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Introduction

Malgorzata Dubiel - President, CMESG/GCEDM
Simon Fraser University

It is a great pleasure to write an introduction to the CMESG/GCEDM Proceedings from the
2000 meeting held at the Université du Québec à Montréal (UQAM).

A necessary part of the introduction to the CMESG/GCEDM Proceedings is an attempt
to explain to readers, some of whom may be newcomers to our organization, that the vol-
ume in their hands cannot possibly convey the spirit of the meeting it reports on. It can
merely describe the content of activities without giving much of the flavour of the process.

To understand this, one needs to understand the uniqueness of both our organization
and our annual meetings.

CMESG is an organization unlike other professional organizations. One belongs to it
not because of who one is professionally, but because of one’s interests. And that is why our
members are members of mathematics and education departments at Canadian and other
universities and colleges, and school teachers, united by their interest in mathematics and
how it is taught at every level, by the desire to make teaching more exciting, more relevant,
more meaningful.

Our meetings are unique, too. One does not simply attend a CMESG meeting the way
one attends other professional meetings, by coming to listen to a few chosen talks. You are
immediately part of it; you live and breathe it.

Working Groups form the core of each CMESG meeting. Participants choose one of
several possible topics, and, for three days, become members of a community which meets
three hours a day to exchange ideas and knowledge, and, through discussions which often
continue beyond the allotted time, create fresh knowledge and insights. Throughout the
three days, the group becomes much more than a sum of its parts—often in ways totally
unexpected to its leaders. The leaders, after working for months prior to the meeting, may
see their carefully prepared plan ignored or put aside by the group, and a completely new
picture emerging in its stead.

Two plenary talks are traditionally part of the conference, at least one of which is given
by a speaker invited from outside Canada, who brings a non-Canadian perspective. These
speakers participate in the whole meeting; some of them afterwards become part of the
group. And, in the spirit of CMESG meetings, a plenary talk is not just a talk, but a mere
beginning: it is followed by discussions in small groups, which prepare questions for the
speaker. After the small group discussions, in a renewed plenary session, the speaker fields
the questions generated by the groups.

Topic Groups and Ad Hoc presentations provide more possibilities for exchange of
ideas and reflections. Shorter in duration than the Working Groups, Topic Groups are ses-
sions where individual members present work in progress and often find inspiration and
new insight from their colleagues’ comments.

Ad Hoc sessions are opportunities to share ideas, which are often not even “half-
baked”—sometimes born during the very meeting at which they are presented.

A traditional part of each meeting is the recognition of new PhDs. Those who com-
pleted their dissertations in the last year are invited to speak on their work. This gives the



x

group a wonderful opportunity to observe the changing face of mathematics education in
Canada.

In 2000, the Tuesday morning panel discussion on curriculum reform was a new fea-
ture. Lively and exciting, it created a lot of interest, and so we invited the panelists to submit
brief summaries of their presentations for the proceedings, to preserve some of the flavour
of the discussion.

Our annual meetings are traditionally set on university campuses with participants
staying in dormitories rather than hotels, both to make the meetings more affordable and to
allow for discussions to continue far beyond the scheduled hours. The 2000 Annual Meet-
ing was no exception. It was hosted on the campus of the Université du Québec à Montréal,
and the participants stayed in the UQAM residence. A successful, working meeting in the
middle of Canada’s most exciting city, in early Summer—is it possible? Can you keep people
in? The executive had been worrying about this before the meeting. But the exciting pro-
gram, excellent organization and great food (probably the best of all our meetings!) all con-
tributed to one of the largest and most successful meetings ever. Thanks to Lesley Lee and
her team for  their hard work!

Editing the Proceedings of the meeting is a formidable task, one we tend to take for
granted. I would like therefore to extend our gratitude to the editors of this volume: John
Grant McLoughlin, Brent Davis and Elaine Simmt. Special thanks to Elaine and Brent, who
started their work earlier than expected to give a hand in difficult circumstances.

CMESG/GCEDM Proceedings 2000 • Introduction
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Manipulating Combinatorial Structures

Gilbert Labelle
Université du Québec à Montréal (UQAM)

A combinatorial structure is a finite construction made on a finite set of elements. In real-life
situations, combinatorial structures often arise as “skeletons” or “schematic descriptions”
of concrete objects. For example, on a road map, the elements can be cities and the finite
construction can be the various roads joining these cities. Similarly, a diamond can be con-
sidered as a combinatorial structure: the plane facets of the diamond are connected together
according to certain rules.

Combinatorics can be defined as the mathematical analysis, classification and enu-
meration of combinatorial structures. The main purpose of my presentation is to show how
the manipulation of combinatorial structures, in the context of modern combinatorics, can
easily lead to interesting teaching/learning activities at every level of education: from el-
ementary school to university.

The following pages of these proceedings contain a grayscale version of my (color)
transparencies (two transparencies on each page). I decided to publish directly my trans-
parencies (instead of a standard typed text) for two main reasons: my talk contained a great
amount of figures, which had to be reproduced anyway, and the short sentences in the
transparencies are easy to read and put emphasis on the main points I wanted to stress.

The first two transparencies are preliminary ones and schematically describe: a) the
importance and relations of combinatorics with science/social activities, b) how analytic/
algebraic combinatorics is similar to analytic/algebraic geometry. The next 7 transparencies
(numbered 1 to 7) contain drawings showing basic combinatorial structures together with
some terminology. Collecting together similar combinatorial structures give rise to the con-
cept of species of structures (transparencies 8 to 12). A power series is then associated to any
species of structures enabling one to count its structures (transparencies 13 to 15). Each op-
eration on power series (sum, product, substitution, derivation) is reflected by similar opera-
tions on the corresponding species of structures (transparencies 16 to 18). The power of this
correspondence is illustrated on explicit examples (transparencies 18 to 26) where the struc-
tures are manipulated (and counted) using various combinatorial operations. Transparen-
cies 27 to 30 suggest some general teaching/learning activities (from elementary to advanced
levels) that may arise from these ideas. I hope that the readers will agree that manipulating
combinatorial structures constitutes a good activity to develop the mathematical mind.

References

The main references for the theory of combinatorial species are:

Joyal, A. (1981). Une théorie combinatoire des séries formelles, Advances in Mathematics, 42, 1–82.
Bergeron, F., Labelle, G., & Leroux, P. (1998). Combinatorial Species and Tree-like Structures.

Encyclopedia of Math. and its Applications, Vol. 67, Cambridge University Press.
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The Theoretical Dimension of Mathematics:
A Challenge for Didacticians

Maria G. Bartolini Bussi
University of Modena and Reggio Emilia - Italy

Introduction

The aim of this presentation is to discuss some findings of a few research studies developed
in Italy about the approach to theoretical knowledge. Four different teams have worked in
a coordinated way for years, namely the teams directed by F. Arzarello (at the University of
Turin), M. Bartolini Bussi (at the University of Modena), P. Boero (at the University of Genoa)
and M. A. Mariotti (at the University of Pisa).1

The set of studies is based on the strict interlacement of several kinds of analysis, for
designing purposes and for modeling the processes as well:

· first, the historic-epistemological analysis of ways of mathematical reasoning (with a spe-
cial focus on proofs);

· second, the didactical analysis of the interaction processes developed in the classroom within
suitable teaching experiments;

· third, the cognitive analysis of the processes underlying the production of reasoning and of
arguments in proofs.

Whilst the first kind of studies might be considered as an heritage of the Italian tradition of
studies on the foundations of mathematics and on the didactical implications, the second
and the third are more related to the development of the international literature on the field.

To keep under control the complexity of the system, some theoretical constructs were
assumed and/or produced in the research development. The early theoretical constructs
concerned the setting of students’ activity (field of experience2) and the quality of classroom
interaction (mathematical discussion3). Exploratory studies were produced at very different
school levels.

The teaching experiments of the coordinated project were aimed at creating suitable
settings for most of learners (from primary to secondary and tertiary education) being able
to develop a theoretical attitude and to produce proofs. The experiments shared some com-
mon features from the design phase to the implementation in the classroom:

· the selection, on the basis of historic-epistemological analysis, of fields of experience rich in
concrete and semantically pregnant referents (e.g., perspective drawing; sun shadows; Cabri-
constructions; gears; linkages and drawing instruments);

· the design of tasks within each field of experience, which require the students to take part
in the whole process of production of conjectures, of construction of proofs and of genera-
tion of theoretical organization;

· the use of a variety of classroom organization (e.g., individual problem solving, small group
work, classroom discussion orchestrated by the teacher, lectures);

· the explicit introduction of primary sources from the history of mathematics into the class-
room at any school level.

Teacher participation helped to determine activity in each phase (design, implementa-
tion, collection of data and analysis). Their sensitivity and competence proved to be essential
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not only in the careful management of classroom activity but also in the elaboration of ana-
lytical tools and of the theoretical framework: in a word, they have become teacher-research-
ers. Last but not least, while taking part in the design of experiments, the teachers were put in
the condition of deepening some issues concerning the theoretical dimension of mathemat-
ics and its relationship with experiential reality. In other words, the theoretical dimension of
mathematics became part of the intellectual life of teachers, an essential condition, as they
were expected to be able to foster the development of similar attitudes in their pupils.

The outcomes of the teaching experiments were astonishing, if compared with the
general plea about the difficulty (or the impossibility) of coping with the theoretical dimen-
sion of mathematics. Just to quote a case, most of students even in compulsory education
(e.g., Grades 5-8) succeeded in producing conjectures and constructing proofs (Bartolini
Bussi et al., 1999) in the setting of the modeling of gears. Were these studies action research
based, the process could have stopped here with the production and documentation of facts,
i.e., paradigmatic examples of improvement in mathematics teaching. But an additional
aim of ‘research for innovation’ concerned the study of the conditions for realization as well
as the possible factors underlying effectiveness; in other words, this success had to be treated
as a didactic phenomenon (Arzarello & Bartolini Bussi, 1998). This created the need of fram-
ing in an explicit way the existing studies within a theoretical framework, that might have
interpreted them in a unitary way and might have suggested issues for a research agenda.
The general framework was enriched by two specific additional theoretical constructs, elabo-
rated on the basis of epistemological and cognitive analysis: the idea of mathematical theo-
rem4 and the idea of cognitive unity.5

In this presentation two examples will be discussed in more details:

· a classroom discussion concerning the shift from ‘empirical’ to ‘theoretical’ compass in
primary school (5th grade);

· the scheme of a teaching experiment about overcoming conceptual mistakes by an original
recourse to Socratic dialogue (5th - 7th grades).

Both examples concern young pupils, to emphasize also the need of starting quite early to
nurture the theoretical approach to mathematics.

First Example: From ‘Empirical’ To ‘Theoretical’ Compass (5th Grade)

The Protocols

The pupils have been given the following individual problem on an A4 sheet: Draw a circle,
with radius 4 cm, tangent to both circles. Explain carefully your method and justify it.

FIGURE 1 [The circles have radii 3 cm and 2 cm and the distance of their centres is 7 cm.]

All the pupils of the classroom have produced a solution by trial and errors, adjusting
a compass to produce a circle that looks tangent to both. Some of them have found two
solutions (symmetrical). The teacher (Mara Boni) collects all the individual solutions, analy-
ses them and, a week later, and gives all the pupils a copy of Veronica’s solution. Then she
introduces the theme of discussion.
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Veronica’s solution:

The first thing I have done was to find the centre of the wheel C;
I have made by trial and error, in fact I have immediately found the distance between the wheel

B and C. Then I have found the distance between A and C and I have given the right ‘inclination’ to
the two segments, so that the radius of C measured 4 cm in all the cases. Then I have traced the circle.

Veronica’s justification:

I am sure that my method works because it agrees with the three theories we have found:
  i) the points of tangency H and G are aligned with ST and TR;
 ii) the segments ST and TR meet the points of tangency H and G;
iii) the segments ST and TR are equal to the sum of the radii SG and GT, TH and HR.

FIGURE 2

The classroom discussion:

Teacher: Veronica has tried to give the right inclination. Which segments is she speaking of? Many of
you open the compass 4cm. Does Veronica use the segment of 4cm? What does she say she is using?
[Veronica’s text is read again.]

Jessica: She uses the two segments ...
Maddalena: .. given by the sum of radii
Teacher: How did she make?
Giuseppe: She has rotated a segment.
Veronica: Had I used one segment, I could have used the compass.

[Some pupils point with thumb-index at the segments on Veronica’s drawing and try to
‘move’ them. They pick up an ideal segment as if it were a stick and try to move it.]

Francesca B.: From the circle B have you thought or drawn the sum?
Veronica: I have drawn it.
Giuseppe: Where?
Veronica: I have planned to make RT perpendicular [to the base side of the sheet] and then I have

moved ST and RT until they touched each other and the radius of C was 4cm.
Alessio: I had planned to take two compasses, to open them 7 and 6 and to look whether they found

the centre. But I could not use two compasses.
Stefania P.: Like me ; I too had two compasses in the mind.
Veronica: I remember now: I too have worked with the two segments in this way, but I could not on

the sheet.
[All the pupils ‘pick up’ the segments on Veronica’s drawing with thumb-index of
the two hands and start to rotate them. The shared experience is strong enough to
capture all the pupils.]

A
B

S

G

T

H

R

C
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Elisabetta [excited]: She has taken the two segments of 6 and 7, has kept the centre still and has
rotated: ah I have understood !

Stefania P.: ... to find the centre of the wheel ...
Elisabetta: ... after having found the two segments ...
Stefania P.: ... she has moved the two segments.
Teacher: Moved? Is moved a right word?
Voices: Rotated .. as if she had the compass.
Alessio: Had she translated them, she had moved the centre.
Andrea: I have understood, teacher, I have understood really, look at me ...

[The pupils continue to rotate the segments picked up with hands.]
Voices: Yes, the centre comes out there, it’s true.
Alessio: It’s true but you cannot use two compasses
Veronica: you can use first on one side and then on the other.
Teacher: Good pupils. Now draw the two circles on your sheet.

[All the pupils draw the two circles on their sheet and correctly identify the two pos-
sible solutions for the centres.]

FIGURE 3

Discussion of the Protocols

The reader might be astonished to think that this problem is given in primary school; s/he
might be even more astonished if s/he knew that this classroom is in a district with a very
low socio-cultural level. We might offer some elements to understand better, before starting
the discussion of the protocols.

First, the classroom is taking part in a long term teaching experiment from the 1st
grade, concerning the modeling of gears. The project has two aspects: the (algebraic) mod-
eling of functioning (Bartolini Bussi et al., 1999) and the (geometrical) modeling of shapes
(Bartolini Bussi et al., to appear). For the pupils, (toothed) wheels have been naturally mod-
eled by circles and wheels in gear with each other have been modeled as tangent circles (the
evocation of wheels appears also in Veronica’s protocol). They have discovered by experi-
ments and transformed into fundamental statements some elementary properties of tan-
gent circles, such as the alignment of the two centres and the point of tangency and the
related relation between the distance of centres and the sum of radii.

A

T

B

R

S

U
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Second, the pupils are capable to discuss effectively with each other, as their teacher is
a member of the research team on Mathematical Discussion, which analyses the limits and
advantages of different types of discussion orchestrated by the teacher (Bartolini Bussi, 1996;
1998) and has introduced in that classroom mathematical discussion since the 1st grade.
The pupils are also accustomed to produce detailed individual written protocols, with a
clear explanations of their processes: this custom too is the outcome of a very special class-
room culture, where individual tasks and discussions on the individual strategies are sys-
tematically interlaced with each other.

Third, the pupils are acquainted with the use of the compass to draw circles more
precisely than freehand. Between the 2nd and the 3rd grade they have worked for some
sessions on the compass, first trying to invent their own instruments to draw circles and
then appropriating the existing instrument ‘compass’ and the manual procedure (not so
easy for young pupils) to use it effectively. They have used often the compass to produce
round shapes, also in art lessons with the same teacher (to imitate some drawings by
Kandinsky).

In this background, we may now discuss the protocols. In this episode we are real time
observing the emergence of an enriched use of the compass, that is entering the classroom
culture. The compass is going to be used not to produce a fair round shape, but to find a
point (or better, two points) that are at a given distance from two given points. The way of
using the compass (i. e. the gesture of handling and tracing the curve) is the same when a
pupil wishes to produce a round shape and when s/he wishes to find a point at a given
distance, but the senses given by the pupils to the processes (gestures) and to the products
(drawings) are very different. When the compass is used to produce round shape, its main
goal is communication; when the compass is used to find the points which satisfy a given
relationship, it becomes an instrument of semiotic mediation (Vygotsky, 1978), that can con-
trol - from the outside - the pupil process of solution of a problem, by producing a strategy
that (i) can be used in any situation, (ii) can produce and justify the conditions of possibility
in the general case and (iii) can be defended by argumentation referring to the accepted
theory. We shall reconsider this point later.

The geometric compass, embodied by the metal tool stored in every school-case, is no
more a material object only: it becomes a mental object, whose use may be substituted or
evoked by a body gesture (rotating hands or arms) or even by the product of the gesture, i.
e. the drawn curve. Even if the link with the body experience is not cut (it is rather empha-
sized), the loss of materiality allows to take a distance from the empirical facts, transform-
ing the empirical evidence of the drawing that represents a solution (whichever is the early
way of producing it) into the external representation of a mental process. The (geometrical)
circle is not an abstraction from the perception of round shapes, but the reconstruction, by
memory, of a variety of acts of spatial experiences (a ‘library’ of trajectories and gestures,
see Longo 1997).

A Short Interlude: Towards Semiotic Mediation

In the above episode we observed the integration of two ways of thinking of circles. Recall-
ing the history of geometry, it is the integration of the mechanical/dynamic/procedural ap-
proach of Hero (‘a circle is the figure described when a straight line, always remaining in one
plane, moves about one extremity as a fixed point until it returns to its first position’) with
the geometrical/static/relational approach of Euclid (‘a circle is a plane figure contained by
one line such that all the straight lines falling upon it from one point among those lying
within the figure are equal to one another’). In this case the standard compass is only the
prototype of a larger class of instruments (drawing instruments) which were used for centu-
ries to prove the existence of and to construct the solutions of geometrical problems and of
algebraic equations as well (Lebesgue, 1950). The experience of the continuity of motion was
in the place of the still lacking theoretical foundation of mathematical continuity.
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Hence, exploring the relationships between these two ways of thinking of circles and
the role played by the compass is an epistemologically correct way to approach very early
the problem of continuum. Even if the flow of the discussion is natural and fluent, the pro-
cess is not spontaneous at all: it is evident the care of the teacher in choosing an effective
protocol and in encouraging the use of gestures and the interaction between pupils with a
deep exploration of the mental processes.

These are young pupils, yet the difficult relationship between the two ways of think-
ing of circles emerges also with elder students. We may quote a very interesting clinical
interview (Mariotti et al. 2000), carried out with an 12th grade student, Giulia, familiar with
the Cabri environment.

Problem
Two intersecting circles C1 and C2 have a chord AB in common. Let C be a variable point on
the circle C1. Extend segments CA and CB to intersect the circle C2 at E and F, respectively.
What can you say about the chord EF as C varies on the circle? Justify the answer you provide.

Giulia has produced a right conjecture (if K is the centre of C2 and M is the midpoint of EF
the segment KM does not vary in length) and justified it. In particular, she has proved, in
standard way that, while C is dragged on the circle C1, the triangle EKF does not change in
size. A very brief excerpt of the last part of the interview follows. The complete protocol
with a detailed epistemological and cognitive analysis is in the quoted paper.

       FIGURE 4

Giulia: What is the geometric locus of the midpoint of EF as C moves on the circle? The geometric
locus of the midpoint of EF .. the midpoint of EF.... if it doesn’t vary in length... can I draw?
[referring to the drawing with Cabri]

Int.: Sure...
G.: This is the midpoint ... when C ... well.. what does it mean? When C moves on the circle the

midpoint [M] draws a circle around the centre, another circle with the same centre as the
bigger one... shall I say why? If I need to say that it is a circle I must prove that it is always
equidistant from the centre ... because.. well... I must prove that it is always equidistant from
the centre ... well... at this point this distance here... why? ....

Int.: Try and use what you already know ... what you have just proved.
G.: Yes, if this segment has to be always.... it is always equal to ... it has always the same distance

from the centre, because if you change the segment ... I mean... equal segments are those for
which... I don’t remember exactly the theorem, but equal segments are.... have the same dis-
tance from the centre ... equal segments on the same circle have the same distance from the
centre... therefore if I prove ..I mean.. no I have already proved that that segment is always
constant. [...] I haven’t proved it because I haven’t proved that this one rotates ...or something
like that....[...] Now I must also say why the geometric locus is a circle, mustn’t I? Shall I
prove it?

Int.: Haven’t you done it? you said that one always stays constant...

A

B

H

K

C2

C

C1

E

M

F



Maria G. Bartolini Bussi • The Theoretical Dimension of Mathematics

27

G.: stays constant....
Int.: How do you define a circle?
G.: I define it as locus.. you are right... locus of points equidistant from the centre... it crossed my

mind that I had to prove also.... no.. maybe it is stupid ... that I had to prove that it was
rotating around the centre....

Int.: Oh, right... that it was rotating....
G.: I mean, wasn’t it something ...? if I say ... it is fine that it forms a ... but the circle... I can see

that it forms a circle when I drag the point C and drag it around the circle [...]
G.: Mustn’t I prove that it [M] rotates?
Int.: How can you prove that it rotates?
G.: Well.. I don’t know.. actually that is the problem....
Int.: The fact is that once you proved that as C varies the triangle which has the chord as one side is

always a constant triangle, you have proved that that one is a circle because it is the locus of
points equidistant....

G.: Is that enough? Is that enough to show that it is a circle?

Giulia feels that the dynamic features of the locus cannot be taken on board with the stan-
dard proof. Also the rotation of the chord EF is perceived as something to be proved. Giulia
is not happy with the simple visual perception of the movement and she seems to feel the
need to ‘translate’ it into a mathematical statement to be justified in some way. There is a
sort of gap between Euclid’s definition of circle Giulia knows and the perceived rotation of
the line KM. The definition of circle as a locus of points having the same distance from a
given point is perceived as detached from what happens in the Cabri screen: there is a point
C whose movement directs the movement of the point M. The situation is similar to the one
experienced by using a drawing instrument, where the directing point control the motion of
the tracing point (Bartolini Bussi, 2000). The relationship of pointwise generation of curves
by means of geometrical constructions to continuous generation of curves by means of in-
struments was debated for centuries (in ancient Greece and in the 17th century Europe as
well) and enlightened when the meaning of continuity was clarified, in geometry and in
calculus. It is worthwhile to remind that, until then, the continuous generation of a curve by
a drawing instrument was used to prove the existence of and to construct the solutions of
geometrical problems and of algebraic equations as well (Lebesgue, 1950).

Hence, the activity of the 5th graders who were building the link between pointwise
and continuous generations of circles was very relevant from an epistemological perspec-
tive. After revisiting the standard compass, we might wonder whether other artifacts may
be used effectively by teachers to nurture a theoretical attitude towards mathematics. The
analysis of other artifacts is surely beyond the scope of this presentation. If the compass
(and other drawing instruments) may be oriented towards the problem of continuum, the
abacus may be oriented towards the polynomial representation of natural number and the
perspectograph towards the projective extension of the euclidean plane and the roots of
projective geometry. These examples concerns very intrusive old physical artifacts which
explicitly require a physical (gesturing/handling) activity of the pupils. Other examples are
offered by the recent development of ‘virtual’ microworlds: we may quote the approaches
developed by Mariotti (and coworkers) in the Cabri setting (Mariotti et al., 2000) and in
L’Algebrista, a symbolic manipulator created within Mathematica to introduce pupils to
algebra theory (Cerulli & Mariotti, 2000).

All these examples are relevant cases of psychological tools or tools of semiotic media-
tion, as meant by Vygotsky6. It is worthwhile to remind that Vygotsky himself quotes, as
examples, language, various systems for counting, mnemonic techniques, algebraic symbol
systems, works of art, writing, schemes, diagrams, maps and mechanical drawing (including
the use of drawing instruments). All these tools are, coherently with the cultural - historical
approach of Vygotsky, taken from the history of mankind and are to be introduced into the
life of young learners by an interactive practice guided by adults. This observation hints at
the possible differences between these psychological tools and those teaching aids that are,
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very often, produced and sold by commercial agencies (think for instance of the multibase
material for the representation of numbers): first the cultural - historical relevance; second
the not obvious transparency of concepts to be conveyed, rather dependent of the practices
realized by adults and young learners together (see Meira, 1994).

The power of the theoretical construct of semiotic mediation, borrowed from Vygotsky’s
work, is evident if we apply it to analyze briefly another teaching experiment, aimed at devel-
oping metacognition as the consciousness of the ways of overcoming conceptual mistakes.

Second Example:
Overcoming Conceptual Mistakes by Imitating a Socratic Dialogue (5th - 7th Grades).

This study has been carried out by a group of teachers-researchers coming from two differ-
ent teams (Genoa and Modena), under the direction of P. Boero (see Garuti et al., 1999). It
concerned the capacity to detect conceptual mistakes and overcome them by general expla-
nation. The object of the experiment was a well known piece of the Plato’s dialogue Meno,
that concerning the problem of doubling the area of a given square by constructing a suit-
able square (this means overcoming the mistake which consists of doubling the side length).
The crucial mediational tool is the Socratic dialogue, i.e., a dialogue intended to provoke
crisis and then allow it to be overcome. In this framework, the excerpt concerning doubling
the area of a given square is crucial as a practical demonstration. The dialogue consists of
three different phases:

A. Socrates asks Meno’s slave to solve the problem of doubling the area of the square by
constructing a suitable square; the slave’s answer (side of double length) is opposed by
Socrates through direct, visual evidence (based on the drawing of the situation).

B. Then the slave is encouraged to find a solution by himself—but he only manages to under-
stand that the correct side length must be smaller than three halves of the original length.

C. Socrates interactively guides the slave towards the right solution (achieved through a
construction based on the diagonal of the original square).

Drawing on the text of the dialogue, a teaching sequence was organized as follows:

1. students were briefly informed about the whole activity to be performed; then they
individually tried to solve the same problem posed by Socrates to the slave.

2. students, under the teacher’s guidance, read and tried to understand the three phases
of the dialogue; then they read the whole dialogue aloud (some students playing the
different characters); finally, they discussed the content and the aim of the whole dia-
logue, trying to understand (under the teacher’s guidance) the function of the three
phases. After negotiation with students, a wall poster was put up summarizing the
three phases in concise terms.

3. the teacher presented the students with some, possible mistakes that could become the
object of a dialogue similar to Plato’s, and they were invited to propose other mistakes.7

4. students discussed about the chosen mistake, trying to detect (under the teacher’s guid-
ance) good reasons explaining why it is a mistake, then trying to find partial solutions,
and finally arriving to a general explanation.

5. students individually tried to produce a “Socratic dialogue” about the chosen mistake;
6. students compared and discussed (under the teachers’ guidance) some individual productions.

It is beyond the scope of this paper to detail the findings, that are, by the way, framed by an
original ‘voices and echoes game’, that cannot be described here. It is enough to say that 86
pupils (out of 114) showed to be aware that appropriate counter-examples can reveal a con-
ceptual mistake. More than 50 pupils tried to give a general explanation of the mistake or to
find a general rule, showing to be aware of the necessity of doing it. Last but not least, 19
pupils showed to be conscious of the way to overcome the chosen mistake and were able to
guide the slave towards a general solution.

The results were astonishing for the exceptional ability in keeping the roles of Socrates
and of the slave in the dialogue and for the good choice of counterexamples.
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Comparison of the Two Examples

Beyond the young age of the pupils, the originality of the tasks and the astonishing results,
is there any relationships between the two examples we have considered?

The relationship emerges if we compare them as tools of semiotic mediation.
The aims of the two activities concern higher psychological processes: what is into play is,

for the compass, the theoretical nature of actions with a physical instruments and, for the Socratic
dialogue, the overcoming of conceptual mistakes. For these aims original tasks are chosen: the
task is, for the compass, the production of a method to find points according to the standard of
geometric construction, and, for the dialogue, the production of a dialogue according to Plato’s
model. The tools introduced are rather standard: the compass is included in every school bag
from primary school, and this excerpt of Meno is often used to introduce the problem of dou-
bling the cube. However, what is original is the intentional and carefully designed kind of social
practice, where the use of the tools is introduced. What is asked is not an instrumental use of
them, rather it is the internalization of the activity with the concrete compass and of the model
of the Socratic dialogue (that has the potentiality to transform them into psychological tools).
The semiotic mediation is started in the collective phases (discussions orchestrated by the teacher,
after or before the individual task), with a strong emphasis on imitation of gestures, words and,
in the case of the dialogue, of the structure of the text itself. The teacher’s role in guiding the
whole process is essential. Hence, in spite of the big difference between the two artifacts, strong
and deep similarities can be envisaged in the management of school activity. They can be summed
up by three keywords: social interaction; teacher ’s guide and imitation. The resulting processes
draw on a careful a priori analysis of the potentialities of the activity towards the development
of the higher psychological process, required by the approach to theoretical knowledge.

Concluding Remarks

In this presentation, we have discussed two examples which are provocative for both teach-
ers and researchers. The ‘good’ functioning of the above experiments might be analyzed by
means of different tools:

· epistemological (to enlighten the nature of mathematics itself);
· historical (to clarify the process of constitution of a piece of knowledge to be taught);
· anthropological (to uncover hidden conceptions);
· cognitive (to interpret the nature of individual processes and the weight of students and

teachers conceptions in shaping them);
· didactical (to elucidate the function of contexts and tasks and on the role of the teacher

in classroom interaction ).

The above list might be enlarged to enclose other issues. It is trivially clear that, on the one
hand, every factor offers only a particular perspective and, on the other hand, a global analysis
is needed for educational purposes.

We believe that the process of building a theoretical attitude towards mathematics is
quite long and can last for years. In our framework, this process is developed under the
guide of a cultured adult (the teacher), who, on the one hand, selects the tasks and, on the
other hand, orchestrates the social interaction before or after the individual solution. For the
learners, gaining a theoretical attitude does not cut the link with concrete (and bodily) expe-
rience, but rather gives a new sense to ‘the same’ concrete experience.

From a research perspective, this set of studies opens a lot of interesting questions. For in-
stance, they concern the analysis of distinctive features of theoretical knowledge, at least when the
didactical purpose is in the foreground; the listing of a larger and larger set of artifacts analysed as
tools of semiotic mediation and the study of the effective introduction of these artifacts in the class-
room; the study of the relationships between individual and collective processes in selected cases.

The discussion in Montreal has shown that linking material activity with theoretical
reasoning and emphasising the teacher ’s guide and the role of imitation may clash against
the deep beliefs of some mathematics educators. This is what happens when different class-
room cultures meet each other.
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Notes

1. The project was directed by F. Arzarello and funded by the MURST (Ministry of University
and Research in Science and Technology).

2. field of experience: a system of three evolutive components (external context, the student’s internal
context and the teacher’s internal context) referred to a sector of human culture which the teacher
and students can recognize and consider as unitary and homogeneous (Boero et al., 1995)

3. mathematical discussion: a polyphony of articulated voices on a mathematical object, which is
one of the motives of the teaching - learning activity (Bartolini Bussi, 1996)

4. mathematical theorem: the system of three interrelated elements: a statement (i.e., the conjecture pro-
duced through experiments and argumentation), a proof (i.e. the special case of a discourse that is
accepted by the mathematical community) and a reference theory (including postulates and de-
duction rules); this conception emphasizes the importance that students are confronted with this
complexity rather than with the mechanical repetition of given proofs (Mariotti et al., 1997).

5. cognitive unity: the continuity between the processes of conjecture production and proof con-
struction. During the production of the conjecture, the student progressively works out his/
her statement through an intensive argumentative activity functionally intermingled with the
justification of the plausibility of his/her choices. During the subsequent statement proving
stage, the student links up with this process in a coherent way, organising some of the previ-
ously produced arguments according to a logical chain’ (Garuti et al., 1996). The cognitive
unity is recognisable in the close correspondence between the nature and the objects of the
mental activities involved. This theoretical construct was the base of further developments,
playing different roles: a formidable tool for designing activities within the reach of students
(Bartolini Bussi et al., 1999); a pointer of the difficulty, for analyzing activities and understand-
ing some reasons for success and failure (Bartolini Bussi & Mariotti, 1999); a key for under-
standing the deep nature of proving tasks, as far as the immediacy of the solution is concerned
(Mariotti et al., 2000). In the ongoing research, the issue of mental processes underlying the
production of proofs and more generally the genesis of (abstract) mathematical objects is at
the very core (see Bartolini Bussi et al., 1999, Arzarello, 2000).

6. A long quotation from Vygotsky may be useful here:

Every elementary form of behavior presupposes direct reaction to the task set before the
organism (which can be expressed with the simple S - R formula). But the structure of sign
operations requires an intermediate link between the stimulus and the response. This inter-
mediate link is a second order stimulus (sign) that is drawn into the operation where it
fulfils a special function: it creates a new relation between S and R. The term ‘drawn into’
indicates that an individual must be actively engaged in establishing such a link. The sign
also possesses the important characteristic of reverse action (that is, it operates on the indi-
vidual, not the environment).

Consequently, the simple stimulus-response process is replaced by a complex, mediated
act, which we picture as:

FIGURE 5

In this new process the direct impulse to react is inhibited, and an auxiliary stimulus that
facilitates the completion of the operation by indirect means is incorporated.

Careful studies demonstrate that this type of organization is basic to all higher psycho-
logical processes, although in much more sophisticated forms than that shown above. The
intermediate link in this formula is not simply a method of improving the previously exist-
ing operation, nor is a mere additional link in an S - R chain. Because this auxiliary stimulus
possesses the specific function of reverse action, it transfers the psychological operation to
higher and qualitatively new forms and permits humans, by the aid of extrinsic stimuli, to
control their behavior from the outside. The use of signs leads humans to a specific structure

S R

X
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of behavior that breaks away from biological development and creates new forms of a cul-
turally-based psychological process. (Vygotsky, 1978)

7. Here is a sample of the three mistakes that were chosen in the six classes (5th or 7th grades):
a. “By dividing an integer number by another number, one always gets a number smaller

than the dividend” (7th grade)
b. “By multiplying an integer number by another number, one always gets a number bigger

than the first number” (5th grade)
c. “By multiplying tenths by tenths, one gets tenths” (5th grade) (Garuti et al., 1999).
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Les mathématiques occupent une place importante dans les programmes d’enseignement
de l’école primaire. On constate cependant que de nombreux enseignants et enseignantes
du primaire n’ont pas un bagage suffisant en mathématiques et/ou n’ont pas confiance en
leurs capacités dans le domaine. Certaines universités portent une attention particulière à
ces problèmes : elles dispensent des cours, ou parfois même offrent des programmes, pour
aider les futurs enseignants et enseignantes à mieux comprendre les mathématiques, à
améliorer leur expertise dans le domaine et à se sentir davantage en confiance avec les
mathématiques. Ce groupe de travail était l’occasion de prendre connaissance des différents
cours offerts dans les universités canadiennes et de discuter à savoir si de telles activités
devraient être une partie intégrante de tout programme de formation des maîtres du primaire.

Nous souhaitions, par ce groupe de travail, dresser un portrait de la situation actuelle
dans les universités canadiennes et échanger sur nos expériences respectives afin de faire
ressortir les orientations retenues par les collègues, les fondements sous-jacents aux cours
dispensés, les objectifs visés, les pratiques mises en place, les questions et défis qui se posent.
Trois questions étaient proposées initialement aux participants et participantes :

· Pourquoi devrions-nous enseigner les mathématiques aux futurs enseignants et enseignantes
du primaire ?

· Que devrions-nous leur enseigner ?

· Comment devrions-nous leur enseigner ?

Notre groupe de travail était composé d’une trentaine de personnes intervenant dans
la formation mathématique des maîtres du primaire au Canada. Parmi ces personnes se
trouvaient :

· Des mathématiciens, provenant de départements de mathématiques, et intervenant soit
dans des programmes de formation des maîtres du primaire, soit dans des programmes
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précédant les programmes de formation des maîtres, dépendant de leur province
d’appartenance et de la politique de formation des maîtres en vigueur dans leur province.

· Des didacticiens et didacticiennes des mathématiques, provenant surtout de départements
d’éducation (il existe certaines exceptions, comme à l’UQAM, où les personnes intervenant
en didactique des mathématiques sont rattachées pour la grande majorité au département
de mathématiques de leur institution), et intervenant soit dans des cours de mathématiques,
soit des cours de didactique des mathématiques.

· Des personnes intervenant dans la formation pratique des futurs maîtres du primaire
(maîtres associés et superviseurs de stages).

Notre groupe a beaucoup échangé au cours de ces trois demi-journées de travail, mais
il n’est pas parvenu à établir un consensus et à répondre aux trois questions précédentes
d’une seule et même voix. Notre discussion a même permis de soulever un certain nombre
d’autres questions que nous avons jugées tout aussi fondamentales que les précédentes, et
pour lesquelles il ne nous a pas été davantage possible de répondre en nous mettant d’accord
! Cependant, en discutant de ces diverses questions, nous nous sommes tous et toutes engagés
dans une réflexion sérieuse sur nos pratiques de formation, et c’est sans doute ce que nous
retiendrons le plus de nos rencontres de travail. En particulier, nous avons pu préciser chacun
et chacune nos constats, nos intentions, nos contraintes, nos préoccupations, nos présupposés,
etc. à l’égard de la formation des maîtres du primaire en mathématiques.

Compte-rendu de nos travaux – jour 1

La première journée, tous les participants et participantes de notre groupe de travail se sont
présentés. Un des objectifs d’un tel exercice était de dresser un portrait d’ensemble de nos
contextes respectifs. Nous avons tôt fait de  constater que ces contextes sont très variés.

Dans la province même de Québec, les contextes varient d’une université à l’autre. En
fait, tous les programmes de formation des maîtres du primaire ont ceci de commun qu’ils
sont offerts sur une période de quatre ans à des personnes ayant en main un diplôme d’études
collégiales (DEC) ou l’équivalent, mais la répartition des cours varie sensiblement d’une
université à l’autre. Par exemple, certaines universités, comme l’Université Laval et
l’Université du Québec à Montréal, imposent au moins un cours de mathématiques et des
cours de didactique des mathématiques, alors que d’autres n’incluent dans la formation
obligatoire  des futurs maîtres du primaire que des cours de didactique des mathématiques.
Aussi, dans certaines universités québécoises, la formation mathématique et la formation
en didactique des mathématiques sont assurées toutes les deux par des personnes provenant
d’un seul et même département, alors que dans d’autres elles sont assurées par des personnes
provenant de deux départements distincts.

La situation se complexifie encore bien davantage lorsqu’on visite les autres prov-
inces canadiennes. Après leur cours secondaire, qui dure généralement six ans, les étudiants
et étudiantes qui souhaitent devenir des enseignants et enseignantes au primaire doivent
obtenir un diplôme d’études post-secondaires dans un domaine de leur choix, puis un
diplôme universitaire en formation des maîtres. Les programmes de formation des maîtres
au primaire, qui peuvent être suivis après le programme préalable, mais qui peuvent l’être
aussi en parallèle avec celui-ci, sont généralement sous la responsabilité des facultés
d’éducation et ils sont d’une durée totale d’une ou deux années, dépendant de la province.
Dans un tel contexte, les facultés d’éducation disposent de très peu de temps pour former
les futurs maîtres, et elles se concentrent surtout sur la formation à l’enseignement des dis-
ciplines, au détriment d’une formation dans les disciplines elles-mêmes. De plus, rares sont
les universités qui obligent les étudiants et étudiantes à suivre des cours de mathématiques
avant de s’inscrire à un programme de formation des maîtres du primaire. Ainsi, il arrive
très souvent que les étudiants et étudiantes se présentent dans les cours de didactique des
mathématiques avec comme dernière expérience en mathématiques celle de l’école
secondaire.
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Portrait des programmes de formation des maîtres au Canada
(selon les informations dont disposait notre groupe de travail)

Province

Colombie-
Britannique

Alberta

Saskatchewan

Manitoba

Ontario

Québec

Nouveau-
Brunswick

Nouvelle-
Écosse

Île du Prince-
Édouard

Terre-Neuve

Nombre
d’années pré-
universitaires

12

12

12

12

13
(Modification

à 12)

13 (incluant
les 2 années
de CÉGEP)

12

12

12

12

Nombre d’années pour
le programme de

 formation des maîtres

1 année continue après
un autre programme

2 années continues
après un autre programme

1 année après un autre
programme ou en parallèle
avec un autre programme

1 année après un autre
programme ou en parallèle
avec un autre programme

1 année après un autre
programme ou en parallèle a

vec un autre programme

4 années consécutives
immédiatement après

le CÉGEP

1 année après un autre
programme ou en parallèle
avec un autre programme

2 années consécutives
après un autre programme

1 année après un autre
programme. Changement

prévu : 2 années plutôt que 1

1 année après un
autre programme

Exigence d’un cours de
mathématiques à l’intérieur

du programme ou avant
d’entrer dans le programme

1 cours non-spécifique exigé

Aucun

Aucun

Aucun

Variable (à Queen’s par
exemple, 1 cours exigé)

Variable (entre 0 et 2
cours de mathématiques

obligatoires)

Variable

En changement : un cours qui
demande d’intégrer les mathéma-

tiques, les sciences et la langue.

Aucun

2 cours de
mathématiques

exigés

Un autre objectif des présentations de chacun et de chacune était d’identifier un certain
nombre de préoccupations communes. Nous avons pu en repérer quelques-unes. D’abord,
un grand nombre de personnes s’inquiètent de l’anxiété vécue par plusieurs de leurs étudiants
et étudiantes à l’idée de devoir faire des mathématiques, et à l’idée aussi de devoir les
enseigner. Plusieurs personnes déplorent aussi la faiblesse de leurs étudiants et étudiantes
en mathématiques, une faiblesse qui se manifeste souvent avec des contenus très simples,
dont ceux enseignés au primaire, et qui se manifeste plus particulièrement au moment de
raisonner, expliquer, justifier, etc. Plusieurs personnes remarquent aussi que beaucoup
d’étudiants et d’étudiantes ont une vision réductrice des mathématiques, laquelle s’avère à
leur avis inappropriée pour des futurs enseignants et enseignantes du primaire. Tous et
toutes semblent s’entendre enfin sur le fait que le temps alloué par leurs universités pour
préparer adéquatement les futurs maîtres du primaire à enseigner les mathématiques au
primaire est insuffisant.
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Compte-rendu de nos travaux – jour 2

La deuxième journée, pour faciliter les échanges, nous nous sommes séparés en trois sous-
groupes. Chaque sous-groupe choisissait une ou des questions parmi celles ressorties de la
discussion amorcée au jour 1 : Pourquoi devrions-nous enseigner les mathématiques aux
futurs enseignants et enseignantes du primaire ? Que devrions-nous leur enseigner ? Com-
ment devrions-nous leur enseigner ? Comment évaluer leurs apprentissages ? Comment
intégrer de tels cours dans les programmes de formation des maîtres? Quelle place laisser
aux réformes du système éducatif dans ces cours ?

Compte-rendu de nos travaux – jour 3

Après avoir fait un compte-rendu des discussions vécues en sous-groupes au jour 2, le groupe
de travail a identifié parmi les questions ayant retenu son attention au cours des derniers
jours celles qui lui apparaissent les plus importantes. Le groupe est d’avis que toutes les
personnes impliquées dans la formation des maîtres du primaire devraient examiner chacune
de ces questions en profondeur, puisqu’elles permettent, comme cela a été le cas pour nous,
d’amorcer une réflexion sérieuse sur les pratiques actuelles de formation des maîtres du
primaire en mathématiques au Canada.

Question 1
Qu’attendons-nous d’un bon enseignant ou d’une bonne enseignante de mathématiques au primaire ?

Cette question nous apparaît fort importante puisqu’en y répondant nous répondons aussi
en partie à la suivante : “ pourquoi dispenser des cours de mathématiques aux futurs
enseignants et enseignantes du primaire ” ? Aux yeux des participants et participantes, un
bon enseignant ou une bonne enseignante de mathématiques au primaire est une personne
passionnée, cultivée, compétente, débrouillarde, autonome, à l’écoute de ses élèves, et
intéressée à parfaire sa formation mathématique une fois sa formation universitaire terminée.

Ainsi, il convient de se demander si notre enseignement en formation des maîtres va
en ce sens… Malheureusement, par manque de temps, nous n’avons pas pu creuser
davantage cette question, du moins pas en grand groupe.

Question 2
Quel devrait être le contenu d’un cours de mathématiques pour les futurs maîtres du primaire ?

Toutes les personnes qui ont participé à notre groupe de travail n’ont pas la même idée de ce
que devrait être un cours de mathématiques pour futurs maîtres du primaire. Par exemple,
certains des exemples de cours qui ont été mentionnés comportent des occasions de réfléchir
sur l’enseignement au primaire, des préparations d’activités, des expérimentations avec
des élèves, etc., alors que d’autres consistent essentiellement en une opportunité pour les
étudiants et étudiantes de faire des mathématiques, de vivre eux-mêmes une activité
mathématique.

En ce qui concerne le contenu mathématique lui-même, les avis des participants et
participantes sont encore là passablement partagés. En fait, pour un grand nombre d’entre
eux, il ne fait aucun doute qu’un enseignant ou une enseignante du primaire a besoin d’une
formation mathématique plus avancée pour bien exploiter les situations qu’il ou elle aura
mises en place avec ses élèves, mais les contenus spécifiques à aborder ne font pas l’unanimité.
En fait, pour certains participants et participantes, il importe non seulement que les contenus
mathématiques soient plus avancés de ceux enseignés au primaire mais aussi il faut qu’ils
soient différents de ceux qui leur ont été enseignés précédemment au cours de leur
cheminement scolaire (par exemple les géométries non euclidiennes, les classes résiduelles
modulo n, les bases de numération autres que la base dix, etc.). Pour d’autres, il importe
surtout que ces contenus plus avancés soient enseignés différemment de la manière dont les
mathématiques leur ont été enseignées précédemment, en ayant recours à des approches
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auxquelles ils sont moins habitués pour apprendre les mathématiques - résolution de
problèmes, travail en équipe, rédaction d’un journal, utilisation des nouvelles technologies,
jeux de rôles, etc.

Même si une majorité de participants et participantes sont d’avis que les contenus
enseignés dans les cours de mathématiques pour futurs maîtres du primaire doivent
“ dépasser ” les contenus de l’école primaire, un certain nombre de personnes défendent
l’idée inverse, à savoir que les professeur/e/s d’université devraient enseigner à leurs
étudiants et étudiantes en formation des maîtres du primaire les mêmes contenus que ces
derniers devront enseigner à leurs élèves, en ayant recours aux mêmes approches qu’ils
seront appelés à utiliser dans leurs classes. Cette opinion a toutefois fait surgir chez certaines
personnes une interrogation : en donnant ce type de cours, peut-on s’attendre à ce que les
étudiants et étudiantes développent les différentes compétences nécessaires à la profession
enseignante ?

Quelques points sur lesquels nous nous sommes entendus tout de même, eu égard au
contenu des cours de mathématiques ou plutôt aux approches à privilégier, est que les
étudiants et étudiantes doivent pouvoir faire des mathématiques, qu’ils doivent pouvoir
vivre des succès en mathématiques mais aussi surmonter des difficultés et relever des défis.
Nous nous sommes entendus aussi sur le fait qu’un des moyens à privilégier pour y parvenir
est la résolution de problèmes, individuellement et en équipes.

Nous nous sommes questionnés enfin sur la place à laisser au formalisme
mathématique dans les cours de mathématiques pour futurs enseignants et enseignantes
du primaire, de même que sur l’utilisation à faire des NTIC dans ces cours, mais nous n’avons
pas vraiment creusé ces questions. Aussi, l’idée de proposer aux étudiants et étudiantes en
formation des maîtres des cours de mathématiques à contenus variables, qui pourraient
être précisés en fonction de leurs besoins, a été lancée mais plusieurs objections ont été
formulées.

Question 3
Qui devrait enseigner les cours de mathématiques aux futurs enseignants et enseignantes du primaire ?

Plusieurs participants et participantes sont d’avis que les futurs enseignants et enseignantes
du primaire devraient avoir le point de vue du mathématicien ou de la mathématicienne
sur les mathématiques du primaire pour pouvoir aborder eux-mêmes les mathématiques
avec des yeux d’adultes.

D’autres personnes sont plutôt d’avis que les cours de mathématiques doivent être
donnés uniquement par les didacticiens et didacticiennes. Certaines personnes craignent
fort que les cours enseignés dans les départements de mathématiques jouent le rôle de filtres,
et elles sont d’avis qu’ils feraient moins de tort s’ils étaient donnés dans les départements
d’éducation plutôt que dans les départements de mathématiques. Un petit nombre de
personnes ont même suggéré que ce devrait être des enseignants et enseignantes du primaire
qui enseignent les mathématiques aux futurs maîtres, et que les expériences mathématiques
des futurs enseignants devraient se faire dans le contexte de leur enseignement.

Aux dires de toutes les personnes qui s’opposent à ce que les mathématiciens et
mathématiciennes interviennent en formation des maîtres du primaire, les cours donnés
par les professeurs dans les départements de mathématiques sont souvent de niveau trop
élevé pour les étudiants et étudiantes, de niveau trop élevé en fait si on considère les
mathématiques dont ils auront besoin pour leur enseignement … En fait, le problème est
que les participants et participantes ne s’entendent pas sur les mathématiques dont auront
besoin les futurs maîtres du primaire pour enseigner les mathématiques à ce niveau !
D’ailleurs, il n’est pas certain que nous ayons tous et toutes la même idée non plus des
mathématiques qui devraient être enseignées au primaire.

Dans la majorité des provinces canadiennes, les seuls cours de mathématiques suivis
par les futurs enseignants et enseignantes du primaire ne sont pas des cours adaptés à cette
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clientèle, et ils sont généralement suivis non seulement par des futurs maîtres du primaire
mais aussi par d’autres personnes nullement intéressées par l’enseignement primaire. Aussi,
il peut arriver que les personnes qui enseignent ces cours ne soient pas particulièrement
intéressées elles non plus à l’enseignement des mathématiques au primaire. On comprend
donc un peu mieux les réticences de certaines personnes à l’idée de laisser la formation
mathématique des futurs maîtres du primaire se poursuivre de cette façon. Au Québec, la
situation est sensiblement différente. En effet, les universités qui offrent des cours de
mathématiques à leurs futurs enseignants et enseignantes du primaire offrent des cours
généralement adaptés à ces clientèles et réservés de plus à ces mêmes clientèles.

La majorité des participants et participantes semblent s’entendre sur le fait que nous
avons tous et toutes un rôle à jouer dans la préparation des futurs maîtres du primaire à
enseigner les mathématiques mais que ce rôle n’est pas le même pour tout le monde. Il faut
donc préciser nos rôles respectifs et apprendre à se parler, à collaborer ensemble, et ce tant
au moment d’élaborer les programmes que par après.

Question 4
Comment intégrer les cours de maths à la formation des futurs enseignants et enseignantes ?

Actuellement, dans plusieurs des universités canadiennes, les étudiants et étudiantes qui
s’inscrivent en formation des maîtres du primaire n’ont pas à suivre de cours de
mathématiques, ni avant d’entrer dans le programme, ni après y être entrés. La majorité des
participants et participantes déplorent cette situation et souhaiteraient que les futurs maîtres
suivent un ou des cours de mathématiques. Outre le contenu de tels cours, la question se
pose à savoir comment ils doivent être articulés aux programmes de formations des maîtres.
Plusieurs options sont possibles : des cours de mathématiques isolés préalables aux
programmes de formation des maîtres, des cours de mathématiques préalables aux
programmes de formation mais mieux articulés à ces programmes, des cours de
mathématiques à l’intérieur du programmes de formation des maîtres et préalables aux
cours de didactique des mathématiques, des cours de mathématiques à l’intérieur du
programmes de formation des maîtres offerts en parallèle avec les cours de didactique, etc.

Aux dires des participants et participantes, il semble qu’une formation issue de cours
de mathématiques isolés, non adaptés à la clientèle des futurs maîtres du primaire, et souvent
suivis aussi par d’autres clientèles, est souvent décevante puisque les étudiants et étudiantes
ne parviennent pas à faire des liens par eux-mêmes avec les cours suivants. Ainsi, les par-
ticipants et participantes penchent davantage vers une suite cohérente de cours de
mathématiques et de didactique des mathématiques où, en particulier, les cours de
mathématiques sont adaptés à la clientèle, et où les cours de mathématiques et les cours de
didactique sont bien arrimés ensemble. Ici encore, une telle solution suppose que les
personnes qui interviennent dans ces cours, peu importe leur provenance, discutent entre
elles …

Question 5
Quelle forme devrait prendre l’évaluation dans ces cours ?

Nous avons très peu discuté de cette question. Nous avons surtout entendu quelques
exemples d’épreuves utilisées par les collègues : quiz, résolution de problèmes, journaux de
bord, etc.

Question 6
Est-ce que tous les étudiants et étudiantes qui s’inscrivent en formation des maîtres au primaire
doivent nécessairement passer à travers tout le programme?

Un des participants a fait remarquer qu’il semblait y avoir dans notre groupe de travail un
a priori important, à savoir que tous les étudiants et étudiantes qui s’inscrivent en forma-
tion des maîtres au primaire à l’université pourront enseigner les mathématiques au primaire.
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Cette personne était plutôt d’avis que les étudiants et étudiantes qui éprouvent d’énormes
difficultés en mathématiques, de même que ceux qui ont développé une véritable “ phobie ”
des mathématiques—ce à quoi on a référé comme étant la “ mathophobie ”—devraient être
orientés vers d’autres programmes de formation. Cette proposition a soulevé des réactions
très vives chez d’autres participants et participantes, qui ont demandé, par exemple, qui
pourrait réellement décider d’avance si les étudiants et étudiantes en formation des maîtres
seront de bons enseignants et enseignantes de mathématiques, et surtout sur quelles bases
! Quelques personnes ont mentionné que certains de leurs “ bons ” étudiants et étudiantes
en mathématiques se sont avérés en fait de bien mauvais enseignants et enseignantes une
fois rendus dans les écoles, ou encore ont réalisé qu’ils n’aimaient pas enseigner cette matière,
alors que d’autres moins doués semblent avoir développé avec les années une appréciation
différente des mathématiques, et de l’enseignement des mathématiques, et semblent être
devenus de très bon enseignants et enseignantes de mathématiques.

Question 7
Quelle place faire aux réformes ?

Cette question a été très peu touchée dans notre groupe de travail mais elle a été retenue
comme étant une question importante. Les personnes qui sont intervenues ont exprimé une
idée à l’effet que les futurs maîtres devraient être formés de manière à ce qu’ils puissent
intervenir à l’intérieur de différents contextes, de manière à ce qu’ils puissent en particulier
s’adapter aux changements de curriculum. Aussi, pour plusieurs, nos étudiants et étudiantes
devraient pouvoir devenir des agents de changement dans leurs milieux scolaires respectifs.

Question 8
Quel devrait être le rôle de notre groupe, le GCEDM/CMESG ?

Le GCEDM/CMESG devrait-il devenir pro-actif dans le but de favoriser la mise en place
d’une réforme dans les programmes de formation des maîtres au Canada ? Ou devrions-nous
plutôt, chacun et chacune, agir individuellement, à l’intérieur de nos milieux respectifs ? Notre
groupe de travail semble tendre vers la dernière alternative. Aussi, il est d’avis qu’une discus-
sion comme celle que nous avons eue lors de nos trois rencontres devrait avoir lieu aussi dans
nos différents milieux, entre les personnes qui interviennent en formation des maîtres du
primaire en mathématiques ou entre celles qui seraient susceptibles de le faire.

Conclusion

Nous sommes tous et toutes conscients que les étudiants et étudiantes en formation des
maîtres du primaire ont besoin de vivre une expérience positive en mathématiques. Nous
devons contribuer à enlever la peur que peuvent avoir certains et certaines des
mathématiques, et nous devons leur donner le goût des mathématiques ! Cependant, nous
nous entendons pour dire que la réussite de nos étudiants et étudiantes ne doit pas se faire
au détriment d’une formation de qualité.

Aussi, un des points sur lequel tout le groupe était en accord est que les étudiants et
étudiantes doivent être prêts à s’engager à poursuivre leur formation mathématique après
être passés par l’université, soit dans leur milieu professionnel, soit à l’université. Aussi, il
faudrait faire en sorte qu’une meilleure cohésion s’installe entre les différents intervenants
et intervenantes en formation des maîtres, mais aussi entre les écoles et les universités.

Nous avons réalisé suite à nos trois demi-journées de travail qu’il serait vain de chercher
un modèle unique de formation des maîtres du primaire en mathématiques au Canada. Il
faut plutôt faire ressortir ce qui fonctionne bien dans nos contextes respectifs, et partager
nos expériences avec les autres. À partir de là, il faut chercher ensemble une diversité de
solutions.
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Report of Working Group A

Mathematics Courses for Prospective Elementary Teachers

Caroline Lajoie, Université du Québec à Montréal
Ed Barbeau, University of Toronto

Participants

List provided on page 35.

0. Introduction

Rather than provide a detailed account of the programs that were available or might be
offered, the rather large working group (of about thirty mathematicians, education research-
ers and didacticians) focussed on sharing perspectives, delineating the issues and formulat-
ing some essential questions that would need more detailed consideration.

A complete consensus was not possible. However, there was substantial agreement
on many points. Marty Hoffman pointed to the need to give education students a new view
of the nature of mathematics, while Bernard Hodgson emphasized the desirability of el-
ementary teachers having the viewpoint of a mathematician. What these amount to are
very much open to discussion, but John Grant McLoughlin mentioned the difficulty that
what students are taught at college is not validated by their experiences in the classroom.

1. Selective Survey of Teacher Training

In Canada, there is an essential difference between the regime in Quebec and the regime in
other provinces.

In Quebec, while details of the programs vary, the formation of teachers is much bet-
ter integrated than elsewhere in the country. The typical path leading to university educa-
tion is as follows: pupils have seven years of elementary school (K-6), followed by five years
of high school, which they enter at the age of twelve, and two years at the CEGEP level
(CEGEP is an acronym for “Collège d’enseignement général et professionnel”). Undergradu-
ate university education generally lasts three years, but the programs for both primary and
secondary teachers preservice education are four-year programs that combine discipline
courses with courses in education, including the equivalent of one year of practicum. (The
discipline courses for secondary teachers amount to two years of mathematics and science.)
One drawback of this approach is that it does require students to decide to go into teaching
fairly early, at the time of their graduation from CEGEP.

The pattern in other provinces is that students take an undergraduate degree, and
then, having decided to enter the teaching profession, attend a faculty of education for usu-
ally one year and sometimes two. Time is very short at the education faculty to do much
more than briefly look at the disciplines, with the focus on methodology. There is generally
no requirement that the students will have studied any mathematics at all at the college
level. Consequently, it is highly likely that many new teachers will feel ill-prepared to handle
the teaching of elementary mathematics.

Specifically, in British Columbia, the University of British Columbia requires one ter-
tiary mathematics course outside of the education program. In Alberta, students spend two
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years in a faculty of education, and need no tertiary mathematics course for admission.
Saskatchewan and Manitoba have a similar regime. In Ontario, the normal education pro-
gram lasts for one year, but there are some universities for which a concurrent BSc/BA-BEd
program is available. The tertiary mathematics requirement for admission varies. In New
Brunswick, there is a choice of consecutive and concurrent programs. Nova Scotia requires
two years at a faculty of education after completion of the BSc; there are disciplinary re-
quirements at university for mathematics, English, social science and science at university.
Prince Edward Island currently requires one year in an education program, but plans to
change this to two years. In Newfoundland, there is a consecutive program that requires
two university mathematics courses.

Lyndon Martin, who has taught in the United Kingdom, told the group that since the
National Curriculum came into force, the government prescribes in detail how teachers are
to be prepared, with an emphasis on technical knowledge; teachers are tested before going
into the field. According to the UK National Literary/Numeracy Standard, each school pu-
pil receives one hour each of mathematics and English; teachers are recommended to use a
whole-class interactive approach.

Bernard Hodgson described the situation in France. Recent reforms have sought to
raise the status of primary teachers, who have three years of formation after their first uni-
versity degree.

2. Questions

On the second day of deliberations, the working group broke into three subgroups to for-
mulate and concentrate on key questions. It reunited on the final day to hear reports on
these discussions, and to draw up a list of issues requiring attention.

(a) What do we want teachers to be?

Some characteristics are competence, autonomy, resourcefulness, passion, and sensitiv-
ity to the learner and broad in outlook. The teacher should continue to be a learner.
These are the goals to keep in mind in designing courses and programs, so that we
require of teachers some intimacy with and understanding of mathematics. However,
before this can occur, they need to be confident in the subject, and this requires in some
cases that we vanquish a deep-seated phobia.

(b) What is the scope of the syllabus of courses for teachers?

It is agreed that these courses should in some way go beyond covering the material that
they are expected to teach; the students need an adult view of elementary mathematics.
Accordingly, this may entail giving them experiences quite distinct from ones they had
in their own schooling. Many of the courses described within the group embodied indi-
vidual and group problem solving, opportunities to reflect on both the subject and peda-
gogy, and a component that requires some planning and execution of lessons. It is not
clear to how high a level mathematics should be taught to inform the elementary cur-
riculum, or when and how formalism should be engaged. For example, while modular
arithmetic might not be taught in schools (there was some demurral about this), it can
be a useful conceptual tool for the teacher. Should there be some courses that are com-
pletely open-ended, without a syllabus at all? One radical suggestion was to have a
course with no prescribed content that would evolve according to the characteristics of
the students. This was a point of disagreement within the group. Because of the trepi-
dation felt by many students about mathematics, courses should be designed to enable
students to quickly experience success in tackling a mathematical problem flexibly with-
out a “recipe” mentality.

   Teachers will be expected to use technology in their practice, and their mathemat-
ics courses should reflect this. What is the role of spread sheets? graphing calculators?
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software packages, such as Geometer’s Sketchpad or Mathematica?
   Certainly, an important ingredient in any course is encouragement for students to

reflect on mathematics, learning and teaching, and on their own experiences, thus broad-
ening their worldview. This can be achieved, for example, through keeping logs and
doing projects.

(c) Who should give such courses?

A majority of the group felt that prospective teachers should take suitable mathematics
courses before they begin the pedagogical part of their formation; this would allow
them to get some experience before they do their practicum. A minority view was that
mathematics should be taught in conjunction with their training program, as this will
provide a context and a focus for teachers. Apart from the difficulty of shortage of time,
it seems difficult to see how this might allow teachers to have a broader view of math-
ematics that goes beyond the exigencies of their teaching. However, there was the fear
that the university level mathematics might be inappropriate or may turn candidates
away from teaching.

(d) How particular to elementary teachers should university courses be?

It may be that some courses could be given in common to teachers at all levels, second-
ary as well as elementary, or that certain courses would be suitable to a variety of stu-
dents, such as mathematics appreciation courses for nonspecialists or courses in the
history of mathematics or science. Certain geometry courses might also fall into this
category.

(e) How should courses be packaged?

One or two courses of a special character are available at some universities, and enrol-
ment is voluntary. Peter Taylor argued for incorporating courses into a unified pro-
gram. Certainly, universities might look at preferred paths for prospective elementary
teachers that might involve mathematics courses combined with certain courses in other
areas. To avoid the danger of having only courses that do not take into account special
characteristics of future elementary teachers, one might, as in Quebec, have courses
designed and reserved for this population.

(f) Should university-level courses in mathematics be required for entry into a faculty of education?

The affirmative argument recognizes that elementary teachers will be required to teach
mathematics. Being able to count on some background in mathematics will enable fac-
ulties of education to focus more on methodology. The negative argument points to the
danger that such courses might act as a filter (is this necessarily a bad thing?). If we
were to take this route, then a much stronger consensus will be needed as to what the
university courses should involve. However, most participants deplored the lack of
mathematical background among future teachers and would like to work towards an
effective compromise.

(g) How can we ensure a coherent mathematical experience for students as they pass from school to
university, through a faculty of education and then out into the field?

A current problem is that students get conflicting impressions of mathematics, and the
school regime does not always support a broad approach to the subject. So teachers
need to have an understanding of the contexts in which mathematics appears, and to
be sensitive to the best approach for each context.

   An important ingredient in getting this coherence is the follow-up available for
novice teachers. The planning for each of inservice and preservice training should take
the other into account. Perhaps a conference can be organized for new teachers to dis-
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cuss their practice, or a website can be set up. John Grant McLoughlin has offered to
organize such a website and Harley Weston to mount and maintain it.

(h) How should students be evaluated in university courses and programs?

While the pass/fail approach might be appropriate in a faculty of education where the
final decision is a binary one—whether or not to certify, this might not be suitable for
university courses, where one would like to compare candidates. Should there be final
examinations? If so, what should they involve?

   The group heard of a number of options. In the program at York University, there
were quizzes and final examinations; in the examination, students were expected to
respond to issues. Another possibility for an examination is that it include problems
selected from a list that students prepare in advance. The advantage of quizzes was that
they helped to focus what went on in the class. Anne Roy mentioned that at UQAR
(Rimouski), teams of four had to prepare a lesson, that students had to select problems
and prepare a book on them, that there was a final examination, and that the students
had to pursue a research program; this allowed for a variety of ways of understanding
where the students were at. In Queen’s College in New York, students worked on open-
ended problems, first in pairs, then two explained to two, then four to four, and so on
until the class was involved.

(i) Should all elementary teachers be expected to teach mathematics?

Most people took for granted that all prospective teachers should be prepared to teach
mathematics. What about those who evince enormous difficulty or revulsion for the
discipline? Should they be directed into a different regime? This question elicited a
lively response among participants, some of whom pointed to the practicalities of iden-
tifying such students. Often students who are good at mathematics may find it hard to
teach it effectively, while others who may fear or detest the subject confront their feel-
ings and end up not only with a much better appreciation and competence, but with a
good deal of effectiveness in the classroom.

(j) How much should courses reflect the status quo, and how much should they support reform?

Teachers have to deal with the situation in which they find themselves, but at the same
time, we would like them to be agents of reform.

3. Other Issues

There were a number of other issues that were briefly touched upon in the discussion.

(a) We seem to have some hidden assumptions about the mathematics that should be taught
to elementary children. Perhaps this needs to be reviewed.

(b) EQAO in Ontario surveys how much pupils like mathematics. They have found that
dislike for mathematics among children of both sexes is already widespread at the Grade
3 level; although the girls perform better. This phenomenon needs further study. Does
it reflect the demeanour of the teachers? or pressures of testing?

(c) What is the role of CMESG in ameliorating the situation with respect to the formation
of teachers? Should it provide direct feedback to other organizations, such as the Cana-
dian Mathematical Society, which might propose and lobby for changes? How broadly
should its proceedings be disseminated? Should it make a presentation to the Council
of Ministers? It seems out of keeping with the traditions of CMESG to enunciate a posi-
tion; rather, it seeks to ensure that issues are thoroughly aired in a knowledgable way.
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Report of Working Group B

Crafting an Algebraic Mind: Intersections from History
and the Contemporary Mathematics Classroom

Louis Charbonneau, Université du Québec à Montréal
Luis Radford, Université Laurentienne
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José Guzman Ralph Mason Leigh Wood

Introduction

The working group sessions were organised around three activities. The first one dealt with
the history of algebra. A text was distributed to all participants who were then asked to
answer the questions appearing at the end of each section. This report reproduces the said
text and includes the salient small group comments as well as excerpts from our discus-
sions.

For the second activity, Luis Radford summarised a part of his classroom research in
which he, along with some other teachers, planned a teaching sequence having in mind
some historical considerations. A video showing some of these students at work was then
presented. A copy of their productions and a transcript of their discussions were also made
available to the workshop participants. These documents are not included in the report. The
second part of our report will, nevertheless, summarise our discussion that revolved around
the semiotic and conceptual limits and possibilities of two models (the use of the balance
model and the two-containers model) intended as pedagogical artefacts to help novice stu-
dents deal with linear equations.

The last activity consisted of sharing our views on the use of history in the classroom.

PART 1:  MEDIAEVAL AND RENAISSANCE ALGEBRA

I. The numerical tradition in mediaeval algebra—First degree equations

Liber augmentis et diminutionis

The text Liber augmentis et diminutionis, a mathematical text of a Hindu origin and dealing
with first degree equations, was translated by Abraham ben Ezra during the 11th Century.
The author of the text seems to have been Ajjub al-Basri, “the first Arab who mastered the
Hindu technique of solving equations” (Hughes 1994, p. 31). We find in this text some prob-
lems solved using different techniques. Two of them are false position and regula infusa.

Regula infusa consists of operations performed on the “positive coefficient” of the un-
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known and the constant term. Of course, there are no definitions; the regula infusa is learnt
through examples. The problems involve fractional parts of the unknown and, in the com-
plex variants, sums of linear expressions and fractional parts of them. The main problem
consists in bringing all the fractional parts to integer terms.

The problems solved by regula infusa arose probably in the context of division of for-
tunes left by a person to the family (the terms of the division of the fortune being stated
through fractional parts). Certainly, the problems in the Liber augmenti and diminutionis go
beyond the requirement of practical situations. This mathematical text and its regula infusa
method have to be seen as a pedagogical attempt to teach techniques to solve linear equa-
tions whose difficulty resided in the handling of fractional parts.

One of the problems is the following (Libri 1838–1841, p. 321):

English

A treasure is increased by a third [of
it]. Then a fourth of this aggregated
is added to the first sum. The new
sum is 30. How much was the trea-
sure originally?

In modern notation, the problem is the following:

t + 1/3 t + 1/4 (t + 1/3 t) = 30

Census (treasure) and res (thing) were two different terms used in mediaeval algebra. In
later texts the relation between them became standardized. It was that of a number to its
square (the square of the res was the census). Here, however, their relation is different. We
are symbolizing here treasure as t.

The solution is as follows:

Assume res and add its fourth to it and you have a res and a fourth of a res. How
much less will bring res and fourth of res to a res? You will find that what that is, is its
fifth. Subtract therefore from thirty its fifth and twenty-four will remain. Then take
the second res and add it to its third part and you will have res and its third. How
much less therefore will bring res and third of res to a res? You will find in truth that
how much that is, is its fourth. Therefore subtract from twenty-four its fourth and 18
will remain. (Libri, op. cit.)

As we see, the text starts by dividing the original problem into two sub-problems. By taking
t + 1/3 t as a res, that is, in modern notations, by making x = t + 1/3 t, the first sub-problem is:

x + 1/4 x = 30.

Then, the left side of the equation x + 1/4 x = 30 gives 5/4 x = 30 and in order to reduce this to
one x, 1/5 of 5/4 of x has to be subtracted from each side. This gives:

(5/4 x – 1/5 )(
5/4 x) = 30 – 1/5 (30); that is, x = 30 – 6 = 24.

Now the text deals with the equation t + 1/3 t = 24. The method is the same. The new equa-
tion is hence 4/3 t = 24. To get one t, we need to subtract 1/4 of 4/3 t from 4/3 t. Thus, the
problem is now:

(4/3 t – 1/4 )(
4/3 t) = 24 – 1/4 (24); that is, t = 18.

Exercise 1

Solve the following problem using the regula infusa method:

A treasure is increased by a third of itself and four dragmas. Then a fourth of this sum
was added to the first sum. The result was forty. (Libri 1838–1841, p. 322)

Français

Un trésor (censo) est augmenté de son
tiers. Alors une quatrième partie de cet
agrégat est ajoutée à la première addi-
tion. La nouvelle addition est 30.
Combien le trésor originel était-il ?
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Question 1

1.1 What are the key algebraic concepts used in the regula infusa method?

1.2 The concept of equality is one of the more important concepts in algebra. What are the
properties of the equality that were required in the regula infusa method?

Question 2

Problems such as the first one shown above were also solved by the method of false position.
To solve the first equation x + 1/4 x = 30, and in order to avoid fractional parts, one may
assume that x = 4. The act of assuming a value for x was referred to as making position, and
since the assumption was known to be false a priori the method was called false position.

If x = 4 is substituted in the equation, one gets 5 instead of 30. So, in those cases, the
author of Liber augmentis and diminutionis asks the same type of question: “Tell me then: by
how much must you multiply 5 until you get 30”. The answer is obviously by 6. Hence the
answer is 6 times the false position, that is x = 6 x 4 = 24.

• Using the method of false position, solve the second equation involved in the first prob-
lem, namely, t + 1/3 t = 24

Question 3

Do you think that the method of false position is “more algebraic” than the regula infusa
method? Explain!

Discussion

The discussion was mainly related to question 3.
In a certain way, the regula infusa method is more restrictive than the method of false

position. Indeed, from the point of view of the scope of the method, this first method applies
to a more specific type of problem, that is, those problems whose equations are of the gen-
eral form x + x/n = k.

However, the method of false position seems less algebraic than the other method. The
equality is treated differently in these two methods. In the regula infusa, the equality is seen
more like a statement of the equivalence between two ways of seeing the same quantity. The
manipulations used to solve the problem show that k is interpreted as the n + 1 nth parts of
the unknown. In the method of false position, the “equality” indicates the result of an opera-
tion. The result of the calculation x + x/n gives k. So, one tries to calculate the value of this
operation by substituting the unknown by a concrete number. If one doesn’t get the ex-
pected result, one modifies the number, taking into account what happened in the first
calculation. The notion of equality used in regula infusa then seems closer to the one used in
algebra.

Some noticed that, in general, students don’t feel at ease with the method of false
position.

II. The geometric tradition in mediaeval algebra – Second degree equations

Abû Bekr’s Liber Mensuratonium

One of the interests of Abû Bekr’s Liber Mensuratonium (ca. 9th Century) for the study of the
conceptual development of algebra is that this book contains several problems solved using
two different methods. One of the methods is referred to as belonging to the people of al-
gabr (that is, the people of algebra: to be read, people practicing algebra). The other method
does not bear any specific name. Following Høyrup (1990) the method shall be identified as
belonging to the “cut-and-paste geometry”.
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In what follows, one problem from Abû Bekr’s Liber Mensuratonium is presented. It
comes from the edition made by Busard in 1968, an edition based on the translation to Latin
by Gerardo de Cremona in the 12th Century.

Problem 25

If in truth he will say to you: the area is 48 and you have added two sides and what
results was 14, what then is the quantity for each side?

The solution according to the “cut-and-paste geometry” is the following:

This will be the way to solve it: when you halve fourteen, it will be seven, the same
then multiply by itself and what will result, will be 49. Then deduct from it 48 and
one will remain, of which obtain the root, which is one; if you will have added to it
half of 14, that what will result will be the longer side. And if you will have de-
ducted it from the half of 14 that what will result is the shorter side.”

Comments

Although it is not explicitly stated, the problem deals with a rectangle. The question is to
find the length of the sides.

The colloquial style of the text evokes unambiguously the oral setting in which the
mathematical discussions were held and makes us sensitive to the characteristics of teach-
ing in oral traditions. In all likelihood, the solution was accompanied by some drawings
that were not inserted in the text. The text, indeed, rather has the value of an aide-mémoire,
and not that of an autonomous item in the mediaeval market of manuscripts’ circulation.

As to the solution, the idea underlying the problem-solving procedure is to start from
a square whose side is half of the sum of the sides of the sought after rectangle, that is to
start with a square having a side equal to half of 14. This procedure is a kind of false position
method in that the problem-solver knows that by taking the side as equal to half of 14 some
adjustments will be required later.

Question 1

Try to make sense of the solutions using the following reconstructed sequence of drawings:
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The text presents another method to solve the same problem, which is the method of alge-
bra. As we will see, the algebraic solution is given following a kind of a discursive protocol
which seems strange to us. But not to Abû Bekr’s students! The text does not use letters as
we do now. However an abstract terminology was already in place. Two of the basic terms
were the thing (res in Latin) and its square, census. We have edited the text using numbered
lines to make references to the text easier.

Question 2

Read the algebraic solution (lines 1–7) and find out what is the equation solved in the text.
Provide some explanations of the following key terms:

• To confront;
• To restore.

1. There is another way for it, according to algebra, that is: put one side as one thing (res)
and the second 14 less thing.

2. Then multiply the thing with 14 less thing and the result will be 14 things less the census.

3. Confront then (oppone ergo) the area, that is, you restore 14 things with census subtracted
and add [the restoration] to 48.

4. It will therefore be census and 48 dragmas that equal 14 things.

5. You will therefore have after the confrontation censo and 48 dragmas that equal fourteen
things.

6. Then do according to what was given in the fifth question of algebra which is, when you
halve 14 things and multiply them by themselves and deduct from it 48 and you will
obtain the root of that which remains.

7. Afterwards, if you will have added half of 14, that which will result will be the longer
side and if you subtract it, it will be the shorter one.

Question 3

• Write in modern symbolism the equation in line 5. Then follow the instructions given in
line 6.

• Follow the instructions given in line 7 and verify the result. We will come back later to
the justification of this algorithm, when we shall read an excerpt of Al-Khwarizmi’s work.

• What is the role of number 48 in the problem?

Question 4

We saw that the unknown was represented by res (thing). Did Abû Bekr operate on/with
the unknown? Explain!

Question 5

What are the main differences in both methods, the cut-and-paste geometry and the alge-
braic one? Explain the differences in terms of the kind of symbolization and meanings on
which each solution relies.

Note: Abû Bekr’s “Problem 25” has a long story. It appears in a different formulation and
conceptualization in Diophantus’ Arithmetic (see Radford 1991/92, 1993, 1996) at the end of
Antiquity. But in all likelihood the problem was known and solved by Babylonian scribes
around 1600 B.C.
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III. A problem from Fibonacci’s Liber Abaci

Leonardo Pisano or Fibonacci was instrumental in the introduction of Arabic algebra into
the West. His Liber Abaci (1202) was a sort of encyclopedia containing an exposition of sev-
eral methods to solve a variety of commercial and non-commercial problems. In the Liber
abaci there is no algebraic symbolism yet. And Fibonacci and the mathematicians of the 13th,
14th and 15th centuries were still using only one unknown to solve problems—even if most
of the time in the statement of the problems the question was to find several numbers (see
Radford 1997, in press). This is the case in the following problem.

Divide 10 into two parts, add together their squares, and that makes 62 1/2.

Exercise 1:  Becoming rhetoric!

Using the mediaeval algebraic technique, find the second-degree equation corresponding
to this problem. (If needed, make transformations so that the “coefficient” of censo be one).
As the mathematicians of that period, you will use one unknown only (which you will
represent by ‘thing’ and its square by ‘censo’). In the problem-solving process indicate the
passages where ‘restoration’ was needed.

Exercise 2

Instead of solving the equation by the usual modern formula, solve it using the geometric
argument explained in the previous section.

Let i be the middle of ag. Construct hf
such that bh = hf. Let td be equal to
hi. The rectangles bi and ud are equal.
Hence, square fg minus rectablge bg
is equal to square ft. That is, area
square ft = (14/2)(14/2) – 48. Its side is
obtained by taking the square root of
the area and x is found by subtract-
ing the square root from 14/2. This is the
small sidein Abu Bekr problem. The big
side is obtained by subtracting the
small side from 14.

Al-Khwarizmi and the geometric proof of canonical equations

Al-Khwarizmi gave, in an explicit manner, a geometrical proof of the procedure solving
second degree equations. He distinguished three kinds of objects: numbers, the unknown
(Jidhr, i.e., root, which the abacus masters will translate as thing) and Mal (the square of the
unknown). One of the six types of equations which he studied was: squares and numbers
equal to roots. Al-Khwarizmi says:

For instance, “a square and twenty-one in numbers are equal to ten roots of the same
square.” That is to say, what must be the amount of the square, which when twenty-one
dirhems are added to it, becomes equal to the equivalent of ten roots of that square.

This type of equation corresponds to the equation for which Abû Bekr gave the steps lead-
ing to the solution in the problem seen above. Al-Khwarizmi provided a geometrical proof
for the particular equation stated above (x2 + 21 = 10x) (see Rosen 1831, p. 16 ff). We will give
it here for the equation of problem 25 of Abû Bekr (details in Radford 1995a), that is, the
equation: x2 + 48 = 14x.
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Exercise 3

Compare your solution to Fibonacci’s:

Fibonacci’s Solution

Let the first part be one thing, and this multiplied by itself makes a censo.
In the same way, multiply the second part, which is 10 minus one thing, by itself; for

the multiplication you do this: 10 times 10 equals 100; a subtracted thing multiplied by a
subtracted thing makes a censo to add. And twice 10 multiplied by a subtracted thing
makes 20 subtracted things. And so for 10 minus 1 thing multiplied by itself makes 100 and
a censo diminished by 20 things. Adding this to the square of the first part, that is, to the
censo, there will be 100 and two censi minus twenty things, and this equals
62 

1/2 denarii.
Add therefore, twenty things to each part, there will be 100 and two censi equal to 20

things and 62 
1/2 denarii. Take away, therefore, 62 

1/2 from each part, there will remain two
censi and 37 

1/2 denarii that equal 20 roots; this investigation has thus been brought to the
third rule of mixed cases, that is, censi and numbers are equal to roots.

In order to introduce the rule, divide the numbers and roots by the number of censi,
that is by 2, and it will make one censo and 18 

3/4 denarii equal to 10 roots. Therefore …
(According to Boncompagni’s edition of Liber Abaci; 1857, p. 411. The problem is fully
discussed in Radford 1995a.)

Discussion

At the beginning, the discussions focused on the nature of numbers and their relation with
geometry. But quickly, it evolved toward ways of solving Fibonacci’s problem. Frédéric
Gourdeau presented his own solution.

We also noticed that writing an expression such as x2 – 2x + 100 is misleading. This expres-
sion is the area of the square of sides (10 – x). In the context of Fibonacci’s epoch, it would be
impossible to have a negative number, even a virtual one, since this expression represents
an area which is necessarily positive. In the expression x2 – 2x + 100, it may happen that x be
such that x2 – 2x becomes negative. So, we should write instead x2 + 100 – 2x. This shows the
danger of using algebraic symbolism while studying the early history of algebra or while
using concrete material such as algebraic tiles.

The fact that, at that time, memory was of paramount importance while solving math-
ematical problems was also discussed. In the Middle Ages, writing was a lot less widely
spread than today. The high cost of paper limited the availability of support for writing.
Also, students, and society in general, developed many ways of using memory. With the
widespread use of writing and other cultural means to keep track of things and events,
those abilities have been transformed and required to a lesser extent.

Frédéric’s Solution

The square has an area of 100. The two squares (grey)
have a total area of 62 

1/2.
Therefore, the two remaining equal rectangles

are left with a total area of  100 – 62 
1/2, that is 75/2,

and thus one of those rectangles has an area of 75/4.
The problem is then to find a rectangle of which

half of the perimeter is 10 and the area is 75/4.
This is the type of problem solved by Abû Bekr.
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IV. Operating with and on the unknown

In Section I we encountered a first type of operation with the unknown: addition of the
unknown and fractional parts of it (e.g., x + 1/4 x = 5/4 x). In Section II, we encountered a
different type of operation with the unknown. Indeed, in this case, the unknown (or its
square) appeared as a subtractive term (i.e. a term that is provisionally lacking from another
term. More specifically x2 was seen as being absent from 14 in the left expression of the
equation 14x – x2 = 48). So, the expression 14x – x2 was repaired or restored by adding x2 to
both sides of the equality. In this section we will see another type of operation with the
unknown by referring to a problem from R. Canacci’s Ragionamenti d’algebra. This book
belongs to the tradition of algebra books of the Renaissance. With the increase of economic
activity in the 13th Century onwards, exchange of merchandise and money were the main
means to acquire goods. But cash money was not always available. Sometimes, to do busi-
ness required more money than merchants could afford. So small companies developed
and with this a systematic study of mathematical techniques to calculate gains. In teaching
settings, problems were ideated in such a way that merchants and their sons were trained to
cope with calculations and problem-solving needs—merchants’ daughters were not usu-
ally involved in commercial activity (a contextual analysis of commercial mathematics and
its relation to the humanistic thinking of the Quattrocento can be found in Radford 2000).

The following problem is a kind of pedagogical effort to provide training to use alge-
bra in a non-realistic setting. The difficulty resides in finding the equation and handling it.

Two men have a certain amount of money. The first says to the second: if you give me 5
denarii, I will have 7 times what you have left. The second says to the first: if you give
me 7 denarii, I will have 5 times what you have left. How much money do they each
have?

Exercise 1

Using one unknown only, write an equation for this problem. Then solve it justifying the
algebraic actions.

Compare your solution to Canacci’s.

Canacci’s Solution

The first man has 7 things minus 5; the second man has one
thing and 5 D[enarii].

The second [gives] to the first 5D. He is left with a thing.
The first will have 7 things.

Therefore, the first has 7 things minus 5D. He gives 7 to
the second who has one thing and 5D, for which he asked,
and the first will have 7 things minus 12D. This is equal to 5
times the [amount] of the first. Therefore, multiply the amount
of the first by 5 and that gives 5 times 7 things minus 12, that
which gives 35 things minus 60D. This is equal to one thing
plus 12. Even up the parts by adding to each 60D and sub-
tracting a thing from each part this will give 34 things equal
to 72D. Divide the things, as the rule says, and the thing is
2 2/19 [the text is incorrect: the division gives 2 2/17 — L.R.]
Therefore, since the thing is 2 2/19, come back to the begin-
ning of the problem. The first man had 7 things minus 5D, the
second man had a thing and 5D. Therefore, the first had …

(This problem is fully discussed in Radford 1995a.)

Comments

First man = 7x – 5

Second man = x + 5.

After the second person
gives the 5 denarii, the
amount are 7x and x, re-
spectively.

After the first person gives 7
denarii, the amounts are 7x
– 12 and x + 12, respectively.

The equation is:

x + 12 = 5(7x – 12)

x + 12 = 35x – 60,

operating x leads to:

34x = 72 and x = 2 2/17
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Discussion

Two original solutions have been given to Canacci’s problem.
While playing with real pieces of money, cents and obviously not dinarii, Darren Stanley

found the following solution. It seems that working with concrete money played an impor-
tant role in the making of Darren’s solution. We may speculate, and it is pure speculation,
that Canacci’s solution may have been found the same way.

Darren’s Solution

Let’s say, at the beginning of the discussion, that the second man has x + 5 denarii. But,
since if you (the second man) give me (the first man) 5 denarii, I will have 7 times what you
have left, after this exchange, the second man has x denarii, since he gave 5 denarii to
the first man, and the first has 7x dinarii, 7 times what the second has. Thus, the first man
having gotten 5 denarii in this exchange, before it, at the beginning, he had 7x – 5 denarii.

First man Second Man
At the beginning    7x – 5        x + 5

Let’s now analyze the second exchange. The second says to the first: if you give me 7
denarii, I will have 5 times what you have left. Then, after the exchange, the first man has
(7x – 5) – 7 dinarii, and the second has 5 times this amount, that is 5(7x – 12) dinarii. Then,
before this exchange, the second man had 5(7x – 12) – 7 dinarii, since he got 7 dinarii from
the first man during the exchange.

First man Second Man
At the beginning    7x – 5  5(7x – 12) – 7

Therefore, the amount the second man had at the beginning may be expressed in two
different ways, x + 5 and 5(7x – 12) – 7. Thus,

x + 5 = 5(7x – 12) – 7.

So x = 2 
2/17 denarii. Then, the first has 9 

14/17 denarii, and the second one, 7 
2/17 denarii.

Ralph Mason proposed another solution.

Ralph’s Solution

Let’s resolve this problem using ratios, with a graphical representation.

With the first exchange, the
first man has seven times more
money than the second one.
Thus, the first man has 7/8 of all the
money. At the beginning, the first
man had then seven eighth of the
total, less 5.

With the second exchange,
the second man has five times
more money than the first one.
Thus, the first man has 1/6 of all the
money. At the beginning, the first
man had then one sixth of the
total, plus 7.

Therefore, if one says that the
res is the total amount of money,
and we look at what the first man
had at the beginning, one has:
7/8 res – 5 = 1/6 res + 7.

From there, it is easy to find the actual amounts each man has.
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PART 2: A TEACHING SEQUENCE

The second part of the working group was devoted to the analysis of a video. This video
showed two groups of three Grade 8 students each working with manipulatives trying to
solve some problems related to linear equations. The members of the working group had
the verbatim discussion of one of the groups of three students who participated in an ex-
periment described in Radford and Grenier’s papers (1996a, 1996b). The part we saw fo-
cused on the way the students dealt with the question of the equality between the two parts
of what could be an equation. The stage at which the students were, they hadn’t yet seen
any symbolism. The problems on which they had worked were given in terms of hockey
cards and envelopes containing an unknown number of hockey cards, the question being
how many hockey cards does each envelope contain. One of the ideas was to have the
students consider the unknown as an “occult” quantity, as Mazzinghi wrote during the
second half of the 14th Century. The students had actual envelopes and hockey cards in their
hands.

In the working group, the discussion rapidly focused on the analogy between an equa-
tion and a balance model. Is this idea of a scale really helping students to understand how to
manipulate and transform an equation? Three main objections were raised.

First, it was noted that two-plate scales are not common in our students’ environment.
Usually, the students don’t have any experience with such scales. Can we then say that an
analogy between such an instrument and a symbolic equation may help a student to know
what to do to manipulate an equation?

Second, the common situation in which the balance model is used in the introduction
to algebra refers to discrete quantities only, i.e., hockey cards.

Third, the equality corresponds to the fact that there is the same number of cards on
“both sides” of the equation. However, in a balance, it is not the number of objects in each
plate that is equal, but the weight of those objects.

In light of the previous objections, another different approach was proposed by one of
the workshop participants. This approach is based on the use of two identical containers
and was illustrated with reference to the following problem. In the first container, there is
already 1 dl of liquid, and in the other, there are 4 dL. There is a third, smaller container of
an unknown capacity, called a “cup”.

TWO “CUPS”

The containers are such that if we add the liquid of two “cups” to the first container and
then add one “cup” to the second container, the liquid in both containers will be at the same
level. In such a situation, the equality is visible. She argued that this situation is more natural
than the one based on a balance model and that a research process is probably more likely to
be engaged by the children themselves and that when one uses a real object to represent the
unknown, the actions to be executed are more natural.

The presentation of the two-container model was followed by a discussion. Some ob-
jections were made, among them the following.

First, it is not clear that the two-container model is more visible than the balance model.
Indeed, while it is true that you can see that both of the containers have the same amount of
liquid, what you see is the total of the liquid. Once the water has been poured, it is impos-
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sible to visually discern what you had before and what was added. In a real setting, what
one sees is not a diagram like the one provided above. The dividing lines are not there. The
students lose track of the different components of which the total is made up and can easily
forget how many dl were in each container at the beginning—something that can unneces-
sarily complicate the problem-solving procedure. This problem with the liquid, it was ar-
gued, is a common problem of objects with a fuzzy referent. (Actually this is why, in natural
language, the plural of objects such as liquid and sand functions differently from the plural
of discrete objects: if you add water to water you still have water—and not waters). In con-
trast to what happens in the two-container model, the discrete objects of the balance model
allow the students to clearly keep track of what they add or remove from the scale (cards
and envelopes are visually different).

Second, the above-mentioned intrinsic difficulty with the two-container model ren-
ders it very unlikely to make it appear more natural than the balance model. Furthermore,
as to the familiarity of students with balance artefacts, it was noticed that contemporary
students in primary school learn about the relations “X is lighter than Y”, “X is heavier than
Y”, “X is as heavy as Y”, etc., through the use of plastic balances.

Third, the two-container model requires that the students add and remove amounts of
liquid that need to be measured. Since here we are dealing with liquid, measures will al-
ways be approximative. Unavoidable errors in measures complicate the students’ hands-on
procedure and filter unnecessary sources of problems into the learning process.

Fourth, from the concrete demands of the teaching setting, it has to be pointed out that
as a result of playing with liquid, the chances are that the students will end up making a
mess in the classroom.

Fifth, in the end, the unknown in the two-container model is the amount of liquid held
by the “cup”. You add (or remove) one, two, three cups. Upon closer examination, as in the
case of the balance model, you are handling whole quantities. Hence, there is not much to
be gained from this point of view.

During the comparison of the two models, it was noticed that both of them bear the
risk of not making clear for the student the distinction between the signifier and the signi-
fied. In the balance model, the unknown is the number of cards in the envelope. The stu-
dents, however, tend to identify the unknown with the envelopes. In the two-container
model, the confusion arises by taking the cup as the unknown instead of the amount of
liquid in the cup.

These considerations led some members of the group to ask if in using too much con-
crete material we are not led to a situation where, like in the Middle Ages, negative numbers
would not be accepted.

Luis Radford then expressed the view that it is important to distinguish hard uses of
the balance model (based on the weight of objects) from metaphorical uses of it (based on a
descriptive general idea of quantities that are equal) and explained that, in his research, the
metaphorical model is a way to help students make sense of the comparison of quantities
required in algebra (his students are not provided with any scale). In his approach, this kind
of comparison—that past mathematicians referred to as “confrontation”—is possible by a
division of the space in which the concrete actions occur. The desk becomes the space on
which actions unfold. As it was possible to see in different parts of the classroom episodes
presented in the video, the desk is divided by the students (in general, mentally) into two
parts, each one containing the cards and envelopes according to the problem. The algebraic
concept of unknown becomes conceptually related to the concrete actions that the students
perform on the objects and that underlie the algebraic techniques. A metaphorical approach
referring obliquely to a balance is intended to invite students to participate in a kind of
language game (in Wittgenstein’s sense) that, as experimental data shows, they easily join
and that gives them an opportunity to conceive the idea of “confrontation” in a concrete
way. Radford emphasised the fact that the originality in his approach is to be found not only
in the metaphorical recourse to a balance but, over all, in the recourse to three distinct (but
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related) semiotic layers in which students have the chance to produce meanings for sym-
bols. The differentiated semiotic layers constitute an important difference to other hands-on
approaches (e.g., in terms of the role of symbols and the source of their meaning).

Thus, one of the fundamental differences between the two models previously dis-
cussed was located in the source of meaning for the concept of unknown and the correlated
actions carried out on it (addition, subtraction, etc., of known and unknown terms of the
“confronted” quantities). In the metaphorical balance model, the meaning of concepts arises
from the hands-on step, based on the students’ gestures and concrete actions on concrete
objects. In this model, there is an important step (systematically placed after the hands-on
step and before the symbolic one) in which the students make drawings. No more
manipulatives are required. Reasoning on the drawings, an iconic type of algebraic think-
ing is generated. In this stage, meaning is produced from actions on indirect objects—icons
of concrete objects. This step is followed by a symbolic one in which symbols are introduced
as abbreviations of those gestures and actions on icons. Spatially, the equation mimes the
iconic objects. In this step, the actions are characterised by new symbols on the page which
then becomes a semiotic space endowed with the meaning of the actions undertaken on the
iconic layer. The three-step methodology developed by Radford and Grenier is such that
each semiotic layer (concrete, iconic and symbolic) functions at different times. In the two-
container model, in contrast, because of the difficulty involved in keeping track of the amount
of water added or removed, the actions have to be written down or referred to the equation
(let’s suppose a student who removes, say, 3 dL and a cup from each container and puts the
removed liquid into another recipient, which may already contain some liquid, and then
forgets the actions previously undertaken. It will be almost impossible for him or her, by
merely looking into the recipient, to identify what was removed from each container). This
is why, to keep track of actions (something required in any heuristic process), these have to
be written down somewhere. As a result, two semiotic layers enter simultaneously into the
scene and it may be unclear for the students where to focus their attention—the containers
or the written actions? Furthermore, the necessity of keeping track of actions may lead the
teachers to prematurely introduce the symbolic equation, which thereby becomes a focus of
attention and the source of meaning.

Despite the theoretical and semiotic principles underpinning the two models, both
allow students to construct (although probably not with the same intensity), little by little,
complex symbolic representations. For instance, in one of the classroom episodes, discussed
in the working group, it was possible to see how the group of students, after solving some
word-problems about hockey cards through the balance model, succeed in symbolising a
word-problem about pizzas into an equation as follows:

3P – 6 = 1P – 2 + 18.

The problem dealt with pizzas having two missing slices. The number of slices in one of
those pizzas was represented by the students as ‘1P – 2’. Thus, the left side of the equation
indicates the number of slices in three of those pizzas. The sense of the equation and the
meaning of the actions were such that they added 6 slices on the left side to complete the
pizzas and, to maintain the ‘confrontation’, the students added 6 slices on the right side of
the equation. Two of the 6 slices were used to complete the pizza on the right side of the
equation. Symbolically, these actions were written as follows:

3P – 6 = 1P – 2 + 18,
       + 6          + 2  +   4.

The resulting equation was then 3P = 1P + 22; then they proceeded to remove 1P from both
sides, and so on.

This is reminiscent of what they had done in a previous stage when they were using
concrete material.

The longitudinal nature of the research ensured a close follow-up allowing one to see
how the concrete actions progressively lose their contextual root and become more and
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more autonomous vis-à-vis the specific situation of the problems.
The working group participants seemed to agree that, despite the differences in the

discussed models, both of them are based on cultural artefacts (containers and scales) that
as any artefact, are not “good” or “bad” in themselves. What is important, from a pedagogi-
cal point of view, is that, suitably used in the classroom, they can serve as a means to pro-
mote mathematical understanding.

PART 3: USING HISTORY IN THE CLASSROOM

At the beginning of this last part of our work, we saw an extract of a video done under the
supervision of Leigh Wood (Balancing the equation: The concepts of algebra. University of Tech-
nology. Sydney and the Open Training Education Network). This video was aimed at stu-
dents being introduced to algebra. The extract showed a discussion between two characters
involved in the resolution of a traditional problem from India and another one from China.

This led us to a discussion about the main reasons for which the members of the work-
ing groups used history in their mathematics classroom. Different categories of reasons sur-
faced. The most often mentioned one was the desire to show to students that mathematics is
a human activity. To do that, one may focus on multicultural aspects of the history of math-
ematics, choosing for example to study Islamic patterns. Another way is to focus on the fact
that the history of mathematics is full of controversies and discussions. Opinions played an
important role in the evolution of mathematics. It is why the history of mathematics is a rich
source of problems for problem solving activities. Having students solve problems and, at
the same time, be informed of historical discussions aroused by this same problem may be
a very enriching experience for students. A last way of giving students the feeling of math-
ematics as a human activity is to relate the evolution of mathematics to the fulfilment of
human needs, practical needs, related to the economy, the daily life, the military, etc., as will
as other needs related to aesthetic or intellectual pursuits.

History is often fascinating for students. Using history often allows teachers to get
their attention. History gives then a way to motivate students, even if just for a short period
of time. Anecdotal extracts from the life of mathematicians are often used in that way.

It has been noticed, on the other hand, that putting too much emphasis on the life and
works of great mathematicians may give the students the impression that mathematics is
only accessible to a small group of very bright persons. It is therefore essential to have a
healthy diversity of historical intrusions in the mathematical classroom.
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Mathematics education & didactique des mathématiques: Is there a
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Note: In the report that follows, the pronoun ‘we’ refers to the leaders of the working group.

The aim of the working group, as announced in the program of the meeting, was ‘to build
bridges between the “two solitudes”: mathematics education and didactique des mathématiques
in Canada, while respecting the distinct character of each’. We hoped that the bridges will
be built on ‘an identification of and a discrimination between the distinctive problématiques
(i.e., research questions, techniques of research, preferred methodologies and theoretical
frameworks), and a synthesis of the main findings and a cautious generalization in terms of
possible future developments’.

The format of the activity being that of a working group and not of a lecture, we aimed
at finding a situation that would provoke the participants to make explicit their approaches
to or understandings of the problems of the teaching and learning of mathematics, and
engage in discussing the differences. Given the variety of worlds brought forth1 by the partici-
pants, the leaders had no doubt that differences would inevitably appear. These worlds
could be those of a mathematics or mathematics education student, of a mathematics teacher
or teacher educator, researcher in mathematics education using this or that learning and
instructional theory, textbook writer, and other.

The idea was to choose a mathematical topic and look at it from the point of view of its
teaching and learning. We chose the operation of division, because (a) it is an elementary
mathematical notion, so it could be assumed that all participants had an established experi-
ence with it, and (b) it is a notion which is notorious for its difficulty for the students. Its
difficulty can be analyzed from many points of view: mathematical, epistemological, cogni-
tive, socio-cognitive, cultural-anthropological, didactic. The point of view that a person would
choose may reflect his or her role in the domain of mathematics education and the
problématique in which he or she situates his or her work.

Report of Working Group C
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We planned two activities related to the division operation to trigger off the discus-
sions. Both had to do with school problems or exercises. The first one was meant to be a task
that a teacher or a textbook writer could be faced with; we expected the second to more
likely engage a researcher’s mind.

Here is how the first task was formulated, both in French and English.

Task 1

The French version:

Inventez un problème qui exigerait l’utilisation de l’opération de division.

The English version:

Develop a problem in which a person would use division in its solution. Here is an
example of such a problem. It was written in the form of a song:

We have some pizza,
We have some pizza,
We have 3/4!
We have 3/4!
We want to make shares,
We want to make shares of size 1/2!
Of size 1/2!
How many shares?

Upon the posting of the task on a transparency, the participants’ attention was drawn to the
subtle differences in meaning between the two formulations: First of all, the English version
contained an example, there was no example in the French version. Moreover, the French
version was very concise, written in a school exercise style, and it used the mathematical
term ‘operation of division’ instead of just saying ‘division’ as in the English version. In
English, the necessity of using division was made to be subjective: ‘in which a person would
use division’. In French, it was assumed that the problem itself would be such that division
would be necessary, no matter who would attempt its solution. Thus different kinds of
necessity were evoked in the two versions: a ‘psychological necessity’ in English, and an
‘epistemological necessity’ in French. Moreover, the French version asked the participants
to ‘invent’ a problem which could suggest that the expected answer was just a statement of
a problem. The English version asked the participants to ‘develop’ a problem which opened
a possibility of a response in the form of a longer essay, comprising an account of the pro-
cess of finding the problem rather than just the statement of a problem.

The French version was written by Anna, who then asked Tom to express the task in
English. The two had not discussed the translation beforehand and did not make a con-
scious effort of bringing up the above mentioned differences. We consider the differences,
noticed post factum, to reflect our minds as individuals (at that particular time) and we do
not think they should be interpreted as pointing to some more general structural distinction
between ‘didactique des mathématiques’ and ‘mathematics education’.

The participants formed 7 small groups of 2 to 3 people. The groups were asked to
write their responses on transparencies for presentation to other groups. All groups except
for one wrote their transparencies in English. All English written responses contained more
than one problem; the single French response contained only one problem.

We reproduce below the written responses of the groups as displayed on transparen-
cies. To the extent that we remember it, we shall give some information about how the
representatives of the groups explained their thinking about the tasks in the groups. The
reader will have to understand that it has been sometimes very difficult for us to distin-
guish our memory of the presentations from our interpretations of what has been said. The
only ‘facts’, therefore, are what participants wrote on the transparencies.
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Response 1

Anna has 36 sweets. She likes to have them in small boxes of 5 sweets each. Help Anna.
• • •

Mummy has 36 sweets and she likes to spread them between 5 girls. Help Mother.
• • •

Bob has some amount of money. He likes to give the same amount of money to his sons. Help Bob.

The group looked at the meaning of the operation of division in school word problems and
how different it can be from the mathematical operation of division. In school word prob-
lems the operation is performed on real or imagined quantities of objects; in early education
it can even be performed on objects themselves. In this context, there are two kinds of divi-
sion: grouping (n objects are grouped into sub-collections of k objects; how many groups
are obtained?), and sharing (n objects are shared among k people; how many objects does
each person get?). In the sequence of problems that are proposed, the first one is, seemingly,
about grouping, the second and third are about sharing. But, although in the first two con-
crete numbers of objects to be grouped or shared are proposed, the result is not a whole
number. The division of one candy into 5 little pieces is impractical, and so it appears that
the first two problems involve Euclidean division: 36 = 7 x 5 + 1. Noticeably, the questions in
the problems are not of the standard type, ‘how many candies in a box?’, or ‘how many
candies for each girl’, but ‘Help Anna/Mother’. This may cause the children worry about
the remainder in the practical terms of what should Anna or Mom do with the candy that is
left over. Anna could be allowed to either keep one box with only one candy in it, or simply
eat the candy. With the sharing of the candies among 5 girls, the problem of fairness is
brought up: cutting one candy into five equal pieces can be quite a difficult task in practice,
so some other solution has to be thought of. Maybe Mom can be rewarded for her kindness
with the remaining candy, or the girls could be drawing lots for it. The third problem sounds
like a problem of sharing, but, in fact, it is very different from the previous two. It is a class
of problems and not a single problem because no concrete data are given. The quantities
involved are not sets of objects but amounts of money, which can therefore be expressed in
decimal form. While the previous two problems could be, in principle, solved without us-
ing the mathematical operation of division on numbers (one could enact the grouping and
sharing of candies using counters or some pictorial representation of the collection), in the
case of the third problem, one has to propose and discuss an operation to be performed on
any amount of money and any number of sons of Bob. The discussion must be conducted in
hypothetical terms, (if Bob has b dollars, and n sons, he has to give b ÷ n dollars to each).
This problem could lead the students to discuss what happens if the result of the division b
÷ n is a decimal with more than 2 decimal digits. It must be rounded off, because there are
no coins of less than 1 cent. Who gains, who loses and how much in such transactions?

Response 2

To force division ... “breaking up”

�   �   �   �
�   �   �   �
�   �   �   � Σi
�   �   �   �
�   �   �   �

That’s where the ‘divided by 2’ comes from.
• • •

12 ÷ 4 ... Not a problem ... Discussion of methods
• • •

24 ÷ 1/2 ... Problem (for some!)
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This group understood the task as one, indeed, of developing a problem that would ‘force’
the operation of division. It evoked in them the idea of a long-term collaborative process
between a practicing teacher and a researcher. The presenter referred the audience to the
Topic Group A2 led by Vicki Zack and David Reid for more details about this collaboration
and the kind of teaching-learning situation that had been developed in the process. Dis-
cussing the task proposed in the present WG, the group posed themselves the question of
students’ understanding of the operation of division at some early stage. How could the
operation of, say, dividing by 2 be understood? They thought that this operation could be
‘forced’ upon the students in a situation of ‘breaking up’ something in two, say a 5 x 4
squared board (an activity leading, eventually, to the formula of the sum of n consecutive
numbers—but this went beyond the task given in the WG). The group then started to think
about what makes a division task of the type a ÷ b a problem; for example 12 ÷ 4 is not a
problem, but 24 ÷ 1/2 can be a problem for some students.

Response 3

· Divide a given line segment into 4 2/3 pieces of equal size.
· Divide $(Aus) 1800 among 3 people in ratio 3 : 2 : 1.
· Find continued fraction for √3.

        6  for x = 3
· Graph  f(x) =      x2 – 9  for  x ≠ 3

         x – 3
on the interval [-10, 10].

· A dozen apples cost $2.40. What does 1 apple cost? What do 15 apples cost?

The first two problems were presented as challenging the students’ typical procedures for
solving problems of division of segments in a given ratio and sharing money among people.
The first requires to divide a segment not in a given ratio but into a number of pieces of equal
size, and, moreover, the given number of pieces is not a whole number. The students would
have to first try to understand what it might mean to divide something into a non-whole
number of pieces. This problem might indeed lead the students to generalize the notion of
division beyond the ‘grouping’ and ‘sharing’ conceptions applied to whole numbers. The
second problem is about dividing an amount among people not equally, as usual, but in a
certain ratio. Between the problems 1 and 2, the operations have switched their customary
contexts, thus inviting the students to de-contextualize or de-compartmentalize some of
their knowledge.

The whole set of problems also hints at the ambiguity of the term ‘operation of divi-
sion’ in mathematics: there is the operation of division in rational numbers, the division of
a number in a given ratio, the Euclidean division (as used in finding the continued fraction
for √3), the division in the ring of polynomials, the division in decimals with a fixed number
of decimal digits (which could involve taking approximations).

Response 4

· Fred has 10 chocolate bars and needs to distribute them among 5 friends. How many does
each get?

· Jane is driving 520 km/h. How long will the drive take?
· Paula is making a cake. The recipe calls for 2 1/2 cups of flour. She only has a 1/2 cup

measure. How many times will she need to fill the measure?
· 362.5 ) 4789146

In a way which could be seen as dual to Response 3, this group aimed at illustrating the
variety of contexts in which a student may be required to use the operation of division:
sharing and grouping, speed-time-distance, ratio and proportion, computational exercises.

{
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Response 5

· (2 1/7 x3 + 28x2 – 156x + 319) ÷ (x2 – 16)
· How many different CMESG working groups of size 19 can you get from a group of 99

participants?
· Divide a banana into 3 equal parts.

The problems were presented with the intent of illustrating the complexity of interpretation
that arises when a particular interpretation of the meaning of the operation of division is
not clearly stated. The first example explicitly requires division, as shown by the division
symbol, although the students may not see any other purpose of it than to arrive at an
answer, as is the case for most high school algebra problems.

The second example also requires division: The task is to determine how many differ-
ent groups of size 19 can be formed and this requires partitioning the set into two groups,
one of size 19 and the other of size 80. It is a task in combinatorics.

In the third example the word ‘equal’ was a key aspect of the problem. How would
students attack the problem? Perhaps by estimating, and taking into account the narrowing
of the ends. Perhaps by weighing pieces. Somebody in another group suggested a banana
naturally separates longitudinally into three equal pieces. What a nice challenge instead of
dividing pizzas into three equal parts.

Response 6

The Stack of Paper Sheets problems

1. You want to share a stack of papersheets among a given number of persons. How would you go
about deciding on the number of sheets per person? (or: How would you do it?)

2. You have in front of you a full package of paper. What is the thickness of each sheet? (or: You
have 150 sheets of paper in a stack. The stack has a thickness of 5 cm. What is the thickness of
each sheet?)

These problems were inspired by a situation proposed by Guy Brousseau for the teaching of
rational numbers (Brousseau, G., 1997: Theory of Didactical Situations in Mathematics. Dortrecht,
Holland: Kluwer Academic Publishers, pp. 195–212). In the situations proposed by Brousseau,
children had to estimate the relative sheet thickness of several kinds of paper. The specific-
ity of this situation is that children have to build a mathematical model for the solution of a
practical problem, because it is impossible to directly measure the thickness of a sheet of
paper. The operation of division may appear as an efficient/economical tool in solving the
problem.

Response 7

On veut construire une banderolle pour accueillir le groupe canadien. Cette banderolle doit mesurer
125 dm. On la construit à partir de bandes de tissu de même longueur et de différentes couleurs.
Chaque bande de tissu mesure 5 dm. De combien de tissu aura-t-on besoin?

(English translation: A 125 dm welcome banner is to be made for the opening of the CMESG
conference. It is to be made of strips of material of different color but the same length equal to 5
dm. How much material is needed?)

Le groupe a surtout discuté des reponses des étudiants dans les cours de didactique des mathématiques
au programme de formation des enseignants, niveau bac, lorsqu’on leur demande d’inventer des
problèmes de division. Les étudiants proposent presque toujours des problèmes de partage de bon-
bons. L’effort des instructeurs va alors dans la direction d’un élargissement du répertoire des futurs
maîtres dans le domaine des situations pouvant exiger l’opération de division. Les situations impliquant
des quantités continues et non seulement discrètes en sont une des voies. Une autre est la prise en
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compte du contexte des données du problème. Par exemple, dans le problème ci-dessus, la solution
n’est pas obtenue, comme on pourrait le croire, par la division de 125 par 5, car en cousant ensemble
les bandes on perd au moins 1 cm sur une bande interne et .5 cm sur les bandes des bouts.

(English translation: The group's discussion focused mostly on the responses of pre-service
teachers in courses in ‘didactics’ in the Bachelor of Education program, when they are con-
fronted with tasks of inventing problems on division. Most of the time, the students pro-
pose problems about sharing candies. The instructors attempt to broaden the future teach-
ers' repertoire in the domain of situations that could require the use of division. Situations
involving continues and not only discrete quantities are one of the directions taken. An-
other is the taking into account of the context of the givens in the problem. For example, in
the problem above, the solution is not obtained, as one could think, by dividing 5 into 125,
because in sawing together the strips one loses at least 1 cm in the inside strips and .5 cm in
the outside strips.)

• • •
In the discussions following the presentations of the responses to Task 1, the participants
wondered at the variety of ‘enactive division’ operations which could all be represented by
one mathematical notation. But some participants pointed out to the variety of division
operations also in mathematics (the ‘fair division’ algorithm was mentioned as a way of
contrast with the usual, school situations, where ‘equal shares’ are always required). Look-
ing at ‘division’ from a linguistic and cultural point of view, the participants were able to
outline the large semantic field related to the idea of division: Divide and conquer!, divorce,
separation, separatism, equity, demarcation, allocation, concatenation, the equi-division of
the Inuits, cutting out (e.g., the largest square out of a rectangle)….

Given this variety, some participants questioned the possibility of devising problems
that would make the use of division in any one of its meanings ‘necessary’.

The moral of this discussion was meant to be: school mathematics concepts are not a
given. On the contrary, they are problematic and have to be studied. This assumption and a
purposeful study of the meanings of mathematical concepts chosen to be taught at different
levels of schooling distinguishes the domain of mathematics education both as research and
practice from the domain of general education. And this common focus on the mathemati-
cal meanings unites all mathematics educators, no matter what language they speak or use
in their work and no matter what their epistemological assumptions about mathematics
are, or what learning and instructional theories they bring into their ways of looking at the
phenomena of teaching and learning. Our aim in this working group was to bring these
assumptions to the awareness of the participants.

The focus on mathematical meanings notwithstanding, mathematics educators around
the world still find ways of getting ‘divided’ over what they see as they look at the math-
ematical subject matter of the phenomena of teaching and learning. This could already be
noticed during the first round of discussions about the meaning of the operation of division
in school mathematics, in research mathematics, in language and culture. In order to bring
the participants to further articulate their standpoints in front of the mathematical subject
matter, and start seeing where the possible differences may lie, a second task was offered.
This time, the groups were not formed in a spontaneous manner, but we tried to ensure that
in each group a sufficient variety of points of view is represented. The task was inspired by
a situation proposed, experimented and analyzed by G. Brousseau.2

Task 2

The participants were given a list of 31 problems taken from ‘chapters on division’ of two
high school textbooks.3 The list can be found in the Appendix. The participants were asked
to agree on a set of criteria to classify the given division problems.

A priori, the task of classification of division problems could be conducted from many
points of view: epistemological, cognitive, sociological, linguistic, didactic. We hoped that
the task would bring forward these different perspectives and trigger a discussion about
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the differences between research paradigms. Research paradigms could be differentiated
by the weight attributed to these foci. Didactique des mathématiques, especially in Brousseau’s
Theory of Didactic Situations edition, gives special importance to the epistemological analy-
sis. In a way, everything else is subordinated to the results of this analysis.

A more general division of perspectives could occur along the distinction between em-
pirical and rationalistic methodologies. This, indeed, happened in one of the groups where
some people wanted to start from a set of criteria and classify the problems on that basis while
others wanted to first look at the problems, find what is involved in them, and categorize
them on this basis. These are two opposed approaches: from a theory to an analysis of data
versus from the sorting out of data to the building of a model. The variables chosen a priori
for the classification were: types of numbers, types of relations between data, context, com-
plexity of strategies used, social influence, type of contract/expectation, emotional aspects.

After the groups had been working for about an hour, they were asked to prepare
presentations of their work, along the following questions:

· What was the nature of your classification of the problems?
· Looking back, what were your reasons for selecting these criteria (or this criterion) for classi-

fying these items?
· In what way did your scheme or criteria relate to or take into account that these were “divi-

sion” items?

The presentations of the work in small groups demonstrated the difficulty and some-
times the reluctance of the participants to engage with the task of classification. One person
asked the leaders, ‘What the problems of division have to do with the theme of this group?’.
Most often the issues discussed in the groups were of a general nature, e.g., Is it possible to
look at a school problem in abstraction from the didactic situation in which it is involved?
Shouldn’t sequences of problems be considered rather than isolated problems? Are these
problems requiring division in themselves, because they cannot be solved without this op-
eration, or is it the didactic contract in which they are embedded (by being included in a
chapter on division or by explicit instruction from the teacher)? Isn’t the didactic contract
always present in classroom situations and therefore is it at all possible to generate a ‘cogni-
tive’ or ‘epistemological’ necessity of a mathematical concept at school? Isn’t the necessity
always institutional?

Some persons focused on the linguistic aspects of the problems and pointed to the
ambiguities in the formulation of some of them. There were also remarks about the struc-
ture of the problems, in particular, in relation to the closed form of many of them. In one of
the groups, the discussion was related to a possible reformulation of the problems in the
direction of a greater openness and flexibility in using solving strategies and mathematical
operations. It was said that there are, in general, two ways of looking at a problem: ‘What do
I do?’, and ‘What does it mean?’, and students in the classroom should be encouraged to
engage with both rather than with the only the first one, as is usually the case.

One group came up with a variety of possible criteria, e.g.,

· items that ‘force’ the use of division and those that do not;
· items that are conceptually rich and those that are mere exercises;
· items using natural language besides the mathematical notation and items using only the

mathematical notation;
· straightforward items and items involving a subtlety;
· items leading the students to develop an algorithm and those that ask him or her to apply a

ready made one.

By the time the group reports were done, the frustration of the group participants had
grown considerably, most people sympathizing with the person who asked ‘What the prob-
lems of division have to do with the theme of this working group?’, and all wanting to
finally sit down all together and explicitly address the issue of the differences between math-
ematics education (ME) and didactique des mathématiques (DM).
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Anna tried to use the common experience of the group (frustration with Task 2 in-
cluded) to point to the distinctive feature of DM, namely its insistence on epistemological
analyses of mathematical concepts, based on the study of their history both in the domain of
research mathematics and in the school institutions (the so-called didactic transposition).
This insistence may point to an implicit epistemological assumption that knowledge has
some kind of objective existence and life, independent from the individual cognizing sub-
jects. The belief in the importance of the history of a concept for its teaching in the sense of
creating the optimal conditions for its ‘artificial genesis’ in the classroom, may be based on
the Marxist assumption of the so-called ‘historical necessity’: certain socio-cultural condi-
tions necessarily lead to certain changes in the mental reality of those who participate in
them. DM has thus the ambition to be able to ‘engineer’ didactic situations that would
create optimal conditions for the artificial geneses of the basic mathematical concepts. These
are very strong rationalistic and dialectic-materialistic assumptions that are not easily ac-
cepted by the mathematics educators coming from the more Baconian, empiricist tradition
in science.

Tom, on the other hand, presented the approach of Les Steffe with whom he had col-
laborated recently. This brief discussion well illustrated another attempt to deal with a con-
clusion which was derived from earlier group discussions and reported above: 'school math-
ematics concepts are not a given; they are problematic and have to be studied. This assump-
tion and a purposeful study of the meanings of mathematical concepts chosen to be taught
at different levels of schooling distinguishes the domain of mathematics education both as
research and practice from the domain of general education'. Les and his group at the Uni-
versity of Georgia have approached the development of the concepts of school mathematics
from a different point of view. In their work they take seriously the activities of children,
engaged in what an observer sees as legitimate mathematical actions, as a source for the
development of mathematical ideas for a researcher (or a teacher). In fact, Steffe has been
engaged in the development of what he terms a 'mathematics of children' which he sees a
co-creation of children engaged in mathematical actions and an interpreting researcher, and
which has led him to develop a systematized collection of such concepts particularly for
natural numbers and the additive operations on them. (He is continuing work on multipli-
cative operations and on rational number concepts.) In this case the researcher (usually in
an inter-active group whose members have varying areas of expertise and interest related to
the study) is engaged in the study of children's actions and interactions (with a small group
of peers and a teaching researcher or a researching teacher) which occur in a carefully de-
veloped mathematical setting or which occur as children engage with carefully developed
mathematical prompts. In their work the children can use various tools which in recent
cases have been computer based 'tool' kits. For example his group has created such tool kits
for the study of pluralities and unities and unifying compositions and for studying multi-
plicative situations. From a careful recursive study of the children in action, from interac-
tions with children over an extended period of time and from the detailed multi-leveled
study of videos of actions and interactions, Steffe derives and constructs this 'mathematics
of children'. Teacher/researchers again acting with children in teaching experiments attempt
to 'transpose' the 'mathematics of children' into a 'mathematics for children'—that is into
legitimate and useful curriculum elements, classroom practices as well as materials through
which teachers might gain insight into both how children come to know important math-
ematical ideas and how one uses such knowledge of children mathematical knowing and
the 'mathematics of children' to inform one's teaching practices. (In this aspect Steffe's work
is related to the Cognitively Guided Instruction work of, say, Carpenter and Fennema at
Wisconsin or to the socio-mathematical work of Cobb and Yackel.) Notice that this approach
shares with Brousseau's work the notion that one needs to have a very clear notion of key
mathematical ideas and that a transposition of these key ideas is needed for the purposes of
teaching and learning. But a key source of those ideas is different in the two cases. In Steffe
we see the researcher as developing a mathematics of children which is derived from the
legitimate actions of children themselves as filtered through the eyes of a researcher who
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brings to bear a deep knowledge of mathematics in his observing, interpreting and con-
structing. This view of mathematics knowing and the provision for it is consistent with and
driven by Steffe's current ideas of radical constructivism. (Such an approach has the flavour
of Kant and Vico.) This provides a very different basis for studying the problems of school
mathematics concepts than that of Brousseau and to a different programme of research and
development as well (even if the proponents of either program might be willing to borrow
ideas from the other in one way or the other).

The working group spent a small amount of time discussing the contrasts and the
inter-relationships among these two approaches to the study of mathematical concepts and
mathematical knowing and its development in young persons.

• • •
Most of the last session of the working group C was spent on a general discussion which
was fuelled by more focused questions from the participants concerning the types of re-
search topics and methodologies that could be accepted as legitimate in DM but not in EM
and vice versa. This discussion was fueled, in particular, by a contribution of Elaine Simmt,
who told the group about her research on teaching practices (Simmt, E. 1998, The Teaching
Practices Project. Unpublished Report, University of Alberta). We reproduce below a sum-
mary of this contribution, written by Elaine after the conference:

The purpose of the project was to inform teachers, and mathematics education leaders
about the teaching practices of teachers in schools whose students perform well on the
9th grade Alberta provincial achievement test. To learn what the teachers were doing in
those schools we observed the teachers at work in their classes, we interviewed them
and the school administrators and we surveyed students and parents. The report con-
sists of 15 case studies each focused on a different teacher. From observing teachers in
their classrooms we learned about some of their teaching practices. Specifically, these
teachers' practices included:

· making mathematics real and relevant for their students;
· making connections within mathematics and between mathematics and the world

outside of school;
· caring about students’ mathematics knowing;
· practicing demanding instruction, both in terms of classroom behaviour and the level

of mathematical thinking;
· proposing challenging content;
· engaging in highly interactive instruction;
· being well prepared for teaching4;
· reflecting on their own practices and assessing their own instruction;
· taking ownership of the curriculum.

It was very evident that these teachers cared about their students' mathematics
knowing. Not only did they demand of the students suitable classroom behavior but
they demanded mathematical thinking about challenging content. These teachers un-
derstood their primary task to be teaching students mathematics (with an emphasis on
mathematics). They did so by practicing highly interactive instruction built from teach-
ers and students questioning and explaining their way through a lesson. Rather than
focusing simply on skill development, problem solving, or concept development, the
teachers in our study were adept at balancing these in their instruction. The teachers
taught processes such as communication and problem solving as they taught particular
skills and concepts. As well, the teachers in our study were very good at being able to
adjust the difficulty of the tasks they assigned students, providing adequate scaffolding
and highlighting relevant cues to enable students to get into the mathematical activity
and participate. Considering the teachers practices as a totality, we noted that the place
and ownership of the curriculum stands out. These teachers and many of their students
behaved in ways that led us to see them as taking ownership of the curriculum. They



CMESG/GCEDM Proceedings 2000 • Working Group Report

70

talked about mathematics as if it were their own. Teachers selected examples, explana-
tions and concepts to develop based on who their students were, how the teacher under-
stood the mathematics and based on the teachers' understanding of the expected out-
comes of the program of studies.

We concluded from this study that we could not identify or write a prescription for
good teaching because not only is it a highly personal and interpersonal act but good
teaching could take many forms. (Elaine Simmt)

Task 3

At the end, we asked the participants to write what they thought they would like the read-
ers of the conference proceedings to know about what happened in the group. We repro-
duce their responses below. Some participants referred to Elaine Simmt's contribution in
their responses.

Response 1. (unsigned)

Comment on Working Group

The discussion that went on during the sessions made me realize how eclectic research in math-
ematics education is in Canada and how ignorant the majority of us are about the existence and
the characteristics of the main schools of research in that area. Because of that, the work done
tended to be superficial and unfocussed. Perhaps in a future CMESG conference a Working Group
should be organized in which research questions should be looked at and considered using differ-
ent paradigms and perspectives.

Response 2. Laurinda Brown

Purpose of research: Seeing more… about something.
Explicit about something. Sharing.

Where I’m coming from? Methodological issues.
Being clearer (process) about how I see ...
Questioning assumption

Where I’m going? Tracking transformations of seeing/questioning/raising new
assumptions, questions

(a) Within a culture (gatekeepers?) possible to see theoretically in more detail ... peer review,
community, etc.…

(b) Personally—in action—through action—seeing more holistically—complex decision-making
in the classroom

Affordances and constraints of strength of culture in supporting (a) and (b) above?

I do not see (a), (b) as different/dichotomous.

2nd order questions relate to the processes rather than particulars (Mariolina). Each individual
act is necessarily contingent/different (context, etc., etc.…)

How explicit can I be?

[Categories of] complex, complicated, difficult mean more to me in relation to allowing me to
make decisions in practice (take actions as a teacher), contingent upon student/pupils’ practices.

How much this would be useful for anyone outside our subgroup remains in question.

However, engaging at the 2nd order level would say things about the skills (?) of the individuals
in the group which allowed the coemergence of these ideas which (inevitably?) we interpret differ-
ently even in the subgroup. There was a sense of those ideas being validated within the subgroup
across ‘didactique’ and other approaches.



Kieren & Sierpinska • Mathematics education & didactique des mathématiques

71

Response 3. Vicki Zack

I would like to reflect on Tom O’Shea’s question further. I do not recall the wording of it, but the
sense of it for me was, (1) Would the ‘didacticien’ take on the type of project Elaine Simmt was
asked to take on?, and, also, (2) How would the European researcher approach the question?
Please ignore my poor phrasing and overgeneralization of the ‘European researcher’. In consider-
ing these questions (perhaps as a microcosm of our theme) I would say that I see substantive
differences between the perspective of the person who comes out of the didactique tradition and
one who would broach the question from Elaine’s vantage point. I do not claim to describe ad-
equately either the (stereotyped) didacticien, or Elaine. That being said, I will state that I would
hesitate to say either that the two sides are diametrically opposed, or that there are no differences.
They are looking at different aspects and there is much in the ‘holistic’ approach which is not
considered at all by the ‘didacticien’ and much in the detailed consideration of the mathematics
that Elaine would not do.

In Elaine’s case, it is possible, indeed highly likely, that there are many intangibles which
she senses but which she cannot put her finger on. Jennifer Lewis, a doctoral student working
with Deborah Ball at the University of Michigan, is trying to tease out some of these aspects.
Often, there is no language to describe them. Elaine’s teacher may be ‘setting her students up for
success’ by knowing the mathematics, knowing how her students learn, knowing the bumps along
the way in regard to the specific subject matter for that/these lessons over the three days, etc., and
how it all fits into the whole, etc. She/he is sensitive to the individual student, has in mind the
history of the student in the class, with her peers, and the teacher also knows that one should move
the lesson along at a pace that will meet the needs of most of the students while the students know
that time will be provided either then or after class to try to fill in the gaps.

Having the rulers available is but one example of the teacher putting the emphasis where it
should be, on getting on with the subject at hand, without wasting time ‘disciplining’ students
who may not have a ruler, or pencil. Singling that student out (i.e. being unkind), having that
student be out of class retrieving his ruler and thus losing valuable time, is counter to the ethic the
teacher and her students share. The teacher and the students are there to use every moment to
their advantage. Nel Noddings has spoken about caring. Caring is vital. It is of course not the
only element, but without it the positive dynamic may not be there. Teaching well and helping
each child to fulfill his or her potential is at the root of what one does, and so it is about being adept
with the content, etc., of course. It takes such a lot of effort and caring to attend to each child’s
needs … therein lies the burden of responsibility.

The ‘didacticien’ also cares deeply about the mathematics, is careful to delve and explore in
profound ways, and works very hard to be thorough in mapping out the theoretical, epistemologi-
cal, and cognitive dimensions. I feel we can do more in North America to have a far more detailed
and informed picture in this regard—informed by research as well as by classroom practice. How-
ever, I do think that the European researcher needs to broaden her perspective to consider all the
other elements which make the picture complex … the child’s history, the aspect of culture, the
emotional dimensions, the history of that classroom across that year, etc.

I will not go further now, but thank you both, Anna and Tom, for the invigorating questions
and for the haziness. Haziness is necessary for growth. I also thank Elaine for sharing that quote,
that episode. It is a memorable one for me.

Response 4. Nadine Bednarz

La première séance sur la division a permis de faire ressortir des dimensions multiples du concept
de division, très riches, débordant la vue souvent restreinte à laquelle celle-ci est souvent associée.
Celle-ci a fait ressortir les multiples points de vue qui nécessairement guident une telle analyse: si
je me positionne comme enseignant au primaire, ou formateure d’enseignants à l’université, ou
chercheure visant à mettre en place une séquence visant par exemple, à tester certains aspects de
situations, ma façon de poser un problème de division et de valider celui-ci serait nécessairement
différente.
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La deuxième séance en sous-groupe est apparue très riche dans la mesure où elle a permis
une explicitation, une action et une confrontation de multiples perspectives. Les membres du
groupe venant d’horizons divers (Alberta, Québec, Angleterre, Italie, Israel), la situation d’action
mise en place forçait nécessairement une explicitation de différentes perspectives ancrées dans des
pratiques sociales différentes. En ce sens, l’on pourrait dire, dans les termes de Brousseau, qu’elle
nous a permis de vivre une situation d’action/formulation.

La discussion globale de la fin montra toute la complexité de s’attaquer au problème abordé
dans ce groupe de travail, mais en même temps sa nécessité.

(English translation: The first session, about division, allowed to bring up the multiple dimen-
sions of the concept of division, very rich and going beyond the usually restricted perspective from
which it is seen. This brought forth also the different points of view that necessarily influence this
kind of analysis: if I position myself as a primary school teacher, or as a teacher educator at the
university, or as a researcher who aims at testing certain aspects of a designed teaching situation,
my way of posing a division problem and of validating it would be, necessaril, different.

The second session in sub-groups appeared as very rich to the extent in which it allowed an
explicitation, an action and a confrontation of multiple perspectives. The members of the sub-
group coming from diverse horizons (Alberta, Québec, England, Italy, Israel), the situation of
action thus set up necessarily implied an explicitation of the different perspectives anchored in
different social practices. In this sense, one might say, in Brousseau’s terms, that the setting
allowed us to live a [didactic] situation of action/formulation.

The global discussion in the final session showed all the complexity of wanting to attack the
theme of the Working Group, as well as it underscored the need for it.)

Response 5. Lynn Gordon Calvert

Mathematics Education (and/embedded in/embeds/all of the above) Didactique des Mathématiques
If we think about what is research—even what is research from these two paradigms—we

are trying to find meaning and coherence for the questions and concerns of the teaching/learning
of mathematics that arise for us. These questions and concerns do not arise from autonomous
individuals and observers but from observers-embedded-in-a-(research)-culture. What is posed
and what is accepted is a reflection of the individual’s own history which induces the history, not
just of this individual, but an ancestral history of interactions.

Are we all attempting to integrate the paradigms? No, perhaps we wish only to be informed
so that we may broaden our understanding (expand our cognitive domains) of the concerns and
the explanations used for addressing the concerns within the paradigms. To look at mathematics
from a new perspective with new eyes. Viewing the epistemological analysis allowed this to occur.

Although we have focused on the contrasts/comparisons between mathematics education
and didactique (at a national level) we recognized that the same contrasts/comparisons regarding
how and what research questions are posed, how these questions are addressed/analyzed and the
interpretations created/validated do not stay at this national level but filter down to various per-
spectives, say, within mathematics education (or didactique des mathématiques) (e.g., cognitive,
socio-cultural perspectives) and filtered further still, over and over and over again so that two
researchers, sitting side by side watching the same video will ‘notice’ different aspects and will
explain them differently depending on the history that person brings to that moment. Therefore,
the original question/concern regarding mathematics education and didactique moves back and
forth from the broad ‘whole’ to the very local level. A fractal image! (Of course, this reflection is
very much a reflection of the history I bring to this moment. What I observed, noticed… .)

Response 6. (unsigned)

It is very difficult to attempt to distinguish the research culture of one country or community
from another. First of all, no matter how cohesive a community may appear to be, there are always
individual differences and personal interpretations. Nevertheless, the sharing of a common theo-
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retical framework and its associated discourse makes for communication among its members. But
the very specialized discourse they share creates boundaries. Outsiders find entry difficult. The
cultural history of a community and its artifacts are neither transportable to outsiders nor under-
standable by them. Thus, attempting to synthesize the research perspectives of another commu-
nity is fraught with ‘danger’. Even synthesizing the perspective of one’s own community requires
caution—for it tends to mask the individual in its highlighting of general features. In fact, the
very act of creating this synthesis can change to a certain degree the nature of the research culture
being described.

Response 7. Tom O'Shea

Dear Leora,
Well, here it is, the end of the final day of the workshop on ‘mathematics education and

didactique des mathématiques’. I came seeking understanding of ‘didactique’ as viewed in Québec,
partly because of previous presentations at CMESG by Québecois participants. I remember last
year leading a workshop on teaching practices where Linda Gattuso described some of her work
and I really didn’t know what she was talking about. The phrase that caught my eye for this
session referred to ‘two solitudes’—an expression coined by Hugh MacLennan in the 1950s to
describe the separate lives of the English and the French in Québec. So I expected to gain an
appreciation of the differences between the two camps.

We struggled on the first day on a group task related to division and it was not clear how
this might connect to the issue. On the second day, Anna gave a detailed demonstration of the
mathematical analysis which helped to see how didactique applies in a particular instance. The
third day moved into a group discussion that seemed to cover the whole spectrum of mathematics
education and attendant research.

So what do I leave with? My sense is that the metaphor is not ‘two solitudes’ but ‘converg-
ing desires’. The contribution from international participants helped to shape my thoughts and
my conceptual understanding of the issue. The end result for those of us coming from two tradi-
tions is quality of scholarship. Both need to be grounded in theory and guided by consideration for
student, teacher, and content. I look forward to reading Anna’s notes and sharing ideas with my
graduate students in my course next year on Foundations of Mathematics Education.

Hope you and the kids are well.
Love
Tom

Response 8. Rina Zazkis

We (I) struggled to understand the differences and the common features of two traditions—Math
Ed and didactique des mathématiques.

From the final remarks of the discussion it is my understanding that researches in both
traditions may explore very similar research questions and the important difference will be in the
presentation/reporting of the results. ‘French’ will have long theoretical explanations, while this
part will be overlooked or minimized by anglophones. In the end, ‘French’ would be ‘apologetic’,
maybe more aware of the scope of the claims made in the report.

To put things bluntly in my own terms, the ‘bottom line’ observation is ‘the French have a
longer foreplay’. The rest is pretty much the same (and lots more recrimination in the end).

In my still childish wishful thinking I wanted to come out of the discussion with ‘answers’.
The outcome is ‘more questions’. Maybe this was expected as well.

Response 9. Margaret Sinclair

There were so many ideas in the three days that I found I needed to ground them in my research
interest to make sense. The activity with division informed my understanding of task develop-
ment. This thread ran through the discussion—that I must contrast results with expectations,
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that the task is critical to what happens… to the response of the students. At the same time, since
I am in a relatively new field (looking at technology) I needed to hear about some other ideas—that
research starts from the limitations of reality, that situations you design will become richer as you
develop a growing understanding of children’s cognitive responses to the (technological—in this
case) task.

As a doctoral student I appreciated the clarification of the various traditions, and the con-
trasts elaborated between the Italian, French, American and Canadian traditions. Laurinda’s
comment about assumptions needing to be clearly stated so that the reader can ‘enter and learn’
takes on new importance now that I have a better understanding of the differences.

The discussion on focus was also helpful. As I look at my data, the ideas of ‘2nd order
variables’, my focus ‘at the moment’, and Elaine’s ‘fuzzy answers’ will inform my decisions about
what to communicate about my findings and how to communicate those ideas.

Response 10. John Mason

We were offered a task of classifying some 31 ‘tasks’ taken from an old and a recent text. The effect
of the task was to raise questions about how tasks arise and are used within different approaches to
research. I appreciated the consistency of being engaged in a task in order to bring an awareness-
perspective-orientation to the surface, as, it seems, is the aim of the school of situations didactiques,
as well as my own.

What emerged was an attempt to articulate similarities and differences in different ap-
proaches. We found it helpful to use the commonplace triad of Mathematics—Student—Teacher
within a macro- and micro environment (institutions, socio-cultural-historical-political and per-
sonal concerns-propensities-sensitivities). Different approaches stress different aspects to differ-
ent degrees, but perhaps more importantly, are more or less explicit about assumptions and struc-
tures underlying different components.

No-one likes to be ‘put in a pigeon-hole’, so a natural response to being told that one’s
approach stresses some aspects and ignores others is to put more emphasis on less stressed aspects.
This is one way in which we helped each other approach and maintain complexity.

A contrast was made between depth and breadth, though I am not entirely convinced, be-
cause neither necessarily denies the other, especially when a part may be fractal-like, similar to the
whole or, hologrammatically, the part contains information concerning the whole.

Useful quotation: We hope our theories are as observation based as our observations are
theory based (Goodman, ‘Ways of Worldmaking’, 1997).

I offer the conjecture that the more precise you want to be about observations, the more
precisely you learn about (the sensitivities of) the researcher (cf. Heisenberg’s Uncertainty Prin-
ciple) which connects to a perspective in which an event consists of all the stories told about that
event.5

The challenge for me is making explicit assumptions being made, exposing theoretical un-
derpinnings (à la Goodman).

Additional thought: I came away feeling I appreciate more fully some of the social-psycho-
logical-cultural forces which are part of the autopoietic creation of academic-scholarly identity.
Distinction making can exacerbate differences rather than clarifying similarities.

Conjecture: Behind the technical terms which create and support identity, there is more in
common than adherents like to admit, since few people like to be classified, pigeon-holed, or hav-
ing their terms re-cast in other terms.

Response 11. (unsigned)

As our group attempted to analyze/categorize the division problems, I was first struck by the
different backgrounds, interests and research questions that our group brought to the table. As we
proceeded with the task, I then became aware of the differences in our willingness to proceed with
the task. Although this statement may stand alone as an observation and serve as a metaphor for
the multi-perspective and inter-disciplinary nature of the mathematics education community, it
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also led me to feel frustrated and worried for our ability as a community to move forward and
contribute to our field in the beautiful and optimistic way that Bill Higginson has proposed. That
said, participating in this group has been a totally (?) experience. I have been absolutely engaged
throughout the entire 3 days.

Response 12. Rina Hershkovitz

I left with the feeling that we were dancing around a few poles and may be not with them, and
there were more than 2 poles. At the end I think that the way of ‘dancing around’ rather than
‘dancing with’ is better because:
1) The ‘poles’ were, in a way, present in these 3 days. For me especially when we were ‘classify-

ing’ the division problems. The debates and the ways each of us expressed our thoughts re-
vealed these different poles.

2) This way of dancing around leaves room for each of us to be ‘creative’ in the interpretation of
the (hidden) poles and then to integrate it with his or her ‘knowledge’, beliefs, experience.

3) The opportunity to listen to the different participants’ ‘poles’ (culture, etc.) made these poles
richer.

This way is a good trigger to want to read and know more.

Response 13. Asuman Oktaç

For me what was most striking was not the particular topic in question, because I feel that we
drifted from it in many ways, but it was how the participants responded to the tasks, how they
formulated questions and reflected on the discussion.

I do think that it would be difficult to classify the whole group into the two solitudes, as there
were many international participants, and even the ones that presumably belong to these groups
were different. I think the ‘didactique des mathématiques’ camp was not very well represented.

I am probably writing down my impressions the way I feel them rather than describing
what happened which might point out to the difficulty in focusing. I think that when Anna sug-
gested the task of classifying division problems she was quite focused herself. But when it comes to
the application level involving so many people, we ran into the issue of expectations of the de-
signer of the activity vs the interpretations given by the participants.

Response 14. Richard Barwell

How is it possible to communicate across cultures? Before we can discuss similarities or differ-
ences between Math Ed and didactique, it is necessary to understand the two positions, but this is
not really possible or meaningful since our different understandings are informed by our indi-
vidual histories so that we make our own versions of Math Ed or didactique (or semiotics, or
Piaget or …). This is not to say that such a discussion is unhelpful, but that its value is in its
doing rather than in its conclusions: in dialogue. So the things that I take away from the Working
Group is some thoughts about the nature of didactique—some ideas of what it might be or more of
how it might be done (and equally some thought about Math Ed and ...  and ...). One aspect which
I liked was the participation in some activities which were informed by the didactique perspective.
Even where these activities caused dissonance and confusion amongst some participants this was
still valuable as it informed the ensuing personal reflections. The discussion in the final meeting
developed into a fruitful sharing of approaches to research, to questioning, to looking and seeing
which I can engage with from my own perspective.

Response 15. Mariolina Bartolini Bussi

At the beginning I was not sure to be in the right place. I was talking about division and yet I was
expecting to take part in the comparison of different research traditions. In the second task all
became clear. We ‘naturally’ shifted from classifying problems to wondering about the ‘sense’ of
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this task, without knowing more about the didactic situation. And this made clear to me that in
our small group we were contrasting at least two approaches.

At the beginning I had wished to be allowed to jump from one group to another to know
more about the Canadian community. At the end I was happy to have taken part in the process of
shifting from a particular task to more general yet contextualized discussions.

Response 16. William Higginson

The Two Solitudes Concern: A CMESG working group in the full sense of the term … rich
images, diverse interpretations, short term confusion, ground shifting insights, personal assimi-
lation/accretions of formerly encountered colleagues, glimpses of newcomers coming on stream, a
sense of personal and community evolution. Another reminder of the challenges and rewards of
imaginative classification. And in the end an awareness of the non-solitude of unity coexisting
with a multiplicity of ‘communitudes’.

Final plenary session Report of Working Group C

Tom's account of what happened in the working group was the following:

Catching the Evolutionary Drift

The general task of our group was to contrast various North American approaches to research
(and development?) in mathematics education with elements of the theory of didactic situations
approach. Each of us brought our own lived histories and structures (or relevant parts thereof) to
the task. We were asked in a 'naïve' way to engage in reflective 'actions' and 'reformulations'
kinds of tasks with elements of the theory of didactic situations approach. Because these tasks
engaged us in talking about division and division of fractions and we were asked to engage in
these experiences without elaborate theoretical discussions first, we all individually (and in our
groups sometimes with one notable group exception) lost our way from time to time because we
confused our 1st order (division of fractions) task with our 2nd order (build up didactical situa-
tions ideas) task.

Much thinking, ideas and questioning arose on day one and two as well as sense of confu-
sion. On day 3 we engaged the contrasting task directly, especially taking our research struc-
tures and experiences as a basis. This session evolved in such a way that we came to build on one
another's offerings and to be occasioned by them. Unlike days 1 and 2 to a certain extent we
'caught the evolutionary drift'. We made more contrasts among our research ideas and posi-
tions.

Aside from very general re-membering and contrasting much of the extensionive action/
reflections of days 1 and 2 was 'lost' in this discussion. Explicit features which may have been
folded back to and restructured were 'lost' as we moved through this new period of action guided
by perhaps a different question of contrast than that which we started on.

For me this rather inter-active, structure(s) determined, occasioning drift had its points of
growth and development. But many ideas which were excellent but not 'good enough' (for our
group) went without further examinations. We made much, gained and grew, but did not do as
much of the contrasting with DS ideas as we might have had (some of) the day 1 and 2 ideas
(which could be observed to have been available but not taken up) been followed in a different way.
Of course, this is only my research view of the multiverse in which we exist(ed).

For the closing session, as a reaction to her being dead serious over the three days of work,
Anna chose to take a humoristic slant in her report of the events.

You are expecting me to give a report of the proceedings of WG C. But it is impossible for me to tell
you what actually happened in the group. There were about 18 to 20 people there and just as many
different accounts could be given of the events. At the end of yesterday’s session, Tom and I asked
participants to describe their experiences in writing. What we obtained was exactly that: 16 dif-
ferent stories, to which then Tom added his own, yet different, story. For the final report, rather
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than summarizing them all, I decided to pick, at random, the 18th story and read it to you. Here
it is:

Anything can be learned the easy way, by listening to lectures and being told what is what
and what is not what we think it is, or the hard way, by problem solving. Group C learned about
the differences between Didactique and Mathematics Education research the hard way. The ses-
sions started by a research activity, inspired by one of Guy Brousseau’s papers about the theory of
didactic situations. After one session and a half of hard labor several frustrated participants re-
fused to produce any more research findings and started asking questions about the purpose of all
this, and the relevance of the activity to the theme of the working group. Some of the More Radical
Constructivists called for a lecture on the theory of didactic situations and a clear definition of the
difference between didactique and mathematics education. But the followers of Activity Theory
objected that this would be against the teachings of Marx, who, as you know, was quite stubborn
in his claim that any intellectual assimilation of reality must arise, whether you like it or not,
from labor and material production. This statement provoked loud protests from a group of
Enactivists, seconded by Eclecticists, who put up a banner with slogans such as ‘Keep your enve-
lopes sealed!’ and ‘Epistemology, cognition and didactics, unite!’ The first slogan was met with a
hearty applause: participants finally had the feeling of understanding something. But several
members of the group did not agree especially with the last word, ‘unite’, and demanded immedi-
ate division, separation, splitting and uneven yet fair allocation of demarcation lines. The discus-
sion was getting more and more impassioned and I don’t know where it would have led the group,
if two wise men with long memories hadn’t suddenly made their appearance. They revealed to the
dazed audience that there is absolutely no reason for discord, because all differences stem from bad
translation. For example, ‘epistemological analysis’ is normally translated into ‘analyse
épistémologique’, while the correct translation should be ‘analyse des conceptions spontanées des
enfants’. Or something like that—they were not too sure. Anyway, the wise men postulated that,
in order to discard all possibility of discord in the future, Latin be used universally as the one
and only language of science. The proposal was accepted by acclamation. The meeting was
then adjourned among general expressions of joy and optimism.

Gaudeamus igitur!

Appendix

List of problems given to the participants in Task 2.

The 1936 textbook

1. Alice, Ruth and Mary were the Pop-corn Committee for the Pearson School Halloween party.
The girls bought 3/4 of a quart of pop-corn and divided it equally among themselves to pop.
Each girl took what fraction of a quart of corn to pop?

2. Tom and Jimmy were to make a box for a game to be played at the Halloween party. They
needed 4 boards each 3/4 ft. Long. The janitor gave the boys a board 3 ft. Long. How many
boards each 3/4 ft. long could they have cut from the 3-foot board?

3. Henry brought 3/4 of a bushel of walnuts to the party. He divided the nuts into 50 equal
shares. Each share was what fraction of a bushel?

4. The children had a peanut relay race. Each team ran 7/8 of a block, and each pupil on the team
ran 1/8 of a block. How many pupils were on each team?

5. Each of the girls on the Refreshment Committee served 1/2 of a pumpkin pie at the party. The
pies had been cut so that each piece was 1/8 of a whole pie. Into how many pieces was each
half-pie cut?

6. 9/10 ÷ 15/16

7. 5/8 ÷ 15/16

8. The cookie recipe that Mrs. White planned to use called for 3/8 cup of chocolate. She had only
1/4 cup of chocolate. What fraction of the full recipe could she have made with that amount?

9. Divide and put your answer in simplest form: 9/10 ÷ 3/5.
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10. On Halloween the Pine Hill School had some Hard Luck races. The route for the races was in
three laps. The first lap was from the school to Five Corners: 1/4 mile. The second lap was
from Five Corners to Orr’s Sawmill: 7/8 mile. The third lap was from Orr’s Sawmill to the
school: 3/4 mile. Hellen said that the second lap of the route was 31/2 times as long as the first.
Jane said that it was 33/8 times as long. Which girl was correct?

11. Divide:  (a)  76 ) 912    (b)  431 ) 35351

12. Woods family went to the State fair. Father and Andy drove to the fair in the truck, taking
some cattle to be entered for prizes. Mother and Ruth drove the family car. On the way to and
from the Fair, Father used a total of 24 gallons of gasoline and 5 quarters of oil for the truck.
The gasoline cost 18 cents per gallon, and the oil cost 30 cents per quart. Father drove the
truck 107 7/10 miles in going to the fair and 108 3/10 mile in returning. Besides the cost of the
gasoline and oil, the expenses for the truck were $1.00 for repairing a tire. To the nearest cent,
what was the cost per mile for the truck for the round trip?

13. Divide 3/4 by 5/9.
14. Nancy earned her Christmas money making Christmas cards. She bought 2 sheets of card-

board at 5 cents each, a bottle of drawing ink for 25 cents, and some watercolors for 25 cents.
(A) How much did all these things cost? (B) The cardboard sheets were 22 inches by 28 inches
in size. She cut each sheet into strips 22 inches long and 5 1/2 inches wide. How many of the
5 1/2 inch strips did she cut from the 2 sheets? How many pieces were too narrow for her to
use?

15. Sally and Ruth decided to make some valentines which would be different from those they
could buy in the stores. They bought a sheet of red paper 22 inches by 28 inches. Each girl
took 1/2 of it. How many hearts could each girl have cut from her share, if each heart used up
to 1 square inch of paper?

16. 2 ) 155.8

17. 32 ) 5.12

18. 6 ) .828

19. During 8 hours on Tuesday there was .96 inch of rainfall. This was an average of what deci-
mal fraction of an inch per hour.

20. Mr. Burns and his family drove their car and trailer to Arrow Head camp to spend a few
days. They drove 297.5 miles in 8.5 hours in travelling to the camp. How many miles per
hour did they average?

21. 7.8 ) 7581.6

22. Mr. Mills told Ned and Alice that they could sell vegetables during the summer and keep
half od the profits. Mr. Mills helped Ned build a stand. To make the boards below the shelf,
they sawed up some 14-foot boards. How many boards 3.5 ft. Long could they have sawed
from each 14-foot board?

22. 1.25 ) 3

The 1988 textbook

1. Look at the two series of operations. How do the divisors and results change? Can you find
the missing results?

8 ÷ 8 = 1 3/16 ÷ 8 = 3/128
8 ÷ 4 = 2 3/16 ÷ 4 = 3/64

8 ÷ 2 = 4 3/16 ÷ 2 = 3/32
8 ÷ 1 = 8 3/16 ÷ 1 = 3/16

8 ÷ 1/2 = ? 3/16 ÷ 1/2 = ?
8 ÷ 1/4 = ? 3/16 ÷ 1/4 = ?
8 ÷ 1/8 = ? 3/16 ÷ 1/8 = ?

· Add two more operations to each column.
· What should 3/16 be multiplied by in order to obtain 3/128?



Kieren & Sierpinska • Mathematics education & didactique des mathématiques

79

· What should 3/16 be multiplied by in order to obtain 3/64?
· What operations could replace each of these divisions? Can you see a rule?
· Write a similar series of operations.

2. Mom said to Johnny: “I have 6 liters of honey. I’d like to keep it in 1/2 liter jars. Could you
bring the jars from the cellar?” (A) How many jars should Johnny bring? (B) How many 1/4 L
jars would he have to bring? (C) And—how many jars of 3/4 liter?

3. A quotient is equal to the divisor and it is 4 times larger than the dividend. What is the
dividend?

4. Find a number which is 4 times larger from the quotient of the numbers 3 1/2 and 2 4/5

enlarged by 1.
5. 2 1/3  + 3/4  ÷  1/2

6. –12.8 x (–0.2)
7. 3 1/3 ÷ (–5/6) ÷ (–2)
8. Decide which product is less expensive

(a) Margarine sold in 250 g cups for $1.32 or margarine sold in 500 g cups for $2.49.
(b) Yogurt sold in 150 g cups for $0.93 or yogurt sold in 500 g cups for $2.60.

Notes

1. We are using Maturana & Varela’s expression here.
2. Brousseau, G., 1988: Représentation et didactique du sens de la division. In G. Vergnaud, G.

Brousseau, & M. Hulin (eds.), Didactique et acquisition des connaissances scientifiques. Actes du
Colloque de Sèvres, mai 1987. Grenoble: La Pensée Sauvage éditions, pp. 47–64.

3. Knight, F.B., Studebaker, J.W., & Ruch, G.M. (1936). Study Arithmetics, Grade Six. Chicago:
    Scott, Foresman and Company.
Zawadowski, W. et al. (1998). Matematyka 2001. Podrecznik do klasy 6 szkoly podstawowej.
    Warszawa: WSiP.

4. Elaine illustrated this point by recalling how one of the teachers she observed had the rulers
available during a geometry lesson in case some students forgot to bring their own. This
allowed her to save time on classroom management and concentrate on the mathematical
content of the lesson.

5. We have adopted this perspective in putting together the report of Working Group C.
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Report of Working Group D

Teachers, Technologies, and Productive Pedagogy

David A. Reid, Acadia University
Rosamund Sutherland, University of Bristol

Participants

Donald Cudmore Dave Hewitt Medhat Rahim
Astrid Defence Vi Maeers David Reid
Gary Flewelling Claudine Mary Geoffrey Roulet
Pierre Gauthier Douglas McDougall Nathalie Sinclair
Frank Gruen David Pimm Rosamund Sutherland

The working group would like to thank Caroline Lajoie for her technical support during the
conference.

Introduction

This report attempts to re-present nine hours of discussion by fifteen participants in a single
report of a few pages. Inevitably the richness of our work in Montréal has been diminished
in this transformation, but we hope that we can at least provide a record of the issues we
raised, the ideas we generated, and a few conclusions we drew. We have not attempted a
blow-by-blow account, instead choosing to reorganise the discussion into sections dealing
with questions we raised that guided our work, the two examples we considered at length,
the beliefs about learning that seemed to be implicit in the discussion of the teaching poten-
tial of those examples, the characteristics of rich learning environments that were mentioned
in our discussions, possible implications for designing of technology and important issues
that were raised that we felt had to be addressed if technology is to play a useful role in the
teaching of mathematics.

Questions

Our opening discussions raised many of the questions that guided our discussions. They
can be seen as falling into three groups around three general questions.

Perhaps the most fundamental of the three concerned the meaning of the phrase “pro-
ductive pedagogy” that appeared in the title of the working group. Related questions re-
ferred to issues like the kinds of problems students are offered, the source of motivation,
and the kinds of learning we hope to motivate students towards.

We recognised that pedagogy is based on beliefs concerning the nature of learning,
and so a question arose around the beliefs we had brought to the group, and what implica-
tions those had for pedagogy. Related questions concerned the relationship between moti-
vation to learn and constraints that limit learning, the role of social interaction in learning,
what we felt was important about learning mathematics and what different ways of learn-
ing might exist.

Our third question referred specifically to identifying design principles for software
intended to be compatible with productive pedagogy. Given our beliefs/theories about what
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constitutes a “good” mathematical learning environment (teacher plus students plus
technology) can we imagine/analyse what a technological environment affords from the
point of view of mathematical learning? What features might push students to a more
mathematical way of thinking? What affordances should be built in for teacher involvement?

Two Examples to Think With

The two examples we used to focus our discussions came from Nathalie Sinclair and Dave
Hewitt. They have since described their work in the pages of For the Learning of Mathematics.
See Sinclair (2001) and Hewitt (2001).

Part of our discussion centred around the intents Dave and Nathalie had in develop-
ing their technological tools for learning. Dave outlined that he had based his design on
very young children’s learning of language. He wanted to provide a context for students to
explore the contexts in which words appear, and to abstract from those contexts. The soft-
ware provides names and conventions, freeing the students to work on relationships and
properties.

Nathalie was trying to create tension for the student so that she or he would see that
there was something to be resolved. She wanted to the student to be able to use existing
perceptions (e.g., of direction) to explore the co-ordinate system. It is important to consider
what kind of mathematical action is possible. Working with equations versus dragging a
vertex—is that a different kind of mathematical action? What does “mathematical action”
mean? Numbers and equations? What else?

In the context of both examples we discussed the idea of scaffolding the learner. For
example, in Nathalie’s environment an algebraic symbolism is provided which maps to
actions but students can also act on the symbolism themselves and chose to do this.

Beliefs About Learning

We recognised that any description of rich learning environments and principles for design
we might come up with would have to be, implicitly or explicitly, based on our beliefs about
the nature of learning. While this is equally true of any aspect of teaching, for us it was
especially important to recall that theories/beliefs about learning have to come before we
introduce technology. The characteristics of a rich mathematical learning environment are
the same whatever the technology being used, and exploring our beliefs provided one way
to explore what characteristics might be shared by the kinds of technological environments
in which we were interested.

Some of the beliefs that were articulated included the following. We did not attempt to
be exhaustive or unanimous in our discussion of these beliefs, instead using them to clarify
our consideration of learning environments and technology design.

· Learning takes place without deliberate intent by a teacher or a learner.
· Learning comes from active doing/working. Active involvement in learning is an important

element in motivating the student. Asking questions, making conjectures, reporting, and
structuring are important to learning.

· Human beings come with ways of acting on the world, ways of being acted on by the
world (e.g., senses), and needs that support learning about some aspects of their
environment.

· Being able to observe the consequences of one’s actions is a powerful part of learning.
· What human beings learn changes them and so changes what/how they can learn.
· Students construct, explore, etc., but not independently of social contexts (peers, teacher,

and culture). The social and physical world a learner perceives constrains what they can
learn. It does not determine what the student will learn but does affect it and is affected by
it.

· In any situation we stress some things and ignore others. What we focus on is constrained
by what is available. So more limited environments “force” more focus. Different situations
allow for different foci.
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Characteristics Of Rich Mathematical Learning Environments

Implicitly or explicitly, much of our work revolved around the question, “What are the
characteristics of rich environments for learning mathematics?” We agreed that we could
imagine such environments involving the examples offered by Dave and Nathalie. It
remained to see if we could tease out some characteristics so that we could discuss how
technology might support them.

Perhaps the most general characteristic of a mathematically rich learning environment
is that it is transformative. Students should walk out feeling that they are a different person
with new skills or new confidences. In addition to the concepts and procedures of the
discipline, the students should also learn what it is to act like a mathematician, learn about
the nature/pervasiveness/power of mathematics and learn to think with the tools/habits
of mind/perspectives of mathematics.

Such an environment must include complex and messy problems about which students
can develop their own understanding of a new (for them) piece of institutionally accepted
mathematical knowledge. The students engage in situations that they don’t understand, in
which bringing unfinished ideas is part of the agenda. In addition to complexity, the problems
must be open, in the sense that there is space for students’ voices, dialogue, and “good-
enough” (as opposed to complete and correct) understanding.

Motivation is important in a learning environment in which students are expected to
go straight in and figure things out. Several sources of motivation were mentioned by
members of the group. Three that received the most attention were the role of an audience
that values the students’ work, and whose opinion the students value, the joy inherent in
the study of mathematics for its own sake, and the positive feeling associated with learning.

We recognised the importance of multiple representations and approaches in allowing
students with differing backgrounds to be successful. The different algebraic notations in
the case of Nathalie’s software offered one stimulus to this aspect of our discussions. The
presence in a learning environment of different tools for expressing ideas (paper & pencil,
software, etc.) and tools for moving between different representations (language/graphical/
numerical/algebraic) were also recognised as important.

The last characteristic of a rich learning environment, but certainly not the least based
on frequency of mention in the discussion, is the presence of a teacher. While one aspect of
the teacher’s role is that of a co-learner, the attentions of teacher and students are placed
differently.

Possible Implications For Designing Of Technology

In the design of technology for productive pedagogy, we moved quickly to reject the idea
that technology can be pedagogical in and of itself. We emphasised the pedagogical role of
the teacher using software in a classroom, and of the designer of software, websites, and
other technological tools. We recognised that the potential effectiveness of computer-based
environments, as with any other resources, will partly depend upon the activity offered by
a teacher and the choice of freedom/constraints which comprise that activity. Such deci-
sions about freedom/constraints are pedagogic in nature.

Keeping these things in mind, we proposed a range of design principles for technology
that could be used by a teacher to produce a mathematically rich learning environment.

An important question that gave rise to design principles was “Why use technology?—
Is there anything qualitatively different between working with paper and pencil and working
within a computational environment?” Three answers to this question led to productive
discussion: We lose agency when we work with computers, that is, we give over some of the
agency to the computational tool; technology provides opportunities to rethink our
approaches (e.g., dynamic geometry, approaches to classifying quadrilaterals); the feedback
from a computer is more neutral than from a human.

Using a technology involves submitting oneself to the requirements that technology
makes for its use. Computers only respond to typed commands in a particular syntax, or
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offer only a limited range of buttons to push. This means that the special notations of
mathematics can be required not by the seeming whim of a teacher, but instead by the design
of a technology. The need to communicate a mathematical command to a computer makes
mathematical activity (which is normally occurring invisibly in the mind of a learner) visible
to others, and makes it possible to record that activity. Technologies can also limit the kind
of mathematical activity that is possible, so that geometric methods or algebraic methods
are used to solve a problem because the technology makes one or the other easy. Paradoxically
the constraints imposed by technology can contribute to the openness we identified as being
an important feature of a mathematically rich learning environment, as technologies such
as computer increase the number of choices/opportunities for what freedom/constraints
can be included within an activity.

Technologies make some things easy that were difficult. Visualising geometry as
dynamic is one, as the effort of making the diagrams move is transferred from the learners’
imagination to the computer’s graphical display. Exploring iterative functions is another, as
the time taken to calculate a hundred iterations is reduced from hours to seconds. Dave’s
example offers another possibility, a new representation of the existing system of classifying
quadrilaterals that shifts the emphasis to the categories that overlap or exclude each other.

When computers refuse to do what their users think they have asked of them it is not
a judgement of the request, any more than the refusal of a stone to move when insufficient
force is applied in pushing it is a judgement on the person pushing. This means that the
shift of agency mentioned above can occur without an interpersonal power struggle
developing. In addition the way in which technology misbehaves can offer insight into the
task itself. If a calculation takes more time than expected, or produces an error, that indicates
something about that calculation that might not be apparent from its algebraic expression.

Another question that gave rise to some design principles was “Is there such a thing as
mathematical technology?” We saw that there might be nothing essential about a particular
technology from the point of view of mathematics, but nevertheless we can talk of
mathematical affordances of a piece of technology. There are some technologies that allow
you to act mathematically more easily than others. And some that make it very difficult. We
recognised that affordances depend not only on the technology but also on the user. More
mathematically sophisticated or technologically adept users there might be more
mathematical affordances in a particular technology than for more typical users of it. In
design it is important not to consider what the designer can make the technology do, but
rather what someone with no prior knowledge of the technology can make it do. It is possible
to hammer nails with a plastic bottle (by filling it with water and freezing it) but giving a
novice a plastic bottle as an introduction to hammering would be misguided.

Another guiding question for design is the anticipated user of the technology. The
dominant image of a single user with a teacher’s guidance much be broadened to consider
use by groups (perhaps networked groups), by students working at home, and by students
working at a distance.

The intent of the designer was a focus for our deliberations, but at the same time we
were not sure how important is was to make those intents known to users. A user is likely to
construct their own set of implicit intents that they imagine guide the design, and the intents
that they would be interested in might differ depending on whether they were using the
technology as a students, as a teacher, as a researcher, and a parent, or in some other role. It
was suggested that it would be useful to make the designers intents available, perhaps in
different forms intended for different audiences, but with restricting who could read what.
For teachers this is especially important as they make decisions and define their own
intentions when they chose to use technology in certain ways in their classrooms.

In summary, some of the principles we mentioned for technology design were:
Openness, Constraints, Focus, Allowing user(s) to operate comfortably, but not too
comfortably, Affording the teacher control over the technology, Providing feedback, Including
multiple representations (e.g., graph, equations, properties, shape, and name), and Including
opportunities for sharing work with an audience.
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Important Issues and Questions for Further Research

Inevitably more issues were raised than could be addressed in the time we had. Some of
these important but neglected issues are:

· Do we want the mathematics class to take over the home? (e.g., via the web)
· Is this a critical approach to technology? Is there a need for a critical pedagogy?
· What does appropriate use of technology mean?
· Can we use technology as a political lever to force change in classes? (I.e., Can we use

technology as a Trojan Horse to introduce our pedagogical principles into schools?)
· Does the technology change what mathematics can be taught in schools and what math-

ematics exists?
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Report of Working Group E

Calculus Reform: A Critical Assessment

Sylvie Desjardins, Okanagan University College
Harald Proppe, Concordia University

Participants

Marie-Jane Haguel Gilbert Labelle George Smith
Jacqueline Klasa Manuel Santos Gervais Tremblay

Day 1: Introduction

The first objective of this working group was to review and analyze the reform approach to
the teaching of calculus. Our second objective was to explore the role of technology, from
graphing calculators to computer labs to the internet. The intention was to understand how
reform, coupled with the best features of the emerging technological tools, could be de-
ployed to improve the transmission of the principles of calculus.

The group was small, but it covered a wide spectrum of views and expertise. During
the first session, each participant was asked to describe his own experience with calculus
reform or the use of technology in the classroom. While some of the participants were not
directly involved with the teaching of freshman calculus, and only a few had used the stan-
dard reform text of Hughes-Hallet Gleason et al., most had some degree of familiarity with
the basic idea of calculus reform, and all were using some form of technology—such as
graphing calculators, or computers with either symbolic algebra software like Maple, or
geometric softwares like Cabri—in their own classrooms.

Following the introduction of the participants, there were some informal discussions
on subjects ranging from the definition of calculus and how certain topics should be taught,
to the nature of calculus courses 10 years from now. There was general consensus that the
way we teach calculus has changed since the introduction of graphing calculators, comput-
ers, and other aides, and that it will continue to change as a result of continuous improve-
ments in technology.

What kind of technological tools will exist in 2010? Because so many of the ideas of
calculus can be put into pictures, or involve approximations, we all agreed that students
will likely have access to very sophisticated tools. As a result, calculations will be made
simpler, and graphing calculators as we know them will become virtually obsolete.

We took the generally accepted view that in the traditional approach much of the
effort is concentrated on the symbolic representation. That is, students are expected to gain
a certain level of algebraic skill, so that they can learn to apply well-known calculus tech-
niques to solve problems. The reform approach, on the other hand, maintains that the con-
cepts should be presented according to the rule of three, which demands symbolic, graphi-
cal, and numerical representations. Motivation for the concepts is provided in word prob-
lems, and it involves extensive use of technology.

But are these changes being driven by technology for the sake of technology? Is tech-
nology-based reform truly improving the state of mathematics education?

The participants agreed that students in both traditional and reform courses continue
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to have difficulties understanding real-life modeling situations. Moreover, while most of
the participants were willing to see the merits of the graphical and numerical representa-
tions, they believed that, in order to bring these elements to the classroom, it would be
necessary to eliminate some traditional topics. Whether this should be done, and whether it
can be accomplished without somehow weakening the content of a freshman calculus course,
is where the usual debate between the traditional and the reform approach begins. Our
initial discussion of reform was, in this sense, very traditional.

There was concern about the skills left undeveloped when there is too much reliance
on technological tools. The ability to manipulate algebraic symbols, for example, is critical
in solving problems and in understanding ideas. Therefore, we should not ignore the possi-
bility that, just as the calculator can compromise students’ arithmetic reflexes, the graphing
calculator and symbolic algebra computers could compromise the development of basics
algebraic skills, and ultimately hinder the students’ ability to move on to more sophisti-
cated concepts.

In an attempt to legitimize technology, an analogy was drawn with statistics, where
the availability of statistical software has significantly changed the content of introductory
statistics courses. In statistics, there is now less emphasis on the ability to perform certain
algebraic computations. Rather than simply make the courses easier or compromise any-
thing, however, this has allowed the early introduction of difficult ideas, and freed valuable
class time so that realistic applications can now be explored efficiently. The students more
quickly gain practical knowledge and develop skills that can readily be put to work in a
modern environment.

Generally, we adopted the view that we shouldn’t refuse the advantages offered by
technology just to preserve old and trusted ways. But, having done so, we quickly rejected
the option of eliminating certain topics from the calculus curriculum to make room for quali-
tative and geometric interpretations. Reform should not mean selecting fewer chapters from
a text; the appropriate strategy is to build a new course from the ground up, starting with
the basic skills deemed necessary for our students. These basic skills should include not
only problem-solving skills, but also general thinking and communication skills.

Much of the remaining time was spent brainstorming to identify ways in which these
skills could be developed within the context of a calculus course. At the end of the first day
there was, among the participants, a sense that true reform would require substantive
changes.

Day 2: Presentations

On the second day there were two key presentations. Sylvie, using material developed for
the single and multivariable calculus courses at Okanagan University College, demonstrated
how technology, combined with the key features of reform, can be used to streamline and
enhance the delivery of a mathematic’s course. Then Geoff, one of the participants, agreed
to present the innovative treatment that has been used to teach calculus to engineering and
science students at the University of Technology Sydney, Australia. We have tried to encap-
sulate the content of each of these presentations.

I. Effective Use of Technology

Why develop a course website? First, the website provides a convenient platform for the
distribution of class material. Since any document produced on a computer can be con-
verted into a portable document format (pdf) file, class material such as review sheets, sample
tests, or solutions for homework, quizzes, or tests, can be posted for easy access. Moreover,
the site can also contain class information, such as an outline or syllabus, a list of suggested
homework problems, a series of worksheets for Maple or graphing calculators, and a de-
tailed timetable that can be updated as required.

The information on the website is therefore current and accessible at any time, from
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anywhere. To demonstrate how the internet can expedite some of the administrative con-
cerns of teaching mathematics, Sylvie took us on a tour of a course website. (Most of the
material explored during this presentation is accessible from Sylvie’s homepage.2)
Technological tools, such as graphing calculators or computers, can be used as teaching
tools. The calculus course at OUC is made up of three hours of lecture per week, and one
hour of computer lab. The Maple-based labs usually consist of two or three questions comple-
menting material covered during lectures. The necessary Maple commands are provided
through examples in the students’ lab manual or in Maple worksheets posted on the website.
Group work is encouraged, but each student must submit individualized solutions that
include comments and explanations.

There are many benefits associated with a computer-based lab for a first-year calculus
course. First, because working with symbolic algebra software means that students can eas-
ily obtain graphical, numerical, and algebraic representations of a given problem, more of
their time is devoted to understanding how to use these various representations to obtain a
solution. In addition, since students learn to use Maple early on, they will be ready to use
the software to tackle more complex problems in later courses. But, perhaps the most im-
portant advantage for the students is the opportunity to explore mathematics hands-on in a
group setting. During the lab, students can apply their knowledge of calculus to solve prob-
lems, and discuss among themselves how and why certain methods work. Most scientific
disciplines already enjoy the benefits of a course-based lab; the availability of symbolic al-
gebra software means that we too can offer our students the same kind of learning environ-
ment.

Students need to know how to use the technological tools to get an accurate represen-
tation of the problems they are trying to solve. They must also be able to understand the
information contained in these new representations. To this end, they must be able to talk
about mathematics so that they can formulate questions, explain ideas, and store concepts
in a mode that is most familiar to them. To ensure that students verbalize mathematics, their
work should always include written explanations, and a significant portion of the grade
should be set aside for the required explanations. To illustrate the sort of material covered in
a reform-based course, tests and assignments, including

Maple-based projects, were offered as examples of the graphical and numerical treat-
ment of various topics. Here is a typical exam question:

Consider the two curves below (Figure 1). One designates the rate of snowfall (in m3/
hour), S(t), that fell on a section of the Coquihalla highway during a storm last winter.
The other shows the rate of snow removal, R(t), in the same section.

a) When was the quantity of snow on the road the greatest? Explain.
b) When was the quantity of snow increasing most rapidly? Explain.
c) Use the fundamental theorem of calculus to write a formula for the the quantity of

snow, Q(t), at any given time. Assume that there was no snow before the start of the
storm.

Finally, students should still be able to solve problems without the help of technology.
To make sure that they acquire the more conventional algebraic skills, students at OUC are

FIGURE 1.
Rates of Snowfall and
Snow Removal



CMESG/GCEDM Proceedings 2000 • Working Group Report

90

expected to write a technical test. Before taking the test, they are given an extensive list of
standard practice problems. Calculators are not allowed during this test, and students can
repeat the test to improve their score. This encourages them to devote as much time as they
need to become familiar with the basic algebraic techniques.

Thus, by providing students with the necessary tools, technical and otherwise, and
the ability to use them properly, a reform-based calculus course aims to help students de-
velop mathematical survival skills so that they can better understand the concepts encoun-
tered in any mathematics course.

II. Motivation and Relevance

Geoff and his colleague believe that special care must be taken to tailor mathematics to the
needs of the audience. In particular, any new approach must recognize the fact that stu-
dents come to university with certain preconceived notions about mathematics. By the time
they finish high-school, for example, students generally think about functions in terms of
formulas, and they view mathematics as the formal manipulation of symbols. For them,
calculus is nothing more than the set of rules that govern this manipulation. This oversim-
plification can be detrimental since, on the one hand, students often feel they know all there
is to know about calculus even though they might not understand much about it, and on
the other hand, they fail to recognize the relevance of calculus to real-life applications.

Formulas are but one representation for a function and, since most functions do not
have nice formulation, it is misleading to restrict ourselves to the traditional treatment of
elementary transcendental functions. A more useful form for a function is one that allows
you to perform accurate computations. To help students progress beyond the notion of func-
tions as formulas, we challenge the traditional picture by basing our course on “construc-
tive learning.” In this context, motivation means that nothing is introduced unless it is re-
quired in the solution of a problem.

We start from the premise that only real problems, that is, “those people are willing to
pay for,” are worth solving. The course, designed by Geoff and his colleague L. Wood, fo-
cuses on three real-life problems: the noise resulting from the vibrations of the cables of a
suspension bridge in Sidney, the design of a roller coaster amusement park ride called the
Tower of Terror, and the consequences of the blow-out of a pressurized door on an aircraft.

First, we construct a mathematical model for the problem at hand. This model usually
involves a differential equation whose solution is obtained by means of power series. Thus,
trigonometric and exponential functions first appear as power series. Since the values and
properties of these functions can easily be deduced from the series representation, this ap-
proach can help demystify the formulas associated with these functions.

In addition, our approach provides a fresh presentation of the concepts of calculus.
Continuity and differentiability are introduced by means of sequences and series. Thus, the
difficult notions of limits and convergence become meaningful and therefore more easily
understood. Integration is developed to provide solutions for certain differential equations.
This means that both numerical methods and integration techniques are introduced be-
cause they can be useful in trying to understand these solutions. Proofs need not always be
given, but, in order to maintain the mathematical integrity of calculus, all results should be
stated correctly.

FIGURE 2.
The Tower of Terror
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The problem-motivated approach is hands-on, so Mathematica is used to provide
numerical answers. Therefore, technology is used in a practical way and in a context in
which the answers have significant relevance for the students. Furthermore, the emphasis
placed on the ideas of convergence and error bounds prepares the students for many mod-
ern applications in computing.

Day 3: Conclusions

When asked to comment on the presentations, many of the participants admitted that they
had changed their perceptions of the role of technology in the classroom. The fact is that,
when the focus is taken away from the algebraic struggle experienced by many of our stu-
dents, there is more opportunity to challenge them with new ideas and concepts. Indeed,
the examples introduced in Sylvie’s presentation provide a good illustration of the ways in
which technology is changing the knowledge that can be transmitted in a freshman calculus
course. Moreover, the ability to easily do numerical computations means that we can be
more flexible in our approach to teaching calculus. Geoff’s presentation demonstrates the
possibilities when technology removes constraints and makes advanced material more ac-
cessible to students.

We spent most of the last day discussing how to get the most from technology. As a
result, we have highlighted two important issues that must be addressed in developing the
curriculum for a technology-based calculus course.

First, since we can nurture understanding only by ensuring the participation of the
student, we should use technology to promote “constructive learning.” To this end, we need
to design problems that can be explored easily, using the technology at hand, to generate
mathematical ideas. The following exercise, provided by one of the participants, illustrates
how high-school students can take advantage of dynamic software, such as Cabri-Geom-
etry, to explore the graphic, algebraic, and numerical representations of a simple task:

Initially, students are asked to graph the equation y = –2x + 8, and draw a rectangle so
that one of its vertexes lies at the origin of the coordinate system, and another touches the
graph of the equation. (Figure 3)

FIGURE 3 FIGURE 4

They are then asked to discuss a set of questions:

· How is a point on the line determined?
· Is there enough information to draw a rectangle with the required conditions?
· How many more rectangles can you draw with the same conditions?
· Show how you can calculate the area and perimeter of the rectangles. Explain how you

determined the information needed to calculate those areas.
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· How can you express the area and perimeter as a function of x?
· Draw a graph that corresponds to the area. Describe the behaviour of the graph in terms of

the side and area of the rectangle.
· Make a table for the area of various rectangles and their dimensions. Can you indicate

which rectangle has the largest area?
· What would happen to the area, if the vertex that lies on the line now rests on y = 2/x?

(Figure 4)

Second, as we try to adjust to the new technology, we must be careful to ensure that,
rather than throw away the traditional methods, we enrich them. The ability to think and
understand requires an open and flexible mind. Flexibility depends on familiarity with the
symbolic, visual, and numerical aspects of the material. These are, of course, manifestations
of the same thing, but they provide different perceptions, and thus facilitate understanding.
We need to see things in different ways, but we should not favour one representation over
another. That is, we must try to integrate and balance the different registers of representa-
tions.

At the beginning of the workshop, Gilbert made us all smile with his vision of the
classroom 10 years from now:

Each student would come to class equipped with a small device that could fit into a shirt
pocket. This computer-like device would unroll into a virtual screen that could respond
to a finger’s motion, and execute any of the advanced functions now available with Maple.

Our students can already acquire hand-held calculators capable of doing sophisticated sym-
bolic algebra, and powerful mathematical software packages are now available on their
home computers. The fact is that, while many of us might choose to question or criticize
such developments, it is unlikely that much can be done to prevent them.

The most important conclusion that has emerged from this workshop is that we need
to develop new course material to ensure that technology is used to construct knowledge
rather than simply provide short-cuts. To this end, much can be gained if we are willing to
combine the traditional and reform points of view.
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A Proof Ought to Explain: A Classroom Teacher-Researcher,
a Mathematics Educator, and Three Cohorts of Fifth Graders Seek

to Make Meaning of a Non-Obvious Algebraic Expression

Vicki Zack, St. George’s Elementary School, Montreal, Quebec
David A. Reid, Acadia University

This paper details one aspect of the collaboration between a classroom teacher and researcher
(Vicki) and a university mathematics educator and researcher (David) who have been work-
ing over a number of years (in particular 1995-1996, 1998-1999, 1999-2000) with Vicki’s fifth
grade students on a variant of the chessboard task, and on the inquiry which has arisen
therefrom. Vicki’s original challenge to her students was that they construct a general pro-
cedure, which some succeeded in doing. In the midst of seeking to encode the general pro-
cedure into an algebraic expression, the fifth graders were blocked; teacher and children
together bumped up against the realisation that they could not do so given the state of their
current knowledge. Reciprocal adult-child nudging and challenges were in evidence. Vicki
sought out and offered the students a ‘non-obvious expression’ which worked—
n(n + 1)(2n + 1) ÷ 6 (Anderson, 1996). The children, in 1996, in turn raised the bar: they saw
that it worked but asked why it worked as it did (Zack, 1997), a question Vicki could not
answer. The students’ challenge evoked a longstanding search, namely our (Vicki and
David’s) search for an explanation which made sense to fifth graders, in answer to their
need to understand why the non-obvious expression worked as it did.

The paper will deal for the most part with the ‘tri-tower pyramid’ proof presented by
David to two groups of fifth grade students in May 1999 and in May 2000, and with whether
it answered the question posed by the fifth grade cohort in 1996.

Establishing the context: The school and classroom setting, the task, and the trajec-
tory of the inquiry by adults and children

The school is private and non-denominational, with a population that is ethnically, reli-
giously and linguistically mixed. Most students come from English speaking, middle class
backgrounds. Non-routine problem solving is central to the mathematics curriculum at all
grade levels. The school and classroom learning site is one in which the children are ex-
pected to publicly express their thinking, and engage in mathematical practice character-
ized by conjecture, argument, and justification (Cobb, Wood, & Yackel, 1993, p. 98).

Mathematics is studied for 45 minutes each day (and twice a week extended to 90
minutes), and extended investigations of non-routine problems take up the entire lesson
three times a week. There are usually about 25 students enrolled in the class, but mathemat-
ics in done as a half class of 12 or 13. The students are grouped heterogeneously in groups of
four or five. When working on a problem they first work in twos and threes, then come
together in their groups to compare solutions, then report to the half-class. (Other episodes
and interpretations involving some of the same children can be found in Zack, 1997, 1999.)

The students were videotaped throughout their group and half-class discussions. In
addition, their written work in their “math logs” was photocopied, written responses to
questions focussed on particular aspects of their activity were collected, and they were in-
terviewed and videotaped reflecting on their past activity.
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The trajectory of this inquiry: Vicki nudges the children, and the children in turn nudge her

One part of this investigation, that of the search for a visual proof, originated in the first
CMESG meeting Vicki attended, in Halifax, in May 1996. In her working group Bill Higginson
asked the participants to think of an idea they wanted to share, and she chose to speak
about one of the 30-some non-routine problem-solving assignments she has assigned to her
students — namely a variant of the chessboard problem. However, she had never appreci-
ated the richness inherent in that task until she heard the responses of CMESG members,
among them, Bill Higginson, Harry White, and others. Due to the plenary address given by
Celia Hoyles that year on proof, Vicki began thinking about young children and their no-
tions of proof. Serendipity led her to select this task and present it at that CMESG working
group session that year, but her study of this mathematical task and of questions about
proving has since exploded into investigations into children’s notions of proof (Zack, 1997),
their use of everyday and mathematical language in their arguments about proving (Zack,
1999), and the linguistic coherence in the students’ arguments (Zack, 1998).

The task

The task and its extensions, Vicki’s own questions and personal confusion, and the children’s
challenges and questions, led us (Vicki and David) and the children to push forward in our
investigation in unanticipated but fruitful ways.

Here (Fig. 1) was the task as Vicki presented it to the class in the first year (May, 1994):

Find all the squares in the figure
on the left. Can you prove that
you have found them all?

FIGURE 1. The Count the Squares Problem

Vicki expanded the process each year, adding extensions in order to see whether and how
the children could see and generalize various patterns, primarily the sum of squares. The
problem evolved in terms of extended questions posed and class time spent from the first
year, 1994 (one 90-minute session) to the most recent, 1999 (three 90 minute sessions, then a
full week of interviews: children responding to segments of videotape featuring themselves
discussing the tasks and talking about some aspect of proving, discussions about proving
with small group of 2, 3, 4, to 6 people, then David presenting two visual proofs to small
and larger groups).

Originally, Vicki’s expectation was that some children might see the pattern of the
sum of the squares—and express their hypothesis that the pattern would continue, i.e., 12 +
22 + 32 + 42 + 52 + ... . Thus, if the children were able to generalize and say that the pattern
would continue thus, that was good enough; indeed she felt that was sufficient for fifth
graders. When she posed the “What if it were a 60 by 60 square?” question in 1996, what she
expected the children to say was that ‘the pattern just continues’. Vicki did not expect, nor
did she want, the children to work out the actual numerical answer. She even tried to stop
them from working it out. They ignored her. This unexpected development actually led to a
number of surprises. In one instance the interaction between the members of two teams
holding opposing positions about the answer to the 60 by 60 led to a discussion about prov-
ing, and prompted one of the teams to construct three counter-examples in order to try to
convince the other team that their position was untenable (Zack, 1997). In another instance,
rather than working with the numbers, thinking that there must of course be an ‘easier way’
than working through to the 60 by 60, a few children endeavored to construct an algebraic
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expression but came up empty (Alan and Keiichi in 1996, and Walt in 1999). Vicki was not
aware in 1995/6 that it was not possible for the children to derive an algebraic expression
for this generalization, and so this occurrence was a surprise for her as well. She was pushed
to seek out other sources, people as well as book sources.

Vicki was pleased to discover, and brought back to the children, the Johnston Ander-
son (1996) formula—n(n + 1)(2n + 1) ÷ 6—which Anderson himself called a ‘non-obvious
expression’. Her expectation was that she and the class would use it and see that it fit all of
the examples which the children had calculated concretely. That was good enough for Vicki
as she did not know why the expression worked; she only knew that it did. However, the
students raised the bar again; they wanted to know why it worked as it did (Zack, 1997).
They also wanted to know how anyone could come up with that expression. It did not fit
the kind of algebraic expression which some of them had been able to derive in other in-
stances, where there was a meaningful connection and transition between the concrete ex-
amples, and the general algebraic expression (Zack, 1995; Graves & Zack, 1996). Seeking an
explanation to bring back to the students, Vicki was told that fifth graders could not con-
struct or understand the mathematical approach to the construction of Anderson’s alge-
braic expression given the state of their current mathematical knowledge. It seemed at that
time a dead end. Thus, in 1997, the paper written for the PME conference of that year ended
with a list of the children’s emergent definitions of what they felt proof ought to be, among
them that the proof must make sense and that the person presenting it must say why it
works. When asked “What do you think of Johnston Anderson’s rule?”, the children re-
sponded that explanations and proofs should make sense. Ross, for example, said that
Anderson’s rule was “brilliant, but he should explain why it works.” Lew said that “if the
Johnston rule had evidence, if Johnston himself explained why it worked it would be more
convincing.” And Rina felt that Anderson’s expression was “a great way to figure out the
problem but it doesn’t make sense. . . . I think a mathematical proof is when you say why it
works and if it works for everything show why” (Zack, 1997, p. 297). Perhaps due to the in-
classroom emphasis on explaining oneself, the children pushed to know the whys, and hows.
Hanna has suggested that proofs which explain ought to be favoured above those which
merely prove (1995, p. 48). All but one of the fifth graders polled (of a total of 10 that year)
stated unequivocally that a proof ought to explain.

Their questions in turn pushed David and Vicki to embark on an investigation to find
an explanation, in response to the children’s need to know why. Over the next while (1996–
2000), David, building on his long-standing interest in proof (e.g., Reid, 1992, 1995, 1997,
1998) explored and deliberated, at times with others (Cf, e-mail communication with Tommy
Dreyfus), but most often alone. He decided on three possibilities and at various times showed
and discussed with the children one of three visual proofs, each meeting with some mea-
sure of success and a number of unanswered questions: See Figures 2, 3, 4.

FIGURE 2. The wrapping proof presented to small groups in November 1996

Having summarized what brought us to this point, the next part of this paper will deal
with the tri-tower visual proof presented in 1999 and 2000 (akin to Figure 3 and as shown in
the photos below), and a number of challenging ideas embedded therein (see the “tri-tower
proof,” below). We will also reflect upon whether David’s proof did or did not answer the
question posed by the students in 1996, namely that a proof ought to explain.
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FIGURE 3. Man-Keung Siu’s visual proof (from Nelsen, 1993, p. 77), the basis for the tri-
tower visual proof presented in 1999 and 2000

FIGURE 4. Martin Gardner and Dan Kalman’s visual proof (from Nelsen, 1993, p. 78), the
basis for the odd number visual proof presented to small groups in 1999 and 2000

David’s presentation of the tri-tower proof, presented in May 1999 and May 2000

Begin by representing the sum of the square num-
bers as a set of squares made from multi-link cubes:

These squares
are put to-
gether to make
a “pyramid”:

Two more
pyramids
are assem-
bled:

3(12 + 22 + ... + n2)  =  (2n + 1)(1 + 2 + ... + n)

12 + 22 + ... + n2  =  1/3 n (n + 1)(n + 1/2)

CMESG/GCEDM Proceedings 2000 • Topic Session
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The pyramids are put to-
gether with the aim of mak-
ing something as close to a
rectangular block as possible:

The block is then examined to see how many cubes are in each layer, and how many layers there are:

There are 4 and a half layers, each of which is 4 by 5. (Note that it is easy to
see that if pyramids of size 5 had been used the resulting block would be 1
larger in all three dimensions, because a 5 by 5 square would be added onto
the bottom of each size 4 pyramid.)

Finally note that three pyramids were used, so the number of cubes in one
pyramid is the number of cubes in the block, divided by 3:

The number of cubes in one pyramid is the same as the sum of the
square numbers, which establishes this formula (and because it is
easy to see how the same construction would be done with pyramids
of any size, the generalization of the formula is established as well).

For some students the connection between the two
formulae is clear. For others it isn’t but that doesn’t
undermine the formula derived in the explanation.

n(n + 1)(n + 1/2)   ?   n(n + 1)(2n + 1)
             3             

=
               6
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Crucial ideas

There are a number of crucial ideas (see Chart 1) that must be understood in order to under-
stand the explanation as a whole. Not all the children understood all these ideas, and those
that did understand them did not all understand them at the same time. Nonetheless, they
were able to attain partial understandings of the explanation that were good enough to
support their continuing engagement in the mathematical activity of the class.

CHART 1.
Crucial ideas that they might not understand but hold and wait for understanding.

1. To count squares you add 1 + 4 + 9 + 16 + … . These numbers are SQUARE
numbers in the sense of being N x N.

2. The NUMBER of blocks in a pyramid of height N is the SAME AS the NUMBER of
squares in a N x N grid (1 + 4 + 9 + … + N x N).

3. Assembling three pyramids always produces the same three dimensional ob-
ject. (Note: I used induction, Jackie does better in 9.1.)

4. One face of the object is made up of an entire NxN square, plus the edge of
another one, forming an N x (N + 1) rectangle.

5. The top layer contains HALF as many blocks as the other layer, which is the
same as a FULL layer of HALF blocks.

6. Arrays: That a three dimensional box is composed of AxBxC little cubes.
7. If you use three pyramids you have to divide by 3 later.
8. You can use a letter to stand for a variable in a formula.

Is this proving?

Did David’s visual proof answer the question posed by the students in 1996, namely that a
proof ought to explain? When working with the fifth graders in the May 2000 cohort, in the
discussion following the presentation the question was raised: Is this proving? The ques-
tion can be rephrased and then answered in a number of ways.

Did the children feel that it was a proof?

In the class of May 2000, nine students responded “No” to the question “Think of what David
did yesterday with the block towers. Was it proving?”, fifteen responded “Yes,” and three re-
sponded “Yes, partly”.  On the face of it this indicates that most of the children did feel that
the manipulation of the blocks and the accompanying commentary constituted proving or a
proof. It should be noted however that their reasons for feeling so varied widely, as did their
personal definitions of “proof” and “proving”.

Among those who responded “No” reasons included:

· He was just showing us a way that it worked but he didn’t prove that it worked.
· He wasn’t proving he was finding out the answer. (4 similar responses)
· I don’t think it was proving because we were not trying to prove the answer.
· It didn’t prove the answer was right.
· It’s a formula not a way to prove.

Among those who responded “Yes” reasons included:

· When he was using the blocks he showed evidence that his answer was correct. (2 similar
responses)

· Yes, it was proving because we got the answer for the 4 by 4 and for the 5 by 5. (3 similar
responses)

· Yes, it was proving because it was make a math sentence and show what I did. (2 similar
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responses)
· Yes, it was proving because he was showing us how you get all the squares. (3 similar re-

sponses)
· He showed us an easier way to do the problems and he proved that it works when we

tested it. Also he showed us why it worked.
· He showed how he did it and why it worked.
· He showed exactly what he was doing and because he explained why he was doing it.

The range of reasons for accepting or rejecting the argument using blocks as a proof
leave us in the situation of claiming that in some cases a child who accepted the argument as
a proof, in fact did not understand it to be a proof for the kinds of reasons we would like,
and so we might assert that it wasn’t a proof for that child. For example, the children who
said it was a proof because a couple of examples were shown (“Yes, it was proving because we
got the answer for the 4 by 4 and for the 5 by 5.”) seem only to have seen the argument as the
production of some empirical evidence, not as a generic example that could apply to any
number of squares. Similarly, those who emphasized the production of a formula (“Yes, it
was proving because it was make a math sentence”) seem also to have missed the point we
would have liked them to have understood.

This raises the question of what we feel is a proof. Our research, while focussed on the
children, tells us about ourselves. By considering that responses that do not fit our expecta-
tions we can identify some of those expectations, specifically that we expect a proof to be:

· General, applicable to all the elements in a family of specific statements.
· Explanatory, or at least demonstrating conclusively that something is the case.
· Reasoned, based on statements that are accepted and logically connected.

Would a mathematician accept the argument as a proof?

As with the children the answer depends on the mathematician you ask. Presumably, Man-
Keung Siu, creator of the visual proof on which the blocks demonstration was based, Roger
Nelsen, editor of the book in which it was found (Nelsen, 1993) and Phillip J. Davis (1993),
who asserts that such arguments should play a more significant role in mathematics educa-
tion, are three mathematicians who would call it a proof. But others might disagree.

Do we accept the argument as a proof?

Yes and no. In the abstract, it is a proof, but in practice it matters how the audience reacts. Is
a play a comedy if no one laughs, even if the author expected them to?
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Assessment for All

Leigh N. Wood & Geoffrey H. Smith
University of Technology, Sydney

Assessment is an area of mathematics education worth revisiting. Technology has moved
into the curriculum and into the working lives of mathematicians, adding extra dimensions
to mathematics. Questions about who should learn mathematics and what constitutes math-
ematics learning are evolving and changing. Flexibility and student choices are important
issues, particularly in post-secondary education. Our thesis is that flexible assessment is not
mandatory or essential to learning but that it should be considered as a component in the
overall design of the curriculum. The reasons for the use or non-use of flexible assessment
by lecturers are investigated by giving examples from a survey of academic teaching staff.

Flexible assessment is assessment that involves some kind of choice on the part of the
student. We will use assessment to mean assessment of the students’ learning in a subject;
that is the tasks that are graded. Flexible assessment may be associated with flexible deliv-
ery but may occur in conventional delivery. In this paper we are considering post-second-
ary education but the principles apply to other educational situation. There are many pub-
lications with examples of different assessment practices (Angelo & Cross, 1994), examples
of peer teaching (Houston & Lazenbatt, 1996, Houston, 1998), changing examination ques-
tions (Ball et al., 1998; Smith et al., 1996) and using language-teaching techniques in assess-
ment (Wood & Perrett, 1997). These do not directly address the issue of choice.

In general the more data you have about learning, the more accurate the assessment
of a student’s learning. However, what is achieved in accuracy costs significantly in lecturer
time. This is discussed in Angelo & Cross (1994). Another consideration with assessment is
the idea that “assessment drives learning” (Ramsden, 1992). Assessment forms a critical
part of a student’s learning, especially at tertiary level.

Technology has changed the learning of mathematics but is has also changed the ad-
ministration of assessment. It is possible to set up assignments and solutions on the Web
and keep in email contact with students. Students can submit assignments by email and so
on. It has become easier to keep track of large amounts of data from students. It is also easier
to communicate with students. New communications technology encourages flexibility.
Inviting students to participate in mathematics encourages active learning.

Calculating the amount of flexibility (adapted from Wood & Smith, 1999)

It is useful to have a tool to calculate the amount of flexibility of assessment in subjects or
over the whole curriculum. We have devised a table (Table 1) that enables the overall amount
of flexibility to be easily calculated by circling and adding the appropriate numbers. Low
totals indicate a large amount of student choice and high totals indicate little student choice.

Assessment parameters

There are a number of parameters that occur in any assessment scheme, and it is the amount
of choice that a student has in setting these parameters that contributes to the overall flex-
ibility of the scheme.



CMESG/GCEDM Proceedings 2000 • Topic Session

104

Components: Assessment is made up of a number of components. These could include
tests, assignments, projects and examinations. The lecturer may insist that the total assess-
ment consist of a certain minimum number of components.

Timing: Students may be able to negotiate the timing of submission of assignments or tests
within a semester or, occasionally, over a longer period of time. Generally assessment schemes
that involve a final examination will have constraints on the timing of the final examination.

Style: Students may be able to choose the style or format of the their assessment. They may
be able to write a report, write an essay, give a talk, produce a video or construct a poster
presentation.

Tools: Students may be able to choose which tools they are able to use to complete an as-
sessment task. This can include computer tools such as Mathematica, Maple, Minitab, SPSS,
Excel, library resources or Internet sites. Examinations and tests may be open book, restricted
open book, with or without calculator and so on. Practical considerations come into play
here. It may be impractical to have some students choosing open book and others choosing
closed book examinations.

Grouping: Students may work in groups. There are many possibilities here. There can be
student choice as to the number of people in a group, who is in the group and what roles
each person takes in a group. Students may be able to work alone if they prefer, or the
lecturer may insist on a minimum group size.

Weighting: There are many different ways of choosing the weight to give to each compo-
nent of assessment. Students may be given complete freedom to vary weights of various
components between 0% and 100%. Most lecturers would probably feel that this is too flex-
ible. There would almost certainly be some components of the assessment that a lecturer
feels are essential to meet the objectives of the subject, in which case some restrictions would
be imposed to ensure that these are adequately represented.

Content: Students may be given a choice of topics for projects, assignments and examina-
tions. Students may be able to choose from a range of topics or suggest a topic themselves.
Again a lecturer may choose to impose restrictions on the choice if he or she feels that cer-
tain topics are essential.

 Assessment Student 25% student Approx. half 25% assigned Lecturer
 Parameters chosen chosen student chosen assigned

 Components 1 2 3 4 5

 Timing 1 2 3 4 5

 Style 1 2 3 4 5

 Tools 1 2 3 4 5

 Grouping 1 2 3 4 5

 Weighting 1 2 3 4 5

 Content 1 2 3 4 5

 Marking 1 2 3 4 5

 Feedback 1 2 3 4 5

TABLE 1.  Calculation of degree of flexibility in assessment
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Marking: Students can be given a choice of who marks their work: their peers, self-mark-
ing, lecturer or a mixture of these modes. Again it may be necessary to have the whole
subject group decide on the marking mode and the lecturer may impose restrictions.

Feedback: Students may choose the form of feedback. Some may prefer written solutions,
others may prefer a 10-minute interview with the lecturer. Student feedback was one of the
areas that mathematics performed badly in graduate survey data. With our limited resources,
we need to look at effective ways of giving feedback on work and this may be different for
different students.

Survey on flexible learning

In 1999, lecturers at the University of Technology, Sydney were surveyed as to their use of
flexible assessment. The survey was optional and conducted using email. What emerged
was an interesting array of assessment procedures across the University.

Why do you use flexible assessment?

When asked why teaching staff use flexible assessment the answers fell into several catego-
ries. One common response was “Why not?” The quotes were categorized as to the lectur-
ers’ aim. Selected quotes from lecturers are compiled below with the teaching area in brack-
ets. You will notice only one from mathematics.

Flexible assessment allows for the student to show their achievement:

· I use flexible assessment to better meet the needs of students and to create an environment in which
a student’s final results are a reasonable reflection of their achievement of the objectives of the sub-
ject. (Mathematics)

· I believe one form of assessment does not suit all needs nor accurately reflect capabilities. (Law)

· Because not all forms of assessment suit all students. (Science)

· I use flexible assessment to allow students to respond in ways that will allow them to reach their
potential and gain learning experiences most meaningful to them. (Education)

Flexible assessment to cater for the family or work commitments of their students:

· It suits students’ needs and work/life commitments. (Education)

· Flexibility allows many students to successfully complete the subject who would otherwise fail it
due to work pressures, …family/personal problems etc. (Business)

Flexible assessment as a learning tool:

· To allow students to learn about scheduling their work to suit their requirements and other dead-
lines. (Computing)

· To enhance learning autonomy. (Education)

· It teaches students that along with rights (i.e. self-determination) there are responsibilities. They are
responsible for their own learning. It helps me move from the role of policeman and judge into a more
participatory role. It is much nicer to be a teacher. The outcomes for the student are in the end far
superior. I do not think they learn much more about the subject. However, they learn so much more
about themselves. (Business)

Flexible assessment to encourage higher learning:

· Because the work that students appear to put in it appears to be of a higher order than when the topic
is merely given to them. (Law)
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· It gives students ownership and control over their learning path. (Education)

Flexible assessment to cater for different abilities:

· To allow an extension or challenge additional assessment. (Business)

· To be fair to students.… I want to provide multiple opportunities for triers. (Computing)

· To make learning relevant to each individual. (Nursing)

· To allow for different competencies (e.g., some like IT, some do not). (Business)

· It allows students with different levels of background preparation to reach the objectives of the sub-
ject at their own pace. (Computing)

Flexible assessment encourages interest:

· There is more commitment to learning. (Computing)

· I think that this encourages student interest in the subject … are able to pursue special interests.
(Law)

· Students enjoy it. (Law)

Has it been successful? Are there any problems? How have students reacted?

The overwhelming response from lecturers was that the flexible assessment was a success.
They backed up their assertions with positive student surveys. These lecturers were, how-
ever, the group who used flexible assessment regularly.

Flexible assessment has some problems and lecturers have refined their assessment
over the years. One of the particular problems is to communicate the different assessment
scheme to the students many of whom have never had choice before in their learning. Typi-
cal quotes are: “It has been successful but hard work”, “It does take a lot of explanation at
the start of the semester, especially to some students”, “At the start of the year, the students
have doubts about the system, but they soon adapt ….”

Other problems can occur if the lecturer is the only one with a flexible approach “be-
cause my subject is the only flexible subject that students are doing at the time, some stu-
dents let it slip.” Also one lecturer of a class of 300 found that only 90 chose different assess-
ment, the rest chose a default mode.

A few students react badly to choice: “some students feel that they are unfairly treated
by choice” and “some students take too long to decide what options to take, or decide that
… another choice would be easier,” and so on. A few staff and students believed that all
students should have the same assessment otherwise it is unfair.

Why are you not using flexible assessment?

There were many reasons.

1. Numbers. Many lecturers felt that flexible assessment would be too difficult with large
classes and had generally only used it with smaller groups.

2. Equity. Different students doing different tasks can be considered unfair. It is noticeable
that lecturers in computing, engineering and sciences believe this more than humanities
and social science lecturers.

3. Maturity. Flexible assessment is much more common in senior years and postgraduate
study.

4. Administration. For some lecturers the administration difficulties of keeping track of
students following different assessment patterns have proved a major deterrent.

5. Learning. Lecturers who had a defined area of content that they wanted the students to
master generally did not use flexible assessment.
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Conclusion

Lecturers and students are using flexible assessment for many reasons. Positive student
surveys showed that students responded well to the use of flexible assessment. However,
lecturers were selective in its use. Giving students choice in their assessment requires matu-
rity and self-knowledge of their learning style. As students progress through their degree
programs, greater flexibility in assessment can be implemented. Initially, students require
some support to assist their transition to university. Too much choice at the early stages can
be difficult to communicate.

As we consider the invitation to participate in mathematics learning, flexible assess-
ment can promote participation and active learning. From the survey results, it appears that
mathematics lecturers rarely use flexible assessment. Perhaps it is time to experiment.
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Mathematics—By Invitation Only

Ralph T. Mason
University of Manitoba

Why should students do their math? Why should they learn it? Perhaps on one level, these
questions don’t matter: if they do it, if they learn it, then surely why they do so is not signifi-
cant. However, as students do their math, as they learn it, the intentions which bring them to
mathematics are going to shape their engagement with it. Their engagement, in turn, shapes
the nature of their experience. And the nature of their experience will determine what they
think math is. For instance, if a student does her math because she believes that good marks
in math are essential to getting to university, then she will believe in mathematics as long as
it serves as a means to the end with which she links it. If a student does his math because he
is forced to do so, by either threats of consequences if he does not or promises of rewards if
he does, he will see mathematics as a tool of power, relevant only to the extent that the
structure (often, the school as institution) holds power of relevance to the student.

Could students develop reasons for doing mathematics, reasons for learning math-
ematics, which are related to the qualities of mathematics that we as mathematicians value?
Could the beauty of mathematics or the joy of mathematics or the power of mathematics be
why students learn math? Alternatively, or perhaps supplementally, could the reasons stu-
dents do math be for the values they hold for the processes of doing them—the interactions,
the activities, the progress that can be inherent to mathematics? This paper explores the
possibility of answering these questions in the affirmative. If students can be brought to
mathematics without promise of reward or threat of diminished opportunity, could math-
ematics be seen as worth doing, in itself and for itself?

The Siren Call of Mathematical Thinking

Here is some inviting mathematics. In figure one below, you see a hundreds board. It is
most often seen in elementary classrooms, used when a sequential list of numbers orga-
nized into rows of ten can help students engage with a concept. (It is also seen behind the
Snakes and Ladders in the popular board game, although the orientation is different.) This
activity, however, is more appropriate for middle-years students: it involves thinking within
the context of divisibility, but its mathematical content lends itself well to algebraic nota-
tions, thus offering a context in which variables can be used by the students to express their
conjectures and rationales. But I am ahead of myself—I have not yet offered you an invita-
tion.

Beside the hundreds board (Figure 1, next page) you see some pentominoes (Figure 2),
arrangements of five squares. Select one, and cover any five cells of the hundreds board
with it. When you add up the five numbers, the total might or might not be divisible by five.
If it doesn’t divide by five, I don’t know what your total’s remainder might be. However, I
do know that if you move the pentomino to cover a different five numbers, you will get
exactly the same divisibility. How about that?

I find that students are usually reluctant to add up their five numbers. I invite them to
be as lazy as possible about it. Instead of adding up the five numbers, what if they just pick
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a key cell (I have marked a suggestion on some of the pentominoes), and multiply it by five?
They might be off by a little, but they can adjust appropriately. For instance, the first pent, if
we multiplied the K value by five, would be quite close. The top cell is actually ten less than the
key cell, but below the key cell is one that is ten more. The right cell is one more, and the
final cell is nine more. So we’d just have to add ten to the results of keycell times five, to get the
actual total. And hey, that pentomino (in that orientation) is always divisible by five. The
total is always ten more than five times the key cell, and it’s always divisible by five. Is there a
relationship between the two ideas? Let’s try another pentomino—or see what happens if
we use the same one and change orientations. (A partial answer may be invitational for
some readers: Of the four pentominoes in the positions given below, three will always yield
a total divisible by five, and the other will always have a remainder of two. However, three
of the four will change their divisibility if rotated. There are eight pentominoes not shown.)

If we recognize that we could encourage students to engage in this mathematics with-
out coersion or compulsion, what is it that can be the reason for that engagement? It could
be that they are being compliant, or obedient, or perhaps they are responding to the teacher’s
appealing personality. There are surface-appeal features, including the chance to do some
easy examples and some easy arithmetic as a first step. However, there is clearly something
more than simple arithmetic with weirdly shaped pieces, luring students into deeper en-
gagement. Beyond the introductory arithmetic, there is room for curiosity, an opportunity
to wonder, and a chance for intellectual attainment. In other words, it is the math in the
activity that is likely to form the greatest source of reward for the participants. The activity
invites people into the math which is, in its turn, rewarding.

Invitational Packaging

My teacher-education students are often concerned about making their lessons appealing
to students. Two ideas tend to predominate: one, the content must be embedded in contexts
which the students will value, such as an application (buying a car) or an interesting format
(making a poster advertising bank loans); two packaging the math content in a game. For
instance, before a test they might suggest dividing their class into three teams and asking
review questions, using a Jeopardy approach. Because the game is fun, perhaps the stu-
dents will see the math as fun, too. At least they won’t find it unpalatable. In a single period
of review, the only math is perhaps 30 short-answer one-right-answer questions. The math
to which the game invites the students is narrow and constricting, and, in reality, not even
mathematical in nature. The invitational packaging diminishes the overall package, and an
appealing invitation draws students toward an activity without the mathematical qualities
that might sustain interest.atical qualities that might sustain interest.

      FIGURE 1.  Hundreds Board FIGURE 2.  Some Pentominoes
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A game can, however, be an invitation to mathematics. In other words, a game can be
a way to draw people toward meaningful and rewarding mathematical thinking (pattern
noticing, analysis, justification). For instance, the game of Nim can be such an invitation:
Two persons face a pile of toothpicks: perhaps there are 18. Each person takes one, two, or
three toothpicks in their turn. Whoever takes the last one loses. Who should win?

     / / / / / / / / / / / / / / / / / /
The game as outlined may be enough of an invitation. However, we want all to engage, and
we want them all to engage mathematically rather than just socially or competitively or em-
pirically. (This last word points toward the finding of good strategies by building an exten-
sive set of examples, rather than by using a few examples to enable the learner to identify
structures which can be analyzed.) We are likely to need to help some students to find a
place to begin to notice patterns. For them, some hints can lead them to focus on the end-
game, the part of the game when there are only a few toothpicks left. We may have to help
some students see a cycle of two turns as an element that can be considered: helping them to
see that a cycle of two turns has a maximum and a minimum change could help, without
giving away the opportunity to discover the ideal cycle. We may have to help all students
find ways to express the patterns they find (maybe even ways that use mathematical nota-
tions, or at least the logical language of if-then). And we may have to invite students to
extend the mathematics by adapting the game slightly, and thus having at their disposal an
extended playground for analysis and generalization. In other words, we must do more
than invite people to our mathematical game—we will have to play host to ensure all our
guests feel the pleasure of addressing an intellectual challenge.

Planning the Party

It’s bad form to invite people to a party, and then not have anything rewarding planned for
them to do. If you do plan some rewarding activities for guests, they are more likely to
accept your next invitation. What does that mean to invitational mathematics teaching?
Here is an example.

Imagine students dealing with the following questions:

a) 0.355 divided by 2 = ___
b) 2.0 divided by 0.355 = ___
c) Dividing makes smaller, so of course the answer to question A is less than the original

0.355. However, the answer to question B is more than the original 2.0! How is that?

We all know that question C above is much harder than the previous questions. In fact,
it is seldom asked of students, to see what they understand about division of decimals. Yet,
it’s in the third question that more than arithmetic takes place: the structure of numbers and
of the operation of division is open for analysis, pattern-noticing, and communicating. In
other words, the only thing really worth inviting students to engage with is in question C.
We need to make the first elements more inviting by making them both more appealing and
more valuable. Let’s begin again. Pretend you can go to the fridge or the convenience store
for some supplies.

a) Here’s a can of pop, and two glasses. How much pop can go in each glass? (The pop-can
says that it holds 355 ml.)

b) Here’s a two-litre bottle of pop. That’s two thousand ml. How many of these pop-cans
could we fill with that pop?

c) Answer the two questions again, but use litres (that means decimal numbers).
d) The answer to question B is between 6 and 7, whether we use ml or litres. Can you

explain why?
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e) How does the answer to question B (between 6 and 7) compare in meaning to the first
value (2) in the question?

There is more going on here than context providing interesting packaging for some
arithmetic questions. The invitation begins with mathematics that is both accessible and
meaningful for all the students. Even a person weak in arithmetic could perform the tan-
gible and/or image-based acts of pouring and counting/measuring. Then, when the math-
ematics includes some arithmetic that is typically less success-based, the students still have
ways to check the correctness of their answers. They can compare to their mental images of
the objects (and actions on those objects) to check the sense of their answers, and they can
compare to the answers they developed in the preliminary questions. Finally, they will have
a variety of ways of addressing each of the final questions, all of which will enable them to
make and express personal versions of the meanings of the experience. It is math that they
can all learn (especially at the beginning), and it is math that is (eventually) complicated
enough that they can all be glad they learned. With invitational mathematics, we can attract
more students toward mathematics—and it’s more mathematics. In fact, it has to be more
mathematics, for it is the quality of the mathematics on which we are relying.

Inviting the Reluctant Guest

Readers may well be asking, “Can it work in high school?” There are some advantages built
in to high school math for anyone taking an invitational approach. For instance, I believe
that the mathematics of high school is already potentially richer, potentially more reward-
ing as intellectual challenge. However, an invitational approach will have some reluctant
students to invite: students constrained by their presumptions that math is hard, perhaps
too hard for them. Considerations of invitational mathematics at the high school level may
also be constrained by the effectiveness of marks and credentials with high school students,
and the readiness of teachers and students alike to accept that math need not succeed with
all students. Is invitational math feasible in high school?

Here is an example. It suggests that invitational math may need different packaging,
different starting points, and different kinds of values to students when those students are
in high school or beyond. For a topic, let us consider exponential functions. Whether it is
taught to feature an exponential formula or a recursive sequence or both, it is often done
with the real-life applications of compound interest for a mortgage or new car loan or in-
vestments of $10 000, or else with radioactive decay. The contexts make it apparent that the
arithmetic of the topic is applied to important aspects of adult life. But does adult life inter-
est all our students? And is the math behind the exponential formula or the spreadsheet
recursion accessible in those contexts, or rewarding to come to understand? The answers
are no and maybe. Is there a more invitational alternative? Perhaps there is. What if we used
examples that enabled our students to question their own status, and framed it in ways that
engaged them with the mathematics behind the arithmetic? Below is an example, rewriting
a 5% radioactive decay example.

In Manitoba, 84% of students graduate from high school, but fewer than half of those
students get university-entrance mathematics qualifications. In the spreadsheet be-
low, there is a list of steps along the journey toward mathematics success in high school.
The numbers pretend that there is a 5% loss at each stage of the journey. You have one
question, and two jobs:

1. Why do nine stages each removing 5% of the population NOT remove 45% total?
Try a 10% decay—nine stages won’t create a 90% loss.

2. Change the rate of decay to get a more realistic final success rate.
3. Say something important about one of the steps in the decay you see as more sig-

nificant than others.
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rate of decay per stage =    5%
original population = 100

dropped out before grade 10 survivors =  95
entered a non-academic math stream in grade 10  90
dropped out during or after grade 10  86
failed, or dropped to a non-academic stream for grade 11  81
dropped out during or after grade 11  77
failed, or dropped to a non-academic stream for grade 12  74
dropped out during 12 or were talked out of writing the final exam  70
failed the grade 12 exam  66
passed the grade 12 exam, but had less than a university level mark  63

I hope this example suggests that the mathematics of high school continues to be worth
understanding, not just learning by practice and application. It is also possible to package it
in contexts that bring its potential as a thinking tool into topics of relevance to the learners.
It remains to be seen to what extent this possibility could apply to all higher-level math—
but the possibility may not be available to us if we continue to engage students through our
institutional authority.

Mathematics—An Open Invitation

Imagine a student trying to remember his divisibility rules for 6 and 9. Is she going to be
able to tell if she has remembered well? She could, of course, test her recall with some ex-
amples. But divisibility is only one or two questions on the test. It might not be worthwhile
to make sure she has it right. For some, of course, marks matter enough that they will not
miss such a detail in their last-minute studying. The invitation to do well on math tests by
cramming the details back into short-term memory is one that only a portion of the students
accept. It is sad, in my opinion, that many teachers too accept that only a portion of students
will remember such details as divisibility, and fewer still will understand them, and fewer
yet again (shades of radioactive decay!) will enjoy engaging with them.

Could a specific topic such as divisibility by 6 and by 9 be made inviting to all the
students?  We know that failure or risk of failure prevents some students from engaging.
Could success, and expectation of success, cause those students to engage? Surely that could
only be so, if the success was real, and meaningful, and well-earned. How could that be
accomplished, with a narrow mathematical topic such as divisibility?

Let us start with what students of divisibility can already do. They probably can’t all
divide (not accurately). They probably can’t all think multiplicatively—the additive context
of skip-counting may be the closest they can come. Let’s begin there. On the same hundreds
board used above, we could have students skip count by twos. They would put red tiles on
2, 4, 6, and 8, and so on. What if they were told to skip-count by threes? If they do it right,
they will put green tiles on 3, 6, 9, and 12, and so on. With help the students will see that the
skip-counting numbers for 2 or 3 are the multiples of 2 or 3, and the multiples of 2 or 3 are
divisible by 2 or 3. The students will also see that some numbers have both red and green
tiles. They can make a connection between divisibility by six and divisibility by both two
and three. We could then ask them to check out (with different results) skip counting by
twos and by fives, or by threes and fours, or by threes and sixes. Each example gives them
the chance to think, to see and express patterns—in other words, to succeed and accomplish
the natural reward of doing so.

What about skip-counting by nines? Could we just get at the rule for divisibility by 9
by laying tiles on the nines numbers? It’s probably worth doing, but it doesn’t get the stu-
dents too close to the rule. For that, we might have to teach them more directly. Can we get
them to see why the remainder when 8000 or 800 or 80 is divided by 9 is always 8, or why
the remainder when 3000 or 300 or 30 is divided by 9 is always 3? That’s not hard: for 1000
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or 100 or 10 we always seem to miss by one. We can divide 999 or 99 or 9 by 9 without
remainder, so for 1000 or 100 or 10 we miss by one. A good teacher will know when suffi-
cient examples and discussion of examples have developed that idea. Then it will be time to
move on: If we have many thousands or hundreds or tens to divide by nine, we’ll miss by
one (have a remaining single) for every single one of them. So all we have to do is keep track
of how many singles we’ll have left. For instance, 4320 would have 4 left over from the 4000
divided by 9 (remember there are 4 groups of 999 there), and 3 left over from the 300 di-
vided by nine, and 2 left over from 20 divided by 9. Aha—we have enough left-over singles
to make another group of nine. How many slow-motion examples such as this will learners
need? Good teachers know how to find that out, as they teach. The rule for divisibility by
nine can be built by students from guided engagement with examples and by making sense
of those examples.

What does all this mean? One, I am suggesting that mathematical ideas can be pre-
sented in rich visual ways, ways that often enable students to connect the new ideas to the
prior areas of competence which all students in a grade-level have. In this case, skip-count-
ing was a connection from counting to divisibility. Two, I am suggesting that mathematical
ideas can be taught as being sensible, with reasons for rules, reasons that can be built from
examples with guidance. Making sense of complex ideas is rewarding enough to make stu-
dents want to come back for more.

However, there is a deeper idea at play here. Where will teaching ideas like the above
divisibility lesson ideas come from? They will come from people who believe that math is in
itself worth learning—sensible, rich and rewarding. They will come from such people search-
ing for ways to make that same math accessible and attractive to many more students than
now have successful access. In other words, it will come from people who believe in math-
ematics as something that can be taught by invitation only.

Note

This paper is a synopsis of a fuller presentation. The examples that are used here are only those
which can be presented in the less interpersonal form of printed proceedings.
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Math Central:
An Internet Service for Teachers and Students

Mhairi (Vi) Maeers & Harley Weston
University of Regina

In the summer of 1995 Denis Hanson, Vi Maeers and Harley Weston of the University of
Regina began work at the University of Regina on an Internet service for people involved in
mathematics education from Kindergarten to Grade 12. This service is called Math Central,
and it went on the net in September of 1995. Funding was subsequently obtained from the
University of Regina, the Provincial Department of Education, and SchoolNet. Math Cen-
tral was moved to its present site in the summer of 1996, http://MathCentral.uregina.ca/.

In the period 1994-1995 the Province of Saskatchewan was just beginning to imple-
ment a new mathematics curriculum which uses a problem solving, resource-based ap-
proach. In implementing this curriculum teachers were faced with the challenge of finding
accessible and suitable resources. It was our intention that Math Central be a source of teach-
ing materials and aid for teachers in the implementation of the new curriculum.

There were three initial objectives of this project: to devise a vehicle for teachers, and
student teachers to share resources and discuss concerns, to give students a way to demon-
strate to teachers some potential uses of this Internet/communications technology through
a service that is a direct aid to their day-to-day teaching and lesson planning.

Since its inception in 1995 the usage patterns of Math Central have changed substan-
tially. At the moment approximately 2% of the hits come from Saskatchewan, 10% from
Canada, 80% from the USA and 5% from other places primarily France, Australia and the
United Kingdom.

Services

Math Central has four main services, The Resource Room, Quandaries and Queries, Teacher
Talk and The Bulletin Board.

The Resource Room

The Resource Room is a facility where mathematics educators can store and retrieve re-
sources on mathematics and the teaching of mathematics. It is a place where teachers can
share notes, ideas, lesson plans, or any other resource on the teaching of mathematics.

The resources are categorized in a database by level—elementary, middle or second-
ary, and then by curriculum strand. A user can browse using these categories or search by
keyword, author, or title. In the database are resources written by teachers, preservice teach-
ers, and university faculty as well as links to teaching materials maintained by Statistics
Canada.

For example browsing at the middle level in the Numbers and Operations strand you
find, among others, a resource called Operations Activities by Debbie Penner, a teacher in Regina.
Two of the resources that are found by searching for the keyword geometry are Tantalizing
Tessellations, written by three University of Regina students and Allison’s Star Balls, an origami
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activity that will be familiar to anyone who attended the CMESG Annual Meeting in 1999 at
Brock University.

The Resource Room also has a mathematics glossary at the middle level in English
and at the elementary and middle levels in French.

Quandaries and Queries

Quandaries and Queries is a question and answer service. Mathematics questions sent to
Quandaries and Queries are automatically forwarded to a group of teachers and university
faculty called the Quandaries and Queries consultants. Input from the consultants is then
formulated into a response which is returned to the poser of the question. As in the Re-
source Room the questions and answers are stored in a database that can be searched by
keyword, author, or title. Questions come from students, teachers, parents, grandparents,
business people, researchers, … and range from difficulties with elementary number facts

I’m in a 5th grade class, please explain what whole numbers are ...

to stimulating mathematical questions

A man goes out in time between 5 and 6 and when he comes back he observes that two hands
have interchanged position. Find when the man did go out?

to, at times, questions from the corporate world

I have a roll of paper, wrapped around a corrugate core, whose diameter is 10.750 in. The outer
diameter of the roll is approx. 60 in. The thickness of the paper is .014 in. I am trying to find out how
much linear feet of paper is left on the roll, given only the diameter of paper remaining on the core.

The Bulletin Board

This is Math Central’s information board. Our intention here is to provide a link to the
mathematics teachers’ organizations and conferences in the various provinces and territo-
ries in Canada, and to online newsletters and periodicals of interest to mathematics teach-
ers and students.

Teacher Talk

Teacher Talk is an electronic mailing list for mathematics teachers. It provides a facility for an
open discussion on mathematics education, with the topics as varied as the participants wish.

Survey

Prior to the survey being posted on Math Central we had many discussions with colleagues
about the learning curve in learning about technology to learning with technology—to being
able to use technology in interesting, thoughtful and appropriate ways in the mathematics
teaching/learning environment. The rapid rise of the use of the Internet, both as a source of
information for teachers and students and as a learning tool in the classroom, has given rise
to questions concerning its use. We recognized that a current argument in relation to technol-
ogy is in regard to what it can offer a learner—can it raise achievement in mathematics (as
evidenced by mathematics test scores)? We felt from our own experience that interactive
web-based technology can enhance mathematics learning and achievement—depending on
how it is used, by whom, in what context, and that web resources in the hands of an effective
teacher can indeed become effective learning resources. Beliefs about teaching and learning
and common classroom teaching practices emerging from these beliefs and from learning
theory influence the manner in which any resource is used in a classroom, in this case web-
based resources. Web-based technology used as a tool or as a resource in a constructivist
classroom would look quite different from technology used in a traditional classroom, both
in the type of technology used and in how it was used. We wanted to determine how teach-
ers were using the web, in particular Math Central. Thus, in the Fall of 1998 a questionnaire
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was posted on Math Central in an attempt to answer some of these questions. The purposes
of this survey were to determine how the resources on Math Central were being used, to
explore the connection between web resources and understanding/achievement, to find what
type of resources were being sought and how they were used, and to ask the participants if
they believe that web resources can make a difference to math achievement.

In total 159 people responded to the survey within a specified time frame, resulting in
142 usable responses. Responding to the survey were 86 teachers, 24 preservice teachers, 13
parents, and 21 other. Some of the qualitative responses are recorded below (original ques-
tions are in italics), followed by an explanation:

What is an example of something you have found on Math Central which you have used in some
way in your teaching or learning?

Has this resource extended the mathematical understanding or mathematical achievement of your
students? [yes/no/no opinion/explain]

· Problem solving—makes students think
· Other URLs—new ways to present mathematics topics to students
· New resources—extends teaching ideas and teacher understanding on a concept
· Specific resources (e.g., Tessellations)—new language, new ideas for activities, help visu-

alize
· Various—helped students understand concepts

Responses to this part of the survey focused on (a) understanding of concepts (teacher and
student); (b) enabling thinking; (c) finding new teaching methods/ideas.

What kind of material are you looking for?: A: The teacher

· Lesson plans
· Classroom-ready activities (e.g., worksheets)
· Problems
· Background on mathematics topics
· Software freeware
· Other websites
· Specific topic resource (e.g., Tessellations)
· Creative/unusual materials

What kind of material are you looking for?: B: The Preservice Teacher

· Lesson plans
· Hands-on (fun) activities
· Help with my coursework (e.g., background on mathematics topics; ideas for assignments)
· Material related to Pan Canadian Framework
· Specific topic resource (e.g., Tessellations)

The following chart illustrates how teachers and preservice teachers use the Math Central
web resources:

Teacher Preservice Teacher

Long Range Plans 43  4
Daily Planning 54  8
Interactive Resource 61 12
Assessment 25  5
Other  3  1

Total 86 24
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Can the world wide web make a difference in teaching and learning in mathematics?

· Increase interest and motivation in learning mathematics—creates active learners
· Comparison (with other countries)
· Instant and current results (e.g., Stats)—good source of information; also currency of teach-

ing approaches & classroom-tested activities
· People who are excited about math put exciting things on the web!!
· Extension of teaching
· The web enables sharing of teachers’ and of students’ work (so that others can benefit)
· The web is a place to go to to find answers (e.g., Quandaries & Queries) or to talk to other

teachers (e.g., Teacher talk)
· Enables students to work more independently and creatively
· The web (math sites) is like a math lab outside the classroom—an alternative learning/

teaching tool
· A great resource for special education
· Enables access to a great variety of material
· Need to be web literate (i.e., how to search, what you’re looking for & how to evaluate)

A summary of the views that respondents had towards the impact of the web on teaching
and learning mathematics are:

· Helps understanding
· Promotes interest/motivation in learning
· Provides current, easily-accessible resources
· Access of material for remote areas and special teaching situations
· Fosters sharing of ideas/questions
· Fosters creativity & independent learning
· Need to be web-literate and have good search/retrieval skills

There is no evidence to claim a direct link between the use of web resources and mathemat-
ics achievement (as indicated by test scores). But we can conclude, based on the results of
this study that:

· Web-based technology engages students’ interest and provides the occasion for learning
(mathematics)

· Teachers who use web resources (appropriately) in teaching may well provide a rich learn-
ing environment for students

· Good teaching is just that—good teaching; good teachers who use web resources use them
effectively.

Our Final Thoughts

Some teachers tend to focus ON technology, as an object which can perform miracles in
teaching and learning (mathematics)—just because it’s there. Technology, especially com-
puter-related technology (and more specifically web-based technology) is only as effective
as the user (teacher or learner). Different choices are made regarding which form/type of
technology to use for which purpose by teachers who hold different ideologies about teach-
ing. Technology is NOT the problem. Blame should not be cast ON technology, nor should
claims be made FOR or OF technology. People who teach mathematics should first ask the
mathematics curriculum question (what mathematics needs to be taught/learned and by
whom?) and then use the best resource to enhance learning of that question. That resource
may or may not involve technology. If technology is to be used we reckon it should be used
to develop higher-order thinking; it should not shut down thinking, but offer learners a
way to learn mathematics differently, or a new way to learn old mathematics, or to make
possible the learning of an abstract concept which would be impossible or close to impos-
sible without it. We claim that technology should be used appropriately in careful, thought-
ful, child-centred, and curriculum-driven ways.
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Technology is ever present in transformative ways. J.S. Brown writes in “Growing up
Digital: How the Web Changes Work, Education, and the Ways People Learn” (Change,
March/April 2000) that . . . “the world wide web will be a transformative medium, as im-
portant as electricity.”  We need to spend time understanding how technology can liberate,
not how it can inhibit. We need to understand the flexibility technology offers and the dis-
tributed nature of how learning occurs. We need to understand how to create knowledge
communities that were simply not available to the learner before. We need to participate in
the technology revolution whether we like it or not.”

We invite you to explore Math Central and we invite you to think about how you use
technology in teaching mathematics. If concrete manipulatives can offer learners a rich hands-
on environment and enable them to learn mathematical concepts, then can technology pro-
vide a better medium for the exploration of mathematical ideas?
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Mathematical Conversations within the Practice of Mathematics

Lynn Gordon Calvert
University of Alberta

Introduction

Mathematical Conversations within the Practice of Mathematics is offered as a means to question
underlying assumptions and broaden current perceptions of practice and discourse in math-
ematics education. The focus of this dissertation is to explore the place for conversation
within the practice of mathematics.  However, accepting a discourse of mathematical con-
versation requires alternate images of practice, intelligent action, acceptable explanation,
and of the nature of mathematics. This work begins to shape these alternate images while
describing and interpreting mathematical conversations within the whole of doing and com-
ing to know mathematics with others.

Our reasons, as teachers, for becoming aware of alternative discourses and legitimate
practices are not because we are striving to find a discourse that eventually ‘works’ or a
practice which prescribes what we should do as educators. Rather, questioning our assump-
tions about how mathematical knowing is generated and accepted by the discipline is es-
sential for revealing the nature of mathematical knowing and understanding how these
assumptions have been woven into classroom practice.

Mathematical Conversations attempts to build on recent reforms in mathematics educa-
tion by pushing the present boundaries of mathematical practice and interaction. Readers
are invited to enter into conversation with the text, to question their own assumptions and
expectations regarding discourse and practice, the nature of mathematics, and mathematics
teaching and learning. It is hoped that by doing so, we can continue the conversation about
mathematical discourse and practice as it occurs in our classrooms.

Mathematical Discourse and Practice

In recent years discourse and language have become a major focus in mathematics educa-
tion research. This focus is consistent with a current sociocultural emphases in educational
research which attends to how discourse and language are cultural and cognitive mediators
of learning (Hicks, 1996a). Our current reform image of mathematics instruction has been
derived from references to disciplinary practices and has emphasized a discourse of argu-
mentation.  For instance, teachers are asked to promote classroom discourse in which stu-
dents “initiate problems and questions,” “make conjectures and present solutions,” “try to
convince themselves and one another of the validity of particular representations, solu-
tions, conjectures, and answers” and “rely on mathematical evidence and argument to de-
termine validity” (NCTM, 1991, p. 45). These statements reveal the extent to which current
reforms promote mathematics as a practice of problem solving and as a discourse of argu-
ment.

One of the difficulties of a problem solving perspective that is revealed in this work is
that the goal for problem solving, as it was for drill and practice exercises, remains on com-
pleting tasks as quickly and as efficiently as possible so that the students can be ‘released’
from their relationship with the mathematics. I question whether it is wise or sufficient to
equate mathematics or mathematical practice solely with problem solving. I also wonder
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whether there are other forms of legitimate practice that may encourage students to main-
tain their relationship with the mathematics. However, for an alternative practice to be ac-
cepted it must be viewed as appropriate and intelligent by persons in the mathematical
community.

Similarly, argumentation brings with it a set of assumptions that reveal underlying
societal beliefs and values. Western Culture appears to have created a deep-seated connec-
tion between argumentation and knowledge acquisition. This is particularly true in the field
of mathematics. Mathematics generally emphasizes a methodology of doubt which is con-
gruent with an argumentative discourse in mathematics education. An argumentative ap-
proach is based on convincing the other of the correctness of one’s thinking. This continues
to be a source of difficulty in mathematics learning as the image of mathematics is often
presented as step-by-step, linear and error-free. As a result, students are often left with the
impression that mathematics arises from one’s mind in a finished and polished form; errors,
tangents and uncertainty are thought not to occur if one is a knowledgeable mathematician.
The lack of acknowledgement of narrative aspects and experiential ways of engaging in
mathematical activity have upheld the mystery surrounding mathematics inquiry.

Conversation is explored in this work as a possible alternative mode of discourse which
recognizes more formative aspects of mathematical reasoning. However, conversation and
doing mathematics may be viewed by many people as incompatible activities. Doing math-
ematics is often perceived as independent, linear and goal-directed behaviour, while a con-
versation rarely proceeds in a linear progressive manner with clear direction and purpose.
Its character is more circular, weaving its way around and through the topic at hand (Smith,
1991). The participants themselves do not know where they are going or even what they are
talking about in some absolute sense. Throughout this work there is a question as to whether
the activities within a mathematical conversation would be viewed by the community as
acceptable mathematics.

Theoretical Framework
Conversation is not defined here as simply a verbal exchange or informal talk. Instead,
conversation is viewed as our primary mode of being and interacting in the world. The
theoretical framework for this research is based on an enactivist perspective. Enactivism is
a theory of knowing based primarily on the work of biologists Maturana and Varela
(Maturana & Varela, 1987; Varela, Thompson & Rosch, 1991). It interrelates contemporary
cognitive science with philosophy, psychology, and ecological perspectives. The enactivist
framework presented here also draws on Gadamer’s ‘philosophical hermeneutics’ (Gadamer,
1989) and Bakhtin’s ‘philosophical anthropology’ (1981, 1986). Enactivism attempts to blur
the distinction between knowing and action by focusing on the interaction between a person
and his or her environment. Enactivism suggests that mathematical understanding should
be studied not through its products or mental structures in and of themselves, but rather, as
understanding occurs in the interaction between persons and their environment in the pro-
cess of bringing forth a world of mathematical significance (Maturana & Varela, 1987; Varela,
Thompson & Rosch,1991). Enactivism suggests that knowledge is not stored in the head or
in the world. Rather, it only arises in interaction in which both persons and the environment
are mutually responsive. As individuals, we do not simply react to a static environment
around us, nor are we isolated, contained individuals who manipulate our surroundings;
instead, reality is brought forth on a moment to moment basis through our actions and
interactions with others and with the environment.

Methodology

Data for over 15 pairs of participants have been collected for this study. The participants
include students in classroom and clinical situations from grades 3 to grade 10, undergraduate
students in education, and parents and children involved in an extracurricular mathematics
program. The number of mathematical sessions that each pair participated in varied from
one to six. All sessions followed the same general format: a mathematical prompt was posed
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and it was expected that participants would continue to engage in it for as long as it held
their interest. There was an expectation that this would be approximately one hour. The
prompts were frequently found in problem solving books (e.g., Mason, Burton & Stacey,
1985; Stevenson, 1992) and made use of concrete manipulatives, paper and pencil, and com-
puter software. The prompts were potentially rich in mathematics and allowed students
with a variety of skills and experiences to participate in various ways. The mathematical
prompts provided a starting point for inquiry into mathematical activity. While some out-
comes were anticipated, it was not expected that all students would engage in similar ac-
tivities. The pairs engaged in the mathematical environment in ways they determined ap-
propriate and personally relevant.

The dissertation itself provides three illustrative examples of mathematical conversa-
tions focusing on (1) mathematical explanations in the process of understanding, (2) rela-
tionships within mathematical conversations and (3) lingering in a mathematical space.
While the interpretations made are directly related to the context of the illustrative example
provided in each chapter, these interpretations were informed by observations made of all
participants in this study—including sessions that were viewed as having qualities that
were not consistent with mathematical conversations. The sessions selected for this disser-
tation provide a broad basis from which to discuss the interdependent features of math-
ematical conversations.

The reporting of this data cannot be thought of as presenting a correct view of what ‘is’
or what ‘was,’ for no such view is possible (Shotter, 1993). My descriptions and interpreta-
tions are necessarily incomplete and open to further interpretation. Their incompleteness is
not because they stand as only a partially correct match to a universally objective truth, but
because they “initiate and guide a search for meanings among a spectrum of possible mean-
ings” (Bruner, 1986, p. 25). Interpretation and explanation allow us to enter into the creation
of meaning and are purposeful within their incompleteness to shape expectations and pro-
vide meaning and coherence for experiences related to mathematical interactions. It is ex-
pected that a reader will expand upon these explanations further so that an even broader
understanding of the experiences may be shared.

Mathematical Explanations in the Process of Understanding

The two participants in this narrative were both undergraduate students, Tamera and Kylie,
majoring in mathematics. Rather than presenting this research as how people should come
to know mathematics through interaction, this chapter suggests how, at least some people
do come to know mathematics through mathematical acts of explanation and reasoning
within a context of conversation.

The form of mathematical explanations offered by Tamera and Kylie’s interaction were
described as explanations in action. Explanations in action are an offering or invitation to
oneself and to the other. They often invite images, models, metaphors, and narratives of the
topic of concern. Kylie and Tamera’s explanations were not attempts to convince the other,
but were offerings which expanded their understanding of the phenomenon. These expla-
nations did not attempt to satisfy a criterion of correctness or completeness nor were they
attempting to convince the other of a particular truth as an end-point. Instead, their expla-
nations in action allowed them to say or to experience a feeling that they could “go on”
(Wittgenstein, 1953). They were offered as plausible, sufficient and believable for the mo-
ment. Such explanations subsequently defined a domain of legitimate actions and practices
from within which they acted.

However, mathematics as a discipline has had difficulty acknowledging the role that
formative explanations play in learning mathematics and in expanding fields of study within
mathematics. While the criterion for acceptance of mathematical explanations in action are
based on whether it expands the participants understanding of a phenomenon in that mo-
ment, in mathematics the criteria for explanations has been based on its perceived accuracy,
completeness and whether it is a convincing argument. Explanations from this perspective
are an end point in the discussion. The contradiction has implications for what we have
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Features within a Mathematical Conversation

Oriented towards relationships among persons in interaction.

• The listener has an ethical responsibility to respond to and address
the other through questions, clarifications, or continuations and
extensions of previous gestures.

• The mutual acceptance of self and of the other supports ongoing
interpersonal relations.

• Alternative explanations and counterexamples are offered and
perceived to assist in expanding understanding.

Oriented towards relationships among persons and the mathematical envi-
ronment.

• Participants seek insight and understanding by responding to and
addressing otherness through questions, predictions, conjectures,
and explanations.

• Otherness responds to the participants’ gestures by bringing forth
alternative and shifting mathematical landscapes.

• Curiosity and a structure of play support ongoing mathematical
relations.

Interactions between persons and mathematical environment lay a path of
mathematical activity.

• The direction of activity is led by no one and no thing. The path is
oriented by emotionally charged mutual concerns arising in the
moment.

• Proscriptive logic sets the boundaries: whatever is allowed by the
mathematical situation and by the participants’ experiences is ac-
ceptable.

• Explanations in action arise in the course of ongoing interaction and
are open to revision at any time.

• Explanations as re-presentation arise in moments requiring a sum-
mary of interactions.

• Criteria of acceptance: When explanations are perceived to broaden
understanding in that moment and are plausible, coherent with
previous experiences and good enough for now; they allow par-
ticipants to continue on.

• Explanations are observed to be accepted when they become part
of the participants’ subsequent actions.

Orienting Gestural Domains

ADDRESSIVITY TOWARDS
THE OTHER

What response is expected from and
offered to the other?

What emotional predisposition is
chosen?

How are conflicts dealt with?

ADDRESSIVITY TOWARDS
OTHERNESS

What response is expected from and
offered by the participants and by
the mathematical otherness?

What emotional predisposition is
chosen?

THE LIVED CURRICULUM

Directing the Course
Who or what is responsible for di-
recting the path of mathematical
activity?

What mechanisms set the bound-
aries of the lived curriculum?

Mathematical Explanations
How are mathematical explanations
posed?

What criteria are used to accept ex-
planations?

FEATURES OF MATHEMATICAL CONVERSATIONS
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accepted as mathematical in our classrooms. If mathematical explanations in action are to
be accepted by the mathematics community as mathematical, the community must alter its
criteria for acceptance. Until then, ‘mathematical explanations in action’ will not be viewed
as mathematical or as an acceptable mathematical practice in and of itself—only as a pre-
cursor to ‘real’ mathematics.

Relationships within Mathematical Conversations

Stacey, a mathematics major in education, volunteered to participate with her friend Ken, a
business student, as her partner. This chapter focuses on the relationships Stacey and Ken
form between themselves and also between themselves and the mathematics brought forth
as they engaged in a mathematical conversation.

Stacey and Ken maintained their relationship with one another and with the math-
ematics for an extended period of time. Their mathematical activities were playful, creative
and unexpected. Although their work may be viewed as a spontaneous and random cre-
ation, such a view would belie the experience and history that both Stacey and Ken bring to
this situation. As this mathematical conversation unfolded—as they laid down the path of
their exploration—who they are, what they believe, and what mathematical skills, and in-
terests they have brought are recognizable in what they do, what they say, and in the roles
that they play.

Inviting mathematical conversations into the classroom requires an acknowledgement
of the emotional aspects of interpersonal and mathematical relationships. The members of
the community need not only tolerate but must invite ambiguity and uncertainty into their
play-space. Rather than being tied to a specific goal, a perceived utility or a final destina-
tion, the importance of play for the purpose of continuing to play becomes a key feature of
mathematical conversations, but more importantly, it is a feature of the ongoing practice of
mathematics.

Lingering in a Mathematical Space

In this chapter Calvin, who was twelve years of age, and his mother Jolene participated in
an extra-curricular mathematics program for children ages 8 – 14 and their parents. They
are not working in a tutor-tutee relationship, but are both engaged in the mathematical
activity together. The path of their mathematical activity cannot be viewed as being di-
rected towards a future goal or as an attempt to solve a predetermined problem. Instead, it
is described as lingering; that is, a mode of being or living in which questions and concerns
are raised and addressed in the moment as part of their ongoing interactions with each
other and with the environment. Such concerns cannot be viewed as discrete nor do they
ever appear to be completely resolved; rather, they overlap, are revisited and lead to other
concerns.

Because of the less goal-directed nature of lingering it may be viewed with skepticism
as a useful mode of mathematical activity. Although Calvin and Jolene engaged in math-
ematical actions for an extended period of time, would such mathematical lingering be
observed as intelligent behavior or as random wanderings? An alternative image of intelli-
gence based on an ongoing and evolutionary notion rather than on a finite problem solving
perspective is used to analyze their interactions. This perspective of intelligence suggests
that we exist within a mode of lingering. The goal of living is not to find one’s way to the
other side of life, but to experience living through a series of meaning-making actions—
actions through which “one’s world stands forth” (Johnson, 1987, p. 175).

If viewed as an appropriate and intelligent activity, lingering in a mathematical space
allows its participants to maintain their relationships and stretch the boundaries of their
activities so that new ideas, concerns and understandings can be incorporated. There is
recognition that a complete understanding of a problem is never obtained, but one’s under-
standing continues to expand as he or she maintains relationships with the mathematical
world brought forth.
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Conclusions

The features of mathematical conversation drawn from the illustrative examples provided
are summarized into three observational domains of discourse: (1) Addressivity towards the
other highlights the ethical responsiveness and responsibility of persons in conversation
and their mutual acceptance of one another to support ongoing mathematical interactions.
(2) Addressivity towards otherness emphasizes the reciprocal relationship between the
conversants and the mathematics brought forth. That is, participants not only respond to
the mathematics, but the mathematical field of play responds to the conversants’ interac-
tions. (3) The lived curriculum is the path of mathematical activity laid as the addressivity
interactions unfold. The lived curriculum in conversation is not directed from within any
individual nor is it simply random. The path is oriented by the mutual concerns raised
within the ongoing interactions and is bounded by the possibilities for mathematical action
and by the participants’ experiential histories drawn into the moment.

Mathematical conversation as presented here does not attempt to prescribe or even
describe how mathematical conversations should be implemented into the classroom by
defining the teacher’s and students’ roles in discourse, the tasks, or the learning environ-
ment. This work does, however, point to features of mathematical conversations and sug-
gest ways in which they can be observed within the classroom. Mathematical conversation
also points to the potential consequences for the choices educators make in terms of dis-
course and acceptable mathematical practices.

The present research raises a number of pedagogical concerns for choosing argumen-
tation as an exclusive form of discourse and problem solving, as it is currently perceived, as
an exclusive form of practice. I offer mathematical conversations, not as a replacement, but
as an alternative. I do not suggest that every interaction in mathematics should be an occa-
sion for mathematical conversation. Mathematical conversation is one potential and pos-
sible path within the practice of mathematics requiring further exploration and explanation
within mathematics education.
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The Word Problem as Genre in Mathematics Education

Susan Gerofsky
Simon Fraser University

My thesis looks at the word problem in mathematics education as a genre, seen from a
number of points of view: from the standpoints of linguistics, literary theory, pedagogic
intentions, and the history of the genre. The central questions asked are: What are word
problems? What other genres are they like? What do we think they are for? and Where do
they come from?

This study is not intended to find ways to teach students to be more efficient solvers of
mathematical word problems. Neither is it intended to use linguistic analysis to recom-
mend better or more efficient ways to write word problems aimed at students of particular
school grade levels or reading levels. Rather than ask, “How can we make better word
problems?“ or “How can we make our students better solvers of word problems?“, I ask,
“What are word problems?“

The word problem genre seen from the points of view of linguistics, narrative theory,
pedagogy and history of mathematics

My answers to this question follow from my observation that mathematical word problems
can be seen as a linguistic and literary genre that forms part of the traditional pedagogy of
mathematics.

Considering a set of disparate texts as a genre is to view this set as a conceptual object
(similar to a “mathematical object“). In metaphorical terms, my aim in this project is to see
“the mathematical word problem“ as a figure set against a variety of different backgrounds.

Since mathematical word problems are texts written in natural languages (although
some would question how “natural“ their language really is), I begin my “walk“ around the
word problem from the point of view of linguistics, in particular the branch of linguistics
called pragmatics, the study of language in use. From this point of view, word problems can
be seen as a form of linguistic utterance, set against the background of all other forms of
linguistic utterance. Certain oddities or particularities about the language of word prob-
lems can been seen from this point of view, including unusual forms of reference, an anoma-
lous use of verb tense, and a particular discourse structure.

Word problems are also story problems, and pose mathematical questions in the form of
stories. So mathematical word problems can also be seen from the point of view of literature
and narrative theory, and can be viewed against a background of stories in general. Again
certain peculiarities become evident, this time in terms of plot and character, the position-
ing of the narrator and reader, the placement of the narration in time and place—and these
peculiarities are closely linked to word problems’ linguistic features. I analyze mathemati-
cal word problems from the related points of view of linguistics and literary/narrative theory
and find cohesion in the singular “object“ seen from these two vantage points. The word
problem genre does indeed seem to be a unified, distinctive object, and this analysis pro-
vides suggestions as to which other genres it may be related to in terms of its linguistic and
literary features.
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A description of genre requires us to ask not only, “What is it?“ but also, “What is it
for?“ and “Who is it for?“ Considerations of genre, at least since Bakhtin (1986), inevitably
lead to questions of addressivity and intention. Addressivity refers to the author’s real or
imagined audience for a particular utterance or piece of writing. Bakhtin writes:

Both the composition and, particularly, the style of the utterance depend on those to
whom the utterance is addressed, and the force of their effect on the utterance. Each
speech [or written] genre in each area of … communication has its own typical concep-
tion of the addressee, and this defines it as a genre. (1986, p. 95)

In the case of word problems, intention includes educators’ conscious, stated intentions
when writing or teaching word problems, but also intentions carried by the word problem
genre itself and students’ uptake of their teachers’ intentions, of which educators may not
be aware. In a small-scale empirical study, I interviewed some teachers, students and cur-
riculum writers in primary, secondary and tertiary mathematics education in order to begin
to understand their intentions, or uptake of others’ intentions, around the word problem
genre in mathematics education.

I saw this part of the study as a way of testing my analytic findings about word prob-
lems in conversation with others—students, teachers, writers—people who are intimately
involved in the use of word problems in mathematics education. Again, there are many
resonances with linguistics, since the study of linguistic pragmatics is deeply involved in
questions of intentionality in language in use. As part of a “walk around“ the word problem
genre, I took a standpoint in the practical, day-to-day world of mathematics pedagogy in
schools, and viewed the word problem genre against a background of other pedagogic forms
and intentions.

The last viewpoint in this study is a historical one. My question here is, “What are the
origins of the genre?“ and “How has it changed over the course of its history?“ Mathemati-
cal word problems have very ancient origins, and a very long continuous history of use in
the teaching and learning of mathematics. Following on earler analysis, I look at the history
of forms and intentions related to the word problem genre. There is difficulty in ascribing
particular intentions to written texts which span a very long history and wide-ranging cul-
tural geography, and which we are often obliged to read in translation. Nonetheless, there
are at least some likely conjectures and intriguing suggestions to be gained from this point
of view, looking at the word problem genre as an object set against other historical texts in
mathematics education.

Finally, I suggest that an exploration of genre in mathematics teaching and learning
can be a source for innovation and renewal in mathematics education practices. I propose
that identifying and describing the genres, or forms, of teaching can be a creative step to-
ward improving teaching. Knowing more about educational genres allows us to take a more
playful or artful attitude towards the forms that we have inherited. This aspect of playing
with forms is in contrast to the overwhelmingly moralizing tone which has traditionally
been central to educational writing. A primarily moral stance tends to foreclose on the pos-
sibilities of a genre with a stern “yea“ or “nay“ (“Use nothing but word problems!“ or “Never
again use word problems!“) without ever taking the time to investigate what the genre is
and why it is that way.

Knowing more about what a genre is in descriptive terms can allow us to play with the
boundaries of the genre, changing or emphasizing its typical features and pushing it to the
edge of its genre boundaries to create new forms. Knowing what a genre is like (i.e., what
other genres it reminds us of or is structurally similar to) allows us to treat one genre as if it
were another, to recontextualize it, and by placing an old genre in new settings, to give it
new meanings by using analogy to other, similar genres.

Knowing some of the intentions encoded within a generic form, knowing who it is ad-
dressing and some of what it is striving to say to its intended audience, allows us to know
what a particular genre will or will not allow us to say by its very form. An awareness of
codified intentions allows us to play with various ways of saying what (we think) we intend.
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Finally, understanding something of the history of a genre, knowing where a genre
comes from, allows us to retrieve cultural memories, to revive old meanings in new settings
and make new meanings in old settings. Revisiting archaic forms and intentions can give
inspiration and energy in the present.

Conclusions

In offering some background to genre theory from linguistics, literary studies and film studies,
I make the following assertions:

· Genres are sets of cultural conventions. Genres are defined by cultural recognition and
consensus, and do not necessarily satisfy a defining list of clearly-stated characteristics;

· Addressivity is an important feature to investigate in any genre. A particular genre ad-
dresses a particular imagined audience;

· Examples of a certain genre are made in imitation, not of life, but of other exemplars of
the genre (so word problems are made not in imitation of life but of other word prob-
lems);

· To quote rhetorician Carolyn Miller, “What we learn when we learn a genre is not just a
pattern of forms or even a method of achieving our own ends. We learn, more impor-
tantly, what ends we may have” (Miller, 1984, p. 165). The genres of our culture define us,
our identities and desires, in relation to our culturally-mediated worlds;

· Genres carry their own generic intentions, which may or may not be our intentions as
users of the genre. These meanings, inherent in the very form of the genre, may have
historical or archaic roots.

Looking at word problems from the point of view of linguistics and of literary theory, I
asked two questions: what is the word problem genre and what other genres is it like?

Linguistic analysis of the word problem genre found the following features typical of
word problems as a genre:

· a 3-component narrative structure (set-up, data, question);

· indeterminate deixis of nouns and pronouns;

· a non-deictic use of metalinguistic verb tense;

· strong, unambiguous illocutionary force (along the lines of, “Turn this into a mathemati-
cal problem of the type you have just been taught, and find the right answer!”). This
illocutionary force rests on a series of tacit assumptions—for example, that the word prob-
lem contains sufficient information for its solution, that contingencies of our lived lives
cannot be invoked nor extraneous information requested, that the word problem can be
turned into a symbolic mathematical problem, that a right answer exists, that word prob-
lems are meant as exercises to practice mathematical methods, etc.;

· “no truth value”—that is, as with fiction, it is inappropriate to ascribe truth or falsity to
the statements in a word problem;

· a flouting of the “Gricean maxim of quality” (which states that, in order to make conver-
sation possible, we agree not to say what we believe to be false).

Literary analysis of word problems suggests that they are like religious or philosophi-
cal parables in their non-deictic, “glancing“ referential relationship to our experienced lives,
and in the fact that the concrete images they invoke are interchangeable with other images
without changing the essential nature of the word problem or parable. The nouns and verbs
in both word problems and parables point to a non-material world (the world of math-
ematical objects or philosophical entities) rather than to their usual referents in our mate-
rial, lived lives. For this reason, both parables and mathematical word problems feature
odd, often fanciful, elliptical and inconclusive story elements, an anomalous use of verb
tense, and a lack of concern with the contingencies of day-to-day life.

Where the two genres differ is in their use. While parables are meant to be lingered
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over, because they resonate with the deepest concerns of human life and teach through
paradox and perplexity, mathematical word problems are typically offered to students for
quick translation into symbolic form, correct solution by familiar methods as an exercise,
and immediate disposal.

In the empirical portion of this study, I looked at the word problem genre as an object of
pedagogy, and at gaps between pedagogic intentions consciously ascribed to by teachers
and writers, those inherent in the genre, and those taken up by students in their role as
cultural interpreters. In interviews with teachers and curriculum writers, a variety of stated
pedagogic intentions were found. A pattern that emerged was that educators involved in
elementary schooling valued practical, contextualized, open-ended problems over abstractly
mathematical ones, while those in tertiary education valued abstract mathematical interpre-
tations, in which students were encouraged to “see through“ the apparent story to a math-
ematical structure (or alternately, to “project“ the desired mathematics onto the story situa-
tion), rather than dwell on the given story. The only secondary teacher interviewed seemed
to be in an uncomfortable middle position, pulled by the expressed aims of both elementary
and tertiary mathematics education cultures. This teacher expressed conflicting desires to do
“real“ problem solving of the type favoured by the elementary teachers, and to acculturate
students to see the abstract mathematical structures favoured by tertiary education teachers.

Students’ uptake of their teachers’ intentions seemed quite accurate—that is to say, the
students were skilled readers of their teachers. Those with the highest levels of tertiary
mathematics education were most consistently willing and able to “see through“ word prob-
lems to mathematical structures, and, although some initially stated that word problems
were meant to prepare them for practical job situations, a look at some examples from their
own textbook led them to other conclusions.

Elementary and junior secondary students, although capable of “seeing through“ story
as well, more often looked at word problems in terms of their real-life applications, in terms
of their holistic meanings and lived-life contingencies. They criticized particular problems on
practical or moral grounds. Those students whose teacher enjoyed the pleasurable riddling
tradition affiliated historically with word problems also expressed enjoyment at solving
puzzles. Students valued the interest and memorability of word problem imagery, and saw
the question component as a point of entry to become involved in playing with the problem.

Looking at the history of the word problem genre, I focused on issues of intentionality.
I found that mathematical word problems have a continuous history going back more than
4000 years, to ancient Babylon and ancient Egypt, and spanning cultures as diverse as an-
cient China, medieval India, the medieval Islamic world, and medieval and Renaissance
Europe. What is more, the form of mathematical word problems appears nearly unchanged
throughout its long history.

It was established that, from the earliest citations of word problems on Babylonian clay
tablets, these problems were never simply applications of mathematics to practical, real-life
problems. Mathematical methods and concepts have always come prior to the stories of
word problems, and there has always been ambiguity in the referents for the words in these
stories. In a tangential way, the words used refer to the concrete objects that are their usual
referents in natural language; however, their primary referents are the objects and methods
of a mathematical world, although these are only spoken of in the coded clothing of story.

I speculated that the purpose of mathematical word problems may have changed at
the time when algebra was introduced. In a pre-algebraic culture, the only way to express
mathematical generality may be through repeated exemplars—that is, through a series of
stories which point to similar mathematical structures and methods. Algebra, on the other
hand, can easily express generality using variables. My conjecture is that, once algebra had
been introduced, the long tradition of word problems was preserved by attaching new mean-
ing to the genre, that of useful, practical problems. The pretext of practicality and usefulness
has justified the use of word problems in mathematics education; and since most school
students are either pre-algebraic or novices at algebra, word problems may continue to
serve the purpose of expressing generality through repeated exemplification for them.
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Some implications for teaching

Is there a distinction between riddles, recreational puzzles and school word problems? Since
the same problems can be found contextualized in all three settings, the difference seems to
lie mainly in the intentions surrounding the problem. Riddles are contextualized in a set-
ting of pleasurable social interaction. They can be part of a process of building social soli-
darity and, simultaneously, a source of competition, as in the village riddling contests. Al-
though riddles have been collected in written form, their primary use is in oral culture, and
good riddlers can draw from a large memorized repertoire upon which a certain degree of
improvisation is possible.

In contrast, word problems in school mathematics are traditionally assigned as a sort
of bitter medicine that will make you better. In North American mathematics textbooks,
they usually come at the end of a series of “easier“ numerically or algebraically-stated prob-
lems related to a mathematical concept introduced in the preceding chapter. The word prob-
lems represent a final test of students’ competence in recognizing problem types related to
that chapter and translating those problems into tractable diagrams and equations which
can be solved using taught algorithmic methods. School word problems are not social events
nor part of an oral culture. They are ideally meant to be solved silently, individually, using
pencil and paper. Students are certainly not encouraged to memorize a repertoire of word
problems for later enjoyment. On the contrary, once solved, they are generally discarded by
teacher and students.

Riddles often retain strong links to folktales and parables and other teaching tales in
their invocation of paradox and ambiguity, through their use of puns, hyperbole, nonsense,
etc. Like parables and word problems, they point to two worlds at once—the world of their
literal referents and another world invoked by word play or unexpected associations and
structures. In riddles and parables, this ambiguity is embraced as essential to the enjoyment
and philosophical import of the genre.

Contemporary writers of mathematical word problems, on the other hand, work hard
to make their problems realistic, relevant and unambiguous. In this pursuit of singleness of
meaning and relevancy, they are stymied by the genre’s history and form, which carry with
them the intention to create paradox and at best a shifting relationship to everyday reality.

What if we treated word problems in mathematics classes as if they were parables, or
riddles? Would this alter our intentions as mathematics educators, or our students percep-
tions of those intentions?

For example, if word problems were not considered disposable exercises (as they of-
ten are now) but as parables worthy of longer and deeper contemplation, we might spend a
week considering a single word problem in all its considerations and implications. Students
might be asked to comb older textbooks or even historical sources for word problems point-
ing to the same mathematical structures as the “parabolic“ story under consideration. They
might consider changing certain features of the word problem while holding others un-
changed, and seeing whether this altered the mathematical relationships pointed to in the
problem. They might try to project real-life situations in which recalling the word problem
“parable“ might be instructive, or helpful, or comforting.

And what if word problems were considered as riddles? First of all, a playful and
perhaps competitive spirit would be invoked. Word play and double meanings would be
welcomed rather than banned. A pleasurable, oral culture approach to a recreational use of
word problems would take the place of our present, very serious approach to evaluation of
student written knowledge.

Perhaps the simple suggestion that mathematical word problems be considered as
parables or as riddles—the shift to the “as if“ point of view that characterizes play and drama—
may begin to engender a shift in thinking and in educational practice. Playing with genre,
and even pushing its elements beyond genre limits may lead to unexpected insights. Why
not take a playful approach to the traditional genres of mathematics education, and what is
more, why not let our students in on what we know about these genres and give them a



CMESG/GCEDM Proceedings 2000 • PhD Report

134

chance to play with them too? Rather than forcing a choice for teachers, either to embrace
traditions unthinkingly or discard traditional forms in a fever of reform, we could “try on“
new contexts for old forms, and encourage an awareness of the forms themselves. By play-
ing with unfamiliar intentions for familiar forms, we may find renewed meanings and reso-
nances for the genres of mathematics education.
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         FIGURE 1

My argument begins with an examination of the utility of diagrams in geometric
thought. Diagrammatic reasoning goes back a long way. There is an ancient description of
geometric reasoning with diagrams in Plato’s dramatization in the Meno (81e-86b) where a
boy, under Socrates’s questioning, figures out how to double a square, that is, how to con-
struct a square exactly twice the area of a given square. The boy learns that a square with a
side equal to the diagonal of the given square is twice its area. This proposition is illustrated
in Figure 1.  The larger square, whose side is a diagonal of a smaller square, is twice the area
of the smaller square. By Socrates’s lights, the boy’s  learning is “remembering” from past
lives.6 Even though Plato uses this scene to develop a theory of “reminiscence” from past
lives, the scene is an even-handed portrayal of diagrammatic reasoning. The linguistic pre-
requisites for solving the problem are implicitly given at the beginning of the scene. The boy
is proficient in Greek and of course considerable language understanding is required to
follow Socrates’s questions.7Meno: Very much so. He was born in my household” (Meno,

How Visual Perception Justifies Mathematical Thought1

Dennis Lomas
Ontario Institute for Studies in Education/University of Toronto

Visual perception has been cast in many roles. Some philosophers of mathematics regard
perception as an essential constituent of mathematical intuition.2 According to some psy-
chologists, visual perception is directly involved in problem solving.3 A traditional view in
mathematics in effect charges that visual perception provides misleading information.4 On
this showing, diagrams are relegated to what is considered to be a minor and suspect role as
“aids to intuition”.

My PhD thesis attempts to show that visual perception helps to justify a significant
range of mathematical beliefs, including those pertaining to the mathematics taught in school.
There is not enough time to present my whole thesis in the allotted time. Instead, I present
a core argument. Although my presentation of this argument is not as fleshed out as it is in
my thesis, it should give you a good idea of one of the central ideas of my thesis. This is that
visual perception significantly helps to justify (provide an objective foundation for) some
mathematical propositions, in particular, geometric propositions.

A few caveats are in order at the outset. I do not deny that visual perception can some-
times prompt incorrect inference. My claim is that visual perception in general supplies cor-
rect information with which to reason. This is especially so in geometry. Neither do I hold
that visual perception is the only way in which mathematical knowledge is justified. A full
account of such justification would need to include, among other things, how activities and
practices such as refereeing sanction new mathematical results, and how the success of sci-
entific and engineering practices warrant the mathematics employed in these enterprises.5
As a final caveat, I do not attempt here (nor in my thesis) to show that visual perception
justifies all mathematical propositions or propositions from all branches of mathematics. I
do not claim, for example, that visual perception justifies the continuum hypothesis.



CMESG/GCEDM Proceedings 2000 • PhD Report

136

82b). In fact, Socrates and the boy share many concepts; otherwise they could not converse
with each other. The boy knows some mathematics. He knows, for example, what a square
is8 and he knows four is double two.9

Relying on the particular figures in the sand, after a few false starts which he corrects
under Socrates’s careful questioning, the boy learns how to double any square. The dia-
grams in the sand are crucial for solving the problem. For example, once the boy examines
a diagram something like that shown in Figure 210 and after Socrates asks him a few more
questions, he realizes how to double a square. The solution in essence is this. The square
formed by the diagonals, illustrated by shading in the diagram below, is twice the area of
any of the four smaller inside squares, one of which is illustrated by stripes in Figure 3. The
shaded square is composed of four small triangles, whereas the striped square is composed
of two small triangles. (All the small triangles have equal area.) Consequently, the shaded
square has twice the area of the striped square. Furthermore, a side of the shaded square is
a diagonal of the striped square. This solves the doubling a square problem because it dem-
onstrates that a square (as indicated by the shaded square above) with a side that is the
diagonal of another square (as indicated by the striped square above) is double its area. This
scene suggests that diagrams can play a central role in some geometric proofs.

FIGURE 2         FIGURE 3

This assessment might be challenged by disputing the role of diagrams. In fact, dia-
grammatic proofs are held in disrepute by many mathematicians and logicians. Diagrams
are considered at best as mere “aids to intuition” and not legitimate constituents of math-
ematical proofs mainly because of the danger of generalizing from accidental features of
diagrams. Logician Neil Tennant adheres to this view:

[The diagram] is only an heuristic to prompt certain trains of inference: … it is dispens-
able as a proof-theoretic device; indeed, … it has no proper place in the proof as such. For
the proof is a syntactic object consisting only of sentences arranged in a finite and
inspectable array. (Tennant 1986, taken from Barwise and Etchemendy 1991, p. 8)

Philosophers and logicians Jon Barwise and John Etchemendy correctly contend that this
stance is mistaken, provided care is taken not to use accidental features of diagrams in proofs.
In challenging the dogma that all sound reasoning must be exclusively sentential, they draw
on the work of psychologists11 who similarly have challenged this dogma.

After presenting a standard diagrammatic proof of the Pythagorean Theorem, Barwise
and Etchemendy argue:

It seems clear that this is a legitimate proof of the Pythagorean theorem. Note, however,
that the diagrams play a crucial role in the proof. We are not saying that one could not
give an analogous (and longer) proof without them, but rather that the proof as given
makes crucial use of them. To see this, we only need note that without them, the proof
given above makes no sense.

This proof of the Pythagorean theorem is an interesting combination of both geo-
metric manipulation of a diagram and algebraic manipulation of nondiagrammatic sym-
bols. Once you remember the diagram, however, the algebraic half of the proof is almost
transparent. This is a general feature of many geometric proofs: Once you have been
given the relevant diagram, the rest of the proof is not difficult to figure out. It seems odd
to forswear nonlinguistic representation and so be forced to mutilate this elegant proof
by constructing an analogous linguistic proof, one no one would ever discover or re-
member without the use of diagrams.  (Barwise and Etchemendy 1991, p. 12)

So Barwise and Etchemendy rightly dispute Tennant’s contention that a diagram is dis-
pensable and is “only an heuristic to prompt certain trains of inference”. Instead, diagrams
take centre stage in many geometric proofs, so much so that algebraic manipulation is “al-
most transparent” once the relevant diagram is recalled.12 An objection may be that alterna-
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tive proofs may not utilize diagrams. However, that does not undermine the full-fledged
role of diagrams in proofs that utilize them, as Barwise and Etchemendy point out.

Visual perception  supplies shape information that is used in solving problems. In the
case of perceiving a diagram of a square, we become consciously aware of shape properties
of the diagram: its number of sides, the equality of angles and sides, and various symme-
tries. This information is needed in order to solve the doubling-a-square problem. Presum-
ably, it is perceived shapes that assist us in figuring out the solution because, in a geometric
diagram, information about shape is the only type of information that is relevant to solving
geometric problems.

Geometry is generally concerned with abstract geometric objects (for example, perfect
or ideal squares), which cannot be perceived because they are immaterial. It might, then,
seem that visual perception cannot play a  role in geometric reasoning because visual per-
ception cannot give us cognitive access to abstract geometric objects.  However, as already
shown, the utility of diagrams in geometric reasoning can be explained only by supposing
that visual perception supplies conscious shape information. How, then, does visual per-
ception supply this information? One suggestion is this. Visual perception gives us access to
concrete diagrams, which we then non-perceptually construe to be representations of ab-
stract geometric objects. This seems to be part of the answer because in order to reason
about abstract geometric objects, we need a way to represent them. This is not the full an-
swer, however, because in order to facilitate geometric reasoning, a diagram typically needs
to mimic, in a significant way, the shape of the abstract geometric object (or objects) that the
diagram represents. Why should this be so; that is, why should the shape of a diagram
matter in this way?

The answer to this last question seems to be a variation on what has already been
argued: visual perception of a concrete diagram in a way supplies conscious information
about the shape properties of the abstract object, shape properties which the diagram mim-
ics in some significant way. But how is visual perception able to do this? To understand
what is going on we need to observe, first, that geometric reasoning (about abstract geomet-
ric objects) takes place within the context of our having acquired the concept  abstract geo-
metric object. (This is not to say that we know everything about an abstract geometric object
that we are studying. In fact, the aim of geometric reasoning is often to discover more prop-
erties of abstract geometric objects. We do know, however, that the object is abstract and in
what sense it is abstract.) In this context, visual perception greatly contributes to our con-
scious awareness of the shape properties of abstract geometric objects even though we visu-
ally perceive only shape properties of concrete diagrams that depict abstract objects and
have similar shapes to these objects. That is to say, the perception of shape properties of
concrete diagrams is a surrogate for conscious awareness of shape properties of abstract
geometric objects depicted in the diagrams.13 This surrogate consciousness can arise for a
subject only if the subject knows what an abstract geometric object is, in particular, knows
that its shape can be only approximated by a diagram. As an example of the surrogate role
of visual perception, consider perception of Figure 4, a depiction of an abstract geometric
object (a depiction used in trying to solve the problem of doubling an abstract square). The
configuration of lines, edges, angles, etc., in this diagram is similar to the configuration of
lines, etc., in the abstract object that the diagram depicts. Visual perception of this configu-
ration can then be used as a  surrogate for conscious awareness of a similar configuration
obtaining in the abstract geometric object that the diagram depicts.

FIGURE 4       FIGURE 5

In what sense is the configuration of lines, edges, and angles, etc., in a diagram similar
to the depicted abstract geometric object? To address this question we consider a simpler
diagram (in Figure 5) and suppose that it represents a perfect square. Evidently, this dia-
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gram is relatively precise. Likely, the lines are within one tenth of an inch of being equal and
the angles are within a couple of degrees of being equal. So if our eyesight is working prop-
erly, we probably perceive a diagram that is similar in shape to a perfect square in the sense
of being within the mentioned tolerances. This means that our visual experience of shape
properties of the concrete diagram can become a  surrogate for conscious awareness of the
shape properties of an abstract square. In perceiving, for example, the above diagram we
experience the same number and the same connectivity of lines as occurs in an abstract
square. Visual perception plays a conceptual role by supplying a surrogate for conscious
awareness of the properties of abstract squares.14

A diagram need not be accurately drawn in order for perception of its shape proper-
ties to act as a  surrogate for conscious awareness of shape properties of the abstract object
depicted in the diagram. For example, the diagram in Figure 6, if taken as a depiction of the
abstract geometric object used in the doubling-a-square problem, is inaccurate. Nonethe-
less, perception of its shape properties can still act as a surrogate (for conscious awareness
of the shape properties of the depicted abstract geometric object) in much the same way as
does perception of the shape properties of the more accurate depiction. For example, al-
though the angles and line lengths in this diagram are quite inaccurate, aside from this the
configuration of lines is still the same. Perception of this configuration, then, can be a surro-
gate for conscious awareness of the same configuration in the abstract geometric object.

FIGURE 6

I have established that visual perception of diagrams is a surrogate for conscious aware-
ness of the abstract shape properties of geometric objects. It follows from this that if visual
perception of these diagrams is accurate, it helps to justify the mathematical propositions
arising from diagrammatic reasoning. In general, visually perceiving objects of a simple type
(such as the diagrams involved in proving the Pythagorean theorem) is veridical. In fact,
provided lighting conditions are adequate, we are quite good at veridically perceiving most
objects, especially those which we encounter in our day-to-day lives.15 Visual perception, thus,
can play a role in justifying the Pythagorean theorem and other geometric propositions.

 Accordingly, it is no surprise that diagrams are ubiquitous in many areas of science.
Perceiving diagrams is a reliable (and often convenient) way to supply information with
which to reason.

Viewing visual perception as justifying a significant portion of school mathematics
answers relativistic and sceptical theories within mathematics-education discourse. It is al-
leged in one quarter16 that mathematical knowledge is insecure because its justification de-
pends exclusively on historically contingent sanctioning activities and practices within the
mathematics enterprise. Historical shifts in these mathematical activities and practices can
overturn even well-established mathematical propositions. Recognizing the role of visual
perception in objectively justifying many mathematical propositions serves as an antidote
to such relativism. Visual perception does not justify all of mathematics (as I have made
clear in this talk). It does, however, serve in helping to justify our belief in the truth of some
mathematics, including that taught and learned from childhood to highschool graduation.

In many circles, empirical justification counts for little or nothing. At best it is consid-
ered a stepping stone to real justification. My stance on the justificatory role of visual per-
ception puts me in agreement with those who think that empirical justification counts for a
lot in mathematics,17 especially in the mathematics taught in school.

My argument for the perceptual justification of a significant portion of mathematics is
the main offshoot of my assessment of the role of visual perception in diagrammatic reason-
ing. For the future, I have in mind an exploration of the philosophical, theoretical, and policy
questions posed for mathematics and science education by the introduction of graphics-
based learning and teaching software.
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Notes

1. This presentation is based on part of my PhD thesis Eye’s Mind (2000).
2. See, for example, Charles Parsons (1980).
3. See, for example, Rock Irwin (1983).
4. See, for example, Neil Tennant (1986).
5. Some of these issues are addressed in my thesis.
6. “[T]here is no teaching but recollection….” (Meno, 82a).
7. “Socrates: Is he a Greek? Does he speak Greek?”
8. “S: Tell me now, boy, you know that a square figure is like this?—I do.” (Meno 82b)
9. See Meno 85b.
10. This diagram is indicated by Socrates at 85a.
11. Keith Stenning (1977) and Stephen M. Kosslyn (1980) are two psychologists from whose work

Barwise and Etchemendy have drawn.
12. They also observe:

We want to suggest that the search for any universal scheme of representation—linguistic,
graphical, or diagrammatic—is a mistake. Efficient reasoning is, we believe, inescapably
heterogeneous (or “hybrid”) in nature. (1996, p. 180)

13. A similar conclusion is drawn by Marcus Giaquinto in his discussion of the role of perception
in the proof of doubling a square set down by Plato in the Meno:

[V]ision was a means of getting information about things that were not before one’s eyes.
Seeing the diagram as a geometrical figure of a certain sort, seeing parts of it as related in
certain geometrical ways and visualizing motions of the parts, enabled us to tap our geo-
metrical concepts in a way which feels clear and immediate. (Giaquinto, 1993, p. 95)

14. How do we come to comprehend or intuit abstract geometric objects such as perfect square?
One approach involves imagining a process of successive, unending refinements to a con-
crete square. A perfect square is considered to be the ultimate product of these refinements.
This is the approach of Bernard Lonergan (1957, pp. 31–32). I comment on how we come to
comprehend or intuit abstract geometric objects in Chapter 6 of my thesis.

15. It is no surprise that diagrams are ubiquitous in many areas of science. Perceiving diagrams is
a reliable (and often convenient) way to supply information with which to reason.

16. See, for example, Paul Ernest (1998).
17. See, for example, Philip Kitcher (1988).
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Folding Back and Growing Mathematical Understanding

Lyndon C. Martin
University of British Columbia

Introduction

This study is concerned with the nature of mathematical understanding, and with the pro-
cess through which mathematical understanding grows and develops. The work is rooted
in the Dynamical Theory for the Growth of Mathematical Understanding, developed by
Susan Pirie and Thomas Kieren. It is on one aspect of this theory that the research focuses,
the phenomenon of ‘folding back’. Folding back is a key feature of the Pirie-Kieren model
and is an action through which mathematical understanding can grow and develop. The
study extends the work of Pirie and Kieren through examining in detail the process of ‘fold-
ing back’. From video data, a number of categories, providing a language for fully describ-
ing the phenomenon of folding back are proposed and illustrated. These suggest that fold-
ing back can be categorised in a number of different ways, forming parts of three inter-
related aspects of folding back, termed ‘source’, ‘form’ and ‘outcome’. The study considers
the links and relationships between these aspects and categories and discusses the ways in
which source, form and outcome interact and relate. Through this the process of folding
back as a holistic action and mechanism for growth is elaborated. The implications of fold-
ing back for those involved in the teaching and learning of mathematics are also considered.

The Pirie-Kieren theory for the dynamical growth of mathematical understanding

The theory developed by Pirie and Kieren (1994) to offer a language and way of observing
the dynamical growth of mathematical understanding contains eight potential levels for
understanding for a specific person and for a specified topic. These are named Primitive
Knowing, Image Making, Image Having, Property Noticing, Formalising, Observing, Struc-
turing and Inventising. The model and the theory have been presented and discussed at a
number of previous CMESG meetings and documented there and elsewhere. (See for ex-
ample Pirie and Kieren 1991; Pirie and Kieren, 1992; Towers, 2000). For reasons of space it is
not therefore intended to discuss the theory in detail here.

Focusing on folding back

A key feature of the Pirie-Kieren theory is the idea that a person functioning at an outer
level of understanding will repeatedly invocatively return to an inner level. Such a shift has
been termed ‘folding back’ by Pirie and Kieren (1991). In this paper they define folding
back:

A person functioning at an outer level of understanding when challenged may invoke or
fold back to inner, perhaps more specific local or intuitive understandings. This returned
to inner level activity is not the same as the original activity at that level. It is now stimu-
lated and guided by outer level knowing. The metaphor of folding back is intended to
carry with it notions of superimposing ones current understanding on an earlier under-
standing, and the idea that understanding is somehow ‘thicker’ when inner levels are
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revisited. This folding back allows for the reconstruction and elaboration of inner level
understanding to support and lead to new outer level understanding. (p. 172)

This definition suggests then that an individual will, when faced with a problem at
any level that is not immediately solvable, return to an inner level of understanding. The
result of this ‘fold back’ is that the individual is able to extend their current inadequate and
incomplete understanding by reflecting on and then reorganising their earlier constructs
for the concept, or even to generate and create new images, should their existing constructs
be insufficient to solve the problem. However, the person now possesses a degree of self-
awareness about his or her understanding, informed by the operations at the higher level.1

Thus, the inner layer activity cannot be identical to that originally performed, and the
person is effectively building a ‘thicker’ understanding at the inner layer to support and
extend their understanding at the outer layer that they subsequently return to. It is the fact
that the outer layer understandings are available to support and inform the inner layer
actions which gives rise to the metaphor of folding and thickening. Although a learner may
well fold back and be acting in a less formal, more specific way, these inner layer actions are
not identical to those performed previously.

Folding back can be visualised as the folding of a sheet of paper in which a thicker
piece is created through the action of folding one part of the sheet onto the other. The learner
has a different set of structures, a changed and changing understanding of the concept, and
this extended understanding acts to inform subsequent inner layer actions.

Folding back then is a metaphor for one of the processes of actions through which
understanding is observed to grow and through which the learner builds and acts in an
ever-changing mathematical world. Folding back accounts for and legitimates a return to
localised and unformulated actions and understandings in response to and as a cause of
this changing world.

The question then arises of why it was decided, in this study, to explore and develop
the notion of folding back as a phenomenon. Although Pirie and Kieren have frequently
provided a definition of folding back, they have rarely elaborated on this, either through
providing examples of folding back occurring in learners, or theoretically through further
developing the language for describing the phenomenon. Bearing in mind that folding back
is held by Pirie and Kieren to be a key mechanism for enabling the continuing growth of
mathematical understanding, and thus perhaps the most vital element of their model, it
seems that there is a need to explore folding back further and in greater detail. Folding back,
with its consideration of the way in which learners work with, utilise, and build on existing
knowledge also seemed to offer a powerful tool for teachers to use in considering the grow-
ing understanding of their students, and their effect on this. However, the existing defini-
tion of the phenomenon was inadequate to provide a really useful and specific language for
teachers to recognise folding back, and to be able to consider how the phenomenon might
have implications for their teaching.

Methods and Methodology

The research employed video-recording as both a tool of data collection, and as a tool of
data analysis. This was supplemented by written work and observational notes. A wide
range of students, of different ages, working on a range of mathematical topics, in a variety
of settings were observed for differing period of times. Use was made of selective, appropriate
elements of the Pirie-Kieren theory to identify examples of folding back, which were then
examined in detail. These data were categorised through a process which drew on the
microanalytic techniques of Erickson (1992) and the ‘constant comparative method’ of Glaser
and Strauss (1967) although the study did not aim to generate ‘grounded theory’ as such.
Instead, the method was used to facilitate the elaboration of a part of an existing theory in a
way similar to that suggested by Woods (1986) and detailed by Vaughan (1992). The analysis
of the data generated a framework for describing and categorising any observed act of folding
back. This is presented on the following page.
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Commenting on the categories

Whilst it is not possible here to describe and discuss in detail all of the categories which
form the framework, I would like to elaborate on those which contributed to the key find-
ings of the study and which were especially significant in elaborating the role of folding
back in the growth of mathematical understanding.

1. The unfocused intentional teacher intervention

Unfocused intentional interventions by the teacher occur as a result of the teacher perceiving
a need for the student to fold back and work at an inner layer in some way. However, in
contrast to explicit interventions, the unfocused intervention does not directly tell the student
to fold back nor does it flag a particular earlier understanding for the student to work with.
Instead an unfocused intervention highlights for the student what the problem may be with
his or her existing understanding without directly suggesting a solution. The language of
such interventions is less closed and more open-ended in nature, consisting of phrases like:
‘Try thinking of another way of...’ or ‘Are you sure...?’ or ‘What if...?’. Such comments and
questions allow for a variety of responses and for the learner to explore his or her thinking
rather than giving a particular single response.

The framework for describing folding back

1. “SOURCE”

Encompassing four main categories:
Invocative Teacher Intervention
Invocative Peer Intervention
Invocative Material Intervention
Self Invoked

Each of these interventions can be divided into two sub-categories:
Intentional
Unintentional

An Intentional Intervention can be further divided into two sub-categories:
Explicit
Unfocused

2. “FORM”

Encompassing four main categories:
Working at an inner layer using existing understanding
Collecting at an inner layer
Moving out of the topic and working there
Causing a discontinuity

3. “OUTCOME”

Encompassing two main categories:
Uses extended understanding to work on overcoming an obstacle—i.e., effective
Cannot use extended understanding to work on solving problem—i.e., ineffective

The first of these was also divided into two further sub-categories:
Returns to outer layer with external prompt
Returns to outer layer without external prompt

A special case: ‘Not taken as invocative’ as an outcome
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2. Collecting at an inner layer

Folding back to collect entails retrieving previous knowledge for a specific purpose and re-
viewing or ‘reading it anew’ in light of the needs of current mathematical actions. Thus
collecting is not simply an act of recall, it has the ‘thickening’ effect of folding back. This
phenomenon occurs when students know that they know what is needed, and yet their
understanding is not sufficient for the automatic recall of usable knowledge.

The data yielded a number of cases where following a shift by the learner to an inner
layer of understanding, there was not actually any observable learning activity, in the sense
of any developing and thickening of existing constructs nor was there any generation of
wholly new understandings. However, what had occurred had certainly involved the calling
into play of current knowing actions and already existing concepts and constructs. Instead
of working on these existing ideas, the inner layer activity had been more a process of
‘collecting’ an earlier construct or understanding and then using this at the outer layer.
Collecting seems to involve the learner having a sense of knowing and being aware that he
or she has the necessary understandings, but that they are just not immediately accessible.
This extends the notion of reflection to involve not only the recognition by the learner of the
inadequacy of his or her present thinking but also this self aware sense of knowing that he
or she already has the understanding needed to solve the problem. The collecting process
further incorporates a high degree of self-monitoring as the learner checks what he or she is
collecting against what he or she thinks they need to know.

Although initially in such cases it may appear that the learner has a lack of
understanding, this is not always the case, often it is the inability to instantly recall the required
concept that is the only problem. The activity then involves the finding and remembering of
this understanding rather than any act of modification or construction. Hence whereas folding
back and using one’s existing understanding involved reflection and some kind of thickening
action, folding back and collecting involves reflection but then remembering rather than
reworking. It is important to note that folding back and collecting is not the same as the
instant recalling of a fact or formula where folding back does not take place.

3. Cannot use extended understanding to work on solving problem

Where the learner cannot use his or her extended understanding he or she may well have
folded back and worked at the inner layer in any of the specified ways. However, despite
this activity having taken place and the learner having modified his or her existing
understanding in some way, he or she is unable to apply his or her extended understanding
to the original problem. This inability to use extended understanding may have many causes
such as inappropriate or insufficient activity at the inner layer possibly due to a lack of
identified purpose to the folding back where the learner has reacted to a teacher intervention
without fully appreciating the need to do so. In such cases although the learner may have
broadened or modified some aspect of his or her understanding at an inner layer he or she
has not and is not able to extend it and thus the particular local instance of folding back has
not facilitated his or her growth of understanding in a more global sense.

Folding back and teaching and learning

Again here it is only possible to give a brief sense of some of the conclusions of the study.
Whilst there are many implications of the research for the teaching and learning of
mathematics, I will comment mainly on the three categories detailed above.

For a teacher aiming to help his or her students to progress mathematically, there
seems to be a real danger of the teacher attempting to provide too much guidance, through
explicit, intentional interventions, which often do not result in an extended understanding
although they may of course result in the continued ‘doing’ of mathematics. Instead, it is
the subtle and exploratory interventions, intentional yet unfocused which seem to provide
the kind of guidance needed to aid the growth of understanding and so assist the learner in
achieving his or her potential level of growth. The study highlighted the importance of the
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provision of a ‘thinking space’ for learners to develop their self-awareness, and for the teacher
intervention to be a trigger for this rather than merely a directive about what to do. Also, the
teacher often has a part to play in ensuring that the learner can apply his or her extended
understanding to the original problem. Although here, the intervention is considered to be
provocative in form there is still a need for the teacher to be closely ‘attuned’ to the actions
of his or her students and to be able to make appropriate interventions as needed and to
clearly be aware of the purpose of these.

The depiction of the action of ‘collecting from an inner layer’ is a significant contribution
of this study, and is a form of folding back which has particular implications for the teacher.
The notion of a learner ‘reading anew’ some aspect of his or her inner layer understandings,
in light of a newly encountered need, provides a way of accounting for what might initially
appear to be a lack of understanding. The need of a learner to fold back and to re-evaluate
what he or she already knows, as opposed to being able to instantly recall the required
understanding is important both for the learner and teacher.

A recognition that a learner who is engaged in collecting is not necessarily stuck, that
he or she does know how to proceed, but does not have the necessary understanding
immediately accessible, provides teachers with an opportunity to consider the
appropriateness of their actions in facilitating the process of collecting and of making this
effective for the learner. A teacher who can legitimise and help to facilitate collecting in his
or her students would seem able to help their mathematical understanding to continue to
grow. Certainly, collecting is for some students a particularly powerful mechanism for
enabling growth, and one which they seem to depend on. One participant in the study, Ann,
a student of relatively lower ability in terms of the mathematics she is working on, constantly
needs to fold back and collect relevant earlier understandings to use in new more
sophisticated ways. For her, collecting often involves the physical act of looking through a
book, of searching through papers, and of articulating the context in which she last used the
appropriate piece of mathematics. Without the legitimacy to do such things, it would seem
that Ann would frequently be unable to collect successfully and would become
mathematically stuck. However, a teacher who actively encourages the use of books, notes
and the accompanying discussion and talk can help students to make collecting an effective
act, and possibly a more efficient one.

There is no suggestion in this study that a teacher should ‘stand back’ from the workings
of a learner and deliberately not be involved. Indeed enactivism recognises that the teacher
is already implicated in the growing understandings of the learner. This research suggests
that it is important for the teacher to actively participate in acts of folding back, but to
recognise the possible effects of his or her interventions. In many of the cases of collecting
identified in this study, an intervention to help identify where a student might find the
mathematics he or she seeks to collect ( a ‘mathematical signpost’) could make the process
more efficient and perhaps less frustrating for him or her. Set beside this though must be an
awareness of the possible danger of telling, and the potential for occasioning not collecting
but a discontinuity in the growth process.

Folding back, through the notion of different kinds of interventions, provides a way
of talking about how learners can be helped both to engage in an act of folding back and to
make this act an effective one. The notion of effective folding back is a key idea of this
research. The fact that to merely engage in folding back is not necessarily a guarantee of
continuing growth is significant and has implications for the teacher and learner of
mathematics. The definition for folding back includes the notion of the learner being ‘self-
aware’ of his or her understanding and of this awareness informing the subsequent actions.
This research strongly supports the importance of the learner being self-aware of the nature
of his or her existing understandings if the folding back is to be effective. A learner must not
only recognise, or be made aware of the need to fold back, but must also be able to fold back
in an appropriate form and then engage in appropriate inner layer actions. Finally, he or she
must be able to use this thickened understanding to work on the original problem. To fold
back with an effective outcome is potentially demanding for the learner, and as this research
has demonstrated, he or she may encounter difficulties at any stage of the process. For folding



CMESG/GCEDM Proceedings 2000 • PhD Report

146

back to be effective, in all of the different aspects, the facility of a learner to continually be
aware of what he or she is doing, and why, is of crucial importance. This awareness can
inform every action of the learner while folding back, and help to keep these actions related
to, and applicable to, the initial problem. Where this awareness, at any stage, is not present,
although folding back can still occur, it is often ineffective, or ‘thin’ rather than ‘thick’, to
extend the language of Pirie and Kieren. In such situations there is again clearly a role for
the teacher. Carefully worded questions or suggestions, perhaps simple and subtle in form
can help to make ineffective acts of folding back become effective.

Conclusion

Mathematical understanding and its growth will always be a complex and perhaps unpredictable
phenomenon, yet if we are to teach children mathematics effectively we owe it to them to
understand as much about the ways they are thinking as we can. As Pirie (1996) writes:

We can assess with ease the “what” but not the “how” of the learning taking place as
students struggle to construct a path to understanding. We have standardized and accepted
ways to photograph their arrival, but not the means to film their journey. Yet if we seek
effective teaching we need ways of recognizing the paths that the students are laying
down and a willingness to explore with them and to implicate ourselves in their
constructing. (Pirie, in Davis 1996, p. xv)

This study offers a way of looking at and thinking about at least a part of the
mathematical journey of a learner. It focuses on the ‘how’ of learning and de-constructs one
element of the struggle of the learner. It provides a way of clearly recognising and identifying
some steps on the path of understanding and offers to teachers some ways to consider their
own implicated involvement in the journey.

Note

1. Von Glasersfeld (1987) talks about ‘operative awareness’ and ‘self-reflection’ and suggests
that ‘what the mathematics teacher is striving to instill into the student is ultimately the
awareness of a dynamic program and its execution.’
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La place et les fonctions de la validation chez
les futurs enseignants des mathématiques au secondaire

Claudine Mary
Université du Québec à Montréal (UQAM)

1. Problématique et objectifs de recherche

Une recherche préalable à celle que nous rapportons ici, à laquelle nous avons participé, a
montré qu'un programme de formation de futurs enseignants des mathématiques pouvait
amener les étudiants à envisager les mathématiques et leur enseignement sous un angle
moins formel et moins procédural (Bednarz, Gattuso, Mary, 1996). Les auteures pouvaient
constater que les étudiants étaient devenus particulièrement sensibles à donner du sens à
l'activité mathématique et à faire comprendre. Toutefois, plusieurs recherches soulignent
des difficultés de futurs enseignants relativement à la preuve, non seulement leur peu
d'habiletés en démonstration, mais aussi le recours à des vérifications empiriques et leur
acceptation comme preuve (Knuth & Elliot, 1997; Moore, 1994; Martin et Harel, 1989). Il
nous est apparu alors pertinent de nous interroger sur la rigueur qui accompagnait le projet
de sens que semblaient avoir les futurs enseignants, objets de l'étude citée plus haut. Nous
nous sommes posé la question suivante: quelle place et quelles fonctions ces étudiants
donnaient-ils à la preuve ou à toute autre forme de validation? Pour répondre à cette ques-
tion posée, nous avons analysé les leçons de quinze étudiants, préparées lors de leur stage
d'enseignement. Notre objectif était de caractériser la validation dans leurs leçons, d'après

1) sa place, lieu et importance,
2) ses fonctions, et
3) les arguments utilisés.

Nous identifions une étape ou un argument de validation dans une leçon quand l'enjeu de
l'étape ou de l'argument est l'acceptation d'une règle, d'un résultat ou d'un énoncé.

Les stagiaires devaient présenter par écrit au moins trois leçons consécutives et filmer
au moins une leçon en classe. Ce sont ces planifications et prestations que nous avons
analysées. Nous nous sommes limitée aux leçons portant sur des objectifs identifiés comme
algébriques ou préparant à l'algèbre dans le programme d'études du Ministère de l'éducation,
au premier cycle du secondaire. Nous voulions étudier la validation avant que la preuve,
démonstration, ne soit introduite comme méthode. Nous avons choisi l'algèbre parce que le
domaine est peu exploré. La recherche apporte donc aussi un éclairage particulier sur la
validation en algèbre, en classe.

2. Grille d'analyse

Pour analyser les leçons, nous avons jumelé les idées maîtresses de plusieurs didacticiens.
Margolinas (1989) fait l'hypothèse de l'existence de divers projets de validation dans la classe
de mathématiques. Balacheff (1988) identifie différents types d'arguments chez les élèves et
envisage des niveaux. Joshua et Joshua (1987) caractérisent la validation qui accompagne la
transmission ou la construction d'un modèle en sciences expérimentales et, en parallèle,
considérent la validation en classe de mathématiques. Barbin (1989), Hanna (1989) et de
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Villiers (1990), entre autres, identifient différentes fonctions de la preuve. Ces auteurs ont
caractérisé la validation et plus spécialement la preuve selon des points de vue différents.
Le nôtre a consisté à caractériser la validation dans les leçons des étudiants, à la lumière des
caractérisations déjà faites, mais aussi à la lumière des intentions des stagiaires, énoncées
dans leurs planifications, et des interactions de classe.

3. Résultats : projet de vraisemblance et fonctions didactiques

Dans ce qui suit, nous présenterons quelques résultats à partir de trois exemples illustrant
trois types d'activités de classe à objectifs très différents. Dans le premier exemple, une
stagiaire introduit une règle de manipulation d'expressions algébriques, à l'aide de matériel
concret.

Argumentation lors de l'introduction d'une règle

La règle suivante est extraite de la planification d'une stagiaire:

Pour additionner des expressions algébriques, il suffit d'additionner les termes constants
et les termes contenant la même variable ensemble. Ces termes sont appelés termes
semblables. Cela revient à additionner les coefficients numériques des termes semblables
et additionner les termes constants.

Le déroulement planifié se résume comme suit. Il faut effectuer l'opération (4x + 5) + (2x + 3).
Les deux binômes sont illustrés avec des jetons de formes différentes (Figure 1).

FIGURE 1

La stagiaire ayant précédemment présenté ce que représentait chacun des jetons, les élèves
constatent qu'on a 6x + 8. L'égalité (4x + 5) + (2x + 3) = 6x + 8 est écrite au tableau. L'expérience
est répétée pour d'autres sommes à effectuer comme (x + 9) + (3x + 2) = 4x + 11 et
(3x + 3) + (x + 6) = 4x + 9. Les nouvelles égalités sont écrites sous la première. Puis, à partir
des égalités écrites au tableau, les élèves doivent trouver la règle énoncée plus haut. Lors de
la prestation, le déroulement est semblable.

Le mode de validation utilisé ici consiste en expériences répétées. C'est le mode le plus
utilisé par les stagiaires. Il est accompagné ou non d'une représentation visuelle. Ces
expériences ont un potentiel de preuve, dans la mesure où elles illustrent les propriétés des
objets mathématiques en jeu. Toutefois, nous pensons que ces expériences sont utilisées
pour leur efficacité à produire des résultats et non pour leur potentiel de preuve.

Dans le cas présenté, que constatons-nous? Le matériel permet de trouver la réponse à
l'opération d'addition des deux binômes et de poser l'équivalence algébrique. La règle, qui
est énoncée après, semble résulter de la comparaison des expressions composant l'égalité, le
but visé étant alors de faire constater ce qui se passe avec les lettres et les chiffres dans les
expressions. La répétition des exemples est alors nécessaire pour que soit envisagée cette
règle. Si le matériel permet d'illustrer les propriétés des opérations, celles-ci ne jouent aucun
rôle explicite dans l'argumentation. C'est comme si le matériel ne servait qu'à trouver le
résultat dont on a besoin pour produire la règle, qui elle n'est que constat sur ce qui arrive
aux "x" et aux chiffres. Mais, le recours au matériel appelle à l'évidence et rend inutile le
recours à une argumentation d'un autre niveau!

Toutefois, nous avons surtout cherché à voir si les propriétés des opérations guidaient
le choix des illustrations ou si les propriétés des opérations étaient en filigrane des choix
didactiques effectués. Nous avons constaté que les étudiants référaient généralement peu
aux propriétés des opérations dans leurs planifications et dans leurs prestations et que les
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règles de manipulations des expressions algébriques étaient souvent traitées
indépendamment de celles-ci, sauf en ce qui concerne la distributivité de la multiplication
sur l'addition, vue comme une procédure de calcul. Dans les planifications, la majorité des
stagiaires a formulé explicitement le projet de donner du sens aux règles de manipulations
algébriques. Certains parlent même de fonder ces règles. Les observations que nous venons
de rapporter, nous laissent penser que les étudiants poursuivent alors un projet de
vraisemblance. De plus, si l'étape de production de la règle vise son acceptation, elle vise
surtout à ce que les élèves y arrivent.

Le deuxième exemple que nous présentons illustre un autre type de leçons que celui qui
vient d'être décrit partiellement. Dans ces leçons, les élèves ont comme tâche de construire
une formule. Les validations que nous observons alors sont diverses. Le cas décrit ci-dessous,
montre des validations différentes jouant vraisemblablement des rôles différents.

Argumentation lors d'une activité de construction de formule

Voici le problème que propose le stagiaire aux élèves:

Mon oncle Guy est propriétaire d'un restaurant. Il cherche une façon plus efficace et
rapide de compter le nombre de chaises autour d'un agencement de tables. Sa méthode
habituelle consiste à les compter une par une. Les tables sont toujours disposées en lignes
droites et collées les unes aux autres. Elles ne forment jamais de "L" ou de "T". Tu dois
aider mon oncle en lui donnant une méthode pour compter le nombre de chaises qu'il y
a si on connaît le nombre de tables. (...)

Les extraits qui suivent proviennent de la prestation, enregistrée sur bande vidéo. Les élèves
exposent les formules trouvées à tour de rôle.

Échange avec un élève:

Stagiaire: Dis-moi ce que tu as comme message? En mots.
Élève: T'as 39 tables, là tu multiplies.
Stagiaire: Non, non, il faut que ce soit général, ça c'est un cas particulier.
Élève: Nombre de tables fois 2 parce que 2 tables de chaque côté plus 2 parce que tout le temps 1 de

chaque côté.
Stagiaire: Comment tu écrirais ça avec des symboles?
Élève: m fois 2 .
Stagiaire: m fois 2 . [...] plus 2.

Échange avec un autre élève:

Élève: J'ai fait m fois x moins 2
Stagiaire: m c'est quoi
Élève: 39
Stagiaire: m c'est quoi? ton nombre de tables?
Élève: oui
Stagiaire: x c'est quoi
Élève: le nombre de chaises ... +2 ...
Stagiaire: Le nombre de chaises est-ce que tu sais combien il y en a?
Élève: Ils disent qu'il y en a 4
Stagiaire: As-tu fait un dessin?
Élève: Si on prend l'exemple de 3 tables, il y en a 1 à chaque bout, il y en a une à chaque table d'un côté

et d'l'autre bord avec. T'imagines qu'il y en a 39 comme ça.
Stagiaire: 39 c'est quoi?
Élève: Le nombre de tables
Stagiaire: en mots, 39, c'est ton nombre de tables.
Élève: C'est ça 39 fois 2 plus 2
Stagiaire: en mots ... ton nombre de tables
Élève: fois 2 plus 2
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Dans ces extraits, nous constatons que les élèves expriment leur formule de manière générale,
en les justifiant. Par exemple, dans le deuxième échange, l'élève fournit une explication
générale (caractère gras), bien qu'articulée sur le cas particulier de 39: l'élève part d'un
exemple de trois tables pour changer tout à coup pour 39 tables. Le nombre de tables, 3 ou
39, n'est pas important. Les explications des élèves s'appuient sur les propriétés générales
de la situation et, dans ce sens, peuvent constituer une preuve de la validité de la formule. Il
n'est pas sûr, toutefois, que le stagiaire accorde un statut de validation à ces explications. En
fait, nous voyons bien que le stagiaire veut une formulation générale de la méthode utilisée
mais il ne s'agit pas encore de valider cette méthode. En effet, ce n'est qu'une fois toutes les
formulations produites que le stagiaire annonce une vérification des formules. Cette
vérification apparaît alors en rupture avec les explications des élèves, comme le montre
l'extrait qui suit.

Deux formules ont été produites par les élèves. La vérification a d'abord été effectuée
pour une table. Elle se poursuit ensuite pour 3 tables:

Le stagiaire dessinant 3 tables: J'ai 3 tables, ici. Est-ce que ça fonctionne?
Un élève: 3 tables ça fait 8 personnes
Un autre élève: n fois 2.
Stagiaire: n vaut quoi ?
Le même élève: n, nombre de tables.
Stagiaire: Ça fait combien?
Le même élève: 3 ? 2
Un autre élève: 3 fois 2, 6, plus 2, 8. (...)
Stagiaire: Celle-là fonctionne. Est-ce que celle-là fonctionne?
Les élèves effectuent le calcul: Oui !
Le stagiaire montrant le dessin de 3 tables au tableau: On a obtenu 8 ici. Ça fonctionne aussi.

Avec ça, ça marche, mais avec ce que t'as obtenu, 3 par tables ça fonctionne pas.

La vérification consiste à comparer la réponse obtenue par calcul, à l'aide de la formule,
avec la réponse obtenue préalablement par un autre calcul ou en regardant sur le dessin.
Lors de cette vérification, la régularité qui permet de généraliser la formule n'est pas mise
en évidence par le stagiaire et la vérification n'a pas de valeur générique, contrairement aux
justifications des élèves dans l'étape qui précède cette vérification. Alors que les élèves
utilisaient une explication générale, à partir d'un exemple générique ou d'une expérience
mentale, le stagiaire compare des réponses. C'est le "8", dans l'extrait ci-dessus, obtenues
par calculs ou sur dessin, qui est vérifié. D'une part, il semble que le stagiaire ne reconnaisse
pas dans les explications des élèves des arguments de validation. D'autre part, on peut
penser que ces deux validations, celles des élèves et celle du stagiaire, n'ont pas la même
fonction! Outre le fait que les arguments utilisés soient différents, ces validations n'ont pas
les mêmes caractéristiques: l'une appartient à l'étape de formulation et l'autre explicitement
à l'étape de vérification; l'une se passe entre le stagiaire et un élève, l'autre est collective;
l'une appartient à l'élève et l'autre est sous le contrôle du stagiaire; l'une rend compte de la
démarche de construction de la formule et l'autre, explicitement, sert à déterminer les
formules à retenir en éliminant celles qui ne produisent pas le résultat désiré.

L'étape de vérification était prévue par le stagiaire, dans sa planification, mais, la
vérification se rapproche alors de celle utilisée par les élèves lors de la prestation. Il y a donc
un glissement d'arguments de validation reposant sur les propriétés générales dans la
planification, vers des arguments reposant sur des vérifications ponctuelles de réponses,
dans la prestation. Ce glissement nous laisse penser que l'étape de vérification n'a pas que la
fonction de valider les formules; elle contribue aussi à la gestion de l'activité mathématique
en permettant de disposer collectivement des productions individuelles des élèves.

Un troisième type d'activités a été analysé. Dans ces activités, les élèves ont comme tâche de
se prononcer sur la vérité d'un énoncé.



Claudine Mary • La place et les fonctions de la validation

151

Argumentation pour déterminer si un énoncé est vrai

Ci-dessous, nous présentons deux énoncés qui ont été proposés aux élèves; ceux-ci devaient
décider si ces énoncés étaient vrais ou faux. Les élèves présentent leur solution au tableau.

Énoncé: Pour tout nombre s, s + s = s2.
Élève1: On a  s + s  =  s2.

2 + 2      2 x 2
       4  =  4

Stagiaire: C'est vrai. Mais on dit bien "pour tout nombre". Ici on a un exemple où c'est vrai. Est-ce
qu'il n'y aurait pas un autre exemple où ce serait faux?

Élève: Si on remplace s par 6.... 12 = 36
Stagiaire: ... Non, c'est faux. Quelle aurait dû être la vraie réponse pour s + s?
Elève: 2s.
Stagiaire: On va vérifier: 2 x 6 = 12, 12 = 12 donc c'est vrai!
Énoncé: Pour tout nombre t, 2t + 3 = 3 + 2t.
L'élève n'a pas fait d'exemple.
Stagiaire: Oh! C'est pas complet, on n'a pas remplacé par un ...
La stagiaire s'interrompt et poursuit: On pourrait dire que c'est vrai dès le départ. Pourquoi c'est

vrai? Par quelle propriété?
Élèves: la commutativité ...
Stagiaire: On peut remplacer par 2, 2 + 3 = 3 + 2, 5 = 5. Vrai.

Comme dans le cas précédent, nous constatons une validation par la réponse. Nous
constatons que l'énoncé est reconnu comme vrai une fois la vérification exécutée sur un cas
particulier et que cette vérification suffit pour conclure. Nous constatons que la vérification
numérique a un statut privilégié par rapport aux propriétés et que les élèves ne sont pas
interrogés sur la généralité du résultat lorsque l'énoncé est vrai. Nous avons observé, à
quelques reprises, que des stagiaires utilisent un exemple pour justifier un énoncé de la
même manière qu'ils utilisent un contre-exemple pour l'invalider et que les contre-exemples
ne sont pas l'occasion de comprendre. La fonction de ces validations est bien plus d'invalider
que de valider. Par ailleurs, l'analyse du manuel utilisé et la situation de l'exercice présenté,
dans la séquence des exercices proposés, nous laissent penser que l'exercice devient une
occasion d'améliorer les habiletés des élèves à évaluer numériquement des expressions
algébriques, bien plus que de développer un esprit critique.

4. Conclusion

L'analyse des résultats montrent que le projet de sens des stagiaires est, pour plusieurs, un
projet de vraisemblance. De plus, ces exemples montrent que l'étape de validation peut
poursuivre d'autres objectifs que celui de valider les règles, résultats ou énoncés. Pour
l'ensemble des leçons, nos analyses nous ont permis d'identifier deux catégories de fonctions
pour ces étapes: il y a des fonctions plus strictement liées au besoin de validation de l'objet
mathématique et des fonctions liées davantage à la présentation des contenus et à la pro-
gression du groupe-classe. Ces fonctions de la validation peuvent varier selon la place des
étapes dans le déroulement de la leçon.

Par exemple, les validations qui ont lieu dans une période d'introduction à un concept
pourraient davantage vouloir faire comprendre et faire partager la compréhension alors
que celles qui ont lieu en conclusion pourraient se préoccuper surtout d'efficacité.
L'identification de fonctions didactiques de la validation nous a permis d'apporter des ex-
plications à certains phénomènes observés en classe, notamment aux glissements des argu-
ments de validation dont nous avons parlé plus haut. La reconnaissance de ces fonctions
enrichit notre réflexion sur les contraintes qui pèsent sur la validation en situation de classe.
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Mathematics Knowing in Action: A Fully Embodied Interpretation

Elaine Simmt
University of Alberta

Within the North American education system metaphors of mind and human understand-
ing are commonly derived from our understanding of computers and information process-
ing (Sawada, 1991). In the last three decades, much of the educational research about cogni-
tion has focused on questions about the input and output of information, problem solving,
transfer of knowledge to new domains and expert/novice knowledge. In contrast, this study,
Mathematics Knowing in Action, is a view of mathematics cognition as a coemergent phe-
nomena which arises through the perceptually guided action of humans in interaction with
their environment. This view has been called enactivism (Maturana and Varela, 1992; Varela,
Thompson and Rosch, 1991). Unlike theories that view cognition as information-processing
and that suggest the goal of cognition is problem solving (Fodor, 1975, 1983; Guilford, 1967),
an enactivist theory of cognition explains how cognition is fully embodied action that brings
forth a world of significance. As well, enactivism explicitly rejects representational views of
knowledge and cognition that are assumed in most cognitivist and information-processing
models of the mind. Enactivism, as interpreted in education, is related to radical
constructivism (von Glasersfeld, 1995), in that it examines the embodied structural dynam-
ics of individuals and reflects a view of constructed realities, and enactivism is related to
social constructivism (Ernest, 1995) in that it explores the ways in which knowing is a social
act. However, enactivism differs from both forms of constructivism in its emphasis on the
coemergence of knower and knowledge through perceptually guided action (Varela et al.,
1991; Davis, Sumara and Kieren, 1996).

Purpose of the Research

Guided by an enactive theory of cognition, my research sought to characterize and explain
mathematics knowing-in-action and in doing so elaborate on enactivism as a theory for
understanding mathematics knowing. Over the course of the research a number of ques-
tions were posed:

· Where is mathematics knowing observed?
· What are the sites of interaction and sources of perturbations for mathematics knowing?
· What characterizes the mathematics that is brought forth in mathematical activity?
· In what ways is the knower brought forth in doing mathematics?
· What implications does an enactivist view of mathematics knowing have for educators?

My doctoral dissertation is an expression of my understanding of mathematics knowing as
it was shaped through researching these questions. The dissertation includes both accounts
of my observations of people’s knowing in action and models for understanding math-
ematics knowers and knowing. The dissertation begins with a story about how the research
developed out of a non-traditional mathematics education setting. In the second chapter,
the research methods are discussed with an elaboration of a “fractal” model for under-
standing research of complex phenomena. In Chapter 3 an illustration of the mathematical



CMESG/GCEDM Proceedings 2000 • PhD Report

154

actions and interactions of two parent-child pairs and interpretations from a number of
theoretical perspectives found in the educational research literature are offered as a way of
demonstrating the multiple ways in which a researcher or teacher might interpret such
mathematical activity. Enactivism, the theoretical framework for this study is introduced in
Chapter 4. Chapter 5 is used to make a distinction between understanding behaviour as
caused by features or constraints in the environment to thinking about understanding as
“occasioned” by the person’s interactions with the environment. In the sixth chapter, vari-
ous sites of interaction in which mathematics knowing can be observed are discussed. Chapter
7 is an exploration of the ways in which the knower is brought forth in mathematics know-
ing. Finally, Chapter 8 discusses how the researcher is implicated in the research and the
dissertation by discussing how this study is a fully embodied interpretation of mathematics
knowing in action. The purpose of the remaining sections of this paper is to briefly discuss
the significant elements of the research as developed in the dissertation.

Research Site and Methods

Data for my study were gathered from an extra-curricular mathematics program for parents
and children. The program consisted of ten 1.5 h sessions and was repeated six times over
four years. During that time, more than 40 children worked on variable-entry mathematics
prompts (Simmt, 1997) with one of their parents. I collected data in a variety of forms from
the parent-child sessions, including video and audio records, participants working papers
and researcher field notes. These data were transformed through the creation of transcripts
from audio tapes, still pictures from video tapes, and the integration of these with the partici-
pants’ working papers and researcher’s field notes. Then, I considered and interpreted the
verbal utterances through line-by-line analysis of the transcripts; studied body language
and intonation by viewing video tapes and still photos; and inferred mathematical forms
and objects from the participants’ actions, utterances and notations. As part of the validation
process, a group of researchers, who shared an interest in students’ mathematical under-
standing, offered their interpretations of both the primary and transformed data and of my
interpretations of the mathematical actions and interactions of the participants.

The interpretive analysis and model building was a dynamic, recursive and coemergent
process. As I made observations and interpretations, models and pieces of the theory were
shaped; as those models and pieces of theory emerged I revisited the data and new observa-
tions were made. A methodological feature of this study was a “fractal” metaphor for un-
derstanding the research process. A fractal model illustrates features of the research process
that cyclic, spiral or pyramidal metaphors do not; that is, the research is layered, recursive,
quasi-cyclic and self-similar at various levels of scale (see figure 1). This model proved to be
useful because the theoretical framework of enactivism demanded a method with which I
could attend to a “whole” in all of its complexity, at the same time as acknowledging that I
could observe only fragments of that whole at any point in time (Simmt and Kieren, 1999).
Fractals offer a way out of this dilemma since they point out the self-similar features of an
“object” at various levels of scale.

FIGURE 1.  Model of the fractal-
like research methodology
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Interpreting Mathematics Knowing-in-action

In this dissertation, illustrative cases of parents and children, who together engaged in math-
ematical activity, were used to study mathematics knowing in action. The research demon-
strated that students are more than problem solvers; they are fully embodied knowers (Simmt,
1999) who bring forth worlds of significance through their actions and interactions (Simmt,
1996a). Specifically, mathematics knowing is found in personal thought, social relationships,
and cultural forms, all at once.

Because it is difficult in such a brief paper to report on a study like this one, which was
constructed from extensive qualitative data, without presenting some of that data, a vi-
gnette created from the interactions of a parent-child pair is included here. In the vignette,
the actions and interactions of a mother and her son from one session of the parent-child
mathematics program are revealed. The parent-child pair worked for over an hour trying to
solve the “problem” posed in a story that was read to them. The vignette serves two pur-
poses: the first is to offer an illustration of the nature of the parent-child activity that in-
formed this study, and the second is to contextualize the observations and explanations
made in the subsequent discussion.

The Mathematical Actions and Interactions of a Mother and Her Son

The night this event took place, we read from a children’s story, The Token Gift, written by
Hugh William McKibbon and illustrated by Scott Cameron (1996). It is a story about how
the game of chess (Chaturanga as it was called in the story) was invented, and the pleasure
it brought the king and his people. In the story, the king was so grateful for the game that he
insisted the man who invented it name a reward. The man ask for one grain of rice to repre-
sent the first square of the game board, two for the second, four for the third, eight for the
fourth and so on, doubling each time until all of the sixty-four squares were accounted for.
At this point in the story, the children and parents were asked to figure out how much rice
the king would need to fulfill the request. Each participant had a sheet of 2 cm x 2 cm graph
paper and I suggested they mark off an 8 x 8 grid to represent the chess board.

Desie, and her son, Joss, worked together as they considered the prompt offered by
the story. They shared the task quite simply; to begin with, Desie asked Joss for the number
that should be written on each of the squares. He quickly computed each double, in his head,
and she recorded it on the graph paper.

“So the first one is — How many grains of rice
go here?” the mother asked her son as she
pointed to the square at the top left corner of
their ‘chess board’.

“One,” replied the boy.

“Okay. How many go here, if we are doubling
it?” She asked pointing to the next square.

“Two.”

“So what is doubling two?”

“Four.”

“What’s doubling four?”

“Eight.”

“Double of eight?”

“Sixteen.”

“Double of sixteen?”

“Um, thirty-two.”

5

10

15

“Good. And double of thirty-two?”

“I have this idea.” Their rhythm was inter-
rupted.

“Oh. Are you trying to figure something out,”
his mom responded.

“Sixty-four,” said the boy after just a brief
pause.

“Good! And the double of that?”

“We are in the hundreds.”

“We are. We are,” his mom nodded.

The boy hesitated, “Do you have a calculator?”

It didn’t take long and the doubling was even
too much for the calculator. Desie and Joss spent
the next 40 minutes trying to make sense of
big numbers and the nature of the big number
that would be needed for the 64th square.

20

25

30
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FIGURE 2.  Desie and Joss’s working paper

Using a calculator triggered Joss’s first diffi-
culty with the task. His mom’s response was to
explain the difference between how to multiply
with a calculator and how to add with one.

“Times?” Joss frowned as he examined the cal-
culator.

“Times 2,” she replied.

“I don’t know what a times looks like.”

“This one right here,” she said as she reach over
and touched the calculator. “You haven’t started
times in school yet have you?”

“No,” said Joss as he pressed the keys and con-
tinued. “1 2 8 times 1 2 8—”

“No, no, sweety. If you are doing— It can’t be
that. It has to be 128 times 2 or 128 plus 128.”
She turned the calculator toward herself and
pressed the keys.

“That’s what I had.”

“You didn’t times though.” Without laboring
the point she continued to compute the sums,
“256 plus 256 is 512. So 512 plus 512...”

Joss leaned over and watched his mom intently
as she operated the calculator. “This is a neat
calculator. If I had something like this I would
carry it everywhere.”

“We’re in the thousands,” Joss wiggled in his
chair and laughed. “And soon we will be in the
millions!”

“16 384 plus 16 384 is 32 768.”

“I can wait until we get right there,” he giggled
as he pointed to the last position on the calcu-
lator display.

When they did get to a million it was Desie
who commented, “We just hit a million.”

They both could see that the numbers were get-
ting bigger and bigger—in fact too big for the
calculator—but Joss did not want to stop. He
suggested to his mom that she continue in the
same way. So Desie worked on the next one.
As she was writing [13, 1072] she realized she
had put the comma in the wrong position.

“No. One hundred and thirty-one thousand,”
she said out loud as she marked the comma in
the correct place.

Joss crawled up on his chair to get a closer look
over his mom’s shoulder. “Mom, we don’t use
those,” he said as he pointed to her number
written with a comma. “The teacher told us not
to use marks like that.”

“But they make it easier to tell what you are
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doing,” she replied.

“I know, but that is what the teacher said. She
said, ‘if you see your mom and dad doing it.
They are just old fashioned’.” Joss giggled
again.

“Yea, but if you didn’t divide the numbers then
it is hard to tell what you are looking at.”

“No. I think they put—like— Instead they use
spaces,” he said as he sat back.

With only a few more computations Desie and
Joss came up against the calculator’s capacity
for displaying numbers and they were left try-
ing to figure out how they might proceed.

“If we had [the numbers computed] up to
there,” Desie pointed to the 32nd square, “we
would have half of it right?” She conjectured
that if she knew the values for the first half of
the chess board she could multiply by some
number and she would be able to compute with
just one computation the 64th square. How-
ever, she realized she was still stuck—the 64th
number would still be too large to compute.

Desie asked Joss again if he had any ideas how
to proceed. But Joss did not respond with a
strategy, instead he said to his mom. “Know
what? Chris [by Joss’s assessment the smart-
est boy in his class at school] taught us this
math question that is a regular math question.
Chris said, ‘You think this is hard. I think this
is easy.’ I’m like, ‘Chris. We might think it is
easy too.’ Then he writes down, 2 times

24. I’m like, ‘Chris that is easy.’”

“So he thought you didn’t know it, hey?” Desie
replied.

“It’s 48 Chris! He’s like, ‘Oh.’” Joss said with
a grin.
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If the mother and son’s actions described above are observed simply from the point of view
that they were solving the particular problem posed in the story, then there is a risk that the
complexity, complicity and contextuality of their knowing will be overlooked. On the other
hand, an enactivist interpretation of this mother and son’s mathematics knowing demon-
strates that, at once, their knowing involves personal thought (for example, lines 20–50),
social relationships (lines 106–117) and cultural forms (lines 54–86). Their bodies are both
the source and intersection of the multiple dimensions of their experience; indeed, their
mathematics knowing is a fully embodied phenomenon (Simmt, 1998).

Fully Embodied Knowing

In this exploration of the mother and son’s mathematics knowing, the prominence of the
body as both a physical structure as well as an experiential one is striking. The tone of their
voices, their utterances (line 26, 66), their giggles and laughter (58–60), the position of their
bodies (54–55, 77), and the use of their hands to point and gesture (lines 62–64) reveal the
significance of their physicality of their mathematics knowing. At the same time, the invita-
tions to each other to participate (lines 1-4, 69–70, 105), the boy’s references to others (84–86,
106–117), and their respect for the actions and utterances of the other (18–21, 22–26, 54)
suggest that their mathematics knowing is not separate from their social being. In part, their
relationship with each other is fostered and challenged through mathematical activity. Fi-
nally, the ways in which their behaviours are co-referenced to the patterns of acting that we
call mathematics indicate that they are brought forth as members of a culture at the same
time as they bring forth that culture. The numbers that are significant for them (lines 25, 58
and 66), the notation that they used (lines 70–90) and the technologies that are valued (lines
54–57) are all cultural forms. Through observing the mother and son’s various mathemati-
cal actions and interactions, it is clear that doing mathematics is much more than simply
solving a math problem, it is the bringing forth of their worlds of significance which is
made possible through the personal, social and cultural dimensions of their experience.

Models for Observing Mathematics Knowing

Interactional Dynamics

As the actions of the people in the vignette indicated, a person’s structure determines any
world building actions which he or she takes but it is the coupling with the environment
(recurrent inter-action) which constitutes the space for such actions and provides the possi-
bilities for them (figure 3). Together, the person and the environment co-determine any in-
teraction between them; then, out of the interaction between them, there is a possibility for
modification to the person and/or the environment. With a modification to either the per-
son or the environment, a new sphere of behavioural possibilities arises for the person.

One of the key elements of an enactivist perspective is that in interaction there is potential
for both the person and the environment to change (or learn). In enactivist terms, interaction
brings forth a worlds of significance which includes both knower and known and those
worlds of significance intersect the worlds brought forth by others. This has significant
ethical implications. Our knowledge, our knowing (as it has been cast in this work), changes

FIGURE 3.  Interactional Model
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the world in which we exist. Because we are social beings, the worlds we bring forth are
intertwined with the worlds of others. Hence, when we act, our actions have the potential to
alter the worlds and possibilities of others.

Sites of Interaction and Sources of Perturbations

Given that the role of interaction between a person and his or her environment was a sig-
nificant feature of the mathematics knowing-in-action observed in the study, it was impor-
tant for me to identify the “sites” of interaction because they were the sources of potential
perturbations. From the study, four sites of interaction were observed: the interaction among
people (see for example, lines 0–25); a person’s interaction with his or her physical environ-
ment (lines 70–76); a person’s interaction with his or her own thoughts (lines 96–104); and a
person’s interaction with the interactions of others (lines 77–91).

Observing mathematics knowing in these various sites might lead one to suggest that
mathematics knowing is caused by the things found in these sites (be it an utterance, a
thought, an image or some-thing else). However, my interpretations of the data suggest that
this does not offer a satisfactory explanation for the observations. Knowing does not seem
to be caused (in the predictive sense) by some feature or aspect of the environment. Clearly,
the environment both makes possible some actions and constrains others—the mother and
child cannot do just anything (doubling is a possibility but counting is not). However, the
mother and child themselves constrain and make possible certain actions—they cannot do
what they do not know (the boy cannot multiply, since he does not know how). An interpre-
tation of the “causes” of such observed behaviours suggest that, when taken in context,
behaviours are better understood as “occasioned” by the person’s interactions with the en-
vironment. Occasioning is a mechanism by which a person interacts with relevant possibili-
ties in the environment. That interaction involves a selection of that which is relevant and
the transformation and integration of the relevant to become part of the person’s lived his-
tory (Simmt, 1996b).

Knower and Known Co-emerge

From observing the actions and interactions of this mother and son, we have learned that
knowing-in-action can be understood as enacting personal thought, social relationships and
cultural forms. Each of these dimensions of experience, at once, constrain and make pos-
sible human mathematics knowing. At the same time, these dimensions come together in
the human body and transform it. As the knower changes, the context of which he or she is
a part changes hence potentially transforming the worlds he or she brings forth with others.

My research suggests that when we humans engage in mathematical activity, that
activity intersects with our personal, social and cultural domains of our lives. In action, we
bring forth a world of significance, which in this case is called mathematics and, in doing so
we bring forth ourselves. In each act of bringing forth a world of significance and our “selves”,
we anticipated the future as our spheres of behavioural possibilities expand making pos-
sible our next utterance, movement, action, and thought. Further, because we bring forth
worlds of significance with others, what we do, what we say, and what we know makes a
difference, not only for ourselves, but for the other.

Significance to Mathematics Educators

As discussed, this research suggests that mathematics knowing-in-action is much more than
problem-solving. In fact, the people who were observed specified moment-by-moment that
which was relevant for them to attend to and problems arose out of the act of specifying the
relevant. It is significant to educational researchers that out of interactions with the environ-
ments, mathematical knowers are observed to specify the problems which have relevance
to them—they bring forth a world of significance. Just as important as solving problems is
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specifying them in the first place. Hence, placing an emphasis on “problem-solving” in
school mathematics, that is looking for the solution to a pre-specified problem, misses this
key aspect of human cognition observed in my research. The teacher needs to provide stu-
dents not with problems to solve but with prompts for mathematical activity. These prompts
can be as simple as: How many different ways can you show that 28 x 35 = 980? Which
would you rather have for allowance, a dollar a day for a month or a cent today, two cents
tomorrow, four cents the next day doubling the amount received on each consecutive day?
It is in the students’ interactions with such prompts and with each other and the teacher
that problems will be posed and resolutions sought.

My research has led me to observe the significance of the multiple dimensions in-
volved as mathematics and mathematics knowers coemerge. A person’s thoughts, social
relationships and community are fostered through mathematical activity. At the same time,
mathematics is created by communities of mathematics knowers through their interactions
with each other, their own thoughts and the interactions of others. This view has important
implications for mathematics education because it recognizes the significance of the class-
room as a source of mathematics and mathematics knowers. This view suggests to educa-
tors that the mathematics classroom is an important site of community; a community which
coemerges from the relationships created among students and with the teacher as members
of the class share in mathematical experiences and develop their personal mathematical
understanding.
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Pourquoi enseigner les mathématiques à tous?

Bernard R. Hodgson
Université Laval

Quand je pense à la nécessité d’enseigner les mathématiques à tout le monde, je pense bien
sûr aux mathématiques en tant qu’outil, un outil d’une «efficacité déraisonnable», pour
reprendre l’aphorisme célèbre du physicien Wigner. Un outil au service de tant de domaines
de l’activité humaine, depuis les sciences naturelles jusqu’aux sciences sociales, en passant
par l’administration, l’ingénierie ou les techniques. Les mathématiques y jouent un rôle
vital non seulement en tant que langage de communication ou instrument de modélisation,
mais surtout comme véhicule de conceptualisation de notions difficilement saisissables,
voire carrément impénétrables, autrement. Elles constituent également un outil essentiel
pour le citoyen, afin qu’il puisse fonctionner au quotidien en tant que consommateur avisé
ou encore apprécier à sa juste valeur l’information quantitative dont on le bombarde sous
forme de sondages, de graphiques, de tableaux numériques.

Mais quand je pense à la nécessité d’enseigner les mathématiques à tout le monde, je
ne m’arrête pas qu’à leur aspect utilitaire. Je pense aux mathématiques pour tous en vue du
développement d’aptitudes qui, à défaut d’être l’apanage des mathématiques, ne se
retrouvent nulle part ailleurs mises en évidence de façon aussi claire et aussi percutante. Je
pense aux mathématiques comme facilitant l’acquisition d’une saine rigueur de pensée et le
déploiement d’un esprit attentif aux liens—déductifs ou autres—pouvant exister entre des
concepts a priori disjoints. Les mathématiques soutiennent le citoyen qui, face à toutes sortes
de situations plus ou moins complexes, est appelé à analyser, comprendre, prendre des
décisions, ce qui exige des habiletés à formuler et à résoudre des problèmes. Elles rendent
naturelles l’observation de régularités et l’émergence de structures, là où pouvait régner
l’informe. En favorisant l’identification des hypothèses et l’explicitation de leurs
conséquences, elles combattent la confusion ainsi que la rhétorique fallacieuse qui pourrait
s’y nourrir. Loin de brimer la créativité, cette nécessité de la rigueur en mathématiques en
constitue au contraire un ferment, la contrainte de la justification de ce qu’on avance forçant
à aller au delà de l’intuition première.

Mais quand je pense aux mathématiques pour tout le monde, je n’ai pas à l’esprit que
leurs applications multiples ou encore l’hygiène de l’esprit. Je pense aux mathématiques
comme un élément charnière dans l’évolution de l’humanité, élément qui prend ses racines
dans la plus haute Antiquité et qui se retrouve dans toutes les civilisations, parfois à des
stades de développement variés. Mais je pense aussi aux mathématiques en tant que
composante cruciale du cheminement de l’individu et comme un atout dans une carrière
professionnelle pouvant s’étaler sur quelque trente-cinq années, nécessitant par le fait même
de grandes capacités d’adaptation et d’évolution. À l’opposé d’une compétence spécifique
à courte vue ne visant que les besoins immédiats, les mathématiques se présentent comme
un élément robuste dans une formation de longue portée.

Quand je pense aux mathématiques pour tous, j’ai à l’esprit une métaphore riche et
puissante de la réalité. Non que les mathématiques soient la seule façon de saisir l’univers,
ni la plus importante ou la meilleure. Mais les ignorer revient à se couper d’une vision
fondamentale et essentielle. Je pense aux mathématiques comme un médium absolument
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unique pour voir les choses autrement, pour les mettre plus clairement en perspective les
unes par rapport aux autres. Je pense aux mathématiques pour voir des choses imperceptibles
autrement, des choses ne pouvant être appréhendées que par le biais d’une approche
mathématique. Je pense aux mathématiques comme permettant d’atteindre l’inaccessible,
tel Thalès ramenant la hauteur de la pyramide de Chéops à celle de son ombre, accessible à
la mesure.

Quand je pense aux mathématiques pour tout le monde, je pense aux mathématiques
comme antidote par excellence contre l’absolutisme, forme extrême de la violence. Je pense
aux mathématiques pour contrer la certitude crasse, malgré que la vérité mathématique soit
perçue, non sans une certaine raison d’ailleurs, comme la quintessence de la certitude. Je
pense aux mathématiques nous montrant certaines vérités, telles les vérités euclidiennes,
perdre leur caractère dogmatique et devenir des réalités parmi d’autres. Je pense aux
mathématiques comme un laboratoire d’une «culture du conditionnel», comme lieu
d’élaboration de vérités sous conditions, de vérités relatives à la présence ou non de certaines
prémisses. «Si ceci était, alors …; mais si cela était, alors …» Je pense aux mathématiques
comme permettant de cultiver la nuance et le doute, de développer le jugement et l’esprit
critique, d’aller au cœur des choses. Je pense aux mathématiques comme alimentant en fin
de compte le rêve, qui toujours, par delà les savoirs et les savoir-faire, distinguera l’homme
de la machine.

Quand je pense à la nécessité d’enseigner les mathématiques à tout le monde, je pense
à leur transformation, plusieurs siècles avant notre ère, par les penseurs grecs qui en ont fait
essentiellement les mathématiques telles que nous les connaissons. Et à la façon dont ces
penseurs se sont démarqués de leurs prédécesseurs par le rôle central accordé dans la
démarche mathématique à l’argumentation. Mais pourquoi cela s’est-il passé «en Grèce et
pas ailleurs, au VIe siècle et pas à une autre époque?», demande Léa, la jeune héroïne du
roman Le théorème du perroquet, à son mentor.

«[Parce que les penseurs grecs], répond M. Ruche, ne sont ni esclaves ni fonctionnaires
d’État, comme les mathématiciens-calculateurs babyloniens ou égyptiens qui, eux,
appartenaient à la caste des scribes ou à celle des prêtres, détenant le monopole de la
connaissance et du calcul. Les penseurs grecs n’ont de comptes à rendre à aucune autorité.
Il n’y a ni roi ni Grand Prêtre pour décider quelle sera la nature de leur travail ou pour
poser des limites à leurs études. Les penseurs grecs sont des hommes libres!»  (Denis Guedj,
Le théorème du perroquet, Éditions du Seuil, 1998, p. 179)
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Why teach math to all students?

Sandy Dawson
Pacific Resources for Education and Learning

Why teach math to all students?

My response is that I’m not sure that we should. It DEPENDS! and PERHAPS! seem to
be appropriate answers. The answer I am giving now has changed since I moved to Hono-
lulu, and have started working in the Pacific region. This move has made me question as-
sumptions that I had long accepted.

What was it about the Pacific region that caused me to question my assumptions, you
might well ask:

a. In 6 of 10 island nations, grade 8 is the upper limit of schooling.

b. In one of those states, no English, and no formal counting is undertaken until grade 4/5,
because of the cultural values of the nation. For that nation, native languages and cul-
tural traditions are more important than knowing western mathematics.

It seems to me that the answer to the question of why teach math is a values question,
and involves issues of value and culture. The answer usually given is so that people can
function in an increasingly technological world. But in the region where I work, many is-
lands are only reachable after a boat ride of 4 to 5 days. These islands have no electricity. In
the island nation of Chuuk, for example, there are 87 schools, and 63 of those are on outer
islands only accessible by boat. What the Director of Education for Chuuk said to me on my
recent trip there was that if we teach mathematics, it must be practical, it must be related to
the crafts and customs and activities children can relate to on their home island.

There is nothing in the nature of mathematics that would give an answer to the ques-
tion of why teach mathematics, so it comes down to what the culture values and what it sees
as important. Could mathematics be taught to all students, even those on remote Pacific
islands? Of course it could, but whether it should or not is an entirely different question,
and one much more difficult to answer.





Brent Davis • Why teach math to all students?

167

Why teach mathematics to all students?

Brent Davis
York University

In January 2000, Elaine Simmt asked me if I’d like to be part of a panel to address the ques-
tion, Why teach mathematics to all students? That left more than four months between my
enthusiastic “Yes!” and the conference.

I set to work immediately. As is my usual practice, I proceeded by writing notes to
myself whenever a relevant idea crossed my mind, stuffing them all into a folder that I
intended to consult shortly before the conference.

Unfortunately, when I finally sat down to sort through the file, it was clear that my
thinking around the issue was anything but consistent or coherent. The issues, the argu-
ments,  and the rationales that had collected weren’t all compatible, and some were flatly
contradictory. And so, unable to pull things together into a unified response, I chose to
frame my conference contribution as three distinct engagements with Elaine’s question.

1. Why do we teach mathematics to all students?

The question, “Why do we teach mathematics to all students?” prompts me to look for ex-
planations and justifications. It’s a query that I’ve encountered often, in policy statements,
texts, curriculum documents, and so on. It seems to be one for which there is an accepted
‘right answer.’

Sometimes that answer is presented through reference to the history of school math-
ematics. And, in fact, I think that such reference is vital if the purpose of the question is to
get at why we teach mathematics the way we teach mathematics. Senses of the co-impli-
cated historical structures of capitalism, industrialization, urbanization, and modern sci-
ence are necessary to make sense of such curriculum emphases as quadratic equations and
carpet sales.

Alternatively, the question is often answered in terms of the current social and techno-
logical contexts. Mathematics is argued to be useful to the individual: It is thought to sup-
port reasoning skills (and so contributes to the development of well-rounded citizens); it is
associated with competencies that are seen as necessary to the workplace (and, hence, it
makes sense to require calculus of potential pharmacists); it ensures that university-based
mathematicians will always have someone to teach; and so on.

The more cynically and critically minded often take issue with such rationales—at
least insofar as these lines of thought are tethered to ‘traditional’ classroom practices and
emphases. Concerns for personal subjugation, social engineering, and cultural imperialism
are common themes among the critical education group. Even so, critics often seem to be
working from a conception of school mathematics that is strikingly similar to traditional
versions. The difference is that traditional programs of study tend to be attached to a re-
vised conception of mathematical literacy—one that is more focused on flexible thought,
communication, social critique, and the like, without letting go of the cultural capital of
traditional mathematical competence.

However, these more radical responses to the question of “Why do we teach math?”
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may not be so different as they appear. While they clearly represent different ideological
takes on the issue, their critiques are generally aimed at pedagogy, not at the broader project
of school mathematics. That is, they offer different rationales—ones that are delivered with
a different passion, even urgency—but those rationales seem to rely on an assumption that
the manner of instruction (seen as problematic) can be separated from topics of instruction.
We are thus thrust into a left-versus-right, liberal-versus-conservative, personal-empower-
ment-versus-social-responsibility subterfuge whenever the issue of teaching mathematics
is engaged.

Whichever side is taken, however, the response seems to land in the same place.
Why do we teach mathematics to all students?
Because we have to: There are historical and cultural reasons that operate in the social

and societal realms, albeit that most of these reasons are often all but forgotten. Whatever
the reason, though, knowledge of mathematics is necessary for every citizen of today’s world.
It’s useful.

2. Why would we teach mathematics to all students?

The tendency to frame discussions and debates of why mathematics is taught in terms of
oppositional dyads might be interpreted as a sort of capitulation: Collectively, we seem to
be resigned to the thought that school mathematics is a permanent fixture—that is, that this
practice is not going away and, hence, the best we can do is tinker with it as it moves along.

This manner of assertion often prompts different takes on the issue of why we teach
mathematics, away from efforts to specify purpose and toward more reflective examina-
tions of the phenomenon—that is, to ask, Why teach would we teach mathematics to all
students?

This is a question that hints that we humans just might not be completely conscious of
everything that we do ... that some—and maybe most—of what we do emerges from per-
sonal and collective habit. That is, it could be taken as tacit acknowledgment that we hu-
mans are not principally reasoning beings.

It strikes me that this suspicion is at the root of the public school student’s question,
“Why are we doing this?”, so often posed in the middle of mathematics lessons. Unfortu-
nately, such inquiries tend to be answered with deflections to other times (e.g., “You’ll need
this someday.”) and other places (e.g., “It’s in the curriculum.”). However, the fact that such
answers are rarely satisfying—either to the interrogator or to the respondent—should give
us pause. Perhaps our children are onto us, aware that mathematics instruction is in a rut.
“Why are we doing this?” may in effect be one way of announcing an awareness that the
teaching of mathematics, along with most of modern schooling, is being carried along by a
momentum so great and that it has cut a swath so wide that it reduces all involved to quiet
complacency as they immersed themselves in its less-than-mindful activity. “Why would we
teach mathematics to all students?”, then, operates on the collective level in much the same
way that “Why would I do/think this?” operates for anyone who is dealing with a habit or
obsession that has lost much of its original meaning. In brief, ours is a culture that is ob-
sessed with and utterly reliant on mathematics.

Perhaps, even, ‘obsession’ and ‘reliance’ are not strong enough. It might be more ap-
propriate to describe the situation in terms of ‘addiction.’ For example, in terms of symp-
toms, consider the way that mathematics courses through the veins of virtually all cultural
activity. Try, for example, to find one item in the daily newspaper where some mathematized
notion isn’t explicitly invoked—let alone the more subtle uses of comparison, logical asser-
tion, and linear narrative that are so privileged in Western mathematized culture ... and set
aside the pervasive presence of electronic and other technologies, so utterly reliant on
mathematized technologies, that make it possible for the items to be collected by the news-
paper and for the newspaper to be brought to us. Mathematics is so present as to be like the
air around us.

This silent and invisible addiction has, over the past few centuries, supported a false
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security and a sense of great superiority—even invulnerability—in Western knowledge.
Such troubling self-assurance as much derives from as it engenders particular partialities.
To wring just one bit more from the analogy, our cultural addiction to mathematics is per-
haps most evident in the tell-tale sign that, in spite of abundant evidence to the contrary (in,
for example, the overburdening of planetary systems through mathematics-enabled tech-
nologies), there is a persistent denial that there is a problem.

The point here is not that mathematics is bad, nor that Western society is uniquely
guilty of narrow perspectives. It is, rather, that singular epistemic (or religious, or philo-
sophical) frames cannot encompass the spectrum of possible human lives. As Rorty (2000)
puts it, a specific frame is “a projection of some particular choice among those possibilities,
a working out of one particular fantasy, a picture of human existence drawn from one par-
ticular perspective” (p. 14).

I am, like everyone is, caught up in this fantasy, even as I attempt to consider the
complex question, “Why would we teach mathematics to all students?” It is a query that isn’t
really about what it seems to be asking. It is one way of expressing a suspicion of forces
unseen and a frustration at the veils and the dust that prevent any hope of a truly satisfying
answer.

On this count, there is a problem with the question that orients this writing. To pose a
question that begins with why is in some ways to suggest that we have a choice in the matter.

We don’t. Even when not made an explicit topic of instruction, our mathematics is
knitted through the structures of our being(s), and perhaps most readily apparent in our
habits of perception. The linearities, rectangularities, crisp distinctions, tidy orders, etc. of
our living spaces, narratives, interactions, hopes, etc. hint that our mathematics is one of the
most pervasive and powerful of human technologies and, hence, one of the most pervasive
and powerful constraints on Western conceptualization.

Why would we teach mathematics to all students?
Because we have to: We are creatures of habit who are caught up in complex flows of

events that are dependent on but not determined by what we do—and, in terms of what we
Westerners do, mathematics is at the core of the explanatory fantasy that is currently pre-
ferred to organize and structure experience.

3. Why should we teach mathematics to all students?

Perhaps, then, our efforts to answer the question should begin by breaking with the fantasy
that prompts it—which is not to say that we should give up on mathematics, but that we
might seek to interrogate the common sensibility that supports and that is supported by
modern mathematics. This common sensibility, this collective fantasy, it that our civiliza-
tion (and, as part of civilization, our knowledge) has a developmental structure.

An alternative fantasy might be that we do not (and can not) know where we’re going,
that we are not converging onto a totalized knowledge of the universe, and that unambigu-
ous linearized accounts of how we got here are convenient fictions. And, just as classic math-
ematics has played such a key role in the myth of a fully knowable universe, recent disciplin-
ary developments may help to structure a perhaps-more-contextually-appropriate myth.

Over the past few centuries, the contributions of mathematics (and the mathematized
sciences) to Western habits of perception have been dramatic. From the subatomic to the
supergalactic, a range of phenomena have become perceptible mainly because mathematics
has helped to predict their existence and, as such, have prompted us to look for them. Such
is the key element to perception: expectation. Most of what the reaches consciousness is
already interpreted, already selected by habits of perception, already fitted into the frames
of expectation.

It is thus not surprising that we would locate mathematics at the core of public school-
ing. All formal education begins with one group’s desire to have another group perceive
things in the same way. And mathematics is a primary enabler of current perceptual habits.

Discussions of the question, “Why should we teach mathematics to all students?”, then,
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belong in the realms of obligation and mindfulness, in the spaces of the ethical and the
moral. These are domains that, in terms of the manners in which mathematics teaching is
usually rationalized, are not always visited—a tendency that is in keeping with the privi-
lege afforded the acquisition of knowledge over the development of wisdom.

Such avoidance certainly has much to do with the character of modern mathematics.
As a domain of inquiry, mathematics has for centuries failed to consider its place in the
moral and ethical fabrics of human existence. In fact, following the Platonic separation of
the worldly from the ideal, mathematics has most often been cast as detached from, even
superior to such worries. It cloaks itself in a rhetoric of ideality and certainty, occasionally
justifying its pursuits by touching the soil of utility. However, such acts seem to come with
(at least tacit) qualifications that mathematics should not be held responsible for its applica-
tions and misapplications.

Even when discussions get past this troublesome separation of knowing from do-
ing—that is, when matters of moral import are allowed to surface—there almost always
continues to be an assumption of an inherent purity of formal knowledge. It follows that the
project of mathematical inquiry tends to be cast in terms of goodness, with some acknowl-
edgment given to the baser concerns of usefulness and cultural need. And the fact that
discussions rarely go further doubtlessly contributes to the unproblematized history of im-
posing mathematics not only onto our children, but onto the children in other cultures.

And it seems even more rare that discussions of mathematical study are framed in
terms of its complicity in a range of crises that extend (at least) from the microbial to the
planetary. Even less is it discussed for its potential to support mindfulness awareness of
such matters. In terms of the day-to-day life of a typical citizen of the Western world, math-
ematics has become part of the thrum of existence, an inextricable aspect of humanity. Rep-
resented to the masses as a more-or-less finished set of procedures, mathematics plays a
vast and shaping role in the collective unconscious ... common sense ... the ‘way things are.’
Consider such pervasive phenomena as straight roads through undulating terrains, stripped
forest ecosystems replenished with single species, the conception of time and linear and
uniform, and on and on. Such phenomena betray a conception of the universe as subject to
singular, linearizable interpretation.

That is, to a conception of the universe as essentially Euclidean. This usually transpar-
ent worldview served as the ‘neutral’ backdrop of anthropologists’ studies of other cultures
until only recently, when it was finally noticed that their reports were more expressions of
their own cultures than of the cultures they thought they were describing. In the past few
decades, there has been an emergent recognition that different worldviews are just that:
different. Not wrong or primitive or naive. Different. And there is a dawning realization
that this diversity is vital—an insight that is now commonly expressed in terms of the tre-
mendous loss of knowledge that accompanies the extinction of a language.

Such events should compel us to ask “What else are we not seeing?”, not just in terms
of other societies, but, more importantly, with regard to the more-than-human world.1 And
that is a question that should make us constantly suspicious of the habits of mind that frame
our current perceptions. In terms of the central concern of this writing, we need to be suspi-
cious of our mathematics, especially at this historical moment. We need to suspect that do-
main which, at least since Descartes’ proclaimed it as the sole route to unimpeachable truth,
has been popularly regarded at the cornerstone of solid knowledge rather than an impedi-
ment to mindful participation in the universe. Faced, for example, with environmental events
that continuously and dramatically illustrate the participatory nature of our activities, it
seems that is time for a more humble, tentative, and attentive conception of truth. In terms
of the contribution of mathematics, I would argue that we need to become more aware of
how perceptions, forms, beliefs, activities, and so on are profoundly mathematized—and
that can only happen by knowing something about mathematics.

More bluntly: If humanity, as a species, is to survive, we need to learn new habits of
perceiving the world. And that won’t happen unless we are better aware of what has been
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allowed to slip into transparency. We owe it to the world (and to ourselves, as part of the
world) to make an effort to restore a little of the hope and the wonder that were lost when
Enlightenment thinkers condemned imagination and dismissed wisdom with the imposi-
tion of the deductive argument onto all claims to truth. To return to the analogy between
personal addiction and our cultural obsession with mathematics, what is involved here is
taking that first critical step toward recovery from an addiction: admitting that we have a
problem.

Such assertions take us out of the “epistemology only” frame announced by Descartes,
maintained by analytic philosophy, and enacted in our schools. It pushes the discussion
back to the realm of being ... existence ... enchantment ... spirituality—the ontological. It is a
realization that matters of knowing and doing are always and already matters of being.

Why would we teach mathematics to all students?
Because we have to: There are moral and ethical imperatives that operate in the hu-

man and in the more-than-human realms.

Note

1. ‘More-than-human’ is borrowed from David Abram (1996). He develops it as an alternative to
the more popular terms ‘non-human’ or ‘natural.’ In contrast to such terms, ‘more-than-hu-
man’ does not separate humanity from the rest of the universe.
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Pourquoi enseigner les mathématiques à tous?

Nadine Bednarz,
Université du Québec à Montréal (UQAM)

La question posée peut être reformulée dans les termes suivants, à travers trois questions
que j’aborderai successivement: Faut-il enseigner les mathématiques à tous? Pourquoi les
mathématiques devraient-elles faire partie de la formation que devrait recevoir tout élève,
tout adulte? et, en supposant que l’on prenne pour acquis qu’il faille viser une telle forma-
tion, son enseignement à tous est-il viable?

1) Faut-il enseigner les mathématiques à tous?

On peut, a priori, répondre positivement à cette question en invoquant le fait que, sans cet
apprentissage des mathématiques, c’est tout un mode d’appréhension du monde qui nous
échapperait, et avec lui une certaine manière d’analyser les données, de juger de la validité
de celles-ci, de raisonner (de manière analytique ou synthétique, inductive, deductive ...),
d’argumenter, de généraliser, ou encore d’abstraire.... Cependant, même si l’on peut
reconnaître le bien fondé de cette activité mathématique, plusieurs rapports montrent que
tel n’est pas le cas pour beaucoup d’élèves. Après avoir suivi à l’école une formation
mathématique de plusieurs années, beaucoup d’adultes sont en ce domaine des analphabètes
fonctionnels. Pour employer ici une métaphore, empruntée à mon collègue François Lalonde,
si un apprentissage de la musique se limitait à l’apprentissage de gammes, arpèges, sonori-
ties ... l’enfant, l’adolescent pourrait-il apprécier la beauté de la musique, appréhender le
monde musical? Si, de manière analogue, les élèves abordent les mathématiques, en passant
des heures et des heures à des exercices qui ressemblent fort à l’apprentissage de gammes et
de techniques, sans jamais entendre de concerto ou de symphonie, peuvent-ils percevoir la
pertinence de cette activité, lui donner un sens?

La musique que les mathématiciens entendent est sublime! Il est bien dommage que
seuls les mathématiciens puissent assister à ces concerts (Lalonde, 2000, p 13)

Les mathématiques valent-elles dans ces conditions la peine d’être enseignées à tous? Notre
question de départ ne peut donc être abordée sans considérer la nature même de l’activité
mathématique à laquelle est confronté l’élève au cours de la formation de base.

L’école a, de tout temps, considéré que les mathématiques devaient faire partie de la
formation fondamentale que devrait avoir tout enfant, tout élève, au moins pour la forma-
tion de base1, de sorte que le curriculum a toujours intégré les mathématiques dans son
corpus obligatoire. Autrement dit, l’institution scolaire ne s’est jamais posée la question du
caractère nécessaire de cet enseignement, alors qu’une telle question se pose par exemple
pour l’enseignement de la musique, du théâtre, ou encore de la philosophie, même si à bien
des égards ils peuvent être tout aussi pertinents. Nous sommes donc amenés à constater
que l’enseignement des mathématiques occupe dans la hiérarchie des savoirs scolaires un
statut privilégié.

Poser la question du «pourquoi enseigner les mathématiques à tous» revient ainsi à
interroger ce présupposé, autrement dit à se demander quelle est la pertinence de cet
enseignement qui semble pour beaucoup aller de soi.
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La question initiale peut alors être reformulée de la manière suivante:

2) Pourquoi les mathématiques devraient-elles faire partie de la formation que devrait
avoir tout élève, tout adulte?

Je me suis amusée à analyser brièvement, dans les différents curriculums d’études qui sont
apparus au Québec, ou encore à travers ce qu’en disaient les didacticiens2 de l’époque, com-
ment on justifiait la pertinence de cet enseignement des mathématiques. La brève analyse
qui suit nous montre que la réponse à cette question, à caractère très idéologique, varie à
travers le temps, en fonction des priorités sociales accordées à l’institution qu’est l’école.

Quelques éléments de réponses données par les programmes successifs à la ques-
tion de la nécessité d’un enseignement pour tous

Pour rendre compte adéquatement de la façon dont on a justifié la nécessité d’un
enseignement des mathématiques à tous, il serait juste de conduire une analyse systématique
des programmes, en situant le contexte social plus large qui donne sens à leur évolution3.
Notre intention est ici simplement d’évoquer, un peu de manière impressionniste, quelques
unes de ces justifications, avant tout à titre indicatif.

Voici comment l’on justifiait au début du siècle l’enseignement de l’arithmétique, dont
on reconnaissait la nécessité pour tous.

On enseigne les mathématiques à l’école primaire pour apprendre à l’enfant à calculer
facilement et sûrement toutes les questions de nombre qui se présentent dans le cours
ordinaire de la vie. (Mgr Ross, 1919, p. 278)

C’est ici, avant tout, l’utilité pratique de l’arithmétique qui apparaît un élément décisif.
Cette visée «utilitaire» se reflétera dans les pratiques que l’on cherchera à favoriser dans
l’enseignement, à la fois dans le contenu privilégié (le contenu mathématique abordé est
limité à l’apprentissage de l’arithmétique, de la mesure, de la comptabilité; les problèmes
sont avant tout pratiques, leurs données doivent être exactes et varies ...), et dans la manière
dont on propose de l’appréhender (voir Bednarz, sous presse).

Toutefois, lorsqu’on s’attarde aux propos des pédagogues de cette époque, on retrouve
également mis en évidence, même si c’est de manière moins prépondérante, un autre
avantage éducatif accordé à l’enseignement des mathématiques, celui d’un lieu possible où
exercer la réflexion et le raisonnement. Ainsi Mgr Rouleau parle de développer le
raisonnement juste, de cultiver ce raisonnement, de fortifier le jugement ...

L’étude de l’arithmétique développe toutes les facultées, mais elle a pour but particulier
d’habituer l’intelligence à raisonner juste. Le maître doit donc s’adresser plus
particulièrement à la raison, suivre la méthode et employer les procédés propres à cultiver
le raisonnement. C’est ce qui ne se fait pas très souvent. On s’adresse surtout à la mémoire.
(L’Abbé Rouleau, Magnan et Ahern, 1904, pp.117–118)

Une certaine fonction culturelle associée à l’enseignement des mathématiques, détachée de
son caractère utilitaire et pratique, est ainsi portée à l’attention.

Il y aurait pourtant intérêt à fixer la juste portée de l’arithmétique au point de vue de la
seule culture générale; à démontrer que, si elle exerce et développe les facultés qu’on
indique, et d’autres qu’on n’a pas nommées: la mémoire, l’imagination, la volonté, elle ne
le fait que si on l’enseigne d’une façon raisonnable et rationnelle, c’est-à-dire, à la grande
lumière de certaines théories générales. (L’abbé Maurice, 1925–1926, pp. 4–5)

et plus loin, il reprendra cette même idée

Je tiens donc à dire, d’une façon explicite, qu’on ne doit pas négliger de soigner la culture
générale des élèves qui est grandement aidée, favorisée, par l’étude de l’arithmétique. Je
n’exige pas qu’on pense sans cesse à cette fin indirecte, médiate: je ne demande pas qu’on
en fasse un but principal, mais simplement qu’on ne l’oublie pas, qu’on ne fasse rien qui
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puisse empêcher de l’atteindre, qu’on s’impose même de louables efforts pour y arriver.
(L’abbé Maurice, 1925–1926, p. 7)

D’ailleurs il est intéressant à ce propos de lire ce que l’on disait à cette époque sur l’algèbre
et son enseignement.

Peu de personnes dans notre province ont besoin d’une connaissance, même élémentaire,
de l’algèbre pour remplir les devoirs de leurs charges, et, cependant, il n’est permis à
personne de commencer l’étude d’une profession avant d’avoir subi avec succès l’examen
sur cette matière. Pourquoi exige t-on ainsi de ceux qui se destinent aux professions la
connaissance d’un sujet qui ne paraît avoir aucune utilité pratique? Parce qu’on suppose
que pour réussir dans une profession, il faut avoir une intelligence cultivée et qu’il est
généralement admis que l’étude de l’algèbre (si elle est enseignée de manière rationnelle)
est un des puissants moyens de fortifier le jugement (Mgr Rouleau, Magnan et Ahern,
1909, p. 250)

On voit dans ce qui précède apparaître un double langage, celui d’une part d’un
enseignement des mathématiques à tous, valorisé surtout pour son caractère utile (faire en
sorte que tous puissent se débrouiller avec les questions de la vie courante), et celui d’autre
part d’un enseignement, malheureusement réservé à une petite partie de la population, qui
met l’accent sur le développement du jugement, sur la valeur non plus utilitaire mais
éducative de cet enseignement.

La réponse à la question pourquoi enseigner les mathématiques prend donc, à travers
ce qui précède, une double forme.

L’arithmétique est nécessaire

1) pour son utilité pratique: à la rigueur, on se passe de savoir lire, mais on ne peut se
passer de savoir compter; l’homme le plus ignorant calcule ce qu’on lui doit et ce qu’il
doit payer;

2) pour son avantage éducatif: cette étude force l’attention et exerce à un haut degré la
réflexion, le jugement et le raisonnement suivi. (Mgr Ross, 1919, p. 278)

Cette double fonction de la formation mathématique restera présente dans le nouveau
programme mis en place après la guerre. Ainsi, si l’on enseigne les mathématiques, c’est
pour que l’enfant puisse résoudre des problèmes d’arithmétique (il aura à en résoudre dans
toute sa vie d’adulte).

L’enseignement de l’arithmétique à l’école élémentaire doit faire acquérir à l’élève les
connaissances utilisées dans la vie courante en cette matière: faire comprendre la valeur
des nombres, assurer l’exactitude des calculs, établir le fondement des connaissances
arithmétiques, développer l’attitude mentale convenable en face d’un problème, donner
les connaissances pratiques des affaires courantes de la comptabilité domestique.
(programme de 1959, p. 410)

Mais si on enseigne les mathématiques, c’est aussi parce qu’elles sont un lieu de formation
intellectuelle.

L’enseignement de l’arithmétique doit aussi contribuer à la formation de l’enfant. Le tra-
vail bien fait en cette matière développe l’attention, la souplesse et la rapidité en même
temps que la sûreté et la précision rigoureuse; on lui fait constater l’importance de
l’exactitude des calculs et des mesures dans un travail exact et bien fait; il requiert une
juste appréciation des faits, des quantités; il habitue au calme, à la maîtrise de soi, à l’esprit
de suite dans les idées, à la logique en même temps qu’au sens pratique. (programme de
1959, p. 410)

Cette contribution à la formation mathématique qu’apporte l’étude de l’arithmétique est
discutée par les pédagogues. Si on reconnaît son apport au développement du raisonnement,
on doute beaucoup du «transfert» possible à d’autres domaines. Autrement dit la vertu
quasi universelle du développement du raisonnement provenant d’un apprentissage des
mathématiques, et ce dans tous les domaines, est quelque peu contestée. Dans cette fin
éducative attribuée à l’enseignement des mathématiques, l’accent est moins mis sur l’intérêt
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qu’il présente pour le développement du jugement que sur les habitudes méthodologiques
de travail qu’il instaure.

Cette question de la formation intellectuelle que l’étude de l’arithmétique est censée donner
à l’enfant, a été et est encore très discutée par les auteurs de pédagogie: on doute beaucoup
du transfet. Aujourd’hui, il est presque généralement admis que l’enseignement de
l’arithmétique n’a pas toute la valeur formatrice qu’on lui attribuait autrefois. Il développe
certes l’esprit et le raisonnement mathématiques mais il n’est pas sûr qu’il entraîne au
juste raisonnement dans d’autres matières. Toutefois, il développe également des habi-
tudes de travail et d’ordre; il exerce l’attention et la précision. Cette formation peut
probablement avoir des répercussions générales. (Beaudry, 1950, p. 344)

Récemment, le programme des années 19804 dénote un souci explicite de rendre
l’enseignement des mathématiques accessibles à tous. Les justifications sous-jacentes
apparaissent ici toutefois fort différentes de ce que l’on pouvait trouver dans le passé.

Un enseignement qui viserait à faire comprendre le mieux possible et au plus grand nombre
possible de citoyens ce que sont et ce que ne sont pas les mathématiques devrait aboutir
aux trois éléments majeurs de formation suivants: une façon de penser qui fournit un
instrument extrêmement puissant pour analyser ses expériences,un complément de cul-
ture qui peut améliorer l’intérêt et le plaisir de vivre, et enfin un langage important,
essentiel à la communication des idées et à l’expression des buts de la société. (MEQ,
1980, p. 6)

Dans ce qui précède apparaissent des fonctions nouvelles associées à l’enseignement des
mathématiques: celles-ci constituent un puissant instrument de pensée pour l’individu, un
langage essentiel à la communication des idées. Elles fournissent à l’individu les outils qui
lui permettront d’avoir une prise sur le monde qui l’entoure.

Cette idée d’accessibilité à tous, qui correspondait aux besoins de la société des années
70, fera place, à l’aube du 21ème siècle, à celle de formation d’une personne autonome. On
voit apparaître alors l’idée d’une nécessaire adaptation à une société en évolution.

L’évolution rapide de la société constitue un défi gigantesque pour notre système
d’éducation quant à la préparation des jeunes à la société de demain. Il est aujourd’hui
difficile de prévoir les connaissances exhaustives dont l’élève aura besoin demain; nous
devons nous assurer qu’il acquière une solide formation de base, des habiletés et des
attitudes essentielles à son adaptation afin qu’il puisse réinvestir ses connaissances pour
acquérir celles dont il aura besoin au cours de sa vie. (MEQ, 1993, p.15)

L’enseignement des mathématiques mettra à cette fin l’accent sur des habiletés et atti-
tudes à développer, dont l’habileté à résoudre des problèmes (MEQ, 1993) puis sur le
développement de compétences (MEQ, 2000): compétence à résoudre des problèmes, à
actualiser des concepts (les mathématiques sont un puissant outil d’abstraction, il faut non
seulement acquérir des outils conceptuels appropriés, mais encore pouvoir les mobiliser,
faire des liens); compétence à communiquer à l’aide du langage mathématique; à apprécier
la contribution de la mathématique aux différentes sphères de l’activité humaine. La
mathématique devient un moyen essentiel d’assurer, pour l’individu, son ‘rôle dans une
société de plus en plus exigeante’, une société scientifique et technologique.

La mathématique est un moyen de formation intellectuelle. Elle contribue au
développement des capacités intellectuelles des élèves, consolide leur autonomie et facilite
la poursuite de leur formation postsecondaire. Elle leur permet d’acquérir des outils
conceptuels appropriés pour assurer leur rôle dans une société de plus en plus exigeante.
La mathématique est considérée comme un langage universel de communication et un
outil d’abstraction. (MEQ, 2000)

À travers ce bref survol des programmes et des discours qui y sont tenus, on peut voir
que les réponses à la question «Pourquoi la formation mathématique devrait-elle faire partie
de la formation que devrait avoir tout élève?» sont multiples. Ainsi même si tous
reconnaissent l’importance des mathématiques dans la formation d’un personne (la volonté
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de faire apprendre les mathématiques est constante), ils ne réfèrent pas aux mêmes
mathématiques. Ancrées dans une certaine vision de l’école et de son rôle, les argumenta-
tions développées sont diverses. On parle de développer le raisonnement, l’esprit logique,
l’argumentation, bref une certaine rationalité, on attribue aux mathématiques une utilité
pratique, ou encore une valeur formatrice du point de vue des habitudes de travail, ... on
parle de développer l’habileté à résoudre des problèmes, la capacité d’abstraction, la capacité
de communication à l’aide du langage mathématique, ....

À travers ces multiples réformes transparaît donc une certaine vision structurante des
mathématiques qui donne sens à cet «enseignement pour tous».

En supposant maintenant que l’on prenne pour acquis qu’il faille viser cet enseignement
pour tous, la question qui se pose est la suivante:

3) Un tel enseignement à tous est-il viable ? Et si oui à quelles conditions?

Pour rejoindre le plus grand nombre possible d’élèves, l’école va souvent chercher, on l’a vu
à travers ce qui précède, à leur montrer l’apport des mathématiques. Ainsi, au début du
siècle, on a le souci de montrer l’utilité des mathématiques, son application à la vie courante
et, à l’aube du 21ème siècle, le souci de faire voir sa possible contribution aux différentes
sphères de l’activité humaine (compétence à développer). Une telle orientation renvoie à un
examen attentif de la notion d’application.

L’enseignement des mathématiques: utilité, contribution?

Lorsqu’on aborde la question d’un enseignement des mathématiques à tous, il me semble
important d’éviter le piège, dans lequel on pourrait facilement tomber, celui des applica-
tions. Un réexamen de cette notion apparaît capital à bien des égards, pour dépasser le
niveau des besoins immédiats et l’idée que les mathématiques de l’école ont un intérêt pour
les autres domaines, le milieu du travail ou la vie courante. Ce que requière un
réinvestissement des connaissances mathématiques dans d’autres sphères de la vie humaine
est rarement une simple application de ce que le milieu de l’enseignement a mis au point,
souvent en vase clos. C’est ce que nous montrent bien les travaux de Lave (1988) sur
l’arithmétique des travailleurs en entrepôt, des vendeurs itinérants de bonbons ou des
tailleurs: l’arithmétique utilisée diffère de celle introduite en classe, autant par les procédures
de calcul élaborées que par les stratégies de résolution de problèmes mises en oeuvre. Ces
travailleurs se sont construit des méthodes particulières de calcul, fonctionnelles, viables en
contexte. Les jeunes brésiliens, vendeurs de la rue, réussissent au marché à résoudre des
problèmes qu’ils échouent à résoudre le lendemain à l’école.

Ces observations révèlent l’existence d’une arithmétique contextuelle qui fonctionne
dans un environnement particulier, dans lequel les nombres, les opérations ont un sens
rattaché à une situation ou à une classe de situations.

Les travaux, à un autre niveau, menés par Claude Janvier et Michel Baril (1992) auprès
de techniciens en poste dans une entreprise montrent que les particularités de la pratique
professionnelle ajoutent des connotations si profondes et si distinctes qu’il est quasiment
impossible de retrouver dans la connaissance particulière mise en oeuvre en contexte, la
connaissance générale qui devrait en être la source.

Entrevoir l’enseignement des mathématiques sous l’angle de sa contribution pose donc
un certain nombre de problèmes, et questionne, au plan épistémologique, la manière dont
nous concevons cette contribution: mathématiques apprises dans la classe de mathématiques
pour ensuite être appliquées, versus mathématiques construites en contexte qui modifient
en retour la nature même des mathématiques construites.

Indeed, the aim of enabling competence in particular applications to develop must be
reassessed. In fact, comments made so far in this article have shown that using math-
ematics is more akin to contextualizing mathematics that to applying it. In other words,
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the actual practice of many «users» is not simply a particular case of a general method
learned at school. Consequently, the whole notion of mathematical foundation has to be
revised. (Janvier, 1990, p. 189)

On peut percevoir dès lors tout ce qu’implique, si on la retient, la mise en oeuvre éventuelle
d’une telle vision structurante de l’enseignement des mathématiques.

Au delà des conséquences que la discussion précédente fait apparaître sur la nature
même des mathématiques abordées, il faut enfin se poser la question de la viabilité d’un tel
enseignement. Autrement dit, en prenant pour acquis que les mathématiques doivent être
enseignées à tous, la véritable question qui se pose, sur un plan didactique, est la suivante:
les mathématiques peuvent-elles être enseignée à tous et, si c’est le cas, quelles sont les
conditions à mettre en place pour que cet enseignement puisse fonctionner?

Des contraintes incontournables à prendre en compte pour aborder la question de
l’enseignement des mathématiques pour tous

L’examen des programmes et des discours qui les accompagnent fait abstraction des
contraintes de terrain. Le caractère idéologique de ces orientations est avant tout attaché à
une volonté sociale qui, dans les faits, apparaît extrêmement complexe à maintenir. On assiste
ici à l’expression d’un décalage entre les discours sur cet enseignement (la didactique nor-
mative, celle des programmes, ...) et la didactique de terrain (la didactique praticienne).

The extent to which teaching and learning in a classroom community are productive
depends on the habitus of participants, a set of dispositions that incline individuals to act
and interact in particular ways ... cultural capital of different minority groups and char-
acteristics of the discipline to be taught and learned. (Tobin, 1998, p. 196)

Autrement dit, l’examen de la question d’un enseignement des mathématiques pour tous
ne peut échapper à l’analyse des contraintes du système didactique. Le travail conduit par
nous-mêmes et d’autres chercheurs auprès de classes faibles nous renvoie en effet vite au
problème de l’échec de beaucoup d’élèves, notamment de milieux défavorisés, et pose la
question de l’enseignement possible des mathématiques auprès de ces élèves. Il ne suffit
pas d’avoir confiance dans les possibilités des élèves, ni de s’interroger sur les mathématiques
à enseigner, avec un désir de développer un enseignement des notions avec un sens aussi
proche que possible de celui qu’elles ont en mathématiques, il s’agit aussi dans ce cas de
comprendre le fonctionnement des élèves et des enseignants dans de telles classes. Les élèves
vivent ici de nombreuses difficultés imbriquant de multiples dimensions, les problèmes
d’enseignement des mathématiques ne se posent pas de la même façon, les contraintes de
fonctionnement rendent les situations extrêmement difficiles à gérer pour l’enseignant (Perrin
Glorian, 1992).

L’étude des conditions de fonctionnement de ces classes où beaucoup d’élèves
rencontrent des difficultés scolaires, notamment de celles qui sont issus de milieux
socioculturels défavorisés, nous apparaît donc un problème central pour aborder la
plausibilité d’un enseignement des “mathématiques pour tous”. Autrement dit, on ne peut
aborder cette question d’un enseignement des mathématiques s’adressant à tout citoyen,
sans s’interroger sur les conditions particulières à mettre en place dans ces classes, sur leurs
contraintes de fonctionnement, sur la nature même des mathématiques qui peuvent être
abordées dans ces classes ou d’autres.

Enfin un tel questionnement renvoie également à une nécessaire prise en compte des
praticiens dans la mise en place d’un tel enseignement. En effet, malgré l’ampleur, par exemple
dans les années 70, des réformes mises de l’avant en enseignement des mathématiques et des
sciences (on peut penser par exemple à l’élaboration de programmes et de matériel didactique
novateurs, aux mouvements d’intégration des mathématiques et des sciences tels USMES
...), on ne peut que constater l’échec de leur implantation (Bentley, 1998).

Or, le constat d’échec des réformes précédentes interpelle la conception implicite qu’on
a du rôle des praticiens dans la mise en place des curriculums: les développements de ces
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programmes nient le rôle important du praticien dans l’implantation de tout changement
des pratiques éducatives , et ce en le plaçant dans un rapport d’application de la réforme,
plutôt que dans un rapport de partage de sens.

Des approches doivent donc, selon nous, être mises en place privilégiant l’étude de
significations partagées par les chercheurs et les praticiens (Bednarz, 2000). L’idée est peut-
être plus de tenter d’identifier avec les enseignants, à partir de leurs expériences de classe,
des descriptions de stratégies d’enseignement fécondes sur le plan des apprentissages des
élèves, mais également viables en contexte, permettant de documenter une perspective
diversifiée d’enseignement cherchant à rejoindre tout élève.

Notes

1. La fréquentation scolaire obligatoire est pour les élèves du Québec de 6 à 14 ans relativement
récente (1943). Ainsi en 1929, seulement 24% des élèves francophones poursuivaient des études
au delà de l’école primaire, et après la guerre seulement 46% des élèves atteignaient la 7ème
année. Ce n’est qu’en 1961 qu’une obligation est faite aux Commissions scolaires d’assurer
l’enseignement jusqu’en 11ème année.

2. On ne parlait pas de didactique à cette époque, mais de pédagogie ou méthodologie spéciale.
3. Voir à ce sujet Bednarz (sous presse).
4. Nous passons par dessus le programme-cadre de 1970 et la vision unificatrice des

mathématiques qui le sous-tendait, fortement influençée, comme ce fut le cas dans plusieurs
pays, par les mathématiques modernes. Le vent de réformes qui souffla sur le Québec dans
les années 70–80 fut marqué par un effort visant à rendre l’éducation accessible à tous, et ce à
tous les niveaux scolaires et dans toutes les régions.
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Why teach mathematics to everyone?

Nadine Bednarz
Université du Québec à Montréal (UQAM)

The question appearing in the title could be reformulated according to the following terms,
that is in the form of three questions that I will take up in order: Should mathematics be
taught to everyone? Why should mathematics be a part of the education that every student
and every adult receives? And, assuming that a mathematics education is indeed a worthy
aim at, is mathematics teaching for all actually viable?

1) Should mathematics be taught to everyone?

In principle, this question can be answered in the positive by invoking the fact that without
this mathematical education, an entire way of apprehending the world would escape us,
and with this, a certain way of analyzing and judging the validity of data, reasoning (ana-
lytically, synthetically, inductively or deductively, etc.); arguing; generalizing or abstract-
ing; etc. However, even though there are grounds for acknowledging the value of this math-
ematical activity, a number of reports have shown that such ends are not met for many
students. After receiving schooling in mathematics for several years, many adults are func-
tionally illiterate in this field. To borrow a metaphor from my colleague François Lalonde, if
a musical education was limited to learning scales, arpeggios, tone and harmony, etc. would
a child or teenager be able to appreciate the beauty of music, to appreciate the musical
world? Likewise, and to pursue the analogy, if students’ contact with mathematics amounted
to spending hours and hours doing exercises that strongly resemble training in scales and
techniques, without ever hearing a concerto or a symphony, would they then be able to
perceive the relevance of this activity and ascribe a meaning to it?

The music that mathematicians hear is sublime! It is unfortunate that only mathemati-
cians attend these concerts. (Lalonde, 2000, p. 13; translated by author)

Under these conditions, is teaching mathematics to all worth the effort? Thus, our initial
question cannot be taken up without also considering the very nature of the mathematical
activity with which students are confronted during their basic education.

At all times, schools have considered that mathematics should be part of the mini-
mum, fundamental education that every schoolchild, every student should receive,1 with
the result that mathematics has always been included in core, compulsory curriculum. In
other words, institutions of learning have never raised the question of whether this teach-
ing was necessary, whereas such a question has been raised in the case of music, theatre and
philosophy, even though in many respects such subjects could be just as relevant as math-
ematics. I am thus led to conclude that mathematics teaching holds a privileged status in
the hierarchy of school knowledge. Putting the question of “why teach mathematics to all”
thus amounts to throwing this assumption open to challenge—in other words, to wonder-
ing about the relevance of this instruction, which seem to be self-evident for many.

Thus, the initial question could be reformulated as follows:
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2) Why should mathematics be a part of the education that every student and every
adult receives?

Using various curricula that appeared in Québec or the related comments by ‘didactics’
specialists2 of that time, I amused myself by briefly analyzing the grounds used to justify
the relevance of mathematics teaching. The following brief analysis shows that the highly
ideological answers given to this question vary over time, according to the social priorities
ascribed to the institution of schools.

Fragments of answers provided by a succession of curricula to the question of why
mathematics teaching for all is necessary

In any serious account of the grounds used to justify the necessity of mathematics teaching
for all, it would be appropriate to make a systematic analysis of curricula, in particular by
means of identifying the broader social context from which they derived their meaning.3 In
the present case, I intend more simply to somewhat impressionistically touch on a number
of these grounds, which are offered primarily for their illustrative value.

Thus, the following example presents the grounds used in the early 20th century to
justify teaching arithmetic, which was acknowledged as being a necessity for everyone.

Mathematics are taught in primary school so that children will learn to easily and reliably
calculate all questions of figures that may arise over the ordinary course of a lifetime.
(Mgr. Ross, 1919, p. 278)

In the above excerpt, the practicality of arithmetic is stressed more than anything else. This
‘utilitarian’ objective was to be reflected in the practices that tended to be favoured in teach-
ing, in terms both of the prioritized content (the mathematics topics taken up were limited
to arithmetic, measuring, accounting, etc.; the problems were primarily practical in nature;
and the related data had to be precise and accurate), and of the proposed way of appre-
hending the subject (see Bednarz, in press).

However, if some attention is devoted to the comments of educators of that time,
evidence also emerges, albeit less obviously so, of another educational benefit ascribed to
mathematics teaching—a potential locus for practising reflection and reasoning ability. Thus,
Mgr. Rouleau also mentions developing and cultivating sound reasoning as well as strength-
ening judgment.

The study of arithmetic develops all faculties, but it is specifically intended to accustom
the mind to reason soundly. Teachers must specifically address reason, adhere to method
and employ methods appropriate to cultivating reasoning ability. These are things that are
not done very often. Rote [learning] is the main thing emphasized. (Mgr. Rouleau, Magnan
and Ahern, 1904, pp. 117–118)

A certain cultural function associated with mathematics teaching, held separate from its
utilitarian or practical side, also comes in for comment:

It would be worthwhile establishing the true scope of arithmetic in terms of general cul-
ture alone; and demonstrating that if indeed it exercises and develops the faculties indi-
cated, and those that have not been named—memory, imagination, determination—it
does so only if it is taught in a reasonable, rational manner—that is, in light of a number
of general theories. (Father Maurice, 1926)

Further on, he returns to this same idea:

I also wish to explicitly mention that efforts should be made to develop students’ general
culture, which is significantly aided and fostered by the study of arithmetic. I do not
insist on continually thinking about this indirect, mediate end. I do not require making it
a chief objective. I simply request that it not be forgotten, that nothing be done to prevent
us from achieving it, and that worthy efforts be summoned to accomplish it. (Father
Maurice, 1925–1926, p. 7)
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Furthermore, in that connection, it is interesting to read period comments concerning alge-
bra and algebra teaching.

Few people in our province need even elementary knowledge of algebra to perform their
duties, and yet, no one is allowed to commence the study of a profession without first
having passed an examination on this subject. Why, then, are those who are called to the
professions required to have knowledge of a subject that apparently has no practical ap-
plication? Because it is assumed that in order to succeed in a profession, one must have a
cultivated mind and because it is generally admitted that the study of algebra (if it is
taught in a rational manner) is a powerful means of strengthening judgment. (Mgr. Rou-
leau, Magnan and Ahern, 1909, p. 250)

The preceding excerpt provides evidence of a kind of double language. On the one
hand, there is mathematics teaching for all, which is valued for its utilitarian aspect (its
capacity to ensure that everyone can manage with the questions of everyday life), and on
the other there is an approach to teaching which unfortunately is reserved for a small seg-
ment of the population and which places emphasis on developing judgment and on the
non-utilitarian but educational value of this teaching.

In light of the preceding excerpts, the answer to the question of why mathematics
should be taught thus takes on a dual form. Arithmetic is necessary on account of:

1) its practical uses: strictly speaking, the ability to read can be dispensed with, but one
can do without knowing how to count; even the most ignorant calculate what they
owe and are owed;

2) its educational application: this type of study compels attention, exercises reflection,
judgment and sustained reasoning to a high degree. (Mgr. Ross, 1919, p. 278)

This dual function of mathematics education will remain present in the new curriculum
established following World War II. Thus, for example, if mathematics is taught, it is so that
children may solve arithmetic problems (they will have to solve such problems in their
adult lives).

Arithmetic education in primary schools should inculcate in students the knowledge of
this subject that is used in everyday life—that is, promote understanding of the value of
numbers, foster accuracy in calculations, establish the basis of arithmetical knowledge,
develop a mental attitude that is appropriate to the problem at hand and provide practi-
cal knowledge of the usual subjects of household accounting. (Curriculum of 1959, p.
410)

However, if mathematics is taught, it is also because the subject represents a locus of intel-
lectual development.

Mathematics teaching should also contribute to the development of the child. Work well
done in this subject develops attention, agility and rapidity as well as reliability and rig-
orous precision. Children are made to observe the importance of accurate calculations
and measurements as part of a precise, well-done job. [Mathematics education] requires
an accurate appraisal of facts and quantities. It accustoms children to quiet, self-control,
consistency of thinking, and a combination of logic and practicality. (Curriculum of 1959,
p. 410)

The benefits of studying arithmetic as part of a mathematical education is the subject of
debate among educators. While the contribution of arithmetic to reasoning ability is recog-
nized, many doubts are raised over the potential for ‘transfer ’ to other fields. In other words,
the practically universal virtues of the development of reasoning ability resulting from
mathematics education, regardless of the field, is thrown open to challenge to a certain
extent. In descriptions of the educational end ascribed to mathematics teaching, emphasis is
laid less on its value for developing judgment than on the work methods and habits imple-
mented by it:

This question of the intellectual formation supposedly provided children via the study of
arithmetic is still much debated among the teaching methods authors: [The notion of]
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transfer appears quite dubious to them. Today, it is almost generally admitted that arith-
metic does not possess all the formative value previously ascribed to it. It obviously de-
velops a mathematical mind and reasoning ability, but it is not clear that it provides train-
ing in sound reasoning in other subjects. However, it also develops habits of work and
method. This education probably could have general repercussions. (Beaudry, 1950, p.
344)

More recently, the curriculum of the 1980s4 evidences an explicit concern for making math-
ematics teaching accessible for all. However, the underlying justifications appear quite dif-
ferent from those that were likely to be encountered in the past.

A type of teaching designed to produce understanding—to the fullest extent and among
the greatest number of people possible—of what mathematics is and is not should pro-
duce the following three main educational results: a way of thinking that provides an
extremely powerful instrument for analyzing one’s experiences; an addition to one’s cul-
ture that can improve and enhance the enjoyment of life; and finally an important lan-
guage that is essential to communication and the expression of society’s objectives.
(Ministère de l’Éducation du Québec, 1980, p. 6)

The preceding excerpt provides evidence of the new functions associated with mathematics
teaching: together, they represent a powerful intellectual for individuals, a language essen-
tial to communicating ideas. Mathematics supplies individuals with the tools for grasping
the world around them.

At the dawn of the 21st century, this notion of universal accessibility, which dove-
tailed with the needs of society during the 1970s, would be supplanted by that of educating
the autonomous individual. At that point, the idea of a necessary adaptation to an evolving
society came to the fore.

The rapid evolution of society represents a huge challenge... Today it is difficult to foresee
the exhaustive knowledge students will require tomorrow; it is our duty to ensure that
they acquire a solid basic education and the skills and attitudes necessary to their adapta-
tion, so that they may reinvest this knowledge and thereby acquire the knowledge that
they will need during their lifetime. (Ministère de l’Éducation du Québec, 1993, p. 15)

Toward that end, mathematics teaching was to emphasize the development of skills and
attitudes, including problem-solving skills (MEQ, 1993), and thereafter the development of
‘competencies’ (MEQ, 2000)—that is: competency in problem-solving and actualizing con-
cepts (mathematics are a powerful tool of abstraction; not only must a person acquire the
appropriate conceptual tools, he or she must also be able to mobilize them, establish rela-
tionships, etc.); competency in communicating using mathematical language; competency
in appreciating the contribution of mathematics to various spheres of human activity. For
the individual, mathematics thus became an essential means to taking up his or her “role in
an increasingly demanding society,” a scientific and technological society.

Mathematics is a means of intellectual preparation and training. It contributes to the de-
velopment of students’ intellectual capacities, consolidates their autonomy and facili-
tates their pursuit of postsecondary education. It enables them to acquire the conceptual
tools appropriate to assuming their role in an increasingly demanding society. Math-
ematics is viewed as a universal language of communication and a tool of abstraction.
(MEQ, 2000)

On the basis of this brief survey of curricular and their underlying discourses, it is
clear that the answers to the question “Why should mathematics be part of the education
that every student should receive?” are manifold. Thus, even though it is universally ac-
knowledged that mathematics plays an important role in the education of an individual
(the determination to make students learn mathematics is constant throughout), the vari-
ous actors do not refer to the same type of mathematics. A certain underlying vision of the
school and its role means that the lines of argument thus developed are diverse. Mention is
made of developing reasoning ability, a logical mind, argumentative capacity—in short, a
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certain kind of rationality. Mathematics is ascribed a range of practical uses, or a formative
value in terms of work habits. Other actors refer to developing problem-solving skills, the
capacity for abstraction, or the capacity for communication using mathematical language.
These various reforms thus offer a glimpse of a certain structuring vision of mathematics
which endows such “education for all” with meaning.

Assuming at this point that this “[mathematics] teaching for all” is an agreed-on objective,
the question that then arises can be framed as follows:

3) Is such a type of teaching viable? If so, under what conditions?

As was seen in the above excerpts, in order to reach out to the greatest number of students
possible, schools attempted to show them the benefits of mathematics. Thus, at the turn of
the century, educators went to some length demonstrating mathematicsí utility and appli-
cability to everyday life. At the dawn of the 21st century, they have strived to bring out the
possible contribution of mathematics to various spheres of human activity (competency to
be developed). In turn, an orientation of this kind implies examining the notion of applica-
tion attentively.

Mathematics teaching: its utility, its contribution?

In my opinion, whenever the question of mathematics teaching for all is taken up, it is
important to avoid the particularly deceptive trap represented by applications. Reexamin-
ing this notion appears crucial from many standpoints if we are to go beyond the level of
immediate needs and the idea that school mathematics are valuable for other sectors, the
workplace or everyday life. The re-investment of mathematical knowledge in other spheres
of activity rarely entails simply applying what the teaching sector has concocted in isolation
from the world. That much has been clearly shown in the work of Jean Lave (1998) concern-
ing the arithmetic of warehouse workers, itinerant candy vendors, tailors, etc. The type of
arithmetic practised by these people differs from the variety presented in the classroom, in
terms not only of calculation procedures but also of the problem-solving strategies imple-
mented. These merchants, tailors, etc. have devised for themselves specific methods of cal-
culation that are functional and viable in context. Thus, for example, young Brazilian street
vendors manage to solve problems in the marketplace that they fail to solve in school the
following day.

These observations reveal the existence of a contextual type of arithmetic—that is, a
type of mathematics that works in a particular context where numbers, operations, etc. have
a meaning in connection with a situation or class of situations.

Research of another kind conducted by Claude Janvier and André Baril among tech-
nicians in the employ of a company provides illustration of how the particularities of pro-
fessional practice add connotations that are so deep and so distinct that it is practically
impossible to locate the general knowledge that ought presumably to be the source of this
particular knowledge.

Conceptions of mathematics teaching in terms of its contribution thus raises a num-
ber of issues. And, epistemologically speaking, it challenges the way we view this contribu-
tion: the mathematics learned in the classroom for subsequent application versus the type
of mathematics constructed in context and which modifies the very nature of the math-
ematics being constructed.

Indeed, the aim of enabling competence in particular applications to develop must be
reassessed. In fact, comments made so far in this article have shown that using math-
ematics is more akin to contextualizing mathematics that to applying it. In other words,
the actual practice of many ‘users’ is not simply a particular case of a general method
learned at school. Consequently, the whole notion of mathematical foundation has to be
revised. (Janvier, 1990, p. 189)
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At that point, it becomes a bit clearer just how much is entailed by the potential implemen-
tation of this type of structuring vision of mathematics teaching, if indeed such an option is
opted for.

Beyond the implications of the preceding discussion with respect to the very nature of
the mathematics to be developed, the question of the viability of this teaching must also be
addressed. In other words, assuming that mathematics should be taught to all, the real ques-
tion that should be raised, in terms of mathematics education (didactics) is: can mathemat-
ics be taught to all, and if so, what conditions must be implemented in order for this teach-
ing to work?

Inescapable constraints that must be accounted for in any attempt at addressing
the question of mathematics education for all

The examination of curricula and their underlying discourses does not account for con-
straints occurring in the field. The ideological character of these orientations stems prima-
rily from a social intention or will, which, in terms of the facts, is apparently complex to
maintain. At this point, we are witness to a gap between the discourse concerning math-
ematics teaching for all (normative educational approaches—i.e., that of curricula, etc.) and
teaching methods, as actually practised in the field.

The extent to which teaching and learning in a classroom community are productive
depends on the habitus of participants, a set of dispositions that incline individuals to act
and interact in particular ways...cultural capital of different minority groups and charac-
teristics of the discipline to be taught and learned. (Tobin, 1998, p. 196)

In other words, an examination of the question of mathematics teaching for all cannot dis-
pense with an analysis of the constraints under which the teaching system operates. Re-
search by other researchers and myself among weaker classes presents us with the problem
of the failure of many students, particularly those from disadvantaged environments, and
raises the question of the possibility of mathematics teaching among these students. It is not
merely a question of having confidence in the potential of students, or of inquiring into the
type of mathematics to be taught out of a desire to develop a teaching of notions having a
meaning as close as possible to that ascribed to mathematics by these students. In this case,
it is also a matter of understanding the ways students and teachers manage to operate in
such classes. These students experience numerous, multifaceted difficulties, the problems
of mathematics teaching are framed differently, and the operating constraints make class-
room situations extremely difficult for teachers to manage (Perrin-Glorian, 1992).

Thus, in my opinion, studying the operating conditions of these classrooms, in which
schooling difficulties are the lot of many students, particularly those from disadvantaged
socio-cultural environments, is a central issue in the process of addressing the plausibility
of “mathematics education for all.” In other words, the question of devising a type of math-
ematics education with every citizen in mind cannot be taken up without also examining
the particular conditions that should be established in these classes, the operating constraints
to which they are subjected, and the very nature of the mathematics that can be covered in
these classes or others.

Furthermore, this type of questioning process also necessarily implies that the imple-
mentation of this type of teaching approach must take practitioners into consideration. In
that connection, there can be no denying that despite the scope of the reforms previously
put forward in mathematics and science teaching (for example, in science during the 1960s,
the development of innovative programs and teaching materials, movements for integrat-
ing mathematics and science such as USMES, etc.), such initiatives have failed since the
time of their implementation.

Now, once the failure of previous reforms has been admitted, we are forced to rethink
the conception that we have of the role of practitioners in working up curricula: the ways in
which academic programs are developed deny the major role that practitioners have to play
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in introducing any type of change in educational practices, notably by placing practitioners
in an implementation- or execution-type relationship with respect to the reform rather than
a relationship based on the sharing of meaning.

In my view, a series of approaches should be developed which emphasize studying or
investigating the meanings shared between educational researchers and practitioners
(Bednarz, 2000). The main idea is perhaps more one of identifying and describing—in col-
laboration with teachers and on the basis of their classroom experiences—teaching strate-
gies that are not only fruitful in terms of students’ learnings but that are also viable in con-
text. Such a process would also serve to document a diversified perspective on mathematics
teaching aimed at reaching out to every student.

Notes

1. Compulsory school attendance for students ages 6 to 14 is relatively recent in Québec (1943).
Thus, in 1929, only 24% of francophone students pursued studies beyond primary school,
and after World War II, only 46% entered Grade 7. It was only in 1961 that school boards were
required by law to provide instruction until Grade 11.

2. At that time, didactics was not the term in use. Instead, educational science and special teach-
ing methods were referred to.

3. See on this subject, Bednarz (in press).
4. I will skip over the 1970 core curriculum and the unifying vision of mathematics underlying

it. As was the case in several countries, this vision was strongly influenced by modern math-
ematics. The sweeping reforms occurring in Québec during the 1970s and 1980s were marked
by an attempt at making education accessible for all, at all levels of instruction and in all
regions.
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APPENDIX A

Working Groups at Each Annual Meeting

1977 Queen’s University, Kingston, Ontario
• Teacher education programmes
• Undergraduate mathematics programmes and prospective teachers
• Research and mathematics education
• Learning and teaching mathematics

1978 Queen’s University, Kingston, Ontario
• Mathematics courses for prospective elementary teachers
• Mathematization
• Research in mathematics education

1979 Queen’s University, Kingston, Ontario
• Ratio and proportion: a study of a mathematical concept
• Minicalculators in the mathematics classroom
• Is there a mathematical method?
• Topics suitable for mathematics courses for elementary teachers

1980 Université Laval, Québec, Québec
• The teaching of calculus and analysis
• Applications of mathematics for high school students
• Geometry in the elementary and junior high school curriculum
• The diagnosis and remediation of common mathematical errors

1981 University of Alberta, Edmonton, Alberta
• Research and the classroom
• Computer education for teachers
• Issues in the teaching of calculus
• Revitalising mathematics in teacher education courses

1982 Queen’s University, Kingston, Ontario
• The influence of computer science on undergraduate mathematics education
• Applications of research in mathematics education to teacher training programmes
• Problem solving in the curriculum

1983 University of British Columbia, Vancouver, British Columbia
• Developing statistical thinking
• Training in diagnosis and remediation of teachers
• Mathematics and language
• The influence of computer science on the mathematics curriculum
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1984 University of Waterloo, Waterloo, Ontario
• Logo and the mathematics curriculum
• The impact of research and technology on school algebra
• Epistemology and mathematics
• Visual thinking in mathematics

1985 Université Laval, Québec, Québec
• Lessons from research about students’ errors
• Logo activities for the high school
• Impact of symbolic manipulation software on the teaching of calculus

1986 Memorial University of Newfoundland, St. John’s, Newfoundland
• The role of feelings in mathematics
• The problem of rigour in mathematics teaching
• Microcomputers in teacher education
• The role of microcomputers in developing statistical thinking

1987 Queen’s University, Kingston, Ontario
• Methods courses for secondary teacher education
• The problem of formal reasoning in undergraduate programmes
• Small group work in the mathematics classroom

1988 University of Manitoba, Winnipeg, Manitoba
• Teacher education: what could it be?
• Natural learning and mathematics
• Using software for geometrical investigations
• A study of the remedial teaching of mathematics

1989 Brock University, St. Catharines, Ontario
• Using computers to investigate work with teachers
• Computers in the undergraduate mathematics curriculum
• Natural language and mathematical language
• Research strategies for pupils’ conceptions in mathematics

1990 Simon Fraser University, Vancouver, British Columbia
• Reading and writing in the mathematics classroom
• The NCTM “Standards” and Canadian reality
• Explanatory models of children’s mathematics
• Chaos and fractal geometry for high school students

1991 University of New Brunswick, Fredericton, New Brunswick
• Fractal geometry in the curriculum
• Socio-cultural aspects of mathematics
• Technology and understanding mathematics
• Constructivism: implications for teacher education in mathematics

1992 ICME–7, Université Laval, Québec, Québec

1993 York University, Toronto, Ontario
• Research in undergraduate teaching and learning of mathematics
• New ideas in assessment
• Computers in the classroom: mathematical and social implications
• Gender and mathematics
• Training pre-service teachers for creating mathematical communities in the

classroom
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1994 University of Regina, Regina, Saskatchewan
• Theories of mathematics education
• Pre-service mathematics teachers as purposeful learners: issues of enculturation
• Popularizing mathematics

1995 University of Western Ontario, London, Ontario
• Anatomy and authority in the design and conduct of learning activity
• Expanding the conversation: trying to talk about what our theories don’t talk about
• Factors affecting the transition from high school to university mathematics
• Geometric proofs and knowledge without axioms

1996 Mount Saint Vincent University, Halifax, Nova Scotia
• Teacher education: challenges, opportunities and innovations
• Formation à l’enseignement des mathématiques au secondaire: nouvelles

perspectives et défis
• What is dynamic algebra?
• The role of proof in post-secondary education

1997 Lakehead University, Thunder Bay, Ontario
• Awareness and expression of generality in teaching mathematics
• Communicating mathematics
• The crisis in school mathematics content

1998 University of British Columbia, Vancouver, British Columbia
• Assessing mathematical thinking
• From theory to observational data (and back again)
• Bringing Ethnomathematics into the classroom in a meaningful way
• Mathematical software for the undergraduate curriculum

1999 Brock University, St. Catharines, Ontario
• Information technology and mathematics education: What’s out there and how can

we use it?
• Applied mathematics in the secondary school curriculum
• Elementary mathematics
• Teaching practices and teacher education

Appendix A • Working Groups at Each Annual Meeting
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APPENDIX B

Plenary Lectures at Each Annual Meeting

1977 A.J. COLEMAN The objectives of mathematics education
C. GAULIN Innovations in teacher education programmes
T.E. KIEREN The state of research in mathematics education

1978 G.R. RISING The mathematician’s contribution to curriculum development
A.I. WEINZWEIG The mathematician’s contribution to pedagogy

1979 J. AGASSI The Lakatosian revolution*
J.A. EASLEY Formal and informal research methods and the cultural status of

school mathematics*

1980 C. GATTEGNO Reflections on forty years of thinking about the teaching of mathe-
matics

D. HAWKINS Understanding understanding mathematics

1981 K. IVERSON Mathematics and computers
J. KILPATRICK The reasonable effectiveness of research in mathematics education*

1982 P.J. DAVIS Towards a philosophy of computation*
G. VERGNAUD Cognitive and developmental psychology and research in mathe-

matics education*

1983 S.I. BROWN The nature of problem generation and the mathematics curriculum
P.J. HILTON The nature of mathematics today and implications for mathematics

teaching*

1984 A.J. BISHOP The social construction of meaning: A significant development for
mathematics education?*

L. HENKIN Linguistic aspects of mathematics and mathematics instruction

1985 H. BAUERSFELD Contributions to a fundamental theory of mathematics learning and
teaching

H.O. POLLAK On the relation between the applications of mathematics and the
teaching of mathematics

1986 R. FINNEY Professional applications of undergraduate mathematics
A.H. SCHOENFELD Confessions of an accidental theorist*

1987 P. NESHER Formulating instructional theory: the role of students’ misconceptions*
H.S. WILF The calculator with a college education
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1988 C. KEITEL Mathematics education and technology*
L.A. STEEN All one system

1989 N. BALACHEFF Teaching mathematical proof: The relevance and complexity of a
social approach

D. SCHATTSNEIDER Geometry is alive and well

1990 U. D’AMBROSIO Values in mathematics education*
A. SIERPINSKA On understanding mathematics

1991 J .J. KAPUT Mathematics and technology: Multiple visions of multiple futures
C. LABORDE Approches théoriques et méthodologiques des recherches

Françaises en didactique des mathématiques

1992 ICME-7

1993 G.G. JOSEPH What is a square root? A study of geometrical representation in
different mathematical traditions

J  CONFREY Forging a revised theory of intellectual development: Piaget,
Vygotsky and beyond*

1994 A. SFARD Understanding = Doing + Seeing ?
K. DEVLIN Mathematics for the twenty-first century

1995 M. ARTIGUE The role of epistemological analysis in a didactic approach to the
phenomenon of mathematics learning and teaching

K. MILLETT Teaching and making certain it counts

1996 C. HOYLES Beyond the classroom: The curriculum as a key factor in students’
approaches to proof*

D. HENDERSON Alive mathematical reasoning

1997 R. BORASSI What does it really mean to teach mathematics through inquiry?
P. TAYLOR The high school math curriculum
T. KIEREN Triple embodiment: Studies of mathematical understanding-in-

inter-action in my work and in the work of CMESG/GCEDM

1998 J. MASON Structure of attention in teaching mathematics
K. HEINRICH Communicating mathematics or mathematics storytelling

1999 J. BORWEIN The impact of technology on the doing of mathematics
W. WHITELEY The decline and rise of geometry in 20th century North America
W. LANGFORD Industrial mathematics for the 21st century
J. ADLER Learning to understand mathematics teacher development and

change: Researching resource availability and use in the context of
formalised INSET in South Africa

B. BARTON An archaeology of mathematical concepts: Sifting languages for
mathematical meanings

NOTE

*These lectures, some in a revised form, were subsequently published in the journal For the Learning
of Mathematics.
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APPENDIX C

Proceedings of Annual Meetings

Past proceedings of CMESG/GCEDM annual meetings have been deposited in the ERIC
documentation system with call numbers as follows:

Proceedings of the 1980 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 204120

Proceedings of the 1981 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 234988

Proceedings of the 1982 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 234989

Proceedings of the 1983 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 243653

Proceedings of the 1984 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 257640

Proceedings of the 1985 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 277573

Proceedings of the 1986 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 297966

Proceedings of the 1987 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 295842

Proceedings of the 1988 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 306259

Proceedings of the 1989 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 319606

Proceedings of the 1990 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 344746

Proceedings of the 1991 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 350161

Proceedings of the 1993 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 407243

Proceedings of the 1994 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 407242

Proceedings of the 1995 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 407241

Proceedings of the 1996 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 425054

Proceedings of the 1997 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 423116

Proceedings of the 1998 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 431624

Proceedings of the 1999 Annual Meeting . . . . . . . . . . . . . . . . . .  not available

NOTES

1. There was no Annual Meeting in 1992 because Canada hosted the Seventh International
Conference on Mathematical Education that year.

2. The Proceedings of the 2000 Annual Meeting have been submitted to ERIC.




