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It is a great pleasure to write an introduction to the CMESG/GCEDM Proceedings from the
2001 meeting held at the University of Alberta in Edmonton.

A necessary part of the introduction to the CMESG/GCEDM Proceedings is an attempt
to explain to readers—some of whom may be newcomers to our organization—that the
volume in their hands cannot possibly convey the spirit of the meeting it reports on. It can
merely describe the content of activities without giving much of the flavour of the process.

To understand this, one needs to understand the uniqueness of both our organization
and our annual meetings.

CMESG is an organization unlike other professional organizations. One belongs to it
not because of who one is professionally, but because of one’s interests. And that is why our
members are members of mathematics and education departments at Canadian and other
universities and colleges, and school teachers, united by their interest in mathematics and
how it is taught at every level, by the desire to make teaching more exciting, more relevant,
more meaningful. Our meetings are unique, too. One does not simply attend a CMESG/
GCEDM meeting the way one attends other professional meetings, by coming to listen to a
few chosen talks. You are immediately part of it; you live and breathe it.

Working Groups form the core of each CMESG/GCEDM meeting. Participants choose
one of several possible topics and, for three days, become members of a community that
meets three hours a day to exchange ideas and knowledge. Through discussions that often
continue beyond the allotted time, they create fresh knowledge and insights. Throughout
the three days, the group becomes much more than a sum of its parts—often in ways totally
unexpected to its leaders. The leaders, after working for months prior to the meeting, may
see their carefully prepared plan ignored or put aside by the group, and a completely new
picture emerge in its stead.

Two plenary talks are traditionally part of the conference, at least one of which is given
by a speaker invited from outside Canada, who brings a non-Canadian perspective. These
speakers participate in the whole meeting; some of them afterwards become part of the
Group. And, in the spirit of CMESG/GCEDM meetings, a plenary talk is not just a talk, but
a mere beginning: it is followed by discussions in small groups, which prepare questions for
the speaker. After the small group discussions, in a renewed plenary session, the speaker
fields the questions generated by the groups.

Topic Groups and Ad hoc presentations provide more possibilities for exchange of
ideas and reflections. Shorter in duration than the Working Groups, Topic Groups are ses-
sions where individual members present work in progress and often find inspiration and
new insight from their colleagues' comments.

Ad hoc sessions are opportunities to share ideas, which are often not even "half-
baked"—sometimes born during the very meeting at which they are presented. A tradi-
tional part of each meeting is the recognition of new PhDs. Those who completed their
dissertations in the last year are invited to speak on their work. This gives the group a
wonderful opportunity to see the future of mathematics education in Canada.

Introduction

Malgorzata Dubiel - President, CMESG/GCEDM
Simon Fraser University
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But the Edmonton meeting was also a look at our past. This was the first meeting since
the death of David Wheeler, one of the founders of our organization, and the creator of our
journal, For the Learning of Mathematics. A special session in memory of David was held
Tuesday morning, with David’s colleagues and students sharing their stories and remem-
brances.

We are grateful to Ted Lewis and Andy Liu (pictured below), who demonstrated “live”
a math fair. Andy and Ted have been organizing math fairs at local elementary schools for
the past several years. It was a great experience to be part of one and see the excitement and
the pride of the students demonstrating their projects.

Late night pizza runs have been a tradition of our meetings. After trying pizza in
Edmonton, at least one reason for this became clear: Pizza is really good here. And, since so
many of our members have been students at the University of Alberta, no wonder they
learned the habit here.

The 2001 was a memorable meeting, in large part thanks to the local organizers: Elaine
Simmt and her team. In addition to the great program, the participants had the opportunity
to play a mean game of volleyball, attend a concert and hear our colleague David Pimm
sing in the choir, visit the Muttart Conservatory and have a dinner there, at which math
puzzles were competing with food for our attention. Thanks, Elaine, for the great job!

Andy Liu, Ted Lewis, and a few of the Math Fair participants
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Mathematics in Action:
A Challenge for Social Theorising

Ole Skovsmose
Aalborg University, Denmark

Mathematics: Insignificant or Crucial?

Is it true that mathematics—and we talk about ‘real’ mathematics and not about, say, school
mathematics—has no social significance? Or does also ‘real’ mathematics provide a crucial
resource for social change?

In A Mathematician’s Apology, G.H. Hardy discusses the usefulness of mathematics,
and his general conclusion is: “If useful knowledge is […] knowledge which is likely, now
or in the comparatively near future, to contribute to the material comfort of mankind, so
that mere intellectual satisfaction is irrelevant, then the great bulk of higher mathematics is
useless” (Hardy, 1967, p. 135). Could mathematics, nevertheless, do any harm? Hardy con-
cludes: “[…] a real mathematician has his conscience clear; there is nothing to be set against
any value his work may have; mathematics is […] a ‘harmless and innocent’ occupation”
(Hardy, 1967, pp. 140–141). In the final pages of his Apology, Hardy draws conclusions about
his own work in mathematics: “I have never done anything ‘useful’. No discovery of mine
has made, or is likely to make, directly or indirectly, for good or for bad, the least difference
to the amenity of the world” (Hardy, 1967, p. 150). Hardy provides a picture of ‘real’ math-
ematics as an intellectual enterprise that cannot be judged by its effects on society, for the
simple reason that there are no such effects.1 Mathematics is insignificant in the sense that
mathematics does not have any structuring impact on social development. Therefore, social
theory is well justified in ignoring the possible social functions of mathematics.2

The philosophy of mathematics has been occupied by investigating the foundations of
mathematics. What are the sources of this knowledge? What is the nature of mathematical
objects and of mathematical truths? This preoccupation easily leads to the claim that an
adequate understanding of mathematics can be obtained by studying the logical architec-
ture of mathematics from ‘within’ the edifice of mathematics. The classical position in the
philosophy of mathematics, thus, seems to align nicely with the assumption of insignifi-
cance: mathematics has no influence on social affairs and, therefore, it can be adequately
interpreted in terms of its internal and logical structures alone.3

Let me contrast this perspective on mathematics with the following claim made by
Ubiratan D’Ambrosio in ‘Cultural Framing of Mathematics Teaching and Learning’: “In the
last 100 years, we have seen enormous advances in our knowledge of nature and in the
development of new technologies. […] And yet, this same century has shown us a despi-
cable human behaviour. Unprecedented means of mass destruction, of insecurity, new ter-
rible diseases, unjustified famine, drug abuse, and moral decay are matched only by an
irreversible destruction of the environment. Much of this paradox has to do with the ab-
sence of reflections and considerations of values in academics, particularly in the scientific
disciplines, both in research and in education. Most of the means to achieve these wonders
and also these horrors of science and technology have to do with advances in mathematics”
(D’Ambrosio, 1994, p. 443). D’Ambrosio strongly indicates that mathematics is positioned
in the nucleus of social development. The role of mathematics is crucial and must be consid-
ered in the investigation of a wide range of social phenomena.
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However, what is the response in the most overall social theories to the question of
whether mathematics is indeed insignificant or crucial for social development? Naturally
no simple answer is found, but if we study works such as The Constitution of Society and
Social Theory and Modern Sociology by Anthony Giddens, and The Theory of Communicative
Action by Jürgen Habermas, we do not find any reference to mathematics.4 We do, of course,
find suggestions for basic categories to interpret social development. So, judged by the si-
lence about mathematics, the conception in much social theorising appears to be effectively
that of Hardy’s: The social impact of this science is insignificant. There is no reason to con-
sider mathematics in particular in order to interpret social affairs.

In what follows, I shall discuss how mathematics can be interpreted as an integrated
part of technological planing and decision making, and how mathematics therefore oper-
ates as an integrated part of technology. Therefore, I find that an understanding of mathemat-
ics in action is crucial for interpreting basic aspects of social development. This idea has recently
been discussed with particular reference to critical mathematics education, but although it
concerns social theorising, it has not got solid ground in sociology.5

Reflexivity

In Reflexive Modernization, Ulrich Beck, Anthony Giddens and Scott Lash present (in indi-
vidual written chapters) a discussion of modernisation. According to Beck, we now face
“the possibility of creative (self-)destruction for an entire epoch: that of industrial society.
The acting ‘subject’ of this creative destruction is not the revolution, not the crisis, but the
victory of Western modernization” (Beck et al., 1994, p. 2). In fact, it does not seem possible
to identify more specifically any acting subject for this creativity. And Beck continues: “This
new stage, in which progress can turn into self-destruction, in which one kind of modern-
ization undercuts and changes another, is what I call the stage of reflexive modernization”
(Beck et al., 1994, p. 2). So, reflexive modernisation is not about radical changes taking place as
a result of certain critical dysfunction of modernity. Beck does not follow a variant of Karl
Marx’s analysis, that “capitalism is its own gravedigger”; instead he finds that it is “the
victories of capitalism which produce a new social form” (see Beck et al., 1994, p. 2ff.). So
this new social form is born within the existing social structures. Reflexive modernisation
includes an unplanned change of industrial society which harmonises with existing politi-
cal and economic orders. Nevertheless, reflexive modernisation breaks up the contours of
industrial society and opens ‘paths to another modernity’. Although there will be no revo-
lution, there will be a new society.6

If we want to understand the dynamics of social development, then we should not
seek for that understanding from within the institutions which represent this development.
The mechanisms of reflexivity bypass the democratic institutions and operate as part of the
social subconsciousness. This problem is significant to sociology: “The idea that the transi-
tion from one social epoch to another could take place unintended and unpolitical, bypass-
ing all the forums for political decisions, the lines of conflict and the partisan controversies,
contradicts the democratic self-understanding of this society just as much as it does the
fundamental convictions of its sociology” (Beck et al., 1994, p. 3). Beck indicates that sociol-
ogy has not been able to grasp the basic principles of reflexivity. In what follows, I shall try
to explain in what sense I agree with this. However, before we embark on this analysis we
need to follow Beck in one more step.

Beck introduces the notion of risk society which “designates a developmental phase of
modern society in which the social, political, economic and individual risks increasingly
tend to escape the institutions for monitoring and protection in industrial society” (Beck et
al., 1994, p. 5).7 Risk society is symbolised by many events such as the Chernobyl disaster,
financial crises, pollution of food, etc. According to Beck: “Society has become a laboratory
where there is absolutely nobody in charge” (Beck, 1998, p. 9). In this return of uncertainty
a new frame of social life is established. Risk society is however formed by basic elements of
industrialised society: “One can virtually say that the constellations of risk society are pro-
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duced because the certitudes of industrial society […] dominate the thought and action of
people and institutions in industrial society. Risk society is not an option that one can choose
or reject in the course of political disputes. It arises in the continuity of autonomized mod-
ernization processes which are blind and deaf to their own effects and threats” (Beck et al.,
1994, pp. 5–6).8 Industrial society accumulates its own products, including their effects and
side-effects, and eventually this turns society into a new form. In particular, due to ‘certi-
tude’, industrial society produces risks, which transform the industrial society into a risk
society. But how might the nature and the process leading to the emergence of new risk
structures be understood?

Mathematics! Let us take a look at the index of Reflexive Modernization: No reference to
mathematics. However, we find the following sentence in Beck’s chapter: “Risks flaunt and
boast with mathematics” (Beck et al., 1994, p. 9).9 In Reflexive Modernization this sentence is
left as a passing remark. If reflexive modernisation can be discussed and analysed in depth,
without any reference to mathematics, then the thesis of insignificance appears justified.
But I want to illustrate that this is not the case. The recent development of the industrialised
society—establishing a reflexive modernisation, a risk society, or maybe a network soci-
ety—is linked to a mathematical resourced development. Mathematics makes part of that
‘certitude’, which transforms industrial society into a risk society.

Mathematics in Action

By means of a couple of examples, I hope to illustrate the importance of considering how
mathematics may be operating as part of a technological planning and decisions processes,
and how mathematics becomes part of technology itself.10

My first example of mathematics in action11 refers to a model presented by Dick Clements
in ‘Why Airlines Sometimes Overbook Flights’.12 Airlines deliberately overbook?! Why?
Naturally, in order to maximise profit or, to put it more gently, to make sure that the prices
of tickets are kept to a minimum. It is essential to try to prevent flying with empty seats. The
costs associated with flying a full airplane or one with empty seats are approximately the
same: “The airline must pay its pilots, navigators, engineers and cabin staff regardless of
whether the airplane is full or not. The extra fuel consumed by a full airplane compared to
that consumed by a half empty one is very little as a percentage of the gross fuel load […]
The take-off, landing and handling fees charged by airports are independent of the number
of passengers carried by an aircraft” (Clements, 1990, p. 325). For every departure, it is most
likely that some of the passengers who have already booked will fail to turn up (‘no shows’):
“The standard conditions of carriage for airline passengers allow full fare passengers to do
this without penalty. They can turn up at the airport later and their tickets will be valid for
another flight” (Clements, 1990, p. 326). As a consequence, it appears possible to overbook
flights. Certainly, there must be an upper limit to this, as the company is going to compen-
sate those passengers who might be refused, or ‘bumped’, if more than the expected num-
ber of passengers turn up. Furthermore, it must be considered that the probability of a pas-
senger being a ‘no show’ depends on, for instance, the destination, the time of the day, the
day of the week, and, as we shall see return to later, the type of his or her ticket.

All this can be incorporated into a mathematical model containing parameters such as
the cost of providing a flight, the fare paid by each passenger, the capacity of the airline, the
number of passengers booked on a flight, the costs of refusing a passenger who has booked,
the probability of a booked passenger arriving being a ‘no show’, the surplus generated by
a flight, etc.13 With reference to the model, it becomes possible to plan the overbooking in
such a way that revenue is maximised. Essential information, of course, is the probability, p,
that a booked passenger will in fact be a ‘no show’. If this probability is equal to 0, then there
is no point in overbooking, but if p is greater than 0, then we can devise an overbooking
strategy. The actual value of p for particular departures can be estimated by means of statis-
tical records concerning previous departures, and in this way the degree of overbooking
can be graduated according to a set of relevant parameters. For instance, the degree of
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overbooking the last evening flight from Copenhagen to London should be kept lower than
that of an afternoon flight, as the compensation for bumping a passenger in the first case
would include hotel costs.

This example illustrates that mathematics may serve as a basis for planning and deci-
sion-making. The traditional principle: ‘Do not sell any more tickets than there are seats’
becomes substituted with the much more complex principle: ‘Overbook, but do it in such a
way that revenue is maximised, considering the amount of money to be paid as compensa-
tion, the destination, the time of departure, the day of the week, as well as the long term
effects of having sometimes to bump passengers who in fact have made valid bookings.’
This new principle cannot be created or come to operate without mathematics. Its complex-
ity presupposes that applications of mathematical techniques are ‘condensed’ into a book-
ing programme. The principle illustrates what, in general, can be called mathematics-based
action design.

A mathematical booking-model does not only describe a certain situation, in this case,
patterns of reservation, cancellations and ‘no shows’. Mathematics does not only provide a
‘picture’ of reality, as suggested in several philosophies of mathematical modelling. In fact,
many descriptions of mathematics as language assume a picture-like theory of what math-
ematics does. In this way the descriptions embark on the metaphysics from Ludwig
Wittgenstein’s Tractatus Logico-Philosophicus. However, should mathematics be compared
with language, then the speech act theory, as suggested by John L. Austin and John R. Searle,
invites the following question: What is in fact done by means of mathematics? This question
introduces also the idea of linguistic relativism as presented by Edward Sapir and Benjamin
Lee Whorf: What world view is provided by a specific language? Applied to the language of
mathematics, the question becomes: What world views are made available by means of
mathematics? Or: How is the world constructed, according to mathematics?14

A booking model does not just describe some principles of queuing. It actually estab-
lishes new types of queues. And it might create a situation in which some people suddenly
have to make new travel plans. Mathematics becomes part of a technique, here represented
by the management of booking of flights. But this is just a particular example illustrating
the fact that mathematics of all possible kinds and complexities operates in a wide range of
modern management systems. Mathematics becomes part of reality, as mathematics-based
design is put in operation.

An adequate understanding of the actions carried out in the process of selling tickets
is not possible unless we pay attention to the existence of the booking-model. What inter-
pretation to make of the airline assistant’s exclamation: “Oh, I’m so sorry, but unfortunately
we have some problems with the computer system.…” How would a sociological interpre-
tation of this particular situation look like? Without awareness of the existence of a booking
model, the assistant’s explanation may appear plausible. But this explanation does not cap-
ture the fundamental rationality of the situation. In many cases, ‘bumping’ a passenger is
not a computer mistake. Instead it is a well-calculated consequence, occurring when the
passenger in question comes to represent a statistical ‘deviation’ from the expected norm. If
we want to interpret the episode, we need to understand how mathematics operates behind
the desk. This is the case as well with many other situations where mathematical models
provides rationales (or pseudo-rationales) for decision making. The example of overbooking
is not a unique example of mathematics-based action design. Instead it can be seen as para-
digmatic of any (complex) business management. Without being aware of mathematics be-
ing in place, sociological explanations of such enterprises will become superfluous, if not
misleading. To me sociology must be aware of mathematics-based action design in order to
interpret a wide range of social phenomena.

Mathematics is certainly involved in grand scale economic management. This can be
illustrated by the Danish macro-economic model ADAM (Annual Danish Aggregated
Model), which is used by the Danish Government as well as by other institutions (private as
well as public).15 One of the principal aim of ADAM is to promote ‘experimental reasoning’
in political economy. In this way, ADAM provides a basis for political decision-making. One
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way of doing so is to provide economic prognoses. Another, maybe even more important
application of the model, is to provide different scenarios. Experimental reasoning tries to
address the question: If a certain set of decisions is made and the economic circumstances
develop in a particular way, what would be the consequence? Implications of a scenario can
be investigated by a comparison between applications of the model to different sets of val-
ues of the parameters in question. In this way it becomes possible to observe the implica-
tions of a political action without having first to carry out the action. Naturally, such reason-
ing is basic in politics. However, by relying on the model, the political discourse changes
because the experimental reasoning which refers to the model acquires a new authority.
Experimental reasoning can help to discover which economic initiatives are ‘necessary’ in
order to achieve some economic aims, say, within a definite time limit. (Certainly, ‘neces-
sary’ has to be put in inverted commas, as necessity refers to the space of possibilities pro-
duced by the model.)

As emphasised by the builders of the model, the quality of the scenarios provided by
the model depends on the accuracy of the estimations of the variables providing the founda-
tion for the calculations. It naturally has to be added that the quality of the presented sce-
narios also depends on the quality of the model itself. What, then, does a model like ADAM
consist of? An awful lot of equations! These equations can be summarised in different ways,
one possibility is to group them into seven clusters having to do with commodity demands,
commodity supply, labour market, prices, transfers and taxes, balance of payments, and in-
come. In fact, ADAM can be considered as a set of sub-models addressing certain aspects of
the Danish economy. The system of equations in ADAM is constructed around different types
of variables, exogenous and endogenous. The value of an exogenous variable is determined
from outside the model; the population of Denmark is as an example of such a variable. To
estimate the employment-unemployment ratio, this number is essential. Endogenous vari-
ables are those which are determined by the model itself, and many variables, which appear
exogenous in some part of the ADAM-complex, are determined by other parts of the model,
so when ADAM is considered in its totality, they become endogenous.

When such a system of equations is constructed and accepted, experimental political
reasoning can be carried out. The problem is, of course, how to present such reasoning.
Obviously, the detailed structure of the model cannot be presented, nor grasped, in actual
political discussions. A possibility is to let experimental reasoning take the particular form
of a multiplier analysis. Let us assume that the equation y = f(x1,…, xn) belongs to the model.
If the variable x1 is multiplied by a certain factor c, the result would be yc = f(cx1,…, xn). By
calculating d = yc/y, we it can be claimed that when the input x1 is multiplied by c, the
output y will be multiplied by the factor d. Questions inviting multiplier analysis are raised
everywhere in political discussions. For instance, if the government tries to carry out an
expansive finance policy, and expand public demand, what effect would such a policy have
on the degree of unemployment? In particular, if the government increases its public de-
mand by 5%, how much would the unemployment then decrease? A multiplier analysis
would provide an estimation.

ADAM is certainly not merely providing a description of some part of socio-economic
reality. It also imposes certain theoretical assumptions about this reality. Taken together,
ADAM “displays features which are characteristically Keynesian” (Dam, 1986, p. 31). Thus,
the choice of the basic equations, which supply the model with a ‘soul’, does not simply
reflect certain economic reality; it also prescribes a particular perception of economic af-
fairs. Also in this case, the phenomena of linguistic relativism must be kept in mind. ADAM
provides a new example of mathematics-based action design. By being a resource for ac-
tions, the model becomes part of economic reality. It even comes to dominate this reality, to
the extent that its assumed economic linkages establish real linkages. ADAM was created
by mathematics, but ADAM got life. And, as we all know, ADAM did not stay alone.16

Since 1981, ADAM has been connected to the international LINK project, through which
a huge number of national macro-economic models are structured into a world model. In
1995, 79 nations and regions participated in the LINK Project, organised by the United Na-
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tions. The connection of different models makes it possible to estimate many of the exog-
enous variables of particular national, macro-economic models. With reference to a ‘con-
necting structure of models’ such exogenous variables can be regarded as endogenous vari-
ables. In this way, our world gets enveloped in calculations.

Human beings become part of a reality structured by economic principles formulated
in mathematical terms. We observe the same phenomenon associated with the booking-
model: the mathematical model becomes part of a social reality. Therefore, we must again
raise the question: How is a sociological interpretation of economic decision-making pos-
sible without an understanding of the nature of the economic world as represented (and,
therefore, reworked and constructed) by an ADAM or other macro-economic models? In
Social Theory and Modern Sociology, Giddens discusses the problems of macro-economics in
relation to social theorising. One of the issues he raises is that such models include assump-
tions, for instance in terms of a ‘rational expectation theory’, which may compromise the
descriptive value of such models. I am sure Giddens is right: macro-economic models can-
not be justified by their descriptive relevance for sociology. But this is not the point. What-
ever the macro-economic models might do or not do, they are in fact used, and this use is of
critical importance for social theorising, as understanding this example of mathematics in
action is one of the conditions for understanding political and economic decision making.

Mathematics does not only influence the economic part of our reality. In 1995, the
Danish Council of Technology (Teknologirådet) published the report, Magt og Modeller (Power
and Models), discussing the increasing use of computer-based models in political decision
making. The report refers to 60 models, which cover the following areas: economics, envi-
ronment, traffic, fishing, defence, population. The models are developed and used by pub-
lic as well as private institutions in Denmark.17

The authors of the report Magt og Modeller emphasise that political decision-making
concerning a wide range of social affairs is closely linked to applications of such models.
They also emphasise that this development may erode conditions for democratic life: Who
construct the models? What aspects of reality are included in the models? Who have access
to the models? Are the models ‘reliable’? Who is able to control the models? In what sense is
it possible to falsify a model? If such questions are not clarified in an adequate way, tradi-
tional democratic values may be hampered. As an illustration of this problem, I shall
summarise the comments of the report related to traffic and environmental issues. In this
case models are often used in support of decisions which cannot be changed, like the con-
struction of a bridge between two major Danish islands. Decisions concerning traffic are
almost exclusively based on models developed in private companies. It is not usual to de-
velop more than one model to illuminate a certain issue. Finally, it happens that models are
used in order to legitimate de facto decisions, in the sense that a model-construction pro-
vides numbers and figures which justify a decision already made.

Beck claims that the process of reflexivity, which leads to a risk society, occurs outside
of democratic control, and that it eludes contemporary sociology. The extensive use of math-
ematical modelling, as discussed in Magt og Modeller, exemplify this claim. How to obtain a
democratic access to decision-making, which refers to mathematical modelling processes?
The conditions for democratic life may be eroded by the spread of mathematical based
action design.18 Thus, it becomes difficult to ignore the role of mathematics, if we want to
establish a sociological discussion of conditions for democracy regarding the nature of tech-
nological development.

Three Aspects of Mathematics in Action

The philosophy of mathematics has interpreted mathematics as abstract and has tried to
study sources for abstraction. By talking about mathematics in action, I concentrate on the
inverse process: seeing how mathematical abstractions are projected into reality. When we
use mathematics as a basis of technological design, we bring into reality a technological
device that has been conceptualised by means of mathematics. First, it exists in the world of
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mathematics, later it is brought into reality by an actual construction. A mathematical ‘speech
act’ has been carried out.

In order to specify aspects of this particular act, let us consider the notion of sociological
imagination, which expresses a capacity to separate what is necessary from what is contin-
gent and, therefore, possible to change. A fact is not only a fact but also a (social) necessity,
when it is impossible to imagine that the fact is not the case. If we consider a particular
culture where a certain work process is carried out in a particular way (maybe obeying
some ceremonial traditions), and no alternative to that approach is identified, then this pro-
cess would appear to be a (social) necessity.19 The existence of an imagination that describes
alternatives to an actual situation makes a difference. In this case, the fact is ‘reduced to’ a
contingent fact. The experienced necessity is revealed as an illusion when an alternative is
conceived. This is the power of sociological imagination: A social given has been identified
as available to change.20

A process of design includes the identification and the analysis of hypothetical situa-
tions, and mathematics helps by providing material for constructing such situations. By
means of mathematics, we can represent something not yet realised and therefore identify
technological alternatives to a given situation. Mathematics provides a form of technologi-
cal freedom by opening a space of hypothetical situations. In this sense, mathematics be-
comes a resources for technological imagination and, therefore, for technological planning
processes including mathematical based action-design. However, as we shall come to see,
all the attractive qualities associated to sociological imagination are not simply transposed
to technological imagination. This is important to keep in mind.

The space opened by a technological imagination might very well contain hypothetical
situations which are not accessible via common sense. A mathematical framework provides
us with new alternatives. For instance, when a booking model is established, it becomes
possible to specify ‘special fare schemes’ like the APEX.21 Thus, the model makes clear the
relevance of creating certain groups of passengers, where it becomes easy to predict the prob-
abilities of ‘no show’. In order to do a more detailed planning (How many APEX are going to
be offered? By how much should the price be reduced?), it becomes essential to have a book-
ing model available. The set of equations in ADAM also constitutes hypothetical situations.
The ADAM makes it possible to establish political thought experiments; this means
conceptualising details of situation, which is not possible to identify by common sense. In
other respects, the space of hypothetical situations might be very limited. Certainly, ADAM
does not support political thought experiments which contradict the political priorities, in-
stalled in ADAM in terms of its basic equations. When a technological imagination relays on
mathematics, it may provide a very particular space of hypothetical situations.

Political and economic interests can express themselves in the set of technological alterna-
tives that are established as mathematically well-defined. Therefore, mathematics as part of a
technological imagination can interact with other power structures. As mentioned previously
with reference to models for traffic planning, the set of alternatives established by mathematics
can be so limited that the modelling in fact serves as a legitimisation of a de facto decision. By
providing one and only one alternative, this alternative appears to be a necessity within the
space of hypothetical situations provided by the model. This situation helps to establish cred-
ibility in the political claim that a certain political decision is a ‘necessary’ decision.

Thus, the first aspect of mathematics in action concerns technological imagination: By
means of mathematics, it is possible to establish a space of hypothetical situations in the form of (tech-
nological) alternatives to a present situation. However, this space may contain serious limitations.

Mathematics provides the possibility for hypothetical reasoning, by which I refer to
analysing the consequences of an imaginary scenario. By means of mathematics we seem to
be able to investigate particular details of a not-yet-realised design. Thus, mathematics con-
stitutes an important instrument for carrying out detailed thought experiments. Because of
ADAM, it is possible to carry out hypothetical reasoning related to economic policy. This
reasoning is counterfactual, as it address implications of the form: ‘p implies q, although p is
not the case’. A representation of p is provided by ADAM in terms of equations including
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the values of the relevant parameters. The hypothetical reasoning can then address a par-
ticular situation ‘realised’ by ADAM. Some conclusions of the hypothetical reasoning can
then be simplified and expressed in multipliers that are easily included in the common
political discussion. Without mathematically based hypothetical reasoning, the political dis-
cussion would take a completely different form. It would lose a great deal of so-called ‘pre-
cision’. Hypothetical reasoning represents an essential element in the mathematics-bases
analysis of particular implications of particular actions.

The strength of the hypothetical reasoning is demonstrated by the level of details to
which the hypothetical situation is specified. However, hypothetical reasoning, supported
by mathematics, also lays a trap, because we are investigating details represented only within
a specific mathematical construction of a given alternative. Furthermore, the actual hypo-
thetical reasoning is limited by the fact that the reasoning itself is supported by mathemat-
ics. As clearly illustrated by ADAM, the weakness of the hypothetical reasoning is that the
decisions made on the basis of hypothetical reasoning will operate in a real life situation,
not grasped by ADAM. So when q is found attractive, and p is realised, we will see that the
ADAM-supported hypothetical reasoning, does not operate straightforward in a real life
context. The hypothetical situation, p, is an imaginary situation created only by the model,
and it need not have much in common with any actual situation. The problem of hypotheti-
cal reasoning is caused by the ‘gap’ between the model-constructed virtual reality and the
‘complexity of life’.

The second specification of mathematics in action concerns hypothetical reasoning: By
means of mathematics, it is possible to investigate particular details of a hypothetical situation, but
mathematics also cause a severe limitation of the hypothetical reasoning. This means that the qual-
ity of mathematically-based thought experiments might be highly problematic. Here we
touch upon an aspect that can help to explain the emergence of risks.22

A particular aspect of carrying out investigations of hypothetical situation concerns
the choices between alternatives. One option is to let ‘formal’ reasoning do the job. This is
based on the assumption that, in some way, we can measure ‘pain’ and ‘pleasure’ (‘cost’ and
‘benefit’) related to the realisation of each of the alternatives in question. This utilitarian
assumption makes it possible to transform a political discussion into a management dis-
course. This transformation can be illustrated by the use of ADAM to provide justification
for political actions. If, say, it is a political aim within five years to decrease unemployment
by a certain percentage, then a multiplier analysis could indicate necessary political actions.
The ‘necessity’ of such actions of course refers to the model, but when this model-reference
is forgotten, and this reference seems immediately forgotten when policy is discussed in
public, then the political actions can be referred to as merely ‘necessary’. And then there is
only a small step to be taken in order to introduce a ‘technological necessity’ in politics: We
have to do so and so, because this is the only possibility feasible! When ‘technological ne-
cessity’ is acted out this way, reality becomes structured in accordance with the perspective
of ADAM. The gap between model and reality tends to diminish. The distinction between
‘reality’ and the ‘virtual reality’ of the model becomes blurred.

When an alternative is chosen and realised, our environment changes. What is the na-
ture of this new situation? The point here can be illustrated by the ADAM and also by many
micro-economic models. As already emphasised, the model that structures airline bookings
is certainly not simply a description of what takes place when tickets are booked and sold.
When introduced, the model becomes part of the passengers’ reality. And this story can be
continued: Insurance companies also offer insurance for APEX tickets. They, therefore, need
a model telling about the likelihood that a ‘sure passenger ’ will in fact become a ‘no show’.
In this sense, models create models, and one layer after another of mathematics sinks into
our social reality.23

Thomas Tymoczko has summarised this point in the following point:

Business does not just apply various already existing mathematical theories to facilitate an
activity that is, in principle, independent from such mathematical application (although it
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can do that). Business could not exist in anything like its historical form without some math-
ematics. Certainly we cannot imagine a modern economy struggling along without math-
ematics then suddenly becoming more efficient because of the introduction of mathematics!
(Tymoczko, 1994, p. 330)24

That mathematics becomes part of reality is a general phenomenon. At his lecture at the 7th
International Congress on Mathematical Education in Québec, Tymoczko mentioned the
relationship between mathematics and war. His point was that war and mathematics are
interrelated in an intimate way. We may talk about modern warfare as constituted by math-
ematics. Not in the sense that mathematics is the cause of war; but we cannot imagine a
modern warfare to take place without mathematics as an integrated part. The same state-
ment can be made if we, instead of ‘war’ or ‘business’, talk about ‘travel’, ‘management’,
‘communication’, ‘architecture’, ‘insurance’, ‘marketing’, etc. In their present form such types
of social phenomena are modulated if not constituted by mathematics.25

Whenever we talk about mathematics-based design, we have to remember that the
realised situation need not have much in common with the hypothetical situation presented
and investigated in mathematical terms. Any technological design has implications not iden-
tifies by the hypothetical reasoning. This is a basic problem related to any kind of math-
ematical based investigation of counterfactuals. When p is represented by a mathematical
based vision, and the implications of p is identified by a hypothetical reasoning as q, and
found attractive, then the realisation of p may nevertheless contain heavy surprises. Risks
emerge in the gap between the mathematical based reasoning related to the hypothetical
situations and the really functions of the contextualised realisation. Certitude turns into risk.

Still, the realisation maintains mathematics as an operating element. In this sense we
come to live in a environment, produced by integrating a model-supported virtual reality
with an already constructed reality.26 For instance, much information technology materialise
in ‘packages’. Such packages can be installed and come to operate together with other pack-
ages, and they contain mathematics as a defining ingredient. In particular, Hardy’s research
has made a significant contribution to the area of cryptography, which addresses the ques-
tion of ‘trust’ and security of electronic communication. Knowledge about the distribution
of prime numbers and about the efficiency of mathematical algorithms, is essential for esti-
mating the likelihood of maintaining privacy. Also in this case mathematics has become
inseparable from other aspects of society.27

This bring us to the third aspect of mathematics in action which concerns realisation:
Mathematics modulates and constitutes a wide range of social phenomena, and in this it becomes
part of reality.

Put together, the three aspects of mathematics in action send the following message:
By means of mathematics it is possible to establish a space of hypothetical situations in the
form of possible (technological) alternatives to a present situation. However, this space may
have serious limitations. By means of mathematics, in the form of hypothetical reasoning, it
is possible to investigate particular details of a hypothetical situation, but this reasoning
may also include limitations, and therefore also uncertainties for justifying technological
choices. As part of the realisation of technologies, mathematics itself becomes part of reality
and inseparable from other aspects of society. Being part of this process, mathematics is
positioned in the centre of social development, in the production of wonders as well as of
horrors.

Social Theorising

In his study ‘The Information Society’, Daniel Bell emphasises that “information and theoreti-
cal knowledge are the strategic resources of the postindustrial society, just as the combination
of energy, resources and machine technology were the transforming agencies of industrial
society” (Bell, 1980, p. 545). In his impressive work, The Information Age: Economy, Society and
Culture I-II-III, Manuel Castells both develops and modifies this idea. He describes knowl-
edge and information as “critical elements in all modes of development, since the process of
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production is always based on some level of knowledge and in the processing of informa-
tion” (Castells, 1996, p. 17). Such statements are certainly crucial to understanding the infor-
mation age. However, the significance of these statements rests upon an specification of what
can be understood as information and as knowledge. Castells adds a footnote to this part of
his text: “For the sake of clarity of this book, I find it necessary to provide a definition of
knowledge and information, even if such an intellectual satisfying gesture introduces a dose
of the arbitrary in the discourse, as social scientists who have struggled with the issue know
well.” Following these preliminaries he characterises knowledge as set of organised state-
ments, which includes some kind of justification, and which is transmitted to others. ‘Infor-
mation’ he described as a concept even broader than knowledge. It is clear that Castells does
not take this intellectual gesture seriously, and he does not apply this definition in any pro-
found way later in his work. Instead he lets ‘knowledge’ and ‘information’ stay as cloudy
concepts throughout his whole study of the information age. (I am sure that Castells has
realised this.) But I find that it is essential to make a much stronger specification of the notion
of knowledge in order to get a deeper understanding of some of the basic social process of the
information age (and I am afraid that Castells has not realised this).

By being kept on a general level, the discussion of knowledge and information makes
it difficult to raise questions about the particular roles different types of knowledge and
information might play in the construction of new technologies. In this way, the thesis of
mathematics being insignificant regarding social affairs becomes incorporated in the socio-
logical discussion of the information age. However, I simply do not think that any kind of
knowledge and information operate as ‘strategic resources’. Quit contrary, I find that par-
ticular types of knowledge operate in particular ways as resources for developing and
realising technologies. Thus, the use of ‘knowledge’ and ‘information’ as dummies obstruct
the possibility of an interpretation of social development. Beck did emphasise that the risk
society is produced because the certitudes of industrial society dominates thought and ac-
tion. As I have tried to argue, this phenomenon is related to mathematics-based action de-
sign and, in particular, to the application of mathematics in investigating counterfactuals.
To me, a basic challenge to social theorising is to grasp the nature and scope of mathematics in
action. I conceive this as a condition for any adequate interpretation of the basic processes
which brings about reflexive modernisation, and for interpreting how ‘certainty’ turns into
free growing risk structures, which are going to accompany us into the future.

One more aspect of the challenge to social theorising has to be mentioned. This also
concerns the philosophy of mathematics. Implicitly, in our discussion of mathematics in
action and of the apparatus of reason, we have been dealing with reason. Following the
‘modern condition’ and the spirit of the Enlightenment, reason can be interpreted as a pow-
erful resource for progress. Reason, in the shape of science and of mathematics, represents
an ‘ultimate good’. Following logical positivism the trust in rationality evolves into a trust
in scientific methodology. However, critical voices have indicated that reason, in the shape
of instrumental reason, reveals its problematic nature. In One-Dimensional Man, Marcuse
tried to show how instrumental reason, associated with logical positivism and instrumen-
talism and specified by a scientific methodology, could increase in scale and manufacture
social development in a particular form. Operating outside its proper domain, the natural
sciences, instrumental reason becomes problematic. It comes to exercise an illegitimate power.
It facilitates suppression and social manipulation. However, instead of concentrating on
instrumental reason as basis for an interpretation of how science becomes involved in social
affairs, I find it necessary to broaden the scope of investigation considerable. We have to
study the role of reason, in particular as manifested by mathematics.

Do we like mathematics-based action design? For instance, do we like the booking-
model? If we think of the situation as a passenger who has just been bumped, then we will
surely have a negative impression. The principle of not selling anything more than you
have seems to represent ‘honest business’. But it is also possible to see the model in a differ-
ent light. It ensures that the total number of flights are kept to a minimum, ensuring that, as
far as possible, airplanes do not travel with empty seats. By a slight reformulation of
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‘Kranzberg’s First Law’, my claim is: What mathematics is doing is neither good nor bad, nor is it
neutral.28

According to classic philosophy of mathematics, mathematical thinking was a model
for human thought. However, this glorification of the queen of science is no longer the
object of all philosophies of mathematics.29 In particular, aporism, as a philosophy of math-
ematics, acknowledges that ‘pure reason’, in terms of mathematics, can turn into ‘disastrous
reason’.30 Aporism sees mathematics as an essential element in social and technological de-
velopment; at the same time aporism realises that the presence of mathematics does not
provide any guarantee for the ‘quality’ of this apparatus. Therefore, the certainty of math-
ematics can transform into uncertainty regarding the construction of our future. Wonders
mix with horrors.

Previously it might have been appropriate for sociology to ignore the social role of
mathematics. Mathematics might recently have disarmed social theorising from grasping
the basic processes of reflexivity. The theoretical task now is to provide a framework for
grasping mathematics in action, in particular to identify how mathematics supports a tech-
nological imagination (which might be problematic and narrow), how it establishes possi-
bilities to investigate particular aspects of possible technological constructions (and ignores
other aspects), and how mathematics becomes installed in society and starts operating as
part of technological devices. The functioning of mathematics cannot be ignored by social
theorising. In order to cope with this, sociology may get inspiration from recent studies of
mathematics and of mathematics education, which have tried to reconsider mathematics in
action.

Notes

1. Hardy makes a distinction between ‘real’ mathematics and practical applied—or trivial—math-
ematics which may have such effects. I do not make a sharp distinction between pure and
applied mathematics, or between real and trivial mathematics. All areas contribute to the mix,
which I call mathematics, and in the rest of this paper, I will simply talk about mathematics.

2. Many studies have revealed that a social structuring of mathematics takes place. See, for
instance, Wilder (1981). However, this issue is not going to be discussed in the following.

3. As an illustration of classical concerns in the philosophy of mathematics, see, for instance,
Benacerraf and Putnam (eds.) (1986).

4. See also, for instance, Giddens (1990, 1998) and Habermas (1987). Surprisingly, mathematics
is not referred to in Castells (1996, 1997, 1998). However, Lyotard (1984) includes mathemat-
ics in his discussion of the post-modern condition.

5. For a discussion of critical mathematics education and related ideas see Borba and Skovsmose
(1997); Keitel et al. (1989); Niss (1994); Skovsmose (1994); and Skovsmose and Nielsen (1996).

6. The notion of reflexive modernisation has come to play a crucial role in recent sociology. By
this concept, Giddens emphasises that the consequences and the implications of any action
become part of the process of acting itself. Giddens seems to rephrase reflexivity as part of the
‘conscious’ level of social dynamics, while Beck relegates reflexivity to a deeper level of social
processes.

7. See also Beck (1992, 1995a, 1995b); Franklyn (1998); and Hiskes (1998).
8. Richard P. Hiskes expresses this as follows: “Risk is the product of our lives together, and to

fully understand risk’s emergent character is to realize that most of the efforts to either ex-
plain risk or to cope with it within an individualistic political framework are doomed to
failure because they do not acknowledge the ‘togetherness’ of our risky present” (Hiskes,
1998, p. 13).

9. In other parts of his work, Beck refers to mathematics. See, for instance, Beck (1995b, 20–22)
where he talks about the calculus of risks. See also the discussion of ‘hazards’ in Beck (1995a,
73–110).

10. I include a variety of aspects within the notion of technology: the artefacts of technology (be
it a car, a computer or any other device) as well as strategies for action (a plan of production
or any other product of ‘systems development’). Tailorising is one classic example, and com-
puter-based systems development has produced all kinds of examples.
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11. The expression ‘mathematics in action’ is inspired by the title of Latour’s book, Science in
Action. However, while Latour follows scientists and engineers through society, I try to fol-
low mathematics into society. In other contexts I have developed this idea in terms of the
formatting power of mathematics. See, for instance, Skovsmose (1994).

12. Clements (1990) does not claim that his model is identical to any actually used model (such
models are ‘commercial in confidence’), but certainly it is similar to such models: “The pur-
pose […] is to develop a model of the decisions facing an airline and, from this, to acquire an
understanding of why it may indeed be beneficial to an airline to book more passengers onto
a particular flight than the capacity of the flight that is to make the flight” (Clements, 1990, p.
324). Booking strategies may have developed considerably since Clements constructed his
model; nevertheless this model illustrates several basic aspects of mathematics in action.
Clements’s model has been further discussed by Hansen, Iversen and Troels-Smith (1996).

13. For more details, see Clements (1990, p. 325).
14. See Austin (1962, 1979); Sapir (1929); Searle (1969); and Whorf (1956).
15. ADAM is presented in Dam (1986) and Dam (ed.) (1995). For a critical examination of ADAM,

see Dræby, Hansen and Jensen (1995).
16. The Institute for Learning and Research Technology, Bristol University has provided a Vir-

tual Economy, which is an on-line model of economy based on the Treasure’s model: “Users
can try out policies [...] The program provides extensive feedback on how the economy would
perform over the next ten years if those policies were actually implemented. Users can also
see the impact of their policies on a range of sample families” (Newsletter, University of Bristol,
22 April 1999). The Virtual Economy can be found at: http://www.bized.ac.uk/virtual/economy.

17. The authors are Per Kongshøj Madsen, Bent Andersen, Jørgen Søndergaard, Ruth Emerek,
Hans Frost, Poul Lübcke, Kim Viborg Andersen and Rolf Ask Clausen. Besides ADAM, the
economic models referred to in Magt og Modeller include: the SMEC (Simulation Model of the
Economic Council), which operates in a similar way to ADAM but is used first of all by the
Economic Council; GEMIAE (General Equilibrium Model of the Institute of Agricultural Eco-
nomics), which emphasises economic aspects related to agriculture; GESMEC (General Equi-
librium Model of the Economic Council); HEIMDAL (Historically Estimated International
Model of the Danish Labour Movement), which emphasises Nordic relationships; MONA
(Model Nationalbank), which is used by the Danmarks Nationalbank as a tool of forecasting
and analysis making; and MULTIMOD (Multi-region Econometric Model). The environmen-
tal models referred to in Magt og Modeller include: ARMOS (Areal Multiphase Organic Simu-
lator For Free Phase Hydrocarbon Migration and Recovery); HST3D, which provides simula-
tion of heat and solute transport in three-dimensional groundwater flow system. Among the
models related to defense is SUBSIM (Small Unit Battle Simulation Model).

18. For a discussion of how mathematics may influence different spheres of practice, see, for
instance, Appelbaum (1995); Dorling and Simpson (1999), and Porter (1995).

19. It is, naturally, possible to specify further the notion of necessity by distinguishing between ‘logi-
cal necessity’, ‘physical necessity’, ‘social necessity’, etc., depending on the possibilities of
conceptualising alternatives. Thus, a fact constitutes a physical necessity, if it is impossible to
imagine it to be different without also imagining some physical laws to be different. Similarly, a
fact constitutes a social (or cultural) necessity if it is impossible to imagine it to be different with-
out also imagining some (deeply rooted) cultural traditions and social norms to be different.

20. The importance of sociological imagination to sociology has been emphasised by Wright Mills
(1959) and repeated by Giddens (1986).

21. With the APEX “... the passenger is offered tickets valid only for a specified flight but at a
reduced fare. If the passengers fail to arrive for that flight the ticket is void and the passengers
lose their money. Obviously some passengers (chiefly business travellers requiring some flex-
ibility in their planning [and not paying for the tickets themselves]) will still be prepared to
pay full fare to retain that flexibility, whilst others (chiefly holiday makers) will accept the
restriction in return for the reduced fare. The second category of passengers will not miss
their flight lightly so we can assume that their ‘no show’ probability is virtually zero. These
passengers then form a solid base of passengers who can be relied on to turn up for the flight”
(Clements, 1990, pp. 335-336).

22. For an indication of how risks can be related to mathematical formalisation, see Booss-Bavnbek
(1991).
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23. In a similar way many other services, public and private, are based on models linking to
models. For instance, the many new forms of services and special offers provided by tele-
companies cannot be established without careful mathematically based planning.

24. A historical study of how mathematics constitutes and modulates economic affairs is dis-
cussed in Swetz (1987).

25. See Tymoczko (1994) and Højrup and Booss-Bavnbek (1994).
26. The notion of ‘frozen mathematics’, which refers to mathematics as part of social and cultural

life, has been discussed in, for instance, Keitel (1989, 1993). The prescriptive use of mathemat-
ics, also illustrating mathematics in action, is discussed in Davis and Hersh (1988).

27. For a discussion of mathematical foundation for ‘trust’ and security in the electronic trans-
mission of information, see Skovsmose and Yasukawa (2000).

28. See Kranzberg (1997).
29. See, for instance,  Bloor (1976); Ernest (1998); Hersh (1998); and Kitcher (1984). The social role

of mathematics in technology has been discussed by many authors, for instance, Booss-Bavnbek
(1995); Højrup and Booss-Bavnbek (1994); Keitel (1989, 1993); Keitel, Kotzmann and Skovsmose
(1993); and Restivo et al. (1993).

30. The Greek word aporia refer to ‘being without direction’ or ‘being lost’. In the present aporia
refers to the basic uncertainty in identifying the role of rationality, as exercised by mathemat-
ics in action. Aporism has been presented in Skovsmose (1998, 2000). It can serve as a work-
ing philosophy of critical mathematics education.
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Mathematics, A Living Discipline within Science and Technology

Christiane Rousseau
Université de Montréal

The purpose of this paper is to present a new course « Mathematics and technology » which
was created at the Université de Montréal and has been taught once during the winter term
of 2001. The students in the course were for the most part future high school teachers. A few
students in applied mathematics also attended the course.

The objective of the course is to introduce to several applications of mathematics in
technology. The applications chosen are:

· very modern for the most part;
· using relatively elementary mathematics;
· but some sophistication is needed to get extra power.

In the course the students have to do:

· mathematical modeling;
· problem solving;
· use of computers (but not for all applications);
· a project (similar to the projects done in science fairs).

Around 12 applications are studied, for usually five hours each:

· Elementary theory (one hour);
· Exercises (2 hours);
· Advanced theory (2 hours).

For the evaluation the students have to do:

· 3 half-exams half take-home (mostly on the elementary parts);
· a project (report of 25 pages) plus an oral presentation (30 minutes). The students work

by teams of 2.

Throughout the course the students find the following messages:

· mathematics are everywhere present in new technologies;
· mathematics are alive and new developments occur all the time;
· with mathematical tools and problem solving skills anyone can contribute to technol-

ogy, BUT programming is also an essential tool.

A guided tour of some applications (not all elementary)

The purpose of the guided tour is to show how numerous are the applications of mathematics.

Applications in health

· Cardiac arrythmias and chaotic dynamics: Mathematicians and cardiologists work to-
gether to better understand the mechanisms of the heart and the onset of chaos. The
hope is to be able to control arrythmias with pacemakers;

· Pharmacy: how to better control the diffusion of drugs so as to be able to give smaller
quantities and minimize side effects;
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· Medical imaging: wavelets allow to “clean” an image to get a better diagnosis;
· Medical imaging: reconstruction of 3D-images from 2D-images.

Applications in molecular biology

· Knot theory is used to explain the action of enzymes on DNA. [R]

Shape optimization

· Shape of a plane wing (aeronautics);
· Shape of a boat shell;
· Shape of a column. Let us recall the old problem posed by Lagrange: “find the shape of

the stronger revolution column with fixed height and volume, under pressure from
above”. Lagrange “proved” that the strongest column is the cylinder. However
Lagrange made a mistake and the strongest column was finally found by Cox and
Overton in 1992. [C] If one reads Lagrange’s work one cannot find the error as all his
mathematical deductions are OK. The error lies in the fact that Lagrange erroneously
supposed that the profile of the column was given by a differentiable function.

FIGURE 1:  The optimal solution
of Cox and Overton

Operational research

· Optimization in transport networks;
· Optimization in the distribution of cellular phone frequencies.

Shape recognition

· Reading of postal codes;
· Reading the amount of a check in an automatic teller;
· Recognition of voice;
· Recognition of finger prints;
· Vision of computers.

Financial mathematics

· Conception of derivatives.

Image compression

· Use of fractals.

Structural rigidity in architecture

Mathematics and music

· Clean a sound (for instance an old record);
· Compose new sounds on a synthetizer.
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Cryptography

· Public key cryptography (RSA code for bank cards, internet);
· Quantic cryptography;
· The use of Penrose tilings for cryptography.

Engineering

· The movements of a robot.

Error correcting codes

DNA computers

Etc. …

We will discuss in more details the following subjects:

· GPS;
· Public key cryptography;
· Error correcting codes;
· Image compression;
· Vision of computers;
· Movements of a robot.

There exist many more.

We start with a flash-science.

A remarkable property of the parabola

FIGURE 2:  A remarkable
property of the parabola

· When vertical rays are reflected they all meet in the same point (elementary).
· The parabola is the only curve with that property (more advanced: differential equation).
· Applications:

Parabolic antenna;
The mirror of a telescope;
The shape of a radar;
The shape of head-lights.

The GPS (Global positioning system)

The system was completely developed only in 1995 by the Ministry of Defense in United
States, which allows the public to use it. 24 satellites move on orbits around the world, so
that anyone on earth can catch the signals of at least 4 satellites.

The GPS gives one’s position on earth. The principle is that the small receiver in one’s
hand measures the time necessary for a signal emitted by the satellite to travel from the
satellite to the receiver. Given that the signal travels at the speed of light this allows us to
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measure the distance from the satellite to the receiver: from this we know that the receiver is
located on a sphere centered at the satellite. As three spheres intersect in 2 points the knowl-
edge of the distance from the receiver to 3 satellites yields the position of the receiver since
one intersection point is unrealistic.

This is theory. In practice the satellites have expensive atomic clocks which are per-
fectly synchronized while the receiver has a cheap clock. Then there is a fourth unknown:
the clock offset, additional to the three unknowns for the position. Then the receiver needs
a fourth measurement of the travel time from a fourth satellite to the receiver (the clock
offset is the same for the 4 satellites). Here again we have a system of 4 equations with 4
unknowns which has 2 solutions, one of which is unrealistic.

This is the elementary theory. More advanced topics can be studied inside a project.

Examples:

· The use of differential GPS to get more precision (we compare with the travel time of
the signal from the satellite to a second GPS located not too far and whose position is
known to calculate exactly the speed of the signal since it does not travel in vacuum);

· The type of signal generated by the satellite: they are generated by shift registers using
finite fields and have the property that they are very badly correlated to any other
signal or to the signal translated;

· For other topics and details, see [GPS].

Applications:

· Finding one’s way in wilderness;
· Drawing a map;
· Driving a plane in clouds and fog, etc.

Public key cryptography (RSA code 1978)

The basic ingredient is number theory, more precisely arithmetic (+,.) modulo n. We use the
small Fermat theorem generalized by Euler.

The method works because theory and practice in number theory are very different:

· It is difficult (for a computer) to factor a large number;
· It is easy to create large prime numbers;
· It is easy to decide if a large number is prime.

Advantages of a public key system:

· There is no danger that the code becomes known! Hence it is the only possible code
with millions of users.

· It is possible to “sign” a message in order to be sure it has been sent by the person who
pretends having sending it.

The principle [RSA]:

· We choose p and q large prime numbers (more than 100 digits).
· We calculate n = pq . The number n, the “key”, is public while p and q are kept secret.
· We calculate ϕ(n), where ϕ is the Euler function defined as follows: ϕ(n) is the number

of integers in {1,2,...,n}  which are relatively prime with n. Then ϕ(n) = (p – 1)(q – 1).
· Computing ϕ(n) without knowing p and q is as hard as factoring n.
· We choose e ∈ {1,...,n} relatively prime with n. e is the encryption key. It is public and

allows the sender to encode the message.
· There exists d ∈ {1,...,n} such that ed ≡ 1 (mod ϕ(n)) (i.e., the rest of the division of ed by
ϕ(n) is 1. The existence of d follows from Euclid’s algorithm to find the GCD of e and
ϕ(n). d is the decryption key. It is secret and allows the recipient to decode the message.

· The sender wants to send a message m which is a number in {1,2,...,n}, relatively prime
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with n.
· He codes me ≡ a (mod n), i.e., a ∈ {1,...,n}. He sends a.
· The recipient decodes. He calculates ad (mod n). The small  theorem of Fermat, gener-

alized by Euler, ensures that ad ≡ m (mod n).

Theorem of Euler:

If m is prime with n, then mϕ(n) (mod n).
(Fermat had proved the theorem when n is prime.)

Consequence:

me ≡ a (mod n),
ad ≡ (me)d = med = mbϕ(n)+1 = mbϕ(n).m = (mϕ(n))b.m ≡ 1.m = m (mod n).

Signature of a message: 2 public keys are necessary.

· Sender: nA, dA, public, eA secret.
· Recipient: nB, eB, public, dB secret.

To send a message m relatively prime with nA and nB:

m |||||→ meA ≡ m1 (mod nA) |||||→ m1
eB ≡ m2 (mod nB).

Then m2 is sent.

To decode the message
m2 |||||→ m2

dB ≡ m1 (mod nB) |||||→ m1
dA ≡ m (mod nA).

We have claimed that it is easy to construct large prime numbers. This follows from the
prime number theorem which gives the asymptotic distribution of primes. To construct a
prime number of 100 digits we generate random natural numbers with 100 digits and we
test if they are prime. The prime number theorem ensures that after a mean of 125 trials we
should get a prime (if we generate only odd numbers).

This means that there is a test for primality of a natural number n which is easier than
to factor n. The test is technical and will not be discussed here. The underlying principle is
that n leaves its “finger prints” everywhere so that if n is not prime then at least half the
numbers in {1,...,n} “know” that n is not prime. The test uses the Jacobi symbol. If k numbers
m1,..., mk ∈ {1,...,n} fail the test then n has a high probability of being prime (this is an exercise
with Bayes formula). The number k need not be very high to yield a very large probability
that n is prime (details in [RSA]).

Error correcting codes

Principle: We lengthen a message so that the information is contained in several places.

Example: We repeat each bit 3 times. If the 3 bits received are different we correct using the
law of the majority, i.e., as if only one error has occurred. Then we recover the message if
zero or one error has occurred. We say that the code corrects one error.

If we want to send a word of 8 bits we send 24 bits. As two different words have at
least three different bits we get the right word if one error or less occurred.

We can do much better!

Hamming code:

We want to send a word of 4 bits: u1u2u3u4. We send a word of seven bits. We add

u5 = u1 + u2 + u3

u6 = u2 + u3 + u4

u7 = u1 + u2 + u4



CMESG/GCEDM Proceedings 2001 • Plenary Lecture

24

This codes corrects one error. Indeed

No error u5, u6, u7 compatible
1 error in u1 u5, u7 incompatible
1 error in u2 u5, u6, u7 incompatible
1 error in u3 u5, u6 incompatible
1 error in u4 u6, u7 incompatible
1 error in u5 u5 incompatible
1 error in u6 u6 incompatible
1 error in u7 u7 incompatible

We can do much better but with more sophisticated tools!

Reed-Solomon codes [RS]:

They use finite fields. The elements are words of n bits with an addition and a multiplication.

Example: The field K with 8 elements

The 8 elements can be identified with the 3-tuples whose entries are 0 and 1.

The addition of two 3-tuples is the 3-tuple whose entries are given by the addition of the
respective entries modulo 2, i.e.,

(a1, a2, a3) + (b1, b2, b3) = (a1 + b1 mod 2, a2 + b2 mod 2, a3 + b3 mod 2,)

For multiplication we identify a 3 tuple (a1,a2,a3) with the polynomial a1 + a2x + a3x2.
To reduce the product of two polynomials of degree ≤ 2 which is a polynomial of degree ≤ 4
we use the rule x3 = x + 1. We deduce:

x4 = x(x + 1) = x2 + x
x5 = x(x2 + x) = x3 + x2 = (x + 1) + x2 = x2 + x + 1

x6 = x(x2 + x + 1) = ... = x2 + 1
x7 = x(x2 + 1) = x3 + x = 1

With this rule it is clear that any nonzero element of the field can be identified to one of the
xi with i ∈ {1,...,7}. (Note that x3 + x + 1 is an irreducible polynomial over Z2: this is the
essential ingredient to get a field.)

Principle of the coding with a field K having  elements:

We code words of m letters, the letters being elements k1,...,km of K by transforming them in
words of 2n elements. As before the non zero elements of K can be written in the form
{x,x2,...,x2n–1}. The first letter is k1, while the 2n – 1 remaining letters are given by

k1 + k2xi + ... + kmxi(m–1) , i = 1,...,2n – 1 .

This codes corrects:

2n – m  errors if m even
    2

2n – m – 1  errors if m odd
    2

In particular if n = 3  (K has 8 elements) and m = 4, a word of 4 letters is encoded in a word
of 8 letters and the code corrects 2 errors.

Applications:

This code is usually applied with a field of 256 elements (polynomials are multiplied modulo
an irreducible polynomial of degree 8 ever z2). Important applications are, for instance, the
communication with satellites. Also Reed-Solomon codes are used when recording music
on compact disks.
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Image compression

The simplest way to keep an image in memory is to give the color of each pixel. An enormous
memory is needed as soon as we deal with many images!

How to do better?

Suppose we have drawn a city. We keep in memory ...

Line segments;
Circles arcs;
etc.

... which approximate our image.

FIGURE 3:
A city

We have approximated our image with known geometric objects.

To keep a line segment in memory it is more economical to keep in memory

· the two ends of the segments;
· a program which tells the computer how to draw the line segment joining two points.

The geometric objects are our alphabet.

How can we keep in memory a complex landscape?

We use the same principle with a larger alphabet, i.e.,

· we approximate our landscape with fractals, for instance the fern;
· we keep in memory the program for drawing the fractals, for instance the fern. Be-

cause the fern is auto similar the program is less than 15 lines long.

Principle to draw the fern:

The fern is a union:

· of a tail,
· of 3 smaller ferns.

FIGURE 4:
The fern
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We can reconstruct the fern from 4 affine transformations:

· the transformation T1 which sends the large fern to the fern without the two smaller
branches;

· the transformation T2 which sends the large fern to the small left fern;
· the transformation T3 which sends the large fern to the small right fern;
· the transformation T4 which sends the large fern to the tail.

It suffices to keep this information in memory to reconstruct the fern. The method is called
“Iterated functions systems” [B].

Algorithm:

· we start with P on the fern;
· we choose at random i1 ∈ {1,2,3,4} ; we draw P1 = Ti1 (P) ;
· we choose at random i2 ∈ {1,2,3,4} ; we draw P2 = Ti3 (P1) ;
· etc. …

Vision of computers

We treat here just one small aspect which consists in understanding 3D-space from 2D-
images.

We have two pictures taken by two different observers located at O1 and O2. In our
model the images of P are respectively P1 and P2. These points are located at the intersection
of the lines D1 and D2 joining respectively P to O1 and O2 with the projection planes (in our
figure we took the same projection plane for the two pictures).

FIGURE 5:
The two pictures

· From the knowledge of P1 we know that the observed point is on D1.
· From the knowledge of P2 we know that the observed point is on D2.
· The lines D1 and D2 have only one intersection point. Hence we know the position of P.

This is what we do all the time: we need two eyes to evaluate deepness: our brain makes the calcula-
tion from two images. We need to understand the mechanism to teach computers to do the same.

Exercises:

The exercises done in the course had to do with the images of straight lines and circles in the
picture and with perspective.

The movements of a robot

A 3-dimensional robot: six degrees of freedom are necessary to bring the grip to its position.

Reflection on the number of degrees of freedom:

· movements 1, 2, and 3 bring P to its position;
· movements 4 and 5 bring the axis of the grip to its position;
· movement 6 brings the grip to its final position by a rotation around its axis.
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FIGURE 6: Example of a robot
with 6 degrees of freedom

Exercises: reflection!

· The construction of the robot is not unique but 6 degrees of freedom (so at least 6
independent movements) are necessary to reach any point in a given region of the
space with the grip properly oriented. So 6 degrees of freedom are also necessary for
the handles with which one controls the robot.

· Try to imagine other models of robots with 6 degrees of freedom.
· How many degrees of freedom are necessary for a robot moving only in the plane (the

answer depends on the problem, namely the different positions of the grip which are
necessary to achieve the job)?

· Depending on the length of the different parts of the robot, what points of the plane
(space) can be reached by the grip?

The underlying mathematics:

· Each movement is a rotation Ri(θi) in coordinates (xi,yi,zi) centered in Pi.
· It is represented by a matrix Mi(θi).
· We change from one coordinate system to another by a translation followed by a rotation.
· This allows us to know the coordinates of a given point Q in each coordinate system.
· In particular we can calculate the position of Q in the original system after rotations

Ri(θi), i ∈ {1,2,3,4,5,6} . This involves matrix multiplications.
· Hence we know the effect of a composition of movements on any point. All operations

can be inverted.

Exercises:

Imagine problems for an engineer. For instance:

· There exists several sequences of movements bringing the robot to the same final po-
sition. Which is best? Some “small” movements lead to “large” displacements of the
grip, while some “large” movements lead to “small” displacements of the grip. The
latter are better when doing precision work.

· We may add extra pieces and movements in order to allow the robot to go around obstacles.
What is the effect of adding pieces and increasing the number of possible movements?

· What is the effect of changing the length of some of the pieces?
· Inverse problem (difficult!): Given a final position of the grip give a sequence of movements

to bring the grip to this position. This yields to solving a system of nonlinear equations.

Application:

The Canadian arm for the international spacel station.
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Report of Working Group A

Considering How Linear Algebra is Taught and Learned

Morris Orzech, Queen's University
Joel Hillel, Concordia University

Participants

Allan Brown Grace Orzech Chris Stewart
Malgorzata Dubiel Morris Orzech Peter Taylor
Joel Hillel Christiane Rousseau Ed Williams
Judi McDonald Shannon Sookochoff

Introduction

The working group leaders came to the working group with the assumption that teaching
introductory linear algebra at university is a particularly vexing experience. In their ab-
stract they wrote:

Introductory Linear Algebra courses seem to have all the right ingredients—linearity is a
basic and simple concept; the underlying theory is built from just very few notions (linear
combinations, linear (in)dependence); there are plenty of interesting applications; and many
of the concepts can be nicely illustrated geometrically. Yet, experience shows that students
have a much more difficult time with linear algebra than with the calculus. In the Working
Group, we will examine why this is the case, both from teaching and learning perspectives,
and discuss some of the ways in which the current situation can be improved.

Although the difficulties in teaching linear algebra provided much of the impetus for
the discussion in our group, it became clear that there was not universal agreement that the
subject was especially hard to teach. Moreover, the interests of some of the participants
ranged outside the context of teaching linear algebra to first or second year university stu-
dents. About half the participants were faculty and graduate students who teach linear
algebra at university. The others included people who did not currently teach the subject
but were interested in issues of teaching and learning that they hoped the working group
would consider: how to relate mathematics to the reality of high school students’ lives; the
connection between what is taught in high school and what will be demanded in univer-
sity; how to bring personal relevance and connection to mathematical interactions and how
to create a sense of community.

Although our opening discussion revealed differing perspectives and interests, it also
elicited a consensus that teaching (and studying) introductory linear algebra evokes special
tensions that do not arise in other introductory courses. These tensions, and participants’
reports and reflections on strategies for resolving them, provide a useful framework for
reporting on the activities of our working group. The working group discourse in our three
sessions revisited issues identified during the first day, including questions of interest to
participants for whom linear algebra was a vehicle for probing wider issues about teaching
and learning.
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Tensions for teachers and students in introductory linear algebra

Selecting material. Linear algebra is a rich subject for a university teacher because it em-
bodies many elements of mathematical thought, and the teaching and learning problems
associated with these mathematical ingredients. It is also a large subject, and confronts the
teacher with questions such as: “From all this, what do I have to teach? What is the real basis
for the applications I want to or need to investigate?”

Competing “structural conceptions” of the subject. Most introductions to linear alge-
bra lie between the poles of a matrix algebra course and an exposition of vector spaces with
everything else of secondary importance. Hence there are computational and structural
threads vying for the students’ attention. Moreover, geometry can also be used to illustrate,
motivate or explain the theory, and this introduces an element that instead of being an aid to
students, often becomes something else they have to learn and integrate into the computa-
tional and structural ingredients.

Conflicting expectations by teacher and students. One of the surprises that first year uni-
versity students encounter in algebra is that explaining things is an integral part of the course.
They want to be able to produce the answer to a question via a computation and be done with
it. Is the high school preparation a problem, in that the need to teach algebraic skills leaves no
time to convey to students that there is more to algebra than computation? Is the migration of
linear algebra to first year of university a complementary part of this phenomenon?

Preparing students for later vs. dealing with the “here and now.” Linear algebra is
often seen as a microcosm of a substantial part of current mathematical thought and prac-
tice (see Appendix A, particularly the attributions to Cowen, Messer and Tucker). This can
translate into a desire to use it as a foundation for later mathematics study by students, and
into a keen desire to “cover the prerequisites” for that study. Students can be overwhelmed.
The issue we are signalling is distinct from that of trying to use the same course as a service
course and as preparation for a math programme. Even when a linear algebra course has a
well-defined audience or purpose, the tension we have in mind here is likely to arise. We
will return to this in our later discussion.

Is time and effort spent on technology rewarded by better learning? The issues here
are similar to those in calculus, with notable differences. Graphical computer representa-
tions in calculus are of the objects being studied. In linear algebra the software available to
aid geometrical insight is limited to two-dimensional instances of much more general phe-
nomena being studied. And judging by experiences recounted in the working group, the
software does not always guide the student to the intended conceptualization.

Coping with the tensions

Selecting material. Among the working group participants, introducing applications
seemed to be an expected aspect of teaching an introductory linear algebra course. This is
not surprising: the theoretical and practical utility of the subject is responsible for linear
algebra having migrated to first and second year university mathematics offerings (Cowen
1998; Tucker 1993). There seemed to also be an implicit consensus that focusing on a few
applications was sufficient, and even necessary, and an explicit and unchallenged sense that
it was important to choose the applications to be coherent with the course “narrative.”

When it came to considering the importance of the applications to the course as a
whole, there was considerable difference in the approaches followed by working group
members. In the courses that people described the role of applications ranged from being
sidelights to the theory, to being equal partners with the theory, to being the vehicles through
which students are led to the theory through a process of “inevitable discovery” on the way
to solving a problem. (See Peter Taylor's contribution, Appendix C.)

The phrases “on the way to solving a problem” and “inevitable discovery” in connec-
tion with applications merit amplification. Several of the people teaching linear algebra
include in their course a significant component of having students solve substantial prob-
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lems, even if the theory is developed before-hand, rather than en route to a solution. Scepti-
cism surfaced about the project of unveiling concepts and theory by making them seem
“natural” ways of organizing information or phenomena that accompany a problem. Prob-
lems can often be solved in several ways, using different theoretical foundations. Neverthe-
less, the approach does give a better basis for building a problem-based course, and helps to
answer to question of what topics and concepts are actually needed to use linear algebra to
analyse and interesting and substantial problem.

Competing “structural conceptions” of the subject. We will set aside for another sec-
tion the competing conceptual outlooks that teachers and students bring to the subject. Our
interest here is on the phenomenon that linear algebra supports radically different “exposi-
tory layouts.”

“Matrix analysis vs. vectors spaces” is a familiar demarcation between different ap-
proaches to linear algebra. Both approaches are well represented in main-line textbooks. The
discussion in the working group was interesting because it brought out that conventional
associations or assumptions that people sometimes make about these approaches were not
necessarily represented in the courses that the working group members knew about in their
own institutions. One of these assumptions is that the matrix-based approach is appropriate
for a service course not apt to be needed as a building block for further mathematics, or as
part of an engineering program. Another is that a matrix-focused course is a more computa-
tional one, whereas vectors spaces suggests more emphasis on conceptual development.

The situation at the University of Regina provides an interesting case study that points
a flaw in these assumptions. The first linear algebra course there is a matrix analysis course.
This provides a vehicle for starting with very concrete computational material. But compu-
tations are only a starting point for a continuing and probing conceptual development of
matrices. Geometry is not played up. Instead the focus on matrices is maintained and their
properties become the hook for drawing students in. Quite early in the course students
make contact with research questions that instructors are engaged with, for example, ques-
tions related to properties of signed matrices. This course is quite successful, and instruc-
tors at the University of Regina do not find it a particularly difficult course to teach.

One of our working group participants (Shannon) who is not well versed with linear
algebra conducted an “interview” with the instructor (Judi) who teaches at the University
of Regina, asking her to “micro-teach” an introduction to the course. What Shannon noticed
is the effective way in which she felt invited to uncover the interesting properties of matri-
ces, occasionally having to suspend questions which could not be answered at that point,
but which would be treated later (see Appendix B).

We conclude this section by mentioning treatments of linear algebra that depart from
conventional ones in challenging ways. One is Axler’s (1997) treatment without determi-
nants. Edward’s (1995) approach leads to a development that involves concepts that are
quite different from those in any standard treatment. Tucker’s book gives an treatment based
on a few somewhat unusual applications pursued in depth.

Conflicting expectations by teacher and students. There are many reasons why a math-
ematicians might appreciate linear algebra, and most mathematicians subscribe to more
than one of them. Just the mention of “linear algebra” is capable of evoking for mathemati-
cians its manifold connections to other mathematics, its essential representation of the power
of the axiomatic approach, its balanced stance between powerful computational and theo-
retical knowledge bases. Students come to an introductory linear algebra course with none
of these sensibilities, nor even with the sense that they exist.

Other issues

Language. Reliance on precise definitions is an important characteristic of mathematical
practice, at least in writing. This alone creates a problem in teaching most mathematical
subjects to novice students where they are expected to explain things. Linear algebra pre-
sents additional problems. There is a lot of terminology and notation to keep track ofæ
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students have trouble not only with its quantity, but with using it in a semantically sensible
way. Before providing illustrations supporting these assertions we hasten to add that we do
not have research-based evidence that language is linked to special problems in learning
linear algebra; and even if it is, we do not know whether alternative approaches are avail-
able that preserve the subject in a way acceptable to the community.

We take up first the proliferation of terminology. A significant aspect of learning linear
algebra involves learning to recognise the same concept in different guises. Hence, alterna-
tive characterisations become as important as definitions in working problems and in ex-
plaining things. Transitions that the teacher makes without a second thought, such as be-
tween row-rank and column-rank (each of which can be characterised as a dimension, or as
a count of linearly independent vectors) can be a stumbling block for students. Another
example is linear independence of a set of vectors, which might equally well arise as the zero
vector being only the trivial linear combination of the vectors in the set, or as the set being a
basis for the subspace that it spans. Invertibility of a square matrix A is worse: it is equivalent
to A having a two-sided (or just a left inverse, or just a right) inverse; or to det(A) being
nonzero; or to every linear system AX = C having a solution (or a unique solution). To
complicate matters further, invertibility is sometimes referred to as nonsingularity, for rea-
sons generally not explained to the student (since there is little to be gained by such an
explanation in an introductory course). That students seldom ask why this additional no-
menclature is introduced indicates that rhyme or reason for mathematical terminology is
something they see as beyond their ability to fathom. Then there are minor variations in
words and phrases: row-echelon form and reduced row-echelon form; row-reduction and elimina-
tion and Gaussian elimination and Gauss-Jordan elimination; matrix of a linear system and aug-
mented matrix of a linear system. These arise at the beginning of a typical course, and interfere
with students focusing on the conceptual issues.

Something that adds to the language problem, and that leads to student problems in
using terminology in a semantically sensible way, is the layer of set terminology and nota-
tion that intrudes in the discussion of vector spaces. Set terminology is a foundation for
much mathematical discourse, but it is questionable whether it helps students learn linear
algebra. This question is explicitly raised by Edwards (see Appendix A).

In fact, when mathematicians talk to each other informally about linear algebra they
often ignore niceties of set terminology: they are quite apt to refer to the linear independence
of “the vectors v1, v2, …, vn” rather than of “the set of vectors v1, v2, …, vn.” It is difficult to
argue with Edwards’ sense that not much is gained by insisting on the formalities of set
terminology before students understand the concepts that we wish to organise into sets.

In some situations insistence on correct language can work against a process of math-
ematical construction that students typically demonstrate. It is not uncommon for students to
start talking about “an   |2  ” to refer to a plane in some higher dimensional space. What seems
to be arising is a nascent and somewhat crude notion of isomorphism. It is a pity that conven-
tional presentations of linear algebra demand that we correct students, seemingly working
against what appears to be a natural development of a sophisticated mathematical idea.

Can research help in the linear algebra classroom? Suggestions for what and how to
teach introductory linear algebra courses are more plentiful than accounts (even anecdotal)
of how particular topics and approaches have successfully overcome barriers to student
understanding. The Working Group did not attempt to systematically identify research is-
sues about the learning of linear algebra that would likely impact on how the subject is
taught. However, the tenor of some questions asked in the WG suggested that participants
would be receptive to implementing changes on the basis of evidence of benefit. Although
some of these questions have already been mentioned in this report, it seems worthwhile to
repeat them here with more pointed attention on the possibility of resolving them.

• How crucial is it to teach introductory linear algebra as a separate subject? Does moving it to
later in student’s mathematical development make the subject easier to teach and learn? An
investigation into how technical knowledge and viewpoints from linear algebra are used in
other courses might reveal that the shift of the subject as a whole to earlier years is not as
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necessary as current practice suggests. Discussion in the WG provided anecdotal support
for the notion that teaching linear algebra after a year of calculus circumvents some prob-
lems arising from mathematical immaturity.

• Can students be led to develop some important notions (such as eigenvector or isomor-
phism) themselves, say through well-chosen problems, rather than by being presented with
formal definitions?

• What kind of visualisation tools do we need; how do we use them effectively; what pitfalls
must we learn to avoid?

• Does reducing the quantity of terminology affect how students develop conceptual under-
standing?
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Appendix A – Comments about teaching linear algebra
“Students who have learned how to learn linear algebra have learned how to learn mathemat-
ics!” — Carl Cowen (1998)
Linear Algebra. Must the Fog Always Roll In? — David Carlson (1993)
“Accordingly the emphasis throughout the book is on algorithms. A by-product of this emphasis
is the complete disappearance of set theory, a disappearance that will greatly disturb teachers
accustomed to the standard linear algebra course but will, and should not, disturb students in
the least. The material in the book will be helpful, in addition to its other uses, in learning the
language and the peculiar habits of mind that are set theory.... The standard linear algebra course
attempts to reverse the order and to use set theory to teach linear algebra—an approach that is as
silly as it is unsuccessful.” — Harold Edwards (1995)
“What sort of concept images do students build in their linear algebra courses? Tables 1 and 2 present
slightly edited results of a survey of 25 students.... These results suggest that students do not build
effective concept images.... They manage to remember concept definitions until the final exam is
over but are unable to retain them for an extended period of time.” — Guershon Harel (1998)
“The teaching of linear algebra at university level is almost universally regarded as a frustrating
experience and many among those who teach this course have resigned themselves to the fact that
it is simply ‘the nature of the beast’ and not much can be done to change things.” — Joel Hillel (2000)
[It is interesting to contrast this comment with the following one.]
“... the material is presented with an eye toward making it easy to remember, not just for the next
hour test, but for a lifetime of diverse uses.” — Tucker (1988)
Linear Algebra – Gateway to Mathematics — Robert Messer (1993)
“Linear algebra takes students’ background in Euclidean space and formalizes with vector space
theory that builds on algebra and the geometric intuition developed in high school. Then this
comfortable setting is shown to apply with unimagined generality, producing vector spaces of
functions and more.... A further pedagogical strength of linear algebra is that it joins together
methods and insights of geometry, algebra, and analysis .... Linear algebra really is a model for
everything a mathematical theory should be!” — Alan Tucker (1993)
“Linear algebra as rendered in many textbooks is a reflection of mathematical aesthetics and romanti-
cism, a subject constructed to be appreciated and to be taught—but not to be learned.” — Morris Orzech
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Appendix B – Math immersion: A narrative look at incomplete mathematical
understanding and its place it the classroom (Contributed by Shannon Sookochoff)
A long time ago
It was 1980. One hundred high school math students had gathered at the University of
Saskatchewan for a conference aimed at enriching their understandings of mathematics. I was in
grade 10. I was one of those students. And until then I had never been in a math classroom and
not understood everything. For many, this might seem the ideal.

In one session of the conference, I remember sitting in a lecture theatre. ( I had never sat in a
lecture theatre.) I remember a professor with a turban. (I had never seen, much less been taught
by, a man in turban.) And I remember variables approaching infinity. This was my introduction to
limits. I recall g(x) and h(x) when until that point I had seen only f(x). Although the session planted
seeds which would assist my calculus education a few years later, very little stuck with me. There
is one thing, however, which I remember vividly: the feeling of sitting absolutely upright, of fo-
cusing all of my powers on the board and the man at the front of the room. I recall breathing more
quickly, my tummy unsettled, as ideas rushed toward me, just skimming the top of my Olivia
Newton John hair. I nodded slowly. And realized, with the kind of sobriety I reserved only for
funerals, "Math is vast." And this was not for a moment unappealing.

A more recent vastness
Now flash to the Canadian Mathematics Education Study Group, 2001. It was May and I was just
winding up a year of teaching Grade 9 and 10 mathematics when I found myself in the working
group focused on teaching and learning introductory linear algebra. I was the only one who had
not even studied linear algebra. Before joining the group, I must confess to a completely inappro-
priate amount of humility: I thought, "Well, I know algebra ... and I know what “linear” means....
What's all the fuss about?" Indeed. It turned out, as the working group progressed, that linear
algebra was at the very least ... kinda complicated. Over the course of four days of intense discus-
sion, I was privy to serious questions about how to talk about a linear transformation in terms that
a student can access. I heard that “we have a 'line', a 'plane', and a ... a ... a ... what?!” Hmm. I heard
about students who talk about "a 2-space in 3-space” and that Morris at Queen’s credits them for
formulating a complicated mathematical idea called "isomorphism." I saw an example of a prob-
lem using affine transformations. I heard about vector space. I learned that the Fibonacci sequence
is linear. (And this I learned just two days after formulating a definition for linear functions with
my Grade 10s that included the words "straight" and "line" and “graph”. I’m still quite puzzled.)

From Judith McDonald, I heard about the matrix as a beautiful creature, its reduced echelon
form, that "the leading ones tell all", and that “Eigenvalues gush forth like children from the
womb.” Judith took a half hour during a break to offer me an introduction to her approach to
linear algebra at the University of Regina. She began with giving me what I would call an ob-
ject—the matrix. It had features I could cope with: it was a coded form of algebra; it had know-
able rules; it had usefulness. Implicitly, she asked me to suspend my own objects and grounding
metaphors: algebraic expressions as geometric space, equations as graphs, and vectors as indica-
tors of force and direction. Now, I ordinarily resist giving up “my” knowing. So it might be
useful to share with you why I think Judith was able to coax me into this more vulnerable state.
� Judith gave me the matrix to hold onto. The matrix offered me a micro-world, a cyber space in
which to play. There were explicit rules.
� Judith presented the material in an organized and open way. She was clear about sharing the
features of the matrix and about what I could expect during our “class”. This openness and se-
quencing honoured my structure as a mathematics learner.
� Judith made links to what I knew about manipulating two variables in two equations. She gave
me a context in which to situate these new ideas: x + 2y = 3 and 3x + (–y) = 5.
� Then Judith coded the equations into a matrix, temporarily suspending my context.
� She manipulated the codes with the rules she had stated upfront.
� Then she compared the results from the matrix with that which we would have reached had we
approached the equations by isolating a variable, substituting in, and solving. As a result, I gained
some trust in the matrix and its rules. It became a tool for me.
� And like all the teachers of linear algebra in our working group, Judith paid close attention to
language, understanding how powerful words are in constructing mathematical understanding.
To define linear independence, Judith tells her 18 year old students, “you are independent when
you write home for money and you get nothing back—you get back the zero solution.”
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� As well, Judith demonstrated careful listening, responding to my questions like they energized
her teaching. My questions provoked moments of pause, prompting me to feel the privilege that
it was to converse with a practiced mind, prompting me to feel proud that I could formulate
questions with answers I was not ready to hear.

On one level, the linear algebra working group talked about good teaching; all of the things
I noticed about Judith’s lesson, could be noticed about any good teacher. On another level, it was
about linear algebra: What are the special challenges of the linear algebra classroom? On yet
another level, the working group was about learning. How does the learner construct math-
ematical knowing? And isn’t this the way: we cannot talk about mathematics education without
talking about the tangled mess that is teaching, mathematics, and learning.

Incomplete learning
By the end of CMESG 2001, my understanding of linear algebra was certainly incomplete. I took
notes for the group and I heard words that I had no idea how to spell (like affine and Eigen). I
listened for the structure of what was said because very few of the specifics were mine to access.
I heard the pedagogical insights. I heard the curricular reflections. I saw parallels to the curricu-
lar revision going on in all levels of school mathematics.

I’m tempted to apologize at this point, saying that my experience of the linear algebra work-
ing group was quite different from the other participants. I could clarify, too, that I focused on the
nature of mathematics learning, the nature of the questions and concerns of this group of dedi-
cated post secondary educators, and the interconnectedness of the arbitrary and the necessary
(Hewitt, 1999) in mathematics curriculum. I could clarify that my grasp of linear algebra is less
than weak, that at best I have some linear algebra seeds planted inside me.

But, no.
Instead, I will say that indeed my experience of the linear algebra working group was quite

different from the other participants, but that this is true of all the participants, that it is impos-
sible to ensure a specific or complete understanding for all, further, for any. My grasp of linear
algebra is NOT less than weak. My grasp of linear algebra is neither strong nor feeble. My grasp
of linear algebra just is. And this is not for a moment unappealing.

Features of successful incomplete learning and mathematics immersion
So why, in this world where many students leave math class demoralized and alienated from
mathematics, was I able to feel stimulated and satisfied by discussion so far from my own math-
ematics? Perhaps the following chart will help.

Ways to generate successful incomplete learning and
mathematics immersion in a traditional classroom setting

� We could allow the test to co-emerge with the established curricu-
lum, the classroom exploration, and the students’ insight.
� The test might be written and taken in community.  The test might
include opportunities to ask questions.
� The test might be a one-on-one discussion.
� The test might be different for different students.

� All questions could matter.  For example, fundamental questions
prompt a deeper understanding, even for the mathematically fluent.

� Variable entry prompts (Simmt, 2000) could be selected to honour
the variety of people in the room.
� Prompts needn’t be offered to elicit answers but instead could gen-
erate discussion and exploration.

� Private tutorials are already available in the traditional mathematics class-
room.  This is nothing new.  However, if the tutorials live in a space where
questions generate deeper understanding for all, then the investment in
the discussion could be more equal, more satisfying, and more motivating.

� What if students were not streamed?
� What if the mathematics classroom were a community to which
students would choose to belong?
� How could we assess without shaming?
� What if we focused on what is each student’s understanding rather
than what should be?  What if we offered links to what could be?

Features of CMESG Linear
Algebra Working Group

� The “learning outcomes” were not
a prescribed set.  I was not account-
able to a pre-written test.

�  My questions mattered.  They
came out of the group discussion and
they contributed to it.

� Mathematics prompts were selected
with a sense of the variety of people in
the room. The problems were offered
not to prompt “answers” but instead
to generate discussion and exploration.

� Private tutorials were available.  All
the teachers in the room were willing
to talk in more detail about any part
of our co-emerging curriculum.

� I was included, as a listener and a
speaker.  I was included with no ca-
veats.  No one whispered to me that
I might be better off in another
group. I was given membership sim-
ply because I wanted it.
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Appendix C – Trains (Contributed by Peter Taylor)
Example 1. I want to construct a train of total length n using cars
which are either of length 1 or of length 2, except there are two kinds
of cars of length 2, type A and type B. How many different trains can
I build?

Solution. Let tn denote the number of trains of length n. We can work
out the first few terms of the tn sequence simply by listing the possibili-
ties. There is clearly only 1 train of length 1, and 3 trains of length 2,
etc. There are 11 trains of length 4 and these are displayed at the right.
Note carefully that a train is an ordered list of cars, that is, there is a
front and a back. Thus the train 1-1-B is different from the train B-1-1.

The tn sequence is tabulated below. Can we find an arithmetic “rule”
that would allow us to continue the sequence easily?

This is actually a nice problem for high school students and there are
a number of nice patterns they will find in the data and there are
elementary ways of analyzing them. But our objective here is to un-
cover an important and powerful approach to the analysis of such
sequences.

We begin by looking for a “recursive” formula for each term in terms
of the previous term (or terms). For example let’s try to count the 6-
trains in terms of the numbers of shorter trains. Well there are three
kinds of 6-trains:

those trains that begin with a 1-car;
those trains that begin with an A-car;
those trains that begin with a B-car.

It’s clear that every 6-train is in one and only one of these sets and
that means that the number of 6-trains is the sum of the numbers in
each of those sets. But it’s clear that the first set has t5 trains (the dif-
ferent trains that can be added onto the one car), and it’s equally clear
that the last two sets have t4 trains. We have shown that:

 t6 =  t5 + 2t4 .

The same argument works in general:
 tn =  tn–1 + 2tn–2 .

Check that the above sequence conforms to this rule. We can now
employ it again and again to extend the table as far as we like.

Our objective here is to use this recursion to find a general formula
for tn. Mathematically, what we are doing is “solving” the recursion.
I start by restating the problem.

Solve the recursion
 tn =  tn–1 + 2tn–2

with the initial conditions,  t1 =  1 and t2 = 3.

The crucial idea is that we ignore the initial conditions and seek solu-
tions of the equation on its own. Now that means there will be lots
and lots of solutions and the idea is that maybe some of them will be
really simple––simple enough that they are easy to describe and find
general formulas for.

The 11 trains
of length 4

1-1-1-1
1-1-A
1-1-B
1-A-1
1-B-1
A-1-1
B-1-1
A-A
A-B
B-A
B-B

Length
of train

n

1
2
3
4
5
6

Number
of trains

tn

1
3
5

11
21
43
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But what good will that do us?––no matter how simple the solution
is, if it doesn’t satisfy the initial conditions, it won’t be a solution to
the trains problem. Ah, but maybe it will. Read on.

One might at this point simply list a few solutions and see what we
get. They are easy enough to construct: start with any choice of t1 and
and t2 then the rest are determined.

Well once t1 and and t2 are chosen, the rest of the sequence is speci-
fied. So all we have to do is to take different possibilities these first
two terms. A number of these are listed at the right.

Now if you wanted to choose a solution which was easy to describe,
what would it be? Well the second one is simply the powers of 2:

2, 4, 8, 16, 32, ...
This is the sequence tn = 2n. We have a formula for the general term.

This sequence is called geometric because each term is obtained from
the previous term by multiplying by a fixed “ratio” r which in this
case is 2. All such sequences are easy to describe––they are just pow-
ers of r. So we wonder whether there are any other sequences of this
kind which satisfy the recursion.

Okay. Any geometric sequence will have the form tn = rn . If we plug
this into the recursion:

 tn =  tn–1 + 2tn–2

we get:
 rn =  rn–1 + 2rn–2

and this has to hold for all n ≥3. That is, we want:
 r3 =  r2 + 2r
 r4 =  r3 + 2r2

 r5 =  r4 + 2r3

 etc.

It seems as we have an infinite number of equations which have to
hold, but in fact if r satisfies the first equation, it will satisfy all of
them (multiply repeatedly by r) so we only need the first to hold, and
in fact we can even divide that by r (since we are not interested in the
solution with r = 0) to get:

 r2 =  r + 2 .
This is a quadratic equation which factors:

 r2 –  r – 2 = (r – 2)(r + 1)
and the roots are r = 2 and r = –1. This tells us that there are exactly
two geometric sequences which satisfy the recursion, one for r = 2
(and that's the one we found already) and the other for r = –1. That
gives us the sequence:

–1, 1, –1, 1, –1, 1, –1,...
which has the nice formula: tn = (–1)n .

Now here’s the point. Neither of these simple solutions is the train
sequence, but it’s possible to get the train sequence by using these as
building blocks. The reason is that sums of solutions are solutions
and scalar multiples of solutions are solutions. In general:

Linear combinations of solutions are solutions.
And the reason for this is that the recursion is linear.

Okay. Can we find a linear combination of the two special solutions
which gives us the train sequence? That is, can we find a and b so that

This may sound like a
strange thing to do—
rather like looking under
the street lamp for the
earring you lost in the
dark alleyway—but it will
turn out that these
“simple” solutions hold
the key to finding all the
solutions of the recursion,
and in particular, the one
we wanted in the first
place.  What we are going
to do in fact is "build" the
train sequence we want
using simple sequences
as building blocks.

Some solutions to the
recursion:

  1, 1, 3, 5, 11, 21, ...
  2, 4, 8, 16, 32, 64, ...
  1, 3, 5, 11, 21, 43, …
  4, 6, 14, 26, 54, …
  1, 6, 8, 20, 36, ...
  2, 0, 4, 4, 12, 20, ...
  2, 1, 5, 7, 17, 31, …

From a mathematical
point of view, there's
really no reason not to
allow negative numbers
(or even fractions).  We
are after all interested in
finding nice solutions of
the recursion and if we
have to expand our
palette of numbers to do
that, so be it.
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a times the first sequence plus b times the second sequence gives us the
train sequence?

Now this gives us an infinite number of equations in a and b which
have to hold, but here’s a key observation––since all of these sequences
(solutions of the recursions) are determined by their first two terms, if
we get the first two equations to hold, they will all hold. Just to empha-
size that, let's write the first three equations:

1 = 2a – b
3 = 4a + b
5 = 8a – b

Observe that the third equation is obtained as the sum of the second
plus twice the first. Similarly, the fourth equation is the sum of the
third plus twice the second. Etc. So we only need:

1 = 2a – b
3 = 4a + b

and these solve to give a = 2/3 and b = 1/3 . We get our train-sequence
formula:

       2   2tn = – 2n + – (–1)n

       
3   3

Well? Do you see the shape of things to come? We have a strategy for
counting trains (and maybe other things as well!):

  1) Find the recursion for tn .
  2) Ignore the initial conditions and find lots of solutions.
  3) Look for special (geometric) solutions that are easy to describe.
  4) Write tn as a linear combination of these special solutions.

For extensions of this approach to Binet's Formula, and problem sets, etc.,
contact peter taylor at taylorp@post.queensu.ca.

Here we write the
sequences vertically
using the more usual
vector notation. This
makes it easier to see
that what we have is a
system of infinitely many
linear equations in the
unknowns a and b

What this means is that
the vector space of
solutions of the recursion
has dimension 2.
Essentially what we are
doing here is using the
special sequences as a
basis for this vector
space and a and b are
the coefficients we need
to write the train
sequence in terms of this
basis.

This is an instance of one
of the fundamental
“methods” of linear
algebra: find a special
basis for the vector space
we are working with, and
seek to write all vectors in
terms of that basis.  For
example, this is what
Fourier analysis is all
about––expressing the
sound of a violin in terms
of pure sine waves.
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Roberta Mura, Université Laval

Participants

Daniel Chazan Dennis Lomas Medhat Rahim
Valeen Chow Geri Lorway Susan Ratti
Rina Cohen Calin Lucus David Reid
Pamela Hagen Stan Manu Geoffrey Roulet
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Introduction

Proofs and proving are usually addressed at the high school level, but what role should
proving play in the elementary or middle years classroom? The intention of this working
group was to begin to understand the role that proving might have in the classrooms of
children and to discuss how teachers might recognize and promote proving as a form of
reasoning and discourse. As a way into the topic, we engaged in the chessboard problem
(below) and focused our discussions on our own solutions and on the solutions and expla-
nations provided by fifth grade students as viewed on videotape. These interactions and
observations all served as possible objects, ideas, acts, symbols, and words to point to as we
struggled to identify, describe and clarify the nature of proving at the elementary school
level.

Chessboard Problem

Count the squares:

What if … this were a 5 by 5 square?
How many squares would you have?

Extensions:

What if this were a 10 by 10 square? How many squares would there be?
What if this were a 60 by 60 square? How many squares would there be?

Observing Interactions

Vicki Zack shared two segments of videotape from her fifth grade class working on the
chessboard problem. As was the usual practice in class, the children first worked individu-
ally on the problem in their Math Logs and then moved into groups of two or three to share
their ideas and expand on them further.
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As Will worked individually on the 4 by 4 chessboard problem, he wrote the follow-
ing chart in his Math Log:

Square size No. of that size

 1 16 1 
� + 3

 4  9 4 
� + 5

 9  4 9 
� + 7

16  1 16

  Criss-Cross Pattern Pattern of Differences

In the first segment of videotape, we viewed Will, Lew and Ross coming together to share
their solutions. Here, Will had an opportunity to share the criss-cross pattern with his two
partners. In his explanation he said, “I was pretty sure there would be a pattern so I was
keeping my eyes open and I found one.” Although he had not yet tested other sized squares
he was already assuming that the pattern of number of squares could be generalized to
chessboards of various sizes: “The chances are if it works for those it works for others.” Lew
was very impressed: “That’s clever. That’s very clever.” While working in the group of three,
Will applied his pattern to a 5 by 5 chessboard and found that his conjecture held true: “So,
it’s basically the same. I never realized [the pattern] would be so helpful.”

Will’s pattern was used by the group of three as the basis for further exploration into a
60 by 60 chessboard. It was Gord who recognized it as a pattern of square numbers and
together they used this information to determine a solution method. They claimed that an
answer could be found by adding 60 x 60 + 59 x 59 + 58 x 58 ... and so on. They were thrilled
with their creation and exclaimed, “We’re a genius!”

In the second segment of videotape, which occurred two days later, Will, Lew and
Gord joined Ross and Ted to further expand on their understanding of the problem. Al-
though the two groups used different methods, the five children together confirmed several
solutions: The number of squares in a 4 by 4 was 30, 5 by 5 was 55, and 10 by 10 was 385.
Although Will, Lew and Gord had a method for determining a solution for the 60 by 60 they
had not yet computed the answer. Ross and Ted stated that the answer was 2310 squares.
They explained that they solved it by taking the answer for the 10 by 10 and multiplying it
by 6; therefore, a 60 by 60 was 385 x 6 = 2310. Will and Lew emphatically disagreed with that
solution method. Lew said, “That doesn’t work … I’ll make you a bet … I’ll bet you any-
thing in the world.” Ross replied, “I’m not betting. You have to prove us wrong.” The group
of three then set out to prove that the answer of 2310 was incorrect through a series of
counterarguments. The first argument was that since an 8 by 8 was not double the number
of squares in a 4 by 4 chessboard their solution method was inappropriate; second, Will
pointed to the pattern identified earlier which, he said, must continue to grow in the same
way; and the third argument was that since a 60 by 60 had 3600 little squares it had to be
bigger than 2310. While Ross was still hesitant, Ted finally agreed, “Yah, right. That’s true.”
(See Zack, 1997 and Zack, 1999 for a fuller description of the activities and the transcripts.)

What are we looking at? What are we looking for?

Vicki introduced the videotape to our working group with the statement that the tasks were
not assigned with the intention or expectation of invoking or provoking acts of proving;
however, the climate for proving—the expectations for mathematics and language—ap-
peared to support and perhaps encourage that form of reasoning. While we had many ques-
tions as to how these expectations were put in place, there was acknowledgement through-
out our discussion that a culture of proving or, at least, of mathematical reasoning needed to
be in place to support the thinking and discourse required for proving. The children’s inter-
action as viewed on the videotape raised many questions and became the basis for our
discussion into the nature of children’s proving: Are the children just playing with numbers



Calvert, Zack, & Mura • Children’s Proving

43

or are they actually proving? If so, in what ways? What were the elements of proving that
occurred? What forms of discourse supported the acts of proving? Are the children equat-
ing proof with finding a pattern? If so, what should a teacher do? Did the children under-
stand the need to prove that the pattern continues? Is observing the pattern enough in el-
ementary school? Children are easily convinced by empirical evidence and this will get
worse with the available technology. Again, what is a teacher to do about it?

It is important to note that the diverse membership in our working group represented
a range of experiences and beliefs about the nature of mathematics and of mathematics
teaching and learning. We were classroom teachers, consultants, mathematicians, teacher
educators and researchers. Each of us also brought different lenses through which to view
the activities. Members raised questions and contributed to the discussion from mathemati-
cal, pedagogical, psychological, philosophical and linguistic frameworks. The questions and
topics raised and the underlying tensions in our discussions were inherently based on the
multiple perspectives brought forth.

What is proof/proving? What are the elements of proof/proving?

“Do we have enough to trust?” “Is it compelling?”
“Starting from an assumption and moving beyond it.”
“Coherent articulation.”
“A coherent string of reasons.”
“What is needed: ideas of necessity, efficiency, sufficiency”
“A move from patterns to something more formal or more abstract.”
“What is true?”
“True for all.”
“A type of understanding.”
“Deductive and inductive reasoning.”
“Reputation—Whose ideas get taken seriously?”
 “Community standards.”
 “Why … that … how ….” “Prove why … prove that … prove how.”

We spent a lengthy but necessary amount of time struggling with our own understanding
of proof and proving, and attempting to develop a working definition or description of the
elements that may be involved. However, we continued to have difficulty distinguishing
between proving and other forms of mathematical reasoning.

“Are these not simply elements of understanding?”
“What is the difference between understanding and proving?”
“Does proof not represent a way of thinking rather than a physical thing?”

Developing such a definition or framework appeared necessary to some members as
it served as a means to identify the assumptions under which we worked. It also seemed to
be an important prerequisite for determining how or whether proving had a role to play in
the elementary classroom. Even further, “[w]ithout a working definition, how can we begin
to provide meaningful learning activities for students?” On the other hand, many people
resisted attempts to define the nature of proof and proving as such a definition appeared to
result in an oversimplification of a multifaceted process; there was also a fear that due to the
inherent complexity of the nature of proving, a working definition would very likely be too
abstract and divisive to be of much use … particularly to classroom teachers. Regardless of
whether individuals were searching for or resisting a definition, a dominant topic of discus-
sion across the three days was listing the potential elements of proving that were or were
not displayed by the children in the videotape.

As we observed the children engaged in mathematical activity we pointed to particu-
lar features of their reasoning and understanding as potential elements of proving. As markers
of this form of reasoning we looked for and recognized acts of conjecturing and verifying and
we saw pattern noticing and property noticing (Pirie & Kieren, 1994); for example, we heard
Will’s declaration, “I was pretty sure there would be a pattern so I was keeping my eyes
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open and I found one.” His criss-cross pattern was extended and clarified further to a pat-
tern of square numbers and a pattern of differences.

There was agreement that a significant component of proving was the ability to gener-
alize. (However, the point was made that while all proofs are generalizations, not all gener-
alizations are proofs.) How capable are children of making generalizations? What are the
markers of such acts? In part, generalizing carries with it a sense of “for all”; one example of
this was when Will conjectured that his pattern could be generalized to all chessboards
when he stated, “[t]he chances are if it works for those it works for others.” He verified that
his pattern held true for a 5 by 5 chessboard and said, “So it’s basically the same.” In acts of
generalizing there is a belief that the conjecture is true for all numbers, true for all time or
true under particular assumptions or logical and mathematical circumstances. Once this
belief or generalization is formed, it goes into the “truth box” (Kieren) for future reference.

We know that children can recognize patterns, make conjectures, verify predictions,
generalize within and across contexts, but can they make such understanding explicit to
themselves and others? If “proof is just a convincing argument” (Hersh 1993, p. 389) in
which its primary function is that of explanation (Hanna, 1995), then the markers of prov-
ing as observed between individuals sharing their explanations and the listeners attempt-
ing to understand or be convinced, needed to be addressed. It was clear to us as observers
that the children in the videotape had many previous experiences describing patterns, pre-
senting explanations, justifying their thinking, debating solutions and providing
counterarguments. “The giving of reasons” appeared to be an expectation of their interac-
tions and an important form of discourse supporting acts of proving.

Through our discussion we explored the nature of the discourse within the commu-
nity and attempted to identify linguistic markers of proving; one of which was the sequence:
“If …., then …, because …”. Within this sequence an individual potentially articulates as-
sumptions or constraints, a solution, and a justification of why that solution is true or cor-
rect. Other markers such as “must be …” or “have to be …” in response to the question
“Why?” are further indicators of efforts to prove.

The listener is also implicated in acts of proving. As observers we can listen to and for
questions, clarification, challenges, refuting statements, even counterexamples. Both the
explanation and the artifact produced as a re-presentation of that explanation (e.g., through
physical objects, diagrams or symbols) require interpretation by another member of the
community. The communication between the prover and the audience and between the
object of proof and the audience requires a specific set of language tools to express math-
ematical thoughts. Providing opportunities for children to become aware of and to develop
mathematical language tools also appear necessary to support acts of proving in elemen-
tary classrooms.

Throughout our working group discussions, we raised a number of important ele-
ments of proving addressing reasoning, language tools, linguistic structures and commu-
nity interaction. However, each time we turned to highlight potential features of proving,
there was unease as we simultaneously neglected other essential elements. On the third day
it became clear that each element needed to be viewed in relationship to the whole: as a
dynamic between the individual(s) as the prover(s), the other(s) as the audience or commu-
nity, and the object of proof as a representation of reasoning.

Prover

   Other Object

As we viewed the children’s interactions, we noted that aspects of the triad were simulta-
neously implicated in the acts of proving: in the person(s) mathematical reasoning and ex-
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planation; in the ways in which the listener took up or critiqued the re-presentation; and in
the actual form or structure of the re-presentation. Even with a broader understanding of
the dynamic there was full awareness that our understanding and description was not suf-
ficient for or restricted to the act of proving.

What of proving in elementary schools?

There was a general consensus that children should be asked “why?” with respect to math-
ematical activities. The concern, however, was that proof may be different, perhaps a “lesser”
form or as a “prooflet” (Watson) at the elementary school. However, given our tentative
framework for viewing acts of proving we witnessed and generally agreed that children
can produce arguments that have many of the elements of proving that we described. Chil-
dren have the capacity to prove, if not the verbal structure/language/communication tools
to present the argument concisely.

Even if children are capable, why should they engage in activities that promote prov-
ing as a form of reasoning? “What goes into the math tool box from this kind of activity?”
“What mathematics do students learn?” “What is the mathematics?” Or, as our colleagues
were exploring down the hall, “Where is the mathematics?” Through our discussion we
addressed the goals of proving as a means to provide opportunities for children to internal-
ize “theorems of/for thinking” (Pimm) and encounter “mathematical structures” (Watson)
(e.g., square numbers, sequences, shape-dissection, algebraic ways of looking at shape, geo-
metric ways of looking at number). Through repeated experiences children develop the
mental power of mathematical thinking (which may or may not be similar to thinking and
discussion elsewhere in their lives). Mathematics provides us with a “way of seeing” and a
means for representing; “it is personally empowering to know that mathematics is not acci-
dental.”

What is the role of the teacher?

“What might a teacher look for in the process? What might a teacher look for in the
thing? How are these different?”

“What theorems of/for thinking might we look at/for? How are these useful in analyz-
ing discourse among students?”

“How does already knowing the proof, affect our ability to help children also become
knowers of the proof?”

“How do elementary teachers prepare to take on this role?”

“What tools do they have to evaluate whether the proofs produced by children are
valid?”

“What might/ought the teacher do to promote proving? How might she intervene?”

“What are the implications of a particular intervention for a student who sees things
differently or doesn’t see at all?”

We had many questions, but little opportunity to explore specifically what the teacher’s
role might be in recognizing and promoting proving as a form of reasoning and discourse in
the classroom. It was, however, clear that we felt it was unnecessary and possibly detrimen-
tal to teach the rules of logics or the technical language of proof as a prerequisite to engag-
ing in acts of proving. What is needed is further exploration of classroom expectations which
encourage and support elements of reasoning and discourse including conjectures, justifi-
cations, explanations and arguments. We need to continue to explicate markers for acts of
proving including linguistic markers such as “if-then-because”, “therefore,” “works for all,”
and so on. Finally, we need to find ways to make explicit the meta-cognitive components of
student thinking including the types of reasons and arguments (logical, social) used in prov-
ing (Pallascio).
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Many More Questions

There were many more questions raised that we could not even begin to address in our
working group or in this report. However, given the lack of literature in the area of children’s
proving, our working group made a significant beginning by generated many fruitful start-
ing points for further research.
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Our working group displayed one feature that tends to be common to CMESG working
groups, i.e., going with the flow and not limiting ourselves to the script of the goals and
activities described in the abstract that preceded it. Our abstract described the working
group as follows:

This working group will focus on ways to facilitate mathematics teacher professional develop-
ment. The underlying theme will be teacher growth and change. Thus the group discussion will
include teacher change, the change process, measuring change, and facilitating change. How-
ever, the group will focus on activities on which inservice teacher education can be based,
emphasising a humanistic perspective in which the personal is valued. These activities will in-
clude narrative inquiry, investigations, concept maps, case inquiry, action research, self-reflec-
tion, reform-oriented mathematics resources/programs. These activities are not necessarily mu-
tually exclusive, but for the purpose of investigating their nature, they will be looked at indi-
vidually and discussed in terms of their interconnections, similarities, differences, advantages,
limitations, potential to offer opportunities to examine knowing in teaching and the possibility
for supporting the construction of new knowledge for teaching and opportunities to examine
and discuss familiar mathematics represented in unfamiliar ways, … . The activities will pro-
vide a basis to draw conclusions on viable models of inservice mathematics teacher education.

An experiential approach will be adopted in the working group to allow participants to
engage in some of the activities in a “hands-on” way. The activities will be spread over the three
days. Experience with the activities will form the basis of reflection and discussion of their na-
ture and potential for facilitating meaningful growth and change.

While we did not follow this description in a literal way, we were able to deal with many
aspects of it directly or indirectly and on occasions branched off into other related domains
pertaining to teaching and learning mathematics. This made the working group sessions over
the scheduled three days an experience in which participants’ voices were an important com-
ponent to what unfolded. However, while it is not possible to fully capture the warm interac-
tions and sharing of personal excitement and visions, we attempt to report on the spirit of our
discussions in the following overview of the activities of the working group.

Day 1: Drawing the Big Picture

The investigation into preservice mathematics teacher education has permeated working
groups at CMESG over the past 25 years. Recently, Stuart and Higginson (1996) focused on
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preservice and inservice teacher programs. Their working group participants first described
the characteristics of a ‘developed’ mathematics teacher, then directed their attention to
strategies that could help teachers develop into the image that they had described. These
strategies supported the group’s belief that reflective teaching is important in professional
development. The group also agreed that learning to reflect on action and on learning was
important (Stuart & Higginson, 1996, p. 53).

The themes of professional development for preservice mathematics teachers (Bednarz
& Gattuso, 1998) and teaching practices and teacher education (Gattuso, Evans, & O’Shea,
1999) were recent contributions to mathematics teacher education discussion at CMESG. In
the working group of 1999, three models of teacher education were described in great detail.
This group ended their discussion by highlighting three different teacher education pro-
grams. However, they did not have the time to critique the assumptions of each program.

It is with this historical perspective that the 2001 Working Group began their discus-
sion of inservice teacher education. After a brief introduction, the participants were asked
to work in small groups to create a concept map of all of the elements they considered
important in conceptualizing teacher education. The groups presented their concept maps,
drawn on large flip-chart pages, for feedback and discussion. While each map was unique,
there were many similarities conceptually in terms of focusing on the major components of
a teacher education program, concepts/content to be taught, specific contextual issues, and
the interconnections between program elements. The large group discussion also dealt with
the similarities and differences between the various components. It was evident that many
issues exist for mathematics teacher education. However, teacher knowledge about content
and instructional strategies was the central issue that emerged from the concept maps.

The participants next worked on a mathematical activity called Tally Ho. In this activity,
the participant is to take the digits one through nine and place them on a grid with six math-
ematical operations. The goal is to determine the largest possible “score”. The format of the
page is set and contains addition, subtraction, multiplication and division. The activity is
used to explore mathematical operations, with a focus on multiple answers and the teacher
defines the “best” answer. The students can also define the “best” answer. In the working
group, we used this activity to identify features of mathematics that involve a dynamic ap-
proach and to discuss the role of such activities in teacher education. We also focused on the
types of questions that might be used to encourage teachers to think about their own under-
standing of mathematics. For example, does multiplication make the result larger? If not,
when does multiplication result in smaller numbers? The same number? Through discussion
of such questions, the teachers could reflect on their concept of number operations with dif-
ferent number systems. Finally, we talked about surface mathematics and the personal feel-
ing we have about learning mathematics. We described activities that are created for the teacher
to use in the classroom that might lead to mathematics understanding and motivation.

The Tally Ho activity was followed by a lengthy discussion on the role of reflection in
mathematics teaching and teacher education We considered reflection on object, action and
thought. Some participants focused on the importance of the relationship between the per-
son and the object. They felt that reflection should be experience-related and it is determined
by one’s relationship with the object. We also discussed the value of self-reflection. As Sandy
Dawson explained, the value of self-reflection depends mostly on how deeply one is able to
go in the reflection. The goal is to try to push teachers’ reflection to another level, e.g., be-
yond the taken-for-granted level. Sandy Dawson contributed another interesting compo-
nent to our discussions in terms of cultural differences in the interpretation of reflection and
publicly sharing personal experiences. His experience in the South Pacific was the basis for
discussing these differences. This allowed us to explore teacher culture, South Pacific culture
and cultural perspectives that can influence reflection in different/unique ways. For example,
in some cultures, men must speak first and then women can speak, i.e., a hierarchical struc-
ture of talk/conversation that could restrict the type of activities used to facilitate reflection.
We also considered mono-logical and dialogical societies and the relationship between pub-
lic reflection and assessment. We concluded that the building of mathematics communities
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was dependent in some ways to the social attributes of a culture.
To end the day, we worked in small groups to identify and reflect on the goals or factors

in which to frame meaningful inservice mathematics teacher education. Some key goals/
factors identified were positive experience, mathematical understanding through explora-
tion of mathematical concepts, reflection on mathematics content and pedagogy, and reflec-
tion on self. Our sharing of these factors led us to further discussion of reflection. Our collec-
tive view was that reflection was key to teaching (e.g., in the context of being a reflective
practitioner) and learning (e.g., as a way of making sense of a situation/experience).

Day 2: A Case for Teacher Education

We began day 2 with a 3-2-1 activity. Participants were asked to list three ideas about reflec-
tion, two questions about inservice teacher inquiry, and one challenge for inservice math-
ematics teacher education. The list was used to review the working group discussion from the
first day and to provide continuity for the discussion on the second day. After sharing and
discussing our lists, we shifted to a different medium and instructional strategy for exploring
mathematics teaching and learning—the case study. Doug provided a 20-minutes video titled
“Good morning, Miss Toliver” which served as a case to illustrate a perspective of mathemat-
ics teaching in which elementary students were actively engaged throughout the lesson. Be-
fore viewing the video, we formed 4 small-groups and each group was assigned a different
task that dealt with focusing their observation on a particular component of the teaching
portrayed in the video. These components were—classroom management, assessment prac-
tices, types of mathematical activities used in the classroom, and student communication.
Each group discussed their findings then reported back to the large group, providing a syn-
opsis of their discussion. The ensuing conversation was rich and embedded in context. We
felt that the use of video case studies could be beneficial for teacher education programs.

Throughout the discussion on case study, we agreed that exemplary activities would
need to be added to the curriculum to enrich teacher’s mathematics exploration and reflec-
tion. To illustrate this point, participants were asked to represent 1 mathematically in as
many ways as possible conceptually. We formed three small groups to work on this task,
then each group shared and discussed their findings. This question facilitated discussion on
three dimensions: looking at a curriculum area, thinking of connections across mathematics
and multiple representations. Through this type of discussions, we can get teachers to re-
flect on their own conceptions of mathematics.

Another way in which we explored reflection was through the use of narratives or sto-
ries. Teachers’ stories provide a basis to help teachers to explore their own thinking of math-
ematics teaching and learning and their behaviours in the classroom. Olive Chapman led a
brief demonstration on one way to conceptualize narrative inquiry in this context of self-re-
flection using a story written by a classroom teacher that was supplied by João Ponte. João
read the story titled “the glory of knowing how to use a calculator”. Participants were invited
to react to the story in whatever way that was meaningful to them. This was followed by a
discussion of the nature of the participant’s response, i.e., a focus on the teacher in the story.
Joao re-read the story as participants now listened to it focusing on themselves and their own
story that was stimulated by the story that was being read. Participants were invited to share
their stories. This was followed by a discussion of the shift in tone of the sharing and the focus
on resonating in the stories of others. We also discussed the characteristics of these stories to
allow them to facilitate deep as opposed to surface reflection. We raised concerns of feeling
vulnerable during such story-sharing sessions and how we could facilitate them to make them
positive experiences. Good facilitating includes working with a group of participants of the
narrative inquiry to establish a non-judgmental context to share and think about the stories.
The facilitator can also help the participants to synthesize particular themes emerging from
the stories for further consideration in a different way, e.g., through paradigmatic analysis.

To end the day, Olive provided each participant in the working group with a collection
of abstract/excerpts from selected articles and a bibliography on inservice mathematics
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teacher education. The bibliography also included selected articles/books on teacher devel-
opment in general. This 39-page document was prepared specifically for the working group.
A sample of the bibliography pertaining to mathematics teachers follows:

Aichele, D.B., & Coxford, A.G. (Eds.). (1994). Professional development for teachers of mathematics.
1994 Yearbook. Reston, VA: National Council of Teachers of Mathematics.

Ball, D.L. (1996). Teacher learning and the mathematics reforms: What we think we know and
what we need to learn, Phi Delta Kappan, (March), 500–508.

Borasi, R., Fonzi, J., Smith, C.F., & Rose, B.J. (1999). Beginning the process of rethinking math-
ematics instruction: A professional development program. Journal of Mathematics Teacher Edu-
cation, 2, 49–78.

Carpenter, R., & Fennema. E. (1995). Cognitively guided instruction: Building on the knowledge
of students and teachers. In R. Glaser & L. Bond (Eds.), International Journal of Educational
Research.
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ference of the Psychology of Mathematics Education. (pp. 228–235), Vol. 1. Tsukuba, Ibaraki, Ja-
pan: University of Japan.
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Day 3: Building Models for Teacher Education

Doug McDougall made a presentation on research on teacher change. Doug also suggested
that research shows that teachers’ beliefs about mathematics conflict with reform concep-
tions of mathematics as a fluid, dynamic set of conceptual tools. As noted in other working
group meetings, some teachers lack the mathematical knowledge required to make full use
of rich problems. An added challenge is that reform ideals are not consistent with policy
statements and curriculum in many parts of Canada. Doug also stated that teachers need to
reflect on their teaching to make the required adjustments to their teaching style and subject
content. Finally, the role of the teacher is paramount to the success of implementation of
mathematics curriculum.

An activity from the Ontario Mathematics Impact Math project was used to investi-
gate exploratory problems. The participants worked in groups to identify the key elements
of the activity. The discussion focused on the role of the teacher instructor in working with
preservice and inservice teachers. How much support should the instructor give? How do
adult learning theories assist the instructor to provide support for teacher candidates? We
moved from these discussions to the concept maps created on the first day to make more
connections between the instructors and the students.

Tom O’Shea described a large-scale inservice teacher program in BC he is involved in
creating through Simon Fraser University. The program consists of a two-year model that
connects the school district with the university in designing a basis of professional develop-
ment that matches the goals of the district. We engaged Tom in a lively discussion of the
program by posing a number of interesting questions to him. For example: What do you
expect to happen in classrooms after the inservice course? Suppose the goals of the school
district do not match the goals of the university for the course – how will you handle the
situation? How might these professional development programs evolve over time? What
motivates people who are in the top salary grid to attend such programs? While we posed
many questions to Tom to facilitate discussion of his project, we felt that university-school
district partnership is a potentially powerful way of enhancing mathematics teacher educa-
tion programs.

In the final hour of this the last day of the working-group sessions, models of inservice
mathematics teacher education were explored. We also worked in small groups to suggest a
model of preservice mathematics teaching. While past working groups have explored this
topic, the members of our working group felt that we had made some progress on the topic.
The various models were sent back with the proposers to identify what we might do next.
We agreed that we would have an informal discussion at the 2002 CMESG conference.
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Report of Working Group D

Where is the mathematics?

John Mason, The Open University
Eric Muller, Brock University

Participants

Clifton Baron Nicholas Jackiw Nathalie Sinclair
Brent Davis Renée Jackson Ole Skovsmose
George Gadanidis Ann Kajander Darren Stanley
Claude Gaulin Mary-Lee Judah Brett Stevens
Susan Gerofsky Carolyn Kieran Tania Terenta
Frédéric Gourdeau Jason Krause Dave Wagner
Gila Hanna Dave Lidstone Harley Weston
Dave Hewitt Peter Liljedahl Rina Zazkis
William Higginson Joyce Mgombelo
Martin Hoffman Immaculate Namukasa

Some Initial Intentions

As teachers, we give students tasks of various kinds. As educators, we expect novice teach-
ers to develop skills in using and presenting tasks to students. If we construct tasks through
didactic engineering starting from a knowledge of the situation, with emphasis on the ‘math-
ematics’ then there is an issue in acquainting others about the aims, intentions, and means
so that potentials are actualized. As Dick Tahta observed (1981), in addition to an outer task
(to perform what you are asked to do) there is an inner task (to make contact with math-
ematical ideas, to experience mathematical themes, to employ mathematical heuristics and
powers, etc.). The aim of the Working Group was to approach a number of questions in-
cluding: How does mathematics emerge from playing games, from using apparatus and
from mathematical instruments? Is it possible to identify the properties of such instruments
which motivate and facilitate the student’s transition from the outer task to the inner task?
How can this be planned for, enhanced, and exploited? What is the role of such instruments
in the teaching and learning of mathematics?

How the Time Was Spent

A summary of how the Group spent its time may provide some additional insight into this
report. As the number of participants was fairly large, it took some time for everyone to
introduce themselves, their interests and their experiences in the Working Group topic. As
an ice-breaker, the game of SKUNK (see Appendix A) was played. In the first two sessions
participants also worked with apparatus, which included the MIRA, hinged mirrors, leap-
frog, Chinese jigsaw, and other games besides SKUNK that included Brock Bugs and Four-
Bidden. The Group worked both in plenary, in small discussion groups and in pairs. The
latter allowed for the sharing of reflections, team playing and the development of game
strategies.
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Reflecting on Experiences

The first task proved very popular with most participants, to the extent that some wanted to
carry on playing. An element of competitiveness entered, as well as interest in how an ex-
treme strategy seemed to work rather better than a more considered one. Certainly it got the
group off to an active and energetic start. The initial energy release may have made it diffi-
cult for more cerebral tasks later.

A large group of participants increases the possibility of divergent views, of experienc-
ing shared situations in different ways and of not responding and reacting in unison. This
was certainly the case for this group and tensions were generated that were not resolved.
Within the context of the given situation individuals and groups reflected on the mathemat-
ics they used or developed, the links that facilitated their connection to the mathematics, the
barriers that they perceived in accessing the mathematics, the role, timing of, and necessity
of interventions, in order to move to the mathematics, and many other related points that
arose during the activities. With manipulative-apparatus, including the MIRA, hinged mir-
rors, leapfrog and the Chinese jigsaw, points recorded were categorized as follows:

Goals

In the case of Leap Frogs and Chinese Jigsaw, goals were suggested at the beginning. For
MIRA and hinged mirrors participants were free to set their own goals. Some teams felt that
the goals got in the way and distracted from the process of doing mathematics. In the Chi-
nese Jigsaw some pairs indicated that they would have benefited more if the goals had been
set in broader terms. For example if it had been explicitly stated that all patterns and their
relationships should be explored. Some groups expressed boredom with MIRA because no
goals or mathematical problems had been set. Some teams changed the goals or set up new
goals once they had reached the preset goals. Others were satisfied in reaching the goals
and moved their attentions to other matters. Some discussions ensued about possible con-
flicts between the goals of the students in the activity and the goals of the teacher. How
explicit should the teacher express his/her goals to the student? How and when should a
teacher intervene when she/he realizes that the student is moving away from the intended
mathematical goals?

Awareness

Participants, as individuals or as teams, were asked to note whenever they became aware of
positive or negative reactions or experiences, of changes in strategies or approach, and of
mathematization. Participants recorded negative reactions to situations where they had used
the manipulative-apparatus previously, and therefore had already gone through some of
the mathematization. There was very little enthusiasm shown about extending previous
experiences, preferring to engage in another activity. They noted positive reactions when
they found the activity particularly interesting or when the mathematical modeling devel-
opment was not obvious. Some of the groups did not even complete the activity but went
straight to the mathematization, satisfied that they had a mental image of the activity. In the
mathematization process participants used words such as abstraction, replacing the ma-
nipulative-apparatus by symbols, paper and pencil activities, looking for order, searching
for patterns and trying to generalize. Others reflected that they had reached the goal with
very little awareness of any mathematics.

The reactions reflect those of a group that brought together a very substantial set of
experiences and mathematical power, a group that was disposed to approach the tasks, and
individuals that were looking for the mathematical potential within those tasks. One can
expect similar responses for activities that students enjoy but depending on the age and
mathematical ability of students one can predict a need to motivate the mathematization of
the situation.

The Group spent some time isolating properties of ‘good’ games and apparatus, in
terms of providing a rich environment in which to mathematize. A good game or apparatus
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prompts reflection, is amenable to different approaches, motivates conjectures, is aesthetic
and sensorial, is attention grabbing (it runs when you chase it), has the potential for gener-
alization.

Is there a comparable list for students who bring a lower level of maturity, experience
and mathematics background? We distinguish between the ‘task’ as introduced by the teacher
(which may or may not be what they envisaged when planning nor what the author or
other source had in mind), the ‘task’ as constructed by the participant, and the activity
engaged in by the participant. The Group suggested that a good game for the classroom
would require the following:

· the task as constructed by students needs a hook to engage them, and that the hook should
be the mathematics itself and not the game;

· the task needs to provide enough impetus that students can break through the imposed
structure and get hooked on the mathematics;

· the mathematics needs to be appropriate for that age group and not too deeply imbedded
in the activity (i.e., it needs pointers to the fact that mathematics may be helpful), it needs
some element of surprise in the mathematics and some unexpected results that challenge
intuition (accessible but bothersome);

· the activity needs to provide various levels of mathematization allowing the better stu-
dents to progress beyond the average.

Perhaps it is useful to extend the notion of ‘the mathematics’ to include the pleasure that
comes from using one’s mathematical powers. Thus, a hook can be that I find myself enjoy-
ing being called upon to imagine something, to express what I see or think in some way
(through gesture and movement, through drawing and displaying, through words and sym-
bols), to make conjectures but then find I want to modify them, to try to convince others to
see what I see, to get a sense of what might be going on through trying some examples and
then seeing through the particulars to a generality. A task which affords access to becoming
more aware of such powers, and developing and honing them, contributes to mathematical
development just as well as a task which prompts the student in rehearsing and refining a
mathematical technique, or appreciation of a mathematical idea or topic.

A distinction was made between ‘jeopardy’ type games which provide an environment
for practice—the game is more the motivator, and other games where the mathematics itself
motivates the students to continue to examine it. Participants felt that the ‘distance’ be-
tween the game and the mathematics is shorter for Brock Bugs than it is for SKUNK. There
is a notion that one can at the design/deployment stage modify this ‘distance’. For example
in Leap Frogs, adding a quest for minimality to the stated rules decrease the ‘distance’ (mak-
ing game-play more directly engaged in problem solving); yet suppressing such a rule keeps
the structure more flexible and open. In SKUNK the ‘distance’ was found to be huge, which
does not diminish the value of the game but seriously changes the intervention model:
where low-distance games like Brock Bugs and Leap Frogs are amenable to punctuated
intervention. This may be due to the sophistication of the mathematical concepts required
for analyzing SKUNK.

Appendix A

Skunk

A description of this game can be found in pages 28 to 32, of the April 1994 issue of the
journal “Mathematics Teaching in the Middle School”. A short description follows. On the
blackboard, the teacher draws five columns each headed with one of the letters of the word
SKUNK, where each letter represents a different round of the game. Students play in teams
of two or three and their aim is to accumulate as many points as possible over the five
rounds of the game. For a team to acquire the points resulting from the sum of the values on
the roll of two dice, all team members must be standing. Before each roll a team must decide
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whether to stand or to sit as a group. If at any stage a team decides to sit it has to remain
seated until the end of that round. When standing a team gets the total of the dice unless a
one comes up, then the play is over for that round and the standing teams loose the points
accumulated for that round. If a double one comes up at any time all standing teams loose
the points accumulated for all the rounds up to and including the present round.
The game provides a blend of experiences in probability and decision making.

MIRA

The MIRA is a plastic two-way mirror made for classroom use. It is available commercially
together with various print materials developed for teacher and student use. Geometric
properties of planar objects and constructions that involve translations, rotations, angle and
line bisectors, etc. can be motivated by using this apparatus/manipulative.

Hinged Mirrors

The name of this apparatus describes it fully. Eric Muller brought number of pairs of mir-
rors hinged at one edge. No print or other materials were supplied to the Group.

Brock Bugs

The game of Brock Bugs was developed by Eric Muller for use in the teaching and learning
of probability. The game aims to provide experiences in three specific concepts, namely
relative frequency and probability distributions, expectations, and the use of the binomial
probability distribution. Each of these concepts are explored in one of three levels of the
game which allow students to progress through the game as they develop their under-
standing. Separate instructions are provided for the teacher and for students. The teacher ’s
notes include suggestions about classroom management, interaction with group of students,
intervention to motivate understanding, etc. There is a game board with spots marked 1 to
14 and two teams are issued with different colour chips. To start the game the two teams
take turn to place one of their chips on an unoccupied position of their choice. The positions
of the chips stay fixed for 25 rolls of a pair of dice. For each roll the team whose chip is on the
position corresponding to the sum on the faces of the two dice gets one point. The team with
the most points after 25 rolls wins the game. Chips are now removed from the board and the
game can be repeated. The objective is for students to first realise that strategies are in the
appropriate placing of their chips and then to develop their optimum strategy to win the
game. Level 2 is played on the same board but positions on the board carry different num-
ber of points. In other words a 7 may be worth two points while an 11 may be worth seven
points. These points are shown in a square below each position. Level 3 asks students to
explore reasons why the number of repetitions of the level 1 game were set at 25.

Leapfrogs

This is a classic Lucas problem that became the name of a group of mathematics teachers in
the late 60s and early 70s. They met annually to work on mathematics and to design re-
sources which required little or no introduction (more like stimuli perhaps, or phenomenon
to attract attention and mathematization).

You are given a number of green frogs, and yellow frogs, lined up with greens to-
gether and the yellows together and a single space in between. Frogs can jump over another
frog into a (the) vacant space, or slide into an (the) adjacent vacant space. The challenge is to
interchange the green and yellow frogs and top predict the (minimum) number of moves
required. Dudeney (I believe it was) extended this into two dimensions: you have two squares
of frogs that overlap in just one square. This square is vacant. Again the challenge is to
interchange the frogs and to predict the minimum number of moves.
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Chinese Jigsaw

Nine coins are placed in a 3 by 3 array, with all but the centre coin showing a head. You are
permitted to flip all the coins in a row, or all the coins in a column. The aim is to get all the
coins facing the same way.

Eventually participants begin to conjecture that there are some difficulties. Perhaps if
you are also permitted to flip all the coins in one or even both main diagonals? What if the
two-state coins are replaced by s-state objects (so after s-flips they are back to their starting
state)?

The name comes from a harder three-dimensional version, found in Chinese toy-stores.
Nine cubes have been laid out in a 3 by 3 array and a picture has been pasted on the full set,
then slit along the edges of the cubes to give one-ninth of the picture on one face of each
cube. The cubes are rolled to display another face each and again a picture is pasted. When
six pictures are pasted, so that each cube has one-ninth of each of six pictures, you have a
six-fold jigsaw puzzle. Fortunately, the picture gluing is achieved by rolling all the cubes in
each row in the same way (that permits four pictures) then in each column (for the remain-
ing two pictures). In other words, once you have solved one picture, you can achieve the
others by rolling all the rows, or all the columns, the same way and the same amount.

Now, suppose you displace just the centre cube by showing a different face. Can you
roll the rows and or the columns and restore the picture? The non-commutativity makes
analysis rather more difficult!

(Comment: The coin version of this task generated considerable interest. It seemed to be at
an appropriate level mathematically, and various ways of thinking afford access (groups,
linear algebra, combinatorics), yet no really deep theorems or techniques are required. Mainly
you have to reach the conjecture that it is not possible, and then to justify why.)

Four-Bidden

Packs of cards (produced by ATM in UK) were offered. Each card has a technical term from
secondary school, and four other terms which are ‘forbidden’. Participants draw a card and
give the others clues as to the technical term, without ever using the four forbidden terms.

Many different variants are possible such as only using the ‘forbidden’ terms, trying
to work out the forbidden terms given the main term, using only diagrams or drawings to
give clues, acting clues out in silence, team collaborations etc.

(Comments: This game generated considerable reaction. Some felt that students should not
be restricted in how they try to express themselves, especially when the essence of the term
is best expressed using some of the forbidden terms. In some cases it was not clear why
certain terms were forbidden and not others.)
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Professional Narratives in Mathematics Teacher Education

João Pedro da Ponte
University of Lisbon, Portugal

In recent years, narratives gained prominence in many educational fields, especially in teacher
education and in research on teaching. In this paper I discuss why narratives may be of
interest both for mathematics teachers’ professional development and for researchers that
investigate teachers’ professional knowledge.

The narrative representation of experience

A narrative or story is a way of representing experience for oneself or for others. A narrative
involves three basic elements: (i) a situation involving some conflict or difficulty, (ii) one or
more agents that act on that situation with their own intentions, and (iii) a plot, that is a
temporal sequence of related events in which the conflict is resolved in a certain way. It
involves people, settings, and events that take place in a given time frame.

According to Bruner (1991), we organize our experience and our memory of past events
in the form of stories. In this sense, we live through stories, that is, we think, perceive, imag-
ine, and make moral choices using narrative structures. Every human being is a storyteller,
perceiving reality in a narrative way. Telling stories enables us to establish order and coher-
ence in our experience and to make sense of the events in the world around us (Carter, 1993).

Stories are imbedded in the culture. A story is a conventional way of thinking, cultur-
ally transmitted, and is as much constrained by the social and institutional context as by the
capacities of each person (Bruner, 1991). Also, the culture speaks through stories, stories
that are constructed around themes that yield the projection of human values (Carter, 1993;
Riessman, 1993). To ask whether a story is true or false is to ask the wrong question. The
issue is what the teller is trying to say, the interpretation that is being offered, the interpreta-
tion that the reader may draw of that story, and the understandings that it may lead to. The
acceptance of a story is ruled by convention and by “narrative necessity” (Bruner, 1991).

Teachers’ stories

Stories are one powerful way that humans use to make sense of their experiences. This
includes the experiences that teachers have in their professional activity. Indeed, teachers
tell each other about classroom events, about the professional meetings they attend, about
their ongoing projects. They share their experiences with children, with parents, adminis-
trators, and colleagues. Professional stories, besides being a natural way of registering teach-
ers’ experience, may serve formative goals, notably for those who tell them, for other prac-
ticing teachers, and for prospective teachers.

Stories constitute a way of knowing closely related to action. According to Carter (1993),
stories are ways of knowing emerging from action that attempt to explain human intentions
in the context of action. Allowing for a multiplicity of meanings, they are a suitable way of
expressing knowledge related to the complexity of action. As teaching is an intentional ac-
tivity in a given situation, teachers’ professional knowledge is inextricably related to teach-
ers’ practice. Therefore, to understand teachers’ knowledge we may begin by scrutinising
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the stories that provide structure to their thinking about classroom events—their practical
theories. However, one must do that in the understanding, that in their stories, teachers do
not just recall and report their experiences. They recreate their own stories, reconstructing
meanings, redefining their personal and professional self (Cortazzi, 1993).

The thinking, the perceptions and the experiences of teachers are integral elements of
their culture and, therefore, the mark of the cultural contexts is present in their thinking:
“what teachers tell us about their practices is, most fundamentally, a reflection of their cul-
ture, and cannot be properly understood without reference to that culture which is interper-
sonal” (Olson, 1988, p. 169). Stories select in a special way the richness, the nuances of mean-
ing, the ambiguities and the contradictions in human affairs, contrarily to paradigmatic or
scientific thinking, that requires consistency and absence of contradiction (Bruner, 1991).
They have a strong ability to represent life and promote linkages between it and the educa-
tional experiences. Stories are ways of capturing the complexity, specificity, and internal
and external connections of phenomena, overcoming the limitations of atomist and positiv-
ist approaches. They are, therefore, a way of knowing and thinking particularly apt to deal
with the issues that we face in educational research (Carter, 1993).

Stories may fulfill many roles in teacher education and professional development. Of
course, teachers’ stories are a fundamental part of the profession’s heritage and constitute
rich resources for teacher education activities. But the most important role of stories in pro-
fessional development involves teachers constructing their own narratives about past expe-
riences. This autobiographical work may focus on single events or classroom episodes or
reflect the complex movements of an extended career. An autobiography is not just a de-
scription of a professional career—it is a means by which teachers may become aware of
key issues that may lead to substantial changes in their professional activity.

Although much less than in other educational fields, narratives are present in some
mathematics education work. For example, in a theoretical paper, Burton (1997), discusses
how to combine an emphasis of individual agency of constructivism with the prevalence of
external authorship in sociocultural theories, proposing to regard mathematics learning as
a narrative process in which learners have agentic control in authoring. Mostly concerned
with methodological issues, Love (1994) noted that teachers’ accounts about their practices,
in interview settings, should be regarded as narratives and, therefore, the analysis of such
accounts should take in consideration the specific features of narratives. Chapman (1999)
uses the process of storying and restorying to help preservice mathematics teachers to re-
flect on their thinking and actions, in relation to mathematics and mathematics teaching
and learning, aiming to broaden their understanding of new curriculum orientations. And
Shifter and Simon (1996), used teachers’ narratives as starting points to explore issues re-
lated to the teaching of particular topics, to enacting new teaching approaches, and to the
challenges posed by curriculum reforms to teachers’ professional identities.

Constructing narratives

In education, stories can take myriads of forms. For example, teachers’ anecdotes are simple
episodes teachers tell each other about classroom events or other events such as their own
history as learners. A personal history is an extensive account of first-hand experiences of
learning and of being in a school. An autobiography is a reconstruction that involves a
conscious and reflexive elaboration of much of the author’s life, including personal and
professional experiences. A collaborative biography is the joint description and interpreta-
tion of a teacher’s life experience carried out by the teacher working together with a re-
searcher (Cortazzi, 1993). Narrative inquiry, as carried out by Connelly and Clandinin (1990),
is the process of making meaning of personal experience through collaborative storytelling.

A narrative always involves a narrator that produces a text, in oral or written form. A
teacher may produce it on his or her initiative (such in autobiography), but more often it is
a joint production of a teacher and a researcher. Such production may come about in a
rather standard interview setting, through open-ended questioning, in a more informal re-
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flection on past experiences, or as a deliberate construction in sessions devoted to “narra-
tive inquiry”. In a joint production, there is a range of possible roles of both participants—
narratives may be just produced orally by a teacher and them passed into writing by a
researcher or may evolve in oral and written steps as a collaborative activity.

The sources of narratives may be unstructured interviews, journal entries, field notes
of shared experience, etc. Many stories are first expressed orally and then in a written way.
The construction of a narrative in educational research involves several steps. Riessman
(1993) describes them in the following way: (i) attending, that is, living the experience; (ii)
telling the experience; (iii) transcribing the experience, (iv) analysing the experience, which
implies the elaboration of a new text (usually written); and (v) reading, involving a new
recounting. Steps (i) and (ii) must be undertaken by the person that lived the experience;
steps (iii) and (iv) may be carried out just by the researcher or by the teacher and the re-
searcher, as a joint production; and step (v) involves all possible audiences of the narrative.

For Riessman (1993), these steps are different levels of representation of an experience.
First, one must note that there is an inescapable gap between the lived experience and the
telling and writing that is done about it. Telling an experience also implies the creation of an
identity—a way how one wants to be known by the others—as every narrative is inescap-
ably an auto-representation. Transcribing is (as the other levels of representation) necessar-
ily incomplete, partial and selective—it is an interpretative action as much as it is photo-
graphing reality. Decisions about transcribing, as well as about speaking and listening are
guided by theory and rhetoric rules. Analysing implies to select, emphasize, relate and com-
pare. As in any research activity this is a most critical step in the creative activity of research.
Such analysis should not pervert the voice and the meaning of professional practices, but
enrich and clarify them as it draws on further experiences and perspectives. And, in its final
form, the narrative is still open to different readings and interpretations as the meaning of a
text is always a meaning for someone. A story, once told (orally or in written form), does not
belong anymore to the narrator. It gets an existence independent of his or her will, inten-
tions or interpretations and becomes the property of all of the educational community
(Clandinin and Connelly, 1991).

Narratives carry a strong cultural and historical load. The “truths” that we construct
are meaningful for specific interpretative communities in well-defined historical circum-
stances. As Riessman (1993) underlines, each level of her model involves a reduction, but
also an expansion—each teller selects to narrate the aspects of his or her experience and
adds other interpretative elements.

There are several ways of analysing narratives. One of the most used models in educa-
tion was designed by Labov (see Cortazzi, 1993; Riessman, 1993), who proposes that a nar-
rative is made up of six fundamental parts: (i) abstract, with the summary of the substance
of the story; (ii) orientation, providing information about place, time, context, participants;
(iii) complicating action, that is, the sequence of events; (iv) evaluation, indicating the meaning
of the action for the narrator; (v) resolution, stating what finally happened; and (vi) coda,
through which one returns to the perspective of the present. Next, I use this model to analyse
a teacher’ story.

A professional story

The following story—entitled The glory of knowing how to use a calculator—was written by
Maria João Simões, a teacher is a secondary school1 in Lisbon, Portugal, as part of an activity
in an in-service teacher course held in 1996. It was included in a book containing several
stories constructed in the same way, published by the Association of Teachers of Mathemat-
ics (Ponte, Costa, Lopes, Moreirinha, and Salvado, 1997).

This year I have two tenth-grade classes and they’re very different from each other. In class
B almost half the pupils have already bought a graphic calculator, while in class C there isn’t
a single one—and this has nothing to do with economical differences…

I’ve had a graphic calculator for almost two years, but I must admit that I hardly know
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how to do anything on it because I have dedicated very little time to become acquainted
with it. In one of the first classes on quadratic functions, I decided to take my calculator (the
school doesn’t have one!) to show the pupils in class C what happens when we changed the
coefficients. But I don’t know what I did, you couldn’t see anything! This was right at the
end of the class and next I was going to have a class with the ninth grade. But I didn’t even
leave the classroom because a load of tenth-grade B pupils came in. Among them was André,
of whom I shall talk in particular.

André has a hearing impairment, as recognized by the Decree 319/91. He is a weak
pupil who had a 10 in the first period2, not because that was “his” grade, but because he is
“different”, so he has a right to a different assessment. He is devoted to the graphic calcula-
tor, which he took just one day to decipher. As he puts it: “Teacher, pressing these buttons is
how you learn!”

So this group, with André at the lead, came barging in, filled with self-confidence: “Hey
teacher, what’s the problem? Can’t you handle this?” And they picked up the calculator.
Meanwhile I’d already understood my mistake—the values of the axes’ scale weren’t very
good. But I resisted and didn’t steal their glory. They did everything, got the graphics “work-
ing” and said goodbye: “If you need us we’re here!”…

André is sitting just in front of me (naturally) and he has a rather condescending atti-
tude (which really amuses me) whenever I need to use the calculator. He gives me advice
discreetly or else when he constructs something he thinks is interesting, he calls me and
explains what he did in detail. This happens often for sometimes I have to take his calculator
away so that he pays attention to the class.

What happened in the last test, which was without calculators, got me thinking. André
didn’t pass but everything concerning function graphics he got right.
This episode shows that we do learn from pupils—and not just indirectly, as we usually
think. But do we make this clear enough for them? André’s pride when he teaches me some-
thing shows how important this is to him; probably it’s just as important to the others… And
they don’t respect me less for it!

Drawing on Labov’s model of analysis, we can see that this short teacher story is filled with
different complications. At a first sight it is just a story about a teacher who was not quite
well prepared to use the calculator in the classroom. Dealing with something unexpected,
arising from a new instructional material or from any other source, is a common situation
that teachers face in the classroom. But, on a second level, this appears to be much more a
story about a teacher with a special pupil who has an officially recognized handicap and is
weak in mathematics, but likes to show off in front of his colleagues. On a third level, one
sees the complication regarding the questions that are puzzling this teacher: why a pupil
who is able to explore so well with the calculator and make good use of it keeps getting poor
marks in a test?

In this story, not all three complications get a resolution. This teacher could easily fix
the calculator problem and did not have trouble in finding a strategy to deal with André.
Much more difficult—in fact unsolved—was finding a way to make this pupil have success
in mathematics. It is quite apparent that the teacher makes a positive evaluation regarding
the way she relates with André, but she is much more ambivalent regarding wider issues in
her practice.

There are several issues in this story. One concerns the relationship of the teacher with
the calculator, at a quite basic level of operating with it. Another is the relationship of the
teacher with a pupil that is behaving just borderline regarding what may be the teacher’s
tolerance for outspokenness. Comments such as those André is making may be acceptable
for some teachers but not for others, and they may be acceptable once in a while but not
constantly. A third issue concerns what is wrong with mathematics teaching and assess-
ment that leads this pupil to fail when he shows interest and ability for mathematics. Still a
fourth issue concerns the graphic calculator. If it must be used as a tool for experimentation
and exploration, why does it not lead this pupil to a better achievement?

In pre-service and in-service teacher education stories such as this provide good start-
ing points to discuss issues faced by a teacher in making curriculum decisions and conduct-
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ing classroom instruction. Also, they may be the starting point for participants to tell and/
or write their own stories dealing with related issues. In the work carried out in our research
group, stories have also been produced to study teacher’s knowledge in innovative teach-
ing practices, such as dealing with mathematical investigations in the classroom (Ponte,
Oliveira, Cunha, and Segurado, 1998).

Conclusion

This paper argued that narratives are a powerful tool for professional development and a
useful research methodology for those interested in the study of teachers and teaching, in-
cluding the teachers themselves. The story of Maria João was made in an inservice course—
providing this teacher an opportunity to reflect on several issues concerning her practice—
and has been used as a basis of discussion with preservice teachers. Stories such as this
illustrate several aspects of mathematics teachers’ professional knowledge and may be used
in research. However, the use of stories in teacher education and research raises a number of
issues. Questions regarding the quality, the value, and the ethics of work in narratives have
to be addressed. We need to pay attention to the desirable and undesirable features of profes-
sional narratives and adequate and non-adequate ways of constructing and reporting them.
We also need to find strategies to encourage teachers and mathematics educators alike to
write professional narratives and to share them within their professional communities.

Notes

1. Escola Secundária do Lumiar Nº 1.
2. 10, in the grading scale 0-20, in use in Portugal at this school level, is a “just pass” mark.
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From Kindermath to Preservice Education:
Some Connections with Content and Student Responses

Ann Kajander
Lakehead University

The Kindermath program was designed in response to requests of parents who wanted
some enrichment opportunities for their elementary children. Its creation pre-dated the new
Ontario elementary curriculum, so initially it seemed to be quite unrelated to the curricu-
lum children were experiencing in school. However, with the publication of the new cur-
riculum in 1997 Kindermath became quite relevant to the new curriculum especially in the
areas of patterning, geometry and spatial reasoning.

The format for Kindermath is small group after-school or evening sessions, for chil-
dren aged 6 to 10. Children work for 45 minutes together or individually, and then are
joined by a parent for a 15-minute “sharing time” at the end. During sharing time children
either explain their work from that day, or work on an activity with the parent. The take
home project is also explained at this time. The idea of sharing time is to connect the
Kindermath class work with things parents can do at home to extend the ideas.

One thing that is different about Kindermath from school is that it is a voluntary pro-
gram that parents are paying for, and as such competes with a huge myriad of other after
school activities. Thus it must be fun and interesting.

While the idea of Kindermath is not based on any existing programs, the inspiration of
the activities themselves reads like a “who’s who” of CMESG. For example, Kindermath
activities include a version of Ralph Mason’s cube figures, Elaine Simmt’s fractal cards,
Brent Davis’s wool and cardboard factor circle, and Bernard Hodgson’s kaleidoscope work.
For further details of the activities, see Kajander (forthcoming).

Activities were chosen for Kindermath based on the interest level they were deemed
capable of generating, as well as their ability to convey something of the excitement and
aesthetic quality of mathematics often felt by mathematicians, and often missed in school.
Elements of discovery and creativity are also included wherever possible. For example,
children cut out paper pieces to verify a visual version of the Pythagorean theorem, and
then cut out cubic boxes from cardboard and fill them with cereal to decide if (visually) the
contents of the two boxes on the legs equal the contents of the cube on the hypotenuse. This
leads to an informal discussion of proof, in the form of “how can we know if it will always
(not always) be true”. At each of the three levels of Kindermath, activities are provided to
include the following list of criteria:

· math can be fun and engaging;
· we can ‘play’ with math;
· mathematical patterns can be beautiful;
· there is awe, mystery in math;
· child’s own creativity is encouraged;
· mathematical communication;
· mathematical collaboration;
· mathematical reasoning;
· infinity, limits;
· ‘big picture’ mathematical ideas;
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· how can we know something is true.

As there is no formal evaluation in Kindermath, children are freer to take risks than in
traditional school. This also makes the program more difficult to evaluate in a formal way.

Plenty of anecdotal evidence exists however to support the benefits of the program.
When we ask the question “Does it ‘work’?” of Kindermath, we have to ask “work to do
what?” Here are some possible criteria to consider:

· Do kids like it?
· Does it appear to effect attitudes longer term?
· Does it help kids to see the ‘big picture’?
· Does it promote the learning of technical skills?

It seems to me kids like it a lot. No child has ever left Kindermath due to lack of
interest (one left due to baby sitting difficulties, and one due to a divorce/custody situa-
tion). As one eight year old put it somewhat to my dismay, “it’s a lot more fun than real [he
meant school] math”.

As to the second question, long term data is not really available, but I do regularly run
into a high school girl at mathematics contest sessions who tells me she is going to be a
mathematician because of Kindermath.

While Kindermath has never attempted to teach technical skills, there have been stu-
dents whose attitudes to mathematics were changed so noticeably that their grades in school
went up dramatically. For example, a student who joined us in grade 5 was, according to
her teacher, “failing” school math. After some very successful experiences in Kindermath
with difficult problems such as the ‘handshakes’ problem, which she subsequently pre-
sented to her teacher at school, her self esteem and interest levels rose remarkably, accord-
ing to her mother. She received A’s in grade 8 and had a motivation level that increased a
great deal after her Kindermath experience.

Other parents have reported that they refer back to Kindermath activities, such as
creating and using a balance, when learning more sophisticated ideas such as solving equa-
tions (as was suggested to them at the time).

If Kindermath is successful with children, a natural extension is to ask what is its role
in teacher education? How do preservice teachers respond to learning math in a class that
makes strong use of similar activities?

Preliminary data seems positive. Out of 114 students starting a mathematics course for
elementary teachers in 1999–2000 at Lakehead University,

· 24% said they had a positive attitude to math;
· 20% said they found math difficult but were willing to work at it;
· 46% said they were very nervous or unhappy to be taking a math course and used

words like “terrified” or “dread”;
· 10% did not respond or answered with something unrelated (i.e., 66% had some form of

negative attitude about mathematics initially and nearly half a very strong negative
attitude).

At the end of the course, 89% of the students reported a noticeable change in attitude
for the better. Many made comments like “it feels like the first time I’ve taken math”.

For example, a student who professed at the beginning of the year to have “barely
passed grade 10 general math” came up with a general solution to the sum of n integers
problem (the ‘staircase problem’) with tiles, which did not require two different solutions
for odd and even numbers of stairs (as most student solutions do).

Another student, a native woman who could not even work with fractions at the be-
ginning of the course and was terrified to the point of tears, was working with complicated
fractal patterns on the computer (among other things) by the end. She felt the visual hands-
on approach was particularly effective with the Native children she worked with on the
reserves.

The relationship between directed ‘play’ as in the Kindermath experience and ‘in-
quiry’ as in the sense of the new secondary curriculum in many provinces is still uncertain.
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Can enough mathematical ‘play’ early on create a mindset in which ‘inquiry’ is more
easily attainable? Other questions also remain unanswered. What about unmotivated learn-
ers? What is ‘different’ about Kindermath that could possibly be continued at higher levels?

Some characteristics are that Kindermath is fun, students work in one small group
with one teacher, an emphasis is placed on personal creativity and students’ own ideas with
less emphasis on ‘answers’ and none on grades. Clearly, some of these criteria are not pos-
sible in school, but perhaps some are.

I would like to conclude with some questions and observations related to applying
these ideas to school mathematics classrooms, both elementary and secondary.

‘Play’ in the sense of Kindermath activities may be restricted or unavailable the major-
ity of the time in school, but I find that even secondary kids still love it. Does a background
in ‘play’ make ‘inquiry’ more comfortable? What exactly is inquiry anyway? I find that
‘conjecturing’ is not an easy concept for either elementary or secondary students – would
more of a background in exploration help with this? How much support/scaffolding is
needed/ideal?

What might help the inquiry process at the secondary level? Here is a list of sugges-
tions:

· a background in ‘play’, giving students a positive attitude and a willingness (if not the
skills) to ‘mess around’;

· a reduced list of skills to be learned;
·  (fewer) small groups;
· more curricular freedom to get ‘sidetracked’;
· environments with a little more fun, imagination, visualization, and creativity … and

magic.

I look forward to future sessions of CMESG to help to provide more discussion on these
important issues!
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Mathematics and Literature I: Cross Fertilization

Brett Stevens
Simon Fraser University

When one thinks of Mathematics and Literature one often evokes the image of Alice in Won-
derland and the logic games and paradoxes that permeate Alice’s voyage. It is indisputable
that Lewis Carroll’s use of mathematics in his novels was profoundly original and ground-
breaking. However mathematics did not play a determining role in the plot or creation of
the work, nor can it be said that Alice in Wonderland, or most other novels containing math-
ematics, have in any way contributed to mathematics research. Indeed, the relationship
between mathematics and literature is most often seen as a one way relationship, literature
using mathematical ideas a symbolism, and not a profoundly deep one at that. In this article
I will tell the story of deep cross-fertilization between literature and mathematics, both di-
rections: research level mathematics guiding novel creation at the profoundest levels and
literature spurring active and important research.

1. Leonhard Euler, Oulipo and Georges Perec

The story begins with a game, very like what might be found in Alice in Wonderland. Leonhard
Euler asked the following question in 1782:

Thirty-six officers are given, belonging to six regiments and holding six ranks (so that each
combination of rank and regiment corresponds to just one officer). Can the officers be paraded in
a 6 × 6 array so that, in any line (row or column) of the array, each regiment and each rank
occurs precisely once? [4]

Smaller versions of this problem are fun to try with a deck of cards. From the deck of card
remove the 1,2 and 3 of three suits and try to arrange them in a 3 × 3 square such that every
row and column has each suit and each number just once (also try with the 1,2,3 and 4 of all
suits and if you have a deck of cards for playing the French card game Tarot then you can
also try with the 1, 2, 3, 4 and 5 of the five suits). Since he represented the regiments with
Greek letters and the ranks with Latin letters these squares became known as Græco-Latin bi-
squares.

Euler believed that the answer to his question was “no”, and that no n × n Græco-Latin
bi-square existed when n ≡ 24. There is a simple construction for a q × q Græ co-Latin bi-
square where q is a prime power: Index the rows and columns by the elements of the Field
of order q and the “officer” in cell (i,j) is in “regiment” I + j and has “rank” I + 2j. MacNeish
proved that if a solution exists for an n × n square and an m × m square that a solution can be
constructed for a nm × nm square [3]. The prime power field construction and the 4 × 4
solution that you found with your deck of cards now confirm that a solution exists for all n
× n Græco-Latin bi-squares when n ≡ 24. In addition to this, in 1900, G. Tarry, a math teacher
in a girl’s schools was able to prove in 1900 that in fact Euler had been correct for the 6_6
square; it is not possible. He did this by dividing the problem into many cases and then
given the checking of each case to his students as homework. This is possibly the first in-
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stance of distributed computing to solve a computationally hard problem, predating the
Internet by 90 years!

For the first half of the century it looked as if all the evidence was supporting Euler’s
conjecture until 1960 when Bose, Shrikhande and Parker used Wilson’s construction to prove
that Græco-Latin bi-squares exist for all n except n = 2 and 6. In particular they exhibited a
10 × 10 Græco-Latin bi-square [5].

00  47  18  76  29  93  85  34  62  51
86  11  57  28  70  39  94  45  02  63
95  80  22  67  38  71  49  56  13  04
59  96  81  33  07  48  72  60  24  15
73  69  90  82  44  17  58  01  35  26
68  74  09  91  83  55  27  12  46  30
37  08  75  19  92  84  66  23  50  41
14  25  36  40  51  62  03  77  88  99
21  32  43  54  65  06  10  89  97  78
42  53  64  05  16  20  31  98  79  87

FIGURE 1: A 10 × 10 Græco-Latin bi-square.

This was such an unexpected and exciting result that a color format of the solution was on
the cover of Scientific American.

At this same time, in France, the mathematician François Le Lionnais and the writer
Raymond Queneau were founding the Ouvroir de Littérature Potentielle (Oulipo), or Work-
shop for potential Literature which focused on the the question “what are the possibilities
of incorporating mathematical structures in literary works? ” and eventually included in
it’s scope all writing that was “subjected to severely restrictive methods” [8]. Several years
after the publication of the 10 × 10 square, three members, George Perec, Claude Berge and
Jaques Roubaud, devised a method of applying Græco-Latin squares to literature. George
Perec describes the method in simple terms:

Imagine a story 3 chapters long involving 3 characters named Jones, Smith, and Wolkowski.
Supply the 3 individuals with 2 sets of attributes: first headgear – a cap (C), a bowler hat (H),
and a beret (B); second, something handheld – a dog (D), a suitcase (S), and a bouquet of roses
(R). Assume the problem to be that of telling a story in which these 6 items will be ascribed to the
3 characters in turn without their ever having the same 2. The following formula:

 Jones  Smith  Wolkowski

chapter 1  CS  BR  HD
chapter 2  BD  HS  CR
chapter 3  HR  CD  BS

– which is nothing more than a very simple 3 × 3 Græco-Latin bi-square – provides the solution.
[8]

The plot of the story can simply be read off the table: In chapter one Jones is wearing a cap
and holding a suitcase, and so on. In Life, a User’s Manual [9], Perec did the same thing using
22 10 × 10 Græco-Latin bi-squares corresponding to such things as who to plagiarize in the
chapter, fabric types, furniture, shapes, and even instructions to remove some of the plot
details generated by some of the other bi-squares! Additionally the chapters are in the order
of a re-entrant chess knights path on top of the square. He permuted the rows and columns
of the 10 × 10 Græco-Latin bi-squares in a way which he did not reveal and so we are still in
the dark about all the sets of attributes that he did use. It would be a wonderful graduate
project in either mathematics or literature to do the detective work and reverse-engineering
required to deduce the squares and attributes that he used! Perec is also well known for the
longest Palindrome ever written, 5000 letters and for having written a novel entirely with-
out the letter e.
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2. Dante’s Purgatorio, Beckett and Gray-Codes.

In the previous section, I gave one direction of influence: from math to literature by telling
the story of Euler’s 36 Officers problem, the history of its development and its impact on the
creation of Georges Perec’s Novel Life, a User’s Manual. This gives a potent example of math
can be applied to literary creation at a deep and structural level. In this section I want to
provide you with an example of the influence proceeding in the other direction: Literature
motivating important and difficult mathematical questions.

One of the most influential religious works of all time is Dante’s Divine Trilogy docu-
menting Virgil and Dante’s travels through Hell, Purgatory and Paradise. This work has
influenced many modern writers, most notable T.S. Elliot, Ezra Pound, James Joyce and
Samuel Beckett. One aspect of the religious symbolism in the Divine Trilogy is the meaning
of movement. Individuals move in very different ways depending on whether they are
damned or saved. As John Freccero discusses,

the directions given by Dante on the purely literal level are entirely consistent and that in
imitating the further traditional pattern of “descent” before “ascent” the pilgrim’s left-
ward journey spiraling clockwise down through Hell is, with respect to “absolute up” (the
Southern Hemisphere), actually a movement upward and to the right and continues after
the turn-around (conversion) at the earth’s center, in the same absolute spiral direction to
the right up the Mount of Purgatory. [7]

The connection between Dante’s symbolism of movement and Samuel Beckett has
been made in regards to his late play Quad [2]. In Quad there are four actors, 1, 2, 3, and 4.
They traverse a square and follow the following paths:

actor 1  AC  CB BA AD DB BC CD DA
actor 2  BA  AD DB BC CD DA AC CB
actor 3  CD  DA AC CB BA AD DB BC
actor 4  DB  BC CD DA AC CB BA AD

The figures then follow the following schedule of who is on stage ...

1  13  134  1342  342  42
2  21  214  2143  143  43
3  32  321  3214  214  14
4  43  432  4321  321  21

... where the play then begins to repeat. Each actor traverses the square once in his pre-
scribed pattern of sides and note that the actors leave stage in the same order that they
arrived and thus it is always the actor who has been on the longest who leaves, although
any actor my enter.

The figures are always turning left, moving in an anti-clockwise direction. But they
arrive at the sides in a clockwise order. Thus they can be seen to be moving both clockwise
and counter-clockwise at the same time. This movement in both directions simultaneously
was first pointed out a possible connection to Dante by Antoni Libera. “Anti-clockwise and
clockwise are the directions moved by the inhabitants of the inferno and purgatory respec-
tively in Dante’s Divine Comedy, to signify movement away from and towards God, or, to
put in another way, away from or towards freedom”[6] Thus the characters in this play at
once move towards and away from freedom.

This can be viewed in a more combinatorial way. We equate freedom with achieving
all the combinations of a finite system, as Beckett does in the following humorous passages
from his novel Murphy:

He took the biscuits carefully out of the packet and laid them face upward on the grass, in
order as he felt of edibility. They were the same as always, a Ginger, an Osborne, a Diges-
tive, a Petit Beurre and one anonymous. He always ate the first-named last, because he
liked it the best and the anonymous first, because he thought it very likely the least palat-
able. The order in which he ate the remaining three was indifferent to him and varied
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irregularly from day to day. On his knees now before the five it struck him for the first time
that these prepossessions reduced to a paltry six the number of ways in which he could
make this meal. But this was to violate the very essence of assortment, this was red per-
manganate on the Rima of variety. Even if he conquered his prejudice against the anony-
mous, still there would only be twenty-four ways in which the biscuits could be eaten. But
were he to take the final step and overcome his infatuation with the ginger, then the assort-
ment would spring to life before him, dancing the radiant measure of its total permutability,
edible in a hundred and twenty ways! Overcome by these perspectives Murphy fell for-
ward on his face in the grass, beside those biscuits of which it could be said as truly as of
the stars, that one differed from another, but of which he could not partake in their fullness
until he had learnt not to prefer any one to any other. [1]

We similarly equate the restrictiveness of the “first-in first-out” nature of the actors’ sched-
ule as the opposite of freedom then the characters of Quad move “away from and towards
freedom” both combinatorially and geometrically.

This raises and interesting mathematical question: When can all subsets of an n-set be
arranged in a circular list such that each one appears just once, two adjacent subsets differ
by the inclusion or removal of just one element and the only element that may be removed
is the one which has been in the most previous consecutive subsets in the list. Such an object
is a type of Gray-Code, a powerful mathematical representation of objects in a circular list
such that consecutive members differ in only small ways [4]. Gary-Codes are extremely
useful for Digital to Analogue conversion as well as efficient storage and generation of lists
on computer. Usually they do not require the “first-in first-out” restriction, but such a re-
striction always implies that there is a two times cost saving for storing and generating the
lists! We call such lists Beckett-Gray codes and their power for efficient storage makes them a
potent new area of research.

Unfortunately it seems very difficult to find Beckett-Gray Codes. I have been able to
prove that for sets of 3 and 4 actors it is impossible to have each combination appear exactly
once (notice that Beckett repeats some combinations) but for sets of 5 and 6 actors such a
schedule is possible.

 ∅  0  0 1  1  1 2  1 2 0  2 0  2 0 3
0 3  3  3 1  3 1 0  3 1 0 4  1 0 4  1 0 4 2  0 4 2
4 2  2  2 3  2 3 4  3 4  3 4 1  4 1  4 1 2
4 1 2 3  1 2 3  1 2 3 0  1 2 3 0 4  2 3 0 4  3 0 4  0 4  4

FIGURE 2: A Beckett-Gray Code for a set of 5 actors.

The existence is unknown for all larger sets!
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Elementary Number Theory:
(Some Issues in) Research And Pedagogy

Rina Zazkis
Simon Fraser University

Prelude

Mrs. Times went grocery shopping (in a tax-included outlet). She bought 6 bottles of coke
for $1.75 each, 5 kg of apples for $2.40/kg and some lemons for $0.60 each. The cashier
counted the lemons and said, “$27.50 please.”

“There must be a mistake,” replied Mrs. Times.

How did she know?

The majority of people attempting to solve this problem calculate the totals for coke and
apples (10.50 and 12 respectively), subtract these amounts from 27.50, to get the amount to
be paid for lemons (5 dollars), divide this by the price of each lemon, (after my assurance
that there are no “special deals”, like buy 5 get the sixth one free), that is, divide 5 by 0.6 to
get the number of lemons, get 8.333333333... on the calculator display and agree with Mrs.
Times, understanding the convention that lemons are sold in wholes.

But Mrs. Times didn’t have a calculator and, even if the above calculation were to be
performed mentally, she had no time to engage in it. How could she know immediately that
the price was wrong? A possible approach, that provokes immediate response, is to attend
to divisibility of numbers. Considering the numbers representing the price paid in cents (in
order to avoid decimal points), the price of a coke is divisible by 3, as there are 6 bottles, the
price of apples is divisible by 3, as 240 is, and the price of the lemons is also divisible by 3 ,
as 60 is. In this case, the total, calculated as the sum of 3 numbers divisible by 3, must be
divisible by 3. But 2750 is not divisible by 3, which makes Mr. Times (and us) believe that
there must be a mistake. Similar argument can be made with respect to divisibility by 6.

The purpose of this problem is not to convince students that number theory can help
in grocery shopping, but to increase appreciation of the beauty of an argument derived by
considering some properties of numbers.

Introduction

“Mathematics is the Queen of Sciences and the Theory of Numbers is the Queen of Math-
ematics”—suggested Carl Friedrick Gauss (1777–1855). However, he continued, “The en-
chanting beauties of this sublime study are revealed in their full charm only to those who
have the courage to pursue it.”

Thinking of a queen, provokes several associations. She could be beautiful, elegant
and feminine. She could be strong, powerful and dominant. She could also be perceived as
unnecessary remains from the past, having no useful role.

Number Theory is not getting attention in school curriculum that a queen deserves.
Students spend weeks on “factoring”, but many of them do not understand the meaning of
the concept of a factor. They spend weeks dividing polynomials, but many of them do not
understand the idea of divisibility.
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When I started to teach preservice elementary school teachers, I was surprised with
their level of understanding of concepts related to introductory Number Theory. I read that
their mathematical background wasn’t strong. I read about their specific struggles with
some specific concepts, but not about concepts related to Number Theory. Today, 8 year
after I started the research, I believe I have some results and some insights. My main result
is that we still know very little. Different theoretical perspective may phrase this in different
ways, but the core doesn’t change: Students’ understanding of / learning of / conceptual
schemas (field) of / constructing objects of / web of knowledge in / ... elementary number
theory is a fascinating area of research.

Participants in my research are preservice elementary school teachers. The context is
the course “Principles of Mathematics for Teachers”, which is a core course for teaching
certification at the elementary level. I have explored students understanding of and connec-
tions among specific concepts and topics, such as factors, divisors and multiples, greatest
common divisor and least common multiple, prime decomposition and the Fundamental
Theorem of Arithmetic, divisibility and divisibility “rules”. In what follows are examples of
questions used in my research to investigate students’ understanding of specific concepts
and relations. Furthermore there are examples of tasks used in my classrooms to help stu-
dents strengthen their understanding of concepts and relations underlying elementary
Number Theory.

What do we “see” in different representations of numbers?

Consider for example the following list of numbers:

a = 2162

b = 363

c = 3 x 15552
d = 5 x 7 x 31 x 43 + 1,
e = 12 x 3000 + 12 x 888

What do we know about each one of the numbers from its representation?

Without performing any calculations, we “see” that a is a square number, b is a cube, c is
divisible by 3 as well as by 15552, d leaves a remainder of 1 in division by 5, 7, 31 and 43. We
“see” that e is divisible by 12, and if we look harder, we notice it is divisible also by 3888.

What we may not “see” is that a = b = c = d = e = 46,656. Following Mason (1998), we
say that each representation shifts our attention to different properties of the number. For
example, the property of divisibility by 3 is transparent in c, is derivable from a, b and e, but
cannot be determined from d without further calculations; the property of being a cube
number is explicit in b, but not in other representations of the number.

Research shows that students do not attend to different representations, they have a
strong tendency to calculate the number in order to make any claims about its features and
do not take advantage of what is offered by different representations. Helping students
“see” what is there to be seen is one of my instructional goals.

Divisibility and Prime Decomposition

Consider the number M, M = 33 x 52 x 7
Is M divisible by 7?
Is M divisible by 5? by 2? by 11? by 15? by 81? by 14?

This task proved rich in investigating the relationship between divisibility, division and prime
decomposition. The question was chosen to assure success, that is, correct answer, for all of
the participants. However, the chosen approach rather that the correct answer illuminated
student’s thinking about divisibility. The prime decomposition of M clearly indicates the
divisibility of M by some primes, where the divisibility (or lack of it) by other prime and
composite numbers can be derived by considering the numbers in the prime decomposition.
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However, the research showed that significant number of participants do not relate to
33 x 52 x 7 as a number. They need to calculate the value of M in order to discuss its proper-
ties, only after finding out that M = 4725 and dividing it by 7, they can conclude that M is
divisible by 7. Even students who recognize that divisibility of M by 7 is assured by the
prime decomposition, often do not take advantage of the prime decomposition when con-
sidering divisibility by other numbers. This is exemplified in the following excerpt:

Interviewer: Is M divisible by 7?
Bob: Yes, it is.
Int.: And would you explain why?
Bob: Well if 7 (pause), let’s see (laugh), M is, or let’s see, so 7 is a factor of M, therefore, it’s divisible

by M, pardon me, by 7.
Int.: And how about 5?
Bob: 5 is also a factor of M.
Int.: Okay, and would M be divisible by 2?
Bob: No, it would not, since 2 is um, (pause) since 2 is not seen here, it’s not a factor of M.
Int.: Hmm, okay, and why do you feel that that’s the case?
Bob: Um, explain this clearly (pause), since 2 is not one of the numbers that’s being multiplied, the

product therefore, can’t be divided by 2.
[...]
Int.: Okay. How about 15? Is M divisible by 15?
Bob: [pause] Um, well since there’s 5, 52 in this problem, we know that the, that the units digit will

be 5, now 15 obviously has a 5 in it as well, therefore quite possibly 15 will go into M, and once
again I’d have to solve for that.

[...]
Int.: Would you think that M is divisible by 81?
Bob: I’d want to find out what M would be, I guess that’s the, the best thing, that’s what I’d prefer.

This excerpt shows that Bob’s strategy changes when moving consideration from prime to
composite factors of M. For prime factors Bob justifies his conclusion of divisibility of M by
5 and indivisibility of M by 7 by considering whether or not those numbers are “seen” in
M’s prime decomposition. However, when the question is posed about composite numbers,
Bob prefers to “find out what M would be.” Bob clearly “sees” several factors, but he didn’t
take further advantage to manipulate what is “seen” in order to derive further conclusions.

Interviewer: OK. And will it (M) be divisible by 2?
Pat: I would multiply each one and find out what the total number is. So 3 x 3 is 9 x 3 is 27, and

this 25 is x 7, (pause) it’s not, 2 doesn’t go into it evenly.
Int.: So you computed the number and you got 4,725, and now you are sure that it is not divisible

by 2.
Pat: Right.
Int.: But you were able to conclude about divisibility by 7 before you knew what was the number

…
Pat: Um hmm.
Int.: So how is it?
Pat: Because 7 is a factor of it, so it’s, what is it, the commutative law or associative law—7 is a

factor of it …
Int.: And what about divisibility of M by 11?
Pat: I would divide 4725 by 11 to find out.

In this except Pat chooses different approaches to draw conclusions about factors and non-
factors of M. She was able to conclude that M was divisible by 7 “just by looking” at the
number’s prime decomposition. However, “looking” didn’t help Pat to derive indivisibility
of M by 2 or by 11, she had to perform a calculation to make up her mind.

Why, one may ask, are divisibility and indivisibility treated differently? The following
claims are similar in the structure of the argument:

(a) 7 is a prime factor of M, therefore M is divisible by 7;
(b) 11 is not a prime factor of M, therefore M is not divisible by 11.
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Why, if so, claim (a) is easy for students and claim (b) is difficult? The answer is, that (b)
takes into account the Fundamental Theorem of Arithmetic, this issue is addressed in the
next section.

Uniqueness of Prime Decomposition

The Fundamental Theorem of Arithmetic claims that decomposition of a composite num-
ber into its prime factors exists and is unique, except for the order in which the prime factors
appear in the product. While existence of such decomposition is intuitively taken for granted,
its uniqueness presents a challenge. This uniqueness was not recognized by Pat (see ex-
cerpts in the previous section). She clearly understood that M was divisible by all the primes
listed in its prime decomposition. However, she implicitly believed that other primes could
be listed in some other way of representing M as a product of primes.

In order to investigate further understanding of uniqueness, the following question
has been posed:

K = 16199 = 97 x 167 , where 97, 167 are both primes.
Is K divisible by 13?

The numbers were carefully chosen such that occasional consideration of last digits did not
provide a hint. Majority of participants preferred to answer this question using a calculator.
When asked whether it was possible to draw a conclusion without performing division,
with or without calculator, a common claim was that it would be “quite possible” for K to be
divisible by 13, since K ended with 9. Some students claimed that 13 was not a factor of 97 or
197 because those were prime. No one referred to prime decomposition and its uniqueness,
despite the fact that all the participants could exemplify the uniqueness of prime decompo-
sition by building different factor trees of the same “large” composite number, and ending
up with the same list of primes.

Divisibility and Parity

Is 391 divisible by 46?

Acknowledging that 391 = 23 x 17, uniqueness of prime decomposition could be an argu-
ment in this question as well. However, a parity argument—an odd number cannot be di-
visible by an even number—is a simpler one in this case. A variety of other arguments were
preferred by participants. In what follows some of these arguments are presented in order
of increasing sophistication.

Interviewer: 391, is it divisible by 46?
Armin: [pause] Um, I guess I’d just have to guess out of the blue, I would say, no, but, I mean, I

would never trust my own opinion, I always have to work it out just to see. [laugh]

Int.: Would 391 be divisible by 46?
Anita: Yes.
Int.: And why so?
Anita:  Oh, maybe not.
Int.: I’m, I’m interested in both of those things that just happened to you. I’m interested in the ‘yes’

and the ‘maybe not’.
Anita:  Well, first I said yes because I thought 46 is, well 23 is a factor, is a factor of 46, it’s 23 x 2,

um, but then again, I thought the 5 is a factor, like, for example, 5 is a factor of 25 but 10 isn’t,
and so just because it’s doubled doesn’t mean it’s a factor of, so I’m not too sure. I think I’d
have to say no.

Int.: Okay. How about 46, would 391 be divisible by 46?
Bob: [pause] No, it wouldn’t because uh in 46 the unit digit is 6, and the units digit of 391 is 1, and

6, knowing the multiples of 6, I know that there will not be a units digit of 1 after being
multiplied by 6. For example, 6 x 6 is 36, units digit and that is obviously 6.
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Pam: Because 46 ends with an even number and 391 is an odd number.
Int.: Um hmm.
Pam: And 6 is even, it won’t fit into an odd number.

Int.: Would 391 be divisible by 46?
Anabelle:  No, because it [46] was an even number, and this one [391] is an odd number.

Int.: Would you say 391 is divisible by 46?
Tanya: I guess gives me the idea that those parts are themselves going to be small.

Excerpt with Tanya suggests that the intuitive belief in “small primes”, that is, the belief
that every composite number has a small prime factor, is grounded in experience of factor-
ing numbers with small prime factors. It seems that exposure to a variety of “large” primes
(“large” here means grater than 20), made painless with the availability of a calculator, could
help in adjusting this intuitive belief.

Questions
· What instructional activities can help students in constructing meaning of concepts re-

lated to elementary number theory?
· What instructional activities can help students in making connections among these con-

cepts?
· What are the effects of students’ prior knowledge on their learning?
· What are the effects of students’ “intuitive beliefs” on their learning? What instructional

activities can help resolve the conflict between knowledge and intuition?
· Is there a link between the language students use and their understanding of the concepts

involved?

These questions have driven my research. There are still more questions than answers. The
only thing that I’m convinced of, more than ever, is that students’ learning of elementary
Number Theory is a fascinating area of research. Little work has been done in this area.
However, some seeds have been planted. I hope that the forthcoming monograph (Campbell
& Zazkis, in press) will generate further inquiry into students’ learning of concepts under-
lying Number Theory and new ideas for classroom implementation.

Partial Answer: “Look!”

Can we help students to see what is there to be seen? Sometimes just saying “look!” could
be sufficient. Many of preservice teachers believe that there should be a “procedure” or a
“formula” to address every mathematical problem, or at least every mathematical problem
posed to them. In a way, invitation to “look!” is a distraction from a search for a standard
procedure. It is an invitation to apply prior knowledge and reasoning, rather than a learned
algorithm. Further, in order for students to attend to what can be deducted from different
number representations, I suggest to focus on questions that are easily answered if one
attends to the structure, and require lots of “dirty” calculations if one does not. Several such
questions are presented above.
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Difficultés liées aux premiers apprentissages en théorie des groupes

Caroline Lajoie
Université du Québec à Montréal

Ma recherche doctorale visait à décrire et interpréter les difficultés rencontrées par des
étudiants et étudiantes universitaires alors qu’ils étudient les notions de groupe,
isomorphisme de groupes, sous-groupe et groupe cyclique. Dix étudiants et étudiantes ayant
terminé la deuxième année d’un baccalauréat de trois ans en mathématiques ont été
interviewés individuellement. Toutes ces personnes avaient suivi un cours obligatoire
d’introduction aux structures algébriques, et la moitié d’entre elles avaient suivi en plus un
cours optionnel de théorie des groupes. Les entrevues ont été analysées suivant une démarche
qui s’apparente à la méthode d’analyse par théorisation ancrée.

Préalablement aux entrevues, une analyse historique et une analyse conceptuelle ont
été réalisées en vue d’anticiper un certain nombre de difficultés. Les difficultés qui ont ainsi
pu être appréhendées étaient liées pour la plupart au formalisme inhérent à l’algèbre abstraite.

L'analyse des entrevues a permis quant à elle de mettre en lumière quatorze difficultés,
parmi lesquelles se trouvent les suivantes : difficulté à discerner les propriétés essentielles
des groupes ; à considérer des transformations géométriques comme des éléments d’un
groupe ; à donner à l’idée que des groupes isomorphes sont des groupes semblables
l’interprétation que lui donnent les experts ; à voir l’isomorphisme comme une relation
d’équivalence ; à établir une relation entre l’ordre d’un groupe et l’ordre de ses éléments ; à
accepter que certains groupes peuvent être isomorphes à certains de leurs sous-groupes ; à
accepter que des groupes infinis peuvent être cycliques.

Cette même analyse empirique a permis d’identifier quelques facteurs qui exercent
une influence importante sur la manière qu'ont les étudiants et étudiantes universitaires
d’aborder la structure de groupe, et qui permettent par le fait même de mieux comprendre
les difficultés que ces personnes rencontrent dans la manipulation des premières notions de
la théorie élémentaire des groupes. Parmi ces facteurs se trouvent le formalisme inhérent à
l’algèbre abstraite, certaines divergences entre le langage mathématique et le langage naturel,
la tendance à assimiler les nouveaux concepts à des images et exemples familiers, de même
que le dédoublement d’objets mathématiques.

Le lecteur ou la lectrice intéressé(e) par ma recherche doctorale pourra consulter ma
thèse de doctorat (Lajoie, 2000) ou encore des publications portant sur certaines des difficultés
examinées dans le cadre de cette recherche (Lajoie, 2001; Lajoie et Mura, 2000; Lajoie et
Mura, 1996a; Lajoie et Mura, 1996b).

Références

Lajoie, Caroline. (2000). Difficultés reliées à l'apprentissage des concepts élémentaires de la théorie des
groupes chez des étudiants et étudiantes universitaires. Thèse de doctorat, Université Laval, Ste-
Foy, octobre 2000.

Lajoie, Caroline. (2001). Students’ difficulties with the concepts of group, subgroup and group
isomorphism, 12e étude ICMI ; The future of the teaching and learning of algebra, Université de
Melbourne, Melbourne, Australie, 9 au 14 décembre 2001, pp. 384–391.



CMESG/GCEDM Proceedings 2001 • PhD Report

84

Lajoie, Caroline, & Mura, Roberta. (1996a). Regard sur quelques erreurs concernant l’isomorphisme
de structures algébriques. Actes du 38e congrès annuel de l’Association mathématique du Québec,
Lévis, 13 au 15 octobre 1995,  91–96.

Lajoie, Caroline, & Mura, Roberta. (1996b). Students’ difficulties with isomorphism: Some pre-
liminary results. Actes de la 20e rencontre annuelle du Groupe canadien d’étude en didactique des
mathématiques (GCEDM), Halifax, 31 mai au 4 juin 1996, 141–149.

Lajoie, Caroline et Roberta Mura. (2000). What’s in a name? A learning difficulty in connection
with cyclic groups. For the Learning of Mathematics, 20(3), pp. 29–33.



Ad hoc Sessions





Peter Liljedahl • The ‘AHA Moment’

87

The ‘AHA Moment’

Peter Liljedahl
Simon Fraser University

In that moment when the connection is made, in that synaptic spasm of completion when
the thought drives through the red fuse, is our keenest pleasure.

– Thomas Harris (2000, p. 132)

How is mathematics made? What are the necessary conditions and the mental processes
that allow mathematicians to solve new problems? As mathematicians, we know that, given
the right circumstances, the solution will come to us; there will be an illumination. The
‘AHA moment’ is both an accepted and expected part of the problem solving process. We
go through private rituals to bring it on, and then we wait patiently for it to come. Yet, we
know very little about this phenomenon.

The sharp moment of illumination is full of mysticism and wonder. Within a field
where concise definitions of terms like learning and understanding are non-existent there is
still a certainty that during the split second that it takes for the illuminated thought to come
to completion learning has taken place and understanding has been gained. To obtain insight
into the mental processes that facilitate this wondrous transformation and organization of
ideas would give us greater understanding of what it means to learn and to understand.

Motivated by a lecture given by Henri Poincaré in the early part of the 20th century,
Jacques Hadamard, a prominent French mathematician, searched for insight into the ‘AHA’
phenomenon. The results, published as The Psychology of Invention in the Mathematical Field
(1945), is an eclectic account of the various theories espoused by mathematicians in
Hadamard’s time as to what causes the ‘AHA moment’. Everything from the shape of a
person’s skull to the effect of taking two baths in a row to the more serious interpretations of
Henri Poincaré were examined. Although there exists no contemporary equivalent of
Hadamard’s work such a survey would prove to be invaluable in the search to understand
the moment of learning.

Session participants offered their own views as to the conditions necessary to invite
and, perhaps, induce an ‘AHA moment’ as well as their knowledge of existing literature on
the phenomenon.
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Multicultural Math on the Menu

Irene Percival
Simon Fraser University

The NCTM call for “numerous and varied experiences related to the cultural, historical, and
scientific evolution of mathematics” (NCTM, 1989) encouraged the publication of many
elementary level historical and multicultural math texts (e.g. Irons and Burnett, 1995; Reimer
and Reimer, 1992, 1993, 1995; Zaslavsky, 1994). As an advocate of the inclusion of such ma-
terial into elementary school classes, I presented a short play, “Multicultural Math on the
Menu”, which I had written to introduce the ‘pros and cons’ of multicultural mathematics
to elementary school teachers. I played the part of an enthusiastic teacher who spends her
lunch break proclaiming the advantages of culturally based material to her rather sceptical
colleagues, and answering their attacks upon this approach.

The issues raised in the play are those I have encountered during my research into the
use of historical and multicultural mathematics. These include such advantages as the hu-
man interest angle, the increased motivation of doing ‘different’ mathematics and alterna-
tive methods of reinforcing basic skills. A knowledge of the historical development of such
problem areas as negative numbers can also raise teachers’ awareness of difficulties that
their students may experience. My protagonists in the play point out problems of teacher
preparation, such as lack of time and resources: in my evangelical role in the play, as in real
life, I attempt to provide solutions to these issues.

After the play, an audience member commented on her positive experience of letting a
Chinese student teach his classmates to write the number ideograms of his native land. I
mentioned my own experiences in teaching Hindu mathematics to classes including stu-
dents of Indian background. As this topic was new to most of the audience, I gave a brief
explanation of the ‘deficit’ method of multiplication (Joseph, 1991), one of many techniques
found in ancient Hindu texts, and suggested a modern adaptation which allows students to
find products from 6 x 6 to 9 x 9 just by looking at their fingers.

The Egyptian method of multiplication was also discussed, and a comparison made
to modern methods, showing how the distributive property of real numbers is a common
feature of these seemingly different approaches.
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David Wheeler Memorial Session

Malgorzata Dubiel, Simon Fraser University
David Pimm, University of Alberta

More than fifty conference members assembled at 9 a.m. on Tuesday morning in the atrium
lounge of Education North for a session of remembrance for David Wheeler.

Dave Lidstone started the session with a projected image of an Inukshuk.1

Dave then offered the following words:

It was a tradition of the Inuit in our North to construct human-like statues called Inukshuk.
These served to offer direction and safety for travellers on a tree-less tundra that otherwise
offered no markers. More recently, the roads and hiking trails of our country have been
populated with Inukshuk, erected by travellers as records of their journeys. The Inukshuk
pictured above is located on the shore of English Bay in Vancouver. It was at this site that, in
early November of 2000, a small group of friends of David Wheeler scattered his ashes into
the Pacific waters.

Our choice of this site was rather spontaneous and dictated by a desire for some marker
by which we could launch David’s final material journey. However, I now find considerable



CMESG/GCEDM Proceedings 2001 • Special Session

94

comfort in the images Inukshuk offer as a testament to his life. His legacy includes many
Inukshuk, among them For the Learning of Mathematics and CMESG/GCEDM, sites that offer
direction for us on our professional journeys. The English Bay Inukshuk serves to mark his
journey among us and the proliferation of Inukshuk elsewhere serve as reminder that his
influence continues to be very widespread.

A number of different people present then offered words to us all, while others contributed
their attention and care. Some words were more prepared, others seemed more spontane-
ous; some were more formal, while others were more personal. But it was always talk of
memories and influences: reminiscences, tales and observations about the man and his work,
his passionate involvement with music, a far-ranging correspondence, an intense engage-
ment with food and people, always people.

From these words and from many others spoken in smaller gatherings or privately recalled,
a mere glimpse of the life of David emerged. Unsurprisingly, perhaps, opinions did not
always completely mesh, even about whether David himself would have approved of today’s
session.

An emailed message from Dick Tahta in England (who was unable to attend) was read out
near the end.

I have been enjoying the thought of what David would have written to me about the things
people may be saying about him at this CMESG meeting.

He would have squirmed. And be secretly pleased.

I am reminded of a time when he wrote that he preferred my having called him admirable to
an occasion when I had said that he was lovable. But I think he was also secretly pleased to
know that people found him lovable. As he was.

One Christmas, he sent me a poem about opening doors. I replied with one about crossing
bridges—written by a sixteenth-century Armenian troubadour, Nahabed Koutchag. I would
like to have this read for him today.

Even though you take the mountain roads
someday you’ll fall into my palm.
And when you fall into my hands I’ll make you confess
how you go over bridges without paying tolls.
You’ll show me the bridges you have already crossed.
You’ll take me on the one you still have to pass.

The session ended with an extract (the first Kyrie) from a recording made in 1961 of the
choruses from Bach’s B-minor Mass by the Philharmonia Chorus and Orchestra conducted
by Otto Klemperer.2 David Wheeler had been delighted to discover that this recording
had finally been issued on CD in 1999, as he had been a member of the Philharmonia
Chorus singing on these occasions. For us listening during this session, there was added
poignancy in knowing that, in some important sense, David was singing his own Requiem,
despite him having now crossed that final bridge.

Notes

1. An image of this Inukshuk can also be seen on the cover of For the Learning of Mathematics,
volume 20, number 3, which announced to readers David’s recent death.

2. As the CD notes in detail, this project was never completed. This particular CD appears in the
TESTAMENT series (SBT1138). Further information is available at: http://www.testament.co.uk.
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APPENDIX A

Working Groups at Each Annual Meeting

1977 Queen’s University, Kingston, Ontario
• Teacher education programmes
• Undergraduate mathematics programmes and prospective teachers
• Research and mathematics education
• Learning and teaching mathematics

1978 Queen’s University, Kingston, Ontario
• Mathematics courses for prospective elementary teachers
• Mathematization
• Research in mathematics education

1979 Queen’s University, Kingston, Ontario
• Ratio and proportion: a study of a mathematical concept
• Minicalculators in the mathematics classroom
• Is there a mathematical method?
• Topics suitable for mathematics courses for elementary teachers

1980 Université Laval, Québec, Québec
• The teaching of calculus and analysis
• Applications of mathematics for high school students
• Geometry in the elementary and junior high school curriculum
• The diagnosis and remediation of common mathematical errors

1981 University of Alberta, Edmonton, Alberta
• Research and the classroom
• Computer education for teachers
• Issues in the teaching of calculus
• Revitalising mathematics in teacher education courses

1982 Queen’s University, Kingston, Ontario
• The influence of computer science on undergraduate mathematics education
• Applications of research in mathematics education to teacher training programmes
• Problem solving in the curriculum

1983 University of British Columbia, Vancouver, British Columbia
• Developing statistical thinking
• Training in diagnosis and remediation of teachers
• Mathematics and language
• The influence of computer science on the mathematics curriculum
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1984 University of Waterloo, Waterloo, Ontario
• Logo and the mathematics curriculum
• The impact of research and technology on school algebra
• Epistemology and mathematics
• Visual thinking in mathematics

1985 Université Laval, Québec, Québec
• Lessons from research about students’ errors
• Logo activities for the high school
• Impact of symbolic manipulation software on the teaching of calculus

1986 Memorial University of Newfoundland, St. John’s, Newfoundland
• The role of feelings in mathematics
• The problem of rigour in mathematics teaching
• Microcomputers in teacher education
• The role of microcomputers in developing statistical thinking

1987 Queen’s University, Kingston, Ontario
• Methods courses for secondary teacher education
• The problem of formal reasoning in undergraduate programmes
• Small group work in the mathematics classroom

1988 University of Manitoba, Winnipeg, Manitoba
• Teacher education: what could it be?
• Natural learning and mathematics
• Using software for geometrical investigations
• A study of the remedial teaching of mathematics

1989 Brock University, St. Catharines, Ontario
• Using computers to investigate work with teachers
• Computers in the undergraduate mathematics curriculum
• Natural language and mathematical language
• Research strategies for pupils’ conceptions in mathematics

1990 Simon Fraser University, Vancouver, British Columbia
• Reading and writing in the mathematics classroom
• The NCTM “Standards” and Canadian reality
• Explanatory models of children’s mathematics
• Chaos and fractal geometry for high school students

1991 University of New Brunswick, Fredericton, New Brunswick
• Fractal geometry in the curriculum
• Socio-cultural aspects of mathematics
• Technology and understanding mathematics
• Constructivism: implications for teacher education in mathematics

1992 ICME–7, Université Laval, Québec, Québec

1993 York University, Toronto, Ontario
• Research in undergraduate teaching and learning of mathematics
• New ideas in assessment
• Computers in the classroom: mathematical and social implications
• Gender and mathematics
• Training pre-service teachers for creating mathematical communities in the

classroom
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1994 University of Regina, Regina, Saskatchewan
• Theories of mathematics education
• Pre-service mathematics teachers as purposeful learners: issues of enculturation
• Popularizing mathematics

1995 University of Western Ontario, London, Ontario
• Anatomy and authority in the design and conduct of learning activity
• Expanding the conversation: trying to talk about what our theories don’t talk about
• Factors affecting the transition from high school to university mathematics
• Geometric proofs and knowledge without axioms

1996 Mount Saint Vincent University, Halifax, Nova Scotia
• Teacher education: challenges, opportunities and innovations
• Formation à l’enseignement des mathématiques au secondaire: nouvelles

perspectives et défis
• What is dynamic algebra?
• The role of proof in post-secondary education

1997 Lakehead University, Thunder Bay, Ontario
• Awareness and expression of generality in teaching mathematics
• Communicating mathematics
• The crisis in school mathematics content

1998 University of British Columbia, Vancouver, British Columbia
• Assessing mathematical thinking
• From theory to observational data (and back again)
• Bringing Ethnomathematics into the classroom in a meaningful way
• Mathematical software for the undergraduate curriculum

1999 Brock University, St. Catharines, Ontario
• Information technology and mathematics education: What’s out there and how can

we use it?
• Applied mathematics in the secondary school curriculum
• Elementary mathematics
• Teaching practices and teacher education

2000 University du Québec à Montréal, Montréal, Québec
• Des cours de mathématiques pour les futurs enseignants et enseignantes du

primaire/Mathematics courses for prospective elementary teachers
• Crafting an algebraic mind: Intersections from history and the contemporary math-

ematics classroom
• Mathematics education et didactique des mathématiques : y a-t-il une raison pour

vivre des vies séparées?/Mathematics education et didactique des mathématiques:
Is there a reason for living separate lives?

• Teachers, technologies, and productive pedagogy

Appendix A • Working Groups at Each Annual Meeting
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APPENDIX B

Plenary Lectures at Each Annual Meeting

1977 A.J. COLEMAN The objectives of mathematics education
C. GAULIN Innovations in teacher education programmes
T.E. KIEREN The state of research in mathematics education

1978 G.R. RISING The mathematician’s contribution to curriculum development
A.I. WEINZWEIG The mathematician’s contribution to pedagogy

1979 J. AGASSI The Lakatosian revolution*
J.A. EASLEY Formal and informal research methods and the cultural status of

school mathematics*

1980 C. GATTEGNO Reflections on forty years of thinking about the teaching of mathe-
matics

D. HAWKINS Understanding understanding mathematics

1981 K. IVERSON Mathematics and computers
J. KILPATRICK The reasonable effectiveness of research in mathematics education*

1982 P.J. DAVIS Towards a philosophy of computation*
G. VERGNAUD Cognitive and developmental psychology and research in mathe-

matics education*

1983 S.I. BROWN The nature of problem generation and the mathematics curriculum
P.J. HILTON The nature of mathematics today and implications for mathematics

teaching*

1984 A.J. BISHOP The social construction of meaning: A significant development for
mathematics education?*

L. HENKIN Linguistic aspects of mathematics and mathematics instruction

1985 H. BAUERSFELD Contributions to a fundamental theory of mathematics learning and
teaching

H.O. POLLAK On the relation between the applications of mathematics and the
teaching of mathematics

1986 R. FINNEY Professional applications of undergraduate mathematics
A.H. SCHOENFELD Confessions of an accidental theorist*

1987 P. NESHER Formulating instructional theory: the role of students’ misconceptions*
H.S. WILF The calculator with a college education
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1988 C. KEITEL Mathematics education and technology*
L.A. STEEN All one system

1989 N. BALACHEFF Teaching mathematical proof: The relevance and complexity of a
social approach

D. SCHATTSNEIDER Geometry is alive and well

1990 U. D’AMBROSIO Values in mathematics education*
A. SIERPINSKA On understanding mathematics

1991 J .J. KAPUT Mathematics and technology: Multiple visions of multiple futures
C. LABORDE Approches théoriques et méthodologiques des recherches

Françaises en didactique des mathématiques

1992 ICME-7

1993 G.G. JOSEPH What is a square root? A study of geometrical representation in
different mathematical traditions

J  CONFREY Forging a revised theory of intellectual development: Piaget,
Vygotsky and beyond*

1994 A. SFARD Understanding = Doing + Seeing ?
K. DEVLIN Mathematics for the twenty-first century

1995 M. ARTIGUE The role of epistemological analysis in a didactic approach to the
phenomenon of mathematics learning and teaching

K. MILLETT Teaching and making certain it counts

1996 C. HOYLES Beyond the classroom: The curriculum as a key factor in students’
approaches to proof*

D. HENDERSON Alive mathematical reasoning

1997 R. BORASSI What does it really mean to teach mathematics through inquiry?
P. TAYLOR The high school math curriculum
T. KIEREN Triple embodiment: Studies of mathematical understanding-in-

inter-action in my work and in the work of CMESG/GCEDM

1998 J. MASON Structure of attention in teaching mathematics
K. HEINRICH Communicating mathematics or mathematics storytelling

1999 J. BORWEIN The impact of technology on the doing of mathematics
W. WHITELEY The decline and rise of geometry in 20th century North America
W. LANGFORD Industrial mathematics for the 21st century
J. ADLER Learning to understand mathematics teacher development and

change: Researching resource availability and use in the context of
formalised INSET in South Africa

B. BARTON An archaeology of mathematical concepts: Sifting languages for
mathematical meanings

2000 G. LABELLE Manipulating combinatorial structures
M. BARTOLINI BUSSI The theoretical dimension of mathematics: A challenge for

didacticians

NOTE

*These lectures, some in a revised form, were subsequently published in the journal For the Learning
of Mathematics.
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APPENDIX C

Proceedings of Annual Meetings

Past proceedings of CMESG/GCEDM annual meetings have been deposited in the ERIC
documentation system with call numbers as follows:

Proceedings of the 1980 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 204120

Proceedings of the 1981 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 234988

Proceedings of the 1982 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 234989

Proceedings of the 1983 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 243653

Proceedings of the 1984 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 257640

Proceedings of the 1985 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 277573

Proceedings of the 1986 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 297966

Proceedings of the 1987 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 295842

Proceedings of the 1988 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 306259

Proceedings of the 1989 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 319606

Proceedings of the 1990 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 344746

Proceedings of the 1991 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 350161

Proceedings of the 1993 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 407243

Proceedings of the 1994 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 407242

Proceedings of the 1995 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 407241

Proceedings of the 1996 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 425054

Proceedings of the 1997 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 423116

Proceedings of the 1998 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 431624

Proceedings of the 1999 Annual Meeting . . . . . . . . . . . . . . . . . .  not available

Proceedings of the 2000 Annual Meeting . . . . . . . . . . . . . . . . . .  not available

NOTES

1. There was no Annual Meeting in 1992 because Canada hosted the Seventh International
Conference on Mathematical Education that year.

2. Proceedings of the 2000 Annual Meeting and Proceedings of the 2001 Annual Meeting have been
submitted to ERIC.




