain of algebraic 

representations. 

A CONCISE SUMMARY 

Mathematics education researchers who focus on the teaching of mathematics constantly 

search for promising, sensitive ways of enhancing teachers’ mathematical knowledge needed 
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for teaching. In this presentation we illustrated, via two examples, the application of the P-D 

teaching approach to mathematics teacher education.  

There is still a long way to go with developing and implementing the P-D teaching approach 

with individuals, small groups and whole classes of prospective and practicing mathematics 

teachers. In this presentation we focused mainly on addressing some aspects of two general 

mathematical issues, namely, definitions and proofs. The research findings on students’ and 

teachers’ conceptions of definitions and proofs, and on students’ and teachers’ ways of 

thinking about the content topics that we addressed in these episodes (triangles, elementary 

number theory) served as a basis for developing these episodes.  Such findings are essential 

for constructing episodes that address subject matter knowledge (SMK) and pedagogical 

content knowledge (PCK) issues. More generally, the growing body of knowledge on 

students’ and teachers’ ways of thinking about various mathematical concepts, operations and 

procedures is an asset for formulating P-Ds. Yet, when creating such episodes, affective 

issues are considered as well, and attempts are made to gently address typical, incorrect 

mathematical responses and to use such instances as springboards to enhance prospective and 

practicing teachers’ SMK and PCK.  

So far, we have related to the development and implementation of the P-D teaching approach. 

This approach, like any other approach to teacher education and to the professional 

development of teachers, should be evaluated. We are currently taking the first steps in this 

direction, attempting to identify productive ways to study the short-term and the long-term 

impact of this approach on the professional development of prospective teachers, practicing 

teachers and teacher educators. 
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INTRODUCTION 

This working-group report is based on text and notes contributed by Richard Barwell, Dave 

Lidstone, Stewart Craven, Dave Wagner, Doug Franks, France Caron and Brad deYoung. 

Climate change is one of the most pressing issues facing the world today and will continue to 

be in the coming decades, although few people have more than a vague understanding of what 

it is, how it works and what might be done to reduce its effects. Mathematics is crucial for 

describing, understanding and predicting climate change, whether through observation and 

modelling of the climate system (including the atmosphere, oceans and ice fields), or through 

monitoring and modifying human behaviour (e.g., emissions, economics, population). The 

mathematics involved includes measurement, descriptive statistics, probability and 

mathematical modelling. The key role of mathematics in understanding and responding to 

climate change suggests a corresponding role for mathematics educators. What might this role 

be? 

The aims of this working group were to explore this question and related issues: 

 Helping students make sense of climate change through a mathematical lens is 

important, not only to build their understanding of the issue, but also to move them, 

or at least some of them, toward actively responding to the problem. As mathematics 

educators or teachers, what kinds of things can we do to build students’ 

understanding of climate change and encourage their active response? 
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 Public discourse about climate change requires a degree of mathematical literacy in 

the general public, sufficient to understand various techniques or principles (e.g., 

averages and modelling) and interpret various forms of information (e.g., tables of 

data, graphs and charts). What implications might this situation have for mathematics 

education? 

The main components of the working group included: 

 a presentation by Brad deYoung, oceanographer, contributor to the 

Intergovernmental Panel on Climate Change, and Chair of the Department of Physics 

and Physical Oceanography, Memorial University, on the science of climate change;  

 activities focusing on different aspects of the mathematics of climate change; 

 development of applications (e.g. teaching activities) by participants. 

STARTING POINTS: CLIMATE CHANGE TEXTS 

When participants arrived at the start of the working group, they were invited to browse a 

wide range of texts that were displayed on tables, walls and laptops around the room. A 

selection of these texts is shown in the table, below. 

Newspaper articles Hanley, C. J. (2010, August 18).  Climate scientists forecast more heat, fires 

and floods. Globe & Mail. 

Berners-Lee, M., & Clark, D. (2010, June 17). What’s the carbon footprint of 

… a cup of tea or coffee? The Guardian.  

 More than 42 million displaced by natural disasters in 2010. (2011, June 6). 

Associated Press. Retrieved from 

https://robertwmh.wordpress.com/2011/06/07/more-than-42-million-

displaced-by-natural-disasters-in-2010-sympatico-ca-news/ 

Scientific articles Excerpts from the IPCC Climate Change 2007 Synthesis Report, available 

from www.ipcc.ch 

Borken-Kleefeld, J., Berntsen, T., & Fuglestvedt, J. (2010). Specific climate 

impact of passenger and freight transport. Environmental Science and 

Technology, 44, 5700-5706. 

Walter, M. E. (2010, October 12). Weatherquakes, earthquakes, mathematics 

and climate change. Retrieved from 

http://www.colorado.edu/math/earthmath 

Policy texts “The UNESCO Climate Change Initiative” available from 

http://www.unesco.org/new/en/natural-sciences/special-themes/global-

climate-change/ 

Books Weaver, A. (2008).  Keeping our cool: Canada in a warming world. Toronto, 

ON: Penguin. 

Lovelock, J. (2009). The vanishing face of Gaia: A final warning. London, 

UK: Penguin. 

Hulme, M. (2009). Why we disagree about climate change: Understanding 

controversy, inaction and opportunity. Cambridge, UK: Cambridge 

University Press. 

McCandless, D. (2009). The visual miscellaneum: A colorful guide to the 

world’s most consequential trivia. New York, NY: Harper Collins.  

Walter, M. (2011). Mathematics for the environment. Boca Raton, FL: CRC 

Press.  

Website texts Climate Modelling (n.d.).  Retrieved from  www.metoffice.gov.uk/climate-

change/guide/science/modelling 

Environment Canada (n.d.). Calcul des normales climatiques au Canada de 

1971 à 2000.  Retrieved from 

http://climat.meteo.gc.ca/prods_servs/normals_documentation_f.html  

Environment Canada (n.d.). Calculation of the 1971 to 2000 climate normal 

https://robertwmh.wordpress.com/2011/06/07/more-
http://www.ipcc.ch/
http://www.metoffice.gov.uk/climate-change/guide/science/modelling
http://www.metoffice.gov.uk/climate-change/guide/science/modelling
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for Canada.  Retrieved 

from:http://climate.weatheroffice.gc.ca/prods_servs/normals_documentatio

n_e.html 

Statcan (n.d.). Que représente une tonne d’émissions? Retrieved from 

www.statcan.gc.ca/pub/16-201-x/2007000/10542-fra.htm 

Statcan (n.d.) Chart 1.1: Global annual temperature anomalies computed from 

land and ocean data.  Retrieved from  www.statcan.gc.ca/pub/16-201-

x/2007000/10542-fra.htm 

Mathematics and Climate.  Retrieved from www.mathaware.org  

Video clips “America’s Climate Choices: Advancing the Science of Climate Change” 

 http://www.youtube.com/watch?v=FxaWVlzgkX4&feature=relmfu 

“Polar Bears Discussing Global Warming” 

 http://www.youtube.com/watch?v=_Zo7wTOdc_M&NR=1 

“Simulation – Human Land Use”   

http://www.ritholtz.com/blog/2011/03/global-land-cover-change-from-

8000-bp-to-50-bp/ 

“The Most Terrifying Video You’ll Ever See” 

 http://www.youtube.com/watch?v=zORv8wwiadQ&NR=1&feature=fvwp 

“The Story of Stuff” 

 http://www.storyofstuff.com/ 

In subsequent discussion of these texts, participants repeatedly expressed a feeling of being 

overwhelmed, both by the quantity of information available, as well as by the magnitude of 

the challenge of climate change. Several participants were concerned about the possible 

effects on future generations, including their own grandchildren or, more prosaically, their 

pensions. There was a clear recognition of the relevance of mathematics and mathematical 

literacy for interpreting the various texts. Some participants commented, for example, on the 

complexity of many of the graphs, issues of measurement, uncertainty, causality and the links 

with science. Finally, participants commented on the emotive nature of their response. We 

then generated the following questions: 

 Comment analyser les données? 

 Comment les choisir? 

 Comment les représenter? (Afin d’établir un lien avec les activités humaines.) 

 What are the implications of climate change for teaching math? 

 How can we foster interdisciplinary work? E.g. in science, social science, French, 

English. 

 Are we using climate change to make sense of math or vice versa? Which is the 

context? 

 In what ways do the skills we teach in mathematics contribute to the communication 

of climate change? 

 In what ways do the skills we teach help us to communicate relationships between 

humans, our actions, etc…. and the changing world? 

 Should the outcome be a change in our behaviour or adaptation to climate change? 

 How do / might / ought carbon credits / taxes work? Or not? 

 How can we help students understand how people are using math to support their 

rhetoric? 

THE SCIENCE OF CLIMATE CHANGE 

The presentation by Brad deYoung had several inter-related themes. For this report, we will 

summarise the following: how the climate is changing; effects on sea level and glaciers; 

modelling future climate scenarios; and what might be done in response. The information 

below is based on Brad’s presentation, slides and the discussion that followed. 

http://www.statcan.gc.ca/pub/16-201-x/2007000/10542-fra.htm
http://www.statcan.gc.ca/pub/16-201-x/2007000/10542-fra.htm
http://www.statcan.gc.ca/pub/16-201-x/2007000/10542-fra.htm
http://www.mathaware.org/
http://www.youtube.com/watch?v=FxaWVlzgkX4&feature=relmfu
http://www.youtube.com/watch?v=_Zo7wTOdc_M&NR=1
http://www.ritholtz.com/blog/2011/03/global-land-cover-change-from-8000-bp-to-50-bp/
http://www.ritholtz.com/blog/2011/03/global-land-cover-change-from-8000-bp-to-50-bp/
http://www.youtube.com/watch?v=zORv8wwiadQ&NR=1&feature=fvwp
http://www.storyofstuff.com/
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HOW THE CLIMATE IS CHANGING 

The Earth is several billion years old and the climate is always changing. Current changes can 

be considered in the light of the history of the climate at different time scales. Over the past 

65 million years (i.e. since the time of the dinosaurs), the climate has cooled considerably, by 

as much as 15ºC. This cooling, however, is not smooth – there have been periods of warming 

and cooling, with abrupt changes of several degrees in the overall temperature of the planet. 

Over the past 5 million years, there has been an overall cooling trend amounting to several 

degrees, although with a great deal of variability. Some aspects of this variability show a 

cyclic pattern over periods of 41,000 and 100,000 years, related to cycles in the sun’s activity.  

Over the past 500,000 years, such cyclic patterns are more apparent (see 

http://climate.nasa.gov/evidence/ for a graph for this period). There is a strong relationship 

between levels of carbon dioxide (CO2) and methane (CH4) in the atmosphere and the 

temperature of the Earth. There is a much more complex relationship between the changes in 

temperature, CO2 and CH4, and the sun’s activity. This relationship is complex because 

different parts of the climate system have different ‘memories’ – the time taken for energy to 

circulate. The atmosphere changes quite rapidly, over 10s of years; the oceans more slowly, 

over 1,000s of years; and icecaps and glaciers more slowly still, over 100,000s of years. This 

makes sense, since the atmosphere is very fluid, while glaciers typically take a long time to 

build up or to melt. 

A graph of temperature change over the past 100,000 years shows in much more detail the 

variation that occurs from one millennium to the next. Abrupt changes mark shifts between 

ice-ages and warmer periods. While it is well known that astronomical forcing, leading to 

changes in solar insolation, causes these cycles of climate, it is quite clear from the time series 

that the response of the earth to the changes in the solar radiation, over long periods, is not 

linear. The graph also shows that for the past 10,000 years, the climate has been unusually 

stable, with much less variation and a relatively constant mean temperature. It is notable that 

this period coincides with the development of agriculture and complex human societies.  

Finally, the trend in global temperature over the past 1,000 years has been largely stable, with 

a slight and gradual cooling – until the middle of the 19
th

 century, since when there has been a 

sharp upward trend. The temperature difference between the warming experienced now, and 

that observed during the late Middle Ages is a subject of significant debate. The sharp upturn 

of the 19
th

 century coincides with the industrial revolution and human production of 

greenhouse gases. Concentrations of CO2 now exceed levels not seen for tens of millions of 

years. It is the rate of change of temperature, sea-level and greenhouse gases in the 

atmosphere, that is most striking in the context of the paleoclimatic record. 

EFFECTS OF CLIMATE CHANGE ON SEA LEVEL AND GLACIERS 

Global warming has effects on all aspects of the climate system. Brad spoke specifically about 

its effects on the oceans, since that is his area of expertise. Sea-level has been increasing 

throughout the past century. Over the past 50 years, it increased by about 1.8 mm per year. It 

is now increasing at around 3 mm per year. That may not sound like much, but when 

multiplied over decades, and when the immense volume of the oceans is considered, it is 

apparent that these changes are significant. Increasing sea-level is due to two main 

phenomena. One is thermal expansion: as the oceans get warmer because of global warming, 

they expand in the same way that other substances expand when they are heated. Thermal 

expansion accounts for about half of observed sea-level rise. 

The other phenomenon he discussed is melting glaciers and ice-shelves. (Note that melting 

sea ice does not lead to an increase in sea-level). The Greenland ice sheet is 1.7 million km
2
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and is 3 km thick. Some of the glaciers that make up the Greenland ice sheet are melting fairly 

rapidly. One glacier, for example, called Jakobshavn, is releasing 50 km
3
 per year into the 

ocean. Worldwide, melting ice sheets account for about 1mm per year increase in sea-level, of 

which melting in Greenland contributes about 0.5 mm per year. 

MODELLING FUTURE CLIMATE SCENARIOS 

Climate models include separate components for the atmosphere, oceans, land, ice and 

biosphere. They model the Earth by dividing it up into squares and then taking vertical 

columns for the atmosphere and the ocean. The models themselves are based on the physics 

of the climate, and in particular, energy flows. There is only one external source of energy – 

radiation from the sun. Much of the solar radiation received by our planet is simply reflected 

back out into space by the upper atmosphere, clouds or ice and snow. This energy heats the 

atmosphere, the oceans and the land. Energy is also transferred between different parts of the 

climate system through, for example, evaporation of the oceans to form clouds and rain.  

Climate models are run on large computers. Their efficacy is tested using historical climate 

data. Initial conditions are set at some point in the past for which we have sufficient data. The 

model is then run. The efficacy of the models is determined by how well they reproduce the 

observed climate since the starting point. Once a model is effective in reproducing observed 

climate from the past, it can be run further to project future climate. Existing models are now 

quite effective, although they include many uncertainties, such as those caused by the grid 

size used for the modelling, the representation of key aspects of ocean dynamics such as the 

Gulf Stream, cloud dynamics in the atmosphere and many other things. Larger grid sizes, for 

example, over-simplify both climate and topography – clouds or thunderstorms, for example, 

can be very localised.   

Having developed reasonably effective models, they can be used to test a key hypothesis – 

that greenhouse gases trap additional energy than would otherwise be the case and hence are 

causing the observed global warming of recent decades. The test involves running established 

models with human-produced greenhouse gases either included or omitted. On this basis, a 

divergence appears at around 1970. After this point, models that do not include human-

produced greenhouse gases show lower temperatures than those that do. The models that do 

include this element reproduce the observed warming, while those that do not, do not.  

Using these models, various projections can be made about the future climate, from fairly 

general to fairly specific. In general terms, the Earth will get warmer. Such warming is not 

evenly distributed, however. Warming is likely to be much greater at higher latitudes than in 

equatorial regions. The extent of this warming depends on the quantity of greenhouse gases 

released into the atmosphere. In its most recent report, the IPCC produced various scenarios. 

Needless to say, the ‘business as usual’ scenario is projected to result in the greatest level of 

warming. More specific projections include the disappearance of summer sea-ice in the Arctic 

within 40 years. 

DISCUSSION 

Following the presentation, participants raised many questions reflecting their concerns as 

mathematics educators and as citizens. The following represents a selection of these questions 

and Brad’s responses. 

France: There is a difference between data arising from models and data arising 

from direct observation.  

Brad: Yes, there are different sorts of data and every kind of data has an issue 

associated with it. Observations are not more right. Observations can be wrong and 
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so can models. It isn’t so simple as right and wrong. For example, when you change 

a temperature measurement technique, there is a jump in the record, so you have to 

make a correction. 

Georges: How do you convincingly choose a correct model…can you? 

Brad: It’s useful that people take different approaches. So, for example, for global 

temperature models, there are now 6 groups working independently, and their 

results converge.  

 

Greg: Presenting these ideas for the public must be difficult. 

Brad: One big problem for non-scientist audiences is the concept of non-linearity. 

It’s hard to explain in a short time. I assume that the participants in this group 

understand, but for the general public, it doesn’t mean anything. In An Inconvenient 

Truth, for example, Al Gore is trying to imply a dramatic linear change, when 

actually it could be much worse. 

Florence: When you communicate with the public, or when you’re teaching, how do 

you help your students be aware of non-linearity? I feel like we’re really linear in 

our teaching of mathematics. 

Brad: It’s a real problem. Undergraduate mathematics is usually linear. I teach a 

course using Mathematica, which will solve differential equations, so students can 

vary parameters to see what happens. But the issue is the same at university level. 

 

Chris: There’s a connection here with critical mathematics education.  

Dave L: Say more about that – can you give an example? 

Chris: Rico Gutstein has reported on his mathematics teaching project in New York 

on the gentrification of the Bronx. The students work with real data on salaries and 

house prices. 

Stewart: Who brings the questions – the students or the teachers? 

Dave W: I’ve discussed this with Gutstein. He says students don’t see the questions 

– they might see their friends moving away but he needs to formulate the question. 

In climate science it’s a bit harder to do that – kids are more interested in their 

social world than in the climate. 

Brad: Kids get an oversimplified message – they are often worried about a 

catastrophe. 

Dawn: It depends where the kids are from: in Northern communities, permafrost is 

melting and they are encountering animals they’ve never seen before. 

Brad: It’s true there is a much greater connection with the environment and the 

climate in Greenland compared with, say, Toronto. In Greenland, there is a desire 

for science, a desire to understand more. Kids do see the connections locally. 

Doug: Are kids asking ‘what can I do?’ or do they remain at a more passive level.  

Brad: Anecdotally, I think it’s both. Educators can take that hubbub of activity and 

guide it towards more critical consideration and thinking. I’m not so sure about 

activism in the classroom; critical thinking is the important thing. We need to be 

open to children thinking about the issues. In a physics class that I taught, we 

compared two films: An Inconvenient Truth and The Great Global Warming 

Swindle (a British film with a sceptical bias) and they found the latter more 

convincing. 

 

Wayne: This is really interdisciplinary. I’m not sure that mathematics educators do 

that. 

Brad: I teach Physics, Oceanography and Mathematics. My impression of high 

school mathematics is that connecting to things that are real for students is good, 

that this would stimulate both their interest and their understanding. It helps to 

bring the reality of other subjects. So you can explain what a Watt or a Joule is. 

Within climate change there are many problems, so pick one part and there’s lots of 

mathematics inside. 

Wayne: When students learn algebra and then transfer to trigonometry, it’s a huge 

jump; so going outside of mathematics is hard. 

Brad: We need to bring together mathematical expertise and problem-based 

thinking. 
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Chris: Maybe it’s not about teaching skills and applying – I see problems first. 

Mathematics skills have meaning within contexts.  

France: Students need to get their hands dirty with data, making their own 

assumptions to make sense of it. 

Peter: At Queens we’re trying to emphasise interdisciplinarity – at the moment we 

all work in silos. It’s a great challenge to get out of that structure.  

Brad: I think students would like thematic instruction drawing on different teachers. 

Mathematics becomes part of something else. 

Wayne: But then you lose the essence of mathematics or physics, etc. 

Brad: You need a bit of both. 

Chris: Interdisciplinarity is important: in mathematics we may not know that much 

about the context, for example, we may not know that much about climate change. 

Greg: But we’re talking about mathematics and physics – is that really that 

interdisciplinary? It’s the same frame of thinking. What about social issues – that 

would be a lot more interdisciplinary. 

Brad: There’s a danger of bringing in too many disciplines. You can spend the rest 

of your life looking at different things. I agree we can use social science, literature, 

etc. We live within the climate system; that’s the planet we’re on. But you can’t do 

everything: pick something and work on that and make some of it locally relevant. 

WORKING ON MATHEMATICS IN THE CONTEXT OF CLIMATE CHANGE 

In the next part of the working group, participants worked on three tasks prepared by the 

group co-ordinators. These tasks had three different mathematical foci: measurement and 

averages, stochastics, and proportional reasoning. 

MEASUREMENT AND AVERAGES: IS THE WEATHER HERE ALWAYS LIKE THIS? 

For the first task, participants were provided with a spreadsheet containing meteorological 

data recorded in St. John’s, NL, over the past 30 years. The spreadsheet consisted of monthly 

mean temperatures (minimum, maximum and average), monthly maximum and minimum 

temperature recorded, and records of rainfall, snowfall and wind speed. Participants were 

invited simply to explore the data, prompted by the following questions: 

 Is the weather here always like this? (During the conference, the weather was rather 

cool and unsettled.) 

 What is ‘normal’ for St. Johns? 

 How could you find out? 

 Does it matter how you find out? E.g. If you calculate a mean over 20 years vs. 30 

years? 

 Has the climate in St. John’s changed? How? 

 What might you expect to happen over the next 10 years? 

 Why? 

Participants worked in groups and most produced graphs looking at trends in some of the 

data. As an example, a graph showing changes in mean temperatures in the month of 

December over the past 40 years is shown below (see Figure 1). The graph also includes a 

linear regression line and 5-year moving average for the same data. 

Participants commented on various aspects of the task, including the authenticity of working 

with the data, which is quite complex, rather than preselected and hence rather 

decontextualized data. On the other hand, for most groups, the task did not progress beyond 

plotting a trend. This is a good starting point, but some participants wondered how such an 

activity could be taken further in a classroom situation. Other participants thought about the 

meaning of ‘mean’, as in ‘mean monthly temperature’: What does that represent? And how 
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does one make the link from a locally observable trend of increasing temperature to the global 

phenomenon of climate change? 

 

Figure 1.  Changes in monthly mean temperature in December. 

STOCHASTIC REASONING 

The study and understanding of climate change is rife with stochastic issues. Indeed the very 

definition of global warming is statistical, based on a thirty-year average from a variety of 

data stations. A common metaphor to distinguish weather from climate is “weather is the 

outcome of a roll of dice and climate is the probability distribution for the roll of dice”. With 

this in mind, participants were asked to roll a pair of dice 30 times and record the sum of the 

faces on each roll. Some of the participants were given green standard dice and others were 

given red dice that had been altered so that the one of the fours was changed to a six. The 

intention of the activity was to promote a discussion of stochastic issues of climate change 

especially as they pertain to classrooms.  

Notice that with the dice altered as they were there was no change in the sample space, which 

would have occurred had we changed say a one face to a three (see Figure 2). The probability 

distribution is, of course, different from what we would have for a standard pair of dice. 

Sample space for the ‘red’ dice 

 

Sample space for the ‘green’ dice 

 

Figure 2.  Sample spaces. 
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The results of our trials are tabulated below (see Figure 3) along the row labelled “ep” for 

empirical probability, and below that is a row labelled “tp” for theoretical probability. 

 Trial results for the ‘red’ dice 

  
 
 Trial results for the “green” dice 

  
 

Figure 3.  Trial results. 

Among the points raised in discussion was that some participants had not noticed that their 

dice were out of the ordinary and their outcomes did not suggest this. We noted that we only 

had about 120 trials for each type and so the long run issues of probability have yet to be 

observed with such a data set. Indeed, determining the number of trials that would allow us to 

infer a change in the probability distribution is a standard, but not elementary, statistical 

problem. Although the activity does offer students an opportunity to distinguish empirical 

probability from theoretical probability, it does not address ‘subjective’ probability, the 

practice of daily weather forecasters. Nonetheless, experiencing random behaviour and 

confronting some of the complexities it entails seems to be an important part of understanding 

climate change. 

PROPORTIONAL REASONING 

In order to dramatize human contribution to climate change in the movie An Inconvenient 

Truth, Al Gore uses a huge graph depicting changes in atmospheric CO2 concentrations over 

the last 800 000 years. He moves along the graph from left to right and then steps into a 

vertical lift that rises to illustrate the precipitous increase in atmospheric CO2 concentrations 

over the last 150 years. The participants were provided with a copy of the graph (see Figure 4) 

as it was shown in the movie, plus one or two other graphical representations, and they were 

asked to: 

1. Discuss the correctness of each of the representations in terms of proportionality. 

2. Discuss the impact of the representations. 

3. Suggest alternative but more powerful ways for conveying the information. 

As a part of the discussion, in order to emphasize how selecting scales for both the horizontal 

and the vertical axes can affect the readers’ interpretations of information, we ‘redrew’ the ‘Al 

Gore’ graph (see Figure 4) such that 1 cm = 400 years. Using a cashier’s tape we rolled out 
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the ‘horizontal axis’ to a length of 20 m. This begins to show the immensity of the time scale 

over which CO2 concentrations fluctuated over a small well-defined range thus making the 

huge jump over the last 200 years (0.5 cm in our new graph) to be that much more surprising. 

 

[Source: Leland McInnes, http://en.wikipedia.org/wiki/File:Co2-temperature-plot.svg] 

Figure 4.  The ‘Al Gore’ graph. 

APPLICATIONS 

The last portion of the working group was spent in groups developing ideas for classroom 

tasks or other applications. Brief reports of each group’s work are provided. 

Florence, Dawn and Samuel  

This group worked on an interdisciplinary approach, starting with the topic on climate change 

in the Alberta science curriculum. They started with a radiation dose chart included in the 

texts in the opening session of the working group. The theme of the activity is nuclear energy 

as an alternative to carbon fuels, with a mathematical focus on understanding magnitude. 

Using the chart as a starting point, questions could be generated and then explored. Questions 

might include: 

 How many radiation units (Sieverts) are in one banana? 

 How many bananas would you have to eat to kill yourself? 

 Would you have to eat them all at once? Could you? 

 How long does it take to digest a banana? 

 What if the banana was a unit of measurement? 

 What is a Sievert? How are they calculated? 

 Is the information in the chart reliable? 

The text includes references to historical events, e.g. Three Mile Island. 

http://en.wikipedia.org/wiki/User:Leland_McInnes
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Connections would be possible with local issues such as the installation of high-tension power 

lines. The statistics in the text are all US – it would be good to locate Canadian stats too. 

Richard and Dave W. 

This group worked at developing a game that models climate economies. They worked at 

varying the game Free Trade, which is a game David developed. It uses many dice to model 

free-market economies. Criteria they tried to incorporate into the climate economies game are: 

1. The elements of randomness (the dicing) model unpredictability in one’s decision 

making in the real financial and environmental economies. 

2. There are two parallel economies – personal wealth and environment. 

3. A healthy environment improves each player’s ability (chances) to maintain and 

develop personal wealth. 

4. Environmental degradation affects the poor more than it affects the rich. 

5. Decisions that are good for the environment incur some sacrifice of personal wealth 

but everyone’s wealth is dependent on sufficient environmental health. 

6. The wealthier players’ choices impact the environment more than the choices of the 

poor. 

7. The wealthier players also have advantages in increasing their personal wealth. 

8. The game should have the potential to sustain equilibrium in which every player stays 

alive while the environment remains stable and while reasonable fluctuations and 

differentiations in personal wealth occur. 

Playing such a game would help one understand a complex system in which environment and 

personal wealth interrelate. Trying to come up with reasonably simple rules for the game 

involves a lot of mathematics. Perhaps we can give our students our initial ideas and ask them 

to fine tune the game (i.e. let them do the mathematics and let them think about matching the 

model to the way these interrelated economies work). 

France and Georges 

Deux pistes ont été explorées et présentées pour mieux apprécier et même comprendre les 

changements climatiques par le biais de la modélisation mathématique et statistique, assistée 

par la technologie.  

Une première serait d’abord de distinguer entre météorologie et climatologie 

(http://accromath.uqam.ca/contents/pdf/climat.pdf), en saisissant le concept de variabilité à 

travers l'étude de l'erreur produite par une régression sinusoïdale appliquée aux températures 

mensuelles moyennes pour une même station météorologique sur une période de quelques 

années consécutives (http://climate.weatheroffice.gc.ca/climateData/canada_f.html); cette 

erreur est typiquement assimilable à une loi normale. On pourrait ensuite examiner si l’on 

observe un changement dans les paramètres du modèle entre deux périodes relativement 

éloignées.   

Une seconde approche serait de chercher à modéliser le cycle de carbone, par une initiation 

des élèves à la modélisation compartimentale à l'aide d'un logiciel comme Stella (voir les 

Actes du GCEDM 2004, p. 75) ou par la simulation de tels modèles à l'aide de paramètres et 

de variables de contrôle. Des initiatives ont été menées en ce sens, et depuis quelques années 

déjà, comme en témoignent notamment les sites suivants: 

 http://globecarboncycle.unh.edu/CarbonCycleActivities.shtml 

 http://pedagogie.ac-montpellier.fr/disciplines/svt/stella/Presentation_Stella.htm  

 http://www.unidata.ucar.edu/community/2006workshop/PresenterPowerPoint/Mond

ay%20Afternoon/STELLA%20Models%20in%20the%20Classroom.pps 

http://www.unidata.ucar.edu/community/2006workshop/PresenterPowerPoint/Monday%20Afternoon/STELLA%20Models%20in%20the%20Classroom.pps
http://www.unidata.ucar.edu/community/2006workshop/PresenterPowerPoint/Monday%20Afternoon/STELLA%20Models%20in%20the%20Classroom.pps
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Laurent, Greg, Lucie and Dave L. 

This group worked with a simplified arctic ice satellite image, with future ice extent forecast 

shown as a line. The image has been used as the basis for a grade 5-6 task to think about what 

the ice extent might be for 2020. The task is to find what proportion of ice is left and involves 

comparison of areas. The mathematics includes: 

 calculating area of an irregular shape 

 percentages 

 measuring perimeter  

 clarifying difference between perimeter and area 

This activity is working on mathematics in the context of climate change. Other ideas could 

be: 

 topographical maps looking at sea level rise 

 decline in lake volume related to drinking water 

 linking area and magnitude 

 choosing a graphical representation and justifying the choice 

Peter, Wayne, Stewart and Doug 

This group looked at the background to the Stephan-Bolzman law, which relates CO2 

concentration to temperature and involves a 4
th

 power relation. In its analysis and derivation, 

which involve integral calculus, work with students on this topic would clearly be at the post-

secondary math level.  In its ‘ideal radiator’ form, the Stephan-Bolzman law is: E = σT
4
. In its 

non-ideal radiator form it has some additional factors.  

Since this law is an important part of understanding global warming, this group talked about 

how the need to understand proportionality, and the non-linearity involved in this equation, 

would be crucial. Even without working with this equation directly, it would be important for 

students (and the larger community) to better understand the meaning and significance of non-

linear relationships: What does it mean? What is implied by a linear relationship and therefore 

non-linear relationships? Where do these occur in life, nature, etc.? If there is any hope of 

understanding how one entity might vary as the fourth power of another, we have to spend 

time developing this understanding with ‘simpler’ relationships and models.  It’s useful to 

note that Brad emphasized in his talks the importance of non-linear relationships and how, in 

general, these are not well understood. 

CONCLUSIONS 

The working group ended with a profound sense of concern at what we learned about the 

climate of our planet. The work of the group was successful in exploring where mathematics 

plays a role in investigating and understanding climate change, as well as in the mathematical 

literacy needed to make sense of all the information available. One of the awarenesses that 

emerged from the task of creating activities relating to climate change was that the complexity 

and messiness of the topic was an opportunity. One participant commented that “if we make 

the tasks too elegant, we have nice discussions, but students find it abstract…having students 

or student teachers work on integrating different information or ideas is meaningful for them.” 

That is, by engaging with the complexity, students can learn a lot, even if the outcome is not 

always tidy and complete. This awareness, in fact, applies just as much to the working group 

itself. 
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BACKGROUND 

Mathematics is about more than knowing, it is also about doing. As educators, we 

acknowledge the importance of understanding the fundamental concepts that underpin 

mathematics, yet the assessments of our students are often procedure-based. If being able to 

do mathematics follows strictly from an understanding of mathematics, then procedural tests 

would be an accurate assessment of a student’s understanding. Of course, this is not the case. 

The relationship between procedural and conceptual knowledge is far more complex and 

dynamic – it is possible that one can be obtained, to some degree, in isolation from the other. 

Recognizing the importance of both procedural and conceptual knowledge, how can both of 

these be best instilled in our students?  

Much recent work in mathematics education has focused on the teaching of concepts. Less 

emphasis is placed on procedures, since it is often assumed that procedural ability will 

naturally arise and that procedural knowledge does not run as deep, and is less interesting 

from a research perspective, as conceptual knowledge. Our working group focused on 

procedural knowledge and found it to be complex and dynamic, worthy of far more attention 

than what it receives currently. 

Some of the questions we considered in our working group are presented here along with brief 

introductions to relevant literature. 



CMESG/GCEDM Proceedings 2011  Working Group Report 

38 

WHAT IS PROCEDURAL KNOWLEDGE? WHAT IS CONCEPTUAL KNOWLEDGE? 

Many authors have attempted to discern and classify types of knowledge. Indeed, the history 

of these attempts stretches back to antiquity and will not be covered here. It must be 

emphasized that what is considered knowledge is not universal and unchanging; even what we 

take as scientific knowledge has its roots in 20
th

 century philosophy. We focus our attention 

on those knowledge classifications that have appeared in the education, and related, literature. 

The primary focus of this working group was on procedural knowledge, which is often 

defined alongside conceptual knowledge. Perhaps the most commonly accepted definitions of 

procedural and conceptual knowledge are due to Hiebert and Lefevre (1986): 

[Conceptual knowledge is] knowledge that is rich in relationships. It can be thought 

of as a connected web of knowledge, a network in which the linking relationships 

are as prominent as the discrete pieces of information. Relationships pervade the 

individual facts and propositions so that all pieces of information are linked to some 

network. (p. 3) 

In terms of procedural knowledge: 

One kind of procedural knowledge is a familiarity with the individual symbols of the 

system and with the syntactic conventions for acceptable configurations of symbols. 

The second kind of procedural knowledge consists of rules or procedures for solving 

mathematical problems. Many of the procedures that students possess probably are 

chains of prescriptions for manipulating symbols. (p. 3) 

The connotations are clear: conceptual knowledge is somehow ‘better’ than procedural 

knowledge. This has led some authors to expand on these basic definitions, considering not 

just type of knowledge but depth. de Jong and Ferguson-Hessler (1996) review some of the 

knowledge constructs present in the literature and attempt to synthesize them. In the literature 

they review, they locate the following types of knowledge: generic (or general) and domain 

specific, concrete and abstract, formal and informal, declarative and proceduralized, 

conceptual and procedural, elaborated and compiled, unstructured and (highly) structured, 

tacit or inert, strategic, ‘knowledge acquisition’, situated, and meta knowledge. 

Understandably, this plethora of knowledge types can cause confusion for both researchers 

and practitioners. In an attempt to consolidate these constructs to “avoid the introduction of 

still more types of knowledge that do nothing more than to describe properties of generally 

accepted types of knowledge” (p. 105), the authors place the definitions in a two-dimensional 

array. One axis is type, the other, quality. Working from their field, physics, the authors 

identify four distinct types of knowledge, two of which — conceptual and procedural — are 

relevant to the current discussion. As for quality, the authors propose deep, associated with 

comprehension and abstraction, and critical judgement and evaluation, and surface, associated 

with reproduction and rote learning, trial and error, and a lack of critical judgement. This way 

of classifying knowledge has lead Star (2002) to enquire about deep procedural knowledge. 

In a sense, the question Star (2002) poses is natural: we know what deep conceptual and 

superficial procedural knowledge look like, but what is deep procedural knowledge? Part of 

the problem in understanding deep procedural knowledge is we seldom look for it. 

Conceptual knowledge is measured verbally and through a variety of tasks, while procedures 

are measured in terms of task completion – is the answer correct or not? This binary 

assessment obscures the richness present in carrying out a procedure. Another issue is that 

mathematics education literature tends to draw from the same well of problems, those found 

in primary or early-secondary school. What are absent are higher-level problems where the 

richness in procedure execution is more transparent (Star, 2002). Any derivative in a calculus 

course, for example, can be computed in a great number of ways, all of which, if done 
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correctly, will yield the same expression. It is while performing an operation like this that we 

encounter a rich mathematical performance by the student. 

HOW DO PROCEDURAL AND CONCEPTUAL KNOWLEDGE RELATE? 

It is natural to assume that the more one understands about a certain concept, addition, say, 

the easier it will be to perform an operation based on this concept. Although this may be the 

case for some concepts, it is almost certainly not a general phenomenon. This assumption is 

brought about by what Star (2002) identifies as a deficit of the mathematics education 

literature: the concepts typically examined are taken from primary and secondary school. 

Examples of higher grade-level concepts are needed to illustrate the dynamic interplay 

between knowing and doing. A good place to start is differentiation (Maciejewski & Mamolo, 

2011). The derivative of a function is defined as the limit of a quotient of functions. There are 

many ways to conceptualize a derivative – as a rate of change, the slope of a tangent line, etc. 

– but no matter how deeply the concept of derivative is understood, the procedure for finding 

the derivative of a function remains opaque. Not only this, but the inability to compute 

derivatives inhibits how deeply the concept can be known. Furthermore, the acquisition of 

neither concepts nor procedures necessarily precedes the other (Rittle-Johnson & Siegler, 

1998). A few studies have supported the notion that concepts and procedures can play off of 

each other, one reinforcing and strengthening the other (Byrnes & Wasik, 1991; Rittle-

Johnson & Siegler, 1998). This may have profound implications for teaching practices: 

perhaps it is better to start with procedures with some students, concepts with others. 

WHAT IS MEANINGFUL LEARNING? 

All educators want their students to learn. But what does it mean to learn? Mayer (2002) 

identifies two components of learning: retention and transfer. Retention is the ability to recall 

a lesson, while transfer is the ability to apply the lesson to a novel situation. It is this second 

component of learning that Mayer identifies as an indicator of meaningful learning. 

According to Mayer, 

Meaningful learning occurs when students build the knowledge and cognitive 

processes needed for successful problem solving. Problem solving involves devising 

a way of achieving a goal that one has never previously achieved; that is, figuring 

out how to change a situation from its given state into a goal state. (p. 227) 

Meaningful learning is harmonious with constructivist theories of learning. In both, students 

are actively engaging with the material at hand, devoting attention to incoming information, 

processing the relevant information into an appropriate mental representation, and 

coordinating this information with existing knowledge. In contrast, rote learning focuses on 

adding tidbits to existing memory.  One of the central foci of our working group was the 

meaningful learning of procedures. 

HOW IS PROCEDURAL KNOWLEDGE BEST LEARNED? CAN IT BE LEARNED IN A NON-
ROTE, MEANINGFUL WAY? 

How procedural knowledge is viewed, and the emphasis placed on its acquisition and 

execution, is not universal. The current emphasis in North American mathematics education 

on understanding concepts tends to downplay the execution of procedures. This is not shared 

with other regions; Asian cultures tend to place emphasis on procedural fluency. Shiqi (2006) 

identifies that 

[I]n China, as well as East Asian countries, routine or manipulative practice is an 

important mathematics learning style. Practice Makes Perfect is the underlying 

belief [...] Through imitation and practice again and again, people will become 

highly skilled [...] Manipulation is the genetic place of mathematical thinking and 

the foundation of concept formation. It provides students with a necessary condition 
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of concept formation and is the first step of mathematics comprehension. (pp.129-

130) 

Shiqi also notes that Asian countries typically do quite well on international tests of 

mathematics ability, and this, in turn, may be attributable to the emphasis on manipulation 

work, a belief commonly held in China. 

Shiqi examines possible sources of the Chinese perspective on mathematics learning. She 

notes that the classical Chinese text on mathematics, The Nine Chapters on the Mathematical 

Art, focuses on the solution of a collection of problems. In the work, a problem is stated, a 

solution is given, and an explanation of the algorithm used to generate the solution is 

provided. This work differs markedly from its Greek contemporaries, which sought general 

principles from a set of axioms. This work has had profound influence on mathematical 

thought in China; so much so that mathematics is known as the “subject of computation”. The 

idea of mathematics as a tool of computation persists as many older adults in China refer to 

mathematics as arithmetic.  

School mathematics in China, as in North America, is viewed as a difficult subject. But unlike 

North America, the Chinese believe that all students, regardless of ability can grasp and excel 

in mathematics, provided that they practice. This belief pervades Chinese education; indeed, 

the Chinese character for education may be translated as “young people grow and develop 

provided they make every endeavour to tackle difficult tasks”. This notion is supported by 

Chinese idioms – slow bird should fly earlier – and by historical Chinese thinkers – 

Confucius says: it is pleasant to learn and practice time and again. The exam culture of 

China also contributes to the emphasis on practice. Examination is a millennium-old practice 

that still plays a vital role in Chinese society. Students face fierce competition for entrance to 

university and consider continual practice a good way to achieve well on these exams. 

The Chinese word for practice is, however, far more dynamic than what it is in English or 

French. It goes beyond practice or do to encompass familiarize with and be proficient at 

(Shiqi, 2006). This leads to a dynamic way of practicing. Experienced teachers recognize the 

depth to practice, and structure the practice they give their students around promoting deep 

learning.  This is often referred to as variant manipulation or meaningful manipulation.  

Problems, of course, arise from excessive emphasis on excessive practice. Shiqi (2006) 

highlights a study that revealed that a group of math majors at a college in China could find 

the answer to a set of problems, but had essentially no idea why the answer should be true. It 

should be mentioned that it is of no benefit to students to place sole emphasis on either 

concepts or procedures; a balance must be struck between both. 

HOW IS PROCEDURAL KNOWLEDGE BEST TAUGHT/LEARNED? CAN IT BE TAUGHT IN 
A NON-ROTE, MEANINGFUL WAY? 

The learning and teaching of procedures has received comparatively little attention in the 

literature relative to that of conceptual knowledge. This is changing, however, as the 

importance of developing sound procedural knowledge is gaining recognition. Indeed, 

Kirschner, Sweller, and Clark (2006) acknowledge that 

...expert problem solvers derive their skill by drawing on the extensive experience 

stored in their long-term memory and then quickly select and apply the best 

procedures for solving problems [...] We are skillful in an area because our long-

term memory contains huge amounts of information concerning the area. That 

information permits us to quickly recognize the characteristics of a situation and 

indicates to us, often unconsciously, what to do and when to do it. (p. 76) 
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In terms of classroom practices, research indicates that simple modifications to a course plan 

can have a profound impact on both conceptual and procedural knowledge. According to 

Rittle-Johnson and Koedinger (2009), 

[k]nowledge of concepts and procedures may develop best in an iterative process, 

with improvements in one type of knowledge supporting improvements in the first. 

The current study converges with past research indicating that prior knowledge of 

one type can influence gains in the other type of knowledge [...] More importantly, it 

extends prior research by demonstrating that experimentally manipulating the order 

of instruction to follow an iterative sequence can improve learning, compared to a 

concepts-before-procedures sequence. This is particularly impressive given that all 

participants completed the same lessons; only the order of lessons differed. (p. 496) 

Research on how a student’s procedural knowledge develops, and what experiences aid in this 

development, is in its infancy. In this regard, our working group was offered at an exciting 

time. 

RETOUR SUR CHACUNE DES SIX SESSIONS 

The working group discussions were organized into six sessions. Each of the six sessions had 

some specific questions to be addressed. For each of the sections, we will present the 

questions, an overview of the activities, and the discussions. 

SESSION 1 

 Quels sont les savoirs procéduraux?  

 Quels sont les autres types de savoirs et comment peut-on les comparer? 

 Est-ce que les savoirs procéduraux sont porteurs de sens? 

Nous avons eu une discussion forte intéressante portant sur ces questions. Nous avons tout 

d’abord réfléchi sur les différents types de savoirs (entre autres, sur les savoirs factuels, 

intuitifs, pratiques, techniques, le sens commun, les savoirs spatiaux, sociaux, institutionnels, 

environnementaux historiques, la mémoire musculaire, les savoirs d’expérience, 

disciplinaires, les connaissances). Notre discussion nous a conduit à envisager les relations 

entre les savoirs procéduraux et les savoirs conceptuels. Nous nous sommes penchés sur des 

modèles ou bien des façons de représenter ces relations à l’aide d’un diagramme de Venn ou 

d’une corde. Nous avons convenu que le modèle des cinq filaments de la compétence 

mathématique (‘the rope model of five strands of mathematical proficiency’ (NCR, 2001) – 

see Figure 1) introduit par un participant était un modèle fort représentatif de ces relations : 

 

Figure 1.  Mathematical Proficiency, NCR (2001). 
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 Conceptual understanding – implique une compréhension des concepts, des 

opérations et des relations entre eux. La compréhension conceptuelle se manifeste, 

entre autres, lorsque les étudiants comprennent les liens et les similarités entre des 

concepts et entre des opérations. 

 Procedural fluency – implique flexibilité, précision et efficacité lors de l’utilisation 

appropriée de procédures. Les habiletés de la compétence comprennent savoir quand 

et comment utiliser ces procédures. 

 Strategic competence – implique l’habileté de formuler, représenter et de résoudre 

des problèmes mathématiques. 

 Adaptive reasoning – implique la capacité de penser de façon logique aux concepts 

et aux relations entre eux. Le raisonnement est nécessaire pour naviguer entre les 

différentes procédures, les faits et les concepts afin de trouver une solution. 

 Productive disposition – réfère à une disposition positive envers les mathématiques. 

Les attitudes positives envers les mathématiques contribuent au succès 

mathématiques. 

Nous avons conclu cette première session en reconnaissant que les savoirs procéduraux et 

conceptuels étaient complémentaires. 

SESSION 2 

 How do procedural and conceptual knowledge relate?  

 Are these types of knowledge distinct? 

 What are examples of procedural and conceptual knowledge?  

 How is procedural knowledge viewed in different cultures? 

 Activity: Participants solve an algebraic equation: Is knowing how to solve in 

different ways procedural or conceptual knowledge? 

We watched a short video about the historical evolution of mathematics, focusing on how 

Egyptians did multiplication. We discussed the different meanings of multiplication and 

which procedures might be associated with them. Our discussion raised the question of 

whether the Egyptians were aware of the procedures and how we could know that they knew 

what they were doing. The discussion centred around Sfard’s (1991) work on structural and 

operational descriptions of mathematics notions. The structure of a notion is related to its 

properties and the operation is understood as the possible actions we can take on this notion. 

This work helped us to see procedural and conceptual knowledge with other lenses. As a 

group we then solved a system of linear algebraic equations, similar to: 

2x + y = -1 

x – 3y = 1 

in different ways. A variety of methods were proposed: substituting one equation in the other, 

representing the system as a matrix, graphing the equations, etc. We discussed whether 

knowing how to solve the algebraic equation in different ways entails conceptual knowledge 

or procedural knowledge.  

In order to think about the depth of the procedural knowledge, we discussed DeBlois’ (2003) 

model of interpretation of cognitive activities: Modèle d’interprétation des activités cognitives 

(see Figure 2). This model focuses on the representation of the situation by the learner, the 

procedures employed, and on the effects of the didactical contract (Brousseau, 1998). 

Coordination between them can create awareness toward the concept. The procedures 

employed are important because contemplating those procedures can lead to deep 
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understanding of the concept. Procedural and conceptual knowledge feed each other; you 

need to understand procedures to advance conceptual understanding and vice versa. 

 

Figure 2.  Interpretation of cognitive activities (DeBlois, 2003). 

SESSION 3 

 How is procedural knowledge viewed in other disciplines? 

 Activity: Enumerate, for each of these topics, some examples of procedural and 

conceptual knowledge. 

As a starting point of the session, we discussed procedures in music. Our primary focus was 

on a drum rudiment, the paradiddle – a rhythm created by making a sound with your right and 

left hands in the pattern RLRRLRLL. After mastering this procedure, we watched a video of 

Steve Gadd’s Paradiddle Shuffle, in which Gadd transforms this basic rhythm into an 

elaborate percussion song.  

Procedures and procedural knowledge pervade music. A musician learns a repertoire of brief 

musical segments that they draw upon when performing. This repertoire does not have to be 

consciously accessed by the musician; it becomes automatized. When asked about how he 

remembers so many songs, Keith Richards, of the Rolling Stones, replied, “I don’t. My 

fingers do.” 

The discussion following the activity on music was rich. We came up with the idea that the 

process of learning a procedure implies perhaps more than we expect: 

 Beginners require high cognitive investment. 

 Practice diminishes the need for certain mental processes. 

 Experts have the procedure fully automatized. 

As a group, we felt that the further we explored the notion of procedural knowledge, the less 

we knew what procedures are. We tried to define procedure. We ended the session by 
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discussing the following ideas and questions regarding the definition of a procedure: a 

procedure as something that can be broken down into steps; the difference between an 

algorithm and a procedure that is standardized procedure as an algorithm; the relationship 

between process and procedure and whether process entails conceptual knowledge or 

procedural knowledge, and finally, the relationship between computation and procedure. 

SESSION 4 

 How is it learned? 

o How is procedural knowledge best learned? 

o In terms of learning procedures and concepts, does one follow the other? 

o Can procedures be learned in a non-rote, meaningful way? 

 Activity: Small group responses to the questions. 

After watching a short video clip on ‘a classroom check-in procedure’ as a warm-up, we 

worked in five small groups in order to respond to the questions asked at the beginning of the 

session.  In terms of the question of how procedural knowledge is best learned, participants 

offered some ideas, including: by practice and scaffolding; by incorporating prior knowledge; 

through mental math; by looking at different procedures; through embodied experience, using 

puzzles and games; through tasks that provide rationale for using a procedure; through the use 

of mathematics language and symbols; and through emphasis on the meaning of the step and 

the meaning of doing it. There were questions raised on whether we should use the word best 

in the question. As well, the question was raised about whether procedural knowledge 

involves more than knowledge of a specific procedure or knowledge of how to learn 

procedures generally.  

With regards to the question of whether or not procedures and concepts follow each other in 

learning we found that it depended on the situations and tasks. We thought that concepts are 

necessary for meaningful procedures. As well, we noted that automaticity is more important 

than rote-learning of the procedures. We discussed whether or not procedures can be learned 

in a non-rote, meaningful way, including the difference between rote-learning and the 

development of automaticity in learning procedures. We noted that rote-learning involves 

learning procedures without understanding, while automaticity involves the development of 

automatic recall after learning the conceptual bases of the procedures. 

SESSION 5 

 How is it taught? 

o How is procedural knowledge best taught? 

o Can procedures be taught in a non-rote, meaningful way? 

The discussion about how procedural knowledge is best taught turned around the idea of 

putting an emphasis on conceptual knowledge first and then procedural knowledge later. We 

also discussed using concrete materials, different tools, and/or cross-curricular competencies, 

in order to best teach procedures. We thought that procedures can best be taught in a context 

where meaning and reasons for doing the procedures can be provided. We noted that mental 

math plays a huge role by bridging different knowledge and by offering opportunity to play 

with mathematical ideas.  

We agreed that we should develop conceptual understanding and procedural fluency 

simultaneously. 
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SESSION 6 

In the last session, we revisited our original definitions of procedural knowledge. We wanted 

to know if anything had changed over the course of our working group and we wanted to 

think about how we use these definitions in everyday life. Our final conclusions for the 

working session are presented in Figure 3, which represents the role of procedural knowledge 

in understanding mathematics. 

 Surface Knowledge Deep Knowledge 

Procedural Algorithm 
Capacity to choose and be flexible with 

algorithms/process 

Figure 3 

CONCLUDING REMARKS 

During our discussions over the three days, organized into six sessions, we raised many issues 

and questions about meaningful procedural knowledge in mathematics learning. Our 

discussion was guided by the following questions: What is procedural knowledge? How do 

procedural and conceptual knowledge relate? Are these types of knowledge distinct? In terms 

of learning, does one follow the other? How is procedural knowledge best learned? Is 

procedural knowledge rote? Can procedures be learned in a non-rote, meaningful way? Is 

there depth to procedural knowledge? Throughout our discussions we engaged in activities 

that prompted our thinking about the topic and our responses to the questions. 

Our working group discussions emphasized and highlighted the importance of teaching and 

learning procedures meaningfully in mathematics education. Participants shared ideas on how 

procedures could be taught and learned meaningfully. Most notably in our discussion was our 

observation that the distinction between procedural and conceptual knowledge becomes 

blurred in learning procedures meaningfully. As one small group put it: 

Consider knowing a procedure (e.g. division of polynomials) as part of procedural 

knowledge. When it comes to knowing when that procedure can be applied in 

situations, is this procedural knowledge or conceptual knowledge? Is it both? 
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Qualitative researchers approach their studies with a certain paradigm or 

worldview, a basic set of beliefs or assumptions that guide their inquiries. These 

assumptions are related to the nature of reality (the ontology issue), the relationship 

of the researcher to that being researched (the epistemological issue), the role of 

values in a study (the axiological issue), and the process of research (the 

methodological issue). (Creswell, 1998, p. 74) 

INTRODUCTION 

Although qualitative research is common in mathematics education, increased clarity and 

transparency of its methods are of ongoing concern and interest to mathematics education 

researchers in order to keep enriching their work and contributions to the field. Adding 

complexity to the conversation space is a growing focus on constructing theories from within 

the field of mathematics education (e.g., Kieren, 1997). Thus, the goal of this working group 

was to provide participants with a space to begin or to continue to explore emergent methods, 

such as grounded theory (Morse et al., 2009), narrative inquiry (Clandinin, 2007), and design 

experiment (Lesh & Doerr, 2003), that offer possibilities of dealing with complexity in the 

context of using data to create theory.  
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A working group with this goal can be framed in different ways. For example, it could focus 

on how representing the interpretive act of listening to research participants in each of these 

methodological approaches may result in developing theories which seek to make sense of 

researched phenomena and generate further inquiry. It could focus on particular 

methodological issues related to: the above Creswell quote; what constitutes sufficient data; 

how data collection and analysis interact; data management challenges; research being both 

planned and emergent; strategies for data collection and analysis; and other aspects of interest 

to working-group participants. It could also consider specific questions, such as: 

 How is theorizing by mathematics educators strengthened by beginning with data? 

 How do we engage in the task of moving from data to building theory? 

 How might research participants’ voices be amplified through the development of 

theory? 

In fact, the working-group leaders took all of these into consideration in planning the 

working-group activities. However, we decided to frame the activities in terms of three 

themes: theory, coding data, and notions of emergence. These interrelated themes address 

unique, central components of the emergent research perspective. On a simplistic level, as 

represented in the diagram below, the data and theory are nested in the emergent method that 

determines the path from data to theory. This path from data to theory is defined by coding 

techniques based on an inductive process, that is, one that allows the data to speak. 

 

 

 

 

In considering these themes in the context of mathematics education research, our focus was 

on: What is meant by ‘theory’? What does the coding of data looks like? What are key notions 

of emergence? We considered this to be a more meaningful way of engaging participants in 

the three sessions of the working group than moving chronologically through each aspect of 

the research process. Our approach to addressing these themes was to draw on relevant 

readings and the experiences of the working-group leaders and participants. Of importance 

was also engaging participants in a hands-on way with sample data based on the research of 

the working-group leaders and participants who wanted to contribute to this process.  

This report of the working-group activities is organized based on the three themes and how 

they unfolded over the three, three-hour sessions of the working group. The sequencing of the 

themes was loosely chronological in relation to the three sessions in that theory was 

introduced as a focus for the first session, coding data for the second, and notions of 

emergence for the third. However, after the first session, movement back and forth between 

the first two themes, in particular, resulted in little time to address the third. Participants were 

fully engaged in the activities and contributed in ways that were insightful and helped to 

shape the way the working group unfolded. In the report, we try to capture the thinking and 

contribution of participants as examples of the nature of the discussions, but also as a way of 

offering something meaningful to the Canadian Mathematics Education Study Group/Groupe 

Canadien d’étude en didactique des mathématiques [CMESG/GCEDM] community and other 

readers of the proceedings. 

 

Emergent Method 

Data Theory 
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THEME 1: THEORY 

Theory, as a construct, is problematic in that it can mean different things. Depending on how 

it is viewed, one can question whether what results from data through an emergent approach 

such as grounded theory is really theory. For example, if a researcher using grounded theory 

concludes something about students’ ways of experiencing mathematical problem solving, is 

this something theory? Our intention, then, in beginning with theory was to attempt to get to a 

shared understanding of it in mathematics education that could be used during our time in the 

working group to make sense of the emergent research method. This, however, would have 

been an unprecedented outcome for a CMESG/GCEDM working group if it had worked out 

as intended. The open discussion among participants in the first working-group session 

validated the position of theory being a problematic construct. There were more differences 

than similarities in how working-group participants conceptualized it based on their 

experience with it. Thus, instead of arriving at an understanding of it as a group, we gained 

insights of the diversity of ways in which one can view and use it. 

REFLECTING ON QUOTES 

In order to provoke particular thinking about theory, we presented participants with four 

quotes.  Participants worked in pairs, then shared and discussed their thinking with the whole 

group. Each quote brought forward issues and ideas that continued to surface in all of the 

sessions of the working group. We highlight examples of these issues and ideas discussed for 

each quote. 

One aim of mathematics education research should be towards generating models. 

… results from many research studies should contribute to the development of a 

theory (or model) that should have significant payoff over a prolonged period of 

time.  (Sriraman & English, 2005, p. 451) 

This quote from Sriraman and English highlighted two particular issues that we discussed in 

our working group. The first issue we identified was related to the way in which the product 

of research is named, with specific focus on research in which theorizing is a predominant 

process of coming to understand a phenomenon. The suggestion in the quote that theory and 

model might be pointing to the same phenomenon elicited conversation about a contentious 

pairing. This pairing triggered suggestions and consideration of related constructs in addition 

to model, in particular, frameworks and categories, that raised similar concerns about how 

such terms are used with theorizing. Darien Allan, for example, explained her preference in 

pairing such terms: “I am much more comfortable discussing model or framework and talking 

about themes or theorizing rather than what I consider a more complex and abstract notion of 

theory.” Claude Gaulin, on the other hand, reminded us of the contentious nature of the use of 

model in the context of theorizing by surmising that it is even more challenging to develop a 

shared understanding of model. Another suggestion offered was that the process of theorizing 

resulting in a model, framework or categories being published in reports of research could be 

representational, that is, the ways in which theories are represented may be through a 

structure-based metaphor languaging. 

The second issue discussed was related to the type of theory that might be generated by a 

researcher in mathematics education. Veda Abu-Bakare drew our attention to the phrase “a 

theory” in the above quote, which seemed to signify the authors’ support of a grand theory of 

or in mathematics education. This generated discussion of the idea of a grand theory. Claude 

pointed out how some researchers in the field of physics were attempting to develop a ‘theory 

of everything’. In our attempt to think about a ‘theory of everything’ in mathematics 

education, Kate Mackrell aptly reminded us that what we seek to understand as researchers is 

much more complex, the teaching and learning of mathematics. This caused us to turn our 

conversation toward what it is mathematics educators might theorize about – as the Sriraman 
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and English quote is vague in its prescription. Areas such as learning of mathematics, 

teaching of mathematics, the nature of mathematics, and the nature of mathematics education 

were offered as broad categories within which theorizing could be enacted. 

I question how far mathematics educators have moved toward a theory, whether 

grand or otherwise.… I am happy to talk about theorizing, adopting a theoretical 

stance, or employing a theoretical framework, but I do not see extant theoretical 

constructions as warranting the label of theory.  (Kilpatrick, 2010, p. 4) 

This quote helped our conversation to move from the notion of a singular theory in 

mathematics education toward sharing our varied perspectives on what theory might mean to 

each of us as researchers. The perspectives on the nature of theory were far ranging, including 

examples such as: theory as universal constructs, theory as a tool for explaining and 

predicting, dynamic quality of a theory changing over time as it is tested and revised, 

etymologically meaning a way of thinking and seeing, as absolute truths, interpretive ways of 

communicating understanding, a process, etc. Tony Pascuzzo noticed that within the 

multiplicity of understandings of what theory is, there is a liberating, rather than constraining, 

aspect to being explicit about and working from one’s own perspective. Noticing that ways of 

thinking about what theory is within mathematics education reminded us of how our thinking 

has been impacted by our experiences in reading and engaging in research. The varied 

perspectives focused not only on the notion of theory, but also on the multiplicity of 

perspectives brought to working with data. This provided a rich opening for our work with 

coding data, described below. Beth Herbel-Eisenmann raised a question worth offering up to 

the broader community: Does theory represent the phenomenon being studied or does theory 

represent the perspective of the researcher of the phenomenon? Posing this question helped 

us as a working group to move forward in our conversation – with the acknowledgement that 

sharing a common understanding of theory is simultaneously elusive and unnecessary – to 

wonder about the reasons for engaging in theorizing in mathematics education. 

Theories need to grow and aid growth. They need to enrich our understandings. If 

we prevent a theory from being questioned, articulated, justified, or from illustrating 

its power, then we don’t grow as a field of inquiry.  (Proulx, 2010, p. 24) 

This quote provided a different perspective of the notion of theory for our discussion, building 

on the momentum toward considering the purpose of theorizing. Reactions and conversation 

around the quote immediately recognized the use of a situated and context-specific theory. 

These types of theories are ones which individual researchers aim to develop through their 

ongoing work. In his final reflection, Lionel LaCroix emphasized an important idea connected 

to Proulx’s quote when he wrote, “theories range considerably in their scope.” So while the 

initial orientation in the quotes to theory in mathematics education was one of larger order, 

there was movement toward seeing theory as developing out of situated work. In fact, Glaser 

and Strauss (1967) in their early writing about grounded theory intended it to be a 

methodology that would support the development of mid-range theories. 

Experiences of theorizing in mathematics education were also shared within the group, 

including by those who had developed “theories” or significantly shaped “theory” in their 

own research. As one example, Donna Kotsopoulos described the process of her doctoral 

dissertation research as employing the use of theoretical frames to come to understand her 

data. It was only later that through the experience of being in conversation with colleagues 

and reviewers of manuscripts that she began to consolidate her understanding toward a theory. 

Thus, our reflection on this quote allowed us to learn, from each of the examples shared by 

participants, the importance of dialogue with colleagues, the explicitness of working from 

particular epistemological and ontological orientations, and the long-term process that 

contributes to theorizing. 
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Theories are needed for several reasons – to guide the research process, to 

communicate with others, and to make the results useful. Developing and refining 

theories also provide the best evidence that we are making progress in our 

understanding.  (Hiebert, 1998, p. 144) 

This quote highlighted for our discussion a tension between theories that “guide the research 

process” and the development of theories. Some doctoral students spoke of the challenges 

they faced in dissertation work where there was an expectation of a review/use of a theoretical 

framework and their desire to theorize in their work. This led to a discussion of this 

expectation in research reports for journal manuscripts or conference proposals. For example, 

mathematics education researchers were seen as sharing a common tension in the acceptance 

process of publishing academic manuscripts, especially in journals which disseminate a 

traditional research report genre. However, even for studies published that claim to be within 

grounded theory methodologically, there seems to be a myth of beginning the work a-

theoretically. Instead, there are epistemological and ontological orientations within which a 

researcher works and approaches a particular study, but these may be a separate consideration 

from using a particular theoretical framework to force on the data. While a general approach 

is to describe the researcher’s orientation, two specific examples given by group members 

were to use sensitizing concepts (Blumer, 1954) or available concepts (Desgagné, 1998) as 

ways to demonstrate the researcher’s understanding of the field in which the research is 

conducted and the phenomena the researcher is drawn to attend to when interpreting data. 

Hiebert’s quote was seen as an encouragement to mathematics educators to live within the 

tension by engaging in theorizing to make sense of the complex phenomena in mathematics 

education. 

REFLECTING ON RESEARCH ARTICLES 

In order to connect our working-group focus to how mathematics education researchers move 

from data toward the development of theory, we also inquired into specific instances of 

‘theories’ developed from data and the use of grounded theory within our CMESG/GCEDM 

community. A sample of research articles were preselected by the working-group leaders for 

this activity. Small groups selected and worked with two articles paired according to the focus 

for discussion.  

The articles were paired to exemplify two aspects of theorizing in mathematics education: one 

which used grounded theory as its methodological structure with a range of final products, 

and one which explicitly engaged in theorizing or representing a theory constructed by the 

authors. The pairs consisted of: Bruce (2007) and Zack and Reid (2003); Sinclair, Mamolo, 

and Whitely (2011) and Watson and Mason (2002); and Liljedahl (2010) and Pirie and Kieren 

(1994). The first article in each of the pairings used grounded theory as its methodological 

structure where the resulting products were “a model for examining preservice teacher 

efficacy”  organized in a stage-based framework (Bruce, 2007, p. 3), “three main categories” 

(Sinclair, Mamolo, & Whitely, 2011, p. 155), and “five distinct mechanisms of change” 

organized as categories (Liljedahl, 2010, p. 422). However, in selecting these examples, we 

note that the use of grounded theory as a methodological framing does not necessitate the 

development of a theory as a researcher’s final process of a project. Rather, the flexibility 

offered by formulations of grounded theory, such as constructivist grounded theory (Charmaz, 

2006), encourage transparency in the data analysis and interpretation process. Each of the 

small groups attended to the description of research method as various formulations of 

grounded theory and the explicitness with which the authors described the research process 

that supported the development of their model, categories, or mechanisms. 

As a way to contrast the use of grounded theory and the ways of communicating what 

researchers had learned, the second article in each pair did not explicitly use grounded theory 
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but the authors named their work as ‘theorizing’ or the resulting product was a theory offered 

to the community. Zack and Reid (2003) point to their process of theorizing as engaging in 

“good-enough ‘theories-for’ [as] a worthy goal for research” (p. 43), highlighting the 

contingent nature of coming to understand as mathematics education researchers working 

with children. Watson and Mason (2002) engaged in “grounded theorizing” (p. 243), working 

from observations of students and themselves, and descriptions through analysis. Their 

product was named a “theory” (p. 237) and resulted in “a framework of five uses for asking 

learners to generate examples for themselves” (p. 242). Pirie and Kieren (1994) primarily 

describe and illustrate their theory of the “growth of mathematical understanding in the 

children that we observed in classrooms over time” (p. 165), represented by a model of 

overlapping circles. Of all the pieces used, they uniquely point to the use of their theory as a 

way to attend to students’ dynamic mathematical understanding to inform a teacher’s 

pedagogy. Compared to the explicit process of theorizing in grounded theory, these three 

examples wrestled with notions of theory in their presentation. 

REFLECTING ON THE FIRST SESSION 

At the beginning of the second session of the working group, we returned to consider our 

conversation about theory in mathematics education research. This provided an opportunity 

for participants to reflect and then express moments of thoughtfulness about the previous day. 

It was in this discussion that two key questions arose. The first question was concerned with 

the purposes of theory within mathematics education, that is, to what end do we engage in 

theorizing and how are theories taken up? The second question prompted an examination of 

research methods and their role in the building of theory through data-driven research, that is, 

how do research methodologies support theorizing? These two questions were posed as a 

desire to learn more and opportunities for each of us – and for the broader community of 

mathematics education – to consider the relationship of theory-building to the vibrancy of our 

field. Even at the end of our working group, Susan Oesterle reiterated the challenge of 

understanding theory in the context of mathematics education and recommended “that the 

field really should address” continually its goals and understanding of theorizing. 

THEME 2: CODING DATA 

After the theory activity, in the second session, the focus of our working group moved to the 

process of theorizing from data, in particular, the coding aspect of that endeavor. For many 

participants who were beginning to or were in the process of working on their theses, it was 

important to have the opportunity to become familiar with generating codes using grounded 

theory or any similar coding techniques or approaches. This was made possible by the 

mentoring provided through hands-on activities involving coding from a grounded theory and 

narrative inquiry perspective. 

The working-group leaders provided sample data from their own research and led workshop-

style small-group work on data coding. Two of the sample data were in English and one was 

in French. The working-group leaders presented their samples in terms of the larger research 

context, the research questions, and the research method involved. For example, Olive 

Chapman contributed a sample narrative from Chapman (2008) that was taken from a study 

that investigated prospective secondary mathematics teacher sense-making of “good 

mathematics teaching”. This narrative was an example of one participant’s initial story of 

“good teaching” of mathematics. It was written at the beginning of the second semester of her 

post-degree, four-semester Bachelor of Education program and before she had any exposure 

to theory on mathematics pedagogy, so it was based solely on her preconceptions of “good 

teaching”. It was based on a Grade 10 lesson at the beginning of a trigonometry unit. 
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In order to further prepare for the coding, the following quote was presented and discussed: 

“Coding means naming segments of data with a label that simultaneously categorizes, 

summarizes, and accounts for each piece of data” (Charmaz, 2006, p. 43). Participants then 

selected to work with one leader. Most chose to work with the English data on grounded 

theory led by Janelle McFeetors. A large part of the session was spent in the small groups 

working on how to code the sample data. Participants worked in teams of two or more in the 

small groups to try and code the sample data on their own, based on the introduction 

provided. 

The whole-group discussion that followed first dealt with the challenges and pitfalls of the 

exercise. The focus then shifted to the main coding strategies used by participants. For 

example, one strategy involved forming categories based on the research questions and trying 

to build codes related to those categories. Another strategy involved using a line-by-line 

coding, similar to the coding procedure suggested by Charmaz. These two coding strategies 

are highlighted because they reflect opposing perspectives. The coding/categorizing strategy 

driven by research questions is representative of a coding process driven by a predetermined 

list of categories. Here one can echo criticism addressed to that way of coding by grounded 

theory proponents who view this approach as not questioning existing concepts or theories, 

and merely seeking to exemplify such concepts/theory with data. The other coding strategy is 

representative of open coding that triggered discussions focused mainly on the requirements 

and limitations of this approach. For example, it was noted that this type of coding requires 

special attention to language used to generate codes which at the beginning of the process 

have to remain descriptive so as to better convey the research participants’ perspectives or 

voices. Also, that way of coding requires several trials and a constant return to data in order to 

come up with relevant codes. In this regard, one of the facilitators shared with participants his 

experience as a novice encoder having to rely on colleagues from a research team who helped 

to review, validate and refine initial codes. To stay close to data means to refrain from 

“jumping” too quickly to concepts. So, with regard to this open-ended coding approach, two 

related issues were raised by some participants: Does the researcher code from scratch? What 

role does his reference frame play? Two answers were offered. First, data as well as codes are 

constructed by the researcher (Charmaz, 2006) whose perspective or reference frame matters. 

Second, the researcher’s perspective and knowledge about a given research topic can lead him 

to the use of what Desgagné (1998) refers to as available concepts, meaning that few concepts 

are likely to help make sense of data, although they have to be somewhat “put on hold” 

pending analysis. In that respect, without falling into predetermined codes or categories 

(which would be contrary to the grounded theory approach), the researcher has to stay close to 

the data, thus allowing the emergence of codes, while not closing the door to available 

concepts when analyzing data. We have here a particular perspective on grounded theory. 

Other issues related to data coding were raised. Does grounded theory always lead to things 

we did not know before? Ultimately, what is a theory? Our working group modestly aimed at 

giving participants an overview of the challenges of theorizing from data, an emergent but 

rigorous process. We hope to have achieved that goal, notwithstanding the many limitations 

of the experience we lived with the participants, who worked only with partial sample data 

and never came close to linking codes and generating categories (substantive and theoretical).  

A final treat to participants to end the second session of the working group was a presentation 

by Susan Oesterle in which she shared an Excel file tracing craftily the network of codes and 

categories she built with data from her doctoral research. Susan shared some of the challenges 

she encountered while coding interview data. She found it useful to follow Charmaz (2006) 

and start initial coding with gerunds. This helped avoid theorizing the data (i.e., attaching 

concepts) too quickly. At the same time it posed challenges as coding a phrase with gerunds 

removes both subject and temporal cues. For example, the gerund code “struggling with 
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fractions” does not indicate who the speaker is referring to (self or a student) or whether this 

struggle occurred in the past or more recently. As a result, context needed to be considered 

along with the gerund codes in moving to the next stage of concept coding. Susan was very 

aware of the subjectivity of this stage, finding that other readings she was doing and new 

ideas she was exposed to all influenced what codes she saw and was able to see in the data. 

She found it liberating to allow herself to code phrases with multiple codes. In fact, coding 

with multiple codes allowed her to better see connections between the codes and recognize 

themes. Another layer of analysis that she found useful was to create coding summaries. 

Phrases identified with each concept code were collected and sorted into sub-categories. This 

helped reveal the range of ideas captured within a single concept code and helped to increase 

consistency in the coding. The process was iterative and time-intensive, but in the end the 

codes became stable and clear themes emerged. 

THEME 3: THE NOTION OF EMERGENCE IN MATHEMATICS 
EDUCATION RESEARCH 

This theme did not receive much consideration because we ran out of time. The intent was to 

reflect on key notions of emergent methods and the relationship to mathematics education 

research. Some group members and the first author of the report felt that this theme should 

have been addressed earlier in the working group, but the other two group leaders felt strongly 

about having it last. So for completeness in addressing the three themes in the report, in this 

section we describe some notions of grounded theory and the use of narratives in mathematics 

education research. 

GROUNDED THEORY 

Based on the work of Glaser and Strauss (1967), grounded theory requires the ongoing 

interplay between action and reflection, that is, between data inquiry and data analysis and 

theory construction, respectively. It requires researchers to immerse themselves in the 

situation being studied to collect data of what is happening and the impact of the interactions. 

It uses an inductive approach to generate theory from data systematically obtained to insure 

that the theory will “fit and work” (Glaser & Strauss, 1967, p. 3). It represents a bottom-up 

method in which theory emerges from a process of data collection, coding and analysis. It, 

therefore, differs from qualitative methods that do not produce theory but focus on 

descriptions of the situations or phenomena being studied. Rather than the top-down 

hypothesis testing approach used in most qualitative methods, grounded theory assumes that 

theory is contained within the data collected. Uncovering the theory involves a process of 

writing memos in which the researcher articulates emerging ideas that become the basis of a 

theory. Thus, a central aspect of grounded theory is the constant comparative analytic 

procedure connected with the development of understandings of what is common among a set 

of data. For example, in the case of data involving mathematics teachers’ experience and 

conduct in teaching mathematics, analysis can be directed toward theorizing or 

conceptualizing what they are, based on what emerge as common. In general, the method can 

lead to either the structure of the phenomenon or the processes entailed in it, or both. 

NARRATIVE AS RESEARCH TOOL 

Narrative inquiry is another type of emergent method. However, instead of reiterating the 

emergent qualities already described in the grounded theory section, here we focus on the use 

of narrative as a research tool in mathematics education research. This use is connected to the 

prospective of narrative as a way of knowing (e.g., Bruner, 1986). Chapman (2008) discussed 

studies dealing with the mathematics teacher that used narrative as a research tool to produce 

data from which to theorize about teacher knowledge and practice in order to inform teacher 

education. In this context, several topics have been researched using narratives in the form of 
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stories. These include: prospective mathematics teachers’ beliefs (Kaasila, 2007); prospective 

mathematics teachers’ motivation (Harkness, D’Ambrosio, & Morrone 2007); prospective 

mathematics teachers’ emerging identities (Lloyd, 2006); mathematics teachers’ 

interpretations of a reform-oriented mathematics curriculum (Drake, 2006); and mathematics 

teachers’ growth (Chapman, 2003).  

As discussed in Chapman (2008), while there are similarities in the use of narrative in these 

studies, there are differences, not only in relation to the purpose, but also the methods of 

obtaining and analyzing the stories. In some of the studies, researchers used an interview 

approach to obtain the participating teachers’ stories and participants were encouraged to tell 

stories of their teaching or learning experiences. In most of the studies, the narratives were 

obtained through writing, that is, the participants were required to write their stories with 

various degrees of guidance from the researchers. Most of the studies focused on identifying 

themes within and across stories as a central feature of the data analysis. In order to arrive at 

the themes, some studies used open coding of the stories as the analysis process, searching for 

characteristics that related to specific research questions. For other studies, the analysis 

process was guided by a predetermined model or specific categories based on theory.  

Chapman (2008) further explained that narrative provides a means for researchers to obtain 

and unpack teaching and learning phenomena in order to understand mathematics teachers 

and their practice from a humanistic perspective. Studies framed in this perspective focus less 

on identifying deficiencies in teachers’ behaviors and knowledge and more on understanding 

the nature of, and contexts that shape, their perception of their reality. This includes 

understanding teachers from their own perspective; how particular individual teachers 

understand their work (e.g., how do teachers make sense of implementing practices of 

mathematics reform). Thus, a focus of these studies is theorizing or conceptualizing the 

experiential knowledge of teachers and providing plausible explanations or “theories” 

emerging from data of teaching behaviors as they are for the teachers. 

CONCLUSION 

The working group brought together graduate students and professors interested in research 

methods involving an emergent approach that can be adopted in mathematics education. The 

themes of theory and coding were meaningful in engaging participants in two central aspects 

of an emergent research method with a focus on using data to develop theory. As the report 

suggests, the activities generated many questions and issues in relation to both themes. This 

suggests the need for ongoing discussion and exploration of emergent research methods in 

mathematics education. So we end our report the way we began it, by suggesting that 

Although qualitative research is common in mathematics education, increased 

clarity and transparency of its methods is of ongoing concern and interest to 

mathematics education researchers in order to keep enriching their work and 

contributions to the field. (Authors) 
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INTRODUCTION 

Simulation has become one of the most important and widely used scientific methods for the 

analysis of complex systems. What evidence is there to support this statement?  We employed 

a search engine, Academic Search Premier (http://search.ebscohost.com/), and looked for 

recent publications. We limited our search to the last ten years, and used the word simulation 

in the title. This generated an overwhelming list of close to 50,000 peer-reviewed 

publications. Do all these papers report the use of mathematics? The authors, in their choice 

of subject terms provide some insight into this question. We repeated the search but selected 

only those publications in which the authors’ subject terms included one or more of the 

following: mathematics, mathematical, numerical analysis, differential equations, statistics, 

or probability. This new search produced an impressive list of just over 9000 publications. 

Surely this provides substantial evidence that mathematical simulation is extensively used. 

What is also impressive is that these papers address problems in a wide variety of disciplines 

including, Engineering, Biological and Medical Sciences, Economics, and Finance. Therefore, 

when undergraduate mathematics students are exposed to and use simulation they are 

connecting to an important scientific approach.  Such an experience will also prepare them for 

future employment in one of the numerous disciplines that depend on simulation for analysis 

of complex systems.  

In mathematics education at the post-secondary level and in teacher education, simulation can 

play additional roles. Here are some examples provided by faculty who integrate simulation in 

their mathematics courses: students use simulation to explore mathematical concepts, either 

prior to their introduction in class or after they have been exposed to the concept; students use 

simulation to analyse the truth or falsehood of conjectures; students use simulation to look for 

http://search.ebscohost.com/
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solutions to mathematical problems. Faculty also report integrating simulations in different 

learning environments, for example: a) games – where students problem solve using 

mathematics in order to achieve certain goals; b) review – where students are guided through 

a mathematical topic that has been covered previously and are challenged to solve problems; 

c) testing of mathematical knowledge – where students are asked to answer mathematical 

questions that are pseudo-randomly generated; d) in class demonstrations – where faculty 

demonstrate mathematical ideas by using simulations that allow for interactive interventions 

both in their graphical representation and through the variation of parameters; and e) 

exploration of mathematical concepts – where students use, in a structured environment, 

simulations  to develop a preliminary understanding of a new concept. It is worth noting that 

when students program their own simulations, they often follow the ways mathematicians 

work; namely, they set up conjectures, they test them, they look for counterexamples and then 

they move to develop a proof or to refute it. 

THE WORKING GROUP’S ACTIVITIES 

The approach to the topic was practical. Participants began by selecting from six simulation 

activities that had been prepared by the co-leaders. A summary of each of these activities is 

provided in Appendix 1. These activities are also provided in more detail on the working 

group’s website (http://www.cegep-rimouski.qc.ca/dep/maths/?page_id=148).  

The co-leaders chose these activities to illustrate some of the many uses of simulation in 

mathematics education. Participants did not have time to explore all six activities and they 

selected some of them on the basis of the write-up that was provided on the website. In the 

time allotted for these explorations, the three activities most selected were: the Birthdays 

Problem (Activity 3), the Parabola (Activity 1) and Newton’s Method (Activity 4). The 

common simulation experiences helped to focus the group’s discussions as participants 

compared their reactions to simulations that they had all undertaken. The co-leaders had 

included, with each simulation, a number of questions and these were added to the pool of 

questions raised by the participants after their own simulation experiences. From this list the 

following questions were selected for discussion. 

QUESTION 1: What factors assist the student to make a transition from a simulation activity 

to the mathematics? 

For course-designed simulations their uses in class or lab normally highlight their 

mathematical purpose. Furthermore, these often include questions, problems, or applications 

specifically designed to motivate the transition to the mathematics. However, for stand-alone 

simulations, for example the Birthdays Problem, participants suggested that it would be 

necessary to set follow-up problems, questions, etc. to help the student to make the transition 

to the mathematical concepts. For stand-alone simulations, the group discussions duplicated 

most of the suggestions reported in the 2001 CMESG/GCEDM Proceedings of the Working 

Group “Where is the Mathematics?” (http://publish.edu.uwo.ca/cmesg/pdf/CMESG2001.pdf, 

pp. 53-57). It was noted that the question of transition applies equally to learning mathematics 

through the use of manipulatives. 

QUESTION 2: How should simulations be designed? For example, what software or 

programming languages are available to develop simulations? Is it possible to program 

simulations for mathematics courses that can be easily modified by another instructor to meet 

different course needs? 

There are many software packages that can be used for simulations, some examples are: 
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 Cinderella (with Java) 

(http://cinderella.de/tiki-index.php?page=Cinderella+1.4+laden&bl) 

 Maple (http://www.maplesoft.com/) 

 GSView (http://www.brothersoft.com/gsview-64548.html) 

 MatLab (http://www.mathworks.com/products/matlab/) 

 Geometer’s SketchPad
1
 (http://dynamicgeometry.com/) 

 Mathematica (http://www.wolfram.com/) 

 GeoGebra (http://www.geogebra.org/cms/) 

 Excel (http://office.microsoft.com/en-us/excel/) 

 Minitab (http://www.minitab.com/en-CA/default.aspx) 

 Fathom (http://www.keypress.com/x5656.xml) 

The programming of simulations can be time-consuming. In general, mathematics faculty 

program simulations for their own courses. Unfortunately these are rarely used by other 

faculty teaching the same course. Difficulties of compatibility are compounded when a 

mathematics department does not have a policy of using the same software in a given set of 

courses. 

After working through the simulation experiments some participants would have liked to 

modify them to better match their philosophy of teaching and learning mathematics. 

Depending on the software used, and even when one has access to the code, this can be a 

complex problem, especially for those who are not familiar with the programming language. 

As an exercise to modify a simulation, group members were asked to explore the 

Optimization Problem (Activity 5) and to try to make modifications to the simple program to 

answer one of their ‘What if?’ questions. Participants found that, with a little help, it was 

relatively easy, in either Geometer’s SketchPad or GeoGebra, to modify the simulation to 

address their questions. 

QUESTION 3: Why should simulations be used in the teaching and learning of mathematics at 

the university level? Given a simulation, how should it be used? When should it be used 

(before or after the presentation of the concept)? What support should be provided to the 

students? 

The group concluded that when simulation is used to explore or develop a mathematical 

concept, the order in which the definition and simulation takes place is dependent on the 

context and on the instructor’s philosophy of mathematics teaching and learning. For 

example, the mathematical concept can be introduced first, followed by the simulation, or the 

students can use simulation to explore the concept before crystallizing their understanding of 

the concept. As specific examples, members of the group felt that simulating the Birthdays 

problem before it is analysed in class would be the preferred order, while in the example of 

the solution of certain differential equations, they would choose the reverse order. It was felt 

that intervention by a tutor or faculty would be beneficial and important. 

The group was of the opinion that simulation procedures should be one of the mathematical 

tools that students have at their disposal for analysing and solving mathematical problems. 

Appendix 1 provides a summary of the activities proposed to participants of the group. In 

Appendix 2, Jean-Philippe Villeneuve and Philippe Etchecopar describe the use of simulation 

in mathematics courses at the Cégep de Rimouski. In Appendix 3, Neil Marshall, a graduate 

                                                 
1 The Working Group’s attention was drawn to Nickolas Jackiw’s note to CMESG (see 

http://textsave.de/?p=27157). 

http://cinderella.de/tiki-index.php?page=Cinderella+1.4+laden&bl
http://www.maplesoft.com/
http://www.brothersoft.com/gsview-64548.html
http://www.mathworks.com/products/matlab/
http://dynamicgeometry.com/
http://www.wolfram.com/
http://www.geogebra.org/cms/
http://office.microsoft.com/en-us/excel/
http://www.minitab.com/en-CA/default.aspx
http://www.keypress.com/x5656.xml
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of the Brock University core mathematics program MICA (Mathematics Integrated with 

Computer Applications), reflects on his learning of mathematics through the use of 

simulation. Finally in Appendix 4, Margo Kondratieva uses her experience of using 

simulation in teaching mathematics post-secondary and teacher education courses at the 

Memorial University of Newfoundland to address three questions raised in the group’s 

discussions. 

CONCLUSIONS 

The working group identified a number of important conclusions: 

1. Simulation is a useful tool in mathematics education at the post-secondary level, and it 

should be one of the approaches more frequently used in mathematics courses. 

2. Simulation can assist the student’s learning process in many different ways, as it 

provides means for exploration, visualisation, demonstration, illustration, problem 

solving, etc.  

3. When students develop, design and implement their own simulations they work as 

many mathematicians do. As Neil Marshall says in Appendix 3 “Conjecturing, 

designing mathematical experiments, running simulations, gathering data, recognizing 

patterns and then drawing conclusions are things many modern mathematicians do as 

part of their research.”  

4. Future teachers should have experience with simulations as the various software 

packages available in their classrooms contain many applications of simulations; an 

example of such software is Learning Objects. In the classroom, teachers need to 

consider the same questions that were addressed by this working group, especially how 

to assist students to make the transition from the simulation to the mathematics. 

5. There is much work being done in the development of simulation software, 

unfortunately the research in the use of the simulation software in mathematics 

education at the post-secondary level lags far behind. Some research publications were 

identified by the co-leaders; they were referenced in each activity and are listed in the 

references. 

The working group’s website (http://www.cegep-rimouski.qc.ca/dep/maths/?page_id=148) 

will continue to be available for those interested in the topic addressed by the working group. 

APPENDIX 1: SIX SIMULATION ACTIVITIES 

1.  SIMULATION OF THE PARABOLA 

Why is this simulation proposed?  

The simulation activity has a number of components, the main ones being: an exploration of 

the role that parameters can play; interactive visual and graphical representations as the 

parameters are varied; and, a game environment. 

Muller, Buteau, Ralph, and Mgombelo (2009) describe the mathematics core program at 

Brock University and how students learn mathematics as they design and implement 

Exploratory and Learning Objects that make extensive use of simulations. This activity uses 

one of the Learning Objects that focuses on the concept and properties of the parabola. 
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Activity:  

Access the Brock site (http://www.brocku.ca/mathematics-science/departments-and-centres/ 

mathematics/undergraduate-programs/mica/dept-learning-objects), choose the Parabola 

Games, and work through the Learning Object. 

Questions:  

a. What do the simulations provide that are not possible in a classroom with 

technological tools such as graphing calculators and computer algebra systems? 

b. Can the games motivate students to ask and explore questions that mathematics 

curricula classify as ‘too advanced’ to be considered at this stage?  

One of the fundamental questions provoked by this activity is: 

Is there a role for simulation games in the learning of mathematics at the post secondary level 

and in the education of future teachers?  

Research by Rieber and Noah (2008) provides a starting point for discussion on this question. 

2. SIMULATION OF AN AUTONOMOUS ODE 

Why is this simulation proposed?  

This activity is typical of simulations that are integrated into post-secondary mathematics 

courses and that can be used either as an introduction or as a revision, and that contain 

additional problems for follow-up work. 

This simulation activity is based on the work of the AIMP project at MIT. This is only one of 

many in the extensive library of simulation activities for mathematics courses available on 

this site:  http://www-math.mit.edu/daimp 

Activity:  

Go to the MIT phase line Mathlet at http://math.mit.edu/mathlets/mathlets/phase-lines/. Click 

anywhere on the coloured rectangle to open an interactive page. In this new page and to the 

right of the small graph you will find seven different ODEs. On the bottom right you will be 

able to change the value of the parameter. By clicking in the Phase Line and Bifurcation 

Diagram boxes you will obtain their plots. See the working group website for the specific 

activity.  

Questions:  

Have you taught a differential equations course in the last ten years? 

a. If yes, did you use simulation in the course? If yes, write down some of your class’s 

experiences to share with the working group. If no, does the simulation suggest new 

approaches, for the teaching and learning of ODEs?  

b. If no, does the simulation help you to understand how a parameter introduces a new 

‘dynamic’ in the problem? 

One of the fundamental questions provoked by this activity is: 

When simulation activities are specifically designed for student use within a course, what 

properties should these activities possess and how and when should faculty use them?  

Research by Miller and Upton (2008) provides a starting point for discussion on this question. 

http://www.brocku.ca/mathematics-science/departments-and-centres
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3. SIMULATION OF THE BIRTHDAYS PROBLEM 

Why is this simulation proposed?  

The advent of computers, with their ability to quickly generate large sets of data, has made 

simulation a natural fit in the teaching and learning of probability and statistics.  

This simulation is taken from a paper by Relf and Almeida (1999).  A common statement of 

the Birthdays Problem is: “In our class what is the probability that at least two of us will have 

the same birthdate?” The activity has been pre-programmed in Excel, using the approach 

suggested by the author. It is not difficult to change the program to explore ‘what if?’ 

questions. 

Activity:  

Open the spreadsheet entitled, “Birthdays Problem Simulation” (http://www.cegep-

rimouski.qc.ca/dep/maths/?page_id=194), on the working group’s website and follow the 

instructions given on the site.  

Questions:  

Have you solved this problem before using a probability calculation?  

a. If yes, does the simulation bring new ideas, approaches, or questions about the 

problem? Write them down and, if possible, explain how these arose in your mind. 

b. If no, does the simulation help you to develop a conjecture about the solution to this 

problem? Write it down and, if possible, explain how you developed it. 

One of the fundamental questions provoked by this activity is: 

For the student, the transition from a simulation activity to the development and learning of 

the analytical formulation can be challenging. Are there methods that are more successful 

than others to assist the student to make that transition? 

Research by Relf and Almeida (1999) provides a starting point for discussion on this question. 

4. SIMULATION OF NEWTON’S METHOD 

Why is this simulation proposed?  

Journey Through Calculus (JTC) was developed by Ralph (1999) and is unique as it 

provides a complete package for learning calculus that is deeply rooted in simulation.  

This software is integrated into all calculus courses at Brock University.  

Activity:  

Anyone of the many modules could be explored; for participants of the working group, 

Newton’s Method was suggested (see the working group website for details). 

Questions:  

a. The very specific order that JTC has instituted for students to work through and 

thereby learn a mathematical topic is reflected by the order of activities that you were 

asked to perform in Newton’s Method. How does this order concur with, vary from, 

what you see as an optimum teaching and learning method?   
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b. In the simulations, graphs, and games, what incidences raised your interest, in the 

sense that you would find it challenging to provide similar experiences without 

technology? Can you visualize providing similar experiences with a different 

technology?  

One of the fundamental questions provoked by this activity is: 

Is there a role for simulation games in the learning of mathematics at the post-secondary level 

and in the education of teachers? 

Research by Rieber and Noah (2008) provides a starting point for discussion on this question. 

5. SIMULATION IN OPTIMIZATION 

Why is this simulation proposed?  

With a little experience, programming in Geometer’s SketchPad is quickly mastered, and this 

simulation is an example of a simulation that can be easily modified to answer ‘what if?’ 

questions. 

Activity:  

Use either Geometer’s SketchPad or GeoGebra to program the simulation of the problem 

provided by Barry McCrae (1998): 

Kim is planning to walk from Ardale to Brushwood. The direct route, a distance of 

14 km, will take her entirely through rugged bush country. However there is a large 

square clearing, of side length 7 km, situated as shown in Figure 1. The clearing has 

one corner C at the midpoint of the direct route and one diagonal along the 

perpendicular bisector of the direct route. Kim follows a route similar to the one 

shown in the figure, crossing the clearing from P to Q parallel to the direct route. 

One of the CAT (school-based Common Assessment Task) questions required the 

students to find and describe the route for which Kim’s travelling time is the least, 

assuming she travels at an average speed of 1 km/h in the bush and 5 km/h through 

the clearing. (p. 96) 

Questions:  

a. Does this simulation convince you that there is an optimal solution to this problem? 

b. Using the simulation are you able to determine a solution to the problem? 

One of the fundamental questions provoked by this activity is: 

How can simulation be integrated into teaching and learning environments of post-secondary 

mathematics education and mathematics teacher education?   

Research by Stroup (2005) provides a starting point for discussion on this question. 

6. SIMULATION OF VOLTERRA’S MODEL 

Why is this simulation proposed?  

This simulation highlights the role of parameters.  

This simulation is proposed at the Cégep de Rimouski in the first-year calculus course. In 

Volterra’s Model, prey and predator populations, N(t) and  P(t), respectively, are modelled by 

the following equations: 
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The parameters a, b, c, and d have specific meanings, where a is the reproduction rate of prey, 

b is the probability of death for prey when they meet predators, c is the food needs of 

predators, and d is the probability of killing for predators when they meet prey. 

Activity:  

Euler’s Method is used to explore solutions of this problem. Although Maple could be 

considered, Excel is used because it is available to all the students in the classes. Euler’s 

Method is a discrete method used to solve differential equations by approximations: 

                                

Construct the simulation as detailed in the working group’s website.  

Questions:  

a. Can we explain the impact of the variation of a parameter?   

b.  Are we allowed to choose any values for the parameters? 

One of the fundamental questions provoked by this activity is: 

How can simulation be integrated into teaching and learning environments of post-secondary 

mathematics education and mathematics teacher education? 

Research by Stroup (2005) provides a starting point for discussion on this question. 

APPENDIX 2: THE USE OF SIMULATIONS AT THE CÉGEP DE RIMOUSKI 

Philippe Etchecopar and Jean-Philippe Villeneuve 

A central objective of the mathematics programs at the Cégep de Rimouski is to educate our 

students in the scientific method and thereby enable them to: 

 model and undertake a research activity; 

 develop their power of reasoning and demonstrate their understanding; 

 experiment and develop an algorithm; 

 critically analyse a result or an argument; 

 actively engage in mathematics, and explore alternative representations (graphic, 

numeric, analytic, algebraic, geometric); 

 use technology appropriately when problem solving; 

 communicate both in writing and orally. 

Our students use simulation in two ways: one for solving problems, the other for learning 

mathematical concepts. In this Appendix we present examples of both of these uses. 

1. THE MODELING-SIMULATING METHOD 

This method of problem solving follows France Caron’s (personal communication) 

reformulation of Blum’s Modeling Cycle (Blum, 2002).  When solving a problem, we ask our 

students to perform the following steps: Observation, Mathematization, Mathematical 
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Calculation, and Synthesis. An objective of this method is to solve a problem in as general a 

form as possible. One way to do this is to introduce parameters that are then used in the 

simulation. 

To illustrate how students use simulation in modeling we present two examples. 

In the first, students use simulation to explore the role of parameters. They use Verhulst’s 

Model to approximate the evolution of the population of a species, without predators. In this 

model the population growth is given by: 

  

  
   

   

 
   

where N is the size of the population, K, the maximum  size,  r, the reproduction rate, and t the 

time.  

This model describes the population growth over time and can be solved analytically (in 

Maple) or discretely with Euler’s Method. We recall that Euler’s Method enables us to 

approximate a solution by the function:  

                               

A graphical representation is shown in Figure 1. 

 

 

Figure 1 

The implementation in Excel is similar to the one described in Simulation 6 of Appendix 1. 

Once implemented, students use the simulation to explore how changes in the parameters 

impact the model. 

In the second example students use trial and error, within a simulation, to determine one or 

more values of a parameter in order that the resulting motion of a spring will perform in a 

prescribed manner. The second order differential equation for a spring had been previously 

developed in class and in the application the spring needed to be manufactured so as to meet 

certain specifications. In this simulation students find visual representations to be very 

helpful. For example the graphs, in Figure 2, for three different values of a parameter, b, 

provide insights into the behaviour of the spring, namely oscillations, damping, etc.   
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b = 30 000 b = 1 000 b = 10 000 

 

 

 

Figure 2 

2. SIMULATIONS WITH MAPLE 

We now provide examples of how our students use simulations to learn mathematical 

concepts. In all cases the simulations have been done with Maple, some with the interactive 

components of Maple. In all these examples the simulations are pre-programmed. 

Simulations can be used to find a general formula 

After calculating the derivative of simple functions using the definition of the derivative, our 

aim is to introduce the derivative formulas. As part of this development we ask our students to 

choose values of the power of x to find the general formula of the derivative of x
n
. The pre-

programmed format is shown in Figure 3. The simulation enables the student to find a pattern 

in the derivatives calculated by Maple. The aim is for the student to come up with the right 

formula: nx
n-1

. In this simulation students should experiment with different values of n: 

integer (positive and negative), rational, and irrational. These trials are part of the ‘what if?’ 

questions that can be generated by a simulation. 

 

Figure 3 

Simulations can be used to give a geometrical interpretation of an analytic concept 

The pre-programmed environment for this example is shown in Figure 4. A student enters a 

function and an interval and is then able to use a cursor to move the secant.  This simulation 
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provides a geometrical interpretation of the derivative and helps the student visualize how the 

secant goes to the tangent as do their slopes. 

 

Figure 4 

Simulations can be used to develop a proof 

There are tutorials available in Maple. Examples are “Approximation Integral”, “Derivative”, 

“Differentiation Method”, and “Limit Method”. Our students use the last one to calculate the 

limit of a function using limit properties. Students enter a function and an x value, and then 

click on the different properties to determine the limit.  

Hints are available, as well as the answer.  

Sometimes students have difficulties following the steps used by Maple in solving a limit.  

Nevertheless, our students gain much insight using this simulation as they explore when and 

why they can replace x by its value and what to do otherwise. Using this process they are able 

to develop a proof. 

APPENDIX 3: SIMULATION AND BROCK UNIVERSITY’S MICA 
PROGRAM—REFLECTIONS OF A GRADUATE 

Neil Marshall 

Brock University is home to an innovative and dynamic technology-enhanced undergraduate 

mathematics program, Mathematics Integrated with Computers and Applications (MICA). 

Technology is integrated throughout the entire program, with students being introduced to 

Maple in their introductory first-year linear algebra and calculus courses. At the core of this 

program are three
2
 project-based courses that focus on mathematical exploration and 

simulation using technology. As a graduate of the MICA program (2006-2010), it is my hope 

that I can provide insight from a student’s perspective on how simulation is used at Brock by 

                                                 
2 The program has been revised slightly since the author graduated, with the third-year MICA course 

being split into two courses and being optional for those pursuing a concentration in pure mathematics. 
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students to learn and do mathematics. For more information on the MICA program see Buteau 

and Muller (2006), Pead, Ralph, and Muller (2007) and Muller et al. (2009). 

OVERVIEW OF THE PROGRAM 

MICA I, the first course in the series, is a half-credit course that students typically take in the 

Winter term of their first year. There are two hours of lecture per week and two hours in a 

computer lab. The lectures mainly focus on mathematical theory used to structure the 

explorations conducted in lab and on assignments. Lab time is used to introduce the Visual 

Basic programming language and conduct investigations. The student population consists of 

mainly mathematics majors and concurrent education students aiming to be mathematics 

teachers. Topics visited in the first course include investigations on prime numbers and the 

hailstone sequence, RSA encryption, and exploration of the logistical function through a 

cobweb diagram. The course culminates in a final project where students chose their own 

topic and construct, depending on their academic goals, an exploratory object, a real-world 

simulation or a learning object for school-level students.  

The second course, MICA II, is a full-year course, typically taken in a student’s second year. 

The student population is mainly mathematics majors and concurrent education students. Both 

Maple and Visual Basic are used in this course. There are two projects, one at the end of each 

term. Topics covered include pseudo-randomness and chaos, Monte Carlo integration, Lotka-

Volterra population dynamics and the Hénon map. The third MICA course is typically taken 

in a student’s third year. It is an applied mathematics course, focussing on numerically 

solving partial differential equations using C++ in the Fall term and exploring the heat 

equation using Maple in the Winter term. This course is primarily taken by mathematics 

majors. 

THE MICA SIMULATION PHILOSOPHY 

Often simulation in the undergraduate mathematics setting is based on interactive objects 

designed by instructors or purchased commercially, where students can investigate a specific 

mathematical concept by changing parameters (see Chance & Rossman (2006) and Chae & 

Tall (2001) as examples). MICA students, however, are expected to build and modify the 

simulations themselves, with some instructor and teaching assistant support. The students 

themselves are in charge, controlling nearly every aspect of the simulation. Parameters cannot 

only be changed, but new parameters added and new mathematical questions formulated. 

Many first year students are uneasy at the open-ended nature of the first assignment in MICA 

I. Mathematics is liked by more than a few undergraduates, not least because there exist 

‘right’ answers. Open-ended questions, conjectures and conducting mathematical experiments 

to gather data can seem distant to a student’s conception of what doing mathematics is, no 

matter how relevant they are to modern mathematics. However by the end of the course, the 

final projects
3
 constructed from scratch by the students contain a wide range of creative and 

innovative approaches to diverse areas of mathematics. Personally, I found a sense of 

accomplishment and pride in the creation and exploration of such simulations. Students 

identify strongly with such creations and take ownership of them that they wouldn’t 

necessarily experience with solving a calculus or linear algebra problem. 

A PERSONAL JOURNEY THROUGH ONE EXPLORATORY OBJECT 

Throughout my undergraduate career, I developed several simulation objects including an 

exploration of vibrations in a one-dimensional atomic lattice and modelling the heat equation 

in a circular wire. To best illustrate the MICA process, I thought it best to discuss in detail one 

                                                 
3 See http://www.brocku.ca/mathematics/studentprojects for examples of MICA student projects. 
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project that I am particularly proud of: Encryption Pseudorandomness Explorer, my first-year 

MICA final project.  

One of the core topics in the first MICA course is RSA encryption. Students are expected in 

the second assignment to construct an application that encrypts and decrypts a number using 

public key RSA encryption and also generates these keys. As a first-year student, the obvious 

question that occurred to me was “how good was this encryption method?” I remembered that 

early code breakers had used the uneven distribution of letters in the English language as a 

means to break early encryption methods. I wondered how truly random a string of letters 

encrypted by RSA encryption using the means developed in class would appear.  

The goal was to develop a mathematical tool that I could use to measure how random the 

character distribution of an encrypted body of text appeared to be. My goal was to combine 

the various tools I had built for each of the three assignments as a basis for the project, as well 

as implement new ideas. 

The MICA approach can be extremely empowering for students. I had full control over my 

mathematical investigation. I designed the tool, chose which initial parameters I would use 

and how the data would be outputted, and tested my creations. As I tested and explored, I 

improved the tool that I had created, adding encryption algorithms to be used and parameters 

that could be tested. I started with a basic exploration of RSA encryption using two- and 

three-digit primes, adding Hill Cipher, varying the Hill Cipher matrix size, creating a feature 

that allowed for different input text to be encrypted to be compared with the same encryption 

key values, and improving the interface and output. I controlled the entire mathematical 

activity, from the initial idea to the actual exploratory task itself, attempting to reconcile the 

results of my exploration with the mathematical knowledge I had.  

In my particular exploration, I was surprised that the Hill Cipher seemed to produce a more 

randomly distributed distribution of encrypted characters than RSA, even merely using a 2×2 

matrix as the encryption key. To get a similar result with RSA, one had to use highly 

computationally- and time-expensive four-digit primes as a basis for the public and private 

keys. I was very excited when I realized that one major difference between Hill and RSA 

encryption is that the former is a private key encryption scheme, while the latter has a public 

key. I recognized that public key encryption is much more practical in large-scale use than 

private, and thus realised that there might be a trade-off for being more useful in commercial 

endeavours. I also realized that I had underestimated, not for the first nor last time, the 

complexity of matrix multiplication. 

LOOKING BACK: REFLECTIONS OF A STUDENT AND A TEACHING ASSISTANT 

I was an above average student in MICA. While we have had many exceptional students who 

have taken the courses, the experience is not limited merely to the very best of students. 

Technology allows our students to approach their mathematical questions from many different 

directions, and the instructors and TAs are there to guide the students and provide some 

assistance with coding, at the price of being very labour intensive even for the small class 

sizes. However, the payoff for such efforts is to be always surprised at the variety and 

creativity of student final projects. Speaking as someone who has not only been through the 

program, but also TAed for the first- and third-year courses, I am always amazed by the ideas 

and approaches by students, no matter what their mathematical and programming abilities are.  

Consistency of technology is a key part of the MICA program. Since there is a commitment 

by the department to use technology where appropriate throughout a student’s entire 

undergraduate career, there has been a lot of thought put into what technologies are used 
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where. Students are introduced to the computer algebra system Maple in their introductory 

linear algebra and calculus courses and use it in many courses throughout their undergrad. 

They are also introduced to and taught Visual Basic.Net in the first MICA course, which 

provides them the programming foundation to investigate more advanced topics in the 

second-year MICA II. This consistency saves valuable class time for instructors who can rely 

on students’ previous programming knowledge, which is essential in making a multi-year 

MICA-like approach feasible.   

One really nice feature of the Visual Studio development environment is that the creation of 

vivid and unique user interfaces is possible for even the weakest of students. This allows our 

students to personalize their assignments and projects, using colours, fonts and images. 

Students may thus have a personal connection to the objects they create, and may see it not as 

merely something they have to hand in, but as something that they made their own. You 

simply cannot have such an environment for all students with traditional assignments and 

hand calculations, and from personal experience it can make marking a much more enjoyable 

experience. 

FINAL REMARKS 

As with many things in life, it was only blind luck that I ended up at Brock University in the 

MICA program. I had studied Computer Science at the University of Waterloo, but became ill 

and had to leave school. It was several years (and several tries later) that I ended up in the 

Brock Department of Mathematics, mostly because it was close to home. I have often thought 

of how lucky I was to have such misfortune, because it introduced me to something that I 

view as innovative, inspirational, and most importantly, fun. Though I have always been good 

at simplifying equations, deriving proofs and using mathematical algorithms, through MICA I 

experienced something beyond traditional cookie-cutter hand calculations. I was introduced to 

modern mathematics such as encryption, population dynamics and mathematical models of 

complex physical behaviour. Not only that, but I was encouraged to explore and investigate 

these topics by designing and implementing my own tools to do so. 

Mathematics is alive, vibrant and an integral part of our modern world. Often though, students 

have a misconception that mathematics essentially hasn’t changed since the days of Fermat.  

Conjecturing, designing mathematical experiments, running simulations, gathering data, 

recognizing patterns and then drawing conclusions are things many modern mathematicians 

do as part of their research. MICA allowed me to see myself as doing mathematics in my own 

right and I discovered how much I enjoyed doing so. Not only did it teach me how to use 

technology as an effective problem-solving tool that I can use in appropriate situations, but it 

helped empower me to continue my studies beyond an undergraduate degree.  

I am proud to be a graduate of such an innovative and unique program.  It is my hope that by 

sharing my experiences, I might help foster new ideas and implementations that empower 

future students to ‘do mathematics’ through simulation, investigation and technology. 
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APPENDIX 4: USING SIMULATION TO DEVELOP STUDENTS’ 
MATHEMATICAL COMPETENCIES—POST-SECONDARY AND TEACHER 
EDUCATION 

Margo Kondratieva 

I am teaching a course in Euclidean geometry at the University of Newfoundland. The course 

is taught in a traditional format with chalk-board lectures and handwritten assignments and 

tests. However, when I offer this course, my students also have an opportunity to use a 

dynamic geometry environment (DGE). There are no compulsory assignments to use 

simulations, but the students are given many examples of doing so. Some applets made in 

GeoGebra are used during lectures and are posted on the course website for students’ possible 

use. A tutorial on how to work with GeoGebra helps students to create their own dynamic and 

static drawings. Such drawings can replace traditional drawings made on paper with a ruler 

and compass when students work on their assignments.  

Although DGE is used in this course only for the second year and no extensive statistics are 

available yet, there are some observations that I am ready to share. I would like to speak to the 

following three questions, raised during the CMESG/GCEDM meeting. 

QUESTION 1: What is the role of simulation in the development of mathematical 

competencies at the post secondary level? 

Building dynamic drawings in GeoGebra and observing their behaviour helps my students to 

read the textbook and to understand better exactly what the statements are saying. When a 

drawing confirms that students’ interpretation of a statement is valid, students report having 

greater confidence in what they are doing. It also gives more meaning to their actions and thus 

contributes in the development of their competency. With simulations related to certain 

problems or theorems, students have an opportunity to consider special cases and unite 

different particular cases by dragging. This helps them to see how ideas work across cases and 

how some of them can be transferred from a particular to a more general case. For example, 

some proofs found in the case of an acute triangle can be extended to the obtuse case.  

Students use the ‘Trace’ function available in GeoGebra to better understand the idea of a 

locus of points with a given property. Seeing a locus drawn in a DGE sometimes gives then 

an insight into the explanation of the observed phenomenon. At the same time I found that in 

the majority of cases, simulations, as such, neither help students to generate proofs nor do 

they develop the need for a proof. Special care is required in order to move learners in the 

direction of rigorous thinking based on geometric simulations. Some researchers put forward 

the idea that “soft constructions” (Healy, 2000) and “maintaining dragging” (Baccaglini-

Frank, & Mariotti, 2010) may help students to bridge the worlds of experimental and 

theoretical geometries. In my own practice, I emphasize ‘basic geometric configurations’, that 

is, drawing of basic geometric facts that contain elements of their proof. Enhanced by 

dynamic features in a DGE, such configurations assist in breaking complex geometrical 

drawings into more manageable parts and thus help to develop steps of a proof (Kondratieva, 

2011). 

QUESTION 2: In pre-service and in-service courses, what simulation experiences and 

reflections are important for teachers of mathematics? 

Besides Euclidean geometry I also teach courses in mathematics education for pre-service and 

in-service secondary school teachers. Some of my students of geometry end up in my math 

education classes. Again with no statistical confirmation, I observe that students who had 
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previous exposure to a DGE have a better understanding and are more responsive to the 

inquiry-based approach, which is suggested as an important component by recent documents 

regarding the secondary school mathematics curriculum.  

If we expect our math teachers to help their students to mimic a scientific process, that is, to 

plan and carry out investigations, observe, conjecture, explain, question, assess and modify 

their actions if necessary, we need to ensure that the teachers themselves have gone through 

an appropriate training and are familiar first-hand with the process of scientific explorations. 

In this respect, I believe that simulations that give teachers an experience of mathematical 

discovery (even at a ‘small scale’ of an elementary but engaging project in planar geometry or 

number theory) are ‘a must component’ of a teacher education program. 

QUESTION 3: When students develop and program their own simulation activities, what 

mathematical and other competencies are necessary for them to succeed? 

Until they start to create their own applets in a DGE many students actually do not realize that 

they need to use geometrical knowledge and integrate the constraints specified in a problem 

or theorem. Precisely because it helps students to activate and apply their knowledge, creating 

a simulation in a DGE is an important and sometimes very challenging exercise in geometry. 

Students experience implicit learning while making robust constructions in GeoGebra. Some 

students do not feel that making applets helps them directly with finding a solution to a 

problem, but they report that it gives them a sense of accomplishment and satisfaction to a 

certain extent. I concur that asking students to reproduce drawings that preserve certain 

properties (or exhibit a certain behaviour) under dragging is an enriching activity that extends 

standard tasks on constructions with ruler and compass (see also the discussion in Laborde, 

1998, p. 118). 
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Figure 1. The participants, deeply engaged. 
Right-to-left: Chris Palmer, Julie Long, Ruth Beatty, Michelle Davidson, Valeen Chow, Kevin 

Wells, Elaine Simmt 

ABSTRACT 

The connections between art and 

mathematics have a long tradition. This dates 

back to the time when knowledge disciplines 

were not as clearly segregated (as for 

example, the development of the laws of 

perspective during the Renaissance). In more 

recent times, the connections have been 

maintained both from the perspective of 

mathematicians who create aesthetically 

pleasing representations of their ideas, and 

from the perspective of artists making 

La connexion entre l’art et les mathématiques 

a une tradition millénaire, datant d’une 

époque où les disciplines du savoir n’étaient 

pas aussi distinctes (prenons par exemple le 

développement de la perspective pendant la 

renaissance). À une époque plus récente, 

cette connexion a été maintenue aussi bien 

par la vision de mathématiciens qui créent 

des représentations esthétiquement 

satisfaisantes de leurs idées, que par des 

artistes faisant explicitement usage de 
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explicit use of mathematical concepts in their 

work. In this working group, we expect most 

participants to come with a primarily 

mathematical perspective and background. 

Thus we choose to take the antithetical 

position, and approach the connection from 

the point of view of artists. This connection 

can take a variety of forms. For example, and 

as members of the Concrete Movement 

believed, art should: 

emerge from its own means and rules, 

without having to call upon external 

natural phenomena… By the act of 

modeling, art works take on a concrete 

form, they are translated from their mental 

form into reality; they become objects, 

with a visual and spiritual use.1 (Albrecht 

& Koella, 1982) 

In consequence, “released from its 

attachments to natural phenomena and bound 

to natural laws, this art gives the feeling and 

shaping mind, the creative imagination, the 

greatest possible freedom” (Rotzler, 1989, p. 

142). In the working group, we will explore 

and experience this freedom, focusing 

particularly on the ways in which 

mathematics can be integrated into the 

process of creating art. The three main (non-

exclusive) ways are: the mathematics can 

simply be a tool for the creation of art, it can 

be the subject of the art piece, or it can be the 

source of inspiration. The focus of the 

working group is on mathematics as subject 

or inspiration for the creation of art. 

concepts mathématiques dans leurs œuvres. 

Dans ce groupe de travail, nous anticipons 

que la plupart des participants se positionnent 

du point de vue en premier lieu 

mathématique. Nous optons donc pour la 

position antithétique et approchons la 

problématique du point de vue des artistes. 

Cette connexion peut prendre plusieurs 

formes. Par exemple, et comme le croyaient 

les membres du Mouvement Concret, l’art 

devrait : 

[naître] de ses propres règles et moyens 

sans devoir les dériver ou les emprunter 

de phénomènes extérieurs naturels... Par 

l'acte de modélisation, les œuvres 

prennent une forme concrète, ils sont 

traduits de leur existence mentale en une 

réalité, ils deviennent des objets, avec un 

usage optique et spirituel.1 (Albrecht & 

Koella, 1982) 

En conséquence, et « libéré de ses 

attachements à des phénomènes naturels et 

directement lié aux lois naturelles, cet art 

donne à l’esprit sentant et comprenant et à 

l’imagination créative, le plus de liberté 

possible » (Rotzler, 1989, page 142). Dans le 

groupe de travail, nous allons explorer et 

faire l’expérience de cette liberté, tout en 

convergeant notre attention particulièrement 

sur les moyens d’intégrer les mathématiques 

dans le processus de création d’œuvres d’art. 

Ces moyens peuvent prendre trois formes 

principales : les mathématiques peuvent 

simplement servir d’outil pour la création, 

elles peuvent être le sujet d’œuvres, ou elles 

peuvent servir de source d’inspiration. 

THE WORKING GROUP’S ACTIVITIES 

INTRODUCTION 

Activities began with the letters game shown in Figure 2, below. This somewhat divergent 

undertaking sparked a fruitful discussion both regarding the exercise itself and regarding the 

pedagogy of such exercises. It was concluded that instead of asking where the missing letters 

do belong it would be more beneficial to ask the more subtle question of where they could 

belong. This proved to be a good introduction to the working group’s activities because it 

raised the question of the contrast, frequently made between mathematics and art, that there is 

                                                 
1 “aus ihren eigenen Mitteln und Gesetzen entsteht, ohne diese aus äusseren Naturersheinungen ableiten 

oder entlehnen zu müssen.[...] Durch die Formung nehmen die entstehenden Werke konkrete Form an, 

sie warden aus ihrer rein geistigen Existenz in Tatsache umgesetzt, sie werden zu Gegenstände, zu 

optischen und geistigen Gebrauchsgegenstände.” (Translation/traduction: Eva Knoll) 
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a single valid answer in the former and many in the latter discipline. (For an answer to the 

letters game question, please flip to the end of the report). 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
Where do C, M, R and X belong? 

Figure 2.  The Letters Game. 

AN ART-HISTORICAL CONTEXT FOR THE WORKING GROUP 

In the first half of the twentieth century, art movements were formed, including Constructivist 

and, in particular, Concrete Art, whose proponents claimed, amongst other things, that the 

subject of a work of art is the work itself. That is, art is not trying to represent any other object 

but itself. Examples of artists that worked in this way include Wassily Kandinsky, Theo van 

Doesburg, and Max Bill. More specifically in the case of Concrete Art, the means of creation 

include colour, space, light and movement. This allows for abstract ideas to be made concrete 

in visual form. To gain a better understanding of the perspective of Concrete artists, we 

discussed two manifesti while looking at specific examples of Concrete Art.  

Some of the tenets that we discussed included: 

 The work of art must be entirely conceived and formed by the mind before its 

execution. It must receive nothing from nature’s given forms, or from sensuality, or 

sentimentality. We wish to exclude lyricism, dramatism, symbolism, etc.   

 The picture must be entirely constructed from purely plastic elements, that is, planes 

and colours. A pictorial element has no other meaning than ‘itself’ and thus the 

picture has no other meaning other than ‘itself’.  

 “The construction of the picture, as well as its elements, must be simple and visually 

controllable” (van Doesburg, 1930, p. 1). 

 “All the arts derive from the same and unique root” (Kandinsky, 1938, as cited in 

Caws, p. 520). 

This discussion raised a marked resistance, on the part of some participants, who could not 

reconcile their reactions to the works with the claims of the manifesti. For example, the idea 

that the art receives nothing from sensuality was considered invalid because the art that was 

shown did provoke sensual responses in the observing participants. One participant described 

a specific piece as giving comfort because it gave an impression of being sheltering.  

In order to gain a clearer, more authentic understanding of the artist’s intentions, the group 

chose to attempt to avoid a ‘presentist’ perspective by trying to re-think the meaning of some 

of the terms used, within the context of the time. For example, the term ‘mechanical’, in the 

electronic age, suggests a different concept from what it would have been at the time of the 

manifesti. 

This initial discussion led the group to a narrower conversation, focusing on the mathematical 

meaning as a possible layer in artwork. If the other layers are conceptually removed, a viewer 

is left with the underlying structure, which often has a strong mathematical element. This 
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gave the group a chance to focus on the mathematical and aesthetic decisions involved in 

making art in general and Concrete Art in particular.  

For this working group, the focus was deliberately placed on the perspective of the artist: the 

play, the creation, the open-endedness, and the unpredictability. We used mathematics to 

guide artistic choices and celebrated the aesthetic qualities of mathematics by playing with its 

structures and elements. Towards the end of his life, Max Bill explained the mathematical 

ways of thinking that he applied to his visual art: 

In every work of art the basis of its composition is geometry…the means of 

determining the mutual relationship of its component parts either on plane or in 

space.  

As the artist has to forge into unity, his vision vouchsafes him a synthesis of what he 

sees which, though essential to his art, may not be necessarily mathematically 

accurate. This leads to shifting or blurring of boundaries where clear lines of 

division would be supposed. Hence abstract conceptions assume concrete and 

visible shape, and so become perceptible to our emotions. 

The art in question can, perhaps, be best defined as the building up of significant 

patterns from the ever-changing relations, rhythms and proportions of abstract 

forms…it presents some analogy to mathematics itself. (1993, pp. 5-9) 

In discussing and collaboratively constructing a piece of Concrete Art, the Working Group 

found that an emerging key theme was the way in which the mathematics and the aesthetics 

each contribute to guiding the successive decisions. 

RETELLING THE PROCESS 

The next stage of the working group was for the participants to experience the process of a 

collection of art pieces created by a contemporary Concrete Artist, the co-leader Eva Knoll.  

The group spent some time watching as the artist walked through the steps involved in 

designing and creating a series of related art pieces, including the one in Figure 3 below. This 

gave further insight into the balance of mathematical and aesthetic decisions involved in the 

process. 

 

Figure 3.  Circular Colourwave Base 20 - Step 8 (Ø 48”, 2008). 
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EXPERIENCING THE PROCESS COLLECTIVELY 

The process of creating mathematical art is highly individual, and is greatly influenced by the 

artist’s personal experience with mathematical ideas and concepts. This involves an individual 

artist’s self-awareness in terms of the aesthetic appreciation of various concepts and ideas 

(mathematical or otherwise).  

In this phase, the working group used some concepts and ideas that Eva Knoll had been 

exploring from just this perspective, and worked on a combination of tasks that involved 

getting acquainted with the concepts for themselves and discussing design decisions made 

both in advance by the working-group leaders (as anticipated by the manifesto) and later, as a 

group, based in part on how the pieces turned out at various stages. The purpose of this phase 

was to habituate the participants to think in terms of constraints and design decisions, both on 

their own terms and in terms of the opportunities they created to think about the aesthetics of 

mathematics and the mathematics of aesthetics. 

The chosen starting point was the Hilbert space-filling curve. This curve was a good choice 

because of its aesthetic interest (its symmetry is not too simple or obvious). Another reason 

was because it is relatively easy to step up or down the complexity of the piece by increasing 

or decreasing the number of fractal iterations used, thereby finding a good middle ground 

between too complex (in which case the structure is submerged by the noise), or too simple 

(in which case it does not retain the viewer’s interest). The process for this part of the working 

group session was deliberately designed to begin in a more constrained way, whereby the 

leaders gave the initial design constraints, and later, when they felt more confident, the 

participants were asked to contribute decisions. These decisions were also discussed in terms 

of their mathematical, aesthetic, or hybrid nature. 

At first the participants developed their own individual understanding of the Hilbert curve by 

drawing successive iterations, thereby getting a ‘feel’ for its meandering path and the 

relationship between successive iterations. 

This can be done in various ways. In the illustration below (see Figure 4), the upside-down 

“U” of iteration 1 (I-1) is replaced by the “Chalice” of iteration 2 (I-2), in the correct 

orientation to preserve the positions of the entry and exit points; then they are joined up. For 

I-3, again, the “U” is replaced by a copy of the “Chalice”. The group remarked that going 

from I-1 to I-2 is the trickiest step because there is nothing to compare back to. One important 

aspect to notice is that in any given iteration, the instances of previous iterations (at any level) 

that touch the top edge are in the same orientation as the overall curve. 

Some of the difficulties of this step derived from a property of the Hilbert Curve that 

distinguishes it from other fractals such as the Koch Snowflake. In the latter, each iteration 

proceeds by substituting various sections of the curve with copies of the whole curve from the 

previous iteration, with the start and end points not moving. In the Hilbert Curve, the start and 

end points drift closer and closer to the corners of the square that is being filled as the 

resolution increases with successive iterations. This difference took some getting used to as 

participants who were familiar with fractals like the Koch Snowflake were looking for a 

simple substitution rule. Different conceptual approaches were proposed to the participants 

struggling to understand the curve. A fair bit of time was needed for the participants to 

understand how to make sense of the curve for themselves. 
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Figure 4.  The first 3 iterations of the Hilbert Curve. 

The next step in the process was to play with the curve to see if an idea or concept surfaced 

that could be combined with the curve: 

 

Figure 5.  Playing with the curve. 

The Hilbert curve fits into a square region and always connects the centres of squares on a 

grid of dimensions 2
n
 × 2

n
 or 4

n
 squares, where n refers to the iteration. For the early stage 

where an artist is exploring what could be done with the pattern, I-3 (shown in the Figure 5 

photo, top right) has a good complexity level, with its 64 unit squares.  

At the leaders’ instigation, the group generated 64-digit numbers by each writing an 8-digit 

number of their choice on a paper, then eight times picking one paper out of the pile and 

writing down the numbers sequentially. There were eight 8-digit numbers to select from, and 

it was possible to select the same number more than once.  
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I wanted to see what happens 
when I colour the drawing. The 
curve creates two spaces that 
I coloured in yellow and purple. 
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At the leaders’ instigation, again, the basic I-3 drawing was then combined with each 

participant’s number as follows: the number is ‘transposed’ onto the square by following the 

path of the Hilbert Curve, sequentially, and by reinterpreting its digits according to 

completely determined rules: replace the individual digits by one of two square elements, 

each of which connects the four midpoints of the edges of the square, depending if the digit is 

even or odd (0 or 1 mod 2), as shown below. 

     

Figure 6.  Integrating the number sequence. 

Using a randomly generated 64-digit number is not entirely satisfying in terms of 

mathematical or aesthetic decisions if the aim is to bring out the harmonious, aesthetic 

structure and nature of mathematics. A suggestion was made to use, instead, prime numbers, 

which have aesthetic appeal for many mathematicians. Another option that was discussed was 

to use a number in its binary form, since it would then have only 1s and 0s, which are ready to 

be transposed into the two options above. A 64-binary-digit number lies between 9 223 372 

036 854 775 808 and 18 446 744 073 709 551 616, i.e. between 9 and 18 quintillions. This 

seemed less practical, since an internet website yielded a huge list of 64-digit prime numbers, 

ready for the participants to select numbers for their new version.  

It is at this point, also, that the group began working at a larger scale, both in terms of the 64-

digit panels and in terms of the assembling of a larger piece. Because the Hilbert Curves can 

be concatenated to produce further, larger iterations, the group worked towards making 16 

(2
2n

) squares, about two per participant, making the assembled piece that is based on I-5.  

The first step was to use specially prepared panels that were punched at each intersection of a 

16 × 16 grid (that included the mid-points of edges for a more accurate tracing of the odd and 

even pattern). 

This work took some time, which allowed for conversations about the choices that were 

made. For example, it is curious to note that in a given panel, lines never intersect or meet 

more than in pairs. Instead, all lines either close or start and end on an edge. Two colours are 

therefore always sufficient to colour the resulting drawing so that no two adjacent regions 

(sharing an edge) are of the same colour. In addition, it is always possible to colour a panel in 

such a way that the corners are all the same colour and panels can therefore always be joined 

so that the colouring continues across the edge. 

 

odd

even

I’m filling each square 
with the pattern on the 
left, while following the 

Hilbert Curve’s path. 
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Figure 7.  Making the larger squares. 

The next step was to assemble the panels. There were of course a multitude of options on how 

to do this. Combinatorics tells us that if we count each panel’s four possible orientations as 

distinct choices, there is a very large number of ways in which the panels can be combined. 

There is, however, an underlying structure to a Hilbert Curve, and the orientation of a panel is 

dictated by its position in the larger square. As noted previously and shown in the diagram 

(Figure 8), for example, in I-5, the I-3 modules of the first row all face the same way. 

I’m going over the holes in this 
template with a marker to 

transfer them onto  
the chart paper underneath. 

After having drawn the 
walls of the Hilbert Curve’s 

path, I’m adding in the  
odd-even patterns based on 
my 64-digit prime number. 

I started colouring the “half”  
that is not touching the corners. 
Now I’m having a coffee break! 
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Figure 8.  An I-5 Hilbert Curve. 

The question, in this step, was to choose either the position or the orientation of each panel as 

the determining factor, since the two are linked. The group chose to consider position first and 

let it dictate orientation. Each panel had been coloured by its creator using a colour entirely of 

her/his choosing. The resulting colours were: two black, four different blues, gold, green, 

lilac, two orange, pink, red, teal, pale violet, and yellow. In a piece of art that was discussed 

previously in the working group, colour, and particularly the relative position of colours on 

the spectrum, were discussed as design elements, less in terms of their symbolism or the 

possibilities of harmonious or clashing juxtapositions than in terms of the information that can 

be encoded in the choices in terms of their distances along the spectrum. The eye slides more 

readily from colour to colour when these are near neighbours on the colour wheel. Excluding 

the two black panels, all the others could be placed in spectral order and this very order could 

be used to show the path travelled by the Hilbert Curve from panel to panel (i.e. at an I-2 

level). But the spectrum is circular, which means that the group had to choose where to break 

the sequence. 

 

Figure 9.  How do we assemble the larger piece? 
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The choice of the break in the spectrum was determined by two factors. Firstly, the curve 

passed near itself and where it did so, the two strands needed to be different enough that the 

eye would not jump across them. Secondly, the colours were neither unique (e.g. there were 

two orange), nor were they all equally spaced around the wheel (there were four blues that 

were very close together and there was a bigger distance between the yellow and the green). 

The solution involved using the two black panels as the start and end, then following the 

spectrum from yellow to green via all the remaining colours, in spectrum order. 

 

Figure 10.  The finished piece. 

Following the spectrum along from (black to) yellow to gold, to orange etc., traces the 

‘chalice’ that is the basic pattern of I-2. In addition, within each square, there is an I-3 path, so 

that overall, the underlying Hilbert Curve is an I-5. 

Some mathematical questions were raised throughout the process that were not answered: 

1. How does the number of odd digits compare with the number of even digits (in the 

case of the primes)? How does that affect the drawing? 

2. Why are all the corners the same colour? 

3. Why are two colours enough? 

4. How does one decide how to orient the squares in the scaled up version? 

Readers are invited to attempt these themselves. 
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MAKING OUR OWN ART; DOING OUR OWN MATH 

In the final stage, a set of stations were laid out that showed starting points to math-art 

projects. Each participant chose one of the stations, with little hesitation, and spent the 

remaining time working on their individual ideas based on the station and the reaction of their 

internal mathematical artist, with its self-awareness and personal history. 

There were 5 stations: 

1. Tartans and Peyote Stitch — Tartans are made using the Twill pattern (similar to 

2×1 herringbone tiling) and the Peyote Stitch is a beading method that creates a brick-

row pattern. Both are topologically related to the hexagonal grid and so patterns can be 

transferred between them (Knoll, 2009).  

2. Paper-weaving polyominoes — Using paper strips, it is possible to weave a multitude 

of designs by using one colour for each direction. What polyominoes can be woven 

into a monohedral tiling (only one type of tile) so that the same-coloured tiles don’t 

touch along edges? (Knoll & Landry, 2011) 

3. Scaling the maze — Taking the previous design with the Hilbert Curve to the next 

level, how can we create a life-sized maze in which people can walk around? 

4. More space-filling curves — The Hilbert curve is only the first of many. What 

designs can be made with some of the others (Sagan, 1994)? 

5. Examples of Concrete Art — A series of slides presented more examples of Concrete 

Art for more inspiration. 

There was interest in specific projects that involved specific craft techniques, personal 

meanings (doing a tartan for one’s clan), fractals, and technology. 

I was immediately inspired by the work of the artist Max Bill and the possibilities of 

taking a highly organized geometric pattern and reducing its visibility to a 

functional aesthetic minimum…For my piece I chose to use the Geometer’s 

Sketchpad to create a design. The starting idea was to divide a circle into sections 

based on a simple ‘halving’ principle of lines and angles. Once the grid was 

sufficiently dense, possibilities to select from the sections created began to suggest 

themselves. The underlying scaffold was ‘hidden’ to leave what is hopefully a work 

of concrete art which has both tension and visual appeal. I see the process as being 

interesting to students as well as highlighting how much of what we see has an 

underlying mathematical structure. – Participant Kevin Wells 

REFLECTING ON THE EXPERIENCE 

While the participants worked on their own projects, there was much lively and interesting 

discussion about the process in general. One of the important themes that emerged was 

suggested by Elaine Simmt: the concept of using liberating constraints while teaching. The 

term ‘liberating constraints’ is used to draw a distinction between tasks that are proscriptive 

and those that are prescriptive (Davis & Simmt, 2003). Prescriptive tasks range from those 

that are too narrow to allow for varied interpretations to tasks that are too open to encourage 

focused interpretations. Thus it is useful to provide liberating constraints to allow for 

maximum benefit from learning activities. The discussion around liberating constraints in the 

contexts of creating art and in doing mathematics was a highlight of the working group. 

There were various constraints that arose for specific projects, and this led to the necessity of 

making choices. There was not a clear dichotomy between aesthetic and mathematical 
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preferences but rather a spectrum. Both facets contributed to the decision-making. For 

example, each participant chose a colour for their Hilbert curve. As shown in Figure 10, the 

colours range throughout the rainbow. This was not a result of a suggestion by the co-leaders, 

a collective decision, or even the availability of colours, since the participants were supplied 

with several boxes of colours to choose from. Once it was discovered that we could form a 

rainbow, the group decided to use this in the layout of the curves. The actual layout was 

mathematically inspired by the Hilbert curve itself. There were some aesthetic choices made 

in the specific order of the colours. A decision about the orientation of each Hilbert curve also 

needed to be made. 

CONCLUSION 

The apocryphal story goes that Picasso was sitting in a Paris café when an admirer 

approached and asked if he would do a quick sketch on a paper napkin. Picasso 

politely agreed, swiftly executed the work, and handed back the napkin — but not 

before asking for a rather significant amount of money. The admirer was shocked: 

“How can you ask for so much? It took you a minute to draw this!” “No”, Picasso 

replied, “It took me 40 years.” [Public domain] 

There was much discussion about ‘what is art’, and more specifically, how the artistic process 

can be analogous to the methods of a research mathematician. Both can consist of the 

development of new methods, recognition of patterns, and a search for aesthetically pleasing 

results. Both can be open-ended yet constrained by specific parameters. The participants each 

brought with them their own mathematical and aesthetic history, and this affected their art. In 

the words of one participant: 

Having materials and opportunity to create going from mathematic to aesthetic 

experience surely set off thoughts about what one understands and can do...I don’t 

often think that university mathematics academics have many experiences using 

visualization or considering hand-eye coordination. Certainly, elementary education 

is very strongly focused on use of such experiences in relation to mathematics. 

Inquiry about how we use this concept in teacher education might be interesting to 

consider and study. – Participant Valeen Chow 

And another: 

[…] A working group called making math/making art was irresistible to me. I was 

fascinated to hear about the histories of various art movements that are explicitly 

dependent on mathematics and I welcomed the opportunity to make art that at once 

is constrained and enabled by mathematics. I have little to say about my particular 

piece. It was at its worst a mess (uninteresting in all the domains in which art is 

assessed) and at its best (that is in my other life) the first attempt in what could have 

been a piece of work that demonstrates the marks of Constructivist art. […] 

 – Participant Elaine Simmt 

Note: The letters game distinguished the letters that incorporate a curve from those that are 

made only of straight lines. This depends in part on the selected font. For example, “Russell 

Square” the font used on most digital clocks uses only straight lines. 
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INTRODUCTION 

Prospective elementary teachers often encounter significant conceptual difficulties in 

mathematics as they enter teacher-training programmes (Morin, 2008). In order to help these 

students, one ponders what mathematics training should be provided to develop the 

knowledge required to effectively teach the subject. In this perspective, what knowledge 

should be emphasised for mathematics and for teaching? Which tasks should one select in 

order to better prepare future teachers of mathematics? Among these tasks one may consider 

Problem Solving, which readily brings students to employ concepts that they will later teach, 

Role Play, which fosters reflective analyses of mathematical concepts and the teaching and 

learning of these concepts (Lajoie, 2010), or additionally Task Analysis of student samples, 

which enables future teachers to see a variety of approaches and assessments of difficulties 

related to the targeted concepts. How do we, as mathematics educators, develop our pre-

service teachers’ “[…] understanding required to make explicit or reasonable the connections 

between students’ current understandings (as exemplified with concrete experiences and 

examples) and the desired outcomes, such as generalization or a new method or procedure” 

(Kajander, 2010)? Using artefacts and concrete examples, participants in this working group 

were invited to discuss their practices and the different types of tasks they offer future primary 

teachers. 

OUR GROUP’S TOPIC AND INTENTION 

In general, we do not want tomorrow’s elementary school teachers to teach mathematics as it 

was taught yesterday. We believe that mathematics in elementary schools can be a positive, 
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enabling, and fulfilling experience for all of its participants. Yet few of the student-teachers in 

our pre-service classes feel that the mathematics they experienced had these qualities. The 

challenge we embrace in our pre-service courses is how to prepare future teachers to teach 

something that, in general, they resent and do not understand. In effect, we have 36 hours (or 

72, or 180) to try to overcome our students’ 1800 hours of experiences with school 

mathematics, and orient teachers toward a process of teaching the subject differently than 

what they themselves may have experienced. We could have talked for three days about the 

impossibility of such a mandate, and the significance of the factors stacked against such a 

challenge. We were, however, of the opinion that different parameters would possibly bear 

more palatable fruits. The barriers could not be ignored, any more than our lofty goals could 

be discarded. Our chosen task was to engage in inquiry into the selection of tasks for use in 

preparing future elementary school teachers to teach mathematics.  

This report begins with a chronological account of our three-day endeavour.  Each day was 

framed around a guiding question, intended to focus our actions on a particular intention. 

Activities with tasks led to discussions, often as a whole group, sometimes in smaller clusters. 

Were there substantive outcomes of our time together? We will share some of the qualities 

and intentions of tasks that emerged as personal priorities among our membership. Afin de 

bien rendre compte de l’esprit de notre groupe de travail, le rapport est tantôt en anglais, 

tantôt en français. 

PREMIÈRE JOURNÉE 

All readers who have led a working group know how difficult it is to start. In our planning, 

we quickly agreed on a place to start, and then we compiled a list of the things we really 

should do at the beginning before we actually start. Two things seemed to be worth stating, in 

the hopes of providing our working group with a new perspective: 

 That we avoid deficit-based framing of our students, so that we can avoid replicating 

the thinking of the last thirty years regarding teaching elementary math methods, and 

postpone our engagement with the already well-mobilized topics of pedagogical 

content knowledge and mathematics for teaching. 

 That we look to generate a fresh sense of possibility, or a fresh understanding of the 

challenges we face in teaching students to teach elementary mathematics – imagining 

what might be possible, rather than emphasizing what makes change seem 

impossible. 

After a delightful introductory trip around the circle of participants, we introduced our 

guiding question for the day:  When we select our tasks, we portray to our students what we 

think math is, what we think math is for. So – what do we want our tasks to suggest for them, 

about the nature and purposes of mathematics? Afin d’alimenter la discussion, nous avons 

proposé trois tâches et avons discuté de ces tâches, en relation avec la question. Ces 

discussions ont permis de préciser ce que nous recherchons lorsque nous proposons des tâches 

mathématiques aux élèves. Deux de ces tâches étaient Fukushima Math et la calotte glaciaire. 

Both tasks aimed at prompting discussions about mathematics being significant for anyone 

who wants to understand the world around them, and demonstrating that things like area are 

big ideas, not just a set of formulas to remember. 

PREMIÈRE TÂCHE: FUKUSHIMA MATH 

Fukushima Math was an activity-space for us to consider what value a task’s context might 

offer: a promise of math’s potency or relevance; or perhaps a suggestion of math’s currency 

as a lens for viewing the world. It is based on the evacuation in 2010 around the nuclear 
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reactor on the Japanese coast, which progressed rapidly from 1 km to 3, from 3 km to 6, and 

finally, despite calls for a 20-km evacuation zone, was established at 10 km by the end of the 

first week. In the activity, participants drew half-circles on centimetre grid paper to represent 

each evacuation zone before counting and/or calculating the square kilometres in the zone. 

Because pre-tsunami population figures were available for each phase, participants could 

check to see how the increase in evacuees aligns with the increase in land-area being 

evacuated. The matter of how quickly and how far to go with formal mathematics (graphing 

the relationships, linking back or forward to area formulas for circles or notions of density) 

was left open for discussion, but the notion of participants having visual experiences counting 

the areas of (half-) circles which they had constructed (the compasses didn’t extend to a 20-

cm radius, so everyone had to improvise to draw the largest suggested evacuation zone with 

string or a ruler) led toward a principle of students personally experiencing the use of 

mathematical ideas before they learn formulas. 

               

Figure 1.  Sketchpad representation.  Figure 2.  Work from one team. 

DEUXIÈME TÂCHE: LA CALOTTE GLACIAIRE (ICE CAP) 

Le point de départ de cette tâche, qui a été expérimentée avec des élèves du primaire, est un 

article relatant qu’une recherche prévoit que l’Arctique se réchauffera plus vite que le reste de 

la planète. (See Bruce, Lessard, & Theis, 2011.) L’article contenait des images qui montraient 

l’étendue prévue de la calotte glaciaire de l’Arctique en 2010, en 2040 et en 2070. Nous avons 

demandé aux participants de répondre à la même question qui a été posée aux élèves, à savoir: 

Quelle sera l’étendue de la calotte glaciaire en 2010 par rapport à aujourd’hui? Tout comme 

les élèves, les participants disposaient d’un agrandissement de la carte présentée à la figure 3 

qui contient les prévisions de l’étendue de la calotte glaciaire pour 2010. Sur la figure 3, le 

trait indique les limites de la calotte glaciaire en 2003 et la surface blanche correspond à 

l’étendue prévue de la calotte pour 2010. 

Derrière la question apparemment simple se cache une activité mathématique fort complexe 

pour des élèves du primaire: Quelle stratégie vont-ils déployer pour déterminer l’aire de 

chacune des surfaces irrégulières? Quelles stratégies vont-ils mettre en place pour exprimer 

la différence sous forme de rapport, fraction ou pourcentage? La richesse de cette activité 

provient entre autres de la possibilité d’avoir recours à plusieurs stratégies différentes, qu’il a 

été intéressant d’anticiper avec les participants. Par exemple, lors de l’expérimentation avec 

les élèves, plusieurs équipes ont utilisé un quadrillage, qu’ils ont superposé sur l’image afin 

de déterminer le nombre de carrés nécessaire pour recouvrir chacune des aires (figure 4). 

D’autres équipes ont eu recours à une stratégie similaire, mais ont entouré les surfaces à 
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mesurer d’un rectangle dont ils ont calculé l’aire et en ont enlevé l’aire de la surface qui 

dépasse la calotte glaciaire. Enfin, des équipes ont aussi eu recours à une stratégie erronée qui 

consiste à calculer l’aire de la calotte glaciaire à partir de son périmètre. Toutes ces stratégies 

ont été discutées avec les participants et ont été l’occasion de préciser les qualités que l’on 

cherche à mettre de l’avant lorsqu’on propose une tâche mathématique à des élèves. 

     

Figure 3.  L’étendue prévue de la Figure 4.  Travail d’un groupe. 
calotte glaciaire en 2010 

(adapted from Hassol, 2004, p. 25). 

As well, the notion of the utility of mathematics for looking carefully at the world and its 

crises proved more controversial than we leaders had anticipated. As one participant 

expressed in her day-two personal writing, “I feel like bringing the usefulness of every 

mathematical concept we teach strips out the mathematics of its beauty.” 

DEUXIÈME JOURNÉE 

La question qui a guidé la deuxième journée était la suivante: Do we want to prepare our 

students to use tasks as designed by others, or do we want to prepare our students to adapt 

tasks designed by others, or do we want to prepare our students to design tasks like those 

designed by others? Pour préparer cette séance de travail, nous avons demandé aux 

participants de lire deux textes, un portant sur les scripted lessons (Commeyras, 2007) et 

l’autre sur l’enseignant musicien versus l’enseignant compositeur (Meyer, 2009). Ces deux 

textes, dans lesquels sont présentés des types d’enseignants très différents, ont donné lieu à 

des discussions fort intéressantes quant au type d’enseignant que l’on veut être et quant à la 

façon d’amener les futurs enseignants à faire des mathématiques. Le commentaire d’une 

participante montre bien cette idée: “I have enjoyed some of the discussions about how to 

engage our pre-service teachers in learning mathematics. This helps me to reflect on my own 

practice and think about how to improve my teacher education program.” 

Afin d’aller plus loin dans cette question, nous nous sommes demandés ce qui pourrait 

préparer nos étudiants à se voir comme des créateurs de leçons. Pour ce faire, nous avons 

exploré les jeux de rôles, tels que vécus à l’Université du Québec à Montréal (UQAM) et 

présentés par Lajoie (2010). Pour cette dernière, “Le jeu de rôles est la mise en scène d’une 

situation problématique impliquant des personnages ayant un rôle donné” (p. 103). Lajoie et 

ses collègues utilisent les jeux de rôles dans le but de contribuer au développement des 

compétences professionnelles des étudiants dans un contexte qui se rapproche du contexte 

réel de la classe. Brièvement, un jeu de rôles comprend une mise en situation, qui décrit une 

situation-problème impliquant des élèves et un enseignant, de même que des consignes à 
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l’intention des étudiants qui, en équipe de quatre, auront à tenir le rôle de l’enseignant ou d’un 

élève. À titre d’exemple, voici une mise en situation, telle que proposée par Lajoie. 

Les algorithmes personnels comme moyen pour respecter toute une diversité de stratégies de 

calculs 

Vous enseignez dans une classe de deuxième cycle. À travers une situation problème que vous avez 

proposée à vos élèves, ceux-ci ont été amenés à développer des processus naturels de division de deux 

nombres entiers. Vous souhaitez maintenant faire une mise en commun collective du travail réalisé dans 

les équipes. 

L’enseignant désigné aura quelques minutes pour demander à ses quatre élèves d’effectuer une division 

en utilisant chacun l’algorithme développé dans son équipe. Ensuite [même si au primaire ce qui suit est 

prévu seulement au troisième cycle], il devra présenter à ses élèves un algorithme plus traditionnel et 

les inviter à comparer cet algorithme aux leurs pour qu’ils puissent avoir une idée de différentes 

manières possibles d’effectuer la division de deux entiers.  

(Lajoie, 2010, p. 104) 

Après avoir présenté les jeux de rôles aux participants, nous avons amené comme exemple un 

jeu de rôles mené avec les élèves du primaire de la classe de Christian. L’idée de prendre 

exemple sur des élèves du primaire n’a pas été prise au hasard. Ce choix a permis de se 

décentrer des futurs enseignants et de vraiment discuter des jeux de rôles. En effet, si nous 

avions visionné un jeu de rôles tenu par des futurs enseignants, la discussion aurait facilement 

pu dévier. 

ROLE PLAY WITH GRADE 6 PUPILS: PUPILS AS TEACHERS 

During our pre-conference planning, Christian had been inspired by Marie-Pier’s stories of 

the successes at UQAM, where their elementary mathematics education team introduced role-

play around 1995 (Lajoie, 2010). Christian adapted the idea for use in his Grade 6 classroom 

before the conference. As is shown in Table 1, to do so, he had to modify the parameters 

which are used with the pre-service teachers at UQAM. 

UQAM Parameters Grade 6 Parameters 
10 compulsory plays 2 entirely voluntary plays 

No forewarning of participants’ roles 

Participants self-select the actors for a practice in 

Grade 6, and further select actors for the actual 

lesson in Grade 3 

Instructor selects teaching situation A Grade 3 teacher selects the concept to teach 

Access to articles, manipulatives, previous 

lessons, instructor 

Access to Grades 3 & 6 Math books, manipulatives, 

previous lessons, teacher 

4 participants per team 2 teams of 4 participants 

Students receive marks Students receive feedback but no mark 

Table 1.  Comparing the two uses of role-play. 

Both UQAM students and pupils were provided with time, resources and support during the 

planning phase. The pupils’ task was to develop learning activities for the Grade 3 class that 

aimed to support a concept provided by the Grade 3 teacher. Pupils had the opportunity to 

practice in front of Grade 6 pupils who were pretending to be very cooperative Grade 3 

pupils. After the two practices, participating pupils further selected two students, a ‘teacher’ 

and an ‘assistant’, to lead a lesson in the Grade 3 classroom.  
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In contrast, at UQAM the course instructor provided the learning/teaching situation, and the 

pre-service students were unaware of the role they would play until it was time for their 

presentation. Students therefore had to plan for both the teacher and the student roles. 

After viewing a few video clips of the Grade 6 students, we discussed possibilities that such 

role-play could have for our own pre-service teachers. Many participants saw a resonance 

between the lesson delivery of pupils and that of their university students in peer lessons and 

in practicum. “The use of role-plays gives pre-service teachers a way into the ‘act’ of teaching 

rather than just ‘talking’ about teaching.” Il a également été intéressant de constater que la 

vidéo a permis de faire ressortir, chez les élèves, des conceptions que Lajoie (2010) a pu 

observer chez ses futurs enseignants. Par exemple, tout comme pour les futurs enseignants, 

lorsqu’un élève commet une erreur, l’élève-enseignant le lui dit « rapidement et clairement » 

(p. 109). Aussi, pour les élèves, tout comme pour les futurs enseignants, « enseigner, c’est 

expliquer » (p. 109). 

 

Figure 5 

TROISIÈME JOURNÉE 

La question directrice de la troisième journée était: Can our tasks convince our students that 

they can teach mathematics so that every student succeeds, and feels good about math (even if 

they themselves weren’t taught that way)? Les tâches choisies pour cette dernière journée 

étaient Penny-Flowers et “Which is larger?” 

PREMIÈRE TÂCHE: PENNY-FLOWERS (FLEURS DE SOUS) 

Penny-Flowers is a collection of tasks designed to fill the void after pre-service teachers are 

told, when teaching multiplication facts, not just to teach for fluent recall, and what not to use 

(mad-minute speed drills, flash cards). The name came from grade three kids who took 

delight in the idea that it takes exactly six pennies to surround one penny, and happily 

converted all the pennies on a table at a counting station into penny-flowers. Our group’s 

engagement with this task began with a bag of pennies for each pair of people. For example, 

23 pennies made three penny-flowers, with two left over (suggested names for the left-over 

pennies included ‘petals’, ‘seeds’, and ‘remainder’). The task sponsored conversation about 

the value of hands-on counting experiences as a foundation for multiplication facts and the 

multiplication concept – that students should be able to visualize 7 × 3 in various ways before 

they are expected to quickly state the answer. One participant worded that idea this way: “The 

difference between the concept and the representation of the concept was also interesting to 

me. How can we get pre-service students to think or talk about it?” On a second level, the 
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conversation engaged with what it means to offer pre-service teachers task-space they had not 

experienced as students themselves. As one participant wrote, “Problem – we have tasks that 

we’d like them to use – but we can’t tell them to use them (unless we want them to tell their 

students to do math)! What tasks do we have that are like these tasks?” 

Should our pre-service students be invited to be conduits for tasks designed by others – 

exercising their professional judgment in the selection of tasks to use, and the adaptation of 

the tasks to the needs of their classroom – or should they be creators of tasks themselves? To 

discuss whether we could expect teachers to develop extensions of the tasks that we provide, 

we shared a possible follow-up task.  In Les jardins de fleurs de sous, each person was given a 

unique number of pennies – 47 perhaps, or 16 – and invited to make a penny-flower garden, 

on hexagons cut from coloured paper. First with pennies, and then by drawings supplemented 

with numbers and words, each of us made our own penny-flower garden. We were then 

invited to find our ‘penny-flower garden brother or sister’ (a person with the same number of 

left-over petals as we had), or our ‘ami(e) de fleurs de sous’ (a person with whom we could 

combine our gardens, and make one more penny-flower exactly from our extra petals). 

Imagine having a garden of 23 pennies: Which person, the one with 47 or the one with 16, 

would be your ‘penny-flower sister’ or ‘penny-flower friend’? Our conversation about this 

task included some attention to the idea of mathematics tasks needing to be socially engaging 

and personally rewarding, but still focusing on the multiple representations of quantities and 

operations on quantities.  “The task is not just something to explore, to experience. There is 

the inner purpose to find and appreciate the math.” 

  

Figure 6.  Jardins de fleurs de sous. Figure 7.  Jardin d’amis de fleurs de 
sous (26 et 16). 

DEUXIÈME TÂCHE: WHICH IS LARGER, 2 / 0.355 OR 0.355 / 2? 

Our final task of the day began with the question in the title, a question that you might answer 

with arithmetic, perhaps with a calculator, or with general mathematical thinking. Our 

colleagues in the working group had no difficulty thinking either arithmetically, with 

estimation or calculation; or thinking with algebraic generalization: which is more, a big 

divided by a small, or a small divided by a big? Some people even formulated a simpler 

question with the same answer: which is more, 8 cookies shared by 2 people, or 2 cookies 

shared by 8? We teach division with decimals in grades 6 and 7. But what tasks could teach 

people to think about division with decimals – other than money? 

Ralph pulled out one can of Coca-Cola and some glasses to demonstrate one possibility. He 

split the can, which held 355 ml or 0.355 litre of frothy pop, between two glasses. There it 

was, in one glass: 0.355 ÷ 2. He then pulled out an empty 2-litre Coke bottle, and, marking 
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how high up on a glass the contents of the can had gone, proceeded to ‘pour’ imaginary pop 

into glasses: 0.355, and another 0.355, and another, and we were more than halfway done. 

The answer was clearly going to be something between 5 and 6 glasses.  

We talked about how to compare the answers. One was in millilitres. The other was a number 

of glasses. We noticed that we were appreciating division itself as an operation more richly, 

having experienced it visually. In effect, the math question, which is more, was just an 

invitation to think about what we want to accomplish when we teach our students to teach 

arithmetic to their students. But this was just one little task, and it made us want more. One 

participant suggested that generating tasks might be a task for us to share: “How can we work 

together to build a bank of tasks/videos for use in our elementary math methods courses?” 

DISCUSSION 

It was never our intention to arrive at a shared answer: such an ambition would have been a 

denial of our working group’s greatest asset – the individuality of each of our colleagues. We 

intended to put our ideas beside the ideas of our colleagues, and see each idea differently in 

the light of the company it kept. It’s a different sense of task completion, more clearly 

appropriate for a CMESG working group’s task than the tasks we offer to future mathematics 

teachers – and that’s something else to think about! But for now, we offer a collection of the 

ideas that emerged from our group on the last day, grouped for easier access by each day’s 

guiding question. We invite you to consider these ideas, and put your own ideas among them. 

There’s always room for one more. 

DAY 1:  When we select our tasks, we portray to our students what we think math is, what we 

think math is for. So – what do we want our tasks to suggest for them, about the nature and 

purposes of mathematics? 

 The task is not just something to explore, to experience, there is the inner purpose to 

find and appreciate the math. 

 The language we use to describe tasks is important. 

 How can we design / prepare tasks in such a way that our students can switch 

quickly between representations and contexts? 

 The goal wasn’t to have math tasks but to experience tasks that might preserve a 

tone. 

 Tasks need to be based on a question that intrigues the students (not necessarily 

you). 

 Tasks need richness: many possibilities (known and unknown) for branching off. 

 Within a task, students can create multiple access points to mathematical knowledge. 

 With great tasks, you are communicating your thinking in a way to foster reflecting, 

connection-making, solution vs. answer, and different mediums for doing math. 

Math is thinking, talking, discussing.   Math makes sense. 

 Math is a way to see the world.   Attribuer un sens. 

Real struggle and success.  No learning without struggle.  Perseverance. 

Looking back and forward through and beyond subject matter. 

Math ≠ solution (not always). 
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DAY 2:  Do we want to prepare our students to use tasks as designed by others, or do we want 

to prepare our students to adapt tasks designed by others, or do we want to prepare our 

students to design tasks like those designed by others? 

 I want more tasks like that [Fukushima Math], that let teachers share the 

interconnectedness of math, that tasks can “cover” multiple elements of a 

curriculum. 

 What do we want to spend these 36 hours on?  

o Big ideas? 

o Let them know they need to go beyond what they experience from me. 

o Il y a autres choses à faire. 

 Reflection is crucial – on how what we do affects our students and how we can 

improve our tasks for having more meaning for our students. 

 The goal wasn’t to have math tasks but to experience tasks that might preserve a 

tone. 

 Reflecting on my favorite task: it’s quick and I know my elementary students can 

learn a specific thing and recognize that tasks exist that do so. But there are not 

enough tasks like that, yet, and not enough time. 

 [I realize I don’t think the way my students do. I have been] struggling for 3 days to 

avoid putting expressions algébriques à chaque chose que j’écris. 

Tasks should emerge from students’ context or info or data. 

Within a task, student should have opportunities to build connections. 

Our students should be able to make each task their own – and be able to 

complete them and learn from them. 

Curiosity inspires question posing. 

DAY 3: Can our tasks convince our students that they can teach mathematics so that every 

student succeeds, and feels good about math (even if they themselves weren’t taught that 

way)? 

 [Teaching means] focusing not on the tasks but on the purposes of the task.  

o Where’s the math? 

o Where’s the pedagogy? 

 What we do affects our students. [Through reflection] we can improve our tasks for 

having more meaning for our students. 

 I want what we do to be fractal – what we do the pre-service teachers can do with 

their students. 

 How can we design / prepare tasks in such a way that our students can switch 

quickly between representations and contexts? 

 [Our students must be led to] have a range of contexts available. [They must] 

analyze a task in a way that it’s not seen as a recipe but as an opportunity. 

 To put the future teachers in the shoes of the learners, to feel what the students 

might from their lessons 

 Shifting the power differential, creating tasks that let the doers feel the power of the 

math is theirs. 

 A great task should lead to observable learning for both them and their future 

students. 

Reflecting on the tasks,  

 The math and all that 

  Questioning our presumptions 

   Reflecting on experiencing of doing specific tasks. 
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HOW TO PREPARE A PUBLIC TALK? 

Yvan Saint-Aubin 

Département de mathématiques et de statistique 

Université de Montréal 

You are invited to address a group of people on a mathematical topic of your choice. 

These people have come to listen to you willingly, but they do not necessarily share a 

common pool of mathematical knowledge. Your lecture should last about an hour. 

There will be no exam or grading involved. How do you orchestrate this talk? 

INTRODUCTION 

With the explosion of scientific research in the 20
th

 century, it is rare that laymen know about 

recent progress in academic disciplines. Even university professors do not follow advances in 

disciplines other than their own. Would a professional mathematician be able to describe the 

key developments in genomics or to comment on the promising avenues in battery research? 

Over the last centuries, learned societies have felt responsibility to maintain public awareness 

of their field. In Canada, the Royal Canadian Institute in Toronto has held public lectures for 

more than a century. Their lectures touch upon all sciences and mathematics. But, to my 

knowledge, it is only recently that Canadian mathematical institutes have launched series 

devoted to mathematics: both the Centre de recherches mathématiques (CRM), in Québec, 

and the Fields Institute, in Ontario, now have their own public lecture series. Even though 

public lectures on mathematics have existed for a long time, they remain rare and not many 

mathematicians or mathematics educators have had the opportunity to explore this way of 

communicating mathematics. 

The advantages of mathematical lecture series are numerous. They present mathematics as a 

living discipline, very much in development, and share the intellectual adventure of research 

with the public. By the range of problems covered, pure to concrete, they can show students 

and their parents that scientific activity may translate into career opportunities. They may also 

show that mathematics and science are useful to attack complex issues, but they do not 

necessarily provide definitive and clear cut answers. Public lectures are therefore a fruitful 

addition to “teaching mathematics” in its broadest sense, one that has an impact on citizens, 

governments and, of course, scientists. 

The question raised above, “How would you orchestrate this talk?”, is one facing professional 

mathematicians invited to give public lectures. But the question touches a much wider 

audience than this limited group. It is a question that has been faced by any person teaching 

mathematics at any level! Students in science and math teachers from high-school to 

university are asked on a regular basis to explain the purpose of their work. Their success 
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might have an impact as diverse as fostering interest in science among teenagers or stopping 

the erosion of time devoted to mathematical activities in curricula. 

I believe that the foremost challenge in designing a public talk is to properly assess the 

knowledge and interests of the future audience. This seems an easy enough task but the 

pitfalls are very real. Most of the other difficulties facing the future lecturer lie in her or his 

teaching habits. Mathematicians are almost always professors: they are able to teach good 

courses, they know how to cover the required material, they use the best practices in the 

classroom and their exams are fair. Or let us assume that they do have these abilities. How can 

these be put to work in preparing a public talk? A lecture for the larger public is not a course, 

there is no ‘material’ per se, blackboard talk is surely not the best way to engage a one-time 

audience and there will not be any exam. The next section will suggest ways to better meet 

these challenges. 

Due to the abundance of public-talk series, sets of slides created for such lectures are now 

available on the internet, some by distinguished mathematicians. Public talks are very much a 

performing art. And you would not judge a concert by looking at the score. With this 

limitation in mind, the last section will (prudently) examine how the difficulties of preparing a 

public talk have been tackled by some courageous communicators. The three talks that I will 

discuss are related to the International Congress of Mathematicians 2010 held in Hyderabad, 

India: the first two were public talks given by Bill Barton and Günther Ziegler during the ICM 

2010, and the third was given as part of the series Grandes Conférences du CRM in Montréal 

by Cédric Villani, one of the four young scientists who received a Fields Medal at the ICM 

2010. 

WHO ARE THEY? WHAT DO THEY KNOW? WHY ARE THEY THERE? 

The first question that comes to a teacher’s mind upon first contact with new students is about 

who they are. This is such a natural and obvious question that often it is raised and answered 

unconsciously. This is so because, with some experience, one knows the level of students in 

one’s school. The real danger in preparing a public talk is not to raise this question about the 

public one is about to meet. 

Who are they? This question is clearly the first to ask, but it is not an easy one. Some 

knowledge can usually be gathered from the organizers of the event where the public talk is 

scheduled. A professor might be invited to talk to high school students or at a science fair. In 

this case, the public is homogeneous and its common knowledge can be well circumscribed. 

Moreover one can assume that a quick reminder might be enough to bring back a concept 

seen in previous months. This almost ideal situation was faced by Bill Barton and Günther 

Ziegler at the ICM 2010 where the audience brought together thousands of (high-school) 

students and teachers from the state of Andhra Pradesh in India (Casselman, 2010). Of course, 

the attendees of the congress (professional mathematicians) were probably invited, but it is 

clear that Barton and Ziegler prepared for their talks with these students in mind. A less ideal 

situation is that of smaller professional meetings. The organizers of such events will be 

hoping that the public lecture reaches both the participants and their spouses and families. The 

lecturer is then faced with the challenge to entertain a very small portion of the audience, the 

spouses and families, while not boring his or her colleagues who will constitute the majority 

of the audience. 

It is clear that most successful public lecturers consider assessing the public as a crucial step 

in their preparation. Barton’s candid telling of his second experience in India is informative: 
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I was asked to give a second public lecture at rather short notice (three days), and, 

because it was to teachers, agreed. This was also a different experience. In the hour-

long taxi ride through the chaotic streets of Hyderabad I chatted to my escort and 

became aware that I was not talking to secondary teachers, but to undergraduate 

college lecturers. Fortunately the trip was long, as I spent most of it adapting my 

PowerPoint. (Casselman, 2010, p. 1276) 

Even though the two groups, high-school teachers and undergraduate college lecturers, were 

not that different, the talk needed adjustments, at least in Barton’s mind. 

What do they know? Suppose that the audience is known and, if it is heterogeneous, that the 

lecturer has chosen to address mainly a given subgroup of it. The second step is clearly 

delimiting the mathematical ground upon which the lecture can be based. Again, a young 

homogeneous group, like primary or high-school students, is by far the easiest. The lecturer 

will be able to consult colleagues who teach them to check what has been learned and 

mastered. Of course, the difficulty will remain to build only upon this knowledge, but this is a 

manageable task, especially if one accepts limiting the scope of one’s talk.  

A more challenging situation is that of a public that has not visited a classroom for many 

years. In public lecture series, like the Grandes Conférences du CRM, the public is 

heterogeneous and includes pre-university and undergraduate students, but is also a public 

whose mathematical knowledge is difficult to circumscribe. Many in this audience will have a 

university degree, but not necessarily in mathematics or in science, and many might not be 

using science in their career. But they are interested in the scientific adventure! So, what do 

they know? Or, more precisely, what do they remember? A thought experiment is revealing. 

Suppose that you have not done any Euclidean geometry for the last ten years. Which of the 

following concepts and theorems would you remember: isosceles triangles, ellipses, 

Pythagorean Theorem, triangle medians and their meeting at one point? As an active 

practitioner in teaching and doing mathematics, you might think that nobody can ever forget 

these elementary facts! So, let us try instead questions at the same level but in a close 

discipline: What is a Faraday cage? What physical quantity has the ampere as its unit? What 

is a conservative potential? What is the speed of light? I will let you imagine questions in 

chemistry, history, geography. But this experiment suggests that such a public is likely to 

remember only the basics of its high-school mathematics. 

Why are they there? And what do they expect? The public of talks organized at the pre-

university level do not usually attend willingly. They are there because it is part of some 

compulsory activities. If a young student is scientifically inclined, she or he might not know 

what to expect, but some enthusiasm and curiosity can be taken for granted. Similarly among 

the public of lecture series, a curiosity in scientific endeavours is always present. The lecturer 

will have to create one or more magic mathematical moments during the talk, moments where 

a mathematical question is explained (and maybe solved) in a satisfying and elegant way. This 

is at the heart of the mathematical experience. But this might not be enough! Students and the 

public in general are likely to have been exposed to science-fiction (books, TV series or 

movies) and scientific popularization series. These productions have means and work teams 

well beyond those of a lone mathematician. Besides choosing an interesting subject matter, a 

lecturer will have to use all the basic techniques of oral exposition: setting the mathematical 

question in a concrete context, tying it to historical and human developments, providing 

metaphors to explain difficult details, etc., doing all these while being entertaining, humorous, 

and lively. 

Obvious questions, difficult answers. The success of a public lecturer relies on her or his 

ability to keep these answers in mind during all preparation steps! 
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THREE EXAMPLES 

I will now comment briefly on the three public talks listed in the introduction. Of the three, I 

only attended Villani’s, but the slides of Barton and Ziegler reveal the efforts put into 

designing these talks. Each of the three extracts provides an example of a clear (and probably 

successful) attempt to communicate a mathematical fact within the public’s mathematical 

grasp. 

PROOFS FROM ‘THE BOOK’ 

[A public talk by Günther M. Ziegler (Freie Universität Berlin) in Hyderabad (2010)] 

Proofs are at the heart of mathematics and it seems natural to make an effort to describe to the 

public what they are and what they achieve. In fact, Ziegler wrote a book with Martin Aigner 

(Aigner & Ziegler, 2003) about some proofs that are so clear, direct and insightful, that they 

seem to have been written by God’s hand. His book and lecture share the same title. We have 

seen that the public in Hyderabad comprised a large number of high-school students, brought 

in by the bus load (see again Casselman, 2010). It is clear that this fact is in Ziegler’s mind. 

The first few slides of his presentation are devoted to explaining the role of proofs in 

mathematics and for the mathematical community. This is done by formulating some simple 

questions that are very difficult to prove and also reproducing some quotes from famous 

mathematicians about proofs. Some are deep, others simply witty. Then Ziegler introduces 

‘THE BOOK’, the one containing the ‘definitive’ proofs, and then he gives an example. It is 

his first real mathematical moment and it is likely to have been magical for many of the high-

school students. Here it is. 

A slide appears, totally blank but for one sentence and one drawing. The sentence is: 

“Theorem: The ‘chessboard without corners’ cannot be covered by dominos.” And the 

drawing is the one on the left below (see Figure 1). 

 

Figure 1 

One can guess that Ziegler explains the statement that, even though it is possible to cover a 

whole chessboard with dominoes, each covering two neighbouring boxes, once two opposite 

corners of the chessboard are deleted, this task of filling the new chessboard by dominoes 

becomes impossible. A student who has not encountered this problem before might feel the 

urge to play with dominoes to see why this is impossible. 

But a very simple argument proves the theorem, without any such attempt! It is given in 

Ziegler’s next slide that contains only the drawing on the right above (see Figure 1) where the 

usual pattern of alternating black and white boxes has been added. There, in this single 

drawing, one is reminded that dominoes will always cover precisely one black and one white 

box, wherever they are placed. But one can also see at once that the removal of opposite 
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corners of the chessboard has deleted two boxes of the same colour. In this case, the number 

of black boxes is now two less than the number of white ones and it is therefore impossible to 

accomplish the covering by dominoes. 

The argument, by its simplicity and elegance, can be understood by most people and creates 

one of these magical mathematical moments in the mind of any scientifically inclined person. 

It is beautiful and, being placed at the beginning of the talk, captures all listeners in the 

experience. And it certainly belongs to ‘THE BOOK’! 

WHERE IS MATHEMATICS TAKING ME? AN EXCITING RIDE INTO THE FUTURE 

[A public talk by Bill Barton (The University of Auckland) in Hyderabad (2010)] 

Barton’s talks present applications to problems of everyday life or sister disciplines. By doing 

so, his goal is clearly to show that mathematics can take scientists, and of course young 

students, on an exciting ride into the future. His talk presents many active domains of 

research: the probability of a celestial body falling on earth, the dynamics of the ice shelf 

break-up, the modeling of calcium in the human heart, the scheduling of air- and bus-lines, 

the swimming of knife fish that live in muddy water, the original algorithm of the Google 

search-engine, the modeling of the spotted owl, and the use of knot theory in molecular 

biology. In total, eight very different applications of mathematics are introduced and 

discussed. Of course, this number precludes going into much detail in any of these fields. But 

young high-schoolers might have been surprised to learn that their mathematics classes might 

lead them to such concrete tasks! 

The original algorithm used by Google to order the webpages obtained from a search can 

certainly be explained, at least intuitively, to the public. It also lends itself to a more 

mathematical presentation that would be accessible to students entering a university program 

(see Rousseau & Saint-Aubin, 2008). Prior to any search, Google assigns a rank to each page 

in the World Wide Web, the PageRank (‘Page’ for Larry Page, one of the creators of the 

algorithm). Once a user sends a search, all the pages that contains the words requested will be 

presented to the user in order of decreasing rank. To obtain the rank of each page, Google 

studies the links between the pages in the web. Barton uses a simple example where the 

trillions of pages of the World Wide Web are replaced by only five (see Figure 2). 

 

Figure 2 

In this drawing the arrows represent links between the pages. For example, page C points to 

A, B, E; this means that page C about, say, ‘growing lilies’, invites its visitors to have a look 

at ‘the proper care of lilies’ on page A, ‘the classification of hybrids’ on page B and even 

points to ‘a famous seller of lily seeds’ on page E. The information on page C is well-known 

by the specialists and both the authors of the classification (page B) and the owners of the lily 

store also point to page C. One may wonder which of the five pages are the most popular. Of 

course popularity is a very subjective matter. A mathematical measure of this popularity 

needs to be defined. Google’s creators thought that the popularity of a given page should not 
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depend on what its author thinks of it, but instead it should be measured by how other people 

rank this page. And the only information about this is how people link to the desired page. 

Therefore the Google algorithm measures the popularity using the arrows between the five 

pages in the drawing above or, in real life, between the trillions of pages in the World Wide 

Web. 

A presentation of this algorithm, more detailed than the lines above, is definitely accessible to 

a wide public. It shows the power of abstraction (replacing the web by an oriented graph as in 

the above diagram) and that mathematical reasoning might lurk behind the most prosaic 

action of everyday life, like doing a computer search. The fact that the algorithm creators are 

now billionaires might also strike impressionable minds.... 

QUAND LA TERRE ÉTAIT TROP JEUNE POUR DARWIN 

[A public talk by Cédric Villani (Université de Lyon et Institut Henri Poincaré) in Montréal 

(2010)] 

Villani’s talk, at the Grandes Conférences du CRM series, was well-attended. He had received 

one of the 2010 Fields Medals only weeks before and any person in Montreal with some 

mathematical curiosity was present. Of course many were university students in mathematics, 

but many others were older, and they were certainly not all in a math program! Villani had 

been invited to talk to the public and, fortunately, he did not change the level he had prepared 

for, despite the presence of many mathematics students. 

Villani’s aim was to present the historical debate around the age of the earth that took place at 

the end of the 19
th

 century. On one side stood biologists, of whom Darwin is the most famous, 

together with the geologists. The evolution of species, put forward by Darwin in 1859, needed 

millennia for the cooling of the planet so that life could appear, and then many more years for 

species to multiply and diversify to what they are today. Biologists and geologists agreed that 

the planet needed to be much older than 10
8
 years. On the other side stood Kelvin who, using 

new tools developed by the French mathematician Fourier, was able to get an estimate of the 

age of the planet that was of the order of 10
8
 years. The two estimates were seen to disagree 

and an intellectual battle ensued. 

Villani’s talk presented the mathematical argument in a convincing way. But what first comes 

to my memory, and this might be very personal, is the drama and the breath-taking account of 

the clash where Darwin and Kelvin appear as intellectual Titans. Villani recounted the history 

of the great minds attempting to measure the age of the earth, first using biblical sources 

(Ussher), then scientific arguments (de Buffon, Fourier, Kelvin, Rutherford and then Perry). 

Villani’s presentation remained elementary at each step. 

Kelvin’s computation rests on partial differential equations and Fourier analysis. These are 

surely not commonly mastered by the layman! Villani therefore spent some time recalling 

tools that intervene here: the trigonometric functions and the derivative of a function. The 

graphics he used, as seen below (see Figure 3), are likely to trigger a photographic response in 

the auditor’s memory as they are universally used in textbooks. Never did he write down 

trigonometric identities or the definition of the derivative using the limit of (f(x + ∆x) – 

f(x))/∆x. Only the concepts were recalled. (It is heartwarming to see a Fields Medalist 

patiently explaining the concept of derivative to a few hundred willing citizens...). 
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Figure 3 

Clearly Villani chose to use graphical representations to convey mathematical ideas. There 

were several equations in his slides, but he explained only one, the equation describing the 

propagation of heat, and spent quite a bit of time doing so. His talk thus contained a single 

major mathematical idea; this idea was brought up with graphics and physical intuition, and 

was well explained. By limiting himself to a single equation, Villani was able to provide more 

mathematical details than on any good television programs of science popularization and he 

still had time to present the context of the mathematical breakthrough. Probably this was the 

optimal balance between historical developments, psychological analysis of the main 

characters, and mathematical arguments. 

CONCLUSION 

The mathematical levels of the three talks discussed in the previous section are different. At 

one extreme of the spectrum, we find Ziegler’s which uses several equations to state the 

problems whose proofs are in ‘THE BOOK’. He therefore takes for granted that some of his 

public can read and understand these formulae. His assumption might be valid for a fair 

portion of the public at the International Congress of Mathematicians. At the other extreme, 

Villani concentrates his argument on a single formula to which he devotes a considerable 

amount of time. The organizers of the series had described the public of the series to him and 

he aimed his talk to them. All three lecturers made a conscious effort to talk to what they felt 

was their public. 

Villani also teaches us one more thing. A public talk does not need to be a marathon of 

mathematical results. His lecture is definitely exciting on the mathematical level (even if only 

a single equation is discussed in detail). But it is also interesting on another level: it exposes 

clearly that mathematicians belong to the intellectual community in its widest sense and, as 

such, their results might help understand other fields or, as in his talk, conflict with them. 

Mathematics, like other intellectual endeavours, develops in contact with other fields and, in 

return, nourishes them. It is a nice idea to send the public home with. 

We are likely to hear more in coming years about pedagogical practices of public talks. These 

talks offer a scene totally different than that of the classroom. Despite these differences, I 

hope that they might help us reflect on our daily teaching practices. 
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WARM HANDS TAKING COLD MATHEMATICS 

David Wagner 

University of New Brunswick 

This written version of my presentation at the 2011 conference of the Canadian Mathematics 

Education Study Group focuses on humans doing mathematics, and is oriented around 

temperature metaphors often associated with humanity and mathematics. We humans are 

described as warm when we are seen to care for people (and for animals and the 

environment). We are seen to be cold when we make decisions without care. Mathematics is 

taken as cold because it is taken as abstract and disinterested about context. 

I begin with an overview of the context, embedded in my worldview. From there I consider 

the conceptions of mathematics that position it as cold, and arguments against such 

conceptions of mathematics. From there I turn to mathematics classrooms, asking how 

students’ experiences of mathematics could be different. 

I recognize that my presentation on this topic is oriented around my worldview, so I describe 

that first to help readers identify any differences between our worldviews. Skovsmose’s 

(1994) claim is helpful – that one’s background and foreground are important contextual 

factors. Background refers to the culture and experiences one brings to a situation, and 

foreground refers to one’s hopes and expectations for the future. I summarize my work as 

being oriented around developing mathematics education that supports my more fundamental 

hopes, which include a desire for respectful and peaceful human relationships in classrooms 

and elsewhere. I wish for myself and others to value and learn from diversity, to respond to 

tensions without violence, and to pursue lifestyles that are sustainable. Through my work in 

mathematics education, I have come to believe that mathematics teaching that aims for these 

things also supports the development of mathematical skill and understanding. 

People with differing worldviews may arrive at conclusions similar to mine. Imre Lakatos, 

renowned philosopher of mathematics, was a young adult in Hungary during and shortly after 

World War II. He hid from the Nazis, taught Marxism in the underground movement, helped 

communism establish power and eventually fled the regime he helped establish. He knew 

authoritarianism intimately. As described by Long (2002), in his efforts to combat 

authoritarianism, Lakatos was known to use violence to pursue his ends. By contrast, I have 

enjoyed relatively peaceful political and social situations in a stable, relatively wealthy 

country, growing up in a Mennonite tradition known for rejecting the idea that wars and 

violence can be legitimate: there is no context that can justify killing.  My relatively sheltered 

life makes it easier to speak against violence as a means to a better end, but my recent 

ancestors carried this stance against violence through circumstances likely more challenging 

than Lakatos’.  
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Despite the differences in background and foregrounds, I have found that Lakatos’ (1976) 

reflection on mathematics education is similar to mine. He wrote, “It has not yet been 

sufficiently realized that present mathematical and scientific education is a hotbed of 

authoritarianism and is the worst enemy of independent and critical thought” (pp. 142-143). 

Like Lakatos, I have come to the conclusion that mathematics is implicated in the 

development of authoritarian regimes, which can operate on a large scale, such as a 

dictatorship, or in subtle ways within a democratic environment.  

Two questions underpin much of what I do. What is the role of mathematics in violence? How 

can mathematicians and mathematics educators work for peace and against violence? If I were 

asked to make a choice between developing good mathematicians or good citizens who 

respect and care for one another, there would be no question. I value non-violence over 

mathematics. However, I believe that mathematicians and mathematics educators can work 

for peace and against violence, just as we can support violent worldviews in our work. 

MATHEMATICS 

Mathematics is powerful. It enables us to model and thus visualize phenomena that physical 

tools cannot access. It enables our imagination to explore spaces that conventional wisdom 

scorns as unreal, impossible or insignificant. It facilitates the management and arrangement of 

data that exceeds human ability to sense. Because of its power, mathematics can be used both 

to expose social injustices and to support resolutions of these injustices. Likewise the power 

of mathematics can underpin and sustain violence. Even mathematics that seems at first to 

work with imaginary spaces often proves relevant to real applications, which may be 

wonderful or terrible. 

Imagery to represent mathematics often characterizes it as cold. Perhaps this imagery relates 

to the abstraction and generalization that is central to mathematics – the de-contextualisation, 

de-personalisation, and de-temporalisation (Balacheff, 1988). With this abstraction we 

humans can use mathematics to make decisions insulated from the pain or pleasure that may 

be connected to our choices. This is an important technology in democracies, in which 

decisions are supposed to be free from human bias (Porter, 1995). This is true for large social 

decisions and for local decisions. For example, when we add sums of money, the result should 

be dependable. The result should not depend on the culture or position of the person doing the 

adding. Mathematics is supposed to be dependable and non-discriminatory. The stability of 

mathematics and its disregard for context is a source of protection for people in particular 

contexts. We can use mathematics to reason with others and to convince them of a more fair 

way of doing things. But we can also use mathematics to ignore the pain and suffering related 

to certain decisions. For example, when doing cost benefit analyses, governments often create 

or sustain conditions that cause certain people to suffer. The cold mathematics may be seen to 

justify the decision while the effects are hidden. Nevertheless, the benefactors of such 

decisions may see the mathematics as a tool for security and fairness, just as vendors and 

customers at a market may see the dependable and stable approaches to measurement and 

counting as a tool for fairness. 

The Chandler Davis poem “Cold Comfort” exposes the irony that there can be security in a 

cold, heartless mathematics. With an interest in using mathematics to understand his world, he 

identified the sense of security that mathematics can support, yet he struggled with his 

realization as a mathematician that this image of mathematics is flawed. His opening lines 

describe his refuge in mathematics in an unpredictable world (Davis, Senechal, & Zwicky, 

2008, p. 52): 
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If I took alarm at the prospect  

of things spinning out of control 

(and I might 

for they are 

oh, I well might) 

this refuge would tempt me. 

Tobias Dantzig (1930/2005), in his history of number, similarly plays against the common 

imagery of mathematics being cold. He argued against the imagery. 

For here, it seems, is a structure that was erected without a scaffold: it simply rose 

in its frozen majesty, layer by layer! Its architecture is faultless because it is founded 

on pure reason, and its walls are impregnable because they were reared without 

blunder, error or even hesitancy, for here human intuition had no part! In short the 

structure of mathematics appears to the layman as erected not by the erring mind of 

man but by the infallible spirit of God. The history of mathematics reveals the 

fallacy of such a notion. (p. 188) 

Dantzig identified the humanity in our mathematics by placing its development in cultural 

contexts. The recognition of the cultural contexts of the development and uses of mathematics 

may seem to be at odds with the abstract nature of mathematics, with its characteristic move 

to establish truths that are neither contingent on the person nor on the person’s historical, 

geographical, cultural or disciplinary place. However, abstraction is a human action, 

performed for particular reasons that relate to the person’s current place in their world. 

Similarly, applications of mathematical abstraction (applied mathematics) are human moves 

to bring context-independent knowledge into contexts. Generalization and abstraction are 

features of mathematical thinking that have their place in thoughtful human problem solving.  

There is value in asking what is always true regardless of context, but there is also value in 

asking how results drawn from such generalization and abstraction can be applied or not 

applied to any given human problem. Nevertheless, the acts of abstraction and generalization 

are the results of human choices motivated by values and hopes, even though the final 

expressions of such abstraction and generalization are represented as free from context. I 

suggest that many uses of mathematics are in fact motivated by the desire to appear objective, 

not biased by particular cultures. 

For this reason, the ethnomathematics program is important; it recognizes an aspect of 

mathematics that is often hidden. Much ethnomathematics research is focused on identifying 

mathematics that is not reflected in mainstream academic traditions. However, it is important 

to note that ethnomathematicians claim that all mathematical ideas arise from humans 

addressing their issues or problems in particular cultural milieu. It is not only non-academic 

mathematics that is cultural. We might enjoy experiencing cultures with travel, but we should 

not forget that our home context is also a culture, equally strange to others. When we live in a 

dominant culture it is easy to forget that. Similarly, academic mathematics traditions are so 

dominant that it may be easy to overlook the fact that they are culturally situated. 

Though characteristics of mathematics inspire the imagery that depicts it as a cold, hard 

discipline, I aim to promote representations of the human choices that are part of 

mathematics. The human choices that are indeed part of any mathematics ought to be 

recognized in mathematics classrooms and in society at large. Yes, mathematics may be cold, 

but it is a cold tool (or set of tools) designed and used by warm human hands. Perhaps the 

humans involved may have ‘warm hearts’ with concern for the needs of others, but whether or 
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not this is the case, the hands are warm; mathematics is embedded in living, warm-blooded 

human bodies (including human minds), which live in particular environments (including 

cultural and physical aspects of these environments).  

One reason for promoting the recognition of the warm hands at work in creating and using 

mathematics is because it is recognizing the truth that humans are at work in and with 

mathematics. However, I am suspicious of most claims of truth because so often such claims 

are eventually revealed to be expressions of power – the assertions of dominant people and 

dominant cultures. Thus, I am more interested in the effects of recognizing humans at work in 

mathematics, and how these effects relate to my views on social justice. 

I claim here that it is dangerous for the people in a society to see mathematics as cold and 

abstract when the people do not recognize the human hands at work in and with the 

mathematics. Mathematicians, educators and other users of mathematics who suggest that 

mathematics is values-free or independent of culture tacitly render rhetoric that uses 

mathematics as being above reproach. It is possible to make this suggestion explicitly – to 

argue that one’s claim is above question – but I believe that the message is even more 

powerful when it is subtle, when the human choices that are part of mathematics are obscured. 

If I make a claim explicitly, I invite debate; if I say “mathematics is above critique” I tacitly 

raise the question “Is it in fact above critique?” But when we all talk about mathematics as if 

it is sure, secure, predictable and free from human particularities, others are unlikely to think 

about the alternative, namely that mathematicians regularly challenge each other and regularly 

develop new ideas that seem to break the old rules, and that people use mathematics for their 

particular agendas. 

Why is it dangerous to develop the sense that mathematics is above critique? If it is taken as 

above critique it can be a powerful tool for manipulating people. Leaders of social change in 

politics, critics of politics, advertisers, social justice advocates and any others who want to 

convince people of something can and do use mathematical tools to press their points. Often, 

such rhetoric is used to justify decisions with extreme effects on the lives of many people. But 

the public is ill-equipped to recognize that mathematics is being abused because of the 

perception that it cannot be abused. If mathematics appears secure and perfect, claims resting 

on mathematics are beyond critique. Present mathematics education practices repress critique 

by giving students experiences with mathematics that have them making few decisions and 

developing skills outside the context of human problems. I believe this is why Lakatos, as 

quoted above, concluded that mathematics education practices undermined free thought and 

supported authoritarianism. 

MATHEMATICS CLASSROOM INTERACTION 

How then can we lead people to see the humans at work in and with mathematics? I will 

suggest two ways to do this in classrooms. The view of mathematics shaped in classrooms 

will in turn shape society because people carry their views of mathematics from the classroom 

into the rest of their experiences. We can draw attention to the cultural contexts of 

mathematics and we can get students doing the kind of mathematics that has them making 

decisions and discussing each other’s choices. 

The ethnomathematical program, mentioned above, is one way of drawing attention to the 

cultural contexts of mathematics. We can tell students about ethnomathematical work; we can 

show them how mathematics is done differently in different cultures. I suggest that our 

accounts of ethnomathematics will be more meaningful to students if we have them doing 

ethnomathematics themselves. Teachers in the Mi’kmaw schools on Cape Breton Island have 
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been doing this for four consecutive years with the “Show Me Your Math” event. Lisa 

Lunney Borden and I have given an account of this annual event in a brief article in CMS 

Notes (Lunney Borden & Wagner, 2011), and more elaborate accounts in some forthcoming 

book chapters (including Wagner & Lunney Borden, 2012). 

Another way of drawing attention to the cultural contexts of mathematics is to engage 

students in the history of mainstream mathematics. (I say ‘mainstream’ here because 

ethnomathematical work is the investigation of the history of mathematics, but is usually 

focused on the history and practice of mathematics that is not mainstream.) Students can be 

told stories from the history, and, like with ethnomathematics, they can be asked to investigate 

parts of the history themselves. I would suggest that even speculation about the motivations 

and rationales for particular mathematical ideas could be similarly powerful for drawing 

attention to the human problems addressed by mathematics, but I would caution that teachers 

make clear the distinction between speculation and evidence-based historical accounts. 

Perhaps such speculation could be followed up with investigation of the history.  

In addition to these ways of drawing attention to the cultural contexts of mathematics, I 

promote the importance of having students be active decision-makers in mathematics. My 

work with Beth Herbel-Eisenmann, in which we have analyzed mathematics classroom 

discourse (e.g. Herbel-Eisenmann & Wagner, 2010), has revealed the way classroom talk 

masks the recognition of people making choices in mathematics. The grammar used in class 

encodes this lack of choice. Alternatively, if mathematics teachers give students tasks that 

have them making choices and creating their own solution approaches, classroom discourse 

would change to embody the discussion of diverse points of view. Pure mathematics 

investigation tasks (e.g., Booth & Grant McLoughlin, 1995; Mason, 1982; Mason & Watson, 

1998; Morgan, 1998) and tasks that use mathematics to investigate local social issues (e.g., 

Frankenstein, 1989; Gutstein & Peterson, 2005; Stocker, 2006) would support this kind of 

discourse.  

If students could experience mathematics as doers and decision makers, and also come to 

know stories of people inventing mathematics ideas to respond to real problems in their 

cultural contexts (i.e. ethnomathematics and the history of mathematics), then they will be 

equipped to critique the mathematics they see in society. They will know that the mathematics 

might be done differently. In addition to being equipped for critique, I believe that this kind of 

experience of mathematics can help students appreciate diversity. They will have experiences 

of receiving insight from their peers and from the mathematics of different cultures. The 

appreciation of diversity is a fundamental characteristic of a vibrant, peaceful society. 
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OPPORTUNITIES TO LEARN IN AND THROUGH PROFESSIONAL 
DEVELOPMENT: AN ANALYSIS OF CURRICULUM MATERIALS 

Jenny Sealy Badee 

Seneca College 

Though professional development (PD) is seen as key to improving mathematics 

instruction, little is known in the research literature about what teachers learn in and 

through PD, nor about what those who conduct the PD might be learning as well. In 

my dissertation study, I address this knowledge gap by analysing a selection of 

commonly-used PD curriculum materials to ascertain the opportunities they provide 

for middle-school teachers to learn ideas central to improving their instructional 

practice. Additionally, I examine the extent to which the curriculum materials are 

designed to also support the learning of professional developers. This paper provides 

a brief overview of the dissertation study and its main findings. The full study can be 

found online at jenny.badee.net. 

INTRODUCTION 

It is a widely held belief that the professional development (PD) of teachers is paramount to 

improving mathematics instruction. However, in the United States, teachers have generally 

experienced a fragmented PD system with few opportunities for rich or sustained learning 

(Wilson & Berne, 1999). Such PD offerings seem inadequate to improve mathematics 

instruction and this inadequacy is a serious unsolved problem for policy, practice, and 

research in American education (Borko, 2004). Though millions of dollars have been invested 

in PD programs and there is a body of research on PD, “surprisingly little attention has been 

given to what teachers actually learn in professional development activities” (Garet, Porter, 

Desimone, Birman, & Yoon, 2001, p. 923). Since understanding teacher learning in PD 

requires attention to both the curriculum and the pedagogy employed (Ball & Cohen, 1999), 

this lack of attention to what teachers learn represents a problematic knowledge gap. 

My dissertation study addresses this gap in the research by analyzing a selection of commonly 

used PD curriculum materials. These curriculum materials were analyzed to ascertain the 

opportunities they provide to middle-school (MS) mathematics teachers to learn ideas central 

to improving their instructional practice. The study addresses the question: To what extent 

and in what ways do PD curriculum materials provide opportunities for MS teachers to learn 

about mathematical content and pedagogy? In particular, it focuses on teachers’ opportunities 

to learn about: (1) MS mathematical content, specifically the key topics of proportionality, 

rational numbers, and linear functions; (2) using multiple representations of mathematical 

ideas; and (3) using cognitively demanding mathematical tasks in instruction. Additionally, 

due to the importance of facilitation in PD, the scarcity of continued training opportunities for 



CMESG/GCEDM Proceedings 2011  New PhD Report 

120 

professional developers (Ball & Cohen, 1999), and the lack of attention in research to the 

learning of professional developers (Elliott et al., 2009), the study also attends to the learning 

opportunities provided to these individuals. The fourth research question explores the ways in 

which the curriculum materials are designed to provide professional developers with 

opportunities to learn how to support teacher learning – that is, the extent to which they 

appear to be educative. 

OPPORTUNITIES TO LEARN IN PROFESSIONAL DEVELOPMENT CURRICULUM 
MATERIALS 

In this study teacher learning is conceptualized as the development of teacher capacity 

(Grossman, McDonald, Hammerness, & Ronfeldt, 2008) to do the work of mathematics 

teaching. Teachers can develop this in PD settings by engaging in collective inquiry into 

mathematics instruction, and learning in and from practice by analyzing and reflecting upon 

the mathematics teaching of others and themselves. In PD curriculum materials, professional 

learning tasks (PLTs) provide a context for reflecting and learning about mathematics 

instruction. PLTs are “activities that are situated in and organized around components and 

artifacts of instructional practice that replicate or resemble the work of teaching” (Silver, 

2009, p. 245). In the study they serve as a unit of analysis within the curriculum materials and 

are conceived as having two main components: (1) a mathematical task and (2) a ‘link to 

practice’ component which portrays the ways students and/or teachers interact with the 

mathematics and each other in classrooms. The mathematical task provides teachers with 

opportunities to revisit the mathematics they teach and to learn more about the conceptual 

underpinnings of the topics addressed (Ferrini-Mundy, Burrill, & Schmidt, 2007). The ‘link to 

practice’ component, through the use of artifacts of practice, such as narrative cases or student 

work samples, links discussion to the work of mathematics teaching (Borko, 2004) and allows 

teachers to develop their knowledge of mathematics, pedagogy, and student learning 

simultaneously (Ponte et al., 2009). The PLTs in PD curriculum materials were analyzed to 

determine the opportunities they provide teachers to study, reflect upon, and learn to use 

particular mathematical topics and instructional practices.  

In the K-12 setting, curriculum materials that support both student learning and the learning of 

teachers are referred to as educative curriculum materials (Schneider & Krajcik, 2002). Some 

of the features of such materials are that they are designed to support teachers’ learning of 

subject matter, make transparent the authors’ pedagogical judgements, and develop teachers’ 

design capacity so they can adapt the materials to achieve specific instructional aims (Davis & 

Krajcik, 2005). In this study I have extended the concept of educative curriculum materials 

from the classroom into the PD space, defining educative PD curriculum materials as 

curriculum materials designed to support the learning of both teachers and professional 

developers in PD settings. Since curriculum materials can provide learning opportunities on a 

large scale (Schneider & Krajcik, 2002), educative PD curriculum materials have the potential 

to provide much needed learning opportunities to large numbers of professional developers. 

METHODOLOGY 

The study is focused on curricula commonly used with large numbers of MS mathematics 

teachers. A survey was conducted with the purpose of identifying, based on empirical 

evidence, a sample of publicly available PD curriculum materials that are being extensively 

used across the United States. The survey was administered to the principal investigators of 

32 large-scale PD projects funded by the National Science Foundation. These projects 

operated in a variety of contexts, rural to urban, across 21 states and Puerto Rico. The 

collected survey data illustrate the usage of PD curriculum materials in projects working with 

6203 MS mathematics teachers. Based on the survey results, four sets of curriculum materials 
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were identified as having been used by 60% of all teachers involved in the surveyed PD 

projects. These four make up the sample under analysis in the study: (1) Implementing 

Standards-Based Mathematics Instruction: A Casebook for Professional Development (Stein, 

Smith, Henningsen, & Silver, 2000) [ISBI]; (2) Improving Instruction in Rational Numbers 

and Proportionality: Using Cases to Transform Mathematics Teaching and Learning, Volume 

1 (Smith, Silver, & Stein, 2005) [IIRP]; (3) Teaching Fractions and Ratios for 

Understanding: Essential Content Knowledge and Strategies for Teachers (Lamon, 2005) 

[TFRU]; and (4) Developing Mathematical Ideas, Number and Operations Part 2: Making 

Meaning for Operations (Schifter, Bastable, & Russell, 1999a, 1999b) [DMIMMO]. 

In order to analyze the sample PD curricula, I developed two analytic frameworks. The 

opportunity to learn (OTL) framework was designed to answer the study’s first three research 

questions by directing attention towards how the curriculum materials, and individual PLTs 

within them, present teachers with opportunities to learn specific mathematical content and 

pedagogy. The educative features (EF) framework was developed, using the schema of Davis 

and Krajcik (2005), to consider the challenges of professional developers’ work with teachers 

and curricular features which would lend support in meeting them. It consists of 20 specific 

educative features that would provide learning opportunities to professional developers.  

These two frameworks were used to analyze the four PD curricula in the sample. 

FINDINGS AND DISCUSSION 

OPPORTUNITIES FOR TEACHER LEARNING IN THE FOUR CURRICULA 

The four curricula have different foci, but were all widely chosen for use in PD programs 

because they provide opportunities for MS teachers to learn mathematical content and 

pedagogy. Over the four curricula, there are 110 identified PLTs that consisted of sets of 

mathematical tasks, samples of student work, narrative cases of mathematics instruction, or 

prompts for classroom activities or general reflection on mathematical or pedagogical issues. 

Within the PLTs, 284 individual mathematical tasks provide opportunities for teachers to 

individually revisit and grapple with the mathematical content they teach. Through the 

narrative cases, classroom activities, and student work samples, teachers are provided with 

opportunities to compare and reflect upon how other learners understand and use these ideas. 

Teachers’ Opportunities to Learn About Middle Grade Mathematics 

While all three topics of proportionality, rational numbers, and linear functions are central 

topics in the middle grades (National Council of Teachers of Mathematics, 2006), they are 

addressed to different degrees in the PD curriculum materials. Proportionality is addressed in 

65% of the PLTs across the four curricula. Rational numbers are addressed in 38% of the 

PLTs across the sample. The third topic of interest, linear functions, which is also a central 

topic of focus within middle grade mathematics, is only addressed once across the four 

curricula. Thus, while teachers are provided with many opportunities to learn more about 

multiplicative reasoning and proportionality, they are provided with scarce opportunities to 

learn that proportionality forms a conceptual foundation for linear equations and functions.  

All four of the PD curricula focus on mathematical content, providing opportunities for 

teachers to move beyond procedural knowledge and deepen their understanding of the 

concepts underlying mathematical topics. Given that proportionality is an overarching concept 

in MS mathematics that presents many challenges to teachers (Cramer, Post, & Currier, 

1993), it is appropriate that it is the topic most focused upon in the sample curricula. Teachers 

were also given many opportunities to learn about rational numbers, especially fractions, 

which have been found to present a challenge to teachers (Ma, 1999). Though linear functions 
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is one of the key topics in middle grade mathematics and is a topic that teachers have an 

underdeveloped conceptual understanding of (Even, 1993), it is basically overlooked in all 

four curricula. It is problematic that commonly used curriculum materials do not address this 

important topic and that curriculum materials that do so are often not chosen for use. As MS 

teachers are the ones to formally introduce this topic to students, there is a need to ensure that 

they have opportunities at some point in their PD experience to learn more about linear 

functions. 

Teachers’ Opportunities to Learn About Using Multiple Representations of Mathematical 

Ideas 

Many representations are used in each of the four curricula and opportunities to learn about 

how multiple representations can be used in concert in classroom instruction are provided. As 

words are our primary mode of communication, verbal descriptions were present in every 

PLT. Aside from verbal descriptions, the two prevalent representational forms used across the 

four curricula were visual diagrams and symbols. I analyzed not only which types of 

representations were used, but also the connections made between representations. As seen 

from Figure 1, strong connections are made between verbal descriptions, visual diagrams, and 

symbols within each curriculum. Graphs are used in only 3 PLTs across the entire sample. 

Due to this scarce use, teachers are provided with limited opportunities to connect graphs to 

visual diagrams and tables, and no opportunity to connect graphical representations of 

mathematical ideas to symbolic ones. 

 

Figure 1. Degree and strength of connectivity between representations in the four curricula. 

The flexible use of multiple representations is core to communication in mathematics (Elliot 

& Kenney, 1996) and a key component of students’ competent mathematical thinking and 

problem solving (Brenner, Herman, Ho, & Zimmer, 1999). With extensive opportunities to 

create and use diagrams, symbols, and verbal descriptions in combination, the PD curriculum 

materials provide teachers with many opportunities to learn about using multiple 

representations of mathematical ideas in their mathematics instruction. However, the scarce 

use of graphs and the missing connection between graphs and symbols is problematic, as 

making connections between graphs, symbols, and tables is an important practice in teaching 

functions and algebra (Kieran, 2006). In order to better prepare MS mathematics teachers to 
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teach algebra it is important to ensure that they have opportunities to learn to use various 

combinations of representations, especially the combination of symbols, graphs, and tables. 

Teachers’ Opportunities to Learn About Using Cognitively Demanding Tasks in Instruction 

The vast majority of mathematical tasks presented in the four curricula (99%) can be 

classified as cognitively demanding (Stein & Smith, 1998) for the students for which their use 

was designated – whether elementary or MS students. Teachers were provided with extensive 

opportunities to use such cognitively demanding tasks themselves. The 38 PLTs featuring 

narrative cases provided teachers with opportunities to reflect upon examples of how such 

tasks could be used by another teacher in his/her classroom instruction. These cases 

showcased the classroom-based factors that are associated with the maintenance or decline of 

the cognitive demand of mathematical tasks, such as sustaining pressure for justification or 

failing to hold students accountable for high level products/processes (Henningsen & Stein, 

1997).  

Cognitively demanding tasks often do not have a specified solution path, requiring students to 

engage in problem solving and often resulting in a set of diverse and unexpected student 

solutions that teachers find challenging to manage (Silver, Ghousseini, Gosen, Charalambous, 

& Strawhun, 2005). While the majority of mathematical tasks in the PD curricula could be 

categorized as cognitively demanding, most were designed for use with students in 7
th

 grade 

or below. This, no doubt, is linked to the mathematical topics being focused upon – rational 

numbers and proportionality. However, it is important for MS teachers to have opportunities 

to reflect upon images of mathematics instruction using cognitively demanding mathematical 

tasks at the 8
th

 grade level. The opportunity to solve and analyze the use of cognitively 

demanding mathematical tasks has been shown to support teacher learning (Koellner et al., 

2007). Thus, it would be important to supplement teachers’ learning opportunities provided in 

the sample curricula with additional opportunities to explore the use of such tasks at higher 

grade levels. 

EDUCATIVE FEATURES OF THE FOUR CURRICULA: OPPORTUNITIES FOR 
PROFESSIONAL DEVELOPERS’ LEARNING 

Educative PD curriculum materials are designed to support the learning of both professional 

developers and teachers in PD settings. Using the EF framework, I found that the four sample 

curricula differ significantly in the extent to which they appear to be educative – ranging from 

the TFRU curriculum which provides a scarce 5 educative features, to the IIRP curriculum 

which offers a wide offering of 340 instances of educative features to support the learning of 

professional developers. From the survey data, it is apparent that professional developers 

often use the four sets of curriculum materials in conjunction with each other. Used in 

combination, the sample curricula provide professional developers with ample opportunities 

(more than 99 instances) to learn: (a) how to facilitate discourse during collective inquiry into 

mathematics instruction; (b) when to expect common teacher ideas to emerge; (c) why the 

activities were designed in a particular way and what teachers are expected to learn from 

them; and (d) how to focus teachers’ attention on specific aspects of pedagogy laid open for 

investigation in PLTs.  

In the United States, professional developers vary greatly in their preparation to work with 

mathematics teachers (Banilower, Boyd, Pasley, & Weiss, 2006) and have few opportunities 

for continued training (Ball & Cohen, 1999). Educative PD curriculum materials can offer one 

avenue of training support to professional developers by providing opportunities to learn how 

to support teacher learning around specific PLTs in curricula and in learning activities 

generally. The educative features most frequently presented in the four curricula relate to 

supporting collective inquiry and common discourse around mathematics instruction, and to 
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planning for facilitation. As they relate to activities core to facilitating PD (Ball & Cohen, 

1999), it seems appropriate that these are the features most commonly provided. The EF 

framework identifies the many features that can be incorporated into PD curricula to support 

the learning of professional developers. The four curricula showcase the different degrees to 

which curriculum materials contain these features and are educative for professional 

developers. 

CONCLUSIONS 

The PD landscape in the United States is relatively uncharted. Districts operate largely 

independently of each other, the educational community does not have a clear picture of what 

occurs, and there is a gap in the existing literature about the content being addressed in PD. 

By analyzing PD curriculum materials commonly used with large numbers of teachers across 

the country and, being publicly available, having the potential to be used with thousands more 

around the world, this study charts out the landscape of PD by identifying what teachers using 

these curricula would have opportunities to learn.  

The results of the study have many practical and theoretical implications for teacher education 

and PD. The identification of teachers’ specific learning opportunities in the curricula can 

support professional developers to select and sequence PD curricula to provide teachers with 

rich and sustained learning in PD. The study not only explored teachers’ learning 

opportunities but also how PD curricula can support the learning of professional developers. 

My extension of the concept of educative curriculum materials to the PD space is an 

important contribution to the small, but growing, body of research on learning to lead PD. The 

analytic frameworks developed in the study can be used to further explore PD curriculum 

materials and their connection to teacher learning outcomes in future research studies.  

To develop our understanding of teacher learning in PD settings we need to better understand 

both what teachers learn and how they are taught (Wilson & Berne, 1999). I have identified 

what large numbers of teachers using the four curricula have opportunities to learn in PD. The 

dissertation study, therefore, has contributed to a better understanding of MS mathematics 

teachers’ learning in PD and has set the stage for future studies that can research how these 

learning opportunities unfold in PD. It has contributed to a better understanding of teacher 

learning in and through professional development. 
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INTRODUCTION 

This paper addresses the portion of my dissertation that describes how I worked with 

practicing teachers to examine and challenge their beliefs and practices, and how our critical 

action research experience helped to support the participating teachers in their quest for a 

productive change in their practice.  This collaborative research study was set in a small high 

school that enrolled approximately 700 students. The participants were seven teachers. There 

were three experienced male teachers, two less experienced female teachers, and two male 

teacher candidates. The school was in a rural area outside a larger city centre. This 

mathematics department responded positively to my invitation to participate in research, and 

were willing to investigate their practice.  

It has been argued in the literature, both locally and internationally, that mathematics reform 

movements have had little impact on classroom practice. There is also evidence that there is a 

lack of consistency between what teachers believe and what they practice. Moreover, there is 

a paucity of studies that address the pedagogical needs of practicing secondary mathematics 

teachers, and a lack of studies that apply a critical research approach to challenge teachers’ 

institutional discourses and assumptions. 

During my presentation at the CMESG, I addressed the following research question: To what 

extent do teachers benefit from examining barriers, power relations, and institutional 

assumptions implicit to their practice? This short paper focuses on the second phase of my 

dissertation, which was framed using Brian Fay’s (1975) second phase of enlightenment.  Fay 

predicted that, after an enlightenment period, participants would experience empowerment as 

they learned to become critical of their beliefs and practices.  Since this discussion begins in 

the middle of a study, it is important to point out that, by this stage, participants trusted the 

facilitator. They described the facilitator as having integrity, generosity, and competence. 

Without the skills and philosophical framework that the facilitator brought to this context, it 

would not have been possible to challenge teachers with respect to their beliefs and practices 

and expect a productive outcome. 

The purpose of this phase of the research was to ask questions that would elicit conversations 

about larger social and political structures in the education system, address specific power 

relations that exist in teachers’ work, and examine barriers and other institutional narratives 

that might limit participants’ ability to imagine a change in their practice. During this phase, 

the role of the facilitator was to challenge, support, and encourage voice. 
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CRITICAL AND EMPOWERING RESEARCH PEDAGOGY 

Teacher education that is empowering “should provide practitioners with the tools and 

resources they need to recognize, analyze, and address the contradictions, and in so doing, 

open-up the possibility that conditions in schools can be different” (Smyth, 1989b, p. 4). 

Freire (2000) described the ideas of human agency and empowerment as being essential to 

worthwhile learning and research practice, and he generalized it to anyone who plays a 

leadership role in a learning situation.  The commitment of participants includes more than 

just their presence in the study; rather, participation involves a deeper understanding and 

commitment to the research project. Specifically, with respect to the interpretivist view that 

knowledge is co-created, Stinson, Bidwell, Powell and Thurman (2008) added: 

In the most general sense, critical pedagogy supports pedagogical theories and 

practices that encourage both teachers and students to develop an understanding of 

the interconnecting relationship among ideology, power, and culture and rejects any 

claim to universal foundations for truth and culture, as well as any claim to 

objectivity. (p. 3) 

The work of educational leaders and participants in critical research occurs within a cultural 

context that must itself be acknowledged. The critical perspective holds that teachers have 

been normalized by the organizations and teaching culture (Walshaw, 2004). Foucault was 

concerned about how, as members of society, we often limit ourselves by ascribing to the 

rules we have created. Foucault called this governmentality – the way in which we, as a 

society, organize our language, perceptions, values and practices to be truths that we 

simultaneously impose upon ourselves. He maintained that our reality defines for us what is 

or is not possible, and affirmed the importance and value of critical reflection by emphasizing 

that “the critical perspective in itself is sufficient because it opens up possibilities” (Allan, 

2006, p. 292).  

Fay (1975) first wrote about critical social theory in 1975 and described it with three 

characteristics. Firstly, the critical theorist must come to understand the participants and seek 

to find out how they feel. Secondly, the critical perspective must seek to uncover the 

assumptions and unconscious knowledge that are held. Lastly, and most importantly, theory 

and practice should be merged for the work to be useful (Fay, 1975). In 1987, Fay developed 

a model that is commonly referred to in the emancipatory literature. Fay (1987) viewed 

critically reflective practice as moving through three stages of enlightenment, empowerment 

and emancipation. Fay’s model requires the articulation of barriers such as social norms, 

power relationships and previous learning. He argued that the reified barriers can become so 

embodied that it does not seem possible to question their existence, let alone work to 

transform them. These norms are responsible for the maintenance of the status quo in societies 

and organizations, and they tend to remain unquestioned. These norms are re-created through 

discourses or narratives that reconfirm their truth. Through critical reflection and 

understanding, individuals can learn to question what they might have originally believed to 

be unalterable realities. Fay also suggested that an atmosphere should be created in which 

research participants can exercise their voice and develop a sense of human agency. Fay 

argues that, when his model is applied, there will be evidence that the participants have 

become empowered through their actions, and that they will learn who they are as 

practitioners. 

INSTITUTIONAL DISCOURSES 

This study also intended to provide the reflective space for teachers to explore and understand 

their beliefs as well as the “interpretations of [their] social institutions and traditions” (Stinson 

et al., 2008, p. 619). It is argued that people “are bound by social norms (tradition), by power 
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relations with others (authority), and by previous learning that has become embodied 

(embodiment)” (Johns, 2004, p. 8). This provides the rationale for examining barriers that 

“blind and bind...[and that] limit the practitioner’s ability to respond differently to practice 

situations even when they know there is a better way of responding to situations in tune with 

desirable practice” (p. 8). 

An awareness of the barriers was necessary in the process of this study because barriers tend 

to block teacher professional growth if they are not acknowledged. As Kemmis and 

McTaggart (2005) described: “[p]eople not only are hemmed in by material institutional 

conditions, they frequently are trapped in institutional discourses that channel, deter, or muffle 

critique” (p. 571). Facilitators who ask tough questions and elicit barriers can predict that their 

research discussions might result in institutional discourses that claim certain truths about the 

world of teaching. “Institutional discourses are made up of the assumptions, concerns, and 

vocabularies of members of socially organized settings, and the ways in which they interact” 

(Miller, 1994, p. 280). These are the stories and assumptions about schooling that are told and 

retold and are accepted as the norm in schools. However, this pedagogic discourse is not 

always a neutral entity. As Bernstein (2000) described, pedagogic discourse is a “carrier of 

power relations external to the school and a carrier of patterns of dominance with respect to 

class, patriarchy, race” (p. 4). That is, the conversations that repeat themselves in teachers’ 

discourses reflect the surrounding culture, a culture that necessarily includes issues of power. 

What is interesting about institutional discourses is that they are repeated and rarely 

challenged. They create and sustain unconscious assumptions that nothing can be done about 

these facts, because the stories just describe the way it is.  

Generally, teachers are not aware of the assumptions they make until these are challenged. 

This limits teachers’ potential to learn and make pedagogical changes.  Teachers cannot be 

agents of change unless they understand that things can change. It is possible to help adults 

learn to recognize the assumptions they are making, and some research is designed to address 

them. As Kegan and Lahey (2007) described: 

[p]eople often form big assumptions early in life and then seldom, if ever, examine 

them. They’re woven into the very fabric of our lives. But only by bringing them into 

the light can people finally challenge their deepest beliefs and recognize why they’re 

engaging in seemingly contradictory behavior. (p. 50) 

Kegan and Lahey call these narratives that impede our growth and learning subconscious 

competing commitments, and describe how it is important to help people make those barriers 

explicit, and to challenge those subconscious competing beliefs or discourses.  

Critical action research promises that participants can be empowered through greater self-

knowledge and self-development, through an examination of barriers and assumptions about 

teaching culture. The three stages of enlightenment-empowerment-emancipation, as described 

by Fay (1987), are necessary for teachers so that they may come to understand their personal 

knowledge, beliefs and attitudes, and make sense of any tensions between them. Fay 

described how reflective practitioners will experience a liberation – or a “state of reflective 

clarity” (p. 205) bringing harmony to those tensions.  

As Smyth (1989b) noted, it is important to ask explicit questions about power and influence.  

The following questions were asked during the CMESG presentation as well as orally and 

through journaling during the research study: 

1. In my job, who (or what) has power or influence over my work? 

2. In my job, over whom (or what) do I have power or influence? 

3. What are the biggest barriers that stop me from implementing the best lessons? 
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4. What are the factors that facilitate my best work as a teacher? 

These questions elicited many institutional discourses from the teachers. Barriers that were 

named included not having enough time to cover the curriculum, not having enough 

preparation time, a concern about government bodies and their accountability practices 

distracting teachers from instruction, low government funding, and issues of low student 

motivation.  

A typical institutional discourse would be one that describes how mathematics should be 

taught. For example, Raymond, one of the experienced teachers, described how he felt that 

students had to learn and master basic mathematics skills in order to solve higher order 

problems. Raymond believed that an approach that applied too much emphasis on problem 

solving and not enough on the practice of basic mathematics skills would not be successful for 

students. He also felt that group-work was not productive because only a few of those 

students in groups would actually do the work.  Having worked with teachers for over 20 

years, I have heard the statements before. These ideas needed to be recognized and heard prior 

to this teacher moving forward in his practice.  Also, through the implementation of the four 

stages of critical participatory action research, I was able to reflect on this teacher’s needs, 

and implement actions so that we were able to learn and practice structures for working well 

and collaboratively in groups.  Once this idea was presented, it removed a barrier for this 

participant. Later, during one of Raymond’s reflective journaling exercises, his transformed 

perspective was revealed: 

To tell you the truth I find writing reflections a little bit annoying because it forces 

you to look in the mirror and sometimes I don’t always like what I see. Although 

making me feel guilty about myself, it makes me want to change, and that might be a 

good thing. (Raymond’s Journal - Phase V) 

In his journal, Raymond described the moment that he became willing to step out of his 

comfort zone and test or implement a new teaching practice. Because his beliefs were 

challenged, Raymond was propelled into Fay’s emancipation phase. He was later able to take 

action in his classroom, and, moreover to collaborate and communicate with his colleagues in 

the public sphere. This is discussed further in a paper that addresses the third phase of the 

research. 

ALL VOICES MATTER 

External to the work of teachers in the study, the critical action research practitioner must 

continuously reflect on equity in group discussions. Keeping this in mind, it was important to 

maintain an equilibrium between the voices of the participants. Although the facilitator had 

made this condition explicit, and had asked participants to make sure that all were included 

equally in our conversations, it proved to be difficult for individuals in this group to notice 

that they were not participating equally in the group. It was evident from the first day that, 

without intervention, some voices in the group would remain weaker. According to the 

participants, a very impactful practice was the use of a Wordle (Feinberg, 2009). The 

facilitator used the text transcribed from the audio data in the first session, which always 

listed who was speaking by introducing the speaker with her or his name followed by a colon. 

For example, when the facilitator spoke, the audio text that was transcribed read: “Lorraine: 

What we...”. That meant that, every time someone spoke, her or his name preceded what he or 

she said. Since the online Wordle
TM

 software uploads text and transforms it into a graphic that 

represents the frequency of a word by the size of its font, this was an appropriate and concise 

way to show the highlights of our conversation, and to show evidence of who spoke most 

often. The participants appreciated the use of this graphic to illustrate the nature of our 

conversations. In the Wordle (see Figure 1), it is easy to see by the size of the font that 
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Lorraine and Alex spoke the most, followed by Julian and Grant. Lecia and Cara hardly 

contributed at all, and Raymond only seized a small bit of the conversation time.  

After the use of the Wordle, the balance of voices was more evident. Raymond even 

underlined it as an important factor of the study that the facilitator worked to include 

everyone’s voice in the discourse. His and others’ comments are presented in a future paper 

on facilitating critical action research. 

 

Figure 1. Wordle (Feinberg, 2009) showing the frequency of the words we used during our first 

session and displaying how often each member of the group spoke during the first phase. 

TOWARDS A NEW MODEL FOR CRITICAL PRACTICE 

This study showed that with certain supports and conditions, and through the process of 

completing the three phases of this research study, it was possible to impact the practice of a 

group of teachers with varying levels of loyalty to a traditional practice. By proceeding 

through certain processes, and by ascribing to a critical practitioner’s stance, the facilitator of 

this research was able to take the participants through Fay’s (1987) phases of enlightenment, 

empowerment, and emancipation to a point where the teachers felt they understood 

themselves better as educators. These teachers felt aware and confident enough to enact 

practices that they deemed to be somewhat outside their comfort zone, and still more student-

empowering.  

The figure on the following page (Figure 2) gives a summary of what were the most impactful 

practices for the participants. The processes that made a difference for the teachers in this 

study are listed in three columns, and the supporting perspectives and skills are given in the 

section at the bottom of the diagram. Further reflections on each of the elements are given in 

the sections that follow.  

The discussions in this paper focus on the column in the middle of the figure below. These 

describe the most impactful practices found in the design of this study, in particular those that 

engaged participants in critical thought and in the investigation of their assumptions.  The 

discussion must include the complex role of the facilitator while she asked difficult questions 

and worked to support all teachers equally throughout the process. 
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Figure 2.  Processes and perspective: Critical elements for critical practice 
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IMPLICATIONS FOR PRACTICE AND RESEARCH 

Participatory action research takes the stance that research and practice are viewed as 

integrated. It is certainly the case in this study that role of the teacher educator and critical 

action researcher was the same (Kemmis, 2006). Therefore, the following two implications 

are presented as ideas that can be applied to research or to practice. 

APPLYING THE SUGGESTED PROCESSES AND PERSPECTIVE FRAMEWORK IN 
TEACHER EDUCATION OR OTHER SIMILAR SETTINGS 

An implication for research and practice is that this study, or one that follows its philosophical 

perspective and its processes of enlightenment, empowerment, and emancipation, could be 

repeated in similar environments such as pre-service settings, elementary teacher groups, or 

graduate-level courses in order to ascertain its generalisability and its applicability. These 

settings are similar to the one in the study because they usually hold comparable time-lines 

and parallel purposes, and because the participants would likely have corresponding needs. As 

Hofer (2006) expressed: 

[w]e do need to know more....about how teachers resolve the cognitive dissonance 

that presumably arises from strongly endorsing a worldview that appears 

incongruent with the practices of the educational systems in which they are placed, 

and we need to do more in our teacher education programs to prepare teachers to 

address such inconsistencies. (p. 90) 

IMPLICATION FOR PRACTICE 

An implication for practice is that questions such as the ones in this study, or others such as 

those recommended by Smyth (1989a, 1989b) could be used to elicit assumptions and to 

challenge teachers to notice the social constructs that define and may limit their work. These 

questions can be asked no matter what the participants’ teaching level or field. Whether 

working with teachers in practice or in post-secondary settings, it is important to discuss and 

challenge the barriers they perceive, and to ask them difficult questions about power relations 

and about other assumptions they make in their work that serve to define what they can and 

cannot do. Furthermore, these questions are not limited to work with teachers. There are 

surely other professions where social and political pressures, power relations and other 

barriers limit people’s ability to do their best work. Examining questions such as these would 

be a benefit and could be applied to professions such as health care or law. 

An important implication that will be discussed in the fourth paper of this series is that of how 

it is effective, or even possible, for teacher educators to challenge teachers’ beliefs. This is not 

done in a vacuum. As seen in the model, Processes and perspective: Critical elements for 

critical practice, the facilitator must practice her research and teaching consistent with a set of 

values that exhibit attributes of integrity, generosity, and competence. Without this 

perspective, the task of challenging teachers would not only be ineffective, but may be 

damaging to the participants, and most certainly to the process. The process of developing and 

sustaining the important qualities of the facilitator are discussed in detail in the fourth and last 

paper of this series. 

REFERENCES 

Allan, K. (2006). Contemporary social and sociological theory: Visualizing social 

worlds. Thousand Oaks: Pine Forge Press. 

Bernstein, B. B. (2000). Pedagogy, symbolic control, and identity: Theory, research, 

critique. Lanham: Rowman & Littlefield Publishers. 



CMESG/GCEDM Proceedings 2011  New PhD Report 

134 

Fay, B. (1975). Social theory and political practice. London: George Allen & Unwin 

Ltd. 

Fay, B. (1987). Critical social science: Liberation and its limits. Ithaca, NY: Cornell 

University Press. 

Feinberg, J. (2009). Wordle 
TM

. Retrieved from http://www.wordle.net/ 

Freire, P. (2000). Pedagogy of the oppressed: 30
th

 anniversary edition (M. B. Ramos, 

Trans., 3rd ed.). New York: Continuum. (Original work published 1970). 

Hofer, B. K. (2006). Domain specificity of personal epistemology: Resolved 

questions, persistent issues, new models. International Journal of Educational 

Research, 45(1-2), 85-95. doi: 10.1016/j.ijer.2006.08.006 

Johns, C. (2004). Becoming reflective. In C. Johns (Ed.), Becoming a reflective 

practitioner (2nd ed., pp. 1-44). Oxford: Blackwell Publishing. 

Kegan, R., & Lahey, L. (2007). The real reason people won’t change. Harvard 

Business Review, Leading Change: Best of HBR, 79(10), 50-59.  

Kemmis, S. (2006). Participatory action research and the public sphere. Educational 

Action Research, 14(4), 459-476. doi: 10.1080/09650790600975593 

Kemmis, S., & McTaggart, R. (2005). Participatory action research: Communicative 

action and the public sphere. In N. Denzin & Y. Lincoln (Eds.), The Sage 

handbook of qualitative research (3rd ed., pp. 559-604). Thousand Oaks: Sage 

Publications, Inc. 

Miller, G. (1994). Toward ethnographies of institutional discourse: Proposal and 

suggestions. Journal of Contemporary Ethnography, 23(3), 280-306.  

Smyth, J. (1989a). A critical pedagogy of classroom practice. Journal of Curriculum 

Studies, 21(6), 483-502. doi: 10.1080/0022027890210601 

Smyth, J. (1989b). Developing and sustaining critical reflection in teacher education. 

Journal of Teacher Education, 40(2), 2-9.  

Stinson, D. W., Bidwell, C. R., Powell, G. C., & Thurman, M. M. (2008, October). 

Becoming critical mathematics pedagogues: A journey. Paper presented at the 2nd 

Annual Georgia Association of Mathematics Teacher Educators, Rock Eagle, 

Georgia. 

Walshaw, M. (2004). Pre-service mathematics teaching in the context of schools: An 

exploration into the constitution of identity. Journal of Mathematics Teacher 

Education, 7(1), 63-86. 



 

135 

 

 

PATTERN RULES, PATTERNS AND GRAPHS: ANALYZING 
GRADE 6 STUDENTS’ LEARNING OF LINEAR FUNCTIONS 

THROUGH THE PROCESSES OF 
WEBBING, SITUATED ABSTRACTIONS, AND CONVERGENT 

CONCEPTUAL CHANGE 

Ruth Beatty 

Lakehead University 

CONTEXT 

In recent years, increasing numbers of mathematics educators, policy makers and researchers 

have proposed that the learning of algebra become included in the elementary curriculum as 

part of the “algebra for all” and “early algebra” movements (Warren & Cooper, 2006; Blanton 

& Kaput, 2004; Carpenter, Franke, & Levi, 2003; Kieran, 1990, 1991, 1992; Kieran & 

Chalough, 1993; Greenes, Chang, & Ben-Chaim, 2007).  The rationale for introducing algebra 

into the elementary mathematics curriculum is to develop young students’ abilities to think 

algebraically with the hope of diminishing the abrupt and often difficult transition to formal 

algebra in high school (Kieran, 1992). Further, researchers propose that an early introduction 

to algebra would help to provide all students with equitable opportunity for success in later 

mathematics learning, ultimately broadening their educational and career choices (Greenes, 

Cavanagh, Dacey, Findell, & Small, 2001; Kaput, 2007). Algebra plays a critical role as a 

gatekeeper in school mathematics and in society beyond school years – particularly for 

minority students and for those from lower socioeconomic status backgrounds. Preparing 

elementary students for the increasingly complex mathematics of the 21
st
 century requires 

extensive research to identify learning experiences that best support early algebraic thinking. 

However, while the inclusion of algebraic concepts in teaching prior to high school is 

becoming a wider practice, research to support both the assumed benefits and curricula 

development is in early stages. Although there is a body of research that looks at students’ 

development of algebraic concepts (e.g., Kaput & Blanton, 2003; Carpenter et al., 2003; 

Carraher, Schliemann, Brizuela, & Earnest, 2006), this work investigates students’ use of 

symbols and equations based on generalizations found in arithmetic.  

In light of this new international focus on early algebra, I spent three years of my doctoral 

studies conducting research on the potential of elementary students to think algebraically. My 

thesis constitutes the third year of this larger study and reports on the design, implementation, 

and analysis of an innovative approach to teaching linear relationships and negative numbers, 

two historically difficult areas of mathematics to teach. The approach was designed to support 

Grade 6 students’ understanding of linear relationships by prioritizing visual representations 

in the form of linear growing patterns and graphical representations of linear relationships. 

The lessons were also designed to introduce students to working with negative numbers by 

anchoring these within the quadrants of the Cartesian graphing space. The teaching sequence 
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– seven lessons – was implemented in a classroom of ten Grade 6 students over the course of 

four months. The design of the study can be considered an “instructional experiment” 

(Freudenthal, 1991), defined as a research design that incorporates an intervention in the form 

of an instructional sequence as a way of broadening students’ insights into a particular 

mathematical construct, while simultaneously providing the researcher with a greater 

understanding of students’ learning processes. 

ALGEBRAIC CONTENT LEARNING 

This study built on my previous two years researching an experimental approach to algebraic 

instruction. When considering the study of linear relationships, mathematics educators 

recommend that students be introduced to various representational forms of linear 

relationships in order to develop the ability to effectively use these representations as a means 

of considering quantitative relationships (e.g., Janvier, 1987a, 1987b; Moschkovich, 

Schoenfeld, & Arcavi, 1993). However, in practice, most students are formally taught linear 

relationships using only equations.  

My previous studies had prioritized visual representations of linear relationships, merged with 

the numeric expressions of the mathematical structure. A number of researchers note that 

when visual and numeric representations are integrated, students can construct a deeper 

understanding of linear relationships (Moss & Case, 1999; Yerushalmy & Sternberg, 2001; 

Noss, Healy, & Hoyles, 1997; Mason, 1996). Students first worked with linear patterns and 

discovered the relationship between the position number of each iteration of the pattern and 

the number of tiles in that position. The pattern below (Figure 1) is a representation of the 

linear relationship “the number of tiles = position number times 2 plus 3”, which can be 

written as the pattern rule: tiles = position × 2 + 3. If we substitute y to stand for the number 

of tiles (dependent variable), and x to stand for the position number (independent variable), 

we have y = 2x + 3, a linear algebraic expression. The 2x is represented in the pattern by the 

tiles that increase by 2 at each successive position. The +3 is represented by the three tiles that 

stay the same at each position. By understanding the relationship between the position number 

and the number of tiles, it is possible to predict how many tiles would be in a far position of 

the pattern (e.g., the 100
th

) or in any position of the pattern. 

 

Figure 1 

Researchers also stress that it is the ability to make connections among different 

representations, particularly equations and graphs, that allow students to develop insights for 

constructing the concept of a linear relationship (e.g., Evan, 1998; Bloch, 2003). Numerous 

studies have documented the difficulties students have when exploring the connections 

between equations and graphs (e.g., Evan, 1998; Moschkovich, 1996, 1998, 1999; Brassel & 

Rowe, 1993; Yerushalmy, 1991). A related concern is the emphasis placed on procedural 

knowledge when teaching students how to solve linear equations of the form ax + b = cx + d.  

Students are taught a standard algorithm for solving this equation. Although students who 

learn the algorithm can generate correct solutions, it is generally accepted that the learning of 

any mathematical procedure must be connected with conceptual knowledge to foster the 

development of understanding (Hiebert & Carpenter, 1992). 
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THESIS INSTRUCTIONAL SEQUENCE 

The first goal of this study was to see whether an understanding of linear patterns could 

support an understanding of linear graphs, and whether this could potentially be connected to 

solving equations. Based on my previous work, for this thesis I developed an instructional 

sequence grounded in linear growing patterns and used these patterns to introduce graphs. As 

students engaged in the activities, it was my hypothesis that they would discover the 

connections among the pattern rule, the pattern, and the graph. Students could also compare 

the trend lines of two patterns, which leads to an understanding that the point of intersection 

on the graph represents the position number at which both patterns would have the same 

number of tiles. This is precursory understanding for solving ax + b = cx + d. 

My approach to instruction departs significantly from traditional approaches in three ways: 1) 

by introducing graphing through patterning; 2) by introducing graphing prior to teaching 

formal algebraic notation; and 3) by focusing on the graph as a representation of a linear 

relationship, not as a representation of ordered pairs (i.e., students are asked to graph the 

pattern rule, not to graph a series of coordinates).  See Figure 2. 

 

Figure 2 

I then used this understanding of graphical 

representations to introduce working with negative 

numbers. Since a four quadrant graphing space is 

essentially two perpendicular number lines, I 

hypothesized that this would give students both a visual 

anchor for working with negative values, and meaning to 

operations with values less than 0. Students could 

explore the outcome of operations with negative numbers 

in a two-dimensional space. 

THEORIES OF LEARNING 

The second goal of the study was more theoretical – to assess the potential utility of 

combining two complementary frameworks in order to meticulously document and assess the 

development of algebraic understanding – both individual student understanding and the 

collective understanding of the group, and the interactions between the two.  I was interested 

in discovering how individuals and groups construct knowledge, how groups work together, 

how individuals function within a group, and how students construct convergent and 

divergent theories. 
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One framework was based on Noss and Hoyles’ notions of webbing and situated abstractions, 

which can be defined as the development of successive approximations of formal 

mathematical knowledge in individual students (e.g., Hoyles, Noss, & Kent, 2004; Hoyles & 

Noss, 2003; Noss & Hoyles, 1996, 2006). Webbing is defined as the interconnection between 

abstract mathematical concepts and the concrete tools and models used to construct and 

reconstruct mathematical knowledge through experience. Learning is therefore defined as the 

construction of a web of connections “between classes of problems, mathematical objects and 

relationships, real entities and personal situation-specific experiences” (Noss & Hoyles, 1996, 

p. 105). A situated abstraction is a particular form of mathematical understanding that 

emerges through sense-making activity. The conception of the situated abstraction recognizes 

that the abstraction of mathematical properties is situated and shaped by the tools/artifacts 

being used when working on particular activities designed with the intent of supporting 

mathematical thinking. Because the approach I developed was new, I wanted to explicitly 

document the situations in which the learning took place so that I could better understand the 

mathematical concepts students developed.  

The other framework came from Roschelle’s (1992) work on collaborative conceptual 

change, which allowed me to examine and document mathematical understanding that 

developed at the whole-class level.  “Situated abstractions by their nature are diverse and 

interlinked with the tools in use, so the question is how can meanings be shared in the 

classroom and interconnect with each other?” (Hoyles, Noss, & Kent, 2004, p. 317). How can 

the various ‘bits’ of learning taking place within individuals be shared among the larger 

group? According to Roschelle, the basis of collaboration is the convergence of meaning – 

two or more people constructing shared meanings for concepts and experiences. Students 

engage in an iterative cycle of displaying informal understandings and constructing a common 

understanding within the context of situated actions as they seek to refine their minimal 

abstractions into increasingly integrated sophisticated concepts. 

I used the two analytical frameworks to make sense of individual and group level data in 

order to pinpoint the interplay between individual and collective actions and understanding. I 

used a two-level case study approach in order to simultaneously analyze both individual 

learning and the collective learning of the group. 

RESEARCH QUESTIONS 

1. What situated abstractions are forged at the group level and how are shared 

abstractions constructed?  

2. For each individual student, what situated abstractions are forged through the webbing 

of internal resources (intuitions, past experiences) and external resources (classroom 

tasks, tools, discourse experiences)?  

3. How do individual students’ situated abstractions converge/diverge as students 

participate in this lesson sequence?  

4. To what extent does this third-year lesson sequence support students in developing an 

understanding of graphical and numerical representations of linear relationships? To 

what extent does this third-year lesson sequence support students in developing an 

understanding of negative numbers in the context of graphical representations? 

ANALYSES 

To answer research questions 1 and 2, I utilized a two-level case study design. I developed the 

case studies (one whole-class and ten individual) using a variety of qualitative data, primarily 

videotape data. In order to analyze the data, I utilized Powell, Francisco, and Maher’s (2003) 
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framework of seven interacting nonlinear phases of videotape analysis for studying the 

development of learners’ mathematical ideas. These are: viewing the video data attentively; 

describing the data; identifying critical events; transcribing; coding; constructing a storyline; 

and composing a narrative. 

The process of analysis occurred both during the lesson implementation and during 

subsequent videotape analyses after the intervention had ended. As the intervention was being 

conducted, I analyzed data for preliminary categories (identified both a priori, and based on 

the literature review, and a posteriori as categories emerged), and then collected additional 

data as the intervention progressed.  After the intervention, I continued to analyze the video 

data and transcripts. Initial data reduction was accomplished by using an inductive, line-by-

line categorizing coding strategy (Padgett, 1998) in order to 1) identify actions and 

conversations that pertained to the task from those that did not; and 2) identify actions and 

conversations in order to track the learning path taken and the situated abstractions articulated 

both at the group and individual levels.  

The result was the creation of eleven case studies. Chapter Six of my dissertation presents the 

whole class case study and Chapter Seven presents the case studies of each of the ten students. 

Every lesson is described, and key points of learning identified. Each episode of interest is 

interspersed with an interpretation of the student learning demonstrated, based on both the 

research literature about the mathematics the students were learning, and also based on the 

frameworks of webbing/situated abstractions and collaborative conceptual change. The 

learning trajectory of the class as a whole, and of each student are documented in terms of the 

interplay between activities engaged in, tools and techniques students utilized, and the 

resulting student understandings developed by the class as a whole and by each individual 

student. 

To answer question 3, I compared each individual’s learning trajectory with that of the group 

and coded individual students’ understandings as convergent or divergent. Divergent 

understandings were further coded as graphically or numerically based, that is, whether the 

primary site for problem solving was the Cartesian graphing space, or the use of linear 

equations. I then conducted frequency counts and used descriptive statistics to summarize and 

compare the frequency counts. 

To answer question 4, assessing the innovative approach to teaching linear relationships and 

negative numbers, I carried out a qualitative analysis of pre-post student interviews, and also a 

detailed analysis of student responses on a pre-post pencil and paper mathematics survey. I 

developed both the interview protocol and the survey based on a comprehensive review of the 

literature and on the results of my previous two years of research. In addition, I conducted an 

analysis of pre-post test scores using non-parametric descriptive statistics, and determined the 

effects of the lessons on student learning as a factor of demonstrated student achievement 

level by comparing mean gain scores for high-, mid-, and low-achieving groups of students. 

RESULTS 

One goal of the study was to determine whether this lesson sequence would support students’ 

understanding of linear relationships and negative numbers. The results were unprecedented.  

The participating Grade 6 students were all able to engage in the kinds of algebraic thinking 

that have shown to be difficult for high-school students. The students were able to make 

connections among different representations of linear relationships (figural, graphical, and 

numeric) and, based on these connections, developed sophisticated methods for solving 

equations of the form ax + b = cx + d. They also developed an understanding of working with 
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negative numbers and, by using their understanding of plotting trend lines on a graph, were 

able to conceptualize adding, subtracting and multiplying with negative numbers. This 

instructional approach, which prioritized visual as well as numeric representations of linear 

relationships, seemed to have alleviated many of the difficulties outlined in the research 

literature. 

The second goal of the study was to analyze the algebraic understandings constructed by the 

whole class, and by individuals within the class. When comparing the tables of situated 

abstractions for individual students, approximately two thirds of the situated abstractions 

listed were those that were constructed at the group level. This emphasizes the importance of 

communication and collaboration as the ideas generated and modified at the class level were 

then internalized and incorporated into individual’s developing understanding. 

Documenting the external resources of the learning situation (collaboration in the classroom 

and tool use) and the internal understandings (situated abstractions) allowed me to learn about 

the nature of learning for the group, and for each individual student. The result is an extensive 

documentation of the building up of the layers of intuitions that underlie the development of 

mathematical abstractions, and the interplay between situations, actions through tools, and 

developing intuitions as a way of constructing mathematical meaning. 

CONTRIBUTIONS OF THE STUDY 

With respect to designing and assessing a new learning sequence, this study makes two 

important contributions. The first is the learning sequence itself, which supported Grade 6 

students in developing sophisticated understandings of linear relationships and negative 

numbers, and alleviated some of the well-known problems in students’ understanding of both 

linear graphs and negative numbers. By the end of the sequence, these Grade 6 students had 

developed an understanding of how to solve linear equations of the form ax + b = cx + d, and 

how to meaningfully carry out operations with negative numbers. Because the field of early 

algebra is relatively new, this adds to our understanding of the potential of children’s 

algebraic reasoning. When offered a carefully sequenced series of tasks it is evident that 

young students can grapple with difficult algebraic content, and that these are concepts that 

can successfully be integrated in elementary curricula.   

Related to this is a detailed analysis of the multiple kinds of representations students preferred 

to work with. The idea of multiple representations of mathematical concepts now permeates 

all research in the field of mathematics education. In my study I analyzed students’ emergent 

understanding of linear relationships mediated by their reliance on figural visual 

representations (patterns and graphs) versus more numeric representations (equations). These 

analyses are relevant given that in recent years many scholars (Becker & Rivera, 2005; 

Carraher et al., 2006; Blanton & Kaput, 2004; Warren & Cooper, 2006) have been 

investigating the affordances of figural versus numeric approaches to linear relationships.  

The other main contribution of this study is a model of utilizing two complementary 

analytical frameworks in order to gain a broad understanding of the kinds of student 

understanding this instructional sequence supports. Because the instructional approach was 

new, the aim was to get an overview of student learning through the lens of convergent 

conceptual change, and also through the related lenses of situated abstraction and webbing. I 

chose these two frameworks because they both emphasize the situated nature of learning, that 

is, the need to take into account actions and communications in relation to specific situations 

in order to understand the kind of learning taking place.  



Ruth Beatty  Pattern Rules 

141 

As the implementation of the learning sequence progressed, extensive data was collected and 

interpreted with reference to collaborative process based on Roschelle’s theoretical 

framework, and simultaneously with respect to the development of individual students’ 

understandings based on Noss and Hoyle’s ideas of webbing and situated abstraction. The 

resulting learning trajectories list the development of situation abstractions as they became 

more refined for the group, and for each individual within the group. Adapting 

complementary analytical frameworks allowed for an analysis of algebraic content 

understanding. It also allowed for an analysis of the pathways of understanding that 

developed and how these pathways converged and diverged for the participating students. 
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LEARNING MATHEMATICS FOR THE WORKPLACE: 
AN ACTIVITY THEORY STUDY OF PIPE TRADES TRAINING1,2 

Lionel LaCroix 

Brock University 

INTRODUCTION 

Mathematics in workplace training has often been a source of difficulty, if not an obstacle, for 

many students seeking better jobs and advancement (Fownes, Thompson, & Evetts, 2002; 

Zevenbergen & Zevenbergen, 2004). Yet relatively little attention has been paid to 

workplace-training mathematics in education research. In an effort to provide insights into 

this important area, this study examines mathematics practice and learning within an eight 

week pre-apprenticeship training program for the skilled trades of plumbing, steamfitting, 

sprinkler fitting, and gasfitting conducted at a trade union run school in British Columbia. 

Sociocultural theory, specifically activity theory (Engeström, 1999; Leont’ev, 1978) and 

Radford’s (2008b) recent elaboration, the cultural-semiotic theory of knowledge 

objectification, serve as theoretical lenses to draw attention to the unique features of this form 

of mathematics activity in the present analysis. These complementary perspectives draw 

attention to mathematics learning as a culturally and historically situated, multilayered, and 

goal-directed social process mediated by artifacts, including semiotic resources and norms or 

conventions of workplace training. Mathematics learning from here is regarded as a process 

of objectification – a process in which one becomes progressively aware and conversant, 

through one’s actions and interpretations, of a cultural logic of mathematical objects. Findings 

from this study will inform both the teaching and design of workplace training as well as 

school mathematics programs intended for students who will move on to workplace training 

afterwards. 

RELATED RESEARCH 

To date, the research related to workplace or vocational mathematics has focused, largely, on 

three things. First, mathematics content used, from a perspective of school mathematics, in 

specific workplaces or vocations for the purpose of informing mathematics curriculum design 

and the teaching of the mathematics needed for work (e.g., FitzSimons, 2005; Zevenbergen & 

Zevenbergen, 2004, 2009); second, particular features of mathematics practices within 

specific workplaces, including the use of workplace-specific conventions and artifacts, or the 

connection between local knowledge and these practices (e.g., Martin & LaCroix, 2008; 

                                                 
1  The dissertation summarized in this paper can be accessed online at: 

https://circle.ubc.ca/browse?value=LaCroix%2C+Lionel+N.&type=author 
2  This study is a result of a research program funded by The Social Sciences and Humanities Research 

Council of Canada / Le Conseil de recherches en sciences humaines du Canada (SSHRC/CRCH). 
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Williams & Wake, 2007b); and, very much related to both of these, the problematic notion of 

transfer of school mathematics competencies to the workplace (e.g., Williams & Wake, 

2007a). Zevenbergen and Zevenbergen (2009) provide the following poignant critique of 

existing research literature on workplace mathematics: 

Much of the work undertaken in mathematics education that explores workplace 

numeracies is premised on seeking to identify the [formal] mathematics of the 

workplace . . . . Applying a mathematical lens to observe workplace activity means 

that the activity can be overridden by the mathematical imperative. Skovsmose 

(1994) argued that this phenomenon can be seen as the formatting power of 

mathematics, so that it is often difficult to see events for their activity, but rather to 

subjugate the activity for mathematics. Such an approach preserves the hegemony of 

particular forms of knowing and doing. However, it fails to recognize and validate 

the processes employed by workers as they undertake their tasks and how they go 

about solving problems. (p. 184) 

A relatively small number of mathematics education researchers have conducted research for 

the purpose of understanding the mathematics within the workplace as culturally situated 

forms of practice making explicit use of cultural-historical activity theory (e.g., FitzSimons, 

Mlcek, Hull, & Wright, 2005; Noss, Bakker, Hoyles, & Kent, 2007; Williams & Wake, 

2007a; Zevenbergen & Zevenbergen, 2004, 2009), drawing on the work of the contemporary 

activity theorist Yrjö Engeström (e.g., 1999, 2001). A significant limitation of Engeström’s 

popular take on activity theory, however, is that while acknowledging the prominent 

mediating role of semiotic resources in activity, such as workplace mathematical activity, it 

does not provide for a detailed account of this (Noss et al., 2007). 

THEORETICAL PERSPECTIVE 

Activity theory provides a framework for examining how humans purposefully transform 

natural and social reality (including themselves) as a materially and socially mediated, and 

culturally and historically situated, process. Originating in the dialectical sociocultural 

psychology of Vygotsky, this perspective was developed into a theory of activity by his 

student and colleague, A. N. Leont’ev (cf., 1978) and others. Today in the Western research 

literature, this perspective is referred to as cultural-historical activity theory, or the acronym 

CHAT, emphasizing the essential situated nature of activity. Central to CHAT is the view that 

an activity system comprised of a subject, community, tools (including signs and artifacts), 

rules or norms, and division of labour, all oriented towards the object and outcome of the 

activity, constitutes the minimum unit of analysis (cf., Engeström, 1987, 1993, 2001). 

Furthermore, for any activity system, it is the meeting of a human need that serves as its 

motive. 

Radford developed the theory of knowledge objectification to unpack processes and nuances 

of the mathematics activity and learning of individuals from a cultural-semiotic activity 

perspective based on his reading of Vygotsky’s semiotics, Leont’ev’s activity theory, and the 

more recent work of Felix Mikhailov and Evald Ilyenkov (cf., Radford, 2006, 2007, 2008c). 

Radford’s cultural-semiotic activity theory is distinguished from other developments in 

CHAT by its foci on specific aspects of the consciousness, learning, and being of individuals, 

as well as the semiotic and social dimensions of mathematics activity. From this perspective, 

learning is conceptualized as an interactive and creative acquisition of historically constituted 

forms of thinking. This theorization emphasizes: 

1. the intimate dialectical relationship between human thinking – including mathematical 

thinking – and the material and cultural world;  

2. the central role of semiotic resources and social interaction in mathematical activity 

and learning; and 
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3. the reciprocal processes of objectification – making sense of and becoming critically 

conversant with the cultural-historical logic with which systems of thought, such as 

mathematics, have been endowed – and subjectification – the process of becoming (see 

also Radford, 2008a). 

Radford’s concept of objectification emphasizes the dialectical way that the subject of 

mathematics learning activity and the cultural object being attended to are related. Semiotic 

means of objectification refers to enacted reflections of this process. This refers to the use of 

semiotic means to draw and sustain the attention of others and one’s own attention to 

particular aspects of mathematical objects in an effort to achieve stable forms of awareness, to 

make apparent one’s intentions, and/or to carry out actions to attain the goal of one’s activity. 

Radford has identified the following three forms of semiotic means of objectification from his 

empirical classroom research of collaborative mathematical problem solving and learning: 

1. Iconicity – the process of noticing and re-enacting or re-voicing significant parts of 

previous semiotic activity for the purpose of orienting one’s actions and deepening 

one’s own objectification (Radford, personal communication, September 29, 2008); 

2. Semiotic nodes – places in mathematical activity where multiple semiotic resources are 

used together and in a coordinated manner to achieve knowledge objectification 

(Radford, 2005); 

3. Semiotic contraction – the process of coming to recognize and attend to the essential 

elements within an evolving mathematical experience and making one’s semiotic 

actions compact, simplified, and routine as a result of this acquaintance with 

conceptual traits of the objects under objectification and their stabilization in 

consciousness (Radford, 2008a). 

The process of mathematics learning or objectification is accounted for readily by the theory 

of knowledge objectification through analysis of social interactions and the semiotic means of 

objectification used within learning activity (Radford, 2008c). 

The theory of knowledge objectification addresses squarely Noss et al.’s (2007) call for an 

activity-theoretical approach to account for the semiotic dimensions of mathematics activity 

mentioned earlier and, furthermore, it provides a basis for making clear the distinction 

between mathematics activity in workplace training and that in primary and secondary school. 

Radford accomplishes this by introducing the concept of the territory of artifactual thought to 

highlight the integral role of material artifacts in human thinking and semiotic systems of 

cultural signification. This concept positions beliefs about conceptual systems and 

conceptions about truth (ontology), knowability (epistemology), methods of inquiry 

(methodology), and legitimate knowledge representation (semiotic systems), as essential 

elements of any form of mathematics activity. These concepts, in turn, call attention to 

mathematics within different historical or cultural contexts, including various forms of 

training and workplace activity, as distinct and entirely legitimate forms of semiotically- and 

artifactually-mediated mathematics practice. From this perspective, academic or school 

mathematics as we know it is only one of a number of different and legitimate forms of 

mathematics. While, to my knowledge, Radford’s theory of knowledge objectification has 

been applied only to the analysis of mathematics learning within school classrooms to date, it 

is ideally suited to the task of analyzing mathematics activity and learning in workplace 

training. In turn, the study of mathematics activity and learning within the context of 

workplace training provides an ideal setting in which to ground the theory of knowledge 

objectification. 
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RESEARCH CONTEXT AND RESEARCH QUESTIONS 

This study has two foci. The first is the mathematics activity of the pre-apprenticeship class as 

a whole over its 8-week duration. The second is the activity of a single pre-apprentice (who 

will be referred to here as C) learning to read fractions-of-an-inch on a measuring tape during 

a 33-minute one-on-one impromptu tutoring session with the researcher serving as tutor 

(referred to here as L). The pre-apprentice who was the focus of this investigation was a high 

school graduate. 

The specific research questions that framed this analysis were: 

1. What is the nature of the mathematics activity within this pre-apprenticeship program? 

2. Within the context of a tutoring session, what constitutes the mathematics activity of 

learning to read fractions-of-an-inch on a measuring tape? 

3. What other significant processes within this mathematics activity are not yet addressed 

by activity theory or the theory of knowledge objectification, and in what ways do they 

inform these theories? 

METHODOLOGY 

The analysis draws on video recordings, copies of the various print artifacts used, including 

course handouts and students’ written work, and field notes taken by the researcher 

throughout the pre-apprenticeship course. Analysis of the mathematics work done by the 

students was based upon a systematic review of the print materials used in the course. 

Analysis of the tutoring session entailed slow-motion and frame-by-frame analysis of the 

video to assess the role and coordination of various semiotic systems, actions, and artifacts. 

Particular attention was paid to: the semiotic system of cultural signification, norms of 

practice, contradictions or conflicts that serve to motivate this activity, specific objectives of 

or subgoals in the learning process for this student, semiotic processes used both by the 

student and tutor in the objectification process, as well as changes in the subjectification of 

both the pre-apprentice and researcher-as-tutor during this process. 

SUMMARY OF FINDINGS 

This training program was designed to prepare pre-apprentices for entry into formal pipe- 

trades apprenticeship programs in one of four pipe-trades specializations following 

completion of this course. The mathematics addressed reflected mathematics workplace 

production applications that would be addressed in the early years of the in-school 

components of these programs. More specifically, the pre-apprentices were required to think 

mathematically in historically and culturally constituted ways that led them to interpret 

various technical documents, read an imperial ruler or measuring tape, and perform 

calculations needed for a well-defined set of pipe-trades production activities efficiently, 

reliably, and to within acceptable tolerances. In its practical dimension, these findings were 

consistent with those cited in the workplace mathematics research literature (e.g., FitzSimons 

et al., 2005). 

However, the present analysis departs from the existing reports of mathematics in workplace 

training by providing a detailed and nuanced view of distinctive features of this activity as a 

whole. The use of the theory of knowledge objectification, specifically the semiotic system of 

cultural significations, highlights ways in which the mathematics in this activity was a distinct 

and a legitimate form of mathematics with its own ways of doing things, not merely a sub-set 

of school or academic mathematics. Unlike school mathematics, for example, mathematics 

within the context of the pipe trades uses discrete numbers (i.e., all linear measurements are 
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made to the nearest 16
th

 of an inch) and empirical methods of validation or fit as a legitimate 

basis for establishing mathematical fact or truth.  

It is a fundamental assumption of activity theory that all elements within an activity system 

serve to mediate it. The activity system within which C learned to read fractions-of-an-inch on 

his measuring tape involved the semiotic resources that C and L employed including: 

 spoken language including mathematics vocabulary;  

 voice inflection and changes in volume;  

 mathematics notation;  

 three forms of gesture – pointing or indexical, sweeping, and chopping;  

 a line drawn to represent 5/8 of an inch;  

 indexical inscriptions such as circling or underlining existing inscriptions;  

 counting;  

 written text;  

 rhythm in speaking or gestures; and  

 the position, orientation, alignment of physical objects. 

In addition, artifacts that C and L used included: the imperial measuring tape from C’s 

toolbox, a pencil, a paper, and a set of rulers on transparencies. The workplace conventions, 

or norms, that were enacted included the use of binary fractions to the nearest 16
th

 of an inch 

for measuring, as well as norms shared with school mathematics, such as expressing fraction 

results in lowest terms. Last, the division of labour that mediated the learning activity during 

the tutorial included the manner in which C and L each participated in leading the discourse. 

(C started by playing a passive role in this regard and became a more active contributor as the 

session progressed, and L’s role throughout the discourse was as the sole arbiter of the 

correctness of C’s work.) 

While it was not possible to determine precise mediating roles of these elements throughout 

the activity, we can see evidence of each playing a dynamic role in shaping the course of 

events. The various semiotic systems employed, for example, served to draw C’s attention to 

particular aspects of the object of the activity and to deepen his understanding. The design of 

the particular measuring tape used (marked in 32nds of an inch up to 12 inches, and in 16ths 

thereafter) necessitated that this difference be attended to explicitly and negotiated during the 

activity. And the conventional design of the measuring tape with the endpoints of subintervals 

of an inch indicated by a system of signs necessitated that L draw C’s attention explicitly to 

the intervals between these divisions rather than the division markings themselves as the 

object of their discussion in the process of learning to measure. 

A number of processes, identified within the theory of knowledge objectification that shaped 

and reflected C’s and L’s understandings within the activity of learning to read the measuring 

tape, figured prominently within their exchanges. To summarize, C repeated or re-enacted 

what L had just said or done relating to the task-at-hand on 60 separate occasions during the 

33-minute tutoring session. These actions reflected C’s effort to deepen his sense of – 

literally, to deepen his sensory experience of – these statements or actions using the same 

means of semiotic expression that L had used, or other means. On one occasion C re-enacted 

a unique form of semiotic expression, a novel form of gesture, that he had just used himself; 

on a few occasions L re-enacted or repeated what C had done or said earlier; and on another 

occasion L created a zone of proximal development for C to help bring coherence to his 

understanding of the division pattern on the measuring tape by inviting C to explain what he 

(L) had said earlier and then by providing him with verbal prompts to help him along. These 

examples of repeating or re-enacting what another had said correspond to the process of 
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iconicity, identified by Radford (2008c) as a significant part of the process of attaining a 

cultural logic of thinking or knowledge objectification. 

The ways that L and C used multiple semiotic systems together (semiotic nodes) throughout 

the tutoring session and, in C’s case, the further enactment of semiotic contractions, reflected 

their understandings of the object of the activity. These included L’s frequent use of various 

combinations of words, pointing and sweeping gestures, fractions written using digits and 

words, the fractions-of-an-inch division pattern on the measuring tape and transparency rulers, 

along with other semiotic resources in a coordinated manner to draw and maintain C’s 

attention to/on various aspects of the system of binary fractions-of-an-inch on the measuring 

tape. Given L’s extensive experience working with the system of binary fractions-of-an-inch 

extending back to his own elementary school days, it is not surprising that his use of various 

semiotic systems remained relatively consistent during his explanations to C throughout the 

tutoring session, reflecting little or no change in his understanding in the process.  

In contrast, there was a marked shift over the duration of the tutoring session in the way that C 

expressed his understanding using various combinations of semiotic systems as he 

communicated with L and brought clarity to his own thinking. Early on, when C responded to 

L’s request for him to explain what difference he noticed in the patterns of divisions below 12 

inches on the measuring tape, where it was marked to 32nds of an inch, and above 12 inches 

where it was marked only to 16ths, C’s response was predominantly gestural, accompanied by 

only a single sentence and two sentence fragments. As the tutoring session progressed, C’s 

means of expressing himself shifted completely, at times, to the clear and succinct use of 

words alone – an ultimate form of a semiotic contraction. 

The last process from the theory of knowledge objectification to be summarized here is that of 

C’s and L’s subjectification. Over the 33 minutes of the tutoring session, C became more 

active in the way in which he participated within the activity. This is evidenced by the 

collective changes in the patterns of his gaze and attentiveness, his role in the dialogue, his 

affective responses, and his own expressions of agency and self-reliance regarding his use of 

the measuring tape. C also nodded his head or said “okay” or “yeah” on numerous occasions 

throughout the session, acknowledging to L that he was following what L was saying. This 

also reflected part of C’s process of subjectivity within the activity. L changed during the 

tutoring session as well, but in a less obvious way. Specifically, L changed in his approach to 

teaching C how to read the measuring tape from a more generalizable approach (intended for 

reading any form of binary measuring tape or ruler marked to any binary subdivision of an 

inch), typical of school mathematics teaching, to a much more practical one tailored 

specifically to the workplace demands within the pipe trades, specifically reading fractions-

of-an-inch only to 16ths.  

This analysis revealed a number of features of mathematics learning activity that are new to 

activity theory generally, and the theory of knowledge objectification in particular.  A new 

form of iconicity was identified (that of re-enacting a form of gesture that appeared initially as 

a novel form of gesture enacted by oneself) as was the social process of semiotic extraction – 

the process of making a conscious, systematic, and sustained effort to make apparent to 

another the mathematical meaning of a conventional semiotic contraction used in practice – a 

complement to the process of semiotic contraction identified by Radford. These contributions 

are new to the theory of knowledge objectification and the field of social cognition. The 

identification of particular categories of actions and operations that provided evidence of a 

subjectification during mathematics learning elaborates existing research as well. 
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DISCUSSION 

This analysis of the mathematics activity within the pre-apprenticeship training program as a 

whole portrays ways in which this is a distinct form of cultural practice. The analysis of the 

pre-apprentice learning to read fractions-of-an-inch on a measuring tape informs Radford’s 

theory of knowledge objectification by showing, through fine-grained analysis, relevant 

aspects of its dynamics and by calling attention to a new form of iconicity and a process of 

semiotic extraction, both original contributions to research. It also shows various ways in 

which a learner’s subjectification is evident in the process of learning mathematics. Together 

these results have a number of practical implications for the teaching of mathematics 

generally, and mathematics for the workplace in particular, by drawing attention to the social, 

cultural, historical, and mediated dimensions and dynamics of mathematics learning activity 

and the need to address these in mathematics training for the workplace. 
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STUDENTS THROUGH MAWIKINUTIMATIMK 
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INTRODUCTION 

I am frequently asked by teachers for good resources that they can use to include more 

Indigenous perspectives in mathematics.  One such moment occurred at a high school 

mathematics workshop I was leading for teachers of Aboriginal students in Regina in 2007.  

A teacher entered the room and immediately told me, “My administrator told me to bring 

back three good ideas, so I need three good ideas.” The need for three good ideas was sparked 

by a recent move within her province to infuse indigenous perspectives in all areas of 

curriculum. She seemed somewhat let down when I suggested, “Know your students, know 

their communities, and believe that they can learn.” She was looking for pre-packaged lesson 

ideas or perhaps a checklist of steps that would guarantee success in mathematics for her 

Aboriginal students. But there are no shortcuts to authentically understanding and addressing 

the complexities associated with mathematics learning for Aboriginal students. 

I began my teaching career in a Mi’kmaw school in Nova Scotia in 1995. When I was hired to 

teach mathematics for students from Grades 7 through 12, I committed myself to ensuring that 

my teaching supported the cultural identity development of my students. In those early years, 

I might have hoped for three good ideas as well. I do recall searching for culturally 

appropriate lessons and trying to make lessons connect to student lives, which proved to be 

moderately helpful, but I quickly realized that culturally responsive teaching was far more 

complex than just three good ideas. My doctoral work emerged from ten years of learning 

with colleagues and community members, ten years of questioning what might work well for 

my students and what might create conflicts, ten years of listening to my students and learning 

from them. In this paper I share some of this journey of discovery. 

RESEARCH CONTEXT 

The Mi’kmaw communities have a stated goal of decolonizing education by incorporating 

indigenous knowledge, culture, and values in their curricular and pedagogical practices. Such 

a decolonized approach to education that allows for the inclusion of indigenous worldviews 

has been advocated as a necessity to meet the needs of Mi’kmaw students (Orr, Paul, & Paul, 

2002; Battiste, 1998, 2000). Yet Mi’kmaw communities are also bound by the agreement to 

offer provincially transferrable curriculum and to demonstrate measures of success based on 

provincially developed assessments. As such, teachers regularly grapple with ways to 

negotiate the space between school-based mathematics and Mi’kmaw ways of reasoning 

about things seen as mathematical.  
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It has been argued that disengagement from mathematics emerges a result of the conflict 

between Aboriginal culture and the cultural values embedded in school-based mathematics 

programs (Cajete, 1994; Secada, Hankes, & Fast, 2002). Gutiérrez (2007) has shown that the 

lack of windows and mirrors in mathematics curriculum can result in disengagement for many 

students from marginalized groups who feel their identity is being denied and they lack power 

to influence curriculum. She has argued that for these students the cost of participation means 

denying self and community to participate in the dominant view of mathematics. Often times 

these costs are seen as too great and children choose not to participate. Doolittle (2006) 

echoed this idea, cautioning that in learning mathematics, “as something is gained, something 

might be lost too. We have some idea of the benefit, but do we know anything at all about the 

cost?” (p. 19).  

My doctoral research examined the tensions in mathematics teaching identified by teachers in 

these Mi’kmaw communities. The journey of this research project was an attempt to uncover 

key issues that must be attended to in transforming mathematics education for Mi’kmaw 

students. This research project addresses the following key research question: How can 

curricula and pedagogy be transformed to support Mi’kmaw students as they negotiate their 

position between Aboriginal and school-based concepts of mathematics? 

METHODOLOGY 

An indigenist methodology was used for this research. The indigenist perspective emerged as 

a response to a need for a new paradigm of decolonizing research (Denzin, 2005) and is seen 

as a way to “research back to power” (Smith, 2005, p. 90). This approach to research “is 

formed around the three principles of resistance, political integrity, and privileging indigenous 

voices” (Smith, 2005, p. 89) and has a “purposeful agenda for transforming the institution of 

research, the deep underlying structures and taken-for-granted ways of organizing, 

conducting, and disseminating research and knowledge” (p. 88). There is an underlying 

“commitment to moral praxis, to issues of self-determination, empowerment, healing, love, 

community solidarity, respect for the earth, and respect for elders” (Denzin, 2005, p. 943). 

Such paradigms create space to privilege indigenous knowledge (Denzin, 2005; Smith, 2005) 

and acknowledge that knowledge production must happen in a relational context (Denzin, 

2005).   

In search of an appropriate indigenist paradigm, I sought the advice of many community 

elders. I searched for a way to describe the activity of people coming together to discuss an 

issue or solve a problem. During an informal conversation with one community leader, it was 

suggested that I use the word mawikinutimatimk which means ‘coming together to learn 

together’. It implies that everyone has something to share and everyone has something that 

they can learn. Thus mawikinutimatimk became the methodology for the doctoral research 

project and will continue to be the methodology for this new phase of the research. 

The project was conducted in two Mi’kmaw K-6 schools over a nine-month period. Teachers, 

support staff, and elders were invited to participate. Ten after-school sessions were held in 

one school and twelve in the other school. In addition to our conversations, I also spent time 

working with teachers in their classrooms co-planning and co-teaching a lesson, or modelling 

a lesson. After-school conversations were recorded and transcribed. Classroom sessions were 

not recorded but field notes were kept and experiences from the classroom sessions were 

often discussed during our after-school sessions. 
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FINDINGS AND DISCUSSION 

Through our conversations, four key areas of attention emerged as themes: 1) the need to 

learn from Mi’kmaw language; 2) the importance of attending to value differences between 

Mi’kmaw concepts of mathematics and school-based mathematics; 3) the importance of 

attending to ways of learning and knowing; and 4) the significance of making 

ethnomathematical connections for students. Within each of these categories, teachers 

identified conflicts that arise when worldviews collide and identified potential strategies to 

address these tensions. See the model below in Figure 1. 

 

Figure 1 

LEARNING FROM LANGUAGE 

The need to learn from Mi’kmaw language was the most pronounced theme in the research.  

Thus I will highlight more of the findings from this part of the model and then briefly 

summarize the findings represented by the remaining parts of the model in sections below. 

It has been argued that “a proper understanding of the link between language and mathematics 

may be the key to finally throwing off the shadow of imperialism and colonialisation that 

continues to haunt education for indigenous groups” (Barton, 2008, p. 9). This sentiment was 

supported by the participants in the study who felt strongly that language defines worldview 

and thus, by understanding Mi’kmaw language structures, teachers can gain greater insight 

into the ways of thinking of their students and be aware of potential tensions. 

Conversations related to language focused on three main ideas. Firstly, there was a call to 

include more Mi’kmaw language in the mathematics classroom, with one group in particular 

stressing the importance of reclaiming mathematical words and supporting Mi’kmaq-speaking 
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teachers to develop a lexicon of words that could be used in their classes.  Participants cited 

examples of moments in their classroom teaching when they saw that a simple switch from 

English to Mi’kmaq resulted in increased comprehension. Elaine, an early elementary teacher 

commented on the way in which her students often do not understand what she means when 

she says, “How many?”, but noted, “Say ‘Tasikl (how many – inanimate)?” and they get it.” 

Secondly, there emerged the notion that a great deal can be learned from studying the 

structure of the Mi’kmaw language even for non-speakers. In particular, this notion included a 

multi-layered discussion about what teachers, both speakers and non-speakers, can learn by 

asking questions such as “What is the word for…?” or “Is there a word for…?”  

The idea of rooting to and learning from the home language has been advocated for in the 

literature on mathematics education in multilingual classrooms (Moschkovich, 2002; Setati, 

2005). In my own teaching I often found it beneficial to learn Mi’kmaw words for 

mathematical concepts. Often, I would ask for words and occasionally I would discover that 

either the word did not exist or it was much more complex than I had anticipated. No matter 

what the result of my inquiry, I found the mere discussion had a profound effect on deepening 

my understanding of how my students might view mathematics.  

Many of the research participants agreed that in order to better understand mathematical 

concepts our group needed to explore the Mi’kmaw ways in which we talked about these 

concepts. Richard proved to be a particularly helpful participant for this purpose as his 

knowledge of the language was often called upon. Many of our sessions would turn into mini 

language classes with Richard sharing his knowledge. Such an example arose when we were 

talking about fractions. Fractions are difficult for many children to learn. Yet through our 

conversations, we explored words that many children often hear at home when being asked to 

share treats with family members or friends. Richard explained, “pukwe’ is part of something, 

but when you say aqatiyik that is half of it … now if a child understood Mi’kmaq very well, 

it’d be a lot easier for them to understand.” Emily agreed, claiming “I was just thinking when 

you say pukwe’, that language is still used in the homes, pukwe’ iknumi kandiamul (‘give me 

a piece of candy’), you still hear that … it is used for everyday language.” It was suggested 

that using these kinds of words might help students connect more with the often challenging 

concept of fractions. 

In addition to knowing the Mi’kmaw words for concepts, it is also helpful to know when the 

concept does not have a direct translation. As Barton (2008) argued: 

Different concepts are expressed in different languages, and some concepts are 

extremely difficult, some say impossible to translate between languages. The 

implication is that different quantitative, relational, and spatial concepts may also 

not be easily transformed into each other. (p. 69) 

If a mathematical concept does not have a direct Mi’kmaw translation, then it is likely that the 

concept is not part of the everyday language of the child. The result of this can mean that a 

concept that is thought to be quite simple in mainstream mathematics can in fact be quite 

complex for the child who is unfamiliar with the concept. This is an example of the type of 

taken-for-granted assumption of the school curriculum that may lead many Aboriginal 

students to have challenges with the subject matter or to disengage from it as has been 

discussed in the literature (see Cajete, 1994; Lipka, 1994; Nicol, Archibald, Kelleher, & 

Brown, 2006; Yamamura, Netser, & Qanatsiaq, 2003). An awareness of these potential 

conflicts may help teachers to mitigate them. 

The word ‘flat’ is one example of a word that has no Mi’kmaw translation. I have asked on 

numerous occasions if there is a word for ‘flat’ and I have attempted to generate scenarios 
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whereby we would need to use the word ‘flat’. I asked about a flat tire but I was told that in 

Mi’kmaq we would say it was losing air. I asked about the bottom of a basket, suggesting it 

was flat, but I was told that it was the bottom; it had to be flat so that it does not roll around. 

Understanding that there is no word for ‘flat’ enabled us to think differently about how we 

describe a flat surface in mathematics.  

An interesting connection to this notion occurred for me during a grade 3 lesson on prisms 

and pyramids. As we sat on carpet with students and asked them to say one thing about the 

prism that was being passed around, one young girl placed the prism on the floor and stated, 

“It can sit still!” Instantly I began to get excited by her answer. It made perfect sense that she 

would not talk about the flatness of the face but rather its usefulness. This connects directly to 

the relational way in which Mi’kmaw language is used and constructed. When I later 

recounted this story during an ad hoc session at the Canadian Mathematics Education Study 

Group Conference in Sherbrooke, Quebec (May 2008), Walter Whitely mentioned to me that 

the word ‘polyhedron’ actually is derived from the Greek word hedron which means ‘seat’, 

and ‘polyhedron’ means ‘many seats’ or ‘many ways to sit’. 

Some terms that are considered universal or commonplace in English may be more complex 

in Mi’kmaq as became evident on the day that Donna arrived for the research conversation, 

curious about the Mi’kmaw word for ‘middle’. She and the speech language pathologist had 

encountered difficulty when working with a student on an assessment earlier in the week. The 

child had been asked to point to the object in the middle of a row to assess language 

processing skills. When the child could not perform this task, Donna wondered whether the 

child had difficulties processing the language or whether the child simply did not understand 

the word ‘middle’. During our conversations in her classroom earlier in the day, she had 

talked with me about this matter and explained that once she had explained the term and 

provided the child with some experiences of ‘middle’, he was able to execute the task of 

pointing to the object in the middle quite easily. She said that she wanted to know if there was 

a word for middle in Mi’kmaq and she asked Richard this question when she arrived for our 

after school conversations that day.  

Donna and I listened in on a long discussion between Richard and Elaine, another Mi’kmaw 

speaking teacher, about various ways you would describe middle things in various contexts, 

such as the middle shelf, the middle of the room, and so on, yet many of these words tended 

to be translated more as ‘centre’ or ‘half way’ rather than ‘middle’. At the conclusion of this 

conversation Donna exclaimed with some degree of satisfaction, “Right, so it’s a word you 

wouldn’t really use.”  

When this type of language conversation happened, participants seemed to become aware of 

the different ways in which relationships are explained in different languages. This exposes 

the taken-for-granted assumptions embedded in school-based mathematics and allows 

teachers to begin to question this hegemony. English language has a way of talking about 

middle and uses this word in a variety of contexts; Mi’kmaq has several different ways of 

talking about the concept of middle but none of these words directly translate to the word 

‘middle’. Given this complexity, it makes sense that Mi’kmaw children may not find this 

concept as simple as the curriculum writers would assume it to be.  

Thirdly, a closely related idea focused on investigating discourse patterns and the ways in 

which the Mi’kmaw language is structured. Most notably, a change in language-use patterns 

to reflect Mi’kmaw verb-based grammar structures, referred to as ‘verbification’, is 

exemplified as a strategy that holds promise for supporting Mi’kmaw students learning 

mathematics. 
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The Mi’kmaw language is a verb-based language. There is a sense of motion in the ways in 

which mathematical objects and ideas are expressed in Mi’kmaq. During one particular 

session in Wutank, Richard, a technology teacher and Mi’kmaw language expert shared with 

the group some ideas about the concept of ‘straight’. He explained that the word pekaq means 

‘it goes straight’. There is a sense of motion embedded in the word. Similarly pektaqtek is a 

word to describe something that is straight such as a fence. He explained that there “is a sense 

of motion from here to the other end – pektaqtek [it goes straight].” 

During the research, while working with a pre-service teacher in a third-grade classroom, 

numerous examples of verbification were heard in how the students explained their 

understanding of prisms and pyramids. Each group was given a prism or pyramid and asked 

to say why they felt it was a pyramid or a prism. One pair of students declared that they had a 

pyramid because it looked like a pyramid. When prompted to explain what they meant by that 

they said, “well it goes like this (gesture), into a triangle.” This involved a hand gesture 

showing how the sides were merging. Another student also used a hand gesture to explain her 

declaration that her group had a prism “because it goes like this” and motioned her hands up 

and down in uniform fashion. A real challenge arose when it came time for the group with the 

triangular prism to report back. There was some debate about whether this should be a prism 

or a pyramid. “It kind of forms into a triangle,” suggested one student, but this seemed to be 

not enough to commit to it being a pyramid. “What if we look at it like this?” I asked as I 

rotated the card on the board so that it now appeared to be standing on its triangular base. 

“Oh! It’s a prism,” a girl from the back offered, “because it goes like this,” and she motioned 

again with her hands up and down in a uniform manner. This seemed to convince her 

classmates who offered supporting arguments such as: “Yeah, it’s not coming to a point all 

around like the other ones.” They all agreed that although it kind of looked like a pyramid in 

some ways, it was definitely a prism. 

A QUESTION OF VALUES 

The research conversations often turned to conflicting values that were apparent between 

school-based approaches to mathematics and Mi’kmaw ways of reasoning about 

mathematical questions. These value differences can provide teachers with insight that may 

enable them to anticipate points where two worldviews might bump up against each other and 

cause students to be conflicted and possibly disengage. These included a conflict between 

privileging numerical reasoning in mathematics curriculum over spatial reasoning more 

commonly used within the community and embedded in the language. Other Mi’kmaw 

approaches to mathematics identified included the common use of estimation, the value of 

playing with number, and the connection to necessity and intention. Many of these were noted 

as often being absent in school-based mathematics. 

WAYS OF LEARNING 

Our discussions in both research groups often turned to questions about children’s preferred 

ways of learning and how they might influence the design of tasks for learning mathematics. 

It is important to avoid over-generalizations about aboriginal learning styles as “Aboriginal 

children [are] diverse learners. They do not have a single homogenous learning style” 

(Battiste, 2002, p. 16). There is as much diversity of learning styles within a Mi’kmaw class 

as there is in any class, so there cannot be a one-size-fits-all approach. That being said, some 

of the discussions focused on traditional apprenticeship models and mastery approaches to 

learning, as well as those related to visual-spatial styles of learning and hands-on learning.  

Other observations pointed to the role of gestures and embodied cognition. It was argued that 

understanding these different approaches to learning can provide teachers with additional 

strategies that can be employed in mathematics classrooms. 
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THE IMPORTANCE OF CULTURAL CONNECTIONS 

The importance of making connections to the mathematical thinking that is, and has always 

been, evident in the Mi’kmaw community was seen as an important part of transforming 

mathematics education. As a group we explored some of the evidence of mathematical 

thinking that exists within the community’s daily practices and recognized that there is far 

more to be done in this area. We also discussed some of things that have been done in both 

schools to strengthen the connection between school-based mathematics and community, 

cultural and everyday practices. We also discussed the challenges with such an 

ethnomathematical approach, including a risk of trivialization, and agreed that development of 

ethnomathematical resources must be developed in consultation with elders and community 

members to mitigate any potential issues. 

CONCLUDING THOUGHTS 

I have highlighted some of the key aspects of the model in this paper in an attempt to show 

the multiple aspects that need to be attended to if we are to decolonize mathematics education 

for Mi’kmaw students. Furthermore, in another Aboriginal context some of these issues may 

arise, and there may be other issues as well. What is essential is that conversations about these 

complexities need to happen with community members to discover potential complexities that 

may be working against students as they attempt to learn mathematics. It is important to 

question taken-for-granted assumptions and work together to find new ways forward in 

mathematics education for Aboriginal students. While many teachers may seek lessons that 

have cultural connections, this research has shown that such an approach misses much more 

significant issues. Asking questions about language, values, ways of knowing, and cultural 

connections is the first step and can lead to a more effective approach to decolonizing 

mathematics education for Aboriginal students. 

ACKNOWLEDGEMENT 

This work was funded in part by the Social Sciences and Humanities Research Council of 

Canada Doctoral Fellowship Program. 

REFERENCES 

Barton, B. (2008). Language and mathematics. Springer: New York. 

Battiste, M. (1998). Enabling the autumn seed: Toward a decolonized approach to 

aboriginal knowledge, language, and education. Canadian Journal of Native 

Education, 22, 16-27. 

Battiste, M. (2000).  Reclaiming indigenous voice and vision. UBC Press: Vancouver.   

Battiste, M. (2002). Indigenous knowledge and pedagogy in First Nations education: 

A literature review with recommendations. Ottawa, ON: National Working Group 

on Education and the Minister of Indian Affairs Indian and Northern Affairs 

Canada (INAC). Retrieved from 

http://www.usask.ca/education/people/battistem/ikp_e.pdf 

Cajete, G. (1994).  Look to the mountain: An ecology of indigenous education. Kivaki 

Press: Durango, Colorado. 

Denzin, N. (2005). Emancipatory discourses and the ethics and politics of 

interpretation. In N. Denzin & Y. Lincoln (Eds.), The Sage handbook of 

qualitative research (3rd ed., pp. 933-958). Thousand Oaks: Sage.  



CMESG/GCEDM Proceedings 2011  New PhD Report 

160 

Doolittle, E. (2006). Mathematics as medicine. In P. Liljedahl (Ed.), Proceedings of 

the 30
th

 Annual Meeting of the Canadian Mathematics Education Study Group 

(pp. 17-25). Burnaby, BC: SFU Press. 

Gutiérrez, R. (2007). Context matters: Equity, success, and the future of mathematics 

education. In T. Lamberg & L. R. Wiest (Eds.), Proceedings of the 29th Annual 

Meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Stateline (Lake Tahoe), NV: University of 

Nevada, Reno. 

Lipka, J. (1994). Culturally negotiated schooling: Toward a Yup’ik mathematics. 

Journal of American Indian Education, 33(3), 14-30.  

Moschkovich, J. (2002). A situated and sociocultural perspective on bilingual 

mathematics learners. Mathematical Thinking and Learning, 4(2-3), 189-212. 

Nicol, C., Archibald, J., Kelleher, H., & Brown, L. (2006, June). Transformative 

education for Aboriginal mathematics learning: A community-based action 

research project. BC Educational Leadership Research, 1-6. 

Orr, J., Paul, J., & Paul, S. (2002). Decolonizing Mi’kmaw education through cultural 

practical knowledge. McGill Journal of Education, 37(3), 331-354.  

Secada,W., Hankes, J., & Fast, G. (Eds.). (2002). Changing the faces of mathematics: 

Perspectives of indigenous people of North America. Reston, VA: The National 

Council of Teachers of Mathematics. 

Setati, M. (2005). Teaching mathematics in a primary multilingual classroom. Journal 

for Research in Mathematics Education, 36(5), 447-466. 

Smith, L. (2005). On tricky ground. In N. Denzin & Y. Lincoln (Eds.), The Sage 

handbook of qualitative research (3rd ed., pp. 85-108). Thousand Oaks: Sage.  

Yamamura, B., Netser, S., & Qanatsiaq, N. (2003). Community elders, traditional 

knowledge, and a mathematics curriculum framework. Education Canada, 43(1), 

44-46. 



 

 

Ad Hoc Sessions 
 

 
Séances ad hoc 





 

163 

COMING TO KNOW MATHEMATICS: VIEWS OF TWO TEACHER 
MATHEMATICIANS 

Veda Abu-Bakare 

Simon Fraser University 

Writing at the turn of the twentieth-century, in the essay, “Mathematical Discovery”, Henri 

Poincaré (1914/2003) reflects: 

One first fact should astonish us, or rather would astonish us if we were not too 

much accustomed to it. How does it happen that there are people who do not 

understand mathematics? If the science invokes only the rules of logic, those 

accepted by all well-formed minds, if its evidence is founded on principles that are 

common to all men, and that none but a madman would attempt to deny, how does it 

happen that there are so many people who are entirely impervious to it? (pp. 46-47) 

As students and teachers of mathematics, our greatest challenge is that of helping our students 

understand mathematics. So it seems to me that we have to go back to the beginning and ask: 

What does it take to understand mathematics? What does it take to ‘know’ the subject? Where 

are the challenges and the pitfalls?  

I begin with the work of Leone Burton on mathematicians as enquirers. Burton, from a 

reading of the philosophical, pedagogical and feminist literature, identified four 

epistemological challenges to knowing mathematics: objectivity, homogeneity, impersonality 

and incoherence. She proposed a model for coming to know mathematics with five categories: 

1) person- and cultural/social-relatedness, 2) aesthetics, 3) intuition and insight, 4) difference 

in approaches and styles of thinking, and 5) connectivities (Burton, 1995, 1999).   

Burton (2004) tested her model in a study of 76 UK research mathematicians in the 1990s and 

found that the categories were ‘remarkably robust’.  I wondered whether, if asked about their 

trajectories and experiences in mathematics, the mathematicians I knew would speak of the 

same categories. In a pilot study with two mathematician colleagues, I found that only the first 

category relating to personal, social and cultural influences was prominent, with the subjects 

speaking of the other categories only when specifically asked. This finding has given the 

impetus for further work on our encounters with the subject of mathematics. More 

specifically, what are the factors that come into play in not only the mathematical experience 

but in our mathematical experiences? 
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WHAT DOES ‘BETTER’ UNIVERSITY MATHEMATICS 
INSTRUCTION LOOK LIKE? 

Mary Beisiegel, Harvard Graduate School of Education 

Asia Matthews, Queen’s University 

A central motivation in mathematics education research is to understand forms of instruction 

which improve students’ understanding of mathematics.  There is a large body of research on 

different forms of elementary and secondary instruction and its impact on student learning, 

and while there have been decades of complaints about the traditional, lecture-based 

instruction most commonly used in university mathematics courses (Alsina, 2001; Bass, 

2006; Kline, 1977; Seymour & Hewitt, 1997), there has been little formative research on what 

mathematics instruction at the university level might look like aside from a traditional lecture.  

We propose a broad, overarching question: What does ‘better’ university mathematics 

teaching look like?  Though little research exists, we have seen recommendations for 

improving instruction. These appear within the Scholarship of Teaching and Learning 

community (see ISSOTL) and many Teaching and Learning Centres within universities, for 

example the Carl Wieman Science Education Initiative and the Queen’s University Society 

for Teaching and Learning.  To further explore these recommendations, we ask two questions: 

1. What variables can instructors manipulate when designing and teaching a university 

mathematics course? 

2. Do we, as a community, know what specific actions help undergraduate students to 

learn mathematics better? 

Our goal was a discussion with participants to develop a better understanding of the 

community’s perspective on this issue. The skeletal outline that we drew up involved four 

elements: the goals of a university education, the structure of the environment in which we 

teach, instructional design, and the actions taken by the instructor while teaching.  

In the end, we see that our inquiry was not sufficiently focused.  In response to the first 

question, the consensus of the participants was that although we may be able to identify good 

teaching if we see it, there are too many variables to control in teaching to be able to construct 

a good teaching practice for all.  The answers to the second question were very personal, and 

have all been seen in recommendations noted above.    

Perhaps the most interesting element of the discussion was the presentation of goals: 

academic (focus on ideas, tasks, concepts); to transform our students; to engage and 

communicate with students. Thus, we might refine our inquiry by asking more pointed 

questions: “How would one measure instructional gains at the university level?” and “Does 

changing the structure of the course (in-class time, different tasks, assessment) affect student 

understanding more than the instructor’s actions in the class?”  Perhaps it would be wise to 

start with, “What does the instructor bring to the class that students can’t get elsewhere?” 
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EXPLORING VARIABILITY IN A  
DYNAMIC COMPUTER-BASED ENVIRONMENT 

George Ekol 

Simon Fraser University 

Over the last two decades, research in post-secondary statistics education has focused on 

developing instructional materials and strategies that might support students’ learning to 

become statistically literate, reasoning, statistically thinking, and in general, well-informed 

citizens. Central to these constructs of statistical literacy, reasoning, and thinking, is 

variability, which according to Alan Rossman, is the backbone of statistical thinking. 

Rossman (1996) argues that without variability, there would be no reason to study statistics. 

This ad hoc session focused on students’ understanding and interpretion of formal measures 

of variability. For example, how dynamic technology might be used to model the relation 

between the mean and standard deviation for a given discrete dataset. The specific question 

was: “Given what we already know from research that students find the concept of variability 

quite challenging (see del Mas & Liu, 2005; Mathew & Clark, 2003; Garfield & Ben-Zvi, 

2008), how might dynamic computer-based models support students’ conceptual 

understanding of variability?”  

Participants brainstormed on some of the available software that could be used to develop 

dynamic models for learning concepts in basic statistics. The list included Wolfram Alpha, 

GeoGebra, The Geometer’s Sketchpad (GSP), and Fathom. One participant suggested 

checking on the Statistics Canada website, for resources that might help in the study, for 

example, getting some real data for students to use when learning the concepts. The ideas and 

suggestions from the session clearly represented the broad interest that participants had in 

computer technology and its applications. I was also privileged to receive some input from 

participants who knew about my presentation but were unable to attend. One conversation, in 

particular, was a discussion that I had after the ad hoc session with a CMESG participant from 

Brock University. It was a fruitful discussion in that it added more ideas and materials to my 

study. He shared some dynamic models they had developed at Brock University. 
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VIRTUAL MATHEMATICS MARATHON: 
A MATHEMATICAL GAME FOR ALL CHILDREN 

Margo Kondratieva, Memorial University 

Viktor Freiman, Université de Moncton 

“I am in grade 6 and I feel bored in my mathematical class. Thank you for posting interesting 

problems that I can solve every week and compete with other children!” 

This is a line from a student’s letter to the Virtual Mathematical Marathon team (VMM, 

http://www8.umoncton.ca/umcm-mmv/index.php). This quotation represents the intended 

audience of the new website well: junior high school students with mathematical ability and 

interest, especially students who would benefit from nurturing their talent, but lack challenge 

in their regular mathematics classrooms. As an open competition, it may also attract anyone 

who likes solving mathematical problems online. In addition, the site may serve mathematics 

teachers as a resource for classroom enrichment.   

According to research, regular participation in extra-curricular mathematical activities is vital 

for proper development of mathematically inclined students (e.g. see Barbeau & Taylor, 2009; 

Krutetskii, 1976). These students need to meet other students with similar interests and 

compete with them in meeting mathematical challenges in a friendly learning environment. 

Mathematical clubs, Math League team games and individual contests are traditional ways of 

organizing and challenging mathematically talented youth. Net Generation-friendly, virtual 

competition may also help reach interested students in remote places, and connect children all 

around the world.  

Virtual Math Marathon is a gradually developing bilingual (French and English) website. Its 

main activities are 15-week rounds with four new problems posted weekly. Students have a 

week to think about the problems on their own as well as to learn from analyzing suggested 

later solutions. The winners are the students who demonstrate not only good mathematical 

knowledge, intuition and problem solving skills, but also persistence and commitment to 

solve problems regularly over a three-month period. 

The VMM team is composed of mathematicians and educators who enjoy working together 

helping mathematically inclined children to realize their full potential in the 21
st
 century 

environment. Our international team includes university professors, programmers and 

students: Ed Barbeau, Mark Applebaum, Chadia Moghrabi, Natalia Vinogradova, Evgueni 

Vichnevetski, Elena Polotskaia, Ildiko Pelczer, Oumar Maiga, Adnen Barhoumi, Ian Payne, 

Dominic Manuel, and Karim Besbes. Support from the Canadian National Sciences and 

Engineering Research Council (Promoscience Grant), Canadian Mathematical Society, New 

Brunswick Innovation Foundation, Memorial University, as well as Université de Moncton is 

essential for project development. 

The purpose of this note is to inform mathematics educators about the VMM and invite the 

contribution of ideas regarding its development and promotion among interested children. 

Contact us at viktor.freiman@umoncton.ca or mkondra@mun.ca. 
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EARLY CHILDHOOD MATHEMATICS EDUCATION 

Donna Kotsopoulos and Joanne Lee 

Wilfrid Laurier University 

Research has shown that young children from Asian countries are outperforming those from 

Western cultures beginning at age three, and differences are sustained and lasting (Miller, 

Kelly, & Zhou, 2000; Mullis, Martin, & Foy, 2008). Differences in mathematics achievement 

at these early ages have been found to be related to early learning environments and unrelated 

to parental education and socioeconomics (Duncan et al., 2007). It can be surmised that 

something very different must be happening in early childhood mathematics education in 

Asian countries. Recent large-scale studies of pre-school settings in the US found that young 

children spend only approximately 6% of their time in total on activities with either a primary 

or supplementary focus on mathematics (Barbarin et al., 2005). Even at home, families tend to 

focus more on literacy development and less on numeracy development (Cannon & Ginsburg, 

2008). Low rates of engagement in mathematics in early childhood are not surprising. Studies 

have shown that (a) early childhood educators are underprepared in the area of early 

mathematical learning, and (b) appropriate professional development (early mathematical 

cognition and pedagogy) is scarce (Cross, Woods, & Schweingruber, 2009). More research in 

Canada is needed to explore the complex issues of early childhood mathematics education 

(ages 0 to 6). Currently, there is a dearth of education researchers addressing early 

mathematics learning. More research of varying types is urgently needed. 
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THE CHALLENGES OF MATHEMATICS IN-SERVICE 

Susan Oesterle 

Douglas College 

In the Fall of 2011, Douglas College is set to launch a new program targeted at elementary 

and middle school teachers who wish to improve their knowledge and skills for teaching 

mathematics and science: the Post-Baccalaureate Diploma in Mathematics & Science 

Teaching Program. As an instructor for the mathematics course within this program, I was 

interested in bringing together an ad hoc group for the sharing of information, wisdom, and 

resources related to supporting teachers in an in-service environment. As observed by 

Višňovská (2007), “[d]esigning effective professional development (PD) programs for 

mathematics teachers is a complex endeavour about which a lot remains to be learned (Borko, 

2004)”. 

Particular challenges addressed in the discussion included: 

 Teachers’ mathematics content knowledge 

 Teachers’ attitudes towards mathematics and mathematics teaching 

 Teachers’ motivations for taking on an in-service program 

 Diversity within the in-service group in terms of teaching context and grade-level 

focus 

 Evaluation – graded assignments vs. mastery 

 Selection of tasks that will be effective in building content knowledge and 

pedagogical content knowledge (PCK), while having a positive impact on affect. 

Participants shared their experiences.  Within the conversation there was much consensus, 

particularly around the benefits of taking advantage of the teachers’ diversity and experiences, 

of making use of manipulatives to solidify teachers’ conceptual understanding while building 

their PCK, of providing opportunities for reflection, and of building a learning community to 

encourage on-going support and professional development beyond the end of the course.  
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HIGH SCHOOL MATHEMATICS STUDENTS’ TRAJECTORIES: 
TRACKING OR DIFFERENTIATING FOR SUCCESS? 

Ralph T. Mason, University of Manitoba 

P. Janelle McFeetors, University of Alberta 

This poster presentation shared data from the longitudinal Trajectories Project, which 

followed high school students over a five year period, ending with their graduation in June 

2010 (Mason & McFeetors, 2007). Ten cycles of interviews over the five years engaged 

students in describing their approaches to learning mathematics, their sense of purpose in 

relation to the mathematics they were studying, and the decisions they made that affected their 

success as high school mathematics students and learners. One major decision all students 

faced each year from grade 9 on was to select the mathematics course(s) they would take the 

next year, from a choice of four courses of significantly different academic difficulty. 

In the United States, various theorists have suggested that tracking – the channeling of 

students into different mathematics programs based on their past performance – has resulted 

in substantially inequitable participation in the courses that lead to success in mathematically 

dependent post-secondary programs (El-Haj & Rubin, 2009; Moses & Cobb, 2001). In 

Canada, we tend to refer to students choosing different courses as streaming. Using data from 

the Trajectories Project, our poster displayed the pathways of students as they chose their 

mathematics courses together with statements of students explaining their course choices. A 

network diagram – where nodes represented mathematics courses selected and links 

represented the flow of students through courses – highlighted the tension between the 

nuances of the students’ lived experiences and a compact visual representation. 

The intention was to gather conference participants’ perspectives on what characteristics and 

research pursuits would determine whether differentiated mathematics courses in Canadian 

high schools are legitimately meeting the different educational needs and capabilities of its 

students, or subjecting them to a sorting process which ranks them for exclusion from further 

study, perhaps replicating social class and cultural differences. Four questions were offered to 

guide CMESG participants’ thinking: 

1. Are students in the top streams challenged to succeed, or taught to succeed? 

2. Are students informed to make good choices, or slotted by marks? 

3. Does the range of streams offer different content and experiences, or only different 

levels of difficulty? 

4. Do the lower streams offer legitimate mathematics, or only fundamental arithmetic? 
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Appendix A / Annexe A 

WORKING GROUPS AT EACH ANNUAL MEETING / GROUPES DE 
TRAVAIL DES RENCONTRES ANNUELLES 

 

 

1977 Queen’s University, Kingston, Ontario 

 

 · Teacher education programmes 

 · Undergraduate mathematics programmes and prospective teachers 

 · Research and mathematics education 

 · Learning and teaching mathematics 

 

1978 Queen’s University, Kingston, Ontario 

 

 · Mathematics courses for prospective elementary teachers 

 · Mathematization 

 · Research in mathematics education 

 

1979 Queen’s University, Kingston, Ontario 

 

· Ratio and proportion: a study of a mathematical concept 

 · Minicalculators in the mathematics classroom 

 · Is there a mathematical method? 

 · Topics suitable for mathematics courses for elementary teachers 

 

1980 Université Laval, Québec, Québec 

 

 · The teaching of calculus and analysis 

 · Applications of mathematics for high school students 

 · Geometry in the elementary and junior high school curriculum 

 · The diagnosis and remediation of common mathematical errors 

 

1981 University of Alberta, Edmonton, Alberta 

 

 · Research and the classroom 

 · Computer education for teachers 

 · Issues in the teaching of calculus 

 · Revitalising mathematics in teacher education courses 
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1982 Queen’s University, Kingston, Ontario 

 

 · The influence of computer science on undergraduate mathematics education 

 · Applications of research in mathematics education to teacher training programmes 

· Problem solving in the curriculum 

 

1983 University of British Columbia, Vancouver, British Columbia 

 

 · Developing statistical thinking 

 · Training in diagnosis and remediation of teachers 

 · Mathematics and language 

 · The influence of computer science on the mathematics curriculum 

 

1984 University of Waterloo, Waterloo, Ontario 

 

 · Logo and the mathematics curriculum 

 · The impact of research and technology on school algebra 

 · Epistemology and mathematics 

 · Visual thinking in mathematics 

 

1985 Université Laval, Québec, Québec 

 

 · Lessons from research about students’ errors 

 · Logo activities for the high school 

 · Impact of symbolic manipulation software on the teaching of calculus 

 

1986 Memorial University of Newfoundland, St. John’s, Newfoundland 

 

 · The role of feelings in mathematics 

 · The problem of rigour in mathematics teaching 

 · Microcomputers in teacher education 

 · The role of microcomputers in developing statistical thinking 

 

1987 Queen’s University, Kingston, Ontario 

 

 · Methods courses for secondary teacher education 

 · The problem of formal reasoning in undergraduate programmes 

 · Small group work in the mathematics classroom 

 

1988 University of Manitoba, Winnipeg, Manitoba 

 

 · Teacher education: what could it be? 

 · Natural learning and mathematics 

· Using software for geometrical investigations 

 · A study of the remedial teaching of mathematics 

 

1989 Brock University, St. Catharines, Ontario 

 

 · Using computers to investigate work with teachers 

 · Computers in the undergraduate mathematics curriculum 

 · Natural language and mathematical language 

 · Research strategies for pupils’ conceptions in mathematics 
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1990 Simon Fraser University, Vancouver, British Columbia 

 

 · Reading and writing in the mathematics classroom 

 · The NCTM “Standards” and Canadian reality 

 · Explanatory models of children’s mathematics 

 · Chaos and fractal geometry for high school students 

 

1991 University of New Brunswick, Fredericton, New Brunswick 

 

 · Fractal geometry in the curriculum 

 · Socio-cultural aspects of mathematics 

 · Technology and understanding mathematics 

 · Constructivism: implications for teacher education in mathematics 

 

1992 ICME–7, Université Laval, Québec, Québec 

 

1993 York University, Toronto, Ontario 

 

 · Research in undergraduate teaching and learning of mathematics 

 · New ideas in assessment 

 · Computers in the classroom: mathematical and social implications 

 · Gender and mathematics 

 · Training pre-service teachers for creating mathematical communities in the 

classroom 

 

1994 University of Regina, Regina, Saskatchewan 

 

 · Theories of mathematics education 

 · Pre-service mathematics teachers as purposeful learners: issues of enculturation 

 · Popularizing mathematics 

 

1995 University of Western Ontario, London, Ontario 

 

· Autonomy and authority in the design and conduct of learning activity 

 · Expanding the conversation: trying to talk about what our theories don’t talk about 

 · Factors affecting the transition from high school to university mathematics 

 · Geometric proofs and knowledge without axioms 

 

1996 Mount Saint Vincent University, Halifax, Nova Scotia 

 

 · Teacher education: challenges, opportunities and innovations 

 · Formation à l’enseignement des mathématiques au secondaire: nouvelles 

perspectives et défis 

 · What is dynamic algebra? 

 · The role of proof in post-secondary education 

 

1997 Lakehead University, Thunder Bay, Ontario 

 

 · Awareness and expression of generality in teaching mathematics 

 · Communicating mathematics 

 · The crisis in school mathematics content 
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1998 University of British Columbia, Vancouver, British Columbia 

 

 · Assessing mathematical thinking 

 · From theory to observational data (and back again) 

 · Bringing Ethnomathematics into the classroom in a meaningful way 

 · Mathematical software for the undergraduate curriculum 

 

1999 Brock University, St. Catharines, Ontario 

 

 · Information technology and mathematics education: What’s out there and how can 

we use it? 

 · Applied mathematics in the secondary school curriculum 

 · Elementary mathematics 

 · Teaching practices and teacher education 

 

2000 Université du Québec à Montréal, Montréal, Québec  

 

 · Des cours de mathématiques pour les futurs enseignants et enseignantes du 

primaire/Mathematics courses for prospective elementary teachers 

· Crafting an algebraic mind: Intersections from history and the contemporary 

mathematics classroom 

· Mathematics education et didactique des mathématiques : y a-t-il une raison pour 

vivre des vies séparées?/Mathematics education et didactique des mathématiques: 

Is there a reason for living separate lives? 

· Teachers, technologies, and productive pedagogy 

 

2001 University of Alberta, Edmonton, Alberta 

 

 · Considering how linear algebra is taught and learned 

· Children’s proving 

· Inservice mathematics teacher education 

· Where is the mathematics? 

 

2002 Queen’s University, Kingston, Ontario 

 

 · Mathematics and the arts 

 · Philosophy for children on mathematics 

 · The arithmetic/algebra interface: Implications for primary and secondary 

mathematics / Articulation arithmétique/algèbre: Implications pour l’enseignement 

des mathématiques au primaire et au secondaire 

 · Mathematics, the written and the drawn 

 · Des cours de mathématiques pour les futurs (et actuels) maîtres au secondaire / 

Types and characteristics desired of courses in mathematics programs for future 

(and in-service) teachers 

 

2003 Acadia University, Wolfville, Nova Scotia 

 

 · L’histoire des mathématiques en tant que levier pédagogique au primaire et au 

secondaire / The history of mathematics as a pedagogic tool in Grades K–12 

 · Teacher research: An empowering practice? 

 · Images of undergraduate mathematics 

 · A mathematics curriculum manifesto 
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2004 Université Laval, Québec, Québec 

 

 · Learner generated examples as space for mathematical learning 

· Transition to university mathematics 

 · Integrating applications and modeling in secondary and post secondary 

mathematics 

 · Elementary teacher education – Defining the crucial experiences 

 · A critical look at the language and practice of mathematics education technology 

 

2005 University of Ottawa, Ottawa, Ontario 

 

 · Mathematics, education, society, and peace 

 · Learning mathematics in the early years (pre-K – 3) 

 · Discrete mathematics in secondary school curriculum 

 · Socio-cultural dimensions of mathematics learning 

 

2006 University of Calgary, Calgary, Alberta 

 

 · Secondary mathematics teacher development 

 · Developing links between statistical and probabilistic thinking in school 

mathematics education 

 · Developing trust and respect when working with teachers of mathematics 

 · The body, the sense, and mathematics learning 

 

2007 University of New Brunswick, New Brunswick 

 

 · Outreach in mathematics – Activities, engagement, & reflection 

 · Geometry, space, and technology: challenges for teachers and students 

 · The design and implementation of learning situations 

 · The multifaceted role of feedback in the teaching and learning of mathematics 

 

2008 Université de Sherbrooke, Sherbrooke, Québec 

 

 · Mathematical reasoning of young children 

 · Mathematics-in-and-for-teaching (MifT): the case of algebra 

 · Mathematics and human alienation 

 · Communication and mathematical technology use throughout the post-secondary 

curriculum / Utilisation de technologies dans l’enseignement mathématique 

postsecondaire 

 · Cultures of generality and their associated pedagogies 
 

2009 York University, Toronto, Ontario 

 

 · Mathematically gifted students / Les élèves doués et talentueux en mathématiques 

 · Mathematics and the life sciences 

 · Les méthodologies de recherches actuelles et émergentes en didactique des 

mathématiques / Contemporary and emergent research methodologies in 

mathematics education 

 · Reframing learning (mathematics) as collective action 

 · Étude des pratiques d’enseignement  

 · Mathematics as social (in)justice / Mathématiques citoyennes face à l’(in)justice 

sociale 
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2010 Simon Fraser University, Burnaby, British Columbia 

 

 · Teaching mathematics to special needs students:  Who is at-risk? 

 · Attending to data analysis and visualizing data 

 · Recruitment, attrition, and retention in post-secondary mathematics 

  Can we be thankful for mathematics?  Mathematical thinking and aboriginal 

peoples 

 · Beauty in applied mathematics  

 · Noticing and engaging the mathematicians in our classrooms 

 

2011 Memorial University of Newfoundland, St. John’s, Newfoundland 

 

 · Mathematics teaching and climate change 

 · Meaningful procedural knowledge in mathematics learning 

 · Emergent methods for mathematics education research: Using data to develop 

theory / Méthodes émergentes pour les recherches en didactique des 

mathématiques: partir des données pour développer des théories 

 · Using simulation to develop students’ mathematical competencies – Post 

secondary and teacher education 

 · Making art, doing mathematics / Créer de l’art; faire des maths 

 · Selecting tasks for future teachers in mathematics education 
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Appendix B / Annexe B 

PLENARY LECTURES AT EACH ANNUAL MEETING / 
CONFÉRENCES PLÉNIÈRES DES RENCONTRES ANNUELLES 

 
 
 

 
 

1977 A.J. COLEMAN The objectives of mathematics education 

 C. GAULIN  Innovations in teacher education programmes 

 T.E. KIEREN  The state of research in mathematics education 

 

1978 G.R. RISING The mathematician’s contribution to curriculum 

development 

 A.I. WEINZWEIG  The mathematician’s contribution to pedagogy 

 

1979 J. AGASSI The Lakatosian revolution 

 J.A. EASLEY Formal and informal research methods and the cultural 

status of school mathematics 

 

1980 C. GATTEGNO Reflections on forty years of thinking about the teaching 

of mathematics 

 D. HAWKINS Understanding understanding mathematics 

 

1981 K. IVERSON Mathematics and computers 

 J. KILPATRICK The reasonable effectiveness of research in mathematics 

education 

 

1982 P.J. DAVIS Towards a philosophy of computation 

 G. VERGNAUD Cognitive and developmental psychology and research in 

mathematics education 

 

1983 S.I. BROWN The nature of problem generation and the mathematics 

curriculum 

 P.J. HILTON The nature of mathematics today and implications for 

mathematics teaching 
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1984 A.J. BISHOP The social construction of meaning: A significant 

development for mathematics education? 

 L. HENKIN  Linguistic aspects of mathematics and mathematics 

instruction 

 

1985 H. BAUERSFELD Contributions to a fundamental theory of mathematics 

learning and teaching 

 H.O. POLLAK On the relation between the applications of mathematics 

and the teaching of mathematics 

 

1986 R. FINNEY Professional applications of undergraduate mathematics 

 A.H. SCHOENFELD Confessions of an accidental theorist 

 

1987 P. NESHER Formulating instructional theory: the role of students’ 

misconceptions 

 H.S. WILF The calculator with a college education 

 

1988 C. KEITEL Mathematics education and technology 

 L.A. STEEN All one system 

 

1989 N. BALACHEFF Teaching mathematical proof: The relevance and 

complexity of a social approach 

 D. SCHATTSNEIDER Geometry is alive and well 

 

1990 U. D’AMBROSIO Values in mathematics education 

 A. SIERPINSKA On understanding mathematics 

 

1991 J .J. KAPUT Mathematics and technology: Multiple visions of multiple 

futures 

 C. LABORDE Approches théoriques et méthodologiques des recherches 

françaises en didactique des mathématiques 

 

1992 ICME-7 

 

1993 G.G. JOSEPH What is a square root? A study of geometrical 

representation in different mathematical traditions 

 J CONFREY Forging a revised theory of intellectual development: 

Piaget, Vygotsky and beyond 

 

1994 A. SFARD Understanding = Doing + Seeing ? 

 K. DEVLIN Mathematics for the twenty-first century 

 

1995 M. ARTIGUE The role of epistemological analysis in a didactic 

approach to the phenomenon of mathematics learning and 

teaching 

 K. MILLETT Teaching and making certain it counts 

 

1996 C. HOYLES Beyond the classroom: The curriculum as a key factor in 

students’ approaches to proof 

 D. HENDERSON Alive mathematical reasoning 
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1997 R. BORASSI What does it really mean to teach mathematics through 

inquiry? 

 P. TAYLOR The high school math curriculum 

 T. KIEREN Triple embodiment: Studies of mathematical 

understanding-in-interaction in my work and in the work 

of CMESG/GCEDM 

 

1998 J. MASON Structure of attention in teaching mathematics 

 K. HEINRICH Communicating mathematics or mathematics storytelling 

 

1999 J. BORWEIN The impact of technology on the doing of mathematics 

 W. WHITELEY The decline and rise of geometry in 20
th

 century North 

America 

 W. LANGFORD Industrial mathematics for the 21
st
 century 

 J. ADLER Learning to understand mathematics teacher development 

and change: Researching resource availability and use in 

the context of formalised INSET in South Africa 

 B. BARTON An archaeology of mathematical concepts: Sifting 

languages for mathematical meanings 

 

2000 G. LABELLE Manipulating combinatorial structures 

 M. B. BUSSI The theoretical dimension of mathematics: A challenge 

for didacticians 

 

2001 O. SKOVSMOSE Mathematics in action: A challenge for social theorising 

 C. ROUSSEAU Mathematics, a living discipline within science and 

technology 

 

2002 D. BALL & H. BASS Toward a practice-based theory of mathematical 

knowledge for teaching 

 J. BORWEIN The experimental mathematician: The pleasure of 

discovery and the role of proof 

 

2003 T. ARCHIBALD Using history of mathematics in the classroom: Prospects 

and problems 

 A. SIERPINSKA Research in mathematics education through a keyhole 

 

2004 C. MARGOLINAS La situation du professeur et les connaissances en jeu au 

cours de l’activité mathématique en classe 

 N. BOULEAU La personnalité d’Evariste Galois: le contexte 

psychologique d’un goût prononcé pour les mathématique 

abstraites 

 

2005 S. LERMAN Learning as developing identity in the mathematics 

classroom  

 J. TAYLOR Soap bubbles and crystals 

 

2006 B. JAWORSKI Developmental research in mathematics teaching and 

learning: Developing learning communities based on 

inquiry and design  

 E. DOOLITTLE Mathematics as medicine 
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2007 R. NÚÑEZ Understanding abstraction in mathematics education: 

Meaning, language, gesture, and the human brain 

 T. C. STEVENS Mathematics departments, new faculty, and the future of 

collegiate mathematics 

 
2008 A. DJEBBAR Art, culture et mathématiques en pays d’Islam (IX

e
-XV

e
 s.) 

 A. WATSON Adolescent learning and secondary mathematics 

 

2009 M. BORBA Humans-with-media and the production of mathematical 

knowledge in online environments 

 G. de VRIES Mathematical biology: A case study in interdisciplinarity 

 

2010 W. BYERS Ambiguity and mathematical thinking 

 M. CIVIL Learning from and with parents:  Resources for equity in 

mathematics education 

 B. HODGSON Collaboration et échanges internationaux en éduction 

mathématique dans le cadre de la CIEM : regards selon 

une perspective canadienne / ICMI as a space for 

international collaboration and exchange in mathematics 

education:  Some views from a Canadian perspective 

 S. DAWSON My journey across, through, over, and around academia:  

“...a path laid while walking...” 

 

2011 C. K. PALMER Pattern composition: Beyond the basics 

 P. TSAMIR &  The Pair-Dialogue approach in mathematics teacher 

 D. TIROSH education 
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PROCEEDINGS OF ANNUAL MEETINGS / ACTES DES 
RENCONTRES ANNUELLES 

 

 
Past proceedings of CMESG/GCEDM annual meetings have been deposited in the ERIC 

documentation system with call numbers as follows: 

 
Proceedings of the 1980 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 204120 

 
Proceedings of the 1981 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 234988 

 
Proceedings of the 1982 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 234989 

 
Proceedings of the 1983 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 243653 

 
Proceedings of the 1984 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 257640 

 
Proceedings of the 1985 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 277573 

 
Proceedings of the 1986 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 297966 

 
Proceedings of the 1987 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 295842 

 
Proceedings of the 1988 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 306259 

 
Proceedings of the 1989 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 319606 

 
Proceedings of the 1990 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 344746 

 
Proceedings of the 1991 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 350161 

 
Proceedings of the 1993 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 407243 

 
Proceedings of the 1994 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 407242 
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Proceedings of the 1995 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 407241 

 
Proceedings of the 1996 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 425054 

 
Proceedings of the 1997 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 423116 

 
Proceedings of the 1998 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 431624 

 
Proceedings of the 1999 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 445894 

 
Proceedings of the 2000 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 472094 

 
Proceedings of the 2001 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 472091 

 
Proceedings of the 2002 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529557 

 
Proceedings of the 2003 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529558 

 
Proceedings of the 2004 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529563 
 
Proceedings of the 2005 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529560 
 
Proceedings of the 2006 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529562 
 
Proceedings of the 2007 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529556 
 
Proceedings of the 2008 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529561 
 
Proceedings of the 2009 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529559 
 
Proceedings of the 2010 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529564 
 
Proceedings of the 2011 Annual Meeting . . . . . . . . . . . . . . . . . . .  submitted 
 

 

NOTE 

 
There was no Annual Meeting in 1992 because Canada hosted the Seventh International Conference on 

Mathematical Education that year.  


