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ABOUT THIS SPECIAL ISSUE 

Peter Liljedahl 
Simon Fraser University 

The 40th anniversary of an organization is of great significance. It is the year that, for the most 
part, the people who started the organization are, unfortunately, no longer part of the 
organization. With one exception, this is true of CMESG. As such, it is an important time to 
look back at our collective history, to reflect on where he have been, and who we have become 
as an organization.  

This special issue of the CMESG/GCEDM Proceedings is such a reflection. Through a selection 
of excerpts from past proceedings we have stitched together a partial history of our time as an 
organization. This serves not only as a summary of our collective history, but also serves as an 
introduction to the activities of CMESG/GCEDM through our first 40 years.  

To be clear, the selections included in this special issue are not to be seen as the best of 
CMESG/GCEDM. The best of CMESG/GCEDM already exists in the comprehensive archives 
of all CMESG proceedings located on our website. The pieces selected for inclusion in this 
special issue stand, instead, as signposts along our history – as exemplifications of what 
CMESG/GCEDM is as an organization as well as the activities of CMESG/GCEDM at our 
annual meetings.  

The charge of selecting what was to be included in this special issue was given to a 
representative team CMESG/GCEDM members.  

Peter Liljedahl  Simon Fraser University 
Darien Allan  Collingwood School 
Olive Chapman  University of Calgary 
Frédéric Gourdeau  Université Laval 
Caroline Lajoie  Université du Québec à Montréal 
Susan Oesterle  Douglas College 
Elaine Simmt  University of Alberta 
Peter Taylor  Queen's University 

Among this group we have CMESG/GCEDM presidents, proceedings editors, mathematicians 
and mathematics educators, and academics and practitioners. The list also includes members 
who joined CMESG/GCEDM in every decade of our first 40 years, including Peter Taylor who 
was present at the first meeting and every meeting since.  

Together, we chose the selections to be included in the special issue as well as crafted 
introductions to each piece articulating the ways in which that piece exemplifies the valued 
aspects of CMESG/GCEDM.  

We hope you find enjoyment in reading again, or for the first time, the selections contained 
herein.  
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À PROPOS DE CE NUMÉRO SPÉCIAL 

Peter Liljedahl 
Simon Fraser University 

Le 40e anniversaire d’une organisation revêt toujours une grande importance. Généralement, 
plusieurs des personnes fondatrices ne font alors malheureusement plus partie de l’organisation. 
À une exception près, les membres fondateurs du GCEDM sont toujours parmi nous. En ce 
sens, le moment nous semble bien choisi pour examiner en rétrospective notre histoire 
collective, et pour réfléchir à ce que nous avons accompli et à ce que nous sommes devenus en 
tant qu’organisation. 

Ce numéro spécial des actes du CMESG/GCEDM est une telle réflexion. Il s’agit en fait d’une 
histoire partielle de notre organisation, construite à partir d’une sélection d’extraits d’actes de 
rencontres passées. Ce numéro spécial peut aussi être vu comme une introduction aux activités 
du CMESG/GCEDM réalisées au cours de nos 40 premières années d’histoire. 

Il est important de comprendre que les extraits qui ont été retenus pour ce numéro spécial ne 
doivent pas être vus comme étant le meilleur du CMESG/GCEDM. Le meilleur du 
CMESG/GCEDM existe déjà dans les archives du groupe, soit dans les actes de nos rencontres, 
tous disponibles sur notre site web.  

Les textes retenus pour ce numéro spécial doivent plutôt être considérés comme des  points 
repères de notre histoire, des exemples à la fois de ce que le CMESG/GCEDM est comme 
groupe et des activités qui caractérisent nos rencontres annuelles. 

La responsabilité d’élaborer ce numéro spécial a été donnée à une équipe représentative du 
CMESG/GCEDM. 

Peter Liljedahl  Simon Fraser University 
Darien Allan  Collingwood School 
Olive Chapman  University of Calgary 
Frédéric Gourdeau  Université Laval 
Caroline Lajoie  Université du Québec à Montréal 
Susan Oesterle  Douglas College 
Elaine Simmt  University of Alberta 
Peter Taylor  Queen's University 

Cette équipe regroupe des président(e)s du CMESG/GCEDM, des membres ayant édité les 
actes, des mathématicien(ne)s et didacticien(ne)s, des académiques et des praticien(ne)s. La 
liste inclut aussi des membres ayant joint les rangs du CMESG/GCEDM à chacune des quatre 
décennies de son histoire. En particulier, on y trouve Peter Taylor, qui était présent à la première 
rencontre ainsi qu’à toutes celles qui l’ont suivie.  

Nous avons choisi ensemble les extraits à inclure dans le numéro spécial et nous avons rédigé 
collectivement des introductions à ces extraits de manière à mettre en évidence pour chacun les 
particularités du CMESG/GCEDM qu’il exemplifie.   

Nous espérons vivement que vous aurez du plaisir à relire, ou à lire pour une première fois, nos 
sélections. 
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FOREWORD 

Peter Taylor 
Queen's University 

Fall 1977 – that was the beginning.  We didn't have an organization or a name and we weren't 
quite sure what our objective was, other than the fact that John Colman's report, commissioned 
in the early 70's by the Science Council of Canada, made it clear that important work needed to 
be done to bring mathematics – real mathematics, indeed the joy of mathematics – into the lives 
of our children and our citizens.  Coleman and David Wheeler, who deserve to be called the 
prime movers of CMESG, decided to convene a national meeting of mathematicians and math 
educators to come together and talk about next moves, and they recruited the young Bill 
Higginson to help them organized this event in the Fall of 1977.  By the following year, 1978, 
the christening of CMESG/GCEDM had occurred and a few years later, the locus of the annual 
meeting of this national body left Kingston and began to move around Canada.   

From that point on, the rest of those 40 years went by in a whistle.  CMESG grew in size and 
flowered in a way that made it stand out from most of the other fine organizations and meetings 
all over the world that devote all or some of their energies to mathematics education.  I base 
this assertion on the comments of the many members and visitors from other places who are 
most often impressed and delighted by what they find in their few days with us.  I feel that there 
are a number of factors behind this.   

The first is our size.  We are much bigger than we were at the beginning but not nearly as big 
as almost all the other national and international math education conferences.  Thus we have 
that rare Goldilocks size.  Secondly I point to the flowering, and there are two aspects, what we 
do and who does it.  For the "what," our working groups, our ad hocs, our new PhD talks all 
have the sense of new beginnings.  And for the "who," the most striking feature for me is the 
growth of our graduate student numbers; at our annual meeting they radiate optimism and awe 
- awe that they have found a space where such important issues are talked about in such a caring 
way.  And before you know it they are playing prominent roles in shaping the organization.   

Finally, everything we do, we do together, and it is our size and composition which allows this 
to work so well.  We eat together, in a cafeteria or a pub or late at night in a pizza joint, we go 
on trips together and we never know who will be sitting beside or in front of us.  We have two 
languages and we work hard to make them both work.  And we have two disciplines, 
mathematics and mathematics education, and we work hard to learn about them from one 
another and to extend their dimensions.   

On this 40th anniversary, as we come back to Queen's, it is miraculous to me to see what we 
have become.  Coleman and Wheeler would be as proud of us as we are of them.   
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PRÉFACE 

Peter Taylor 
Queen's University 

Automne 1977 : c'est alors que tout a commencé. Nous n'avions ni organisation, ni nom, et nous 
n'étions pas certains de nos objectifs, si ce n'est que le rapport de John Coleman, réalisé à la 
demande du Conseil des Sciences du Canada au début des années 70, nous indiquait clairement 
qu'il fallait amener les mathématiques – de vraies mathématiques, et même le plaisir d'en faire 
– dans la vie de nos concitoyens, de nos enfants. Coleman et David Wheeler, les véritables 
initiateurs du GCEDM, avaient décidé de tenir une rencontre nationale de mathématiciens et 
d'éducateurs mathématiques afin de discuter des suites à donner au rapport, et ils avaient recruté 
le jeune Bill Higginson afin de les aider à organiser cette rencontre à l'automne 1977. L'année 
suivante, 1978, le groupe s'était donné un nom et, quelques années plus tard, la rencontre 
annuelle quittait Kingston pour se tenir en différents endroits au Canada. 

Les quarante années suivantes ont filé à vive allure. Le GCEDM a grandi tout en s'épanouissant, 
et se distingue sur la scène internationale parmi les excellentes organisations se préoccupant 
d'éducation mathématique. Je fais cette affirmation en me basant sur les commentaires de 
nombreux membres et de visiteurs d'outre frontières qui sont souvent impressionnés et charmés 
par ce qu'ils découvrent en quelques jours avec nous. Je pense que plusieurs facteurs expliquent 
ce succès.  

En premier lieu, la taille du groupe. Nous avons grandi mais nous demeurons plus petits que la 
plupart des autres conférences nationales et internationales en éducation mathématique. En ce 
sens, comme Boucle d'Or, nous avons la bonne taille, ce qui est rare. Puis, en revenant à notre 
épanouissement, il y a deux aspects importants: ce que nous faisons, et ceux qui le font. Qu'il 
s'agisse de nos groupes de travail, de nos séances ad hoc ou des présentations des nouveaux 
doctorants, ce que nous faisons a toujours un aspect de nouveauté, l'élan d'un nouveau départ. 
Quant à ceux qui le font, je suis frappé par l'augmentation du nombre d'étudiants des 2e et 3e 
cycles à nos rencontres; à nos rencontres annuelles, ils apportent optimisme et émerveillement 
– un émerveillement d'avoir trouvé un lieu d'échange dans lequel des sujets si importants sont 
abordés avec autant de respect. Et rapidement, ils jouent à leur tour un rôle important dans 
l'évolution de l'organisation.  

Finalement, tout ce qu'on fait, on le fait ensemble, et c'est notre taille et la composition de notre 
groupe qui permet que cela fonctionne si bien. Nous mangeons ensemble, dans une cafétéria, 
un pub, ou tard le soir devant une pizza, ne sachant jamais à côté ou en face de qui on sera. On 
a deux langues, et on travaille fort pour que ça fonctionne dans les deux langues. On a deux 
disciplines académiques, les mathématiques et la didactique des mathématiques, et on travaille 
fort pour en apprendre sur l'une et sur l'autre, en enrichissant l'une et l'autre.  

En ce 40e anniversaire, alors que nous sommes de retour à Queen's, je trouve miraculeux de 
voir ce que nous sommes devenus. Coleman et Wheeler seraient aussi fiers de nous que nous le 
sommes d'eux.    
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PREFACE TO THE 1977 PROCEEDINGS  

PRÉFACE AUX ACTES DE 1977 

The decision to organize a conference to discuss the universities' responsibilities in the 
preparation of mathematics teachers sprang from two related desires. One was to achieve some 
discussion of the issues concerning mathematics education raised in Mathematical Sciences in 
Canada1; the other was to bring together a group of mathematicians and mathematics educators 
across Canada to explore the possibility of improving inter-provincial contact and 
communication. 

Although many of the people consulted in the preparation of the Back Ground Study had a great 
deal to say about mathematics education in Canada, and particularly about its shortcomings, 
this aspect of the report itself has received very little public discussion. One of the contributory 
reasons may be the lack of a national organization with any responsibility to consider and speak 
about mathematics education in Canada. Although there are a number of provincial associations 
of mathematics teachers, the only professional organization with a national membership is the 
National Council of Teachers of Mathematics, and this is understandably more concerned to 
speak for mathematics education in the United States where the bulk of its membership resides. 

A small conference seemed more likely to achieve the initial contact and communication that 
we wanted, so we decided to restrict the conference membership to university mathematicians 
and mathematics educators. The subject of teacher preparation immediately suggested itself as 
the appropriate part of mathematics education to focus on. We drew up a programme and an 
invitation list for a meeting at Queen's University, Kingston, from August 31st to September 3rd, 
1977. The Science Council of Canada generously agreed to sponsor the conference and meet 
the expense. 

The report that follows covers most of what can be reported of the conference proceedings, and 
it is published as a contribution to the national discussion of mathematics education in Canada. 
The conference was short, the participants had to get to know each other, and many of the 
discussions that took place did not lend themselves to being written-up in detail, so the final 
report should be seen as an indication of the issues that were discussed, not a definitive 
statement on them.  

We were cheered beforehand by the ready acceptance by most of the people who were invited, 
and by their assurances afterwards that the conference had been worthwhile. Seen as a first step 
in the direction of more professional contact and more public discussion, we think the Kingston 
conference has a future. 

We are indebted to the Science Council of Canada for financial assistance, to conference 
participants for their enthusiastic response, particularly to Speakers and Working Group 
Chairmen and reporters, and to Noreen Mills, Torn Racey, Patricia Whitaker and Eileen Wight 
for their unstinting, high quality technical support. 

A. J. Coleman 
W. C. Higginson 
D. H. Wheeler 

                                                 
1 K.P. Beltzner, A. J. Coleman, and G. D. Edwards, Mathematical Sciences in Canada, Background Study 
No. 37. Ottawa, Ontario: Science Council of Canada, July, 1976. 
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THE ORIGINS AND ACTIVITIES OF CMESG 

David Wheeler 
Concordia University 

This history was original written for the monograph Current Research on the Teaching and Learning 
of Mathematics in Canada — Les Recherches en Cours sur l'Apprentissage et l'Enseignement des 
Mathématiques au Canada edited by Carolyn Kieran and A. J. (Sandy) Dawson and published for 
ICME-7 in 1992. 

À l'origine, ce texte a été écrit en guise d'introduction à la monographie Current Research on the 
Teaching and Learning of Mathematics in Canada — Les recherches en cours sur l'apprentissage et 
l'enseignement des mathématiques au Canada, éditée par Carolyn Kieran et A. J. (Sandy) Dawson et 
publiée pour ICME-7 (Université Laval) en 1992. 

 

INTRODUCTION 
The Science Council of Canada sponsored a mathematics education conference at Queen's 
University, Kingston, Ontario, in September 1977. Thirty mathematicians and mathematics 
educators from across Canada accepted an invitation to join the three organisers of the 
conference (Professors A. J. Coleman and W. C. Higginson of Queen's University, and D. H. 
Wheeler of Concordia University, Montréal) in discussing the general theme: "Educating 
teachers of mathematics: the universities' responsibility." The encounter generated a demand 
from many of the participants for further opportunities to meet and talk. The Science Council 
supported a second invitational meeting in June 1978 at which the decision was taken to 
establish a continuing group, to be called the CANADIAN MATHEMATICS EDUCATION 
STUDY GROUP / GROUPE CANADIEN D'ÉTUDE EN DIDACTIQUE DES 
MATHÉMATIQUES (CMESG/GCEDM – sometimes referred to as the Study Group). The 
fifteenth annual meeting of CMESG/GCEDM was held at the University of New Brunswick in 
Fredericton in May 1991. 

The history of this professional group is very short but it seems worth presenting here, partly to 
give some context to the accounts of research that follow, but also because the special character 
of CMESG/GCEDM may be found to have some instructive features. 

BEGINNINGS 
The introduction to the programme for the 1977 meeting reads: 

The Conference has been convened as part of the follow-up to the Council's 
Background Study No. 37 (Mathematical Sciences in Canada) [1] to consider the 
place and responsibility of Canadian universities in the education of teachers of 
mathematics. The participants are university mathematics educators and 
mathematicians, but the organisers do not intend to imply that only universities are 
or should be concerned in the education of teachers. Universities have traditionally 
played a principal role, however, and will certainly continue to be involved in teacher 
education for the foreseeable future even though the forms of their involvement may 
change. The Conference is an opportunity to make a contribution, related to one 
particular aspect and from one particular point of view, to the public discussion of 
mathematics education in Canada. The Conference has no official status and is in no 
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sense a policy-forming or advisory body. It is not the intention of the Conference to 
seek consensus or to make recommendations to anyone. 

One purpose of the Conference is served by the mere fact of bringing participants 
together and the consequent pooling of ideas and information by those who have 
overlapping interests but seldom meet. It is meant to have other, tougher, purposes 
too. At a level above that of information-sharing there are questions to be formulated, 
problems to be isolated and tendencies identified, maybe even achievements to be 
acknowledged; in other words, an attempt to get a grasp on the present situation and 
an orientation on the future. At a still higher level belongs the task of studying together 
how the questions may be answered and the problems resolved. Independent of this 
hierarchy is the job of communicating something of value to other professionals and 
to the public. How much of this can be achieved in such a short time remains to be 
seen. At least a start can be made. 

The faintly apologetic tone of all this is characteristically Canadian, but the sense it conveys 
that the organisers were stepping warily is quite genuine. One good reason was that the 
Background Study referred to had been badly received by the mathematical community, at least 
as represented by the Canadian Mathematical Congress (later to rename itself the Canadian 
Mathematical Society), which did not enjoy the many explicit and implicit criticisms made by 
the writers of the Study. A reviewer of Mathematical Sciences in Canada summarised its 
general argument in the following terms: 

Mathematics plays a commanding role in modern technological societies, yet many 
professional mathematicians have little interest in its applications, and government 
and business are often unsure how best to use the mathematicians they employ. 
Mathematics is taught to Canadians in one of the most generous and accessible 
educational systems in the world; yet only a minority of students gain much 
competence in it, and only a minority of those more than a routine grasp. 
Mathematical research is published in daunting quantities; yet most papers do no 
more than dot i's and cross t's well inside the frontiers. The output of Canadian PhD's 
in mathematics has increased tenfold in the last fifteen years; yet a large majority of 
them still expect to remain in academia and do little but produce more of their kind. 
Mathematical Sciences in Canada elaborates on a situation that might once have been 
described as productive redundancy, but which in these less easy-going times seems 
more like capricious and conspicuous waste. [2] 

Another reason for the organisers' caution can be found in the statutory division of 
responsibilities for education in Canada between the federal and provincial authorities. The 
provinces have total authority for the organisation and governance of primary and secondary 
education. To obtain federal support for the 1977 conference, which was necessary if 
participants were to be drawn from all parts of Canada, the organisers had to make sure that the 
objectives did not infringe on the application of provincial powers. Direct examination of the 
school curriculum, for example, had to be carefully avoided, and the conference had to refrain 
from making recommendations that might appear as an attempt to interfere with provincial 
rights. 

The programme of the 1977 conference included three keynote lectures: 

• The state of research in mathematics education (T. E. Kieren) 
• Innovations in teacher education programmes (C. Gaulin) 
• The objectives of mathematics education (A. J. Coleman) 
• and four working groups: 
• Teacher education programmes 
• Undergraduate mathematics programmes and prospective teachers 
• Research in mathematics education 
• Learning and teaching mathematics. 
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The organisers felt that it was important for the meeting to give a substantial amount of attention 
to mathematics education research. Without this component it would be only too easy for the 
discussions in the meeting and the conclusions that might emerge to do no more than recycle 
familiar folklore about the shortcomings of mathematics teaching in Canada. 

Conference proceedings were published by the Science Council [3]. One of the organisers, 
penning some "Reflections after the Conference," which are included in the Proceedings, began 
by quoting from the Background Study: 

 It no longer seems possible for any component of the mathematical ecosystem to 
function effectively in isolation. Awareness and communication seem to be the key 
issues. [1, p. 86] 

and continued: 

They were the underlying themes of the Conference too. Bringing university 
mathematicians and mathematics educators together involved an interaction between 
two groups which tend to be somewhat suspicious of each other. The assumption by 
the universities of the responsibility for training teachers has not led, in general, to 
greater mutual understanding or cooperation by those who teach university 
mathematics and those who teach would-be teachers of mathematics. Both groups 
have other interests and responsibilities and it may be that the lack of common ground 
in these other areas contributes to the suspicion. But it also extends into that part of 
their work where they might be expected to find a shared cause — the preparation of 
specialist mathematics teachers. University mathematicians look at education courses 
and see an apparent lack of structure and rigour together with a plenitude of non-
refutable theories; university mathematics educators look at the students emerging 
from undergraduate mathematics programmes and see the apparently deadening 
effects of a training dominated by structure and rigour. Both sides, when apart, tend 
to stereotype each other. [3, p. 56] 

The generally favourable response to the 1977 meeting led Coleman, Higginson, and Wheeler 
to propose a continuation. Their first plan was to work toward meetings in 1978 and 1979 which 
would culminate in the production of documents; these might form the basis for a Canadian 
contribution to the Fourth International Congress on Mathematical Education (ICME-4) to be 
held in Berkeley USA in August 1980. This focus on the production of documents led them to 
suggest meetings covering five working days, which would allow for some writing to take place 
during the meetings. But the overwhelming response was a rejection of five days as impossibly 
long and, in the event, the 1978 meeting set a pattern which has become the standard for all 
subsequent meetings: three full working days sandwiched between arrival and departure half-
days. 

The programme for the 1978 meeting included two lectures: 

• The mathematician's contribution to curriculum development (G. R. Rising) 
• The mathematician's contribution to pedagogy (A. I. Weinzweig) 

and three working groups: 

• Mathematics courses for prospective elementary school teachers 
• Mathematization 
• Research in mathematics education. 

The working groups were scheduled simultaneously for a total of 18 hours. Although this 
proved to be too much time — it took so large a chunk of the time available that it squeezed out 
other activities, such as up-dating the work done at the previous meeting — it symbolised the 
considerable significance that the organisers gave to this activity: the working groups were 
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always intended to be the core activity of the meetings. From the 1979 meeting onward, 
working groups have met for nine hours, but they have retained their centrality, in many ways 
setting the tone of the meetings and distinguishing them from most other scholarly conferences 
in Canada. (A list of the working groups for the first fifteen meetings is given in Appendix 1.) 
Less distinctive, perhaps, has been the effect of putting the keynote lectures in the hands of 
"guest" speakers, usually non-Canadians. The intention here was to enrich the input to the 
meetings by inviting speakers who would bring fresh perspectives to the discussion of 
mathematics education. The guest speakers over the years make a diverse and distinguished 
bunch, as the list in Appendix 2 shows. 

Unfortunately, the ambition to produce significant discussion documents for ICME-4 was not 
realised. The published evidence of the Study Group's activities is largely confined to the 
proceedings of its annual get-togethers, and even these do not always manage to convey a good 
idea of the real transactions of the meetings. (Appendix 3 lists the ERIC numbers of available 
CMESG/GCEDM proceedings.) 

At the close of the 1978 meeting the participants voted to give CMESG/GCEDM a continuing 
existence and an acting executive committee. A formal constitution was approved at the 1979 
meeting and the first elections under the terms of the constitution took place in 1980. Although 
a few changes in the organisational structure have occurred, and although the annual 
programmes have evolved to some extent, the main characteristics of the Study Group were 
settled in the first few years. 

CHARACTERISTICS 
Canada's size, location, and federal structure pose special problems for any organisation aiming 
at nationwide status. Travel distances and costs for regular face-to-face meetings are simply 
enormous. Whatever purpose a Canadian group might espouse, there is almost certainly a group 
in the USA with a similar purpose whose meetings are as easy (or difficult) to get to. The 
province-based organisation of primary and secondary education tends to lock up some of the 
money that would otherwise be available to support attendance at meetings. Given a different 
context, the original animators would have tried to establish a national group open to educators 
in all parts of the system: elementary school teachers, school administrators, university 
professors of mathematics, and so on. But it never seemed realistic in the Canadian setting to 
attempt to cast such a wide net. 

Furthermore, the first meeting of what was to become CMESG/GCEDM chiefly involved 
university mathematicians and university mathematics educators. These populations seemed 
the most appropriate to target for a number of reasons. The meetings could then be kept small 
enough to facilitate the kind of personal interactions the organisers wanted to promote; they 
could focus on some of the scholarly questions in the field; and they could help to bridge the 
professional and ideological gaps between mathematicians and teacher educators and 
researchers. So with some regret the decision was made to develop a programme to attract 
university teachers in departments and faculties of education and in departments of 
mathematics. The trade-off under this restriction would be, it was hoped, a greater involvement 
of university professors of mathematics. CMESG/GCEDM can report some success in 
attracting to its ranks a number of Canadian mathematics professors (to the extent of 
approximately a third of the active membership). A higher rate of participation, even if 
desirable, is not likely given the fact that a serious involvement in education is, for university 
mathematicians, an additional demand on their time and energy, a commitment rarely 
recognised or rewarded by their departmental colleagues. In any case, the regular interaction 
and cooperation of professors from education and mathematics departments within the Study 
Group remain a significant and treasurable feature. 
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From the beginning, as can be seen from the lists of working groups and lectures in Appendices 
1 and 2, the two main interests of CMESG/GCEDM have been teacher education and 
mathematics education research, with subsidiary interests in the teaching of mathematics at the 
undergraduate level and in what might be called the psycho-philosophical facets of mathematics 
education (mathematization, imagery, the connection between mathematics and language, for 
instance). There are obvious overlaps with the interests of other Canadian groups. An early 
decision was made to resist integration with the Education Committee of the Canadian 
Mathematical Congress (later "Society") even though a group bringing together university 
mathematicians and mathematics educators might seem to have fitted well there. The original 
animators felt it was important for CMESG/GCEDM to establish an identity and a professional 
credibility before getting too closely involved with CMC (CMS), whose Executive Committee, 
in the 1970s at least, was not noticeably interested in, informed about, or sympathetic to, 
mathematics education. Subsequently CMESG/GCEDM developed good relations with a 
revitalised CMS Education Committee and in 1985, 86, and 87, the Study Group met in the 
same locations as the CMS so that a few of its sessions could be co-sponsored by the two 
organisations. In 1990 CMESG/GCEDM co-sponsored a day's activities with the Canadian 
Society for the History and Philosophy of Mathematics (CSHPM). 

Many scholarly and academic associations in Canada hold their annual meetings on the same 
site during the same period, at an event called the Learned Societies Conference. Some of the 
people who would have liked to be involved in CMESG/GCEDM were accustomed to attend 
meetings of the Canadian Society for the Study of Education (CSSE), which always participated 
in the "Learneds," and it was natural for them to suggest that CMESG/GCEDM should hold its 
meetings there too. Again the initial organising group resisted a move toward immediate 
integration, though for a different reason. It seemed to them that if CMESG/GCEDM was to 
develop a distinctive character, and particularly if it was to develop a genuine working 
atmosphere, it needed to be able to persuade people to commit themselves entirely to the Study 
Group for the whole of a meeting. Setting the meeting in a situation where n fascinating lectures 
were always on offer in adjacent buildings would make that dedication difficult if not 
impossible to realise. So, to the annoyance of a few, CMESG/GCEDM did not join the 
collection of societies in the "Learneds." (It must be noted here, with considerable gratitude, 
that the Social Sciences and Humanities Research Council of Canada, which gives a block grant 
to the "Learneds," has never used its muscle to insist that CMESG/GCEDM belong in order to 
qualify for financial help.) 

Attendance at CMESG/GCEDM meetings has varied between 30 and 70, with most in the 50-
60 range. This is a good size for the kind of meetings the Group organises: small enough to give 
a feeling of community while large enough to ensure a mix of interest and experience. Two-
thirds of this number are usually regulars who attend most of the meetings. Membership is 
predominantly but not exclusively Canadian. The Group benefits a lot from the presence of a 
few non-Canadians, though it is watchful that the proportion does not grow too large. 

INNOVATIONS 
The emphasis on spending a substantial amount of time at meetings in working groups has 
already been mentioned. The "philosophy" behind this is more than an acknowledgment that 
"two heads are better than one," or that multiple perspectives on important issues are potentially 
more illuminating than unitary ones. It goes further and says that it is possible for people to 
work collaboratively at a conference on a common theme and generate something fresh out of 
the knowledge and experience that each participant brings to it. This is not easy to achieve, it 
must be said, perhaps because people are not used to working this way and have not yet learned 
the techniques. Newcomers sometimes feel that the first 3-hour session allotted to a working 
group is "wasted" because the group has come together without a common view on the topic, 
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so everyone has to sit through the expression of a lot of different opinions before the group can 
actually "start." Ways have been proposed to overcome this problem: giving each member of 
the group papers to read before the meeting, making a clear presentation of the group's 
programme before members have chosen which group to attend, and so on. But of course the 
ideal picture of a working group, in which everyone wants to work in exactly the same way on 
exactly the same questions, is a fiction. The task of the group leaders (there are usually two) is 
to capitalise on the diversity of expectation and experience within the group while fostering the 
pursuit of those emergent sub-themes which appear to be going somewhere. It is not surprising 
that this activity does not always lead to the sort of outcomes that can be immediately written 
down and polished into a conventional scholarly paper. A well-run working group handles 
complexity very effectively, but effective ways of recording its achievements are difficult to 
develop. 

The emphasis on working groups influences other aspects of the CMESG/GCEDM meetings. 
People are not divided disjointly into a set of those who present and a set of those who sit and 
listen. There are presentations of a quite conventional kind, but in the context of the meeting 
they also become subjects for discussion. An innovation which symbolises this is the 
"discussion hour" scheduled on the day following a plenary address at which the members 
discuss the talk with the speaker. 

CMESG/GCEDM programmes always have at least one slot in the timetable for "ad hoc 
groups." Any person may volunteer to make a presentation or lead a discussion, and these items 
are added to the programme (subject to the availability of time and facilities). 

The intention of these various opportunities is to encourage members to take an active part in 
the meetings. The policy would be ineffective if it did not deliver, and if it were not situated in 
a relatively relaxed and accepting atmosphere. As in school, people would soon stop making 
contributions if these kept getting shot down in flames. A CMESG/GCEDM meeting is free of 
the point-making and competitiveness that are features of many academic gatherings. People 
listen to other people, with respect if not necessarily agreement. 

IMPACTS 
With fifteen annual meetings to its credit, and a core of active members, CMESG/GCEDM now 
certainly exists. Although the first group of enthusiasts in 1978 may have hoped for more, they 
probably expected less: the Canadian environment for innovation is notoriously harsh. The 
Study Group hasn't produced the discussion documents, or made the public and political 
pronouncements, or developed the regional and local networks, or achieved any of the partial 
agendas that people have at times proposed for it. But it exists. And it holds annual meetings. 
And these are, to judge from the comments of regulars and of newcomers, appreciably different 
from, and more involving than, other meetings that the same people go to. In an important sense 
CMESG/GCEDM is its annual meetings since these are where what is characteristic of 
CMESG/GCEDM actually takes place — its study-in-cooperative-action. (For Plato, 
philosophy was to be found at its best in the serious talk of friends rather than in the story of it 
that someone might write up afterwards.) 

CMESG/GCEDM now exists in Canada alongside the CMS Education Committee, whose 
natural interest inclines more to the teaching of mathematics at the tertiary level. Both are small, 
national groups catering mainly to university teachers. Each province in Canada has its own 
separate association of teachers of mathematics (Québec has four: three francophone, one 
Anglophone). Two provinces, Ontario and Québec, have associations of mathematics advisers 
(alternatively called "coordinators" or "consultants"). Many high school teachers and advisers 
belong to the National Council of Teachers of Mathematics (NCTM) and attend its annual 
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meetings. The NCTM claims coverage of Canada, indeed, and always has a Canadian on its 
Board of Governors, but rarely interests itself in particularly Canadian issues. Many Canadian 
mathematics educators belong to the American Educational Research Association (AERA) or 
its subgroup SIG/RME (Special Interest Group for Research in Mathematics Education), just 
as many university and college professors of mathematics belong to the American Mathematical 
Society or the Mathematical Association of America. (And it is likely that a majority of school, 
college, and university teachers of mathematics are not active in any of the above.) This is a 
uniquely fragmented situation. There is no body in Canada able to deal with the whole of 
mathematics education at all levels, no national voice speaking about mathematics education to 
governments and the public — though perhaps this matters little in a country which has no 
national educational policy. 

When it comes to impact and influence, though, who can be sure what Canadians lose by not 
having a powerful voice speaking on behalf of mathematics education? The USA and France, 
for example, both have very powerful professional organisations able to talk to governments, 
but it is by no means certain that their influence is always good, judged from the viewpoint of 
the "consumers" of mathematics education in the schools. (National medical associations, to 
consider a possible parallel, do not always seem to be arguing or advancing the cause of the 
sick.) CMESG/GCEDM lacks a powerful voice, but it has influenced, perhaps changed, a 
number of individuals. 

The Study Group takes as its essential position that the teaching of mathematics and all the 
human activities that are connected to it can, and should, be studied, whether the study has the 
form of an individual's reflections, the reasoned argument of professional colleagues, or the 
more formal questioning of empirical or scholarly research. By putting this emphasis 
CMESG/GCEDM has signalled to Canadian mathematics educators the importance of 
scholarship and research in a field that often seems dominated by folklore. The Study Group 
has provided a forum where research plans can be discussed and an encouraging atmosphere 
where novice researchers can find out how to begin. Mathematics teaching may go back to "the 
dawn of history," as the journalist might say, but mathematics education as a field of study is 
only a few decades old. It has no traditions of research and scholarship: these are only now 
being developed. 

In brief, through its activities CMESG/GCEDM has given some mathematics educators a taste 
for research and shown them how to get started. It has shown them that their puzzlement about 
some aspects of mathematics is shared by many mathematicians. It has shown some 
mathematicians that learning can be studied and that teaching might be made into something 
more than flying by the seat of the pants. A sufficient number of such small victories could 
launch a revolution. 

JOBS TO DO 
As suggested above, CMESG/GCEDM has already played a strengthening and encouraging 
role in the Canadian effort on research in mathematics education and it seems clear that it should 
continue and perhaps extend its work in this direction. There is a long way to go, as is generally 
acknowledged, before mathematics education research becomes a resource that everyone in the 
teaching business will be glad to be able to draw on, but nothing less should be demanded of it. 
Understandably most teachers find that most research to date is immature: it fails to convince 
because it cannot yet match the complexity of a good teacher's professional insights. 
Nevertheless it is extremely important that the work go on. Research takes a significant stand 
against an extraordinarily widespread but destructive belief: that the teaching of mathematics 
is essentially unproblematic. That this might not be so was perhaps first signalled by Poincaré 
when he asked why some people never manage to acquire mathematical knowledge. Research, 
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of course, in common with other theoretical positions, can as readily be used to "explain away" 
as to explain; nevertheless its insistence on inspection, reflection, and trial, is an important 
corrective to the naive view that teaching and learning are transparent activities. 

On a less broad front, CMESG/GCEDM still needs to work on improving the amount and 
quality of the interaction between mathematicians and mathematics educators. There is a job to 
be done while there are still mathematics educators involved in teacher education and research 
who have only a tenuous acquaintance with genuine mathematical activity, and while there are 
still mathematicians who think that all questions belonging to the field of mathematics 
education are intrinsically trivial. University mathematicians as a class are not noticeably 
modest. It is probably not too much of a caricature to say that in general they seem happy to 
admit–grace à Descartes–the god-like character of their main activity. They are not in general 
reluctant to take advantage of the universities' traditional favouring of academic over 
professional knowledge. Moreover, mathematicians have been deemed successful in what is 
recognised by everybody as a difficult intellectual discipline. Given all these advantages, they 
sometimes fail to recognise that the skills and sensitivities that have served them well in 
working on mathematics are not necessarily the ones that can meet the challenges presented by 
mathematics education. 

There is a need in Canada to make public a more accurate picture of mathematics education, 
one which admits that its development has only just started, but which also shows that its 
heuristic is effective and its arguments capable of being made, within reason, rigorous and 
disciplined. If some real substance can be put into such an account, a greater respect for 
mathematics education must follow. CMESG/GCEDM is in a good position to work with 
mathematicians on improving the image of mathematics education as a field of study. 

These are long-term goals — ideals, perhaps — which could point CMESG/GCEDM in a 
certain direction but do not spell out in detail how it might reach them. Probably the future of 
CMESG/GCEDM, in any case, will be shaped by a combination of internal and external forces 
most of which cannot now be predicted. 
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MATHEMATICS EDUCATION RESEARCH IN CANADA: A 
PROSPECTIVE VIEW 

Tom Kieren 
University of Alberta 

Quite apart from the fact that these three talks gave us a sense of why we started, what we felt were the 
issues of the time, and what we hoped for, they remain, for the reader of today, absorbing and timely.  
All three speakers were leaders in their areas at that time and continued as key participants in CMESG 
activities for decades afterwards. Together they examined the big three aspects of our work, 
mathematics education research (Kieren), teacher education (Gaulin) and mathematics education 
(Coleman), and over the following 40 years, these three areas danced forward and intertwined along 
many rich axes.  

Non seulement ces trois conférences nous avaient permis de donner un sens à notre action initiale et 
de décrire ce que nous percevions comme les principaux défis à cette époque ainsi que  ce que nous 
espérions pour l’avenir, elles demeurent, encore aujourd’hui, captivantes et pertinentes. Les trois 
conférenciers étaient des experts de leurs domaines, et ils ont continué à jouer un rôle clé au GCEDM 
pendant des décennies. Ensemble, ils ont exploré les trois pôles de notre travail, soit la recherche en 
didactique des mathématiques (Kieren), la formation des enseignants (Gaulin) et l’éducation 
mathématique (Coleman), et, depuis 40 ans, ces domaines ont pu poursuivre leur développement, se 
liant de multiples manières dans des interactions riches.   

INTRODUCTION  

WHAT IS OUR VENUE?  

Mathematics education research, like much of educational research, has not been given an 
entirely charitable construction in the past. Its value has been questioned, and even when it 
contained solid advice regarding theory as well as practice, this advice was ignored in favour 
of the fad of the moment or the comfort of old ways in the face of the problems of the day.  

Still, the document Mathematical Sciences in Canada cites a general dissatisfaction with 
mathematics programmes and instruction in the schools and universities and other tertiary 
institutions as well. There is a strong call for improvement of programmes and practices. What 
might be the bases of this improvement? At least some of the input for these bases should come 
from sound educational research.  

Mathematics education research makes use of mathematical ideas, but certainly differs from 
research in pure mathematics both in method and content. The issues of concern for a 
mathematics educator - for example, "How does a learner build up the idea of function?" - may 
be of little interest to the mathematics research community (although it could be argued that 
real insight into mathematics per se comes from studying its learning). Similarly, psychological 
researchers, although sometimes using mathematical settings, are not generally interested in the 
mathematical development of an individual or the psychological aspects of mathematics 
acquisition or use. Thus, the researcher in mathematics education has a unique sphere of 
interest: the development of mathematical constructs in persons, the mechanisms used in this 
development, and the conditions necessary for this development.  
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NECESSITY FOR CONNECTEDNESS  

The unique sphere described above is not one with closed or smooth boundaries. Because the 
problems of studying mathematical constructs and their growth and development is complex, 
this research must be internally and externally connected. These external connections might be 
with mathematical or psychological research. But it is as likely that they will be with a broader 
spectrum involving other areas of endeavour, such as research on learning of science or the 
development of higher level constructs, or general research on teaching. The complexity of 
problems facing the mathematics education researcher suggests that single isolated studies will 
yield very limited results, hence internal connectedness and cooperative efforts are needed. 
Perhaps the critical comments referred to above stem from the lack of such connectedness in 
much previous mathematics education research.  

OVERVIEW  

It is the purpose of this paper to develop a picture of the potential for mathematics education 
research in Canada. Although the next section of the paper attempts to give snapshots of past 
and current mathematics education research, the thrust of the paper will be prospective and not 
retrospective. To give a framework to a general research scheme, Section 3 will deal in some 
detail with the notion of a "construct" and the ways in which constructs grow and are developed 
by human learners. Suggestions for major types of research efforts as well as suggestions for 
mechanisms for fostering such research in a Canadian context are found in Section 4.  

THE STATUS OF MATHEMATICS EDUCATION RESEARCH  

COGNITIVIST VS. BEHAVIOURIST  

Over the past fifteen to twenty years, research in mathematics education has been influenced 
by one of the two sides in a more general conflict in educational thinking. One side, the 
behaviourists, have sought immutable cause-and-effect laws relating the sequencing of 
instructional stimuli and predictable student responses. This camp has sought to develop 
instructional sequences individualized on the basis of the learner's current learning history and 
has made use of hierarchies of behaviourally-stated objectives. The cognitivist camp has sought 
to discover the schema which individuals have and use in dealing with their environment. They 
are interested in an individual's development over time and the tailoring of instructional settings 
congruent with the learner's stage of development and mental structures.  

These educational positions (greatly oversimplified) are but a recent manifestation of an age-
old philosophical controversy. This controversy revolves around the question, "To what extent 
is a human a being who simply responds to the environment for his own or the general good?" 
This question has been central in the fields of ethics, religion, and science, as well as in 
education. While it is doubtful that this question will ever be resolved, in the sense of a 
consensus position, it is almost certain to continue to influence the search for knowledge about 
human endeavours. It is certainly true that mathematics education research has moved beyond 
the behaviourist-cognitivist dichotomy suggested above. Nonetheless, the question of the nature 
of human behaviour continues to influence research and does influence the suggested course of 
this paper.  

TRENDS IN RESEARCH  

In what way does mathematics education research fit within or go beyond the dichotomy 
discussed above? Bauersfeld (1976) suggests a number of types of research which have recently 
been done, some of which transcend the specific behaviourist-cognitivist conflict and some of 
which represent a departure from traditional experimental methodology.  



Tom Kieren 

31 

There is still an immense number of studies done using the experimental paradigm of comparing 
the effects of two (or more) treatments or states on mathematical achievement or affective 
variables. Some of these have taken into account interaction effects which can give hints for 
matching treatments and groups of students (Bauersfeld, p. 5), but even these have very limited 
contributions to make to knowledge. This is due to the complexity of the teaching-learning 
environment, which can easily conceal or distort experimental effects.  

A second style of research is typified by the Soviet practice of "teaching experiments". Here 
mathematics learning is studied in a group or class over an extended period of time through 
variation of conditions of instruction. There is less emphasis on psychometric measures, and 
outcomes are reported more in terms of dynamic process descriptions (Bauersfeld, p. 6).  

A third trend is seen in research which deliberately involves teachers as co-investigators. Such 
research studies the decision-making efforts of teachers and effects on the teaching-learning 
environment. Much of such research is very informal and introspective, but some has involved 
sophisticated study of teacher-student interaction, though there has been very little on student-
student interaction.  

A fourth trend, which represents a clear transcendence of the cognitivist- behaviourist 
polarization, is the increasing number of studies involving an information-processing approach. 
Here there is an attempt to describe internal mental functioning and yet to give a time sequence 
of actions to describe processes.  

A fifth trend (and one of which this conference, and particularly this paper, is both a symptom 
and a part) is a search for frames of reference for knowledge about mathematics learning and 
development. This involves a search for statements about the nature of the mathematical 
sciences, about models for teaching and learning, about the nature of mathematical abilities and 
the interaction of these with learning environments. These more philosophical studies have been 
followed, particularly in the latter case, by numerous attempts to identify and trace the abilities 
of students across time and situations.  

A NOTE ON COMPLEXITY  

One of the conclusions drawn from a consideration of Bauersfeld's (1976) trends, is that 
mathematics learning is being viewed as a more complex phenomenon and there is a movement 
away from research questions, paradigms, and methodologies which ignore, mask, or try to 
oversimplify the situation. Indeed two hypothesized theorems pertinent to this conference might 
be:  

Complexity Theorem (C.T.): 
C(learning) → C(instruction) 

Teacher Education Corollary 
C.T. → C(teacher education) 

The complexity of the task and its attendant richness are heightened as one moves from a narrow 
frame of reference for mathematics to a broader construct of mathematical science and its 
position and interconnections.  

CANADIAN CONCERNS  

A central concern of Beltzner et al. (1976) with respect to mathematics education in Canada is 
growth. This is seen in its personal sense in the call for an education in and the opportunity to 
practise "mathematization". In a collective sense this growth emphasis appears in a desire for a 
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more extensive view of mathematics, and particularly in a renewed emphasis on applications 
of mathematics.  

This new emphasis on growth is, perhaps, a call for the renewing of and broadening of contact 
between the mathematics and mathematics education communities and the societal and personal 
dimensions of the broader Canadian community. From an "employment" point of view there is 
a simultaneous need for persons skilled in technology and for persons able to fill diverse service 
positions. Because of unique Canadian problems in communications, transportation, and 
resource management, Canadian solutions to these problems may be prototypic for general 
human problems in these areas. Because these demands are non-trivial there should be a sense 
of mission in the mathematics education community. Because of the technico-mathematical 
components of society, the goals of personal growth in mathematics should enhance the acuity 
with which a person can view the contemporary Canadian scene.  

These growth goals call for changes in the mathematics curriculum at all levels. These changes 
cannot easily be incorporated within the framework of a textbook and have broad implications 
for teacher education as well.  

Of course the above changes suggest many changes in mathematics education research. Among 
these is the need for a deeper and broader understanding of mathematical notions in persons of 
all age levels, and the patterns of growth of such notions. Beyond this broad research need, one 
specific area of study is the impact of computational technology on both the curriculum and 
learning in the mathematical sciences.  

Evaluation is currently being carried out on the effects of current practice on mathematics 
achievement. This work, of large scale, and ongoing in many provinces, seeks to answer diverse 
questions. It can, should, and does, serve as a stimulus to mathematics education research.  

The mathematics education research community in Canada does not have a long history or 
tradition. However, the recent work of this community has relevance for the concerns expressed 
in Mathematical Sciences in Canada as well as forming a basis for the work still to be done that 
is described in the remainder of this paper. A portion of this work falls directly in the category 
of variable relationships noted above, the particular merits and relevance of which must be 
judged in each individual case.  

There has been substantial research work and writing in Canada on cycles within mathematics 
learning. These have focused particularly on the variety of personal activity and related 
curriculum experiences involved in what Beltzner et al. (1976) would call "mathematizing".  

There has also been considerable recent research on cognitive development as it affects and 
effects mathematical development. This work has, in part, derived from the work of Piaget in 
content and in method. It has also been concerned with differences in structural learning across 
various ages.  

A fourth category of Canadian mathematics education research has concerned itself with the 
structure, style, and manner of mathematical knowing. Some of this work has been 
philosophical in nature and sought either to describe aspects of personal mathematical knowing 
or the curriculum antecedents generative of such a process. Other work has entailed the detailed 
observation of persons, particularly young children, as they worked within situations with 
mathematical content. This work has sought to define the character of mathematical knowing 
as seen in the patterns of behaviour of children.  

As suggested above, much of this work is closely related to the concern for personal growth. 
This research has gone on in a milieu of a great deal of curricular experimentation, some of 
which, at least, has been creative and carefully studied. This aspect of Canadian mathematics 
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education research, informal though it may be, cannot be ignored and indeed needs 
strengthening.  

ON CONSTRUCTS  
Important questions raised by Beltzner et al. (1976) are:  

• What is the contemporary view of the mathematical sciences?  
• What is a personal view of mathematics in general, and of one's own mathematics?  
• How does one build up mathematical notions?  
• How does one use mathematical notions? How does this use affect society?  

Before proceeding to discuss possible research directions, this section of the paper gives a 
general characterization of mathematical knowing and the ways in which this is developed. 

MARGENAU'S IDEA OF CONSTRUCT  

In trying to characterize scientific epistemology, the philosopher Margenau (1961) divides 
phenomena into two categories. The first of these comprises the elements of physical reality, 
facts, or, as he chooses to term them, "protocols". These are seen as phenomena which are not 
dependent upon human construction. The second category contains "constructs", the deliberate 
ideas which a person builds up about phenomena and which he or she can ultimately test against 
other constructs or the plane of protocols. It should be noted from Figure 1 that some constructs 
are in close proximity to the P-plane and offer limited explanatory power and control. Other 
constructs are more "abstract" - that is, further from the P-plane; these can be more powerful 
and give the person broader control. 

 

Figure 1 

A person's total mathematical construct consists of his or her network of sub-constructs, some 
very narrow, others much broader in their perspective. While it is difficult from this point of 
view to speak of the construct of mathematics or, even more difficult, the mathematical 
sciences, these notions result in part from societal consensus but more from the product of a 
combination of tests and mathematical argument.  
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IMPORTANT CHARACTERISTICS OF CONSTRUCTS  

Margenau (1961) describes a number of important characteristics of constructs, two of which 
are especially useful for the purposes of this paper and for mathematics education in general. 
The first of these has been alluded to above and is termed the extensibility of the construct. This 
refers to the breadth or variety of phenomena to which the construct addresses itself. It has been 
suggested, for example, that the rote learning of computation leads to constructs which have 
very little power or breadth of applicability. One might say that a goal of the modern 
mathematics movement has been to broaden a person's constructs through the understanding of 
mathematical structure.  

Particular mathematical constructs do not and should not stand in isolation from one another. 
Further, they should not stand in isolation from a person's broad range of constructs of reality. 
Thus constructs which are connected are of particular value. This connection may be internal 
or external. For example, the sub-construct of additive inverse is internally connected to the 
other notions about the domain of integers in a variety of ways. It is externally connected to the 
construct of inverse transformation in the geometric sense, and to a broader and more extensive 
notion of inverse in general.  

Thus it can be conceived that mathematics education has a professional responsibility to provide 
experiences which are generative of extensive and connected mathematical constructs in our 
clients, our students.  

ON CONSTRUCT FORMATION AND BUILDING  

On cycles  

As suggested, a prominent theme of Canadian mathematics educators has been the description 
and study of cycles. Dienes (1961), for example, uses cycles of "play" to describe the building 
up of mathematical ideas - a movement from object or element play to symbolic play and hence 
to applicational or extensive play which may, in turn, be a foundation to a new cycle. Dawson 
(1971) uses the epistemology of Popper and Lakatos for a base and defines viable cycles of 
observation, testing, and proving (e.g., O T P, P O T) in the development of mathematical ideas. 
Sigurdson (1976) sees six phases in problem solving (or construct development). These are: the 
perception of the mathematical content of a situation; the posing of an answerable mathematical 
question; the making of a model or theorem to help answer the question; the validating of the 
theorem; the generalizing of the theorem; and, finally, perceiving and/or developing the 
axiomatic supports for the model or theorem. While probably not unique to mathematical 
construct development, all three accounts describe formalizing and generalizing processes 
which are part of the mathematical milieu.  

The cycles described above might be termed micro-cycles in that they pertain to the 
development of a single subconstruct or the solution to a single problem. However, they are 
suggestive of a cycle of macroscopic construct development which may be pertinent to larger 
mathematical constructs. As seen in Figure 2, this cycle has three general stages. In the first, 
the person encounters a construct in a variety of representations and particularly explores the 
elements of its mathematical variates. While representation theorems in mathematics are 
designed to produce logical economy through isomorphisms, it may not make constructive or 
peda-logical sense to subsume construct development under a single variate.  

The second stage of the cycle involves formal development. This involves the ability to work 
with the construct quickly and easily using standard forms, notations, etc.  

The third level entails advanced exploration using the construct as a basis or tool. This may 
involve more advanced mathematics (e.g. rational numbers → rational expressions) or may 
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involve some special technical application (rational approximation to the internal 
circumference of a metal tube).  

This development cycle can be applied to a variety of mathematical constructs. In school 
mathematics, particularly at the upper elementary and secondary school levels, we have 
concentrated on the second level to the detriment of the complete cycle of construct 
development and the consequent broadening of the scope of an individual's view of 
mathematics.  

 

 

Figure 2 

On a "types" problem  

One of the effects of this almost exclusive concentration on the formal development level of 
construct formation is the accompanying view of a construct entirely as a behavioural surface 
of formal manipulation, frequently computation. While not denying the importance of such 
manipulation, we notice that this has led to the formation of empty or sterile constructs. 
Margenau (1961) saw a similar problem in a science which emphasized experimentalism 
without supporting theory, the results of which were shallow and subject to collapse. Similarly, 
empty mathematical constructs collapse, as seen in poor personal performance in later 
mathematics or in its application.  

In a way this collapse suggests an analogy in the instruction-learning field to the classic 
Russellian theory of types. In that theory confusion of types led to paradoxes. In construct 
development, and curricular experiences designed to that end, the confusion of a formal surface 
with a complete construct leads to meaninglessness for the learner (Olson, 1977).  

On mechanisms  

How are mathematical constructs built up by children and adults? This still remains a puzzling 
question which should be a focus for research. It is apparent that a person, consciously or 
unconsciously, uses a variety of mechanisms and schemes in exploring, developing, and using 
mathematical constructs. One category of such mechanisms, developmental mechanisms, 
although partly the product of experience are not the product of any formal learning experience 
and are not dependent upon such experience. Examples of such are conservation of various 
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sorts, class inclusion, and proportionality. The second category of mechanisms, constructive 
mechanisms, although general and in a sense "natural", are likely to be the product of some type 
of instruction. Examples are counting, partitioning, and algorithmic thinking. Such mechanisms 
deserve much more detailed study and their potency needs to be recognized in our curriculum-
making efforts at all levels.  

Building Mechanisms 

Developmental Constructive 

Conservation  Counting  
Simultaneous Comparison  Partitioning  
Reversibility  Applying Structure  
INRC group Using Inequalities  
 Transformations 

Figure 3 

ON "WHAT IS MEANT" AND "WHAT IS LEARNT"  

Bauersfeld (1976) claims that there are important distinctions to be made between what is 
meant, taught, and learnt. It has been the purpose of this rather extended section to characterize 
in general "what is meant" in mathematics, using Margenau's notion of construct. This notion 
entails something built up by individuals in their own minds. Thus there can be at least a rough 
parallel between what is meant and learnt provided there is an appropriate form of 
mathematical analysis, that the individual's construct is not a behavioural surface without 
support, and that curriculum and instruction are based on broad mathematical constructs.  

IMPLICATIONS AND DIRECTIONS FOR RESEARCH  
The discussion in the previous section contains a wide variety of researchable hypotheses. 
Bauersfeld's (1976) excellent analysis suggests a spectrum of potential for mathematics 
education research. The suggestions given in this section are by no means the "whole cloth" of 
research. Yet they represent a rather broad but hopefully cohesive direction and dimension of 
research. Further, this research has obvious links to much successful personal work already 
ongoing in Canada. Further, it can have some direct if not immediate (and maybe this possibility 
is underestimated) results for mathematics learners at all levels.  

BASIC CONSTRUCTS  

Some of the needed curriculum research is analytic and philosophical in nature. Given today's 
world, what are the basic constructs to be included in a mathematics curriculum? This question 
was asked in a very limited way by the reform movement of the last 25 years, but the answers 
seemed to dwell more on the depth of the constructs than on the kinds of construct. The question 
was also answered in a speculative way for a limited range of students in the Cambridge report 
(1963), and the work at CEMREL which has followed from it. There have also been curricula 
(e.g. Papy (1970)), or parts of curricula (e.g., geometry in Ontario) which reflect certain definite 
answers to this kind of question.  

At the early elementary school level and perhaps in university honours curricula there is less 
need for this kind of study. However, in upper elementary school, secondary school, many 
university programmes (e.g., teacher education), and in other tertiary education programmes, 
answers to such basic construct questions are overdue.  
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In answering such questions, the nature of society will have to be considered. For example, in 
what ways does the availability of computing devices enter into deliberations on basic 
constructs? Similarly the nature and content of mathematics and the basic knowledge about 
human development vis-à-vis mathematics will also be bases for answering such construct 
questions.  

BASIC MECHANISMS  

A question similar to the above can be asked about mechanisms. Within our selected constructs 
what are the mechanisms useful for their development? Are there mechanisms which have a 
broad range of functioning (e.g., counting) and deserve a central curriculum role of their own?  

While such a question calls for philosophical and psychological analysis, it also calls for active 
research with persons at various age levels. This research will entail the observations of persons 
in situations designed to "trigger" the particular mechanism and would attempt to ascertain how 
the mechanism functioned and developed.  

          WHOLE NUMBER         RATIONAL            ALGEBRA 

 

Figure 4 

 



1977  Plenary Lecture 

38 

Construct validation  

There are many ways in which a construct can be tested. One way is to lay its sub-constructs 
against the qualities of a maturely functioning person within the domain of consideration and 
see analytically (and empirically if this is desired) if the construct—based curriculum meets 
functional needs.  

A second validation is to test whether the developed construct is generative of learning activities 
appropriate to the group of intended learners. Further, do such activities also induce the 
development of constructs in a vast majority of the intended learners? (This has been a serious 
"textbook" problem in the past.)  

On extensibility and connectedness  

One important test of a developed curriculum is an assessment of its constructs and 
mechanisms. To what extent does the curriculum highlight powerful constructs and 
mechanisms? (This has been partly done in past searches for "unifying" mathematical 
concepts.) If a curriculum is to be useful today, it must be based on constructs of broad 
importance which enlarge the scope of the learner's exploratory and explanatory power.  

CYCLE RESEARCH  

The notion of "cycle" has been important in this paper and in recent Canadian mathemat1es 
education research. There are a variety of researchable questions which fall in this category.  

For discussion purposes, this paper has posed a three-level construct development cycle. Given 
a particular basic construct, what are the characteristics of each of the three levels or stages? In 
some senses this is a very "nitty-gritty" question. Yet it is central to the development of learning 
experiences. If there is no answer to such a question, the foregoing philosophical discussion 
remains only that. Although answering this question has an "armchair" component, it should 
also have a large component of work with appropriate learners in particular experiences.  

A related question pertains to mechanisms. Which mechanisms contribute to development at 
which stages? Answering this question allows a different way of studying the validity and 
particularly the extensibility of particular mechanisms.  

A third category of "cycle" questions concerns micro-cycles. How are the cycles suggested by 
Dawson (1971), Dienes (1961), or Sigurdson (1976) pertinent to construct and/or mechanism 
development at particular macro-cycle stages? For example, are they more pertinent at the two 
exploratory levels than at the formal development level? Are they (the micro-cycles) different 
in character at various macro-cycle levels? Are they developable and are they unique to each 
construct or mechanism? These questions present a rich field for study both at an experience 
development and experience testing level. They, with other questions in this section, allow 
researchers, and indeed force researchers, to be precise about their intents, transactions, and 
outcomes - to use Stake's (1971) terms. 

On technology 

Technology, particularly computing technology, will have a profound effect on mathematics 
learning and instruction as it affects and becomes part of the basic constructs. The kinds of 
activities which relate to the use of such technology will also have an impact on instruction. 
Four such activities are:  

• algorithm design 
• coding 
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• machine application  
• data organization and study  

One might consider the first of these to be representative of a profound mechanism. Engel 
(1976) suggests that the mathematics curriculum centre on this basic mechanism.  

A less controversial matter is suggested by the figure below. 

 

Figure 5  

How do these informatic activities contribute to levels of construct development? Because of 
the computational power provided by a machine, some areas of advanced exploration of 
mathematical constructs become feasible and convenient. It may be that algorithm design and 
coding are key personal activities in the formal development aspect of construct building. Of 
course, these statements are but two of many testable hypotheses.  

On language cycles  

A major concern in mathematics learning is the use of language and the formality of this 
language. A question with respect to construct development is whether there is a language-use 
cycle which parallels the development cycle. One hypothesized cycle is given below.  

Informal codes 

Formal language 

Technical language 

Figure 6  

The first level is suggestive of learner-developed expressions about the mathematical 
phenomena being explored. There may be different codes pertaining to different variates of a 
construct, for example.  

The second level relates to the standard language used with a construct. Learning such language 
may well present a connotation problem with a single standard code now applying to a wide 
variety of construct variates (Hillel, 1976).  

The third level pertains to certain "standardized" uses of language which are peculiar to an 
application of a construct (e.g., rational numbers applied to measuring devices in a millwright's 
trade). Here the user must relate this language to both the standard language and his or her 
construct. This proposed cycle and its relationship to construct development contains numerous 
testable hypotheses for researchers and developers.  
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MECHANISM RESEARCH  

There has been considerable research to date in the area of developmental mechanisms. There 
is considerable Canadian research on the growth of such mechanisms with respect to 
mathematics (Harrison, 1976; Drost, 1977). There has been some (Bourgeois, 1976), but much 
less, attention paid to the growth of constructive mechanisms (counting, partitioning, algorithm 
design). This area of study needs considerable research with attention paid to the choice of 
mechanisms and to the development of useful measuring devices and techniques.  

A second question is the relationship between mechanism growth and construct development. 
This has been studied on a limited basis - for example counting and whole numbers (Steffe, 
1976), and measurement and fractional numbers (Owens, 1977; Babcock, 1977). There are 
many important questions yet to be asked in this area.  

BRAIN PHYSIOLOGY  

Research on brain-functioning is just reaching a stage where it can have impact on mathematics 
education research. How is brain-functioning a basis for construct and mechanism growth and 
use? Questions of this nature will likely prove an interesting field of basic research in the near 
future.  

A NOTE ON TEACHER EDUCATION  

Research activity such as that suggested above has implications for teacher education. Some of 
these are direct in the sense that they concern the necessary mathematical constructs and 
mechanisms for teachers. Perhaps more important is to think about mathematics learning in 
terms of the learner's constructs and mechanisms. For the teacher of younger children, this likely 
means a more intensive mathematical education than is currently acquired in Canadian teacher 
education programs. For other teachers this likely means a broadening of their education in 
significant ways, both in terms of applications to science, commerce, social science, etc., and 
of extensible constructs and mechanisms.  

SUMMARY  

The research problems suggested above are far from being clean and simple. They represent a 
recognition of the complexity of mathematics and its learning. In general, solutions to these 
problems will give explanatory assistance to those dealing with mathematics learning in the 
raw, the teachers, but certainly do not offer a panacea for currently perceived ills in our field.  

By design and by necessity the research problems suggested above are interconnected. It is only 
by a network of research that the complex problems posed can be studied effectively.  

Beyond the research already suggested, and included in it, is a need for studying learning 
relationships in mathematics. What is the nature and impact of teacher-student and student-
student interaction with respect to the learning cycles, and to construct growth and use by 
individuals?  

There is a need for much more interrelated mathematics education research to tackle these 
problems. Perhaps our small numbers in Canada and our personal interrelationships will allow 
us to engage in such interrelated research.  

RECOMMENDATIONS  

What can be done to effect the cooperation needed in Canadian mathematics education 
research? In the short run two things suggest themselves. Since we need better information as 
a base, it would be useful to have a bibliography, briefly annotated, of work done in the last 
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five years. This should include university and school-sponsored research and should include 
various graduate-level theses, as well as research done by professionals in the field. Such a 
bibliography would outline our current strengths, weaknesses, and personal resources, vis-à-vis 
the task suggested above. It would also give some indication of potentials for cooperative effort.  

An active newsletter describing current work and supporting interpersonal research 
communication is a second short-term need. This would be a specialized informal document 
and should complement the more formal organs already available.  

In the longer run there is a great need for cooperative research. Because the problems are 
complex, several persons are needed to investigate parts of these problems in a pre-planned way 
using a language which is understandable to all working in an area. At a first level such 
cooperation needs to occur among professional mathematics education researchers. But because 
the problems have many facets and levels, this cooperation needs to include the broader 
academic community, including linguistics experts and philosophers, for example, as well as 
mathematicians, computer scientists, and psychologists.  

Howson (1976) states that an increasing number of teachers are active in curriculum 
development on a worldwide basis. There is need for cooperation among researchers and 
teachers (who could be the same persons). The former can give the latter advice about the 
framework and parameters of the curriculum. The teachers can provide dynamic feedback about 
various situations to the researcher.  

Finally, there is a need for groups of researchers and teachers to meet regularly on problems in 
mathematics education in Canada. Because of our geography, it may be well to look at the 
French IREM as a model of regional groups and centres. It would be hoped that such centres 
would provide the support and life necessary to tackle the problems outlined above in a 
substantial and ultimately practical way.  
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INNOVATIONS IN TEACHER EDUCATION PROGRAMMES 

Claude Gaulin 
Université Laval 

Quite apart from the fact that these three talks gave us a sense of why we started, what we felt were the 
issues of the time, and what we hoped for, they remain, for the reader of today, absorbing and timely.  
All three speakers were leaders in their areas at that time and continued as key participants in CMESG 
activities for decades afterwards. Together they examined the big three aspects of our work, 
mathematics education research (Kieren), teacher education (Gaulin) and mathematics education 
(Coleman), and over the following 40 years, these three areas danced forward and intertwined along 
many rich axes.   

Non seulement ces trois conférences nous avaient permis de donner un sens à notre action initiale et 
de décrire ce que nous percevions comme les principaux défis à cette époque ainsi que  ce que nous 
espérions pour l’avenir, elles demeurent, encore aujourd’hui, captivantes et pertinentes. Les trois 
conférenciers étaient des experts de leurs domaines, et ils ont continué à jouer un rôle clé au GCEDM 
pendant des décennies. Ensemble, ils ont exploré les trois pôles de notre travail, soit la recherche en 
didactique des mathématiques (Kieren), la formation des enseignants (Gaulin) et l’éducation 
mathématique (Coleman), et, depuis 40 ans, ces domaines ont pu poursuivre leur développement, se 
liant de multiples manières dans des interactions riches.   

 

First, I wish to thank the organizers of this conference for inviting me to give this lecture. I also 
wish to congratulate them for having succeeded in organizing such a meeting of mathematics 
educators and mathematicians from all over Canada and for having done it so well. Such an 
opportunity to gather, to share information, to discuss current problems and issues in 
mathematics education, and to plan concerted activities for the future has long been badly 
needed in Canada and I sincerely hope follow-up activities will be organized on a more 
permanent basis.  

Like Tom Kieren, I shall attempt to focus on general trends and issues in the field of teacher 
education, more particularly on those which might be relevant in Canada in the near future. I 
must confess that my knowledge of the present state of teacher education in many Canadian 
provinces is deficient, and I apologize in advance for possibly omitting to mention important 
realizations, concerns, or trends in some parts of the country.  

My presentation will follow the following lines:  

1. The traditional organization of teacher training  
a. Preservice teacher training (PRESET)  
b. Inservice teacher training (INSET)  

2. Some innovations and new directions developing in teacher training  
a. A study by Coutts and Clarke on the future of teacher training in Canada  

3. One current programme showing several innovations in inservice teacher training: the 
PERMAMA programme  

4. Same thoughts about the role and responsibility of universities in teacher education in 
the future.  
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Although many remarks will relate to teacher education in general, it remains understood 
throughout this presentation that the innovations and trends reported here specifically concern 
the training of teachers of mathematics.  

THE TRADITIONAL ORGANIZATION OF TEACHER TRAINING  
In order to better appreciate some of the new directions developing in teacher training which 
will be mentioned in Part 2, I shall first briefly point out some features of the traditional 
organization of teacher training which is still quite common today.  

PRESERVICE TEACHER TRAINING (PRESET)  

Traditionally teacher education in universities has been chiefly conceived and organized in 
terms of preservice teacher training. In most places, inservice teacher training has been 
subordinated to PRESET or treated as a second-order priority.  

Generally PRESET in Canada is done in the universities. Prospective elementary teachers are 
trained as generalists within a B.A./B.Ed. programme, with little mathematics and some 
mathematics methodology. On the other hand, prospective secondary teachers are trained as 
specialists within a B.Sc./B.Ed. programme, with a great deal of mathematics and some 
mathematics methodology.  

In most universities, programmes of preservice teacher education have an extensive common 
core of compulsory courses or activities and do not allow much opportunity for flexible 
individually-tailored programmes for students. The philosophy underlying this is essentially 
that PRESET should prepare every teacher for his whole career and accordingly should include 
many courses and activities considered to be fundamental and essential.  

To a large extent, decisions about the structure of PRESET programmes and about the 
objectives of the courses they include are made a priori by government and university people, 
with little participation by the students concerned and/or by people actually teaching in schools. 
Moreover little continuous evaluation of such programmes is usually done.  

Traditionally, except for the practice teaching period and a few workshop-style activities, a 
majority of the courses are of the lecture type, followed by exercises, assignments, etc. This 
seems true for both mathematics courses and foundations courses in education.  

There are at least three classical problems in preservice teacher education which still persist and 
deserve special mention:  

1. Lack of integration of the various components of PRESET programmes  
Many PRESET programmes, whether aiming at preparing elementary school 
generalists or secondary school specialists, look like mere juxtapositions of many 
components for which a heterogenous group of people is responsible. Any kind of 
genuine integration seems to be missing, even between the components in education 
or between many of the courses offered in mathematics. No wonder, then that so many 
criticisms are heard about the way teachers are trained, since "the learner himself is 
expected to integrate in his learning all the knowledge his teachers were not able to 
integrate in their teaching: a high expectation, a vain expectation," as Hans 
Freudenthal so properly pointed out during the Pécs conference last month.  

2. Lack of balance and the gap between theory and practice in PRESET  
Many criticisms are still heard about many PRESET programmes being too 
theoretical. Specific reference is often made, for example, to the inadequacy of the 
practice teaching component, and to some courses (in education, in mathematics, or in 
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mathematics education) whose objectives and methodology are too remote from the 
needs and concerns of a school mathematics teacher. Bridging the theory-practice gap 
remains very difficult because of well-rooted attitudes among university people, such 
as the "first you learn it, then you apply it" axiom, or the belief expressed by Boileau's 
classical, "Ce que l'on conçoit bien s'énonce clairement et les mots pour le dire 
arrivent aisément". Another difficulty arises from the fact that many teacher trainers, 
including mathematics educators or mathematicians, have themselves little knowledge 
of what is actually going on in the schools. (In the United States, competency-based 
teacher education is gaining popularity, but I am afraid that, considering the way it is 
implemented in some colleges, it is likely to go too far the other way and put too much 
emphasis on practice.)  

3. Lack of coordination between the "mathematics" and "mathematics education" 
components of PRESET programmes  

In many PRESET programmes, more particularly in those for secondary school 
mathematics teachers, a big gap still exists between courses in mathematics and 
courses in mathematics education (often called "methods courses" although they 
usually cover much more than teaching methods). There are several reasons for this—
for example both types of courses are not often given concurrently. But the main 
reason seems to be a lack of communication and cooperation between mathematicians 
and mathematics educators, representing two groups of professional people with 
different specializations, basic concerns, and types of activities, and which in addition 
are often located in different places. To improve the situation, some mathematics 
departments offer a few mathematics courses especially devised for prospective 
teachers. However, many recommendations made by mathematicians about the 
mathematical training of a would-be teacher overemphasize content and disregard any 
related didactical problems, under the implicit assumption that "first you learn 
mathematics, then you (eventually) learn to teach it!" Of course, such an attitude does 
not help to bridge the existing gap.  

In the mathematics courses which are part of PRESET programmes, most of the teaching 
continues to be product-oriented, with little explicit emphasis on processes characteristic of 
mathematical activity (e.g., mathematization, heuristics, etc.).  

INSERVICE TEACHER TRAINING (INSET)  

During the past fifteen years, a great number and diversity of INSET courses and activities have 
been organized, partly by universities and partly by other organizations: school boards, teacher 
associations, ministries of education, and even private organizations. Some have been credit-
bound, while many others have not. Some have been university-based, while many others have 
rather been school-based (e.g., off-campus university courses or professional development 
days). Such INSET activities often give participating teachers the opportunity to eventually 
obtain an increase in salary.  

During the last fifteen years, the majority of inservice teacher training courses and activities in 
mathematics have been of the updating type, and to some extent of the RE-training type. During 
the "new math revolution" of the sixties, for example, most practising teachers had to be literally 
re-trained in terms of the content and the methodology which were characteristic of the "new 
mathematics" curricula and textbooks. More recently, many INSET courses and workshops 
have had to be organized to prepare inservice teachers for the implementation of the Syst't3me 
International (SI) in the schools.  

In recent years, there has been a growing awareness among university people that inservice 
teachers constitute a clientele with specific needs and expectations, background and experience, 
attitudes etc. Accordingly, it is now more widely accepted that in many respects INSET should 
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be conceived and organized differently from PRESET, with much more flexible entrance 
requirements (e.g. analogous to those of the Open University in England). Many university 
professors, however, are still reluctant to accede to this and fear that the consequence might 
well be an unacceptable lowering of academic standards (in the traditional sense).  

The majority of INSET courses and activities, particularly those offered or sponsored by 
universities, are not part of the professional task of the teachers concerned.  

In the mathematical component of INSET programmes, most of the teaching continues to be 
product-oriented, with little explicit emphasis on processes characteristic of mathematical 
activity (e.g. mathematization, heuristics, etc.).  

SOME INNOVATIONS AND NEW DIRECTIONS DEVELOPING IN 
TEACHER TRAINING  
During recent years, interesting innovations have been tried in teacher training, more 
particularly in North America, in England, and in the Scandinavian countries. Such innovations 
reflect some general medium term or long-term directions at present developing in PRESET 
and INSET in many countries. I shall now attempt to sketch such current trends.  

"CONTINUING EDUCATION" AS A CONCEPTUAL FRAMEWORK FOR PRESET AND INSET  

The general concept of "continuing education" ("education permanente") as applicable to the 
education of every individual throughout his or her life, is quite fascinating, but it still needs 
clarification and more agreement about its meaning and ways to make it operational enough. 
There are strong indications, however, that this concept can advantageously serve as a 
conceptual framework for PRESET and INSET.  

In broad terms, in the case of any individual, education may be viewed as a life-long process of 
which the development includes the following phases:  

(a) basic general education, acquired in school (compulsory schooling period) as well as 
outside school;  

(b) education in preparation for a career, which may be acquired in various ways and places 
(this includes further general education as well as professional preparation and 
apprenticeship);  

(c) further education during a career, which may also be acquired in various ways and places 
(this includes general as well as professional further education or training).  

Of course this should be refined with "loops" (to account for changes in career orientation), and 
with a provision for skipping phase (b) in some cases, but I shall stick to the above rough model 
for the purpose of the discussion here.  

In the particular case of a school teacher, PRESET in universities is clearly part of phase (b), 
while INSET is part of phase (c). It must be clearly kept in mind, however, that phases (b) and 
(c) include not only activities related to the professional task of a teacher, but also other kinds 
of activities which may be educational in a general sense and contribute to the personal 
development of an individual (e.g. getting information or experience in other subjects or 
occupations through personal study or involvement).  

In my opinion, one of the features of a genuine concept of continuing education is that the above 
phases (a), (b), and (c) are not merely juxtaposed, but are conceptually and practically 
interlocked through deliberate planning and action.  
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Using continuing education as a conceptual framework for PRESET and INSET therefore 
implies in particular that:  

(i) PRESET and INSET are conceptually inseparable, complementary parts of a 
continuous process, with many interdependent components.  

An immediate consequence of this is that PRESET should no longer be thought of nor 
organized as if it were aimed at preparing a teacher for a whole career. If properly 
organized, INSET should allow any inservice teacher to eventually take any course he 
may have "missed" and which was optional in PRESET. This in turn implies that in 
preservice teacher training the common core of compulsory courses and activities for 
all students should be reduced to a minimum, in order to allow more opportunities for 
flexible individual programmes (see above). Considerable efforts should then be made 
to integrate at least the components of the compulsory common core in PRESET 
through concerted work of teams of university specialists (see above)  

Another consequence is that INSET should be viewed primarily as a continuation of 
PRESET throughout the career of a teacher, allowing him or her to discuss problems 
actually met in the classroom or in the school, to learn more about fundamental 
relevant subjects, to share experiences or initiate concerted action with other teachers, 
to get up-to-date information about current trends, new teaching methods and media, 
etc. From this point of view, INSET should include, but not be focused chiefly on RE-
training activities that may be made necessary by sudden, often carelessly planned 
changes in curricula or textbooks or teaching methods, or by a significant change in 
career orientation (see above). Moreover INSET should include a much greater range 
of activities which are relevant and 'worthwhile for teachers: courses, workshops, 
discussion periods, projects, participation in professional conferences, participation in 
a research, etc. (Of course this is not easy in a university credit-bound INSET 
programme. However, the more INSET becomes part of the professional task of the 
teacher in the future, the more such variety may be possible.)  

(ii) Nevertheless, preservice teachers and inservice teachers constitute different clienteles, 
each with its specific needs and expectations, background and experience, attitudes, 
etc. Accordingly the objectives and methodology of many INSET activities and the 
overall structure of INSET programmes offered in universities are likely to be very 
different from those in PRESET (see above).  

In my opinion, there is a long-term trend slowly emerging in the direction I have just sketched, 
particularly where training teachers of mathematics is concerned. I feel, however, that there is 
still a long way to go before a genuine concept of "continuing education" becomes clear and 
operational enough in our universities (even if many already offer so called "continuing 
education courses"!).  

MORE DELIBERATE COOPERATION IN PRESET AND INSET BETWEEN UNIVERSITIES, 
SCHOOLS, AND PEOPLE TAKING PART IN TEACHER TRAINING ACTIVITIES  

A medium-term trend which is increasingly noticeable is towards a more deliberate cooperation 
in PRESET and INSET between three groups: universities; school representatives; people 
taking part in preservice and inservice teacher training activities.  

On the one hand, this means that student-teachers in PRESET and inservice teachers in INSET 
are likely to play an every-increasing role in decision-making concerning teacher training: for 
example, as members of programme committees or as active participants in surveys conducted 
about their needs, expectations, and evaluations of current teacher training activities (see 
above).  
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On the other hand, there are already strong indications that a much closer cooperation will be 
established in the near future between universities and school representatives in the organization 
of teacher training, particularly along the following lines:  

(i) In PRESET, more efficient practice teaching or internship schemes allowing more 
deliberate interaction between certain theoretical courses and classroom 
experiences, and accordingly narrowing the classical gap between theory and 
practice (see above).  

(ii) School-focused INSET with increased responsibility for school boards and schools 
and with new roles played by universities. (An international "Conference on 
Strategies for School-Focused Support Structures for Teachers in Change and 
Innovation" was held in Stockholm in October 1976, sponsored by O.E.C.D., and 
follow-up international conferences have already been planned for November 
1977 and 1978.)  

(iii) Creation of many local "professional centres" or "teachers' centres" (school- or 
school board-based preferably) serving many purposes, but considered chiefly as 
privileged places for a variety of INSET activities. (In the U.S.A. there already 
exist many such centres of different types, and in England the "James Report", 
published in 1972, recommended the creation of a country-wide network of 
"professional centres", although many such centres have existed for years.) 
Universities might contribute in many ways to the realization of INSET activities 
in such locally-run "teachers' centres" and in particular play non-traditional roles 
in the organization of INSET activities which may not be credit-bound but which 
will be part of the professional task of the teachers concerned. Moreover, it might 
well be a worthwhile idea for universities to plan and realize a few PRESET 
activities in close cooperation with "professional centres" in their area.  

The above medium-term directions are particularly noticeable as far as training teachers in 
mathematics is concerned.  

OTHER POSSIBLE DIRECTIONS IN PRESET AND INSET IN MATHEMATICS  

I would like to point out two new directions which might develop in teacher training. They 
however remain more problematical than the preceding trend because they presuppose 
significant changes in deeply-rooted traditions and attitudes among university people—in 
particular among mathematicians and mathematics educators. These two new possible 
directions apply to both PRESET and INSET.  

The first one is a greater emphasis on processes characteristic of mathematical activity (e.g. 
mathematization, heuristics, etc.) both in mathematics courses and in mathematics education 
courses, which are still much too product-oriented. This is certainly highly desirable in both 
preservice and inservice courses, particularly in today's climate where mathematics curricula 
tend to be biased by an excessive emphasis on specific behavioral content objectives (see 
above).  

The second one is a significant change in the way research in mathematics education is viewed, 
planned, and conducted. In my opinion, much more research and development in this field 
should be planned and conducted in cooperation with practising teachers as part of INSET 
activities. Schemes for training preservice teachers might also allow the involvement of more 
(undergraduate) prospective teachers in some research projects. I feel there should be a strong 
interdependence between (1) the evolution of mathematics curricula and teaching methods and 
media in schools; (2) inservice training activities in mathematics; (3) much of the research and 
development done in mathematics education which is not of the fundamental type.  
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A study by Coutts and Clarke on the future of teacher training in Canada  

Let us pause to look at some of the conclusions of a study conducted by H.T. Coutts and S.C.T. 
Clarke on "The future of teacher education" and presented at the American Educational 
Research Association Convention in New York City, February 1971.  

According to this study, a sample of chief administrators of the English speaking teacher 
education institutions in Canada estimated that teacher education in the foreseeable future 
(1975-1980) would move in the following directions:  

1. Teacher education would be centred around an extended intern, ship.  
2. Teacher education would continue throughout the teacher's career, with frequent use 

being made of sabbatical leave for one or two semesters to be spent at a university.  
3. Candidates for teacher education, both for admission to preparatory programmes and 

for first certification, would be required to exhibit a satisfactory standard of excellence 
in: speech, English usage, mental health, and human relations.  

4. Teachers would be prepared more intensively as subject specialists.  
5. Although there would be a common core of learning for all, each candidate's 

programme would be individually tailored.  
6. The common core learning required by all teachers would include:  

a. preparation in working as a member and as a leader of a group or team which 
might be a mixture of superordinates and subordinates, or persons all at one 
professional level;  

b. a great deal of attention to ethics, morals, attitude development, and character 
formation; 

c. preparation in the use of the latest education technology and media.  
7. Teacher education would be about half "common core" for all candidates and about 

half specific to specialization in terms of: function, level, and staff discrimination.  
8. Teacher education would emphasize the process of learning (observing, clarifying, 

inferring, inquiring, reasoning, remembering) as contrasted with the product 
(information, knowledge, concepts, generalizations).  

ONE CURRENT PROGRAMME SHOWING SEVERAL INNOVATIONS IN 
INSERVICE TEACHER TRAINING: THE PERMAMA PROGRAMME 
In order to illustrate some innovations which are taking place in INSET at present, I would like 
to sketch one particular INSET programme which I have been associated with and which is 
increasingly popular in Québec. It is called the "PERMAMA programme", where PERMAMA 
stands for "PERfectionnement des MAîtres en MAthématique".  

I shall give here only a very general description of the programme and anyone interested in 
more specific information may consult a few papers on the subject or contact the Director of 
PERMAMA.  

Preliminary remarks:  

(a) PERMAMA is an inservice teacher training programme run by Télé-université du 
Québec (a branch of the Université du Québec). Most collaborators work in Montréal.  

(b) PERMAMA is a programme primarily intended for high school mathematics teachers 
from all over the Québec territory.  

(c) At present PERMAMA is a credit-bound programme leading to a "certificate" and 
eventually to a bachelor's degree. To be admitted to the programme, one must have 
taught in schools for at least three years.  

(d) About 1300 teachers are currently registered in the programme.  
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(e) PERMAMA started in 1972. It has been built upon the experience and the 
understructure which have grown out of a previous Government- run inservice training 
programme for high school mathematics teachers (1966-1971), called "C.R.P.M." 
(Cours de Recyclage et de Perfectionnement en Mathématique). As a matter of fact, 
since 1966, the philosophy and the type of organization of inservice training of 
secondary mathematics teachers have gone through three distinct phases in Québec, 
giving rise to three types of INSET programmes: (1) C.R.P.M. from 1966 to 1971; (2) 
PERMAMA 1st generation, from 1972 to 1975; PERMAMA 2nd generation, since 
1975.  

(f) Teachers registered in the PERMAMA programme participate in courses and activities 
in their leisure time. This type of inservice teacher training is currently not part of the 
teacher's professional task.  

A NETWORK OF TEACHERS' CENTRES FOR INSET ACTIVITIES IN MATHEMATICS  

Teachers registered in the PERMAMA programme participate in courses and activities in local 
or regional teachers' centres. There are, at this time, 97 such PERMAMA centres spread over 
the Québec territory. In each centre there is one so-called "moniteur-animateur", generally a 
mathematics teacher himself; his job consists mainly in doing some organization and in serving 
as an "animator" during the working and discussion periods of "permamists" (N.B. his role is 
not to teach!). Periodically all moniteurs-animateurs meet in order to share their experiences, 
to prepare for new PERMAMA courses and coming activities, to give feedback about recent 
courses and activities offered, and to participate in decision-making about the continuation of 
the programme.  

Remark: moniteurs-animateurs are paid a salary for their work.  

A BANK OF "MODULES" OF VARIOUS TYPES ALLOWING PERSONALIZED INSET 
PROGRAMMES 

Up to now a bank of about 60 "modules" has been established. Each module is a learning unit, 
generally using various media, provided with a guide for the moniteur-animateur. Supposing a 
group of teachers using a module meets once a week on the average, and that each member 
does required work at home or in schools every week, then finishing the module may require at 
least four to eight weeks. Modularization of previous "courses" (offered in the PERMAMA 1st  
generation programme) has been very successful and has given much more flexibility to 
PERMAMA.  

At the present time five types of modules may be found in the bank:  

(a) modules focused on mathematical content (elementary algebra, geometry, algebraic 
structures, statistics, vectors, Boolean algebras graph theory, derivative, programming, 
integral, number systems, etc.)  

(b) modules focused on mathematical activity (problem solving, mathematization, etc.)  
(c) modules focused on didactical problems (concept learning in mathematics, student-

teacher relations, learning through problem solving, teaching geometry, laboratory 
activities in mathematics, using worksheets for teaching mathematics, etc.)  

(d) modules focused on the realization of "projects" in schools: after identifying a problem 
or a need in mathematics teaching in their schools, a group of teachers think of a 
relevant "project" to realize, plan it carefully, realize it, and evaluate the results (N.B. 
supervision is provided by the PERMAMA "equipe-pedagogique" for such projects)  

(e) modules permitting teachers to plan personalized sequences of PERMAMA modules 
with appropriate information and cooperation ("management modules").  
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To some extent teachers registering in the PERMAMA programme have the opportunity of 
tailoring personalized sequences of modules. Only three modules are compulsory. There are, 
however, a few constraints which may limit such an individualization of INSET programmes. 
For example, some modules are offered only if a minimum number of teachers want to use it 
simultaneously (because group work and discussion are considered essential to make such 
modules profitable) and accordingly negotiation and cooperation between teachers in the same 
PERMAMA centre may be necessary to find an optimal compromise.  

During 1977, 400 teachers who were registered in the PERMAMA programme initiated 141 
"projects" between January and August. Such projects may play a tremendously dynamic role 
in promoting better teaching of mathematics in schools and in making more interdependent: (1) 
research and development in mathematics education; (2) inservice teacher training; (3) the 
evolution and the improvement of mathematics teaching in schools.  

PERMAMA full-time staff includes the équipe pédagogique, consisting of a few 
mathematicians and mathematics educators and many experienced high school mathematics 
teachers. This group mostly works on the preparation and testing of modules, keeping close 
contact with schools and with the moniteurs-animateurs of the 97 PERMAMA centres spread 
over Québec. A few other full-time people are more specifically concerned with management 
so that the network of PERMAMA local centres functions properly and that information about 
PERMAMA activities is disseminated appropriately.  

PARTICIPATION OF TEACHERS IN DECISION-MAKING AND IN THE ORGANIZATION  

Participation of the teachers concerned in the PERMAMA programme is insured in various 
ways. For example, many experienced high school mathematics teachers are part of the équipe 
pédagogique. On the other hand, periodic surveys are made in order to determine the degree of 
satisfaction of the "permamists" in regard to existing modules, their suggestions for 
improvement, and their desires concerning the production of new modules. Many teachers also 
cooperate in pre-experiments with modules in preparation, or make a more systematic 
evaluation of existing modules. Finally, the group of all "permamists" has a representative in 
the Comité directeur of the programme.  

During 1976-1977, registrations in the PERMAMA programme have increased by 80%, 
showing the degree of satisfaction of inservice teachers with respect to this second generation 
programme. It is obviously much more flexible, relevant, and stimulating than the previous 
(first generation) PERMAMA programme which was much more uniform and too exclusively 
content-oriented.  

SOME THOUGHTS ABOUT THE ROLE AND RESPONSIBILITY OF 
UNIVERSITIES IN TEACHER EDUCATION IN THE FUTURE  
I have already sketched a few possible medium-term and long-term directions developing in 
teacher education, and made allusions to changes they might imply as far as the role and 
responsibility of universities in PRESET and INSET is concerned. I do not wish to add much 
more to that. Let me therefore finish with four short remarks:  

In PRESET, it is quite certain that universities will keep the largest responsibility. In INSET, 
however, they are likely to lose a significant part of the responsibility they have traditionally 
had; this may be taken over by regional or local school communities.  

In order to keep their leadership in PRESET and to improve the quality of preservice teacher 
education, the universities must first of all continue to "put their own house in order". It is clear, 
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for example, that to make improvements in PRESET programmes, with respect to part 1 of this 
presentation, is primarily our job as university people.  

It is urgent that universities establish closer permanent connections and share some 
responsibilities with schools, both in order to improve the training of prospective teachers and 
to offer more relevant INSET courses and activities.  

The really big challenge for universities in the future may well be to show enough imagination 
and initiative in offering new types of services and contributions to INSET (going far beyond 
offering creditbound courses!), particularly if trends continue towards the establishment of 
"teachers' centres" and towards a greater integration of INSET activities with the professional 
task of the teachers. If they can achieve that successfully, I am convinced that universities will 
continue to play a key role in INSET although their responsibility will inevitably be somewhat 
diminished in this area.  
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THE OBJECTIVES OF MATHEMATICS EDUCATION 

Albert Coleman 
Queen's University 

Quite apart from the fact that these three talks gave us a sense of why we started, what we felt were the 
issues of the time, and what we hoped for, they remain, for the reader of today, absorbing and timely.  
All three speakers were leaders in their areas at that time and continued as key participants in CMESG 
activities for decades afterwards. Together they examined the big three aspects of our work, 
mathematics education research (Kieren), teacher education (Gaulin) and mathematics education 
(Coleman), and over the following 40 years, these three areas danced forward and intertwined along 
many rich axes.   

Non seulement ces trois conférences nous avaient permis de donner un sens à notre action initiale et 
de décrire ce que nous percevions comme les principaux défis à cette époque ainsi que  ce que nous 
espérions pour l’avenir, elles demeurent, encore aujourd’hui, captivantes et pertinentes. Les trois 
conférenciers étaient des experts de leurs domaines, et ils ont continué à jouer un rôle clé au GCEDM 
pendant des décennies. Ensemble, ils ont exploré les trois pôles de notre travail, soit la recherche en 
didactique des mathématiques (Kieren), la formation des enseignants (Gaulin) et l’éducation 
mathématique (Coleman), et, depuis 40 ans, ces domaines ont pu poursuivre leur développement, se 
liant de multiples manières dans des interactions riches.   

 

It would appear rather obvious that there could be only one objective of mathematics education. 
Clearly, it is to teach mathematics!  

Agreed! But this having been said, many questions press upon one. What kind of mathematics? 
How much? To whom? Why teach any to anyone? Should the programme be the same for all 
pupils? If not, according to what criteria can pupils be distinguished? After all, in a democracy 
everyone is equal, so should we not aim to achieve a common universal mediocrity? Is there 
any percentage in considering objectives in a vacuum? Must we not link with such consideration 
an evaluation of the practical possibility of achieving them, given the mathematical competency 
(or incompetency) of the corps of teachers and the strong societal pressures which denigrate 
intellectual excellence or mental effort? In other words, is there any use discussing "objectives" 
without considering whether they can be achieved?  

As with any issue of basic existential import, once you start thinking about the aims of 
mathematics education, questions, flood into your mind. Clearly, I cannot in a brief article deal 
with them all or, indeed, adequately with even one of these many issues.  

You will recall that fairly recently an OECD study of education in Canada expressed 
amazement at the extraordinarily high proportion of the GNP which goes into education in a 
society which seems to have no explicit statement of what it expects the school system to 
accomplish. Evidently most other OECD countries have clearer aims for education than has 
Canada. So perhaps my topic is timely.  

THREE OBJECTIVES  
I have read discussions in which as many as twelve aims of mathematics education were 
distinguished - or, at least, the author thought he could distinguish this number, though my mind 
was not sufficiently acute to grasp the subtleties of his thought. In any case, I consider such 
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long lists pedantic nonsense and psychologically ineffective. It is best to concentrate on 
essentials. I fix on three aims which I regard as crucial.  

1. The average citizen should be enabled to master the minimum of mathematics needed 
for ordinary commercial transactions and for understanding the functioning of our 
society.  

2. All people should be given the possibility of enriching themselves culturally and 
intellectually by extending their basic human capacity for abstract thought.  

3. A supply of thoroughly trained mathematical "practitioners" - engineers, economists, 
research mathematicians - sufficient for the needs of society should be assured.  

Let us look at these objectives in order.  

Of course, there cannot be a satisfactory dogmatic definition of the precise set of mathematical 
facts which every Canadian should know. A minimum would surely comprise arithmetic, 
including percentage; mensuration, including change of units; and simple geometry. However, 
anyone who has noted the extraordinary rate at which mathematics has increasingly been 
applied in our society in recent decades would argue that much more than this is needed. The 
proper functioning of democracy requires a universal ability to interpret, and not be misled by, 
a wide variety of statistics which various interest groups thrust upon us. Presumably the hand-
held computer will be universally available for the generation of students which is now in the 
schools. They will need to learn how to use it effectively.  

No matter how we define the contents of the curriculum required to accomplish the first 
objective, the material can properly be called basic. However, I am not prepared to campaign 
under the slogan "Back to Basics". We have never done an adequate job in inculcating basic 
mathematics in the average Canadian, and what might have been sufficient twenty years ago is 
not enough now and will be abysmally inadequate in another ten years. So I lift high my banner 
which reads: "Forward to the New Basics!"  

In addition to enabling people to function as citizens or as economic agents in society, 
mathematics education should contribute to personal and cultural enrichment. David Wheeler 
has argued correctly that anyone who can use language effectively thereby demonstrates an 
ability to apprehend structure. But mathematics is the study of abstract structure, so one can 
argue that to mathematize is to be truly human. If, with Aristotle and St. Thomas Aquinas, we 
characterize man as the "rational animal", we must recognize that as we increase our ability to 
reason we enhance our humanness. Mathematical puzzles can be enjoyable and relaxing. But 
the more mathematics one understands and can use, the easier it is to understand and control 
the technological environment in which all of us are now immersed. Without such 
understanding the feeling that one's life is dominated by mysterious unknown forces must be 
overwhelming. So, to feel at ease with mathematics can enhance one's sense of freedom, as well 
as opening up the limitless and fascinating literature of mathematics and its applications.  

All citizens should know enough mathematics to be able to manoeuvre in our society. All 
citizens should be given the opportunity to experience the joy of developing their innate 
capacity to mathematize and to exult in this power. But at a more mundane and practical level, 
Canadian society needs a supply of competent mathematical practitioners. Engineers, 
physicists, economists, biologists, and social scientists are increasingly making use of more and 
more sophisticated types of mathematics. They need to be properly trained. Many Canadians 
are proud that Bell Northern Research Company has a high reputation internationally as one of 
the few research-oriented companies in Canada which competes effectively for international 
markets. The Science Council of Canada Background Study, Mathematical Sciences in 
Canada, reports that of 126 professionals in BNR, two had doctorates, 26 had master's and 46 
bachelor's degrees in mathematics. It is not a coincidence that the Canadian company with the 
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highest research effectiveness is the one with the highest concentration of mathematically 
trained personnel.  

If Canada wishes to remain in the forefront of the technological age, as it has in the past, it is 
desirable, indeed essential, that our programmes of mathematics education encourage gifted 
students to push their mathematical training forward as fast and as soundly as possible.  

ARE THE OBJECTIVES ACHIEVABLE?  
I expect that most of my readers would agree that the three objectives sound fine. However, 
doubts might be raised as to whether they are realizable, and questions will be asked about how 
they are to be achieved.  

It is my belief that, at least in Western countries, our past methods of mathematics education 
have been abysmal. We have barely scratched the surface when it comes to developing and 
unleashing the power of human beings to mathematize. This is chiefly because for centuries the 
study of mathematics has been overshadowed by a powerful inhibiting factor which reveals 
itself in the widespread fear or awe of mathematics. Perhaps the root source of this fear is the 
manner in which the rote learning of Euclid was drilled into many successive generations of 
European, American, and Canadian children. Or perhaps its source is the stance of superiority 
which the mathematically-gifted, particularly university professors, have often assumed. 
Whatever the cause, I believe that a fear of mathematics and a feeling that "higher mathematics" 
(Le. anything beyond 2 + 2 = 41) is accessible only to a gifted elite have been the chief factors 
in preventing the majority of Canadians from entering with joy and satisfaction into the pleasant 
fields of mathesis.  

This conviction was reinforced by my visit to the Soviet Union in April and May of 1977, when 
I had the opportunity to learn something about the "Kolmogorov reform" and to observe 
mathematics lessons in two schools at grade 3, 9, and 10 levels. Already in grade 3 (but not in 
1 and 2), mathematics is taught by a specialist mathematics teacher. The system is not divided 
into elementary, junior, and senior schools. The child enters at the age of seven and continues 
in the same school for 10 years. All pupils study mathematics every year; six periods per week 
in grades 3 through 8, and five in grades 9 and 10. The textbooks and, in principle, the 
programme are uniform throughout the USSR. Apparently the reformed curriculum which has 
been gradually introduced during the past twelve years is fully implemented only in the cities. 
In School No. 169 in Leningrad, which specializes in English and not in mathematics, every 
pupil covers in ten years a mathematics syllabus which goes well beyond the total mathematics 
syllabus which is offered in thirteen years in Ontario to less than one-third of our children. I 
was particularly struck by the assigned homework on inequalities which was more difficult than 
we would dare set for a first year student at Queen's!  

Are all children in Leningrad more intelligent than the top thirty percent of Ontario youth? I 
think not. In my view, the difference is that in Leningrad young people are better motivated and 
work harder. There is a basic confident feeling that everyone can and will learn mathematics. 
To be able to do mathematics is a natural human capacity which can be developed if one merely 
tries! The children are greatly helped by support and pressure from parents, reflecting the 
insistence of Lenin and his successors on the vital importance of the study of science in general, 
and of mathematics in particular, for the attainment of the social goals of the Communist Party.  

There has been a great debate in North America about the so-called "New Math". In my 
view much of this has been ill-informed and misdirected. There is some evidence - but little 
which is statistically convincing - that students coming into the universities in recent years 
do not have as confident a control of the manipulative aspects of arithmetic and algebra as 
they did twenty years ago, This, it is claimed, proves that the New Math is a total disaster! 
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I readily admit that some publishers who rushed on to the market with poorly written 
textbooks did a considerable disservice to mathematics education. Further, some teachers 
were ill-prepared to adopt the new approach to the teaching of mathematics which was 
introduced universally in the Soviet Union, Europe, and North America in the late 1950's. 
Some served up for their pupils a confusing mish-mash of poorly digested jargon.  

However, many of the highly emotional critics of the "New Math" and the proponents of "Back 
to Basics" have merely added to the confusion without making any constructive contribution to 
the solution of the many important tasks of mathematics education in Canada.  

They overlook key elements of our situation. The percentage of the school-leaving age group 
seeking entrance to university has increased markedly, so we are comparing the performance 
of the current freshmen with a smaller and more selected group. It has been estimated that 
nowadays the average child spends 15,000 hours watching TV. No one claims that this will 
improve mathematical competence! In Ontario, the abandonment of Grade XIII Examinations 
has had a greater influence - for good or ill - on the preparation of university freshmen than any 
other single factor with which I am familiar. I suspect that some of the older critics of the New 
Math tend to recall their youth through rose-coloured spectacles. From 1953 to 1960 I taught 
Freshman Calculus to the students of the Honour Course in Mathematics and Physics at the 
University of Toronto. They were the intellectual cream of Ontario - hardly excelled by a similar 
group anywhere in North America. In recent years I have taught analogous courses at Queen's. 
I cannot honestly say that during my 25 years experience I have observed any significant 
difference in the types of difficulties which students have had in understanding mathematics. I 
do recall a freshman at Toronto, in about 1955, who had come from the University of Toronto 
School with an average of 92 percent on the Grade XIII examinations, who thought that        
(a+b)-1 = a-1 + b-1.  

In Ontario, and I believe elsewhere in Western nations, there have been no essential changes in 
the mathematics curriculum in school between 1910 and 1960. However, in that period there 
was a total revolution in the role of mathematics in society. The aim of the old mathematics 
education was to inculcate the rote understanding of certain manipulative skills. In the 1950's 
we began to realize that this was not enough. In addition to basic manipulative skills the average 
citizen now needs to have some grasp, however dim, of what mathematics is, what you can 
expect of it and - equally important - what you cannot expect of it. Thus the aim of the new 
programmes is to convey an understanding of some mathematical ideas. Of course, this is much 
more difficult. The transition involves pain. It is far from complete. This is the contemporary 
challenge.  

WHAT CAN WE DO?  
If our three objectives for mathematics education are accepted as necessary and desirable, then 
our first task is to make sure they are understood and accepted by the Ministers of Education, 
teachers, parents, and students. Only then can we hope to mobilize the forces needed to realize 
them effectively in Canada.  

We must seek to dissipate the anxiety feelings towards mathematics, especially among 
elementary school teachers. This might be done by extensive in-service training programs and 
by improved pre-service courses. In order to ensure the latter, it is necessary for many university 
professors of mathematics to change their attitudes and redirect some of their energies. 
Possibly, TV can be used to good effect - as has been done by PERMAMA in Québec and by 
Professor Z. Semadeni in Poland.  
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The crucial factor is that teachers should be competent and know and feel that they are 
competent. Then they will be psychologically free and able to open to their students the 
experience that to mathematize is to joy. 
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CONFESSIONS OF AN ACCIDENTAL THEORIST 

Alan Schoenfeld 
University of California at Berkeley 

Alan Schoenfeld is known for many things in mathematics education – two of which are that he is a 
mathematician working in mathematics education and that he is one of the pioneers of research on 
mathematical problem solving. And this plenary lays forth the story of how both of these came to be. 
In considering which plenaries to include in this volume his came to the forefront both because of the 
pioneering spirit of the work and the relevance of the research even 30 years later.  

Alan Schoenfeld est bien connu en didactique des mathématiques, et ce pour plusieurs raisons – parmi 
celles-ci, le fait qu’il soit un mathématicien travaillant en éducation mathématique, et qu’il soit l’un 
des pionniers de la recherche sur la résolution de problèmes mathématiques. Cette plénière nous 
explique l’avènement de ces deux aspects de son travail. Sa conférence plénière se distingue tant par 
l’esprit novateur du travail accompli que par la pertinence actuelle des recherches, trente ans plus tard.     

 

David Wheeler had both theoretical and pragmatic reasons for inviting me to write this article. 
On the theoretical side, he noted that my ideas on "understanding and teaching the nature of 
mathematical thinking" have taken some curious twists and turns over the past decade. 
Originally inspired by P6lya's ideas and intrigued by the potential for implementing them using 
the tools of artificial intelligence and information-processing psychology, I set out to develop 
prescriptive models of heuristic problem solving – models that included descriptions of how, 
and when, to use P6lya's strategies. (In moments of verbal excess I was heard to say that my 
research plan was to "understand how competent problem solvers solve problems, and then find 
a way to cram that knowledge down students' throats.") Catch me talking today, and you'll hear 
me throwing about terms like metacognition, belief systems, and "culture as the growth medium 
for cognition;" there's little or no mention of prescriptive models. What happened in between? 
How were various ideas conceived, developed, modified, adapted, abandoned, and sometimes 
reborn? It might be of interest, suggested David, to see where the ideas came from. With regard 
to pragmatic issues, David was blunt. Over the past decade I've said a lot of stupid things. To 
help keep others from re-inventing square theoretical or pedagogical wheels, or to keep people 
from trying to ride some of the square wheels I've developed, he suggested, it might help if I 
recanted in public. So here goes ...  

The story begins in 1974, when I tripped over Pólya's marvelous little volume How to Solve 
It. The book was a tour de force, a charming exposition of the problem solving introspections 
of one of the century's foremost mathematicians. (If you don't own a copy, you should.) In the 
spirit of Descartes, who had, three hundred years earlier, attempted a similar feat in the Rules 
for the Direction of the Mind, Pólya examined his own thoughts to find useful patterns of 
problem solving behavior. The result was a general description of problem solving processes: 
a four-phase model of problem solving (understanding the problem, devising a plan, carrying 
out the plan, looking back), the details of which included a range of problem solving heuristics, 
or rules of thumb for making progress on difficult problems. The book and Pólya's subsequent 
elaborations of the heuristic theme (in Mathematics and Plausible Reasoning, and 
Mathematical Discovery) are brilliant pieces of insight and mathematical exposition.  

A young mathematician only a few years out of graduate school, I was completely bowled over 
by the book. Page after page, Pólya described the problem solving techniques that he used. 
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Though I hadn't been taught them, I too used those techniques; I'd picked them up then pretty 
much by accident, by virtue of having solved thousands of problems during my mathematical 
career (That is, I'd been "trained" by the discipline, picking up bits and pieces of mathematical 
thinking as I developed). My experience was hardly unique, of course. In my excitement I 
joined thousands of mathematicians who, in reading Pólya's works, had the same thrill of 
recognition. In spirit I enlisted in the army of teachers who, inspired by Pólya's vision, decided 
to focus on teaching their students to think mathematically instead of focusing merely on the 
mastery of mathematical subject matter.  

To be more accurate, I thought about enlisting in that army. Excited by my readings, I sought 
out some problem-solving experts, mathematics faculty who coached students for the Putnam 
exam or for various Olympiads. Their verdict was unanimous and unequivocal: Pólya was of 
no use for budding young problem-solvers. Students don't learn to solve problems by reading 
Pólya's books, they said. In their experience, students learned to solve problems by (starting 
with raw talent and) solving lots of problems. This was troubling, so I looked elsewhere for 
(either positive or negative) evidence. As noted above, I was hardly the first Pólya enthusiast: 
By the time I read How to Solve It the math ed literature was chock full of studies designed to 
teach problem-solving via heuristics. Unfortunately, the results – whether in first grade, algebra, 
calculus, or number theory, to name a few – were all depressingly the same, and confirmed the 
statements of the Putnam and Olympiad trainers. Study after study produced "promising" 
results, where teacher and students alike were happy with the instruction (a typical phenomenon 
when teachers have a vested interest in a new program) but where there was at best marginal 
evidence (if any!) of improved problem solving performance. Despite all the enthusiasm for the 
approach, there was no clear evidence that the students had actually learned more as a result of 
their heuristic instruction, or that they had learned any general problem solving skills that 
transferred to novel situations.  

Intrigued by the contradiction – my gut reaction was still that Pólya was on to something 
significant - I decided to trade in my mathematician's cap for a mathematics educator's and 
explore the issue. Well, not exactly a straight mathematics educator's; as I said above, math ed 
had not produced much that was encouraging on the problem solving front. I turned to a 
different field, in the hope of blending its insights with Pólya's and those of mathematics 
educators.  

The first task I faced was to figure out why Pólya's strategies didn't work. If I succeeded in that, 
the next task was to make them work – to characterize the strategies so that students could learn 
to use them. The approach I took was inspired by classic problem solving work in cognitive 
science and artificial intelligence, typified by Newell and Simon's (1972) Human Problem 
Solving. In the book Newell and Simon describe the genesis of a computer program called 
General Problem Solver (GPS), which was developed to solve problems in symbolic logic, 
chess, and "cryptarithmetic" (a puzzle domain similar to cryptograms, but with letters standing 
for numbers instead of letters). GPS played a decent game of chess, solved cryptarithmetic 
problems fairly well, and managed to prove almost all of the first 50 theorems in Russell and 
Whitehead's Principia Mathematica – all in all, rather convincing evidence that its problem 
solving strategies were pretty solid.  

Where did those strategies come from? In short, they came from detailed observations of people 
solving problems. Newell, Simon, and colleagues recorded many people's attempts to solve 
problems in chess, cryptarithmetic, and symbolic logic. They then explored those attempts in 
detail, looking for uniformities in the problem solvers' behavior. If they could find those 
regularities in people's behavior, describe those regularities precisely (i.e. as computer 
programs), and get the programs to work (i.e. to solve problems) then they had pretty good 
evidence that the strategies they had characterized were useful. As noted above, they succeeded. 
Similar techniques had been used in other areas: for example, a rather simple program called 
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SAINT (for Symbolic Automatic INTegrator) solved indefinite integrals with better facility 
than most M.I.T. freshmen. In all such cases, AI produced a set of prescriptive procedures – 
problem solving methods described in such detail that a machine, following their instructions, 
could obtain pretty spectacular results.  

It is ironic that no one had thought to do something similar for human problem solving. The 
point is that one could turn the man-machine metaphor back on itself. Why not make detailed 
observations of expert human problem solvers, with an eye towards abstracting regularities in 
their behavior – regularities that could be codified as prescriptive guides to human problem 
solving? No slight to students was intended by this approach, nor was there any thought of 
students as problem solving machines. Rather, the idea was to pose the problem from a 
cognitive science perspective: "What level of detail is needed so that students can actually use 
the strategies one believes to be useful?" Methodologies for dealing with this question were 
suggested by the methodologies used in artificial intelligence. One could make detailed 
observations of individuals solving problems, seek regularities in their problem solving 
behavior, and try to characterize those regularities with enough precision, and in enough detail, 
so that students could take those characterizations as guidelines for problem solving. That's 
what I set out to do.  

The detailed studies of problem solving behavior turned up some results pretty fast. In 
particular, they quickly revealed one reason that attempts to teach problem solving via 
heuristics had failed. The reason is that Pólya's heuristic strategies weren't really coherent 
strategies at all. Pólya's characterizations were broad and descriptive, rather than prescriptive. 
Professional mathematicians could indeed recognize them (because they knew them, albeit 
implicitly), but novice problem solvers could hardly use them as guides to productive problem 
solving behavior. In short, Pólya's characterizations were labels under which families of related 
strategies were subsumed. There isn't much room for exposition here, but one example will give 
the flavor of the analysis. The basic idea is that when you look closely at any single heuristic 
"strategy," it explodes into a dozen or more similar, but fundamentally different, problem-
solving techniques. Consider a typical strategy, "examining special cases:"  

To better understand an unfamiliar problem, you may wish to exemplify the problem 
by considering various special cases. This may suggest the direction of, of perhaps 
the plausibility of, a solution.  

Now consider the solutions to the following three problems.  

Problem 1. Determine a formula in closed form for the series 

�𝑘𝑘/(𝑘𝑘 + 1)!
𝑛𝑛

𝑖𝑖=1

 

Problem 2. Let P(x) and Q(x) be polynomials whose coefficients are the same but in 
"backwards order:"  

P(x) = a0 + a1 x + a2x2 + .,. anxn , and  

Q(x) = an + an-1x + an-2x2 + ... a0xn.  

What is the relationship between the roots of P(x) and Q(x)? Prove your answer.  
Problem 3. Let the real numbers a0 and a1 be given. Define the sequence {an} by  

an = ½ (an-2 + an-1) for each n ≥ 2.  

Does the sequence {an} converge? If so, to what value?  
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I'll leave the details of the solutions to you. However, the following observations are important. 
For problem 1, the special cases that help are examining what happens when where the integer 
parameter n takes on the values 1, 2, 3, ... in sequence; this suggests a general pattern that can 
be confirmed by induction. Yet if you try to use special cases in the same way on the second 
problem, you may get into trouble: Looking at values n = 1, 2, 3, ... can lead to a wild goose 
chase. It turns out that the right special cases of P(x) and Q(x) you to look at for problem 2 are 
easily factorable polynomials. If, for example, you consider  

P(x) = (2x + 1) (x + 4) (3x - 2),  

you will discover that its "reverse," Q, is easily factorable. The roots of the P and Q are easy to 
compare, and the result (which is best proved another way) is obvious. And again, the special 
cases that simplify the third problem are different in nature. If you choose the values a0=0 and 
a1 =1, you can see what happens for that particular sequence. The pattern in that case suggests 
what happens in general, and (especially if you draw the right picture!) leads to a solution of 
the original problem.  

Each of these problems typifies a large class of problems, and exemplifies a different special 
cases strategy. We have:  

Strategy 1: When dealing with problems in which an integer parameter n plays a 
prominent role, it may be of use to examine values of n = 1, 2,3, .. , in sequence, in 
search of a pattern.  

Strategy 2: When dealing with problems that concern the roots of polynomials, it may 
be of use to look at easily factorable polynomials.  

Strategy 3: When dealing with problems that concern sequences or series that are 
constructed recursively, it may be of use to try initial values of 0 and 1 – if such choices 
don't destroy the generality of the processes under investigation. 

Needless to say, these three strategies hardly exhaust "special cases." At this level of analysis –
the level of analysis necessary for implementing the strategies – one could find a dozen more. 
This is the case for almost all of Pólya's strategies. In consequence the two dozen or so 
"powerful strategies" in How to Solve It are, in actuality, a collection of two or three hundred 
less "powerful," but actually usable strategies, The task of teaching problem solving via 
heuristics – my original goal – thus expanded to (1) explicitly identifying the most frequently 
used techniques from this long list, (2) characterizing them in sufficient detail so that students 
could use them, and (3) providing the appropriate amount and degree of training. 

Warning: It is easy to underestimate both the amount of detail and training that are 
necessary. For example, to execute a moderately complex "strategy" like "exploit an 
easier related problem" with success, you have to (a) think to use the strategy (non-
trivial!); (b) know which version of the strategy to use; (c) generate appropriate and 
potentially useful easier related problems; (d) make the right choice of related problem; 
(e) solve the problem; and (f) find a way to exploit its solution to help solve the original 
problem. Students need instruction in all of these. 

Well, this approach made progress, but it wasn't good enough. Fleshing out Pólya's strategies 
did make them implementable, but it revealed a new problem. An arsenal of a dozen or so 
powerful techniques may be manageable in problem solving. But with all the new detail, our 
arsenal comprised a couple of hundred problem solving techniques. This caused a new problem, 
which I'll introduce with an analogy.  

A number of years ago, I deliberately put the problem  
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as the first problem on a test, to give my students a boost as they began the exam. After all, a 
quick look at the fraction suggests the substitution u= x2 - 9, and this substitution knocks the 
problem off in just a few seconds. 178 students took the exam. About half used the right 
substitution and got off to a good start, as I intended. However, 44 of the students, noting the 
factorable denominator in the integrand, used partial fractions to express x/x2-9 in the form 
[A/x-3 + B/x+3] – correct but quite time-consuming. They didn't do too well on the exam. And 
17 students, noting the (u2 - a2) form of the denominator, worked the problem using the 
substitution x = 3sinθ. This too yields the right answer – but it was even more time-consuming, 
and the students wound up so far behind that they bombed the exam.  

Doing well, then, is based on more than "knowing the subject matter;" it's based on knowing 
which techniques to use and when. If your strategy choice isn't good, you're in trouble. That's 
the case in techniques of integration, when there are only a dozen techniques and they're all 
algorithmic. As we've seen, heuristic techniques are anything but algorithmic, and they're much 
harder to master. In addition, there are hundreds of them – so strategy selection becomes even 
more important a factor in success. My point was this. Knowing the strategies isn't enough. 
You've got to know when to use which strategies.  

As you might expect by now, the AI metaphor provided the basic approach. I observed good 
problem solvers with an eye towards replicating their heuristic strategy selection. Generalizing 
what they did, I came up with a prescriptive scheme for picking heuristics, called a "managerial 
strategy." It told the student which strategies to use, and when (unless the student was sure he 
had a better idea). Now again, this approach is not quite as silly as it sounds. Indeed, the seeds 
of it are in Pó1ya ("First. You have to understand the problem."). The students weren't forced 
to follow the managerial strategy like little automata. But the strategy suggested that heuristic 
techniques for understanding the problem should be used first, planning heuristics next, 
exploration heuristics in a particular order (the metric was that the further the exploration took 
you from the original problem, the later you should consider it), and so on. In class we talked 
about which heuristic technique we might use at any time, and why. Was the approach 
reductive? Maybe so. But the bottom line is that this combination of making the heuristics 
explicit, and providing a managerial strategy for students, was gloriously successful.  
The final examinations for my problem solving courses had three parts. Part 1 had problems 
similar to problems we had worked in the course. Part 2 had problems that could be solved by 
the methods we had studied, but the problems did not resemble ones we had worked. Part 3 
consisted of problems that had stumped me. I had looked through contest problem books, and 
as soon as I found a problem that baffled me, I put it on the exam! The students did quite well 
even on part 3; some solved problems on which I had not made progress, in the same amount 
of time.  

Thus ended Phase I of my work. At that point – the late 1970's to 1980 – I was pretty happy 
with the instruction, and was getting pretty good results. Then something happened that shook 
me up quite a bit. Thanks to a National Science Foundation grant I got a videotape machine, 
and actually looked at students' problem solving behavior. What I saw was frightening.  

Even discounting possible hyperbole in the last sentence, one statement in the previous 
paragraph sounds pretty strange. I'd been teaching for more than a decade and doing research 
on problem solving for about half that time. How can I suggest that, with all of that experience, 
I had never really looked at students' problem solving behavior? With the videotape equipment, 
I brought students into my office, gave them problems (before, after, and completely 
independently of my problem solving courses), and had them work on the problems at length. 
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Then, at leisure, I looked at the videotapes and examined, in detail, what the students actually 
did while they worked on the problems. What I saw was nothing like what I expected, and 
nothing like what I saw as a teacher. That's because as teachers (and often as researchers) we 
look at a very narrow spectrum of student behavior. Generally speaking, we only see what 
students produce on tests; that's the product, but focusing on the product leaves the process by 
which it evolved largely invisible. (There's a substantial difference between watching a 20-
minute videotape of a student working a problem and reading the page or two of "solution" that 
student produced in those 20 minutes. The difference can be mind boggling.) In class, or in 
office hours, we have conversations with the students, but the conversations are directed toward 
a goal – explaining something the student comes prepared to understand, and knows is coming. 
The student is primed for what we have to say. And that's the point. When we give students a 
calculus test and there's a max-min problem in it, students know it's a max-min problem. 
They've just finished a unit on max-min problems, and they expect to see a max-min problem 
on the exam. In other words, the context tells the students what mathematics to use. We get to 
see them at their very best, because (a) they're prepared, and (b) the general context puts them 
in the right ballpark and tells them what procedures to use. By way of analogy, you don't 
discover whether kids can speak grammatically (or think on their feet) when you give them a 
spelling test, after they've been given the list of words they'll be tested on. (Even when I taught 
the problem solving class, I was showing students techniques that they knew were to be used 
in the context of the problem solving class. Hence they came to my final prepared to use those 
techniques.)  

In my office, problems come out of the blue and the context doesn't tell students what methods 
are appropriate. The result is that I get to see a very different kind of behavior. One problem 
used in my research, for example, is the following:  

Problem 4: Three points are chosen on the circumference of a circle of radius R, and 
the triangle with those points as vertices is drawn. What choice of points results in the 
triangle with largest possible area? Justify your answer as well as you can.  

Though there are clever solutions to this problem (see below), the fact is that you can approach 
it as a standard multivariate max-min problem. Virtually none of my students (who had finished 
3rd semester calculus, and who knew more than enough mathematics to knock the problem off) 
approached it that way. One particular pair of students had just gotten A's in their 3rd semester 
calculus class, and each had gotten full credit on a comparably difficult problem on their exam. 
Yet when they worked on this problem they jumped into another (and to me, clearly irrelevant) 
approach altogether, and persisted at it for the full amount of allotted time. When they ran out 
of time, I asked them where they were going with that approach and how it might help them. 
They couldn't tell me. That solution attempt is best described as a twenty-minute wild goose 
chase.  

Most of my videotapes showed students working on problems that they "knew" enough 
mathematics to solve. Yet time and time again, students never got to use their knowledge. They 
read the problem, picked a direction (often in just a second or two), and persevered in that 
direction no matter what. Almost sixty percent of my tapes are of that nature. But perhaps the 
most embarrassing of the tapes is one in which I recorded a student who had taken my problem 
solving course the year before.  

There is an elegant solution to Problem 4, which goes as follows. Suppose the three vertices are 
A, B, and C. Hold A and B fixed, and ask what choice of C gives the largest area. It's clearly 
when the height of the triangle is maximized – when the triangle is isosceles. So the largest 
triangle must be isosceles. Now you can either maximize isosceles triangles (a one-variable 
calculus problem), or finish the argument by contradiction. Suppose the largest triangle, ABC, 
isn't equilateral. Then two sides are unequal; say AC ≠ BC. If that's the case, however, the 



Alan Schoenfeld 

65 

isosceles triangle with base AB is larger than ABC – a contradiction. So ABC must be 
equilateral.  

The student sat down to work the problem. He remembered that we'd worked it in class the 
previous year, and that there was an elegant solution. As a result, he approached the problem 
by trying to do something clever. In an attempt to exploit symmetry he changed the problem he 
was working on (without acknowledging that this might have serious consequences). Then, 
pursuing the goal of a slick solution he missed leads that clearly pointed to a straightforward 
solution. He also gave up potentially fruitful approaches that were cumbersome because "there 
must be an easier way." In short, a cynic would argue that he was worse off after my course 
than before. (That's how I felt that afternoon.)  

In any case, I drew two morals from this kind of experience. The first is that my course, broad 
as it was, suffered from the kind of insularity I discussed above. Despite the fact that I was 
teaching "general problem solving strategies," I was getting good results partly because I had 
narrowed the context: students knew they were supposed to be using the strategies in class, and 
on my tests. If I wanted to affect the students' behavior in a lasting way, outside of my 
classroom, I would have to do something different. [Note: I had plenty of testimonials from 
students that my course had "made me a much better problem solver," "helped me do much 
better in all of my other courses," and "changed my life." I'm not really sanguine about any of 
that.] Second and more important, I realized that there was a fundamental mistake in the 
approach I had taken to teaching problem solving – the idea that I could, as I put it so 
indelicately in the first paragraph of this paper, cram problem solving knowledge down my 
students' throats.  

That kind of approach makes a naïve and very dangerous assumption about students and 
learning. It assumes, in essence, that each student comes to you as a tabula rasa, that you can 
write you problem solving "message" upon that blank slate, and that the message will "take." 
And it just ain't so. The students in my problem solving classes were the successes of our 
system. They were at Hamilton College, at Rochester, or at Berkeley because they were good 
students; they were in a problem solving class (which was known as a killer) because they liked 
mathematics and did pretty well at it. They come to the class with well engrained habits – the 
very habits that have gotten them to the class in the first place, and accounted for their success. 
I ignore all of that (well, not really; but a brief caricature is all I've got room for) and show them 
"how to do it right." And when they leave the classroom and are on their own ... well, let's be 
realistic. How could a semester's worth of training stack up against an academic lifetime's worth 
of experience, especially if the course ignores that experience? (Think of what it takes to retrain 
a self-taught musician or tennis player, rather than teach one from scratch. Old habits die very 
very hard, if they die at all.)  

Well, the point is clear. If you're going to try to affect students' mathematical problem solving 
behavior, you'd better understand that behavior. That effort was the main thrust of what (linear 
type that I am) I'll call phase 2. Instead of trying to do things to (and with) students, the idea 
was to understand what went on in their heads when they tried to do mathematics. Roughly 
speaking, the idea was this. Suppose I ask someone to solve some mathematics problems for 
me. For the sake of a permanent record, I videotape the problem solving session (and the person 
talks out loud as he or she works, giving me a verbal "trace" as well.). My goal is to understand 
what the person did, why he or she did it, and how those actions contributed to his or her success 
or failure at solving the problem. Along the way I'm at liberty to ask any questions I want, give 
any tests that seem relevant, and perform any (reasonable) experiments. What do I have to look 
at, to be reasonably confident that I've focused on the main determinant of behavior, and on 
what caused success or failure?  
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The details of my answer are xvi+409 pages long. The masochistic reader may find them, as 
well as the details of the brief anecdotes sketched above, in my (1985) Mathematical Problem 
Solving. In brief, the book suggested that if you're going to try to make sense of what people 
do when they do mathematics, you'd better look at:  

A. "Cognitive resources," one's basic knowledge of mathematical facts and procedures 
stored in LTM (long term memory.) Most of modern psychology, which studies what's 
in a person's head and how that knowledge is accessed, is relevant here.  

B. Problem solving strategies or heuristics. I've said enough about these.  
C. Executive or "Control" behavior. [For the record, this behavior is often referred to as 

"metacognition."] I discussed this above as well. It's not just what you know (A+B 
above), it's how you use it. The issue in the book was how to make sense of such 
things. It's tricky, for the most important thing in a problem solving session may be 
something that doesn't take place – asking yourself if it's really reasonable to do 
something, and thereby forestalling a wild goose chase.  

D. Belief systems. I haven't mentioned these yet, but I will now.  

Beliefs have to do with your mathematical weltanschauung, or world view. The idea is that 
your sense of what mathematics is all about will determine how you approach mathematical 
problems. At the joint CMS/CMESG meetings in June 1986, Ed Williams told me a story that 
illustrates this category. Williams was one of the organizers of a problem solving contest which 
contained the following problem:  

"Which fits better, a square peg in a round hole or a round peg in a square hole?"  

Since the peg-to-hole ratio is 2/𝜋𝜋 (about .64) in the former case and 𝜋𝜋/4 (about .79) in the latter, 
the answer is "the round peg." (Since the tangents line up in that case and not in the other, there's 
double reason to choose that answer.) It seems obvious that you have to answer the question by 
invoking a computation. How else, except with analytic support, can you defend your claim?  

It may be obvious to us that an analytic answer is called for, but it's not at all obvious to students. 
More than 300 students – the cream of the crop – worked the problem. Most got the right 
answer, justifying it on the basis of a rough sketch. Only four students out of more than 300 
justified their answer by comparing areas. (I can imagine a student saying "you just said to say 
which fit better. You didn't say to prove it.") Why? I'm sure the students could have done the 
calculations. They didn't think to, because they didn't realize that justifying one's answer is a 
necessary part of doing mathematics (from the mathematician's point of view).  

For the sake of argument, I'm going to state the students' point of view (as described in the 
previous paragraph) in more provocative form, as a belief:  

Belief 1: If you're asked your opinion about a mathematical question, it suffices to 
give your opinion, although you might back it up with evidence if that evidence is 
readily available. Formal proofs or justifications aren't necessary, unless you're 
specifically asked for them – and that's only because you have to play by the rules of 
the game.  

We've seen the behavioral corollary of this belief, as Williams described it. Unfortunately, this 
belief has lots of company. Here are two of its friends, and their behavioral corollaries.  

Belief 2: All mathematics problems can be solved in ten minutes or less, if you 
understand the material. Corollary: Students give up after ten minutes of work on a 
"problem.")  
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Belief 3: Only geniuses are capable of discovering, creating, and understanding 
mathematics. Corollary: Students expect to take their mathematics passively, 
memorizing without hope or expectation of understanding.  

An anecdote introduces one last belief. A while ago I gave a talk describing my research on 
problem solving to a group of very talented undergraduate science majors at Rochester. I asked 
the students to solve Problem 5, given in Fig. 1. The students, working as a group, generated a 
correct proof. I wrote the proof (Fig. 2) on the board. A few minutes later I gave the students 
Problem 6, given in Fig. 3.  

In the figure below, the circle with center C is tangent to the top and bottom 
lines at the points P and 0 respectively.  

a. Prove that PV = QV. Confessions. 
b. Prove that the line segment CV bisects angle PVQ 

                   

Figure 1 

 

                   

Proof: Draw in the line segments CP, CQ, and CV. Since CP and CQ are radii 
of circle C, they are equal; since P and Q are points of tangency, angles CPV 
and CQV are right angles. Finally since CV=CV, triangles CPV and CQV are 
congruent.  

a. Corresponding parts of congruent triangles are congruent, so PV = 
QV.  

b. Corresponding parts of congruent triangles are congruent, so angle 
PVC = angle QVC. 

Figure 2 
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You are given two intersecting straight lines and a point P marked on one of them, as 
in the figure below. Show how to construct, using straightedge and compass, a circle 
that is tangent to both lines and that has the point P as its point of tangency to the top 
line. 

 

Figure 3 

Students came to be bored and made the following conjectures, in order:  

a. Let Q be the paint on the bottom line such that QV = PV. The center of the desired 
circle is the midpoint of line segment PQ. (Fig. 4a).  

b. Let A be the segment of the arc with vertex V, passing through P, and bounded by the 
two lines. The center of the desired circle is the midpoint of the arc A. (Fig. 4b).  

c. Let R be the point on the bottom line that intersects the line segment perpendicular to 
the top line at P. The center of the desired circle is the midpoint of line segment PR. 
(Fig. 4c).  

d. Let L1 be the line segment perpendicular to the top line at P, and L2 the bisector of the 
angle at V. The center of the desired circle is the point of intersection of L1 and L2. 
(Fig. 4d).  

 

Figure 4: Students' conjectured solutions  
(Short horizontal lines denote midpoints.) 
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The proof that the students had generated – which both provides the answer and rules out 
conjectures a, b, and c – was still on the board. Despite this, they argued for more than ten 
minutes about which construction was right. The argument was on purely empirical grounds 
(that is, on the grounds of which construction looked right), and it was not resolved. How could 
they have this argument, with the proof still on the board? I believe that this scene could only 
take place if the students simply didn't see the proof problem as being relevant to the 
construction problem. Or again in provocative form.  

Belief 4: Formal mathematics, and proof, have nothing to do with discovery or 
invention. Corollary: The results of formal mathematics are ignored when students 
work discovery problems.  

Since we're in "brief survey mode," I don't want to spend too much time on beliefs per se. I 
think the point is clear. If you want to understand students' mathematical behavior, you have to 
know more than what they "know." These students "knew" plane geometry, and how to write 
proofs; yet they ignored that knowledge when working construction problems. Understanding 
what went on in their heads was (and is) tricky business. As I said, that was the main thrust of 
phase 2.  

But enough of that; we're confronted with a real dilemma. The behavior I just described turns 
out to be almost universal. Undergraduates at Hamilton College, Rochester, and Berkeley all 
have much the same mathematical world view, and the (U.S.) National Assessments of 
Educational Progress indicate that the same holds for high school students around the country. 
How in the world did those students develop their bizarre sense of what mathematics is all 
about?  

The answer, of course, lies in the students' histories. Beliefs about mathematics, like beliefs 
about anything else – race, sex, and politics, to name a few – are shaped by one's environment. 
You develop your sense of what something is all about (be that something mathematics, race, 
sex, or politics) by virtue of your experiences with it, within the context of your social 
environment. You may pick up your culture's values, or rebel against them – but you're shaped 
by them just the same.  

Mathematics is a formal discipline, to which you're exposed mostly in schools. So if you want 
to see where kids' views about mathematics are shaped, the first place to go is into mathematics 
classrooms. I packed up my videotape equipment, and off I went. Some of the details of what I 
saw, and how I interpreted it, are given in the in-press articles cited in the references. A 
thumbnail sketch of some of the ideas follows.  

Borrowing a term from anthropologists, what I observed in mathematics classes was the 
practice of schooling – the day-to-day rituals and interactions that take place in mathematics 
classes, and (de facto) define what it is to do mathematics. One set of practices has to do with 
homework and testing. The name of the game in school mathematics is "mastery:" Students are 
supposed to get their facts and procedures down cold. That means that most homework 
problems are trivial variants of things the students have already learned. For example, one 
"required" construction in plane geometry (which students memorize) it to construct a line 
through a given point, parallel to a given line. A homework assignment given a few days later 
contained the following problem: Given a point on a side of a triangle, construct a line through 
that point parallel to the base of the triangle. This isn't a problem; it's an exercise. It was one of 
27 "problems" given that night; the three previous assignments had contained 28, 45, and 18 
problems respectively. The test on locus and constructions contained 25 problems, and the 
students were expected to finish (and check!) the test in 54 minutes – an average of two minutes 
and ten seconds per problem. Is it any wonder that students come to believe that any problem 
can be solved in ten minutes or less?  
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I also note that the teacher was quite explicit about how the students should prepare for the test. 
His advice – well intentioned – to the students when they asked about the exam was as follows: 
"You'll have to know a" your constructions cold so that you don't spend a lot of time thinking 
about them." In fact, he's right. Certain skills should be automatic, and you shouldn't have to 
think about them. But when this is the primary if not the only message that students get, they 
abstract it as a belief: mathematics is mostly, if not all, memorizing.  

Other aspects of what I'll call the "culture of schooling" shape students' view of what 
mathematics is a" about. Though there is now a small movement toward group problem solving 
in the schools, mathematics for the most part is a solitary endeavor, with individual students 
working alone at their desks. The message they get is that mathematics is a solitary activity.  

They also get a variety of messages about the nature of the mathematics itself. Many word 
problems in school tell a story that requires a straightforward calculation (for example, "John 
had twenty-eight candy bars in seven boxes. If each box contained the same number of candy 
bars, how many candy bars are there in each box?"). The students learn to read the story, figure 
out which calculation is appropriate, do the calculation, and write the answer. An oft quoted 
problem on the third National Assessment of Educational Progress (secondary school 
mathematics) points to the dangers of this approach. It asked how many buses were needed to 
carry 1128 soldiers to their training site, if each bus holds 36 soldiers. The most frequent 
response was "31 remainder 12" – an answer that you get if you follow the practice for word 
problems just described, and ignore the fact that the story (ostensibly) refers to a "real world" 
situation.  

Even when students deal with "applied" problems, the mathematics that they learn is generally 
clean, stripped of the complexities of the real world. Such problems are usually cleaned up in 
advance – simplified and presented in such a way that the techniques the students have just 
studied in class will provide a "solution." The result is that the students don't learn the delicate 
art of mathematizing – of taking complex situations, figuring out how to simplify them, and 
choosing the relevant mathematics to do the task. Is it any surprise that students aren't good at 
this, and that they don't "think mathematically" in. real world situations for which mathematics 
would be useful?  

I'm proposing here that thorny issues like the "transfer problem" (why students don't transfer 
skills they've learned in one context and use them in other, apparently related ones) and the 
failure of a whole slew of curriculum reform movements (e.g. the "applications" movement a 
few years back) have, at least in part, cultural explanations. Suppose we accept that there is 
such a thing as school culture, and it operates in ways like those described above. Curricular 
reform, then, means taking new curricula (or new ideas, or ...) and shaping them so that they fit 
into the school culture. In the case of "applications," it means cleaning problems up so that 
they're trivial little exercises – and when you do that, you lose both the power, and the potential 
transfer, of the applications. In that sense, the culture of schooling stands as an obstacle to 
school reform. Real curricular reform, must in part involve a reform of school culture. 
Otherwise it doesn't stand a chance.  
Well, here I am arguing away in the midst of – as though you haven't guessed – phase 3. There 
are two main differences from phase 2. The first is that I've moved from taking snapshot views 
of students (characterizing what's in a student's head when the student sits down to work some 
problems) to taking a motion picture. The question I'm exploring now is: how did what's in the 
student's head evolve the way it did? The second is that the explanatory framework has grown 
larger. Though I still worry about "what's going on in the kid's head," I look outside for some 
explanations – in particular, for cultural ones.  
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And yet plus ça change, plus ça reste le même. I got into this business because, in Halmos' 
phrase, I thought of problem solving as "the heart of mathematics" – and I wanted students to 
have access to it. As often happens, I discovered that things were far more complex than I 
imagined. At the microlevel, explorations of students' thought processes have turned out to be 
much more detailed (and interesting!) than I might have expected. I expect to spend a substantial 
part of the next few years looking at videotapes of students learning about the properties of 
graphs. Just how do they make sense of mathematical ideas? Bits and pieces of "the fine 
structure of cognition" will help me to understand students' mathematical understandings. At 
the macro-level, I'm now much more aware of knowledge acquisition as a function of cultural 
context. That means that I get to play the role of amateur anthropologist – and that in addition 
to collaborating with mathematicians, mathematics educators, AI researchers, and cognitive 
scientists, I now get to collaborate with anthropologists and social theorists. That's part of the 
fun, of course. And that's only phase 3. I can't tell you what phase 4 will be like, but there's a 
good chance there will be one. Like the ones that preceded it, it will be based in the wish to 
understand and teach mathematical thinking. It will involve learning new things, and new 
colleagues from other disciplines. And it's almost certain to be stimulated by my discovery that 
there's something not right about the way I've been looking at things.  

Are there any morals to this story – besides the obvious one, that I've been wrong so often in 
that past that you should be very skeptical about what I'm writing now? I think there's one. My 
work has taken some curious twists and turns, but there has been a strong thread of continuity 
in its development; in many ways, each (so-called) phase enveloped the previous ones. What 
caused the transitions? Luck, in part. I saw new things, and pursued them. But I saw them 
because they were there to be seen. Human problem solving behavior is extraordinarily rich, 
complex, and fascinating – and we only understand very little of it. It's a vast territory waiting 
to be explored, and we've only explored the tiniest part of that territory. Each of my "phase 
shifts" was precipitated by observations of students (and, at times, their teachers) in the process 
of grappling with mathematics. I assume that's how phase 4 will come about, for I'm convinced 
that – putting theories and methodologies, and tests, and just about everything else aside – if 
you just keep your eyes open and take a close look at what people do when they try to solve 
problems, you're almost guaranteed to see something of interest.  
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THE ROLE OF EPISTEMOLOGY IN THE ANALYSIS OF 
TEACHING/LEARNING RELATIONSHIPS IN MATHEMATICS 

EDUCATION 

Michèle Artigue  
University of Paris 

In 1995 we had the honour of hosting Professor Michèle Artigue, French mathematician and 
mathematics educational researcher, former president of ICMI and Felix Kline medalist for life-time 
achievements in mathematics education. Artigue's plenary was chosen for inclusion in this volume 
because it represents the world class scholarship that Canadian mathematics educators and researchers 
have had access to through our plenary lectures. Her lecture, "The role of epistemology in the analysis 
of teaching/learning relationships in mathematics education" introduced those of us who had little 
exposure to French didatiques, including notions of epistemological obstacles, tool – object dialetic 
and alternate contexts for mathematical objects. Not only did she illustrate their theoretical value but 
she offered a critique on the limitations of these concepts. With concrete examples from empirical work 
she illustrated these deep theoretical notions.  

En 1995, nous avons eu l’honneur de recevoir la professeure Michèle Artigue, mathématicienne et 
chercheure française en didactique des mathématiques, ancienne présidente de l’ICMI, récipiendaire 
de la médaille Klein de l’ICMI pour sa carrière exceptionnelle dans le champ de la recherche en 
didactique des mathématiques. La conférence plénière de Michèle Artigue a été retenue pour ce volume 
parce qu’elle nous rappelle qu’au fil du temps, les rencontres annuelles du GCEDM nous ont donné 
accès, par le biais de leurs conférences plénières,  à de nombreux chercheurs  de renommée 
internationale. Sa présentation, “Le rôle de l’épistémologie dans l’analyse des relations 
enseignement/apprentissage en didactique des mathématiques”, a initié les membres du groupe peu 
exposés à la didactique française à des concepts clés comme l’obstacle épistémologique, la dialectique 
outil-objet et les jeux de cadres. Non seulement a-t-elle insisté sur leur valeur théorique mais, adoptant 
un regard critique, elle a mis en évidence quelques limites de ces concepts. Aussi, puisant à des 
recherches empiriques, elle a illustré ces notions théoriques à l’aide d’exemples. 

 

INTRODUCTION 
More and more, mathematics education is considered as an autonomous scientific field, capable 
of defining its own problems and methodologies. Nonetheless the question of developing or 
maintaining relationships with related scientific fields remains an essential one. In this text, we 
focus on the relationships with epistemology which, in my opinion, are fundamental.  

First we clarify our use of the word "epistemology" by underlining what we feel is of crucial 
interest in epistemological work from a didactical point of view, namely, reflection on the 
nature of mathematical concepts, on the processes and conditions for their development, on the 
characteristics of present as well as past mathematical activity, on what constitutes the specific 
nature of one mathematical domain or another.  

Such a reflection is necessary in mathematics education, for several reasons, the following 
being of particular importance:  

• our work in mathematics education is governed, implicitly if not explicitly, by our 
epistemological representations and we have to be as clear as possible about them,  



1995  Plenary Lecture 

74 

• a strong and privileged contact with mathematics via the educational world tends to 
distort epistemological representations, to shape them in order to make them 
compatible with the way mathematics is living in this educational world, and to reduce 
our mathematics to the taught mathematics.  

So epistemological work is necessary to be able to look at this educational world from the 
outside, to make its epistemological choices apparent and questionable.  

By making its epistemological choices apparent and open to discussion, epistemological work 
helps us to gain an extrinsic view on education. This epistemological work has taken different 
forms in the didactics of mathematics. In the first part of this text, without pretending to be 
exhaustive, we will give some idea of its variety and richness. In the second part, we will evoke 
its limits.  

THE ROLE OF THE THEORY OF EPISTEMOLOGICAL OBSTACLES IN 
THE DIDACTICS OF MATHEMATICS  
For a French didactician, the word "epistemology" immediately evokes the theory of 
"epistemological obstacles" initially developed by the philosopher G. Bachelard (Bachelard, 
1938) and transported into the didactics of mathematics by G. Brousseau, 20 years ago (lecture 
given at the CIEAEM Conference, in Louvain la Neuve, in 1976). As stressed by A. Sierpinska 
in her book "Understanding in mathematics", the idea of "discontinuity" inherent to this theory 
can be found in many philosophers before and after Bachelard from Bacon and Husserl to 
Lakatos and Kuhn, not to mention others. Perhaps more than others, this theory dramatically 
put to the fore discontinuity, by considering that new knowledge is always founded, in some 
part, on a rejection process.  

Bachelard (1938) wrote in "La formation de l'esprit scientifique."  

Reflecting on a past of errors, the truth is found in a real intellectual repentance. In 
fact, one knows always against some previous knowledge, by destroying ill built 
knowledge, by overcoming that which in the mind itself is an obstacle to 
spiritualization (p.13).  

This dramatic position is specially questioning for mathematics educators as it radically 
disqualifies the still dominant illusion that mathematics learning can be organised along a 
smooth path, where knowledge increases gently step by step, with some necessary 
reorganisations, of course—everyone has heard about Piaget's theories of assimilation and 
accommodation-but fundamentally in a process capable of avoiding major ruptures and the 
disturbing paradoxes of the didactic contract they induce (Brousseau, 1986).  

At the opposite end, the theory of epistemological obstacles is based on the fact that ruptures 
are the normality, that we cannot directly learn definitive forms of knowledge, that progress 
necessarily requires some kind of rejection of what has been for a time, often a long time, a 
motor of progress.  

Initially, Brousseau exploited this notion to analyze the persistent errors of pupils in the 
extension of numbers from whole numbers to rationals and decimals and to question the 
dominant status of errors in the educational world (Brousseau, 1983). Later, the field of 
mathematical analysis and especially the notion of limit became a field of interest for the 
development of this theory within the didactics of mathematics, through the works of B. Cornu 
first (Cornu, 1983) and then A. Sierpinska (Sierpinska, 1985). After an in-depth historical study, 
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Sierpinska produced a structured list of obstacles2 which marked out the historical evolution of 
the concept of limit and she proved that such a list could be used in order to interpret persistent 
difficulties encountered by present students. Beyond that, Cornu's and Sierpinska's research 
clearly showed the existence of different kinds of epistemological obstacles:  

• some could be linked to common and social knowledge about limits,  
• some could be traced to the under-development of crucial notions such as that of 

function,  
• some were linked to the over-generalization of properties of familiar finite processes 

to this infinite process according, for instance, to the "continuity principle" stated by 
Leibnitz,  

• some, not of minor importance, could be linked to more philosophical principles and 
beliefs about the nature of mathematical objects and mathematical activity, for 
instance about the status of infinity. 

At a theoretical level Sierpinska, with reference to Wilder and Hall, (Sierpinska, 1988 and 1994) 
integrated this diversity by considering "mathematics as a developing system of culture and a 
sub-culture of the overall culture in which it develops." This cultural conception, of 
mathematics leads to the identification of three levels in mathematical culture, in on-going 
interaction:  

• the formal level, that of unquestioned principles and beliefs,  
• the informal level which is the level of "tacit knowledge, of unspoken ways of 

approaching and solving problems," "of canons of rig our and implicit conventions,"  
• the technical level which is the domain of rationally justified, explicit knowledge.  

According to Sierpinska, epistemological obstacles are situated at the first two levels and this 
location has some important consequences for the strategies we have to develop in order to 
overcome them.  

This approach in terms of epistemological obstacles is often associated with a search in the 
history of mathematics, for significant and fundamental problems which permit an organization 
of the teaching process that would be epistemologically more adequate than the usual ones. 
Research developed in Louvain la Neuve under the direction of N. Rouche and, especially M. 
Schneider's thesis entitled "Des objets mentaux aires et volumes au calcul des primitives" is 
typical of that direction (Schneider, 1989). It is based on a close analysis of students' behaviour 
when faced with a field of problems, mainly adapted from historical ones. This analysis tends 
to prove that the perception of surfaces (respectively volumes) as the piling up of segments 
(respectively surfaces), similar to that developed by Cavalieri and others in the seventeenth 
century, although not explicitly taught, is present in the mental representations and informal 
mathematical culture of today's students. Schneider has shown that this fact can explain some 
frequent and persistent errors in the calculation of areas and volumes, as well as some 
difficulties in understanding the modem process of integration.  

From there, a teaching strategy is designed where problems are first chosen to highlight the 
productive character of this perception of geometrical objects and make explicit corresponding 
informal reasonings. For instance, as shown in Figure 1, students have to explain why the area 

                                                 
2 The list was structured around four categories: "horror infiniti" grouping both obstacles linked to the 
rejection of the status of mathematical operation for the limit process and obstacles linked to the automatic 
transfer of methods and results of finite processes to infinite ones; obstacles linked to the concept of 
function; obstacles linked to an over-exclusively geometrical conception of limit; obstacles of a logic 
nature. 
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oft be parallelogram is the same as the area of the rectangle, or why the volume of the solid 
delimited by the cylinder and the half-sphere is the same as that of the cone.  

 

Figure 1: The productive character of an intuition in terms of indivisible.  

In the next step, problems which fired controversies in the seventeenth century were used to 
attack the epistemological obstacle (called by the author "the obstacle of heterogeneity of 
dimensions") derived from this productive perception: It results from the simultaneous, 
uncontrolled and often unconscious use of geometrical objects of different dimensions in the 
calculation of areas and volumes.  

For instance, students have to explain why the lateral area of the cone is different from its base 
area even though there is a one-to-one correspondence between the circles which compose each 
of them. Or they have to explain why the formula obtained by summing up the lateral areas of 
the cylinders which compose the solid of revolution, in Figure 2, does not give a correct value 
for the volume of this solid.  

Before leaving this point, let us stress that such a focus on strong and necessary ruptures in the 
growth of knowledge, is not necessarily subordinated to historical analysis in didactical 
research. For instance, M. Legrand (1993) recently developed a strong epistemological analysis 
in order to understand the relationships between algebra and analysis, referring only to the 
actual prevalent vision of the field of analysis, as the field of "approximation, majoration, 
minoration", as expressed by Dieudonne. He showed that students must construct their 
knowledge in mathematical analysis both on and against their previous algebraic knowledge. 
For instance, in the same way these students have to radically modify their relationship to 
equality when passing from numerical thinking developed in our elementary schools to the 
algebraic thinking developed in junior high schools, they have once more to radically modify 
this relationship when passing from algebraic thinking to analytic thinking. For example, in 
order to prove that two objects a and b are equal, most often in analysis, we do not use 
equivalence processes directly as in algebra-such a strategy is often out of reach and, even if it 
can be used, generally it is not the most effective. Instead, we try to prove that for an adequate 
norm or distance, the norm of the difference between a and b or the distance between a and b 
is less than any positive real number.  
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Figure 2: The epistemological obstacle of heterogeneity of dimensions. 

Entering analytic thinking means understanding that this kind of detour will generally be 
worthwhile. At a more advanced level, students will have to understand that, in analysis, in 
order to prove that a family FI of objects possess a given property, a similar detour will often 
be used: prove the property for a family of simpler objects F2, then prove that each element of 
FI can be considered as the limit for an adequate topology of elements of F2 and that the 
property at stake is conserved through the limit process. In the same way, students have to 
change their habits with the treatment of inequalities and many other objects, familiar but in 
another world-the algebraic world.  

Legrand points out how traditional teaching, shaped by the illusion of continuity, is insensitive 
to these problems and tends to leave it up to the students to deal with these crucial ruptures and 
reconstructions.  
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EPISTEMOLOGICAL ROOTS OF GLOBAL THEORIES IN DIDACTICS  
Beyond attracting attention to ruptures and discontinuities in knowledge, epistemology also 
plays an essential role in the more global theoretical frameworks we develop. Many examples 
can illustrate this point. I would like to deal with this aspect through one example: the 
framework in terms of "tool-object dialectic and setting games" developed by R. Douady in the 
last decade (Douady, 1984) and widely used in French didactics.  

THE TOOL OBJECT DIALECTIC  

The "tool-object" dialectic is based on the following epistemological distinction: a 
mathematical concept can be attributed two different status:  

• a "tool" status when it is thought of and used as a tool in order to solve specific 
problems,  

• an "object" status when it is considered in its cultural dimension, as a piece of socially 
recognised scientific knowledge, and studied for its own sake.  

The study of the history of mathematical concepts suggests that most of the time (but not 
always) mathematical concepts come into being first as tools and the tool is the basis for the 
construction of the object.  

This distinction appears as a strong characteristic of mathematical concepts and mathematical 
activity. One could also evoke the distinction between the structural and operational dimensions 
of mathematical concepts introduced by A. Sfard (Sfard, 1991). Here, the term "structural" 
refers to a treatment of mathematical concepts "as if they referred to some abstract objects" and 
the term "operational" to a description in terms of "processes, algorithms and actions." The 
distinctions introduced by Sfard and Douady do not match exactly. In other words, one cannot 
equate the "tool" and "operational" dimensions nor equate the "object" and "structural" 
dimension.  

Sfard's analysis is essentially set up around the cognitive processes linked to the transition 
between processes and objects. Douady's analysis refers more to an analysis in terms of 
mathematical problems. Thus, when speaking of the tool dimension of the concept of function 
for instance, one refers to the use of this concept in order to solve problems internal or external 
to mathematics; when speaking of the process or operational dimension of this concept, one 
refers to a procedural view of the concept in terms of input-output system as opposed to the 
static and structural vision developed within set theory. Nevertheless both approaches stress the 
complementarity and duality of the dimensions they identify in mathematical activity; both 
point out the historical anteriority of one of these dimensions (the tool dimension for Douady, 
the operational dimension for Sfard) and the necessity to pay some attention to these 
characteristics in didactic transposition processes.  

This is again a challenging distinction for mathematics educators as the traditional teaching 
tends to reverse this natural order and introduce objects which only later have to be used as 
tools in different contexts.  

In Douady's research, the tool-object distinction does not appear as a consequence of an 
historical epistemological study. It is essentially induced by her analysis of contemporary 
mathematical activity. Nevertheless, history of mathematics shows the relevance of this 
distinction. Let us take the example of the history of complex numbers. Indeed, what appeared 
on the mathematical scene during the sixteenth century, in the work of Italian algebraists such 
as Ferrari, Cardan, and Bombelli was first a tool and even an implicit tool, via the audacious 
extension of a technique for the solving of equations of the third degree, known as Cardano's 
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technique3. This technique was extended to an a priori illegal case (negative square), which led 
to the introduction of new operational signs such as the "piu di meno" and "meno di meno" 
notations introduced by Bombelli in his "Algebra" (1572) to deal with the addition and 
substraction of square roots of negative quantities.  

These new expressions, of course, did not immediately take on the status of number. They 
remained for a long time, without any meaning, pure syntactical objects whose manipulation 
was governed by the principle of permanence stated later by Leibnitz. Thus, during the 
seventeenth century, they took on the status of convenient intermediaries in calculations, but 
only calculations which started with ordinary numbers and led to ordinary numbers.  

Slowly, however, this status evolved. Tools, explicitly identified, and named (a specific article 
is devoted to them in the Encyclopedia by d'Alembert), the imaginary quantities went beyond 
the single context of equations to enter other domains such as trigonometry with Moivre (1722). 
They also began to be treated as autonomous variables in functional expressions, especially 
developments in series, which were so important at the time. Moreover, imaginary quantities 
became necessary instruments in the formulation of such important results of the eighteenth 
century such as:  

• the fundamental theorem of algebra,  
• the unification of spherical and hyperbolical trigonometries, via Euler's formulae.  

The tool thus started to present undeniable characteristics of a mathematical object, but it 
remained a purely symbolic one, defined but not constructed, not susceptible to real 
interpretation. It was only during the nineteenth century that imaginary quantities acquired their 
present status of fully legitimate objects. This was achieved in two distinct stages: first via the 
geometrical interpretation proposed independently by Wessel, Argand, Gauss and others, then 
via Cauchy's and Hamilton's constructions which finally founded them algebraically.  

The kind of analysis this brief presentation attempts to summarize has, in our opinion, an 
important role to play. It helps the mathematics educator to become more aware of the 
denaturations didactic theories often suffer when, from a tool for understanding the functioning 
of teaching/learning relationships, they become tools for acting on educational systems and are 
more or less consciously shaped in order to become compatible with them. For instance, the 
above historical analysis reminds us that the relationships between the tool and object 
dimensions of mathematical concepts are complex and dialectic, much more complex and 
dialectic than they ordinarily appear in the very simplified versions of the tool-object dialectic 
proposed in most educational papers. The complex number object is not of the tool-object 
dialectic proposed in most educational papers. The complex number object is not created 
suddenly by some miraculous institutionalisation process on the basis of activities of problem 
solving in which it only had a tool status. Before being fully legitimised, it already produces 
generality and is engaged in more complex processes.  

The dialectic between the tool and some pre-object is established very early and plays an 
essential role in the evolution of the two dimensions. A restrictive interpretation of the theory 
such as: first comes the tool, then comes the object and they both develop dialectically, appears 
rather inadequate. Moreover, the proof of effectiveness in problem solving is not enough to 

                                                 
3 In order to solve the equation x3 = a + bx by searching 
 

𝑥𝑥 = √𝑢𝑢3 + √𝑣𝑣3  
 
as Italian algebraists did at the time, one is led to find u such that the square of u-a/2 is equal to 
(a/2)2-(b/3)3. When the initial equation has three real roots, this quantity is negative. 
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guarantee the status of object: the mechanisms of acquiring an institutional legitimacy are much 
more subtle.  

Beyond this function of epistemological vigilance, such an historical work help us to question 
our theoretical categories necessarily built in a limited context. For example, Douady 
formulates the hypothesis that most concepts obey the tool-object dialectic process. What does 
"most" means exactly? Is it necessary to introduce other categories and what could be the 
consequences of other distinctions on our didactics theories?  

The research we carried out on quaternions (Artigue and Deledicq, 1992), clearly shows that 
these new numbers entered the mathematical scene in the middle of the nineteenth century, 
directly as objects. This was achieved in a generalisation process whose aim was to extend to 
geometrical three dimensional spaces the possibility of an algebraic calculus opened up by the 
use of complex numbers in plane geometry.  

Also the recent work on the history of linear algebra (Dorier, 1990) shows that fundamental 
concepts of modem linear algebra such as that of vector space in axiomatic form, dimension 
and rank result more from an unifying process than from a tool-object process. This unifying 
process was aimed at connecting different problems already solved by mathematicians and was 
to give the means for elaborating this connection formally. This unifying character is not 
without influence on their development. Dorier points out for instance that it took a very long 
time for mathematicians, working in this area and used to solving problems with non-intrinsic 
methods even in infinite dimension, to really appropriate these concepts and understand their 
importance. He also stresses that the development of functional analysis and theory of Banach 
spaces played an essential role.  

No doubt other epistemological distinctions could be made about the status of concepts that we 
teach, beyond the tool-object distinction. For example the notion of "proof generated concept" 
introduced by Lakatos (1976), could be of some inspiration to analyze the problem mentioned 
above and reflect on adequate ways for introducing concepts such as the fundamental concepts 
of linear algebra. For instance, Robert and Robinet (1993) formulate the hypothesis that 
teaching processes for what they call "generalizing and unifying concepts," have to obey 
specific strategies and that metamathematical dimension can play an important role.  

SETTING GAMES  

Another facet of Douady's thesis is the notion of "setting games." Beyond the tool-object 
dialectic, she identifies another characteristic of mathematical activity which seems to play an 
essential role in the growth of knowledge: the fact that mathematical concepts function in 
different settings (complex numbers, for example, are algebraic objects which can function both 
in algebraic and geometrical settings). What clearly appears when we observe the research work 
of mathematicians is that they often play with these different settings, in order to progress in 
the problems they have to solve (cf. Douady and Douady, 1994, for such an analysis). Roughly 
speaking, we can schematize the process as follows:  

The initial problem stems in one setting (say setting A) and the work inside this setting 
allows to attain some state, say state 1A where it seems to be stopped. The translation 
in another setting: say setting B (necessarily imperfect) allows to transform the 
problem or some sub-problem considered at state 1A into a new one and thus pass 
from state 1A to state 1B. Then the work in setting B allows to progress until state 2B 
and a translation back to setting A allows to get a state 2A which one could not get 
directly.  

This analysis leads Douady to theoretically organize the didactic transposition of the tool-object 
dialectic around situations which can be worked in several settings and to consider the changes 
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in settings, carefully managed by the teacher, as an essential means for solving the eternal 
problem of the filiation between old and new knowledge. Her thesis illustrates the potentials of 
this theory in a long term engineering work at elementary school.  

Before leaving this point, let us stress that the description given above of "setting-games" is a 
very schematic description. Most often, mathematicians do not switch from one setting to 
another and the interplay between settings is better described in terms of changes in dominant 
roles: one setting is devoted to technical and formal mathematical work; others are used at a 
more heuristic level in order to plan, help some choices, control mathematical activity... This 
dialectic interplay looks evident for instance if we come back to the construction of quaternions 
evoked above and analyze the long research process-it took 13 years – described by Hamilton 
in the preface of his book "Lectures on quaternions" (1853).  

Even if Hamilton's problematics had evident geometrical roots at the beginning of the process, 
the dominant setting was an algebraic one. Hamilton wanted to generalize to triplets the 
construction he had previously made with couples of reals in order to algebraically define 
complex numbers. During this phase, the geometrical setting seems to appear punctually, with 
a heuristic role:  

• it guides the choice of undetermined products for the six different unities at play as 
Hamilton simultaneously introduces two products; an internal and an external one:  

There still remained five arbitrary coefficients [ ... ] which it seemed to be 
permitted to choose at pleasure: but the decomposition of a certain cubic 
function combined with geometrical considerations, led me, for the sake of 
securing the reality and rectangularity of a certain system of lines and 
planes, to assume the three following relations between those coefficients 
(Preface, p.25).  

• it helps to understand why the different trials made always give a product which is not 
regular:  

The foregoing reasonings respecting triplets systems were quite 
independent of any sort of geometrical interpretation. Yet it was natural to 
interpret the results and I did so, by conceiving the three sets of coefficients 
[ ... ] which belonged to the three triplets in the multiplication, to be 
coordinate projections, on three rectangular axes, of three right lines drawn 
from a common origin (preface, p.22).  

After transposing the algebraic product in terms of line products, Hamilton was able to interpret 
nul products in terms of orthogonality of systems of planes and lines. Not finding the way of 
solving this problem of non-regularity, Hamilton changed his mind and gave the dominant role 
to the geometrical setting, trying to generalize to three dimensional space the geometrical 
interpretation of complex number product: angles, rotations, and lengths were then the main 
tools. But once more, algebraic setting remained present with a controlling role. Several 
different generalizations were for instance rejected as they did not obey the distributive 
principle of algebraic product. And, when, once more blocked, Hamilton came back to algebra, 
the geometrical setting remained present in order to guide the definition of the product of units 
and then to find a geometrical global interpretation of the product, first defined algebraically.  

Obviously, when we decide to capture such essential features of mathematical activity within 
our theoretical frameworks, we have to be epistemologically vigilant to the risk we encounter 
of loosing their essence by over-simplifying them for our educational purposes.  



1995  Plenary Lecture 

82 

LIMITS OF EPISTEMOLOGICAL WORK FROM A DIDACTIC POINT OF 
VIEW  
Up to this point, we have stressed the importance of epistemological work. This epistemological 
work has evident limits.  

The educational genesis of concepts cannot match their historical genesis. Obviously, the 
cognitive functioning of present students can hardly be identified to the cognitive functioning 
of present or past mathematicians. Historical problems which led to the construction of one or 
other mathematical concept most often cannot easily be transposed to current teaching. In order 
not to distort epistemological values and adapt to our present students, a difficult transposition 
work turns out to be necessary.  

Changes in mathematical culture are also evident. Thus, epistemological obstacles identified in 
history are only candidates for obstacles in the present day learning processes and, conversely, 
non-historical formal and informal forms of knowledge can act as obstacles for our students.  

As far as complex numbers are concerned, for instance, the situation of today's students for 
whom complex numbers are directly introduced as legitimate objects which are endowed from 
the start with punctual and vectorial geometrical representations, cannot be compared with the 
situation of Italian algebraists of the sixteenth century and even with that of their successors. 
What obstacles are resistant to these differences? In fact, what we can immediately transpose 
from the theory of epistemological obstacles is the fundamental question: why and how do our 
students have to change their conception of numbers, their numerical and algebraic informal 
habits in order to cope efficiently with complex numbers?  

The answer to such questions cannot avoid taking into account, beyond the cognitive and 
epistemological dimension, the social and cultural aspects of present mathematical education. 
We will illustrate this point with two examples.  

TEACHING DIFFERENTIAL EQUATIONS AT UNIVERSITY LEVEL  

The first example refers to personal research on differential equations. In 1986, I had been 
involved for several years in mathematical research in differential equations and I was struck 
by the epistemological inadequacy of teaching in this area for students in their first two years 
at university. Teaching focused solely on the methods of algebraic resolution typical of the 
functioning of the field in the eighteenth century. It appeared impervious to the epistemological 
evolution of the field towards geometrical and numerical approaches. What constraints could 
explain such an obsolete stability of teaching? Was it possible to find another equilibrium which 
would be epistemologically more adequate? Was this possible at a price acceptable by the 
didactic system, and, if so, how?  

Research began by an epistemological analysis. It showed that, historically, the field of 
differential equations had developed in at least three settings:  

• the "algebraic" setting where the fundamental problem is mainly that of finding exact 
solutions (in finite or infinite terms) or discussing the possibility or such solutions,  

• the "numerical" setting where the fundamental problem is to find approximate 
solutions and control these approximations,  

• the "geometrical" setting where the fundamental problem is the geometrical and 
topological study of flows associated with equations or families of equations.  

Teaching for French beginners was focused on the first setting and gave students an erroneous 
image of the field. They were convinced that every equation could be exactly solved and that 
researchers in this area were only looking for the missing recipes.  
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Epistemological analysis clearly showed that epistemological constraints contributed to explain 
the characteristics of present teaching, mainly:  

• the long domination of the algebraic setting in the historical development of the field,  
• the more recent appearance at the end of the nineteenth century in Poincare's work of 

the geometrical approach,  
• the difficulty of problems associated with the geometrical approach such as structural 

stability problems as well as of problems of exact integrability which marked the 
development of the algebraic setting past the eighteenth century, and, last but not least,  

• a development of the three settings without strong interactions which contributed to 
their relative isolation.  

But soon it appeared that these epistemological constraints were reinforced by cognitive 
constraints (Artigue, 1992b), as, for instance:  

• the flexibility between the graphical register of representation with drawings of flows 
and associated curves such as isoclines, and the algebraic and symbolic register of 
representation with the differential equation, associated equations, inequations and 
functions required by the qualitative resolution of differential equations; indeed 
qualitative resolution requires a permanent interplay between these two registers and 
obliges students to coordinate various levels of flexibility, by taking into account not 
only functions but also their first or second order derivatives,  

• the delicate use of elementary tools of analysis required by qualitative proofs when 
they were presented in their academic form.  

What appeared also, was the fact that both types of constraints were strengthened by didactic 
constraints among them:  

• the ordinary tendency of didactic systems to avoid cognitive difficulties in 
mathematical analysis by favouring algebraic and algorithmic processes; usual 
algebraic resolution of differential equations, which is essentially algorithmic at this 
level of teaching, is in accordance with this tendency; on the contrary, qualitative 
resolution cannot be reduced to algorithmic processes,  

• the devalued status of the graphic register of representation in the French educational 
system which created a didactic obstacle to the necessary acceptance of graphical 
reasonings, at this level of teaching.  

In order to answer the questions at stake, it was necessary to identify and understand the real 
strength of all these constraints as well as their interrelations. We tried to do this and then 
exploited the analysis in order to build a realistic teaching strategy which better respected the 
current field's epistemology. The engineering product was then experimented and progressively 
adapted with undeniable success (Artigue, 1993).  

Undoubtedly, epistemological reflection was an essential part of this engineering work, in some 
way its starting point, but we had to go far beyond it in order to reflect on the possible ways for 
acting effectively on the current educational system and succeed.  

TANGENT CONCEPTIONS AND THEIR EVOLUTION AT SECONDARY LEVEL  

The second example we will use is a research on the notion of tangent by C. Castela (Castela, 
1995). Its aim was to clarify the development of secondary school pupils' conceptions of tangent 
and to explore the effects following this development in teaching.  
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At the beginning of secondary school, pupils first encounter the tangent to a circle. This object 
is a geometrical object endowed with specific properties:  

• it does not cut through the circle,  
• it touches it at only one point,  
• it is perpendicular to the radius at the contact point.  

All these properties are global and do not bring into play the idea of common direction. 
Moreover, in order to help the pupils to become aware of the abstract status of the figure, 
teachers often insist on the fact that although to the eye, circle and tangent seem to merge 
locally, they have exactly one common point. In. the same way, this tangent is linked to secants 
but secants of a given direction which, when moved, help to visualize the change in the number 
of intersecting points.  

In high schools, the teaching of analysis introduces another point of view on the tangent:  

• it is a local object with which the curve tends to merge locally,  
• it is also the line whose slope is given by the derivative.  

Obviously there is no direct relationship between these two objects and it is legitimate to 
wonder how students manage the transition, if it does work, from "circle" conceptions to 
"analytic" conceptions. We can wonder also whether, in this transition process, the tangent to 
the circle is itself a posteriori reconstructed, by integrating the characteristics of more general 
tangents and becoming the prototype of the tangent to close convex curves, or if it remains s it 
was before, isolated from the analytic tangent.  

Research was carried out through the analysis of text-books, students' and teachers' 
questionnaires, the students" questionnaire. We will focus here on the students' questionnaire 
in which various curves and lines were proposed to the students and they were asked to judge 
for each of them whether: "the line is tangent to the curve at point A" and then to justify their 
answers.  

About 400 students completed the questionnaire. They were at different levels of schooling and 
from more or less scientific orientations. The answers obtained highlight local adaptation 
processes which are set up in the long term. Indeed, as could be expected, in high school, before 
learning analysis, the large majority of students demonstrated coherent conceptions linked to 
what we have called above the "circle" conception. Differences occurred as some of them 
blended all the properties of the circle tangent while others seemed to focus on one of them. 
After the teaching of derivatives, landscape became more chaotic, even though all but one of 
the items (a curve locally merged with its tangent) obtained high rates of success. This exception 
scored only a 50% success in "terminale", the final year of secondary school, even though the 
derivative had been introduced from the notion of linear approximation.  

It appears as though, progressively, while remaining an anchor point, the circle conception 
gradually gave way through various processes:  

• by admitting prototypical exceptions such as inflexion points,  
• by rejecting prototypical cases such as angular points,  
• by integrating in a more or less coherent way some elements from the analytic 

conception.  
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Justifications such as the following, for instance, attest it:  

There is only one point of intersection and it is a maximum.  

There is one common point and the curve approaches the line tangentially.  

All these processes continued until a swing towards an analytic conception of the tangent could 
occur. This analytic tangent in turn became the dominant object in relation to which the 
cognitive network was reorganised. Note that, however, even in scientific "terminales", only 
25% of the students taking the questionnaire presented reasonings sufficiently homogeneous to 
allow one to suppose that such a swing had occurred. Perfectly correct answers were still 
accompanied by justifications globally incoherent, from one item to another.  

The description given above is expressed in cognitive terms. Historical identified conceptions 
can be used in order to interpret, at least partially, the answers obtained and it was effectively 
done. 

I am not convinced that this is the more pertinent approach. Both epistemological and cognitive 
approaches encourage us to set the behaviour of our students in a cognitive rationality. Thus 
they tend to underline the fact that adaptation processes at play in schools are as much 
adaptation processes to the educational institution as cognitive mathematical adaptation 
processes.  

What conditions the observed adaptations and their limits? The cognitive characteristics of 
students? The kind of situations they have encountered about tangents? The way they perceive 
the demands of their teacher? The status of the notion of tangent in current secondary education?  

Data collected provide us with elements for answering these questions. On one hand, analysis 
of textbooks shows that the question of the relationship between circle conceptions and analytic 
ones is completely absent from teaching: either the tangent to the circle is not mentioned when 
introducing derivatives or it is considered as a transparent example. Answers to teachers" 
questionnaire show that they are no more sensitive to this problem. On the other hand, one of 
the "terminale" classes, a non-scientific one, appeared to be non-typical. It was clearly better 
than all the other classes in its results: this was a class in which the cognitive reorganisation 
was not left entirely up to the individual student.  

Finally, what this research mainly shows is not the way in which students might construct the 
concept of tangent and the conceptual difficulties linked to this learning process. More 
essentially it shows the game the students play with this notion in school and the way they 
optimize this game.  

The adaptations carried out, although chaotic and globally incoherent, are quite adequate to 
allow these students to play their role of students correctly. Indeed, for the marginal object the 
tangent is in current secondary teaching, this role simply consists in:  

• knowing how to recognize simple cases of non-derivability: vertical tangents, angular 
points,  

• knowing how to determine the equation of a tangent, eventually with given 
constraints,  

• knowing how to draw particular tangents on a graphical representation of function, 
especially tangents corresponding to extreme and inflexion points, vertical tangents.  

It is clear that epistemological and cognitive approaches have to be articulated with approaches 
which include much more detailed analysis of the didactic situations proposed to students, of 
the way mathematical adaptations combine in these situations with more contractual and 
institutional adaptations, and of their possible effects on the learning process.  
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We also need more macroscopic approaches allowing analysis at an institutional level, to 
understand how the didactic transposition processes we observe function and how one can 
effectively act on them, to understand how transition processes are managed by institutions and 
why, to understand how the personal relationships to knowledge our students articulate with 
the institutional relationships which define the norm.  

In French didactics, the theory of didactic situations, first developed by G. Brousseau 
(Brousseau, 1986) and the anthropological approach developed more recently by Y. Chevallard 
(Chevallard, 1992) have these aims.  

Acknowledgment: I acknowledge Eric Muller for his help in editing the English version. 
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ALIVE MATHEMATICAL REASONING 

David Henderson  
Cornell University 

Cette conférence plénière, qui place l’humain au centre des mathématiques, est étroitement liée au 
groupe de travail sur le rôle de la preuve. David Henderson y traite du formalisme et de l’impact très 
négatif que peut amener une formalisation omniprésente. Se basant sur son expérience personnelle et 
sur celle de mathématiciens de sa génération, il plaide pour le rôle de l’intuition, et pour une 
réappropriation des mathématiques par ceux qui l’apprennent. On note aussi l’ajout d’une section de 
questions et réponses. Celles-ci sont issues de la séance de questions qui suit la plénière, le lendemain 
de celle-ci, un autre aspect important de nos rencontres.  

This plenary, which places human beings at the center of mathematics, is closely linked to the working 
group on proofs. David Henderson looks at formalism and at the negative impact that an excess of 
formalism can have. Based on his personal experience and on that of other mathematicians from his 
generation, he argues for the role of intuition and for an ownership of mathematics by its learners. We 
can also note a section with questions and answers, at the end of the paper. These came from the 
questions and answers session, which is always held the day after the plenary, another distinctive 
feature of our meetings.       

INTRODUCTION  
Cecilia Hoyles in first plenary told us that whenever we examine someone's conceptions of 
proof we should learn something about their background-what have they been taught about 
mathematics. So, I thought it was appropriate that I start by telling you something of my 
background, since I am going to talk with you for the next hour about my views of proof as 
gleaned from my experiences as student, teacher, mathematician and general experiencer of the 
world.  

I have always loved geometry and was thinking about geometric kinds of things since I was 
very young as evidenced by drawings that I made when I was six which my mother saved. But 
I did not realize that the geometry, which I loved, was mathematics. I was not calling it 
geometry-I was calling it drawing or design or not calling it anything and just doing it. I did not 
like mathematics in school because it seemed very dead to me-just memorizing techniques for 
computing things and I was not very good at memorizing. I especially did not like my high 
school geometry course with its formal two-column proofs. But I kept doing geometry in 
various forms in art classes, out exploring nature, or by becoming involved in photography. 
This continued on into the university where I was a joint physics and philosophy major and 
took only those mathematics courses which were required for physics majors. I became 
absorbed in geometry-based aspects of physics: mechanics, optics, electricity and magnetism, 
and relativity. On the other hand, my first mathematics research paper (on the geometry of Venn 
diagrams for more than 4 classes) evolved from a course on the philosophy of logic. There were 
no geometry courses except for analytic geometry and linear algebra, which only lightly 
touched on anything geometric. So, it was not until my fourth and last year at the university 
that I switched into mathematics because I was finally convinced that the geometry that I loved 
really was a part of mathematics. This is not an uncommon story among research geometers. 
Since high school, I have never taken a course in geometry because there were no geometry 
courses offered at the two universities which I attended. So, in some ways I may have had the 
advantage of not having taken a geometry course!  
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But I was educated in a very formal tradition-in fact, mathematics was, I think, the most formal 
that it has been about the time that I was studying at the university in the late 1950's and early 
1960's. One of the evidences for this was the number of geometry courses offered at colleges 
and universities- there were practically none anywhere at that time except for a few geometry 
courses for prospective school teachers and still at many institutions such courses are the only 
geometry courses offered.  

I am the same generation as most of the faculty now in mathematics departments in North 
America (most of us are 50-65 years old) because we were hired to teach the baby boomers in 
the 1960's. So now my generation is clogging up most of the tenure faculty positions all over 
North America, and in the USA we will not be required to retire because the Supreme Court 
has ruled recently that it is unconstitutional to have mandatory retirement ages. Almost all of 
the mathematicians in my generation had a very formal training in mathematics. This has 
affected us and affected mathematics and will continue to affect mathematics because my 
generation now has the positions of authority in mathematics.  

I want to mention specifically one mathematician in my generation and that is Ted Koscynski, 
the suspected Unabomber. He had very much the same kind of university mathematics 
education that I had. Both of us at the time were socially inept and it was difficult for us to get 
to know people. In fact, in some ways, this was encouraged in our training all the way through 
graduate school and certainly was not a hindrance in any way. My thesis advisor talked to me 
and a few of the other men graduate students and said to us that it would be very important for 
us to find wives who would take care of all of our social responsibilities, so that we would not 
have to deal with social things and could put all of our energy into mathematics. Fortunately, 
one of the things that helped save me was that I did not take his advice-I got married but not to 
such a wife. The suspected Unabomber talks about similar things which happened to him.  

Both Ted Koscynski and I accepted tenure track professorial positions at major research 
mathematics departments (Berkeley and Cornell). And we were initially both successful with 
professional mathematics. Then, in the early 1970's, both Ted Koscynski and I quit 
mathematics. I got angry with mathematics – I got very furious about what mathematics had 
done to me. It is too complicated to go into all my feelings then (even if! could retrace them 
accurately) – but if someone came up to me at that time and called me a mathematician I felt 
strongly like punching them in the face! The evidence indicates that Ted Koscynski had a 
different more violent reaction but his writings express feelings very similar to the ones I had 
at that time. He and I both went into the forest and built a cabin and lived there alone and we 
isolated ourselves. But, there was a huge difference – I made a constructive positive 
breakthrough and Ted Koscynski didn't.  

It was geometry, the many friends I made, and my family that brought about this breakthrough 
and in many ways saved my life. I got back into geometry. Before this, I had not been teaching 
geometry-I had been teaching geometric topology and such courses but all of my teaching up 
to then had been very formal. There was one geometry course at Cornell at the time-the one for 
prospective secondary school mathematics teachers. It was not considered to be a real 
mathematics course and I considered myself to be a real mathematician so I did not have any 
interest in teaching it. But at that time, when I thought I was quitting mathematics, I needed to 
teach a little in order to have enough money to survive in my cabin, so I took a leave without 
pay and then occasionally came back and taught for some money. (Fortunately I did not bum 
any bridges.) So I started teaching this geometry course for prospective teachers. In the first 
three years that I taught the course, while living in the forest, three mathematics educators 
familiar to most of you were in the class, David Pimm (Open University), Jere Confrey 
(Cornell), and Fran Rosamond (National University, San Diego). This geometry course was 
essentially all that I was teaching for a few years. A lot of what I am going to talk about are my 
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experiences with that course and what happened since then. This course (and my new friends) 
pulled me out of the fire that Ted Koscynski never got out of.  

FORMAL DEDUCTIVE SYSTEMS   
Global formal deductive systems can be very powerful and are important in certain areas (for 
example in the study of computer algorithms and in the study of questions in the foundations 
of mathematics). Local formal deductive systems can be important and powerful in many areas 
of mathematics (for example group theory.) But many people hold the belief that mathematics 
is only the study of formal systems. These beliefs are wide-spread especially, I find, among 
people who are not mathematicians or teachers of mathematics. Let me give some descriptions 
of formal mathematics. For example, in FOCUS: The Newsletter of the Mathematical 
Association of America a professor of computer science wrote:  

... one of the most remarkable gifts human civilization has inherited from ancient 
Greece in the notion of mathematical proof [and] the basic scheme of Euclid's 
Elements ... This scheme was formalized around the turn of the century and, ever since 
... mathematicians have rested assured that all their ingenious proofs could, in 
principle, be transformed into a dull string of symbols which could then be verified 
mechanically. One of the basic features of this paradigm is that proofs are fragile: a 
single, minute mistake (e.g., an incorrectly copied sign) invalidates the entire proof. 
(Babai 1992)  

This is the kind of view of mathematics that I learned when I was in school and the university.  

Here's a more recent description that just appeared in the past year in the American 
Mathematical Monthly in an article (by another professor of computer science and member of 
my mathematical generation) about a new reform teaching technique and text for discrete 
mathematics which is based on a "computational" formal approach which uses uninterpreted 
formal manipulations which have been stripped of meaning:  

... most students are troubled by the prospect of uninterpreted manipulation. They 
want to think about the meanings of mathematical statements. Having meanings for 
objects is a "safety net", which students feel, prevents them from performing 
nonsensical manipulations. Unfortunately, the use of the "meaning" safety net does 
not scale well to complicated problems. Skill in performing uninterpreted syntactic 
manipulation does. (Gries 1995)  

He literally means to get rid of the meaning. He takes literally the formalist view of mathematics 
that the meaning is not important. He goes further to say that the meaning actually gets in the 
way. I was at one of his talks when he was explaining his new teaching method and he gave a 
proof of some result in discrete mathematics and I tried to follow the meaning through from the 
hypothesis to the conclusion, because the hypothesis and conclusion did have meaning. I tried 
to follow that meaning through the proof in order to see the connections, but I failed to do so. I 
brought this up at the end and he said something close to: "Yes! That's precisely the idea! We 
have managed to get the meaning out of the way so that it doesn't confuse the students so they 
are now better able to do mathematics."  

Now let me give another description of mathematics. This was written by Jean Dieudonné in 
an article which was written in response to an article by Rene Thom in which Thom was talking 
about intuition and how it was important to bring in and foster intuition in the schools.  

I am convinced that, since 1700, 90 per cent of the new methods and concepts 
introduced in mathematics were imagined by four or five men in the eighteenth 
century, about thirty in the nineteenth, and certainly not more than a hundred since 
the beginning of our century. These creative scientists are distinguished by a vivid 
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imagination coupled with a deep understanding of the material they study. This 
combination deserves to be called "intuition." ...  

In most cases (the transmission of knowledge) will be entrusted to professors who are 
adequately educated and prepared to understand the proofs. As most of them will not 
be gifted with the exceptional "intuition" of the creators, the only way they can arrive 
at a reasonably good understanding of mathematics and pass it on to their students 
will be through a careful presentation of their material, in which definitions, 
hypotheses, and arguments are precise enough to avoid any misunderstanding, and 
possible fallacies and pitfalls are pointed out whenever the need arises. (Dieudonné, 
1973)  

Both of the first two quotes were from computer scientists who down-play the role of meaning 
and intuition in mathematics. Now, Dieudonné who certainly is a mathematician and a very 
good one, pointed out that intuition and imagination are very important but that there are only 
a few people (apparently, men) who have that intuition and that for the rest of us it is necessary 
for mathematics to be put down in a very precise formal way. Dieudonné has two claims to 
fame that are connected to this. One is he was the founder of the Bourbaki movement which 
was an attempt (which was never finished) to formalize all of mathematics. The other which is 
more significant for this gathering is that about the time of this article he was chair of the ICMI 
(International Commission on Mathematics Instruction) and chair of it at the time that the "New 
Math" was being spread around the world. He has always been involved in education.  

Another example of descriptions of mathematics: Mathematica©, the computer program, when 
it frrst came out was advertised as a program that can do all of mathematics – remember those 
early ads? If you believe a strictly formal view of mathematics then that claim was believable 
and many people did believe it.  

CONFINING MATHEMATICS WITHIN FORMAL DEDUCTIVE SYSTEMS IS 
HARMFUL  
Now I want to talk about how I see the view (which I take as starting roughly a hundred years 
ago) that mathematics is just formal systems has been harmful. I see this view as harmful 
because:  

• It encourages what I think are incorrect beliefs. For example, those beliefs 
mentioned above that mathematics is only the study of formal systems. Of course, 
people can have disagreements as to what mathematics is, but I think that most of the 
people in this room do not believe that mathematics is just formal systems. And let me 
make it clear that I believe that formal systems do have a place in mathematics and 
that they are very useful and very powerful in many ways. Formal systems are very 
important in computer science because that is what a computer does – deal with formal 
systems. So it is not surprising that it was professors of computer science who made 
the statements that I have put here. Formal systems have certainly been very important 
in various parts of algebra and analysis and topology (which was my area of research) 
which flourished in this century. But geometry virtually disappeared as evidenced by 
the fact that there were almost no undergraduate geometry courses in 1970. That trend 
has now reversed. For example, now at Cornell there are eight undergraduate 
geometry courses and of those eight there is only one-half of one of them that deals 
with axiomatic systems. So things are changing.  

• Much interesting and useful geometry is either not taught at all or is presented 
in a way that is inaccessible to most students. For example, spherical geometry was 
in the high school and university curriculum (or, at least in the textbooks) of 100 years 
ago. Of course, high schools in those days were more elite institutions than they are 
today, but spherical geometry is almost entirely absent from our courses and textbooks 



David Henderson 

93 

now. Why is it that it disappeared? It is not because it is not useful: Spherical geometry 
is very applicable-navigation on the surface of the earth, the geometry of visual 
perception, the geometry of astronomical observations, surveying on a scale of several 
kilometers. Spherical geometry is a very useful geometry, but we do not teach it 
anymore-why? I think the reason is that spherical geometry is very difficult to 
formalize-there is no convenient axiom system for spherical geometry. There is an 
axiom system for spherical geometry (Borzuk did it just before the Second World 
War)-it is in a book that is in many mathematics libraries but it rarely has been used 
because it is not a useful axiom system. "Non-Euclidean" geometry has been often 
taught in under-graduate geometry courses, but it has always been "the" non-
Euclidean geometry, hyperbolic geometry, which has a relatively simple axiom 
system and which has only been around for about 160 years. Spherical geometry 
which is very old (the Babylonians and Greeks studied it) is rarely taught. I cannot 
think of any reasonable explanation for why spherical geometry disappeared except 
that it does not fit into formalism. This is one of the reasons that I have it in my 
geometry course. When freed from the confines of formal systems it is possible to 
present spherical geometry in ways that are based on geometric experiences and 
intuitions. (See Henderson, 1996a)  

• Important notions in mathematics are formally defined in ways that separate 
them from the students' experiences. For example, the new Chicago Mathematics 
Curriculum for American secondary schools (which has many good things in it and is 
now the fastest growing curriculum in the USA) defines a rotation as the product of 
two reflections. Now that is an interesting fact (theorem) about rotations. But what 
does a student think when he or she comes to that as the definition of what a rotation 
is? It is very difficult to relate the product of two reflections with our experiences of 
rotations such as opening a door or riding a merry-go-round. One of the problems is 
that our intuition of rotations is a dynamic thing-it is actually a motion. Whereas to 
think of rotation as the product of two reflections is a static thing-it is the result of the 
rotation motion that is equal to the product of two reflections. If I were a student and 
saw this definition in the textbook I would say that this geometry is not relating to 
what I know geometry is and I would feel that the text is telling me that my experiences 
and intuitions are not important. It appears that the main reason for using this 
definition is that it is convenient formally in the deductive system in which the 
geometry in the text is confined. Also, differential geometry (the geometry of curves 
and surfaces, the geometry of the configuration spaces of mechanical systems, the 
geometry of our physical space/time) has extremely difficult formalisms which make 
it inaccessible to most students and even, I suspect, most mathematicians are 
uncomfortable with the formalisms of differential geometry. Some people have called 
it the most complicated formalism in all of mathematics. But, yet, differential 
geometry is basically about straight lines and parallelism-very intuitive notions. When 
we insist on formalizing differential geometry then it becomes inaccessible – even 
more so because there is no agreed upon formalism. My second book, (Henderson, 
1996b), is an attempt make differential geometry accessible by basing it on geometric 
experiences and intuitions, as opposed to basing it on standard algebraic and analytic 
formalisms.  

• Many important and useful questions are not asked. This was something that really 
surprised me when I started teaching this geometry and started listening to the 
prospective teachers who were taking the course. There are a lot of questions that 
students have that we never ask in mathematics classes. For instance, the reliance on 
a formal Euclidean deductive system rarely allows for questions such as "What do we 
mean when we say that something is straight?" We normally don't ask that in any 
classes, even though we talk about straight lines all the time. We just write down some 
axiom or we just say "everyone knows what 'straight' is." In differential geometry the 
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formalism has attempted to get at what the meaning of straight is, but in a way that is 
not accessible. But one can ask the question about what it means to be straight; you 
can ask that of students. I've done it with first graders-they can come up with good 
discussions. One of the results of this is that when spherical geometry or other 
geometries are talked about, usually they are just presented with some statement like: 
"We will define the straight lines to be the great circles on the sphere." But that is 
ridiculous, the great circles are the straight lines on the sphere, you do not have to 
define them. If you have a notion of what straightness is, then you can imagine a bug 
crawling around on the sphere and ask how would the bug go if the bug wanted to go 
straight. You can convince yourself that it is the great circles. But we cannot even ask 
those questions in a formal context. Also, the connections between linear algebra, 
geometric transformations, symmetries, and Euclidean geometry are very difficult to 
talk about in a formal system (in fact I don't know if I want to say impossible or not), 
but it is not conveniently done and often not done at all in a formal system. Remember 
the example above of defining a rotation to be the product of two reflections. (Other 
questions which we ignore include: "Why is Side-Angle-Side true on the plane (but 
not on the sphere)?", "What is the geometric meaning of tangency?", and "How do we 
experience the connections between?")  

• Mathematicians are being harmed. I have already talked about how mathematicians 
are being harmed-I was harmed by the over emphasis on formalism – so was Ted 
Koscynski. And I'm sure that you know of examples (at your own university or around 
your own university) of mathematicians, roughly my generation, who have more or 
less dropped out of society. There are a lot of them around-people who have been good 
mathematicians, who had been successful in the system back in 1950's and 1960's. So 
it has been harmful to mathematicians.  

• Students are being harmed. When a student's experiences lead her/him to understand 
a piece of mathematics in a way that is not contained in the formal system, then the 
student is likely to lose confidence in her/his own thinking and understanding even 
when it is backed up by what I will call alive geometric reasoning. Deductive systems 
do not encourage alive mathematical reasoning (which in my experiences with 
students and teachers is a natural human process) and thus they serve to deaden human 
beings whose thinking and understandings are forced to reside in these systems. We 
now have machines that can do the computations and formal manipulations of 
deductive systems: we need more alive human reasoning.  

Here are some examples:  

One of the things that I clearly remember from the beginning of my teaching of the geometry 
course is the following: I was teaching the Vertical Angle Theorem and its standard proof:  
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I can still remember one of the students who was very shy and wouldn't speak up in class, but 
I was having the students do writing. She wrote on her paper something like the following:  

All you have to do is do a half-turn. Take this point here (P) and rotate everything 
about this point half of a full revolution. We have already discussed that straight lines 
have half-turn symmetry and so each line goes onto itself and α goes onto β.  

I don't know what your reaction is now but my reaction then was "That's not a proof" and I told 
her so. Fortunately, though she was shy, she was persistent and stubborn and she kept coming 
back and insisting that that was a proof. She worked on me for about two weeks and I kept 
listening to her and struggling with the question, Is that a proof?, because it did not seem like 
proofs that I had been accustomed to and that I would accept. Finally, she convinced me and 
now I think it is a great proof and much better than the standard proof which is in most of the 
textbooks. The standard proof has a lot of underlying assumptions that need to be cleared out 
and many formal treatments do that – they put in the "Protractor Postulates" which state the 
appropriate connections between angles and numbers and then you can do the standard proof. 
But the proof with the half-turn is just connected to a certain symmetry of straight lines. You 
can use other symmetries of straight lines to prove this result also, but this proof is the cleanest, 
the simplest. And this proof is not possible in a formal system and it is particularly not possible 
in a formal system if (because you want to insist on putting everything in a formal system) you 
define a rotation as the product of two reflections. That particularly won't work here because, 
if you take one of the lines and reflect through the line and then reflect perpendicular to the line 
that is equivalent to a half-turn, but there is no pair of reflections that will simultaneous do that 
to both of these lines, but yet a half-turn clearly preserves both lines. I do not see any reasonable 
way for that to have been included in any kind of formal system. So, if I had been insisting on 
formal systems, I would have missed out on the half-turn proof and not learned this bit of 
mathematics. I almost missed out anyhow and it was only because she was very persistent. 

After that experience I started listening more to students and expecting that when they would 
say things that I didn't understand, that maybe they really did have something (and something 
that I could learn). I took the attitude that we are not working in a formal system, but that we 
are doing mathematics the same way that mathematicians mostly do mathematics. (In geometry, 
mathematicians do not stick inside any particular formal system, we use whatever tools might 
be appropriate: computers, linear algebra, analysis, symmetries. Mathematicians use 
symmetries a lot!) As I listen to students I have been learning more and more geometry from 
the students. I used to be surprised at that and thought it was just because I had not been teaching 
the course for very long. I thought that after I have taught it for a while then I will know it all 
and I will not see anything new. Well, what happened is that I have been teaching the course 
for 22 years now and now 30-40% of the students every semester show me some mathematics 
that I have never seen before! (These students are in different programs- some are mathematics 
majors, all the prospective secondary school teachers, and most of the mathematics education 
graduate students.) I would miss out on most of this new geometry if things were being done 
inside a formal system.  

Another example: There are many properties of parallel lines in the plane (for example, any 
line which traverses two parallel lines will intersect those lines at the same angle) whose proofs 
depend on the parallel postulate. When we get to that point in the course I let the students come 
up with their own postulate – whatever it is that they think is most important to assume that will 
separate the plane from the sphere. There is a difference between the plane and the sphere and 
there is some difference that has to do with parallel lines. The students come up with all kinds 
of different postulates, many of which I think would be much more reasonable to assume than 
the usual parallel postulates. By the way, Euclid's parallel (fifth) postulate is true on the sphere 
- Euclid's parallel postulate is not what distinguishes spherical geometry from plane geometry, 
contrary to what many books say. I take that as evidence that people who have written such 
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mistakes about spherical geometry have never really looked at a sphere – they have just been 
looking at the situation formally and thus made the mistake.  

Let me give another example to show that I can think about something that is not just geometric. 
Here is the proof that is usually given to American secondary school students that 0.99 … = 1:  

x = 0.99 … 9 … 

10x = 9.9 … 9 … 

now subtract both sides to get 

9x = 9.0 … and thus x = l 

This proof embodies a very useful technique for figuring out, when you have a repeating 
decimal, what fraction is equal to that repeating decimal. It is a very useful technique in that 
context. But I claim that it is not a proof in this context. I claim it is something that is 
masquerading as a formal proof: It looks like a formal proof, it has steps and x's and all that 
stuff. I started asking my calculus students at Cornell what they thought, and some of the best 
high school students in North America come to Cornell. They mostly know this proof, because 
they learned it; but only about half of them believe it, because they do not believe that 0.99 ··· 
9 = 1. To show you why I think that this is masquerading as a proof and really isn't a proof, let 
us consider the following: Let us try to make this a little more precise as to just what it is we 
mean by 0.99···9··· (that is part of the problem here). Well, to most students what 0.99···9 
means is, 0.9, then 0.99, then 0.999, ... – a limit of a sequence (at the time they are expressing 
this, they might not even know what a sequence is) – you keep putting on one more 9, you go 
on for ever-that is the way that they talk about it. It fits in nicely with calculus to do it that way 
and to think about 0.99···9··· as the limit of a sequence:  

0.99···9··· ≡ lim {0.9, 0.99, 0.999, ... }. 

If you think of it as this limit and then follow the formal rules for subtracting sequences and 
multiplying sequences and so on, you come out with the amazing conclusion that:  

x = 0.99··· 9··· ≡ {0.9, 0.99, 0.999, ... } 

10x = 10 X lim {0.9, 0.99, 0.999, ... } = lim {9, 9.9, 9.99, ... } 

9x = lim {9, 9.9, 9.99, ... } - lim {0.9, 0.99, 0.999, ... } = lim {S.l, S.91, S.991, ... } 

x = (lim {8.l, 8.91, 8.991, ... }) ÷ 9 = lim {0.9, 0.99, 0.999, … } 

x = 0.99··· 9···! 

This is true – not very useful, but it is true. And it has to be that way, because there is an 
assumption being made here – the Archimedian Axiom. Way back, Archimedes knew that in 
talking about numbers it was possible to talk about ones which we now call infinitesimal, and 
then Archimedes had an axiom or principle which rules out these infinitesimals. The 
Archimedian Axiom (or Principle) gets stated in various different ways but is rarely mentioned 
these days in the North American undergraduate curricula-most textbooks (if they mention it at 
all) relegate it to a brief mention in a footnote or exercise. The usual approach these days is to 
subsume the Archimedian Axiom under Completeness in a hidden way so that you do not even 
notice that it is there. I think it is important for the students to know that this is an assumption. 
They can understand why it is convenient to assume that 0.99···9··· = 1 and understand that 
there are a lot of reasons for making that assumption. But we should tell them that it is an 
assumption – and it really is.  
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Another example – here is a theorem:  

For natural numbers. n X m = m X n. 

Now, the usual formal proof which I learned for this theorem is a complicated double 
mathematical induction. I dutifully learned this proof and was dutifully teaching it when I first 
started teaching. But here is the prop for another proof (I do not want to say 'another proof but 
only 'a prop for a proof):  

 

Here we think of 3 X 4 as three 4's or four 3's (it seems that most mathematicians think of 3 X 4 
as three 4's, but many of my students think of 3 X 4 as four 3's). I find a proof based on this 
schema as more convincing than the one with the double induction. And this proof can be 
visualized with having arbitrary numbers of dots, because the whole point is that you do not 
have to count the dots to know that this is true – there is symmetry. But it is hard to express in 
words and put down in a linear fashion on a piece of paper and all that kind of stuff.  

• Mathematics is being harmed. Historically, most current-day mathematics was 
based on geometric explorations, geometric reasonings, and geometric 
understandings. The developers of our current deductive systems in algebra and 
analysis explicitly attempted to weed out all references and reliances on geometry and 
the geometric intuitions on which the algebra and analysis was originally based. When 
we confine mathematics to these formal systems we teach the students to distrust 
mathematics, not to value it, and not to use their intuitions in understanding 
mathematics. Many, many students who have a natural interest in mathematics are lost 
to mathematics by this process – I almost was.  

HOW SHOULD WE DESCRIBE WHAT IS MATHEMATICS?  
David Hilbert is considered to be "the father of formalism" so I checked what he had to say. In 
1932, late in his career he wrote in the Preface to Geometry and the Imagination:  

In mathematics, as in any scientific research, we find two tendencies present. On the 
one hand, the tendency toward abstraction seeks to crystallize the logical relations 
inherent in the maze of material that is being studied, and to correlate the material in 
a systematic and orderly manner. On the other hand, the tendency toward intuitive 
understanding fosters a more immediate grasp of the objects one studies, a live 
rapport with them, so to speak, which stresses the concrete meaning of their relations.   

As to geometry, in particular, the abstract tendency has here led to the magnificent 
systematic theories of Algebraic Geometry, of Riemannian Geometry, and of 
Topology; these theories make extensive use of abstract reasoning and symbolic 
calculation in the sense of algebra. Notwithstanding this, it is still as true today as it 
ever was that intuitive understanding plays a major role in geometry. And such 
concrete intuition is of great value not only for the research worker, but also for 
anyone who wishes to study and appreciate the results of research in geometry. 
(Hilbert 1932)  
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The last sentence in the first paragraph ("On the other hand ... ") is a very nice description of 
what a lot of us are trying to do and he goes on to say how important this is in mathematics. I 
even went back to his paper "On the Infinite" – he does not say that mathematics is formal 
systems or that all of mathematics should be formalized. He, in fact, says very explicitly there 
that mathematics is based on intuition and that intuition is an appropriate basis for what he calls 
"ordinary finite arithmetic." He wanted to introduce the formalization in order to take care of 
various paradoxes that were coming up in dealing with the infinite, because there seemed to be 
some problems with intuition around infinite things. He never claimed that mathematics was 
formal – that was his followers.  

Here is a more recent view expressed by William Thurston, who is director of the Mathematical 
Sciences Research Institute at Berkeley and one of the most prominent American 
mathematicians. Thurston rejects the popular formal definition-theorem-proof model as an 
adequate description of mathematics and states that:  

If what we are doing is constructing better ways of thinking, then psychological and 
social dimensions are essential to a good model for mathematical progress ... 

… The measure of our success is whether what we do enables people to understand 
and think more clearly and effectively about mathematics. (Thurston 1994)  

I will now give a description of mathematics that is what I think Hilbert and Thurston are talking 
about. I call it "alive mathematical reasoning" where I take the word "alive" from Hilbert's 
quote.  

WHAT IS ALIVE MATHEMATICAL REASONING?  
Alive mathematical reasoning includes both abstraction and intuitive understanding as Hilbert 
says in the above quote.  

Alive mathematical reasoning is paying attention to meanings behind the formulas and 
words – meanings based on intuition, imagination, and experiences of the world around us. It 
is not memorizing formulas, theorems, and proofs-this is again something that computers can 
do. We, as human beings, can do more. As Tenzin Gyatso, the fourteenth Dalai Lama has said:  

"Do not just pay attention to the words;  
Instead pay attention to meanings behind the words.  
But, do not just pay attention to meanings behind the words;  
Instead pay attention to your deep experience of those meanings."  

Alive mathematical reasoning includes "living proofs", that is, convincing 
communications that answers – Why? It is not formal 2-column proofs-computers can now 
do formal proofs in geometry. If something does not communicate and convince and answer 
"why?" then I do not want to consider it a proof. What we need are alive human proofs which 

• communicate: When we prove something to ourselves, we are not finished until we 
can communicate it to others. The nature of this communication depends on the 
community to which one is communicating and it is thus, in part, a social phenomenon. 

• convince: A proof works when it convinces others. Proofs must convince not by 
coercion or trickery. The best proofs give the listener a way to experience the 
meanings involved. Of course some persons become convinced too easily, so we are 
more confident in the proof if it convinces someone who was originally a skeptic. 
Also, a proof that convinces me may not convince my students.  

• answer 'Why?': The proof should explain, especially it should explain something that 
the listener wants to have explained. As an example, my shortest research paper 
[Henderson 1973] has a very concise simple proof that anyone who understands the 
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terms involved can easily follow logically step-by-step. But, I have received more 
questions from other mathematicians about that paper than about any of my other 
research papers and most of the questions were of the kind: "Why is it true?" "Where 
did it come from?" "How did you see it?" "What does it mean?" They accepted the 
proof logically but were not satisfied-it was not alive for them.  

One of my colleagues at Cornell was hired directly as a full professor based primarily on a 
series of papers that he had written even though at the time we knew that most of the theorems 
in the papers were wrong because of an error in the reasoning. We hired him because these 
papers contained a wealth of ideas and questions that had opened up a thriving area of 
mathematical research.  

Alive mathematical reasoning is knowing that mathematical definitions, assumptions, etc., 
vary with the context and with the point of view. Alive reasoning does not contain definitions 
and assumptions that are fixed in a desire for consistency. It is an observable empirical fact that 
mathematicians and mathematics textbooks are not consistent with definitions and assumptions. 
We find this true even when the general context is the same. For example, I looked in the plane 
geometry textbooks in the Cornell library and found nine different definitions of the term 
"angle". Also, calculus textbooks do not agree on whether the function y = f(x) = l/x is 
continuous or not continuous; and analysis textbooks have many different axioms for the real 
numbers that have different intuitive connections and necessitate different proofs.  

Alive mathematical reasoning is using a variety of mathematical contexts: 2- and 3- 
dimensional Euclidean geometry, geometry of surfaces (such as the sphere), transformation 
geometry, symmetries, graphs, analytic geometry, vector geometry, and so forth. It is not 
Euclidean geometry as a single formal system. When a mathematician is constructing a proof 
that needs a mathematical argument she/he is free to use whatever tools work best in the 
particular situation. Mathematicians do not limit themselves in this way. Also, those who use 
geometry in applications, do not feel restricted to a single formal system.  

Alive mathematical reasoning is combining together all parts of mathematics: geometry, 
algebra, analysis, number systems, probability, calculus, and so forth.  

Alive mathematical reasoning is applying mathematics to the world of experiences.  

Alive mathematical reasoning is using physical models, drawings, images in the imagination.  

Alive mathematical reasoning is making conjectures, searching for counterexamples, and 
developing connections.  

Alive mathematical reasoning is always asking "WHY?"  

BUT WHAT ABOUT CONSISTENCY AND CERTAINTY? 
• Formal deductive systems do not gain consistency. For example, is the function f(x) = 

1/x continuous? Look in several calculus books. They give different answers! 
Differential geometry is another example where there is no consensus as to which 
formalism to use, but yet everyone thinks they are talking about the same ideas. Why?  

• Formal deductive systems usually do not gain for us the certainty that we strive for. 
Formal deductive systems are useful and powerful in some circumstances, for 
example, in deciding which propositions can be logically deduced from other 
propositions and whether certain processes or algorithms will always produce the 
expected result. But, these deductive systems only give us certainty that certain steps 
(that can in principle be mechanized) can be carried out. They usually do not gain us 
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certainty for the human questions of "Why?" or the human desire for experiencing 
meanings.  

ALIVE MATHEMATICAL REASONING BRINGS BENEFITS TO 
MATHEMATICS 
In my experiences, students with alive geometric reasoning are the most creative with 
mathematics. These are also the students who can step back from their individual courses and 
see the underlying ideas and strands that run between the different parts of mathematics. They 
are the ones who become the best mathematicians, teachers, and users of mathematics.  

There is research evidence that successful learning takes place for 
many women and underrepresented students when instruction 
builds upon personal experiences and provides for a diversity of 
ideas and perspectives. See, for example Belenky et al. (1986), 
Cheek (1984), and Valverde (1984). Thus, alive mathematical 
reasoning in school classes may contribute to increasing the 
numbers of mathematicians who are women and persons from racial 
and cultural groups that are now underrepresented.  

In my own teaching, I encourage students to use alive mathematical reasoning and observe how 
their thinking and creativity is freed and their participation is opened up. (See Lo et al.,1996.) 
As I listen to the alive mathematical reasonings of my students I find that 30-40% of the students 
show me mathematics that I have not seen before and that (percentage-wise) more of these 
students are women and persons of color than white men. (Henderson, 1996)  

CLOSING EXAMPLE  
I will conclude with a proof that I learned from a student in a freshman course which is taught 
in the same style and using some of the same problems as the geometry course. The course was 
for "students who did not yet feel comfortable with mathematics" and who were social science 
and humanities majors. There, a student, Mariah Magargee, who was an English major, had 
been told all the way through high school that she was no good at mathematics and she believed 
it I want to share with you her proof that the sum of the angles of a triangle on the sphere is 
more than 180 degrees. We had previously, in class, been talking about the standard proof that 
on the plane the sum of the angles of a triangle is always 180 degrees:  

Standard planar proof: Given a plane triangle 
ABC, draw a line through A which is parallel to 
BC. The sides AB and AC are transversals of 
these parallel lines and therefore there are 
congruent angles as marked. We see now from the 
drawing that the sum of the angles is equal to 180 
degrees.  

In class I stressed that the students should remember that latitudes circles (except for the 
equator) are not geodesics (straight on the sphere) and I urged them not to try to apply the 
notions of parallel to latitude circles. Mariah ignored my urgings and noted that two latitude 
circles which are symmetric about the equator of the sphere are parallel in two senses – first of 
all they are equidistant from each other and:  

Note that: Two latitude circles which are symmetric about the equator have the property that 
every (great circle) transversal has opposite interior angles congruent.  
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This follows because the two latitudes have half- tum symmetry about any point on 
the equator.  

Now we can mimic the usual planar proof:  

We see that the sum of the angles of the "triangle" in the 
figure sum to a straight angle. This is not a true spherical 
triangle because the base is a segment of a latitude circle 
instead of a (geodesic) great circle. If we replace this 
latitude segment by a great circle segment then the base 
angles will increase. Clearly then the angles of the 
resulting spherical triangle sum to more than a straight 
angle.  

You can check that any small spherical triangle can be derived in this manner.  

Nice proof! I like it. That is Mariah's proof. This is a student who believed that she was no good 
at mathematics and was told she was no good at mathematics, but she taught me a really nice 
proof. 
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QUESTIONS AND ANSWERS 
Question: How might we encourage our students to experience the passion that they have for 
mathematics-that passion can include joy, fear, excitement, however you want to interpret the 
word.  

Answer: I only know ways that I have tried and I do not think there is only one way. It seems 
to me that the most important thing is to expect it to happen and I do that and try to convey that 
I expect to see that from the students. The other thing that I started noticing when I started to 
have the students write is that a lot of the students' ideas and their passions are very fragile. 
There are a lot of students who do not dare to speak it in class, but they will write something. 
Maybe what they write isn't even directly what they really want to say but they will hint at it. 
So I have them write and then I respond to their writing and then they respond to my comments 
and so there is a dialogue that goes on in the writing. That I found to be the most powerful 
because then if someone just starts having an idea about something that is very tentative and 
very fragile, I can encourage it. I can encourage it easier in the written dialogue than it can 
happen in a class situation. That together with just expecting it and encouraging it whenever it 
happens and validating it is what I find that works for me.  

 

Question: What is formalism good for?  

Answer: One of the areas for which formalism is clearly good for is in computer science, in 
studying the algorithms and proofs in computer science. A huge area in computer science now 
is how to prove that a program does what you want it to do-it's a formal proof because that is 
what computers do, they are formal systems. The other place in which formalism is very 
powerful is in any situation like with groups. Studying groups is a good place to have axioms 
and build it up formally because there are a lot of different models for what a group is. So you 
can prove certain results that work for anything that satisfies these particular axioms and there 
are some examples and you can apply it across all the examples. There are a lot of areas like 
that in mathematics where that can happen. I think that Euclidean geometry is a particular bad 
place to apply formalism, because there is essentially only one model of Euclidean geometry 
and it is not a question of building these things up and then you can apply it somewhere else. 
Those areas where there actually are different models for a particular axiom system are areas 
where formal systems are powerful tools. I would also say that sometimes it is useful to use 
formal systems in areas where you actually have several different axiom systems-which we do 
not usually allow in courses as, we usually stick with only one. This happens in differential 
geometry. There are very complicated formalisms for differential geometry but there are a lot 
of different ones and to play the different ones off each other can be powerful. If you try to stick 
within one then you lose the geometric meaning, but if you go across them then the only thing 
which ties them together is the geometric meaning; and that is one way to get at what the 
geometric meaning is.  
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Question: How is the way that you teach geometry dependent on whether you have preservice 
teachers or have mathematics majors?  

Answer: The main course that my book is based on has mathematics majors and preservice 
teachers (who are also mathematics majors) and mathematics education graduate students and 
then there are miscellaneous people (teachers, artists, or other members of the community who 
are interested in geometry) – I do the same thing with all of them. Because most of the feedback 
is based on the writing that they do, they can respond in different ways, so I can have a different 
dialogue going on for different students depending on where they are coming from. I have not 
been able to do this as well in other subjects, but geometry is particularly suited to this because 
most people do not have much background in geometry, and that evens them out. Also geometry 
is more accessible concretely and through the intuition. I should tell you about one workshop 
that I did that was very powerful, one of the most powerful workshops that I have lead. It was 
in South Africa and they had gotten together a group of about 50 people which included 
elementary school teachers (many of whom had not finished secondary school, so had very 
weak mathematics backgrounds and virtually nothing in geometry), secondary school teachers, 
mathematics education people, and research mathematicians (including the chair of the 
mathematics department) – the whole span. I had them work on the same problems in small 
homogeneous groups, the elementary school teachers worked with each other and the research 
mathematicians were working with each other. Of course, what they were doing in their small 
groups was very different, but I then had them report back to the whole group what they had 
found. Then the research mathematicians had to express it in a way that made sense for the 
elementary school teachers and the elementary school teachers were able to express what they 
had found and see that they had found things that the research mathematicians hadn't seen. It 
was very powerful – I try to have as much diversity as possible in my class, but I have never 
had that kind of diversity before or since.  

 

Question: Can or should geometry be taught separately from algebra?  

Answer: When I teach geometry, I encourage students to use whatever they find useful to use 
and, if that is algebra, then-great. Is that the kind of thing you were meaning by the question?  

 

Question: Should geometry be taught before algebra?  

Answer: My own feeling is that geometry comes before algebra-much of algebra developed 
out of geometry, historically, and that should not be lost. Mostly I would like to turn the question 
around: Should algebra be taught separate from geometry? And there my answer would 
definitely be NO. Whenever I teach linear algebra, geometry is there a lot. And that is true 
historically-much of linear algebra was developed to help with the description and study of the 
geometry of higher dimensional spaces.  

 

Question: Could you elaborate on your comments that formalist mathematics is harmful and 
destructive? Is this perhaps a function of generation, because Leslie Lee seemed to be really 
able to identify with your comments because she too wanted to build a cabin?  

Answer: Several people here came up to me afterwards and said they had had similar 
experiences, not just Leslie, and they were all about my age. Our generation was the generation 
before the baby boomers – I think the baby boom generation (the ones that went into 
mathematics and the ones that didn't) was just different and maybe that is part of the reason 
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why my generation is affected. Also I think that mathematics was most formal when we were 
in school. There seems to be something about our generation; and we are now in charge so we 
are more visible and that puts more pressure on us. Also, this formalism is only a product of 
this century, so for a long while the leaders in mathematics who were doing the formalism also 
knew that it was not all of mathematics-like the quote I have from Hilbert and that was in the 
1930's. But then somehow after the war in the late 1940's and 1950's, most of the 
mathematicians who had had direct personal contact with what was going before formalism 
came in had died off and so that may have affected our generation.  

 

Question: How has the harmfulness or destructive nature of formalist mathematics manifested 
itself beyond the urges to live in the woods?  

Answer: Well, I do not think that the urge to live in the woods is harmful! I think that it was 
mainly that when I was going through school I never grew up socially and I was not effectively 
encouraged to grow up socially. I was a 'brain' (or 'science whiz') and that particularly 
substituted for growing up socially. Being immersed in formalism sort of fit that and 
encouraged that. That's part of it and I think that with the baby boom generation there were lots 
of external forces that started drawing people out, that was just not around in my days. And 
people who were more alive and more socially active than I was, tended not to go into 
mathematics, or if they were in mathematics then they dropped out.  

 

Question: Could you picture a world where mathematics majors and graduate students could 
be extroverted and emotional and deal with people and still do formalism? Do think there is 
something inherent in formalism?  

Answer: I do not know for sure. I look at the graduate students now at Cornell and there are 
some of them who are like I was but there are also significant numbers of them now who are 
not like I was and who are alive in lots of ways. They are surviving at Cornell and Cornell is 
basically still a very formal place, but they are also interested in teaching and we have 
mathematics graduate students who are taking the initiative to do some educational reform. So, 
yes, I think it makes sense that it fits in with formalism. I should say more about formalism, 
there is the part of mathematics, the foundations of mathematics, which is specifically studying 
formal systems and now in lots of places, in particular at Cornell, there is almost no distinction 
between it and a part of theoretical computer science. That is an active area of research where 
there is a lot of exciting things going on. I am not talking about that, that is a part of 
mathematics. I don't know ... Let me tell you one observation that I had that is less true now but 
it used to be true 10 years ago or so. Almost all of the women graduate students did not go into 
geometry or geometry related areas, but instead went into very formal areas. I talked with some 
of these women trying to catch why this was true, because in most of these cases these women 
were very active outside of mathematics – they were involved in various social movements, 
political movements, feminist activities, and other such things going on 10-20 years ago. They 
expressed to me that they had to separate their lives – when they were doing mathematics they 
had to separate it off from the rest of their life and it was easier to do that when they were doing 
formal mathematics. That seems to fit in with what I am saying. I see that happening less now, 
for both the men and the women.  
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Question: We are interested in the resurgence of geometry at Cornell. Can you give us a sense 
of the constellation of the geometry courses that are available at Cornell and the population 
that they are for?  

Answer: As far as I can tell, Cornell has more geometry courses than anywhere else in the 
world. The undergraduate geometry courses are:  

1. Euclidean and spherical geometry (the course that the book is based on) that is required 
for prospective teachers but it is taken by lots of other majors also.  

2. Hyperbolic and projective geometry.  
3. Geometry and groups-tessellations, transformation groups, etc. Cornell has a strong 

geometric group theory research group and the course grew naturally out of that 
research group.  

4. Differential geometry.  
5. Geometric topology.  
6. "From space to geometry" – A freshman course which is based on writing assignments.  
7. "Mathematical explorations"-for first and second year students who are humanities 

and social science majors. I use a lot of the same problems that are in my book-
Mariah's proof about the sum of the angles of a triangle on the sphere was from that 
course.  

8. Applicable geometry-sometimes computational geometry, sometimes the geometry of 
operations research (such as convex polytopes), and other applied topics that vary from 
year to year.  

 

Question: Isn't the issue more one of HOW you run the course rather than the subject matter 
of geometry?  

Answer: First of all, only one of those eight geometry courses deals extensively with axioms 
and formalism and that is the hyperbolic and projective geometry course and it does not deal 
with axiom systems totally. But I agree with you that the important thing is, How? I think that 
as long as you can start with something that is a concrete contextual situation and use that to 
start building the area of mathematics, then it can be done with any subject; and I think all parts 
of mathematics have such grounding. Geometry is easier to get into because there is not a 
tradition of having a long string of prerequisites, this linear sequence of courses and so on, in 
geometry, so it is easier to jump in different places. But I have done it in an abstract algebra 
course where, because it was me doing it, I started with symmetries of polyhedra and ended up 
with Galois Theory. The main thing that I try to do is to have a concrete contextual situation 
where the students are able to experience the meaning of what is going on and so, in that way, 
it can be more constructive. The other part of it (what I mentioned in my answer to the first 
question) is eliciting from the students their ideas and their thinking, so that if there is some 
way that their imagination and intuition can latch on, then I just start pulling out of them what 
the ideas are and guiding them in the right ways and giving suggestions and writing challenging 
problems.  

 

Question: Are the other geometry courses at Cornell also not so prerequisite bound?  

Answer: None of the geometry courses have any of the other geometry courses as prerequisites.  
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Question: It is perhaps true that the phenomena is not so much a growing interest in geometry 
but rather a growing interest in something mathematical that can engage the students in less 
formal ways?  

Answer: I think you may well be right and that geometry is just a particularly convenient or 
easier area to do that in. There is a debate going on in our department as to whether or not 
students who want to take my courses are wanting to take it because of me or is it something 
about the course. It is hard to gauge that but it seems to be what you say, that they are really 
looking for a different way in which to engage with mathematics – something that is less formal, 
that is not just lecture and exams.  

 

Question: Have you had any resistance to your approach from colleagues, other 
mathematicians, or from students?  

Answer: Yes, all of the above. The geometry courses, fortunately, are not required for 
mathematics majors except for prospective teachers, so students who do not want to do the 
course just do not take the course and I have had no complaints from the prospective teachers. 
But, I and some graduate students are trying to put some of these ideas into the calculus now. 
We have had a few cases of students getting up and stomping out of the room when we introduce 
small group work and other activities to engage the students. It seems that this happens because 
they are not there to learn calculus; they are there because they are required to take calculus and 
they want to do it with a minimum amount of effort to get their passing grade so they can go on 
to do whatever it is that it is required for. The students who want to learn calculus, they seem 
to love the new approaches. Sometimes I am teaching one section and there are other sections 
of the calculus course taught in traditional ways. I am required by the department for my 
students to have the same assignments and exams, so I am giving them stuff in addition to that. 
I tell them this right up front and I tell them why – I think they will learn it better and with more 
understanding, but they will have every week more assignments than the other sections. 
Typically, what happens when I announce that in the beginning, a few students drop out and 
other students hear about it and come in. At the end of the semester the students report that the 
extra stuff is the best part of the course. 
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TOWARD A PRACTICE-BASED THEORY OF MATHEMATICAL 
KNOWLEDGE FOR TEACHING4  

Deborah Loewenberg Ball and Hyman Bass5
 

University of Michigan  

This plenary was chosen because of the unique combination of the two co-speakers that 
reflects CMESG's goal of creating a community of mathematics educators and 
mathematicians interested in mathematics education. The research collaboration of Debra 
Ball, a prominent mathematics education researcher, and Hyman Bass, a distinguished 
research mathematician who in his mid-sixties had started to put his creative energies into 
mathematics education, reminds us of the importance for the two groups they represent to 
work together.  Their work opened up a significant chapter in the field in terms of the special 
kinds of mathematical and pedagogical knowledge needed by a mathematics teacher. This 
paper allows us to look back at the earlier stages of their work that eventually made this 
significant impact to the field of mathematics teacher education. 

Cette conférence plénière a été choisie en raison de la combinaison des deux conférenciers, 
une combinaison qui reflète l’objectif du GCEDM de créer une communauté de didacticiens 
et de mathématiciens intéressés par l’éducation mathématique. La collaboration entre 
Deborah Ball et Hyman Bass, une chercheure importante en didactique des mathématiques 
et un chercheur de marque en mathématiques qui, dans la mi-soixantaine, a commencé à 
s’investir dans l’éducation mathématique, nous rappelle l’importance, pour les deux groupes 
qu’ils représentent, de travailler ensemble. Leur travail collaboratif a ouvert la voie à des 
travaux sur les types de connaissances mathématiques et pédagogiques nécessaires pour 
l’enseignement. Ce texte nous ramène aux premiers stades de leur programme de recherche, 
qui, éventuellement, a eu l’impact que l’on connait aujourd’hui sur le champ de la formation 
à l’enseignement des mathématiques. 

 

Mathematics Professor: The situation is terrible: Only one of the students in my 
mathematics content course for teachers can correctly divide .0045789 by 3.45.  

Fifth Grader: Ms. Ball, I can't remember how to divide decimals. There's something 
my stepfather showed me about getting rid of the decimal point, but I can't 
remember what he said and, besides, I don't think that would work.  

With all the talk of teachers' weak mathematical knowledge, we begin with a reminder that the 
problem on the table is the quality of mathematics teaching and learning, not—in itself— the 
quality of teachers' knowledge. We seek in the end to improve students' learning of 
mathematics, not just produce teachers who know more mathematics.  

Why, then, talk about teacher knowledge here? We focus on teacher knowledge based on the 
working assumption that how well teachers know their subjects affects how well they can teach. 
In other words, the goal of improving students' learning depends on improving teachers' 
knowledge. This premise—widely shared as it may be, however—is not well supported 

                                                 
4 This work has been supported by grants from the National Science Foundation (REC # 0126237) and 
the Spencer Foundation (MG #199800202). 
5 The authors acknowledge Heather Hill for her contributions to the ideas discussed in this paper. 
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empirically. We begin with a brief glimpse of the territory in which the problem on which we 
are working fits. Our purpose is to set the context for our proposal for reframing the problem.  

THE PROBLEM: WHAT MATHEMATICS DO TEACHERS NEED TO KNOW 
TO TEACH EFFECTIVELY?  
The earliest attempts to investigate the relationship between teachers' mathematics knowledge 
and their students' achievement met with results that surprised many people. Perhaps the best 
known among these is Begle's (1979) analysis of the relationship between the number of courses 
teachers had taken past calculus and student performance. He found that taking advanced 
mathematics courses3 produced positive main effects on students' achievement in only 10% of 
the cases, and, perhaps more unsettling, negative main effects in 8%. That taking courses could 
be negatively associated with teacher effects is interesting because the negative main effects 
are not easily explained by the criticism that advanced mathematics courses6 are not relevant to 
teaching, or that course-taking is a poor proxy for teachers' actual mathematical knowledge. 
Such claims support finding no effects, but not negative effects.  

So why might these variables be associated with negative effects? One explanation might rest 
with the compression of knowledge that accompanies increasingly advanced mathematical 
work, a compression that may interfere with the unpacking of content that teachers need to do 
(Ball & Bass, 2000a). Another explanation might be that more coursework in mathematics is 
accompanied by more experience with conventional approaches to teaching mathematics. Such 
experience may impress teachers with pedagogical images and habits that do not contribute to 
their effectiveness with young students (Ball, 1988).  

Observational studies of beginning and experienced teachers reveal that teachers' understanding 
of and agility with the mathematical content does affect the quality of their teaching. For 
example, Eisenhart, Borko, Underhill, Brown, Jones, and Agard (1993) describe the case of a 
middle school student teacher, Ms. Daniels, who was asked by a child to explain why the invert-
and-multiply algorithm for dividing fractions works. Ms. Daniels tried to create a word problem 
for three-quarters divided by one-half by saying that three quarters of a wall was unpainted. 
However, there was only enough paint to cover half of the unpainted area. As she drew a 
rectangle to represent the wall and began to illustrate the problem, she realized that something 
was not right. She aborted the problem and her explanation in favor of telling the children to 
"just use our rule for right now" (p. 198).  

Despite having taken two years of calculus, a course in proof, a course in modern algebra, and 
four computer science courses, Ms. Daniels was unable to provide a correct representation for 
division of fractions or to explain why the invert-and-multiply algorithm works. In fact, she 
represented multiplication, rather than division, of fractions.  

Many other studies reveal the difficulties teachers face when they are uncertain or unfamiliar 
with the content. In 1996, the National Commission on Teaching and America's Future 
(NCTAF) released its report which proposed a series of strong recommendations for improving 
the nation's schools that consisted of "a blueprint for recruiting, preparing, and supporting 
excellent teachers in all of America's schools" (p. vi). Asserting that what teachers know and 
can do is the most important influence on what students learn, the report argues that teachers' 
knowledge affects students' opportunities to learn and learning. Teachers must know the content 
"thoroughly" in order to be able to present it clearly, to make the ideas accessible to a wide 
variety of students, and to engage students in challenging work.  

                                                 
6 An "advanced course" was defined as a course past the calculus sequence. 
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The report's authors cite studies that show that teacher knowledge makes a substantial 
contribution to student achievement. They argue that "differences in teacher qualifications 
accounted for more than 90% of the variation in student achievement in reading and 
mathematics" (Armour-Thomas, Clay, et al., 1989, cited in National Commission on Teaching 
and America's Future, 1996, p. 8). Still, what constitutes necessary knowledge for teaching 
remains elusive.  

An important contribution to the question of what it means to know content for teaching has 
been the concept of "pedagogical content knowledge" (Grossman, 1990; Shulman, 1986, 1987; 
Wilson, Shulman, & Richert, 1987). Pedagogical content knowledge, as Shulman and his 
colleagues conceived it, identifies the special kind of teacher knowledge that links content and 
pedagogy. In addition to general pedagogical knowledge and knowledge of the content, teachers 
need to know things like what topics children find interesting or difficult and the representations 
most useful for teaching a specific content idea. Pedagogical content knowledge is a unique 
kind of knowledge that intertwines content with aspects of teaching and learning.  

The introduction of the notion of pedagogical content knowledge has brought to the fore 
questions about the content and nature of teachers' subject matter understanding in ways that 
the previous focus on teachers' course-taking did not. It suggests that even expert personal 
knowledge of mathematics often may be inadequate for teaching. Knowing mathematics for 
teaching requires a transcendence of the tacit understanding that characterizes much personal 
knowledge (Polanyi, 1958). It also requires a unique understanding that intertwines aspects of 
teaching and learning with content.  

In 1999, Liping Ma's book, Knowing and Teaching Elementary Mathematics attracted still 
broader interest in this issue. In her study, Ma compared Chinese and U.S. elementary teachers' 
mathematical knowledge. Producing a portrait of dramatic differences between the two groups, 
Ma used her data to develop a notion of "profound understanding of fundamental mathematics", 
an argument for a kind of connected, curricularly-structured, and longitudinally coherent 
knowledge of core mathematical ideas.  

What is revealed by the work in the years since Begle's (1979) famous analysis? Although his 
work failed to show expected connections between teachers' level of mathematics and their 
students' learning, it seems clearer now that mathematical knowledge for teaching has features 
that are rooted in the mathematical demands of teaching itself. These are not easily detected by 
how much mathematics someone has studied. We are poised to make new gains on an old and 
continuing question: What do teachers need to know to teach mathematics well? But we are 
poised to make those gains by approaching the question in new ways.  

REFRAMING THE PROBLEM: WHAT MATHEMATICAL WORK DO 
TEACHERS HAVE TO DO TO TEACH EFFECTIVELY?  
The substantial efforts to trace the effects of teacher knowledge on student learning, and the 
problem of what constitutes important knowledge for teaching, led our research group7

 to the 
idea of working bottom up, beginning with practice. We were struck with the fact that the nature 
of the knowledge required for teaching is underspecified. On one hand, what teachers need to 
know seems obvious: They need to know mathematics. Who can imagine teachers being able 
to explain how to find equivalent fractions, answer student questions about primes or factors, 
or represent place value, without understanding the mathematical content? On the other hand, 
less obvious is what "understanding mathematical content" for teaching entails: How do 

                                                 
7 Members of the Mathematics Teaching and Learning to Teach Project include Mark Hoover, Jennifer 
Lewis, Ed Wall, Rhonda Cohen, Laurie Sleep, and Andreas Stylianides. 
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teachers need to know such mathematics? What else do teachers need to know of and about 
mathematics? And how and where might teachers use such mathematical knowledge in 
practice?  

Hence, instead of investigating what teachers need to know by looking at what they need to 
teach, or by examining the curricula they use, we decided to focus on their work. What do 
teachers do, and how does what they do demand mathematical reasoning, insight, 
understanding, and skill? We began to try to unearth the ways in which mathematics is entailed 
by its regular day-to-day, moment-to-moment demands. These analyses help to support the 
development of a practice-based theory of mathematical knowledge for teaching. We see this 
approach as a kind of "job analysis", similar to analyses done of other mathematically intensive 
occupations, from nursing to engineering and physics (Hoyles, Noss, & Pozzi, 2001; Noss, 
Healy, & Hoyles, 1997), to carpentry and waiting tables. In this case, we ask: 

• What mathematical knowledge is entailed by the work of teaching mathematics?  
• Where and how is mathematical knowledge used in teaching mathematics? How is 

mathematical knowledge intertwined with other knowledge and sensibilities in the 
course of that work?  

HOW WE DO OUR WORK  
Central to our work is a large longitudinal NSF-funded database, documenting an entire year 
of the mathematics teaching in a third grade public school classroom during 1989–908. The 
records collected across that year include videotapes and audiotapes of the classroom lessons, 
transcripts, copies of students' written class work, homework, and quizzes, as well as the 
teacher's plans, notes, and reflections. By analyzing these detailed records of practice, we seek 
to develop a theory of mathematical knowledge as it is entailed by and used in teaching. We 
look not only at specific episodes but also consider instruction over time, examining the work 
of developing both mathematics and students across the school year. What sort of larger picture 
of a mathematical topic and its associated practices is needed for teaching over time? How do 
students' ideas and practices develop and what does this imply about the mathematical work of 
teachers?  

A database of the scale and completeness of this archive affords a kind of surrogate for the 
replicable experiment. More precisely, the close study of small segments of the data supports 
the making of provisional hypotheses (about teacher actions, about student thinking, about the 
pedagogical dynamics), and even theoretical constructs. These hypotheses or constructs can 
then be "tested" and, in principle, refuted, using other data with this archive itself. We can 
inspect what happened days (or weeks) later, or earlier, or look at a student's notebook, or at 
the teacher's journal for evidence that confirms or challenges an idea. Further, when theoretical 
ideas emerge from observations of patterns across the data, we can use them as a lens for 
viewing other records, of other teachers' practices, and either reinforce or modify or reject our 
theoretical ideas in line with their adaptability to the new data.  

Structured data like those collected in this archive can constitute a kind of public "text" for the 
study of teaching and learning by a community of researchers. This would permit the discussion 
of theoretical ideas to be grounded in a publicly shared body of data, inherently connected to 
actual practice. As norms for such discourse are developed, so also would the expansion of such 
data sets to support such scholarly communication be encouraged. In our experience, 

                                                 
8 These data were collected under a 1989 National Science Foundation grant to Ball and Magdalene 
Lampert, then at Michigan State University. 
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disciplined inquiry focused on such a practice-based "text" tends to dissipate ideologically 
based disputes, and to assure that theoretical constructs remain connected to practice.  

Even with such records of practice in which much is available to be seen, casual observation 
will no more produce insight about teaching and learning than unsophisticated reading of a 
good mathematics text will produce mathematical insight. Teaching and learning are complex 
and dynamic phenomena in which, even with the best of records, much remains hidden and 
needing interpretation and analysis. Our approach to this work has been to mobilize an 
interdisciplinary group representing expertise in teaching practice, in disciplinary mathematics, 
in cognitive and social psychology, and in educational research. Over time we have collectively 
crafted well-honed skills for sensitive observation of records (particularly video) of teaching 
practice. One of our research aims is to articulate some of the demands, skills, and norms that 
this entails; in short, a kind of methodology of interdisciplinary observation of teaching.  

Our work uses methods of mathematical and pedagogical analysis developed in previous 
research (see, for example, Ball & Bass, 2000a, b; 2003). Using a framework for examining 
practice, we focus on mathematics as it emerges within the core task domains of teachers' work. 
Examples of this work include representing and making mathematical ideas available to 
students; attending to, interpreting, and handling students' oral and written productions; giving 
and evaluating mathematical explanations and justifications; and establishing and managing the 
discourse and collectivity of the class for mathematics learning. As we analyze particular 
segments of teaching, we seek to identify the mathematical resources used and needed by the 
teacher. For example, when a student offers an unfamiliar solution, we will look for signs of 
whether and how the teacher understands the solution, and what he or she did, and what the 
mathematical moves and decisions are. Our coding scheme includes both mathematical content 
(topics, procedures, and the like) and practices (mathematical processes and skills, such as 
investigating equivalence, reconciling discrepancies, verifying solutions, proving claims). The 
goal of the analysis is twofold: First, to examine how and where mathematical issues arise in 
teaching, and how that impacts the course of the students' and teacher's work together; and 
second, to understand in more detail, and in new ways, what elements of mathematical content 
and practice are used—or might be used—and in what ways in teaching.  

WHAT MATHEMATICAL PROBLEMS DO TEACHERS HAVE TO SOLVE?  
This approach has led us to a new perspective on the work of mathematics teaching. We see 
many things teachers do when teaching mathematics that teachers of any subject must do— 
keep the classroom orderly, keep track of students' progress, communicate with parents, and 
build relationships with students. Teachers select and modify instructional tasks, make up 
quizzes, manage discussions, interpret and use curriculum materials, pose questions, evaluate 
student answers, and decide what to take up and what to leave. At first, these may sound like 
generic pedagogical tasks. Closer examination, however, reveals that doing them requires 
substantial mathematical knowledge and reasoning. In some cases, the work requires teachers 
to think carefully about a particular mathematical idea together with something about learners 
or learning. In other cases, the work involves teachers in a kind of mathematical reasoning, 
unencumbered by considerations of students, but applied in a pedagogical context. Our analyses 
have helped us to see that teaching is a form of mathematical work. Teaching involves a steady 
stream of mathematical problems that teachers must solve.  

Let us consider an example. Teachers often encounter students using methods and solutions 
different from the ones with which they are familiar. This can arise for a variety of reasons, but 
when teachers see methods they have not seen before, they must be able to ask and answer—
for themselves—a crucial mathematical question: What, if any, is the method, and will it work 
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for all cases? No pedagogical decision can be made prior to asking and answering this question. 
Consider, for example, three alternative methods for multiplying 35 X 25:  

 

A teacher must be able to ask what is going on in each of these approaches, and to know which 
of these is a method that works for multiplying any two whole numbers. These are quintessential 
mathematical – not pedagogical – questions. Knowing to ask and how to answer such 
mathematical questions is essential to being able to make wise judgments in teaching. For 
instance, a decision about whether or not to examine such alternative methods with the students 
depends on first sizing up the mathematical issues involved in the particular approach, and 
whether they afford possibilities for worthwhile mathematics learning for these students at this 
point in time.  

Being able to sort out the three examples above requires more of teachers than simply being 
able to multiply 35 X 25 themselves. Suppose, for example, a teacher knew the method used in 
(B). If a student produced this solution, the teacher would have little difficulty recognizing it, 
and could feel confident that the student was using a reliable and generalizable method. This 
knowledge would not, however, help that same teacher uncover what is going on in (A) or (C).  

Take solution (A) for instance. Where do the numbers 125 and 75 come from? And how does 
125 + 75 = 875? Sorting this out requires insight into place value (that 75 represents 750, for 
example) and commutativity (that 25 X 35 is equivalent to 35 X  25), just as solution (C) makes 
use of distributivity (that 35 X 25 = (30 X 20) + (5 X 20) + (30 X 5) + (5 X 5). Even once the 
solution methods are clarified, establishing whether or not each of these generalizes still 
requires justification.  

Significant to this example is that a teacher's own ability to solve a mathematical problem of 
multiplication (35 X 25) is not sufficient to solve the mathematical problem of teaching – to 
inspect alternative methods, examine their mathematical structure and principles, and to judge 
whether or not they can be generalized.  

Let us consider a second example. This example again helps to make visible the mathematical 
demands of simple, everyday tasks of teaching. Different from the first, however, it reveals that 
the mathematical demands are not always so closely aligned to the content outlines of the 
curriculum (in the example above, multiplication). Suppose that, in studying polygons, students 
produce or encounter some unusual figures and ask whether any of them is a polygon.  
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This is a natural mathematical question. Knowing how to answer it involves mathematical 
knowledge, skill, and appreciation. An essential mathematical move at this point is to consider 
the definition: What makes a figure a polygon? A teacher should know to consult the textbook's 
definition, but may well find an inadequate definition, such as this one, found in a current 
textbook:  

A closed flat two-dimensional shape whose sides are formed by line segments.  

Knowing that it is inadequate requires appreciating what a mathematical definition needs to do. 
This one, for example, does not rule out (b) or (c) or (f), none of which is a polygon. But if the 
textbook definition is unusable, then teachers must know more than a formally correct 
mathematical definition, such as:  

A simple closed plane curve formed by straight line segments.  

Teaching involves selecting definitions that are mathematically appropriate and also usable by 
students at a particular level. For example, fifth graders studying polygons would not know 
definitions for "simple" or "curve", and therefore would not be able to use this definition to sort 
out the aberrant figures from those we would call polygons.  

To determine a mathematically appropriate and usable definition for "polygon", a teacher might 
try to develop a suitable definition, better than those found in the available textbooks. Consider 
this effort:  

A sequence of three or more line segments in the plane, each one ending where the 
next one begins, and the last one ending where the first one begins. Except for these 
endpoints, shared only by two neighboring segments, the line segments have no other 
points in common.  

This definition, unlike the previous one in the textbook, is mathematically acceptable, as it does 
properly eliminate (b), (c), and (f), as well as (e). But a teacher would still need to consider 
whether or not her students can use it. Definitions must be based on elements that are themselves 
already defined and understood. Do these students already have defined knowledge of terms 
such as "line segments", "endpoints", and "plane", and do they know what "neighboring" and 
"in common" mean? In place of "neighboring", would either "adjacent" or "consecutive" be 
preferable? Knowing definitions for teaching, therefore, requires being able to understand and 
work with them sensibly, treating them in a way that is consistent with the centrality of 
definitions in doing and knowing mathematics. Knowing how definitions function, and what 
they are supposed to do, together with also knowing a well-accepted definition in the discipline, 
would equip a teacher for the task of developing a definition that has mathematical integrity 
and is also comprehensible to students. A definition of a mathematical object is useless, no 
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matter how mathematically refined or elegant, if it includes terms that are beyond the 
prospective user's knowledge.  

Teaching requires, then, a special sort of sensitivity to the need for precision in mathematics. 
Precision requires that language and ideas be meticulously specified so that mathematical 
problem solving is not unnecessarily impeded by ambiguities of meaning and interpretation. 
But the need for precision is relative to context and use. For example, a rigorous and precise 
definition for odd numbers as those numbers of the form (2k + 1), or of even numbers as 
multiples of two, would not be precise for first graders first encountering the notion of "even 
number". Because they cannot decode the meaning of (2k + 1) and do not have a definition of 
"multiple", the elements used to create a precise definition remain obscure and unusable to six-
year-olds. Needed for teaching are definitions that are both correct and useful. Knowing what 
definitions are supposed to do, and how to make or select definitions that are appropriately and 
usefully precise for students at a certain point, demands a flexible and serious understanding of 
mathematical language and what it means for something to be precise. Taken together, these 
two examples show that knowing mathematics in and for teaching includes both elements of 
mathematics as found in the student curriculum – that is, standard computational algorithms, 
multiplication, and polygons – as well as aspects of knowing and doing mathematics that are 
less visible in the textbook's table of contents – sensitivity to definitions or inspecting the 
generality of a method, for example. These examples also provide a glimpse of how centrally 
mathematical reasoning and problem solving figure in the work of teaching.  

EXAMPLES OF MATHEMATICAL PROBLEMS OF TEACHING  
To illustrate ways in which solving mathematical problems is a recurrent part of the work of 
teaching, we turn next to some examples. Each of our examples was chosen to show different 
aspects of the mathematical work of teaching, and to develop the portrait of the mathematics 
that teaching entails, and the ways in which mathematics is used to solve problems of teaching 
mathematics.  

1. CHOOSING A TASK TO ASSESS STUDENT UNDERSTANDING: DECIMALS  

One thing that teachers do is monitor whether or not students are learning. To do that, on an 
informal basis, they pose questions and tasks that can provide indicators of whether or not 
students are "getting it".  

Suppose you wanted to find out if your students could put decimal numbers in order. Which of 
the following lists of numbers would give you best evidence of students' understanding?  

a)  .5  7  .01  11.4  
b)  .60  2.53  3.14  .45  
c)  .6  4.25  .565  2.5  

Obviously, any of these lists of numbers can be ordered. One possible decision, then, is that the 
string makes no difference—that a correct ordering of any of the lists is as good as any other.  

However, a closer look reveals differences among the lists. It is possible to order (a) and (b) 
correctly without paying any attention to the decimal point at all. Students who merely looked 
at the numbers, with no concern for decimal notation, would still put the numbers into the 
correct order. List (c), however, requires attention to the decimal places: If a student ignored 
the decimal point, and interpreted the list as a set of whole numbers, he would order the numbers 
as follows:  

.6  2.5  4.25  .565  
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instead of:  

.565  .6  2.5  4.25  

So what sort of mathematical reasoning by the teacher is involved? More than being able to put 
the numbers in the correct order, required here is an analysis of what there is to understand 
about order, a central mathematical notion, when it is applied to decimals. And it also requires 
thinking about how ordering decimals is different from ordering whole numbers. For example, 
when ordering whole numbers, the number of digits is always associated with the size of the 
number: Numbers with more digits are larger than numbers with fewer. Not so with decimals. 
135 is larger than 9, but .135 is not larger than 9. This mathematical perspective is one that 
matters for teaching, for, as students learn, their number universe expands, from whole numbers 
to rationals and integers. Hence, teaching requires considering how students' understanding 
must correspondingly expand and change.  

2. INTERPRETING AND EVALUATING STUDENTS' NON-STANDARD MATHEMATICAL 
IDEAS: SUBTRACTION ALGORITHMS  

Teachers regularly encounter approaches and methods with which they are not familiar. 
Sometimes students invent alternative methods and bring them to their teachers. In other cases, 
students have been taught different methods.  

Suppose you had students who showed you these methods for multi-digit subtraction. First, you 
would need to figure out what is going on, and whether it makes sense mathematically. Second, 
you would want to know whether either of these methods works in general.  

 

The first method uses integers to avoid the standard, error-prone, method of regrouping. It 
surely works, for it reduces the algorithm to a simple procedure that relies on the composition 
of numbers, and does not require "borrowing". The second regroups 307 by regarding it, 
cleverly, as 30 tens plus 7 ones, to 29 tens and 17 ones. Asking mathematical questions, a 
teacher might ask himself: Even if the methods work, what would either one look like with a 
10-digit number? Do both work as "nicely" with any numbers? Skills and habits for analyzing 
and evaluating the mathematical features and validity of alternative methods play an important 
role in this example. Note, once again, that this is different from merely being able to subtract 
307 – 168 oneself.  

3. MAKING AND EVALUATING EXPLANATIONS: MULTIPLICATION  

Independent of any particular pedagogical approach, teachers are frequently engaged in the 
work of mathematical explanation. Teachers explain mathematics; they also judge the adequacy 
of explanations—in textbooks, from their students, or in mathematics resource books for 
teachers.  

Take a very basic example. In multiplying decimals, say 1.3 X 2.7, one algorithm involves 
carrying out the multiplication much as if the problem were to multiply the whole numbers 13 
and 27. One multiplies, ignoring the decimal points.  
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Then, because the numbers are decimals, the algorithm counts over two places from the right, 
yielding a product of 3.51.  

But suppose one wants to explain why this execution of the algorithm is wrong:  

 

and to explain why the standard algorithm works? In this typical instance, a student has not 
"moved over" the 26 on the second line, and has, in addition, simply placed the decimal point 
in the position consistent with the original problem.  

Is it sufficient to explain by saying that the 26 has to be moved over to line up with the 6 under 
the 9? And to count the decimal places and insert the decimal point two places from the right?  

These are not adequate mathematical explanations. Teaching involves explaining why the 26 
should be slid over so that the 6 is under the 9: this involves knowing what the 26 actually 
represents. In whole number multiplication, if this were 13 X 27, then the 26 on the second line 
would represent the product of 13 and 20, or 260. In this case, the 26 represents the product of 
1.3 and 2, 260 tenths, or 2.6. Developing sound explanations that justify the steps of the 
algorithm, and explain their meaning, involves knowing much more about the algorithm than 
simply being able to perform it. It also involves sensitivity to what constitutes an explanation 
in mathematics.  

What Does Examining the Work of Teaching Imply About Knowing Mathematics 
for Teaching?  

Standing back from our investigation thus far, we offer three observations. First, our 
examination of mathematics teaching shows that teaching can be seen as involving substantial 
mathematical work. Looking in this way can illuminate the mathematics that teachers have to 
do in the course of their work. Each of these involves mathematical problem solving:  

• Design mathematically accurate explanations that are comprehensible and useful for 
students  

• Use mathematically appropriate and comprehensible definitions;  
• Represent ideas carefully, mapping between a physical or graphical model, the 

symbolic notation, and the operation or process;  
• Interpret and make mathematical and pedagogical judgments about students' 

questions, solutions, problems, and insights (both predictable and unusual);  
• Be able to respond productively to students' mathematical questions and curiosities;  
• Make judgments about the mathematical quality of instructional materials and modify 

as necessary;  
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• Be able to pose good mathematical questions and problems that are productive for 
students' learning;  

• Assess students' mathematics learning and take next steps.  

Second, looking at teaching as mathematical work highlights some essential features of 
knowing mathematics for teaching. One such feature is that mathematical knowledge needs to 
be unpacked. This may be a distinctive feature of knowledge for teaching. Consider, in contrast, 
that a powerful characteristic of mathematics is its capacity to compress information into 
abstract and highly usable forms. When ideas are represented in compressed symbolic form, 
their structure becomes evident, and new ideas and actions are possible because of the 
simplification afforded by the compression and abstraction. Mathematicians rely on this 
compression in their work. However, teachers work with mathematics as it is being learned, 
which requires a kind of decompression, or "unpacking", of ideas. Consider the learning of 
fractions. When children learn about fractions they do not begin with the notion of a real 
number, nor even a rational number. They begin by encountering quantities that are parts of 
wholes, and by seeking to represent and then operate with those quantities9. They also encounter 
other situations that call for fractional notation: distances or points on the number line between 
the familiar whole numbers, the result of dividing quantities that do not come out "evenly" (e.g., 
13 ÷ 4, and later 3 ÷ 4). Across different mathematical and everyday contexts, children work 
with the elements that come together to compose quantities represented conveniently with 
fraction notation. Meanwhile, their experiences with the expansion of place value notation to 
decimals develops another territory that they will later join with fractions to constitute an 
emergent concept of rational numbers. Teachers would not be able to manage the development 
of children's understanding with only a compressed conception of real numbers, or formal 
definition of a rational number. So, although such a conception has high utility for the work of 
mathematics, it is inadequate for the work of teaching mathematics.  

Another important aspect of knowledge for teaching is its connectedness, both across 
mathematical domains at a given level, and across time as mathematical ideas develop and 
extend. Teaching requires teachers to help students connect ideas they are learning – geometry 
to arithmetic, for example. In learning to multiply, students often use grouping: 35 X 25 could 
be represented with 35 groups of 25 objects. But, for example, to show that 35 X 25 = 25 X 35, 
or that multiplication is commutative, grouping is not illuminating. More useful is being able 
to represent 35 X 25 as a rectangular area, with lengths of 25 and 35 and an area of 875 square 
units. This representation makes it possible to prove commutativity, simply by rotating the 
rectangle, showing a X b = b X a. Or, later, helping students understand the meaning of x2 + y2

 

and how it is different from (x + y)2, it is useful to be able to connect the algebraic notions to a 
geometric representation:  

 

                                                 
9 Understanding the development of ideas was implied by Dewey in his distinction between the 
psychological and the logical aspects of subject matter in The Child and the Curriculum (1902). By 
"psychological", he did not mean the way in which a particular idea might be learned, but the 
epistemological composition of its growth. 



2002  Plenary Lecture 

118 

Using these two diagrams helps to show that x2 + y2 is not the same as the x2 + 2xy + y2 produced 
by multiplying (x + y)2.  

Teaching involves making connections across mathematical domains, helping students build 
links and coherence in their knowledge. This can also involve seeing themes. For example, the 
regrouping of numbers that is part of the standard multi-digit subtraction algorithm is not unlike 
the renaming of fractions into equivalent forms. In each case, numbers are written in equivalent 
forms useful to the mathematical procedure at hand. To add two fractions with unlike 
denominators, it is useful to be able to rewrite them so that they have the same denominator. In 
subtraction, to subtract 82 – 38, it is useful to be able to rewrite 82 as "7 12" (7 tens and 12 
ones) – also an equivalent form. Seeing this connection is useful in helping students appreciate 
that, to be strategic and clever in mathematics, quantities can be written in equivalent, useful 
forms.  

Teaching also requires teachers to anticipate how mathematical ideas change and grow. 
Teachers need to have their eye on students' "mathematical horizons" even as they unpack the 
details of the ideas in focus at the moment (Ball, 1993). For example, second grade teachers 
may need to be aware of the fact that saying, "You can't subtract a larger number from a smaller 
one", is to say something that, although pragmatic when teaching whole number subtraction, is 
soon to be false. Are there mathematically honest things to say instead that more properly 
anticipate the expansion to integers, and the accompanying changes in what is true or 
permissible10? 

One final observation about what we are finding by examining teaching as mathematical work: 
In our analyses, we discover that the critical mathematical issues at play in the lesson are not 
merely those of the curricular topic at hand. For example, in a lesson on subtraction with 
regrouping, we saw the students grappling with three different representations of subtraction 
and struggling with whether these were all valid, and, if so, whether and how they represented 
the same mathematical operation. They were examining correspondences among 
representations, investigating whether or not they were equivalent. Although the content was 
subtraction, the mathematical entailments of the lesson included notions of equivalence and 
mapping. In other instances, we have seen students struggling over language, where terms were 
incompletely or inconsistently defined, and we have seen discussions which run aground 
because mathematical reasoning is limited by a lack of established knowledge foundational to 
the point at hand. These lessons brought to the surface important aspects of mathematical 
reasoning, notation, use of terms and representation. Entailed for the teacher would be both the 
particular mathematical ideas under discussion as well as these other elements of knowing, 
learning, and doing mathematics. We have seen many moments where the teachers' attentions 
to one of these aspects of mathematical practice is crucial to the navigation of the lesson, and 
we have also seen opportunities missed because of teachers' lack of mathematical sensibilities 
and knowledge of fundamental mathematical practices.  

Attending to mathematical practices as a component of mathematical knowledge makes sense. 
As children – or mathematicians, for that matter – do and learn mathematics, they are engaged 
in using and doing mathematics, as are their teachers. They are representing ideas, developing 
and using definitions, interpreting and introducing notation, figuring out whether a solution is 
valid, and noticing patterns. They are engaged in mathematical practices as they engage in 
learning mathematics. For example we often see students whose limited ability to interpret and 
use symbolic notation, or other forms of representation impedes their work and their learning. 
Similarly, being able to inspect, investigate, and determine whether two solutions, two 
representations, or two definitions are similar, or equivalent is fundamental to many arenas of 
                                                 
10 A group of prospective teachers suggested saying, "We can't subtract larger numbers from smaller ones 
using the numbers we have right now". 
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school mathematics. Students and teachers are constantly engaged in situations in which 
mathematical practices are salient. Yet, to date, studies of mathematical knowledge for teaching 
have barely probed the surface of what of mathematical practices teachers would need to know 
and how they would use such knowledge.  

CONCLUSION: LEARNING MATHEMATICS FOR TEACHING  
What we know about teachers' mathematical knowledge, learning mathematics for teaching, 
and the demands of teaching mathematics suggests the need to reframe the problem of preparing 
teachers to know mathematics for teaching. First, although many U.S. teachers lack adequate 
mathematical knowledge, most know some mathematics – especially some basic mathematics. 
Identifying what teachers know well and what they know less well is an important question for 
leveraging resources wisely toward the improvement of teachers' opportunities to learn 
mathematics. What many teachers lack is mathematical knowledge that is useful to and usable 
for teaching. Of course, some teachers do learn some mathematics in this way from their 
teaching, from using curriculum materials thoughtfully and by analyzing student work. 
However, many do not. Inadequate opportunities exist for teachers to learn mathematics in ways 
that prepare them for the work, and few curriculum materials effectively realize their potential 
to provide mathematical guidance and learning opportunities for teachers. Also important to 
realize is that professional mathematicians may often not know mathematics in these ways, 
either. This is not surprising, for the mathematics they use and the uses to which they put it are 
different from the mathematical work of teaching children mathematics. They, too, in helping 
teachers, will have mathematics to learn, and new problems to learn to solve, even as they also 
contribute resources. This summary suggests that reframing the problem and working on it 
productively is both promising and challenging.  

Our analysis suggests that teachers' opportunities to learn mathematics should include 
experiences in unpacking familiar mathematical ideas, procedures, and principles. But, as the 
polygon example shows, learning mathematics for teaching must also afford opportunities to 
consider other aspects of proficiency with mathematics – such as understanding the role of 
definitions and choosing and using them skillfully, knowing what constitutes an adequate 
explanation or justification, and using representations with care. Knowing mathematics for 
teaching often entails making sense of methods and solutions different from one's own, and so 
learning to size up other methods, determine their adequacy, and compare them, is an essential 
mathematical skill for teaching, and opportunities to engage in such analytic and comparative 
work is likely to be useful for teachers. As we examine the work of teaching, we are struck 
repeatedly with how much mathematical problem solving is involved. It is mathematical 
problem solving both like and unlike the problem solving done by mathematicians or others 
who use mathematics in their work. Practice in solving the mathematical problems they will 
face in their work would help teachers learn to use mathematics in the ways they will do so in 
practice, and is likely also to strengthen and deepen their understanding of the ideas. For 
example, a group of teachers could analyze the three multiplication solutions presented here, 
determine their validity and generality, map them carefully onto one another. They could also 
represent them in a common representational context, such as a grid diagram or an area 
representation of the multiplication of 35 X 25 (see Ball, 2003).  

Seeing teaching as mathematically-intensive work, involving significant and challenging 
mathematical reasoning and problem solving, can offer a perspective on the mathematical 
education of teachers, both preservice and across their careers. It opens the door to making 
professional education of teachers of mathematics both more intellectually and mathematically 
challenging, and, at the same time, more deeply useful and practical.  
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MATHEMATICS AS MEDICINE 

Edward Doolittle  
University of Regina  

Dr. Ed Doolittle, mathematician and Associate Professor at First Nations University of Canada, gave 
his plenary address to CMESG in 2006. Doolittle, an Aboriginal mathematician and advocate for 
Indigenous people's mathematics and mathematics education for Indigenous people shared stories that 
reflected his view of mathematics as medicine.  CMESG members were moved by his opening 
acknowledgement of his ancestors to his conclusion of the power of mathematics. Doolittle's story 
telling invited us to think about mathematics in the context of Aboriginal learners and culture. In 
considering this paper for inclusion in the volume we also reflected on how our structure of plenary 
address followed by small group discussions to generate questions for the plenary speaker and the 
subsequent question period is very effective in deepening the messages. We felt this was especially 
evident in Doolittle's plenary.  

Dr. Ed Doolittle, mathématicien et professeur associé à l’Université des Premières Nations du Canada, 
a donné sa conférence plénière au GCEDM en 2006. Doolittle, un mathématicien amérindien défenseur 
des mathématiques des amérindiens et de l’éducation mathématique pour les amérindiens, a partagé 
avec nous quelques histoires reflétant sa vision des mathématiques en tant que médecine. Les membres 
du GCEDM ont été touchés du début jusqu’à la fin de sa conférence, de la reconnaissance exprimée 
envers ses ancêtres à sa conclusion sur la puissance des mathématiques. Les histoires racontées par 
Doolittle nous ont invités à penser aux mathématiques dans le contexte des apprenants amérindiens et 
de la culture amérindienne. Si nous avons choisi de publier ce texte dans le présent volume, c’est qu’il 
nous rappelle à quel point notre structure de conférence plénière suivie d’une période de préparation 
de questions en petits groupes, suivie à son tour d’une séance plénière de questions au conférencier ou 
à la conférencière, est très efficace pour approfondir le message. Il nous est apparu que ceci était 
particulièrement vrai dans le cas de cette conférence de Doolittle. 

 

I remember well my first visit to the Navajo reservation in Arizona. I was traveling with a dear 
friend who had been a few times before. Driving through the desert in near total darkness, I 
spotted some strange coloured lights flashing on the horizon near the place where the town in 
the reservation should be, pulses which would stop and then start again in an irregular pattern. 
"What's that?" I asked. "I don't know," said my friend, clearly disturbed. "I've never seen that 
before." Thoughts of UFO abduction began to form in my mind. "You're pulling my leg," I said. 
"No really," she said, "I have no idea what those coloured lights are!" We continued to drive 
through the darkness, perplexed and staring in wonder at the coloured lights, for what seemed 
like ages. We were closer, but I still couldn't make sense of the experience. The lights 
disappeared behind a hill. As we climbed the hill I held my breath, knowing that the truth was 
on the other side. We reached the top and it finally unfolded clearly before me. The circus had 
come to the Navajo reservation.  

I am an Indian. I am a mathematician. Those two aspects of my identity seem to be in constant 
opposition, yet I cannot let go of either.  

My father, the late Edward Lorne Doolittle, was a Mohawk Indian from the Six Nations 
reservation in southern Ontario. My father's mother, Belda Brant, attended residential school 
where she lost her language and learned how to clean hotel rooms. My father's father, Clifford 
Doolittle, was killed in a railroad construction accident when my father was five years old. The 
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settlement offered by the railroad company was $35 a month. My grandfather's spirit came to 
my grandmother to tell her that she should take the family off the reserve to find work, which 
she did. Although that helped to keep the family fed, it had the effect of further distancing them 
from their culture.  

By the time I was a teenager, my father and mother, Eleanor Naylor, third generation English 
in Canada, had managed to pull together comfortable middle class existence. I grew up in the 
suburbs of Hamilton, Ontario, knowing almost nothing of my Indigenous culture. Aside from 
occasional weekend visits with my aunts and uncles, I had no idea what it meant to be Indian. 
I learned Latin instead of Mohawk, the Bible instead of Kayanerekowa and Karihwiyo, fairy 
tales instead of Coyote tales. I also enjoyed solving puzzles.  

Despite all the advantages and privileges and resources available to me, I still felt there was 
something missing in my life. I tried to find what was missing in religion, but I stopped 
attending Baptist church at the age of 14. My Sunday school teacher had used some twine to tie 
my wrist to that of the other student in my age group, a sweet young woman whose name I can't 
recall, in order to illustrate some point about sin. I thought the problem might have been more 
with the teacher than with me or the girl. Instead I read about Zen Buddhism and searched for 
enlightenment. I studied religion instead of biology in high school, disappointing those who 
wanted to be able to call me Dr. Doolittle. My religion teacher invited a friend of his who we 
only knew as Krishna to come and talk about Hinduism. "Ask him whatever you want," said 
the teacher. So I asked Krishna, "Is it possible to convert to Hinduism?"  

"Yes," said Krishna reluctantly, "But I discourage it."  

What?  

"If you can't find what you're looking for in your own tradition, you won't be able to 
find it in ours."  

Enlightenment. I don't even know what my tradition is, I wanted to say. How can I find anything 
within my own tradition if I don't even have a tradition? That was my problem, though, not 
Krishna's. He could not tell me where to find the something that was missing.  

I was accepted to university, and my general intention was to study Artificial Intelligence at the 
University of Toronto. My parents had not planned for my university education. Instead they 
relied on the fact that status Indians received education funding from the federal government. 
While there was no denying that I was a status Indian—I had the card to prove it—I felt that 
the benefit was for real Indians, not privileged, pale, suburban half-Indians. At first I balked at 
the suggestion that I should accept Indian Affairs funding for my education, but that upset my 
parents greatly. I reconsidered, and (in a deal only with myself) accepted on the condition that 
I would do my best to deserve the benefit offered to me. I resolved to become an Indian.  

At the University of Toronto I connected with the Indian Health Careers Program, a program 
designed to help to increase the representation of Aboriginal people in medicine and other 
health-related careers. Dianne Longboat, the director of the program, hosted gatherings with 
traditional teachers and elders, and invited me to attend. The experience of hearing elders speak 
turned me inside-out. For the first time I directly experienced a powerful tradition of thought 
and experience which stood completely outside of the Western tradition in which I had been 
educated. The power and wisdom of the words of the elders were like a streak of lightning 
shooting through my brain.  

It felt like my whole life had been a preparation for those moments, when I understood that 
there really are different ways of thinking and being. Ways which were not only different, but 
truly powerful; a tradition that stood on its own, entirely independent from European thought, 
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and had great gifts to offer. Even better, all this could somehow be mine. The search for that 
which was missing had ended. That is when I really started to become an Indigenous person. 
The work of bringing it in, filling myself with it had begun, continues to this day, and will not 
end until my life is over.  

I am unbelievably fortunate. Something I could do to satisfy my obligations became something 
I could do for my own benefit. And not just a way to self-discovery and to fill a hole, but a way 
to power and strength, a way to change the world. The opportunity to become an Indigenous 
person is one of the greatest gifts I have ever been granted.  

I am not wise, nor deeply knowledgeable about my culture, nor gifted in oratory like the elders. 
How can I, with my lack of gifts of expression, convince you that our way is a powerful way? 
I often think about three simple words spoken by Chief John Snow: "We have survived." Our 
ways must be powerful if they have helped people survive through one of the greatest 
holocausts in human history: one hundred million dead of disease, starvation, and warfare; loss 
of land, wealth, culture, and knowledge; injustice and wanton destruction all around. Through 
it all, we (the survivors) have survived.  

Back in the regular world, I abandoned the study of Artificial Intelligence, which seemed to be 
reaching a dead end at the time, possibly because its mechanistic approach was just too 
simpleminded to approach something as complex as the human mind, and took up mathematics, 
which is what I seemed to do best and which always seemed fun and natural to me. I studied 
mathematics at the University of Toronto for twelve years, ultimately earning a PhD in pure 
mathematics under Peter Greiner; my dissertation was on the topic of hypoelliptic partial 
differential operators. Peter is like a father to me in a certain sense. He is also a great 
mathematician, and wise in his own way and in his own tradition. He is my mathematical father, 
connecting me to another strong lineage which includes Solomon Lefschetz and Carl Neumann. 
My two fathers have never met.  

One of my major life goals is to resolve the apparent incompatibility between the two aspects 
of my identity, being a mathematician and being an Indigenous person.  

To that end, I would like to explore various interfaces between mathematics and Indigenous 
thought. At this point I am more interested in searching for possibilities than organizing my 
thoughts in any particular way. I have tried to identify the main sources for my thinking, but I 
have neglected making exact references to the literature. I hope that you will forgive my poor 
scholarship, but the need for references is reduced because of the availability of such 
information in this modern age. In any case, I don't always remember things the way they were 
said or written, but I remember the impression they made on me.  

Perhaps the most common, most straightforward, and simplest interface between mathematics 
and Indigenous people is the proposal that mathematics is a requirement for Indigenous people 
to succeed in the job market. The problem is often stated in terms of the desperate state of 
education of Aboriginal people in terms of math and science. Many researchers have attempted 
to quantify or otherwise justify that assessment and then conclude that we must find ways to 
improve outcomes and achievement indicators for the benefit of the students.  

I am skeptical of that approach. For one thing, we have heard such talk before, in connection 
with residential schooling for example. I don't doubt the sincerity and desire to do good of those 
who take that point of view, but the concern that I have, partly from history, partly from personal 
experience, is that as something is gained, something might be lost too. We have some idea of 
the benefit, but do we know anything at all about the cost?  
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The complexity of the situation seems to expand endlessly the more it is examined. It is 
tempting to search for simple solutions to complex problems and to offer simple responses to 
complex situations; that is what Western thought (mathematics included) teaches us to do. 
However, such responses have not been adequate as we can see from the continuing nature of 
the problem (whatever that problem really is).  

As examples of the surprising and complex nature of Indigenous mathematics education, I 
would like to offer some impressions taken from a paper by William Leap on the mathematics 
education of the Ute Indians.  

Q:  If he gets four dollars a day, how many is he going to have in two days?  
A:  Six.  
Q:  Let's imagine you have 72 pennies right here in a pile, and there's one boy sitting 

here, one boy there, one boy there, and one boy there. What would you do to make 
certain everybody got the same number of pennies?  

A:  Pass them out until they are all gone.  
Q:  If your brother took his truck to Salt Lake City, how much would he have to spend 

on gas?  
A:  My brother doesn't have a truck.  

Another approach to the apparent incompatibility between Indigenous thought and mathematics 
is ethnomathematics. Roughly speaking, ethnomathematics expands the meaning of 
"mathematics" to include very general notions of counting, measuring, locating, designing, 
playing, and explaining. From the perspective of mathematics education, the task is to identify 
examples of such activities within a culture and use those examples to teach mathematics. Many 
different examples of Native American ethnomathematics have been discussed by authors such 
as Marcia Ascher, Michael Closs, and many others. For example, the peach pit bowl game of 
my people is discussed in Ascher's book Ethnomathematics.  

Some of the most interesting examples of ethnomathematics in North America, in my opinion, 
involve the idea of mapping in an extended sense. The feeling I get from Native American maps 
and diagrams is that they are not static maps of locations and spatial relationships, but maps of 
processes, like how to get from one place to another, how to make a caribou dinner from scratch, 
how to give thanks and show respect to everything that's good, or how to mourn.  

Ethnomathematics is far more reflective and respectful to Indigenous traditions of thought than 
the simpler reflex to help Indians succeed at improving their outcomes on standardized tests. 
However, the danger of oversimplification remains, perhaps more insidious because the 
motives are put forward as purer. An example of such oversimplification which I have 
encountered repeatedly in discussions with well-meaning people I call Cone on the Range. "The 
tipi is a cone," I have heard countless times. But that is surely wrong; the tipi is not a cone. Just 
look at a tipi with open eyes. It bulges here, sinks in there, has holes for people and smoke and 
bugs to pass, a floor made of dirt and grass, various smells and sounds and textures. There is a 
body of tradition and ceremony attached to the tipi which is completely different from and rivals 
that of the cone. Similarly, there is a ceremonial and spiritual tradition connected with the peach 
pit bowl game that is completely lost in Ascher's treatment.  

Aside from being wrong, oversimplifications such as calling a tipi a cone or analyzing the peach 
pit bowl game only in terms of probabilities and odds may have other serious implications in 
an educational context. My feeling is that Indigenous students who are presented with such 
oversimplifications feel that their culture has been appropriated by a powerful force for the 
purpose of leading them away from the culture. The starting point (tipi, game) may be 
reasonable but the direction is away from the culture and toward some strange and 
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uncomfortable place. Students may, implicitly or explicitly, come to question the motives of 
teachers who lead them away from the true complexities of their cultures.  

There is a more pervasive and insidious example which I call Squaring the Circle. Of course, 
Squaring the Circle is one of the unsolvable mathematical problems of antiquity, but the term 
is also used by blues musicians such as Sterling "Satan" Magee for the process of reasoning too 
much about something that one should be feeling; I believe the term "square" is meant in a 
pejorative sense in that context.  

In modern Indigenous thought, a tool called the medicine wheel is often used to divide complex 
situations into four simpler categories. Many Indigenous people will staunchly defend the 
process of dividing wholes into four aspects, such as the person into the physical, emotional, 
spiritual, and mental. However, I feel, based on personal experience, that such analyses square 
the circle; they are pale oversimplifications of complex and powerful traditions which have 
gone underground. One revelatory experience for me took place at a meeting with teachers, an 
elder, and a number of well-meaning researchers at the University of Saskatchewan. After the 
presentation of a rather complicated example of the use of the medicine wheel in the theory of 
science education, Elder Betty McKenna of Moose Jaw was asked what she thought about it. 
Betty responded: "I have worked on a real medicine wheel."  

The implication, of course, is that a geometrical, abstract medicine wheel is not real. But what 
then, is a real medicine wheel? It is an approximately circular arrangement of stones on the 
ground, often with spokes radiating from a centre, sometimes with loops of stones occurring at 
irregular intervals around the perimeter. There are many pictures available on the Web of real 
medicine wheels such as the Bighorn Medicine Wheel. Note that they blend with the landscape 
as it rises and falls; they are not regular. The stones used to mark them are of different sizes and 
shapes and colours; the number of spokes is not necessarily a multiple of four and not clearly 
meaningful in any way at all. The purpose and meaning of such wheels is to some extent lost, 
or more likely has gone underground. My belief is that they were used not to divide and analyze, 
but as "maps" of processes of ceremony, thanksgiving, timekeeping, and communication. Or 
maybe not.  

Notwithstanding the concerns I have about ethnomathematics in math education, I feel that 
ethnomathematics is a worthwhile pursuit. I would like to propose another example for the body 
knowledge of the ethnomathematics of Native North America. However, before I do so, I can't 
resist telling a joke which I first heard from Eber Hampton at a barbecue sponsored by Luther 
College on the occasion of the opening of First Nations University.  

When the astronauts first landed on the moon, they saw a strange sight: a teepee 
sitting right there on the lunar surface some distance from the landing craft. The 
astronauts bounced over in their spacesuits to marvel at the sight. Finally, one of them 
got the nerve to knock on the hide covering the entrance. An old man parted the 
doorway and looked out, just as surprised to see the astronauts as they were to see 
him. They stared at each other for a few moments, and then the old man noticed the 
American flag planted some distance behind the astronauts. Seeing the flag, the old 
man exclaimed, "Oh no! Not you guys again!"  

The capture of Detroit is one of the highlights of Canadian military history. Near the beginning 
of the War of 1812, the government of Canada and its wartime leader, Isaac Brock, were 
concerned about its ability to fight a war on three fronts: the Detroit River, the Niagara River, 
and the St. Lawrence River. Brock decided to try to neutralize the threat in Detroit quickly by 
launching an immediate, overwhelming attack on the American forces stationed in Fort 
Lernoult, Detroit. Short of manpower, he gathered as many militia as possible and dressed them 
in red jackets to make them look like regulars, and recruited as many Indians as he could to the 
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cause. Key to those recruitment efforts was the great chief Tecumseh, who was impressed with 
Brock and willing to support Brock's fight against the Americans.  

In the decisive tactic of the attack on Fort Lernoult, Tecumseh had his Indians march past a 
point which the Americans could see, change their clothing somewhat, sneak back around to 
their starting point, and march again and again through the Americans' field of vision. "One 
little, two little, three little Indians … ." Several thousand non-existent Indians later the 
Americans thought they were severely outnumbered and surrendered without firing a shot.  

That, I would say, is a fine example of the Native American use of mathematics. It is something 
which we own, something of which we can be proud. That is what is missing, from most of the 
examples of ethnomathematics used in education. In ethnomathematics, there is usually a sense 
that there is something larger behind the scene, let us call it "real mathematics", which is not 
ours. That perceived lack has the effect of making us feel ashamed rather than proud.  

Passion was a major key to Tecumseh's success in the opinion of his biographer John Sugden. 
In the Indigenous world view, perhaps feelings like passion and pride are more valuable than 
the knowledge of facts, ideas, rules, regulations, and methods. We need to follow Tecumseh's 
example and instill a sense of pride and passion in our students, not shame and apathy.  

Apropos are historian William Wood's words on the impact of the death of Brock at Niagara-
on-the-Lake shortly after the capture of Detroit: "Genius is a thing apart from mere addition 
and subtraction." Brock was just one man, but his life and death changed the course of history. 
Arithmetic is not always the best tool to use. One good example notwithstanding, we are still 
left with the question of what we can do to resolve the apparent incompatibilities between 
Indigenous thought and mathematics. I would like to make two suggestions about how we might 
be able to proceed from here.  

First, I would like to consider the question of how we might be able to pull mathematics into 
Indigenous culture rather than how mathematics might be pushed onto Indigenous people or 
how Indigenous culture might be pulled onto mathematics. What might be the difference 
between thought which is authentic to the culture rather than a simulacrum of an idea from 
elsewhere?  

Let us consider how foreign words and concepts are introduced into the Mohawk. Some words 
are simply borrowed, in a process familiar to English speakers, from a European language as in 
Kabatsya = garbage, Ti = tea, and Takós = cat (probably from Dutch de poes, i.e., the puss). 
There are obvious signs that those words are not originally Mohawk words: the presence of 
strange sounds (the b sound in garbage), single syllable words, or words with stress on the 
wrong syllable. Some borrowed words have the overall style of Mohawk (e.g., begin with "ra-
") but lack the internal structure of Mohawk words, as in Rasanya = lasagna which, if it were 
really a Mohawk word, would mean something like "he sanyaed", whatever sanyaing would be. 
A similar example is Rasohs = sauce, apparently from the French la sauce. All of those 
examples lack the nuance, complexity, and internal structure that Mohawk words typically 
have. If there is any connotation, it is ridiculous, as in "he sanyaed".  

On the other hand, there are new Mohawk words to describe new concepts, words which 
developed within the Mohawk tradition. For example, we have kaya'tarha = television, literally 
"it has bodies on its surface"; teyothyatatken = banana, literally "the fruit that has bent itself"; 
kawennokwas = radio, literally "it throws out songs"; and kawennarha, literally "it has words 
on its surface", a word proposed, but not (yet?) generally accepted, for describing a computer. 
Those words really mean something and are not just dry tokens the way English nouns are. 
They are better because they ours, but it is not simply a matter of pride. Since they are ours, 
they are consistent and coherent with the rest of the language; they strengthen the language just 
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as the language strengthens them; and they can be modified and built upon to add further 
complexity and sophistication to the language.  

New words are coined constantly within the Mohawk tradition. The spirit of the language is 
inventive and playful, not acquisitive like the spirit of English. I myself have coined a few new 
words, for example kahnekahontsi = cola drink, literally "black water" or "black drink", and 
Kwiskwis nikawahràsas = bacon bits, literally "little pig meats". The latter made 
Kahnekotsyentha kenha laugh and is now regularly used by a small group in Six Nations. Some 
day it may come into general use.  

Second, I would say we need to recognize that mathematics is an essentially simple (not 
complex, although often complicated) way of thinking. Mathematics is all about simplifying, 
clarifying, analyzing, and breaking down. On the other hand, Indigenous thought is all about 
developing and building up sophisticated, complex responses to complex phenomena such as 
the weather, animal migratory patterns, healing, and human behaviour. A colleague at First 
Nations House at the University of Toronto told me about one occasion on which her 
grandmother held a baby. "There's something wrong with this baby," said the grandmother. It 
turned out that the child had a serious illness, but the child's parents and doctor had all missed 
the problem until the grandmother felt that something was wrong. We can weigh and measure 
and test, but true complexity cannot be handled by simple means.  

Time for another joke. This one I heard at the Sakewewak Storytelling Festival in Regina 
several years ago. I'm afraid I can't remember the name of the storyteller; if anyone out there 
knows, please tell me so I can credit him properly in the future.  

In a town in a certain reserve in Saskatchewan, some young boys were breaking into 
houses. The RCMP investigated. They came into town and asked the first person they 
see, an old man sitting in front of his house, whether he knew anything about the 
break-ins. "Yup," said the old man. "Do you know who's been doing it?" asked the 
police. "Yup," said the old man, "those four boys." "Would you be prepared to testify 
in court?" asked the police. "Yup," said the old man. So the RCMP arrested the boys 
and charged them with break and enter.  

Court day arrived, and the old man took the stand. The prosecutor asked him, "Do 
you know who's being doing those break-ins?" "Yes," said the old man. The 
prosecutor asked, "Can you point to the individuals in question?" "Yes," said the old 
man, "it's those four boys sitting over there." "Thank you," said the prosecutor, "those 
are all the questions I have."  

Then the defence lawyer began his cross-examination. "Have you actually seen those 
boys breaking in to a house?" "No," said the old man, "I haven't actually seen it 
myself." "Then how do you know it's them?" asked the defence lawyer. "I have my 
ways of knowing," said the old man. "I'm sorry, your evidence is hearsay. We can't 
accept it," the defence lawyer said. The judge agreed, and dismissed the witness.  

Well, the old man was not too happy about being dismissed like that, so as he walked 
past the judge on the way back to his seat, he let out a fart. A long, loud one. A big 
one. The judge banged on his gavel and said, "I could have you charged with contempt 
of court for that!"  

The old man turned to face the judge and asked, "Did you see anything?"  

Given the apparent incompatibilities between Indigenous thought and mathematics, I suggest 
that instead of asking "What is Indigenous mathematics," it may be helpful to start with the 
following question instead: "What are the Indigenous analogues to mathematics?"  

For example, we might ask what the role of mathematics is in non-Indigenous culture. I believe 
that one function mathematics plays is as a source of power, which is one reason people are so 
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concerned about learning it or seeing that it is taught to their children. Power is also an important 
concept in my culture. In fact, the core message of the Kayanerekowa, the Great Good Way, is 
Skennen, Kahsha'sten'tshera, Ka'nikonhriyo = Peace, Power, and Good Mind. (The word 
"righteousness" is often seen in place of "good mind", but the latter is a better translation.) 
Power is central to our understanding of following a good way.  

Seeing me in my patched-up, faded shirt, my down-at-heels cowboy boots, the hearing 
aid whistling in my ear, looking at the flimsy shack with its bad-smelling outhouse—
it all doesn't add up to a white man's idea of a holy man. You've seen me drunk and 
broke. You've heard me curse and tell a sexy joke. You know I'm no better or wiser 
than other men. But I've been up on the hilltop, got my vision and my power, the rest 
is just trimmings. That vision never leaves me.  - Lame Deer  

All this talk about power tends to make some people nervous. However, kahsha'sten'tshera in 
this context is not power in isolation, rather power within a strong ethical tradition, if "ethical" 
is the right word. Another aspect of the tradition in which power sits is humility. As Black Elk 
said,  

I cured with the power that came through me. Of course, it was not I who cured, it 
was the power from the Outer World, the visions and the ceremonies had only made 
me like a hole through which the power could come to the two leggeds. If I thought 
that I was doing it myself, the hole would close up and no power could come through. 
Then everything I could do would be foolish.  

Black Elk's reference to power coming through him reminds me of Ramanujan, a great 
inspiration to me, one of the finest mathematical minds of the 20th century. Ramanujan could 
not describe the source of his mathematical insight, but believed it did not come from him 
personally; instead it came through him in dreams from his family goddess, Namakkal. 
Ramanujan had a morning ritual of writing down the thoughts that came to him in dreams 
shortly after awakening.  

Indigenous spiritual traditions and mathematics are perhaps not really so far apart after all. 
Perhaps. Perhaps we can think of mathematics as a kind of medicine, a healing power. But can 
it make our lives better as a people, or are its benefits restricted to just a few fortunate 
individuals?  

I would like to finish with the Blackfoot horse creation story. This version of the story is taken 
from Ted Chamberlin's most recent book, Horse.  

A long time ago there was a poor boy who tried to obtain secret power so that he 
might be able to get some of the things he wanted but did not have. He went out from 
his camp and slept alone on the mountains, near great rocks, beside rivers. He 
wandered until he came to a large lake northeast of the Sweetgrass Hills. By the side 
of that lake he broke down and cried. The powerful water spirit—an old man—who 
lived in that lake heard him and told his son to go to the boy and find out why he was 
crying. The son went to the sorrowing boy and told him that his father wished to see 
him. 'But how can I go to him?' the lad asked. 'Hold onto my shoulders and close your 
eyes,' the son replied. 'Don't look until I tell you to do so.' They started into the water. 
As they moved along the son told the boy, 'My father will offer you your choice of 
animals in this lake. Be sure to choose the old mallard and its little ones.'  

When they reached his father's lodge on the bottom of the lake, the son told the boy to 
open his eyes. They entered the lodge, and the old man said, 'Come sit over here.' 
Then he asked, 'My boy, what did you come for?' The boy explained, 'I have been a 
very poor boy. I left my camp to look for secret power so that I may be able to start 
out for myself.' The old man then said, 'Now, son, you are going to become the leader 
of your tribe. You will have plenty of everything. Do you see all the animals in this 
lake? They are all mine.' The boy, remembering the son's advice, said, 'I should thank 
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you for giving me as many of them as you can.' Then the old man offered him his 
choice. The boy asked for the mallard and it's young. The old man replied, 'Don't take 
that one. It is old and of no value.' But the boy insisted. Four times he asked for the 
mallard. Then the old man said, 'You are a wise boy. When you leave my lodge my 
son will take you to the edge of the lake, and there in the darkness, he will catch the 
mallard for you. When you leave the lake don't look back.'  

The boy did as he was told. At the edge of the lake the water spirit's son collected 
some marsh grass and braided it into a rope. With the rope he caught the old mallard 
and led it ashore. He placed the rope in the boy's hand and told him to walk on, but 
not to look back until daybreak. As the boy walked along he heard the duck's feathers 
flapping on the ground. Later he could no longer hear that sound. As he proceeded 
he heard the sound of heavy feet behind him, and a strange noise, the cry of an animal. 
The braided marsh grass turned into a rawhide rope in his hand. but he did not look 
back until dawn.  

At daybreak he turned and saw a strange animal at the end of the line—a horse. He 
mounted it and, using the rawhide rope as a bridle, rode back to camp. Then he found 
that many horses had followed him.  

The people of the camp were afraid of the strange animals. But the boy signed to them 
not to fear. He dismounted and tied a knot in the tail of his horse. Then he gave 
everybody horses; there were plenty for everyone and he had quite a herd left over 
for himself. Five of the older men in camp gave their daughters to him in return for 
the horses. They gave him a fine lodge also.  

Until that time the people had had only dogs. But the boy told them how to handle the 
strange horses. He showed them how to use them for packing, how to break them for 
riding and for the travois, and he gave the horse its name, elk dog. One day the men 
asked him, 'These elk dogs, would they be of any use in hunting buffalo?' 'They are 
fine for that,' the boy replied. 'Let me show you.' Whereupon he taught his people how 
to chase the buffalo on horseback. He also showed them how to make whips and other 
gear for their horses. Once when they came to a river the boy's friends asked him, 
'These elk dogs, are they of any use to us in the water?' He replied, 'That is where they 
are best. I got them from the water.' So they learned how to use horses in crossing 
streams.  

The boy grew older and became a great chief, the leader of his people. Since that time 
every chief has owned a lot of horses.  

Given the frustrations and difficulties of the task facing us, it is reasonable to ask, "Do we really 
need this stuff anyway?" As a response I offer the completion of the earlier quotation by Chief 
John Snow: "We have survived, but survival by itself is not enough. A people must also grow 
and flourish." 
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OLD AND NEW MATHEMATICAL IDEAS FROM AFRICA: 
CHALLENGES FOR REFLECTION  

Paulus Gerdes 
ISTEG-University, Mozambique 

Dr. Paulus Gerdes, mathematician and mathematics teacher educator died just two years after he gave 
his keynote address to the Canadian Mathematics Education Study Group. He was 62 and at the height 
of his career, appreciated for his work to identify African (and Indigenous peoples) mathematics. His 
plenary was a mathematics talk. He shared the mathematics of basket weavers in Mozambique and the 
parallel mathematicization of the patterns found in the weavings. He shared the stories of mathematical 
people, those people who wove patterns and those people who coded patterns. His question period was 
a mathematics education discussion, offering images of curriculum and pedagogy through the stories 
of his life and the people he encountered.  

Dr. Paulus Gerdes, mathématicien et formateur à l’enseignement des mathématiques, est décédé deux 
années seulement après avoir prononcé sa conférence plénière devant le Groupe Canadien d’Étude en 
Didactique des Mathématiques. Âgé de 62 ans et au sommet de sa carrière, il était reconnu 
internationalement pour son travail sur les mathématiques africaines et indigènes. Sa conférence 
plénière était une conférence mathématique. Il a présenté les mathématiques des tisserands de paniers 
au Mozambique et la mathématisation parallèle des motifs trouvés dans les tissages. Il a partagé avec 
nous quelques histoires de personnages mathématiques, ces personnages étant pour lui autant les 
créateurs de motifs que les codeurs de motifs. La période de questions a porté quant à elle sur 
l’éducation mathématique. Elle a permis au conférencier de présenter des exemples de contenus 
d’enseignement et d’approches pédagogiques à travers des histoires tirées de sa vie et de celle de 
personnes qu’il a croisées sur son chemin. 

 

Some challenges for reflection:  

• How can culture(s) be a source of inspiration for mathematics education?  
• Who does mathematics? Who invents mathematics? What is 'mathematical 

thinking'? Who or which culture defines it?  
• Can African and other cultures be a source of inspiration for the development of 

new mathematical ideas?  

AVANT PROPOS: SOME SIMILAR DESIGNS IN CANADA AND AFRICA 

 

Figure 1. Detail of a wall decoration at the Université Laval, Québec. 
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Walking around at the Université Laval, I observed interesting geometric patterns and shapes. 
Yesterday night, when leaving the atrium of the Pavillon De Koninck after the sympathetic 
Wine & Cheese welcoming session, I was surprised to see outside the building a decorated wall 
with the inscription "Québec", with four replicas, in different colours, of a design well-known 
from Africa in various variations (figure 1). It appears, for instance, in the Cokwe culture from 
East Angola, drawn in the sand, to represent a tortoise (figure 2). The drawing consists of a 
reference frame of dots marked in the sand around which three closed lines are traced (figure 
3); at the end the drawer adds the paws of the animal. 

  

Figure 2. Cokwe representation of a tortoise. 

 
Figure 3. Execution of the drawing. 

Before I continue, let me take the opportunity to thank the Canadian Mathematics Education 
Study Group for the invitation to give the 'mathematician' plenary at this year's conference at 
Laval University in Québec. My first contact with mathematics educators in Canada was when 
the late David Wheeler invited me to write papers for publication in For the Learning of 
Mathematics. I did so (Gerdes, 1985; 1986; 1988; 1990a; 1994a) and I am happy to see that the 
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first paper was reprinted recently in Alan Bishop's (2010) book Mathematics Education: Major 
Themes in Education. It was also David Wheeler who, as a member of the international program 
committee, invited Alan Bishop, the late Peter Damerow, and me to organize the special 5th day 
of the 1988 International Congress of Mathematics Education in Budapest, dedicated to 
'Mathematics, Education, and Society'. My 1988 paper in FLM was entitled "A widespread 
decorative motif and the Pythagorean Theorem" and dealt with the educational exploration of 
designs that appear both among Native Americans and in Africa. It included an infinite series 
of proofs of the theorem. My 1990 paper in FLM was on mathematical elements in the centuries 
old Cokwe sona sand-drawing tradition.  

Challenge for reflection: How can culture(s) be a source of inspiration for 
mathematics education? Example: Theorem of Pythagoras. Other examples? 

'SONA' GEOMETRY  
The tortoise design in figure 2 is an example of a lusona (plural: sona). Formerly, Cokwe 
storytellers and educators used the sona as illustrations when teaching young boys. The colonial 
penetration and occupation contributed to the almost complete extinction of the knowledge 
about sona. I have been experimenting with the use of sona in mathematics education, both 
inside and outside the classroom. See, for instance, the children's book, Drawings from Angola: 
Living Mathematics (Gerdes, 2007a; 2012a), the book for high school pupils, Lusona: 
Geometrical Recreations from Africa (Gerdes, 1997; 2012b), the second volume on 
Educational and Mathematical Explorations (in English: Gerdes, 2013a; in French: Gerdes, 
1995), and my trilogy Sona Geometry from Angola for use in mathematics teacher education 
and in the education of mathematicians. The first volume (Gerdes, 1995; 2006) of the trilogy 
deals with the reconstruction and analysis of mathematical ideas in the sona tradition and the 
third volume is a comparative study of sona with designs from Ancient Egypt, Ancient 
Mesopotamia, and India, and with Celtic knot patterns. As this is the 'mathematicians' plenary, 
I would like to present some new mathematical ideas that emerged in the attempt to analyze the 
mathematical potential of the (reconstructed) sona tradition.  

A small question: Is figure 1 positive or negative? In what sense? Why? 

FROM A PARTICULAR CLASS OF 'SONA' TO THE 
CONCEPTUALIZATION OF MIRROR CURVES  
Figure 4 shows the Cokwe sona that represent the stomach of a lion and the path followed by a 
chicken being chased by a hunter.  

 

Figure 4. Lion's stomach and 'chased-chicken' path. 
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When I was analyzing sona like these two, I found that they can be generated in a particular 
way: Both are examples of what I call 'mirror curves', a concept I proposed for the first time in 
English in (Gerdes, 1990b). A mirror curve is  

the smooth version of the polygonal path described by a light ray emitted from the 
starting place S at an angle of 45º to the rows of a grid (see figure 5); and as the ray 
travels through the grid it is reflected by the sides of the rectangle and by the 'double-
sided mirrors' it encounters on its path. The mirrors are placed horizontally or 
vertically, midway, between two neighboring grid points, as in figure 6. 

 
Figure 5. Light ray emitted from point S. 

 
Figure 6. Possible positions of mirrors relative to neighboring grid points.  

Figure 7 presents the position of the mirrors in the examples of the 'lion's stomach' and the 
'chased-chicken' designs in figure 4. 

 
Figure 7. Position of mirrors in the case of the designs in figure 4. 

Once I had defined the concept of mirror curve in general, I started to look for the properties of 
mirror curves. To facilitate the execution of mirror curves, I used to draw them on squared paper 
with a distance of two units between two successive grid points. In this way, a line drawing 
such as the 'chased-chicken' path passes exactly once through each of the unit squares inside 
the rectangle surrounding the grid (see figure 8). 
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Figure 8. Line passing once through each of the unit squares. 

This gives the possibility of enumerating the small squares 'modulo 2', with the number 1 being 
given to the unit square where one starts the line, and the number 0 to the second unit square 
through which the curve passes, and so on successively, 101010…, until the closed curve is 
complete. In this way a {0, 1}-matrix is produced. Colouring the unit squares numbered 1 black, 
and those numbered 0 white, a black-and-white design is obtained. As this type of black-and-
white design generated by mirror curves was discovered in the context of analyzing sona from 
the Cokwe, who predominantly inhabit the Lunda region of Angola, I gave them the name of 
'Lunda-designs'. Figure 9 presents two examples of Lunda-designs, using different colours. 

 

Figure 9. Two examples of Lunda-designs. 

Lunda-designs have interesting symmetry properties, which often make them aesthetically 
attractive. For instance, in each row there are as many black unit squares as there are white unit 
squares. Also, in each column there are as many black unit squares as there are white unit 
squares. Furthermore, Lunda-designs have the following two characteristics:  

1. Along the border each grid point always has exactly one black unit square associated 
with it (see figure 10);  

 

Figure 10. Symmetry situation along the border. 
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Of the four unit squares between two arbitrary (vertical or horizontal) neighboring grid points, 
two are always black (see figure 11).  

 

Figure 11. Symmetry situation inside the grid. 

The concept of Lunda-design may be generalized in several ways. Circular and hexagonal 
Lunda-designs are some interesting possibilities (Gerdes, 1999; 2007b). The unit squares 
through which a mirror curve passes can be enumerated 'modulo t' instead of 'modulo 2', if t is 
a divisor of the total number of grid points. In this way t-valued matrices and t-Lunda-designs 
are created. Figure 12 gives two examples of 3-and 4-Lunda-designs. 

 

Figure 12. Examples of a 3-Lunda-design and a 4-Lunda-design. 

PATH OF DISCOVERY: FROM LUNDA-DESIGNS TO LIKI-DESIGNS AND 
SPECIAL MATRICES  
In 2001, on the eve of the 4th anniversary of my daughter Likilisa, I started to analyze a 
particular class of 2-Lunda-designs. As these designs turned out to have some interesting 
properties, I called them Liki-designs. In the case of Liki-designs, the second property is 
substituted by the following stronger condition. Consider the four unit squares between two 
vertically or horizontally neighboring grid points. Two of them that belong to different rows 
and different columns always should have different colours (figure 13). 

 

 

Figure 13. Situation inside the grid.  
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This property together with the border property (figure 10) implies that a square Liki-design 
and its associated Liki-matrix are composed of cycles of alternating black and white unit 
squares, or of cycles of alternating 1's and 0's, respectively. Figure 14 presents an example of a 
square Liki-design and its corresponding Liki-matrix L. The matrix has five {0,1}-cycles. A 
question that naturally emerges is what will happen with the powers of Liki-matrices. 

 

Figure 14. Example of a Liki-design (left) and its corresponding Liki-matrix (right). 

 

Figure 15. Several powers of Liki-matrix L.  

Figure 15 displays the first powers of Liki-matrix L. The third power has the same cycle 
structure as the first power: the first cycle of the third power is composed of alternating 16's 
and 9's, the second cycle of alternating 15's and 10's, etc. The even powers do not have the same 
cycle structure. Their diagonals are constant and they present other cycles, like the cycle of 2's 
in the second power. Figure 16 compares the cycle structures of the odd and even powers of the 
Liki-matrix L. 
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Figure 16. Cycle structures of odd and even powers.  

The powers of a Liki-matrix, like the matrices L2, L3, etc., are themselves not Liki-matrices. 
Nevertheless, they display cycle structures. Let us call them cycle matrices. As the numbers on 
the cycles on the odd powers are alternating, we may say that these cycle matrices have period 
2. As the numbers on the cycles on the even powers are constant, we say that these cycle 
matrices have period 1. 

 

Figure 17. Cycle matrices A and B and their products. 

Using the cycle structures, we may introduce the concept of a cycle matrix of period 2, 
independent of the context of Liki-designs in which I discovered the concept. Figure 17 displays 
two cycle matrices, A and B, of dimension 6x6, having period 2. Both A and B have the same 
cycle structure as the design at Laval University (figure 1) and the basic design for the Cokwe 
tortoise (figures 2 and 3). The products AB and BA have a different cycle structure, similar to 
the second cycle structure in figure 16. Compare matrices AB and BA. Do you note something 
remarkable?  

Later in my lecture, I will return to cycle matrices in a very different context. At this moment, 
I would like to underscore the newness of mathematical ideas arising from the analysis of the 
old Cokwe sona tradition and the multiple relationships of these ideas with other areas of 
mathematics. This reflects the profoundness and the mathematical fertility of the ideas of the 
Cokwe master drawers.  

Challenge for reflection: Can African and other cultures become a source of inspiration for the 
development of new mathematical ideas? Example: 'Sona' designs from Angola. Other 
examples?  

After the elaborated example of the inspiration of sona geometry for developing new 
mathematical ideas, let me present a brief introductory overview of mathematics and 
mathematicians in African history and cultures, followed by some historic examples.  
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MATHEMATICS AND MATHEMATICIANS FROM AFRICA  
From the earliest times onwards, humans in Africa and elsewhere have created and developed 
mathematical ideas. Mathematical reflections from Ancient Egypt, from Hellenistic Egypt, 
from Islamic Egypt and from the Maghreb during the Middle Ages found their way to Europe 
and have been contributing to the development of 'international' mathematics (Djebbar, 2001; 
2005). Hundreds of mathematical manuscripts—written in Arabic and in various African 
languages—from Timbuktu, in today's Mali, remain to be analyzed. These should lift the veil 
from some of the mathematical connections between Africa South of the Sahara and the north 
of the continent (Djebbar & Moyon, 2011). The astronomer-mathematician Muhammed ibn 
Muhammed (c. 1740) from Katsina, in today's Nigeria, was well-known in Egypt and the 
Middle East. Thomas Fuller (1710-1790), brought in 1724 from West Africa as a slave to North 
America, became famous in the 'New World' for his mental calculations (Fauvel & Gerdes, 
1990). Some sona geometrical knowledge has survived until the beginnings of the 20th century 
in the Mississippi area among people of African descent. During the second half of the 20th 

century, the African continent produced thousands of PhDs, of whom several hundreds have 
been working as researchers in Europe and North America [see the catalogue (Gerdes, 2007c)].  

For an introductory overview of mathematical ideas in the history of Africa South of the Sahara, 
the reader may consult (Gerdes, 1994b) or the classic book (Zaslavsky, 1973). The study 
(Gerdes & Djebbar, 2007a, b) presents an annotated bibliography of mathematics in African 
history and cultures, containing over two thousand entries and indices by region, ethnic or 
linguistic group, mathematician, and mathematical topic. This study is one of the outcomes of 
the activities of the AMU Commission on the History of Mathematics (AMUCHMA), created 
in 1986 by the African Mathematical Union (AMU), to do research and disseminate research 
findings through lectures, conferences, and publications. Most of the newsletters that 
AMUCHMA produced in English are available at the following 
webpage: www.math.buffalo.edu/mad/AMU/amuchma_online.html    

Recently, the thirty-seven newsletters were reprinted in two book volumes (Gerdes & Djebbar, 
2011).  

HISTORIC EXAMPLE: CRADLE OF MATHEMATICS  
Very early on, humans living in Africa started to display an interest in symmetry, in 
constructing parallel lines, rectangles, and triangles, as attested by several objects made around 
70,000-80,000 BC, and found during the last decade during excavations at the Blombos cave 
in the Eastern Cape region of South Africa. A counting rod, found in a cave in the Lebombo 
Mountains in the border area of South Africa, Swaziland, and Mozambique, dates from 33,000 
BC. Better known are the bones found near Ishango in the East of today's Democratic Republic 
of Congo. The bones date from 20,000 BC. Figure 18 schematically displays one face of the 
first Ishango bone. The distribution of the number of engravings made into it give the 
impression that its marker was engaged, in one way or another, in duplication. 

 

Figure 18. One face of the first Ishango bone.  

http://www.math.buffalo.edu/mad/AMU/amuchma_online.html
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Looking at the numbers of engravings in the first row of the second face (figure 19), we see 
four odd numbers between 10 and 20; 15 is left out. Do they represent only odd numbers, or 
also prime numbers? 

 

Figure 19. Quantities along the top side of the second face of the first Ishango bone.  

Do the numbers at the lower row 11, 21, 19, and 9, that is, 10 + 1, 20 + 1, 20 – 1, and 10 – 1, 
reveal some special interest in multiples of 10 (figure 20)? Did the maker use a spoken 
numeration system with base ten? 

 

Figure 20. Quantities along the bottom side of the second face of the first Ishango bone.  

Comparing the numbers in the two rows, one sees that the sums of both are equal:  

11 + 13 + 17 + 19 = 60 = 11 + 21 + 19 + 9 

Does this reflect some early interest in the number 60? The Ishango bones have been the object 
of diverse attempts at interpretation ever since they were found in 1957. A special international 
conference dedicated to them took place in Brussels, entitled "Ishango, 22000 and 50 Years 
Later: The Cradle of Mathematics?" (February 28 – March 2, 2007) (cf. Huylebrouck, 2008). 
Considered a symbol of the birth of science in the world, a 7-meter high replica of the small, 
first Ishango bone was unveiled in 2010 as a statue in front of the Royal Theatre of Money in 
Brussels (figure 21).  
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Figure 21. Unveiling of the replica of the first Ishango bone in Brussels (Belgium).  

HISTORIC EXAMPLE: CONCEPTUALIZATION OF MATHEMATICS  
The best-known mathematical text from Ancient Egypt is a papyrus written about 1,650 BC by 
the scribe Ahmes or Ahmose. It may be a copy of a text a couple of hundred years older. 
Unfortunately, the papyrus is often called the 'Rhind papyrus' after its 19th century buyer. In his 
book Egyptian Geometry: Contribution of Ancient Africa to World Mathematics, Théophile 
Obenga (1995) underlines that Ahmes' text is much more than a book of exercises with 
solutions. In particular, he draws our attention to the title of the papyrus: Correct method of 
investigation of Nature in order to understand all that exists, each mystery, [and] all secrets. 
Is this not a description or conceptualization of what mathematics is about?  

Ahmes' title contains an early definition of mathematics. Even today it may stimulate a fruitful 
debate among mathematicians, philosophers, and mathematics educators about what is (the 
purpose of) mathematics (education).  

Over the centuries, many other mathematicians in Egypt have contributed to the development 
of mathematics and have reflected about the nature of mathematics, like Euclid (4th century 
BC), Heron (1st – 2nd century), Diophant (3rd century), Theon and his daughter Hypathia (370-
415), Abu Kamil (850-930), and Al-Haitham (965-1039), to name just a few mathematicians 
from the classic and medieval periods.  

HISTORIC EXAMPLE: INTRODUCTION OF SYMBOLS INTO 
MATHEMATICS 
The Maghreb (North-West Africa) played an important role in the internationalization of 
mathematics in medieval times. One contribution with a lasting influence on mathematics and 
mathematics education is the invention and dissemination of diverse symbols since the 12th 

century. As an example, figure 22 presents a page of a manuscript of that time. 
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Figure 22. Page of a 12th century manuscript from the Maghreb.  
(Reproduced with permission from Djebbar (2005), p. 93)  

This text, written from the right to the left in Arabic, is at this moment the oldest text in which 
today's well-known notation for fractions appears that children all over the world learn to use. 
Symbols for arithmetical operations and extraction of roots were introduced about the same 
time. At present, it is not known for sure who the author of the text fragment in figure 22 was, 
or who introduced other symbols. It may have been the mathematician and poet Ibn al-Yasamin 
(d. 1204)—'son of the jasmine flower'. His mother was a black slave from south of the Sahara, 
freed in agreement with the legal customs of the day after having given birth, the father being 
a Berber. Also as a mathematics educator, Ibn al-Yasamin has had a long-lasting influence in 
the Maghreb: for centuries his mathematical poems were used to teach, learn and memorize the 
basics of arithmetic.  

As in the next part of the lecture, the Rule of Signs  

( – ) ( – ) = + 
( – ) ( + ) = – 
( + ) ( – ) = – 
( + ) ( + ) = + 

will be referred to, it may be interesting to note here already that the Maghrebian geometer Ibn 
Al-Banna (13th  C.) presented a proof of the Rule of Signs in one of his works.  

Challenges for reflection:  

o What is 'positive'? What is 'negative'?  
o Is the design in Figures 1 and 2 positive or negative? Why?  

HISTORIC EXAMPLE: INTERWEAVING ART AND MATHEMATICS  
In African cultures, mathematical and artistic ideas are frequently interwoven. I open the book, 
Geometry from Africa (Gerdes, 1999), with the following sentence: "The peoples of Africa 
South of the Sahara desert constitute a vibrant cultural mosaic, extremely rich in its diversity." 
Among the peoples of the sub-Saharan region, interest in imagining, creating and exploring 
forms and shapes has blossomed in diverse cultural and social contexts with such an intensity 
that with reason, to paraphrase Claudia Zaslavsky's Africa Counts (1973), it may be said that 
"Africa Geometrizes". 

The books, Geometry from Africa (Gerdes, 1999), African Fractals, Modern Computing and 
Indigenous Design (Eglash, 1998), Women, Art and Geometry in Southern Africa (Gerdes, 
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1998), and African Basketry: A Gallery of Twill-Plaited Designs and Patterns (Gerdes, 2007d), 
present regional and thematic overviews of geometrical ideas and practices in African cultures. 
Case studies of geometrical exploration in specific African cultures are presented in the books, 
Sona Geometry from Angola: Mathematics of an African Tradition (Gerdes, 2006), Sipatsi: 
Basketry and Geometry in the Tonga Culture of Inhambane (Mozambique, Africa) (Gerdes, 
2009), Otthava: Making Baskets and Doing Geometry in the Makhuwa Culture in the Northeast 
of Mozambique (Gerdes, 2010a; 2012c), and Tinhlèlò, Interweaving Art and Mathematics: 
Colourful Circular Basket Trays from the South of Mozambique (Gerdes, 2010b).  

As a historic and current example, I will present the decorated mats woven by Makwe women 
in the extreme northeast of Mozambique, near the border with Tanzania (Gerdes, 2007d). Figure 
23 presents the Makwe master weaver, Idaia Amade, with some mats and bags during an 
exhibition in the Mozambican capital, Maputo. 

 

Figure 23. Master weaver Idaia Amade.  

For centuries, Makwe women have been weaving their famous luanvi mats. In the 18th century 
these mats were among the most important products traded at Mozambique Island. The mats 
are made from brightly dyed palm fiber by sewing long plaited bands together. Mono-colour 
plain bands alternate with black-and-white ornamental bands. The (central parts of the) 
ornamental bands called mpango present all seven possible symmetry classes. Figure 24 
presents one example of each class, with the international notation of each symmetry class 
indicated within brackets. 

 



2012  Plenary Lecture 

144 

 

Figure 24. Examples of the seven symmetry classes.  

In plaited and twilled basketry, front and backside of a woven band or mat display mostly the 
same image if they are made with black strips in one direction and with white strips in the other 
direction: only the colours are interchanged. In other words, one side is the 'photographic 
negative' of the other side. In Makwe weaving, the situation is different. Figure 25 presents an 
example: it displays both sides of a mpango. 

 

    
 

Figure 25. Front and back side of the same ornamental band.  

The Makwe use a particular inversion of colour that is distinct from the photographic colour 
inversion. The black and white strands make angles of 45º with the borders of a decorative 
band. As, in both weaving directions, light coloured 'white' strands (0) and dark coloured 'black' 
strands (1) alternate (weaving code 01), we have the following situations: 
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1. Where a dark strand crosses with a dark strand, we see a dark unit square on both sides;  
2. Where a natural strand crosses with a natural strand, we see a naturally coloured unit 

square on both sides;  
3. Where a dark strand crosses with a natural strand, we have on one side a dark unit 

square but on the other side a natural unit square; the colours have been reversed.  

As a consequence, under the Makwe colour inversion, half of the unit squares have the same 
colour on both sides of the mat (see the coloured unit squares in figure 26), whereas the other 
half of the unit squares (white in figure 26) have opposite colours on either side of the mat. 

 

Figure 26. The coloured unit squares are invariant.  

The design on a decorated band depends on the weaving algorithm used by the mat maker. 
Although the designs on both sides are normally distinct, they present the same symmetry. The 
weavers have invented various patterns with additional properties. For instance, both sides of 
the decorative band in figure 27 display the same design but the colours are interchanged. 

 

Figure 27. Special pattern with photographic colour inversion.  

Makwe women have also explored weaving codes different from the 01-code, that is, they have 
explored other ways to alternate the colours in both weaving directions. For instance, they use 
the 011-code to produce the decorative band in figure 28: each time one white strand is followed 
by two black strands. Figure 29 presents an example of the use of the 00111-code. 
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Figure 28. Example of the application of the 011-code. 

 

Figure 29. Example of the application of the 00111-code.  

A very interesting case of the use of the 011-code is the chicken's eye pattern (Gerdes, 2013b). 
Figure 30 presents the front and back side of a piece of a band decorated with the chicken's eye 
design. 

  

a: Front side b: Back side 

Figure 30. Band with the chicken's eye design. 

The pattern has period six: 011011. On the backside the same pattern appears as on the front 
side, however its orientation is inversed and it is slightly displaced. How could the inventor 
have imagined such an exceptional design? It is surely not the result of experimentation, as 
there are too many possibilities. The inventor, several centuries ago, had consciously 
constructed the weaving texture using some kind of careful mathematical analysis. Calculations 
and geometry-symmetry considerations were involved. Figure 31 displays the underlying 
number frieze of the weaving texture: a place marked by a 1 means that the descending strand 
passes over the mounting strand; a place marked by a 0 is one where the descending strand 
passes under the mounting strand. The number frieze has vertical axes of symmetry and a 
horizontal anti-symmetry axis (inversion of 0's and 1's not belonging to the horizontal axis). 
This chicken's eye design may lead to the study of new types of number friezes (cf. Gerdes, 
2013b). 
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Figure 31. Underlying number frieze.  

Challenges for reflection:  

• Who does mathematics? Who invents mathematics? What is 'mathematical 
thinking'? Who or which culture defines it?  

• Can African and other cultures serve as a source of inspiration for the 
development of new mathematical ideas?  

Let me now return to the code 01 and explore a particular case of it. Figure 32 presents the front 
and back side of a Makwe design called the 'footprints of a lion'. 

  

a: Front side b: Back side 

Figure 32. 'Footprints of a lion' design. 

The designs on the front and back side are similar to the cycle structures we met earlier on (see 
figure 16). The design on the front side corresponds to the cycle structure in figure 33: we may 
attribute the number 1 to the unit squares through which the first cycle passes and the number 
2 to those through which the second cycle passes. Analogously, the design on the back side 
corresponds to the cycle structure in figure 34, composed of two straight segments (numbered 
3 and 5) and one cycle (numbered 4). In this way, we constructed two cycle matrices of 
dimensions 4x4 and of period 1. 
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Figure 33. Front side design and corresponding matrix.  

 

Figure 34. Back side design and corresponding matrix.  

Let us multiply these two cycle matrices and see if something interesting happens. Figure 35 
presents an example of the multiplication of two matrices with the first cycle structure; the 
result is a matrix with the second structure. Figure 36 presents an example of the multiplication 
of two matrices with the second cycle structure; the result is once more a matrix with the second 
structure. Figure 37 presents an example of the multiplication of a matrix with the second cycle 
structure with one with the first cycle structure; this time, however, the result is a matrix with 
the first structure. 

 

Figure 35. Example of a multiplication.  
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Figure 36. Example of a multiplication. 

  

Figure 37. Example of a multiplication.  

These results hold in general. For matrices of dimension 4x4 of period 1, having the first cycle 
structure (figure 33) or the second cycle structure (figure 34), we have the multiplication table 
shown in figure 38. 
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Figure 38. Multiplication table.  

This multiplication table is similar to the aforementioned Rule of Signs for the multiplication 
of negative and positive numbers. The same holds for cycle matrices of any dimensions and 
any (admissible) period. Therefore, it is well justified to call designs and matrices with the first 
cycle structure 'negative', and designs and matrices with the second cycle structure 'positive'. 
The odd powers of Liki-matrix L (figures 14 and 15) are negative, whereas the even powers are 
positive cycle matrices of dimensions 10x10 and period 2. Matrices A and B in figure 17 are 
negative, while AB and BA are positive cycle matrices of dimensions 6x6 and period 2. The 
Laval University design in figure 1 and the Cokwe design in figure 2 are 'negative'!  

Cycle matrices with their corresponding geometric designs have interesting properties, and may 
be applied in and outside mathematics. They are visually beautiful, like Lunda- and Liki-
designs. They may be used as an attractive introduction to matrix theory, as I explain in my 
book, Adventures in the World of Matrices (Gerdes, 2008), written for high school students and 
undergraduates. Several proofs in the theory of cycle matrices may be given with geometric 
resources. Computer software may be explored to find properties of cycle matrices. From cycle 
matrices onwards it is possible to discover other types of matrices like helix and cylinder 
matrices (Gerdes, 2002a; 2002b).  

CONCLUDING REMARKS  
There exists an immense variety of 'Old and New Mathematical Ideas from Africa'. In my 
address I presented only a small selection, influenced by my personal research experience. 
During millennia, Africans have been developing mathematical ideas in diverse cultural 
contexts. The contributions of African professional mathematicians and mathematical 
practitioners, like artists, musicians, drawing masters, storytellers, and mat weavers, may serve 
as a source of inspiration for new generations.  

Mathematical ideas from Africa may be explored in mathematics education at all levels. 
Traditions with mathematical ingredients, like the sona of the Cokwe drawing masters-
educators and the mpango of the Makwe mat weavers, may serve, as shown, as a source of 
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inspiration for the invention of attractive new mathematical ideas and new educational 
explorations. 
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THE ROLE OF PROOF IN POST-SECONDARY EDUCATION  

William Byers, Concordia University 
Harvey Gerber, Simon Fraser University11  

Ce groupe de travail illustre à merveille une partie de ce que l’on cherche à accomplir au GCEDM. Le 
groupe de travail était à la fois riche et diversifié, et David Henderson, conférencier plénier la même 
année, s’était joint au groupe. Il a su participer pleinement et respectueusement, et sa présence a 
largement contribué à notre travail. Nous avons abordé des questions touchant les preuves et leur place 
dans nos classes, à l’université. Je me souviens bien de nos discussions, qui ont marqué pour moi le 
début d’un questionnement profond sur ce qu’est l’enseignement, sur ce que constitue une preuve, et 
sur ce qui peut constituer la base d’un raisonnement correct ou être accepté sans preuve (axiomes).  

This is a great example of a working group, illustrating some of what we try to achieve at CMESG. 
The working group was rich and diverse, and David Henderson, a plenary speaker that year, joined the 
working group. His presence added much to our discussion, and he took part respectfully. We discussed 
issues surrounding proofs and their place in our classrooms, at University. I still remember many things 
which were said, because they marked the beginning of a profound questioning of what it means to 
teach, of what constitutes a proof, of what constitutes acceptable or commonly accepted facts (axioms). 

PARTICIPANTS 
Nadine Bednarz  
William Byers  
Lucie DeBlois  
Peter Fillmore  
Linda Gattuso  
Harvey Gerber  
Frédéric Gourdeau  

David Henderson  
Joel Hillel 
Celia Hoyles 
Graham Rankin  
David Reid  
Sophie Rene de Cotret  
Pat Rogers  

Keith Roy  
Suzanne Seager  
Rick Seaman  
Pat Stewart  
Harry White 

INTRODUCTION  
Before the Working Group met the following questions were distributed in order to facilitate 
some thoughts on the role of proof in post-secondary mathematics.  

1. What is the point of rigour in mathematics?  
2. What is the connection between proof and understanding?  
3. Can you do mathematics without introducing the idea of proof?  
4. Is it necessary to introduce proof as a distinct topic or course within the curriculum? 

If so, what should be the mathematical context: abstract or linear algebra, a first course 
in analysis, or a course on the structure of number systems?  

5. Should mathematics departments have streams (or majors) in which mastery of proof 
is minimized or omitted?  

                                                 
11 with the help of Joel Hillel, Concordia University.  
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DISCUSSION  
The session began with brief descriptions of two programs, one at Concordia University and 
the other at Simon Fraser University, which introduced the notion of proof in a separate course. 
A complete description of Concordia's program appears in Byers and Hillel (1994). The 
Working Group decided to divide into two subgroups - one concerning proofs and proving for 
pre-service high school teachers, and the other for students taking calculus, linear algebra, etc. 
The two groups met separately to discuss difficult questions and then shared their thoughts with 
each other at the end of the sessions.  

We agreed that there should be a shift of emphasis from proofs to the act of proving. The act of 
proving refers to "habits of mind" (Cuoco, Goldenberg, and Mark, 1995) which involve 
questioning, anticipating, asking "what happens if', etc. More succinctly, proving has to do with 
the business of "inquiry with confirmation". Later, the notion of 'proving' was refined to include 
deduction. An act of proving is an inquiry with confirmation by means of deduction.  

This line of discussion led to a flood of questions. Are such habits of mind unique to 
mathematics? Does writing a term paper in sociology or history not constitute an inquiry with 
confirmation? What is the difference between confirmation in mathematics and confirmation 
in, for example, history or sociology?  

How can we tell whether a particular action of proving really involves deduction on the part of 
the person showing a proof? Could it just be a rote reproduction of an argument (even if 
logically correct)? Is the requirement of being able to communicate a result to another person a 
sufficient indicator of deductive reasoning?  

Having shifted the focus from the originally proposed set of questions, the Working Group 
decided that they would rather consider the following questions.  

1. What kind of results should we prove?  
2. What would be considered as a convincing argument in a given context?  
3. What is the difference between written proof and the students' understanding?  
4. Are there technical differences between the terms validation, justification, 

confirmation, verification, proving, and convincing?  

WHAT KIND OF RESULTS SHOULD WE PROVE?  

The first question needed clarification as to who is we. We could refer to university mathematics 
teachers and teacher trainers, or to their students (mathematics majors, or to pre- and in-service 
teachers) or to elementary and high school students. The group realized that at certain times in 
our discussions, we were shifting from one set of "we" to another. Clearly, what we should 
prove depended on the people involved.  

The proof of the Chain Rule in elementary calculus proved to be an excellent example. Clearly 
the audience is calculus students. Why do we bother with such a proof and do we need to make 
it rigorous? What's wrong with the naive version of the proof using Δy/Δx? We spent time 
"unpacking" the proof and pointing to some of its features that are worth highlighting. What 
emerged was a consensus that the question is not whether the Chain Rule should be proved but 
how to go about it. The proof can be a focus of discussions, experimentation and group activities 
that can last several lectures.  
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ARE THERE TECHNICAL DIFFERENCES BETWEEN THE TERMS VALIDATION, 
JUSTIFICATION, CONFIRMATION, VERIFICATION, PROVING, AND CONVINCING?  

We didn't get very far with the fourth question - there was an attempt to distinguish the terms 
conviction and justification as they are used in philosophy of science, but this didn't help to 
clarify the issue. After some fruitless discussion, the question was dropped.  

WHAT WOULD BE CONSIDERED AS A CONVINCING ARGUMENT IN A GIVEN CONTEXT?  

Question 2 was more central to the discussions. It was noticed that there is a social side to 
proving, which requires a shared repertory, and a personal side, which does not. Both of these 
aspects must be considered when discussing the act of proving for prospective teachers.  

For high school teachers, one of the most important attitudes to foster is that of being curious 
and questioning. Therefore, high school teachers should have a strong background in 
mathematics so that they can play with the mathematical proofs in a didactical way. They 
should be able to give many different proofs of a result so that they are able to understand, 
justify, and explain high school material. They need to understand proofs, to be able to explain 
a result without betraying the proof.  

Therefore, we should have prospective high school teachers approach proof in the manner of 
Lakatos (1976). Namely, have them attempt proofs of results and then enable them to gradually 
unveil the reasons why the initial attempts were incorrect. The aim of this approach is that 
teachers can detect where their proofs are not valid, can construct proofs on their own, can 
validate their reasoning or intuition, so that their students can validate or show as invalid, the 
results they obtain.  

What, then, constitutes a convincing argument? The group decided that a convincing argument 
or proof is one such that the person should be able to produce a similar proof and explain it to 
others. As an example, consider the standard proof that √2 is irrational. Given a proof of this 
fact, the students should be able to produce a proof that √3 is irrational.  

What if an algorithm is involved? One thought was that the person convinced should be able to 
explain it to someone else who would then be able to use the algorithm correctly. This view 
may still beg the question as to whether any deduction is involved in the explanation, or is it 
merely a repetition of something seen. We were left with the question as to whether this 
constituted an "inquiry with confirmation by means of deduction."  

The discussion then moved to presenting "proofs by example" instead of giving very formal 
proofs. It was felt that in some cases, using a well-chosen example is more effective in 
convincing or in conveying a result or a technique than giving a formal, decontextualised proof. 
It was pointed out that some mathematicians who were known for their formal and pedantic 
writing of mathematics, behaved very differently in their lectures and when they supervised 
graduate students. Proofs by example raise the issue as to whether students can extract the 
generalized features of such proofs or whether they focus too much on the specific example.  

We asked the question – What would be a convincing argument in the context of mathematics 
for teachers? The answer depends on the teacher's background. What is "obvious?" What is the 
"acquired knowledge?"  

As noted earlier, the act of proving has both a social side and a personal side and the former 
relies on a shared repertory of things which are taken for granted which, in tum, determines if 
a proof is convincing or not. This raised the question of whether software tools such as Cabrie 
and Logo bring about a change of what constitutes the shared repertory. For example, consider 
a Logo procedure for generating three consecutive integers and then checking that their sum is 
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divisible by 3. Is this a precursor to a formal proof? These thoughts pose more general questions. 
Are commonly accepted facts changing with Logo? With Cabrie? Is what we consider to be 
obvious changing?  

The Working Group recognized that many people understand a concept or proof formally 
before the concept or proof is properly understood or internalized. The discussion then turned 
to formal proofs. It was felt that arguments that are formal may be easier to accept by students 
because of their perception that these proofs are given by someone in authority.  

We closed our work by trying to decide what constituted a convincing argument. Two examples 
highlighted the discussion. The first was the illustrative proof that the sum of two odd numbers 
was even (see C. Hoyles, Figure 1, in this monograph). We all agreed that, given the appropriate 
audience, this would be a convincing argument.  

There was a more heated discussion as to whether the following student's proof that the sum of 
the angles in a triangle is 180 degrees was acceptable as a convincing explanation. The proof 
relied on tessellation of the plane by triangles (Figure 1).  

 

 

Figure 1: Yorath's answer. 

Some found it novel and convincing, others pointed out the circularity of the argument (being 
able to tessellate by triangles presupposes the result) and others argued that we have to suspend 
judgment until we know what the student's starting points were.  

WHAT IS THE DIFFERENCE BETWEEN WRITTEN PROOF AND THE STUDENTS' 
UNDERSTANDING?  

Time didn't permit our discussing this question.  

CONCLUSION  
The separation of the Working Group into two subgroups, one for proofs and proving for 
preservice high school teachers, and the other for students taking calculus, linear algebra, etc., 
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seemed natural enough. However, many of us worked with both kinds of students and had some 
difficulty choosing one of the subgroups to the exclusion of the other. More interesting, the two 
groups were in agreement almost all of the time, and even chose some of the same illustrative 
examples when they met separately. Finally, it was noted that many of the issues about proofs 
and proving that were discussed in the Working Group are hardly ever discussed with 
mathematics students or student-teachers, thus leaving a serious gap in their mathematics 
education.  
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FROM THEORY TO OBSERVATIONAL DATA (AND BACK AGAIN) 

Carolyn Kieran, Université du Québec à Montréal 
Jo Towers, University of Calgary 

Voici un bon exemple de groupe de travail qui permet à des chercheurs en didactique des 
mathématiques, peu importe le domaine spécifique d'intérêt, de réfléchir à des questions de fond telles 
que : Qu'entendons-nous par théorie ? Qu'entendons-nous par données de recherche? ... Dès ses 
premières lignes, ce rapport met en évidence un phénomène souvent observé dans les groupes de travail 
au GCEDM/CMESG : tous les participants ont la possibilité de s'exprimer, de défendre leurs positions 
respectives, fussent-elles différentes, parfois même contradictoires, sans toutefois empêcher 
l'environnement ainsi créé d'être productif pour la réflexion ! Aussi, ce rapport met en évidence qu'au 
GCEDM les groupes de travail ne se déroulent pas toujours exactement comme prévu ... Dans ce cas-
ci, les deux responsables, une chercheure établie et  une étudiante au doctorat, racontent l'histoire de 
leur groupe de travail avec beaucoup de transparence et en donnant une grande place aux paroles des 
participants. C'est un peu comme si on y était ... 

This is a good example of a working group that allowed researchers in mathematics education, 
regardless of the specific area of interest, to reflect on substantive issues such as: What do we mean by 
theory? What do we mean by research data? Etc. From its opening lines, the report highlights a 
phenomenon often observed in the working groups at CMESG/GCEDM: all participants have the 
opportunity to express themselves, to defend their positions, even if they are different, sometimes even 
contradictory, without preventing the environment created from being productive for thinking! Also, 
this report highlights that CMESG working groups do not always go exactly as planned. In this case, 
the two leaders, an established researcher and a PhD student, tell the story of their working group with 
transparency, and give place for the words of the participants. It's like being there ... 

PARTICIPANTS 
Olive Chapman 
Rina Cohen 
Jose Guzman-Hernandez 
Dave Hewitt 
Klaus Hoechsmann 

Carolyn Kieran 
Lloyd Lawrence 
John Mason 
Joyce Mgombelo 
Cynthia Nicol 

GeoffRoulet 
Elaine Simmt 
Jo Towers 
Vicki Zack 

INTRODUCTION   
  The phenomenon is the children working   

  The phenomenon is the videotape of the children working   
  The phenomenon is the story being told about the children working   

  Videotape is no good unless you were actually there   
  The videotape is the data   

  Data does not exist independently of the observer   
  Videotape is just videotape until we offer it to a community who decide to make it data   

  I have a relationship with the data   
  I am the data   

  I can see more clearly now how blurred the notion of data is   
  The best we can do is tell stories   

  What I learn from a researcher's analysis is what they are sensitive to   
  We can't see anything unless we have a structure to see it   

  I can only begin to work out my structure when I begin seeing   
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How might statements such as these have emerged in a three-day conversation amongst peers? 
What might have led up to their expression? Those present at the reporting session on the final 
day of the 1998 Conference might recognize these statements as those read out by all the 
participants in this Working Group. Placed as they are here, with no preamble and removed 
from their context, the statements might suggest that our Working Group was a place of conflict, 
disagreement, and confrontation. As participants as well as leaders of the Group, though, we 
experienced a far more productive environment. We offer these statements as examples of the 
breadth of our conversations and hope to reveal in this report how the participants of the Group 
created an expansive and thought-provoking discussion which embraced these diverse points 
of view.   

A STORY ABOUT VIDEOTAPE   
Let us step back, for a moment, and consider how this all began. Our story begins early in 1998 
as  we began to explore ideas for the Working Group we had been invited to lead At that time 
the Working  Group had only a theme (suggested by the Executive) for structure – "From 
Observational Data to  Theory." In one of our first e-mail exchanges, we decided that the 
suggested title didn't capture adequately the relationship between theorizing and data collection 
and analysis, and so began our conversations about the nature of theorizing and its relationship 
with data. Soon, the new title for the Working Group was born – "From Theory to Observational 
Data (And Back Again)." So far so good.  However, the problem immediately became "So 
where do we begin in our Working Group—with theory or with data?" We began to explore 
possibilities for the structure of the three-day experience and it soon became clear that we 
needed to find just the right piece of videotape to share with the Group before we could plan 
how the three sessions might evolve. This became our priority, and we decided to try to obtain 
copies of the TIMSS (Third International Mathematics and Science Study) videotapes. When 
we finally  tracked down a copy of the CD-ROM version, we were disappointed to discover 
that they contained only  short excerpts of a number of lessons, and little context was provided 
to situate the clips. We believed that we needed to find a rich data source to support the 
exploration of a range of issues and to engage the members of the Working Group in nine hours 
of conversation and investigation. Our search began again.  We finally settled on an excerpt 
featuring two Grade 7 students engaged in problem solving. We hoped that the excerpt, which 
was about thirty minutes in length and for which we also had copies of the students' written 
work and full transcripts of their conversation, would support investigation in a number of areas, 
such as the nature of the students' interaction patterns or the growth of their mathematical 
understanding. As we will recount later, though, all our agonizing over video excerpts was to 
prove unnecessary.   

A STORY ABOUT THEORIZING   
Now that we had just the right piece of videotape, we turned to the task of planning the flow of 
activities for the Group. After lengthy e-mail exchanges we decided to begin the first day by 
having the participants introduce themselves and talk a little about the theoretical frames they 
use when analyzing their own data or conducting their own research, and then to broaden the 
discussion to consider the question "What do we all mean by 'theorizing'?" before introducing 
the chosen video excerpt sometime towards the end of the first session. Day One began just as 
we'd hoped, with an enthusiastic and diverse group sharing stories of their research interests. 
Many of the stories included passing reference to recognized philosophical frameworks such as 
social constructivism, enactivism, or phenomenology. As  the conversation broadened to 
explore the issue of what we all meant by 'theorizing,' several participants  explained their 
reluctance to affiliate themselves with a particular strand of thought such as, for instance,  
constructivism. One member articulated this in the following way:   
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I don't want to say that I belong to [that] club. I don't want to define myself in that 
way. And so, social constructivism? Yeah. OK. Fine. Radical constructivism? Fine. 
Behaviorism?  Yeah, some of that as well. ... And actually there's quite a lot around 
that's quite helpful depending upon what it is that I'm looking at. ... But what I feel 
like saying, what I refuse to do is say 'I'm this'.   

This sentiment was echoed by another participant a few moments later:   

The problem I have is not with identifying myself with some perspective of thinking, 
but it's the community wanting to keep me there. I would like to be a radical 
constructivist today, an enactivist tomorrow, a social constructivist the next day, 
because ... what it is that I'm interested in at that particular moment would dictate 
where I would like to be.   

As the discussion about what is meant by 'theorizing' broadened, one participant 
remarked on the need to take the discussion a step backwards:   

I think we need to talk about what we think theory is before I can talk about how I use 
it.   

Another participant responded by indicating that:   

Some of us might have to [talk about] both together. In order to talk about theory [we 
need to] give it some context [by] describing how it's used.   

The discussion continued as Group members attempted to articulate their notions of theory and 
what it means to theorize. Comments included:   

Maybe theory is just something that arrives in what you do, that it isn't 'out there', a 
framework.   

And:   

I guess my theoretical framework is there for me to ignore it.   

Some participants described aspects of their own research work to explicate how they used 
theoretical frameworks in structuring their practice. We then offered a paraphrased excerpt from 
Cobb and Whitenack's (1996) paper on data analysis using videotape. The extract briefly 
outlined Glaser and Strauss's grounded theory method and emphasized Glaser and Strauss's 
view of the inextricability of the development of theoretical constructs and the process of data 
collection and analysis. One participant reflected on the extract by drawing a distinction 
between the 'grounded theory' discussed in the paragraph and a 'theory' like constructivism. He 
pointed out that the Group had been using the word 'theory' on (at least) two levels. Other 
participants responded by trying to differentiate between theories that structure  the questions 
they pose, and theories that structure the ways in which they seek answers to those  questions.   

It was increasingly becoming clear to the Group that trying to talk about theory in the absence 
of data was problematic. One participant articulated this sentiment in the following way:   

I think it's interesting how hard it is to talk about something like a theoretical 
framework or theory before having ... shared experiences that help foster the 
conversation. I'm waiting for the shared experience so that I can have some examples 
to use. I'm stuck without examples.   

This seemed to us to be the perfect moment to introduce the video extract we had chosen. As 
preparation, we first explained the context of the research, and handed out copies of the 
problems posed to the two Grade 7 students featured on the tape. Approximately fifteen minutes 
of the videotape was played to the Group, after which we asked the Group to share with us the 
aspects of the videotape to which their attention had been drawn. There was a variety of first 
impressions and features that had  captured participants' interest, including aspects of school 
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culture that one participant suggested were  embedded in the students' problem-solving 
techniques, the influence that are-focusing of the camera lens  during the episode had had on 
another Working Group participant's focus of attention, issues surrounding    the interaction 
between the two students, particularly in terms of their collaboration processes, and the  
mathematical language used by the two students.   

After initial discussion of these and other issues, the Group was split into two sub-groups, and 
one group moved to a separate room with a second copy of the videotape, to facilitate a more 
thorough investigation of a number of these issues.   

A STORY ABOUT THE MEANING OF DATA   
When the Group met on the second day to continue discussion about what they had been seeing 
in the videotape, it did not take long before a rather substantial issue arose, that is, what do we 
mean by the word 'data'? Is the videotape data? If not, what is the data? (In this report, the word 
'data' is used in its singular form-the form most often used by Working Group participants.)   

A provocative entry into this conversation occurred with one participant's statement:   

I have a theoretical position, which is that there is no event. The event consists of, for 
me, a collection of stories that people tell, which accumulate and accrete around this 
particular bit of videotape.   

If, as this participant argued, the event is the collection of stories, then how does such a position 
accommodate the notion of data and its existence? From that moment on, discussion moved in 
and out of what we thought we meant by 'data'. The perspective offered above was contrasted 
with others that included, for example, "seeing things in the videotape" or "referring to the data 
out there." Someone suggested that the polarity of the various positions could be crystallized 
with a question that is often asked by constructivists or by radical constructivists: "Where does 
reality reside?"   

As the discussion continued, a participant stated that, in her own research, she found herself 
"returning to the videotapes to generate more data" and that, in so doing, former interpretations 
subsequently became data. She further suggested that, for her, it could be problematic to try to 
tell a story about another's videotapes because "you weren't there." The videotape and transcript 
that another provides are like notes of some event that occurred when you were not present. "It 
seems that you have to be there," she offered.   

Another participant then put forward the idea that, whatever the phenomenon of interest, she 
could collect data on it by a variety of means. Thus, it was claimed that we could look at the 
same data obtained through different data sources. In other words, there was an object, called 
data, and rather than referring to the videotape as data, we might simply call it a data source. 
This led another participant to move in a somewhat different direction and voice how she felt 
that the relationship between a researcher and her data is a constantly changing one. Thus, the 
issue of whether the data remains unchanged-an implicit assumption of some of the earlier 
remarks-is a moot point, for it is never possible to return to it and to see it as it was previously. 
Our relationship to it has changed, as a result of interpretations we have brought to it. This 
opinion was echoed by some, but not by others who maintained that it was perhaps simply our 
sensitivity to the object called data that was changing rather than the data itself.   

Considerable zigzagging continued to occur between the idea of researcher and data as one, and 
the separation of the two. For example, one participant advanced the question of how, if a 
researcher and her  data are one, the various members of a given research team who look at the 
same piece of videotape can  ever hope to negotiate commonality with respect to what is going 
on; in other words, how does the  oneness become shared. [The same dilemma is one to which 
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constructivism has been at odds to respond, that is, how do we come to have shared meanings 
if all sense-making is individual.] The question was, in fact, finessed by one participant's 
response that it is the collective resonance by a group of researchers with respect to what they 
are analyzing that constitutes the data (or that is equivalent to the data).   

One participant returned again to the related claim that the data is one step removed from the 
videotape, which provoked once more the question of what she meant by the data. At that point, 
someone  suggested that we might save ourselves some grief by eliminating the word data from 
our discussions and  another followed with the reminder that, in the hermeneutic tradition, 'text' 
is used rather than 'data'. But the word data would not go away.   

One participant then shared why she had problems defining the word data:   

I'm not even sure that I want to specify what I think is data in my research. I'm not 
sure that it's helpful for me to say clearly whether the videotape is data or whether 
I'm the data or whether my relationship with the tape is the data. ... I'm studying my 
own practice, my own classroom. ... And then when I'm looking at that videotape later, 
I find it really hard to decide what it is that is the data. Is it the videotape that I'm 
seeing of this pair of students? But I know when I'm watching it I experience all kinds 
of things other than that tape, because I was in the room at the time. ... So there's all 
kinds of other influences on what becomes the data.  I guess I'm asking how helpful it 
is that we actually do decide to call one thing the data.   

Another participant spoke of the entries that she makes in her journals when she does her 
research observations and pointed out that she uses these journal entries as her data. This 
statement led to an  attempt by another participant to distinguish between what a linguistic 
analyst might do with those  journals (i.e., use the journals themselves as the phenomenon of 
study-as the data) and what a  mathematics education researcher might search for in those same 
journal entries. He continued with the following:   

What data summons up for me is a world of significance-the world of significance is 
as a phenomenon which is in itself that which is being worked on. So, if the videotape 
is THE data, then the phenomenon is the sequence of phosphorescence that take place 
and we can look at that in all sorts of ways-from film techniques, etc., etc. But 
somehow we're trying to do more. We're trying to find meaning within the content of 
it, not as simply a phenomenon in itself. ...At a first level of analysis, we are trying to 
locate the phenomenon.   

Soon afterward, it seemed that a fatal blow to the slowly crumbling edifice of "videotape as 
data" was struck when one participant suggested that the same videotape and transcript could 
be given to, say, linguists, sociologists, psychologists, or mathematics education researchers. 
Each community of practice would focus on different aspects presented in the tape and 
transcript with the aim of arriving at consensual resonance within their own particular sphere 
of experience. The data for each group would be different.  Thus, this example served to clarify 
the notion that the videotape is just a videotape until a community of practice looks at it and 
says that some particular thing is going to be data. It (whatever the it is) becomes data when we 
bring something to it; it becomes data at the moment when we make it data.   

The story that has just been told did not proceed in a purely linear fashion. As one idea moved 
to the foreground, another moved into the shadows, only to re-emerge at a later time. However, 
just as the  changed relationship between researcher and data makes it impossible to 'see' the 
data as it was seen  initially-a notion advanced by one participant during our discussions—so it 
was equally problematic for  these story-tellers to try to tell the story with the same voice in 
which it actually unfolded. Sensitivities that grew out of the three days of going in and out of 
the meaning of data make it quite unrealistic to attempt to go back and narrate events as they 
were prior to the dawning of new awarenesses. As well, there is no real ending to this story. 
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Even though certain issues related to the meaning of the word 'data' have moved out of the 
shade into the light, others remain a blur.   

A STORY ABOUT SURPRISES   
Though the story we have just related began early on the second day, it continued throughout 
the remainder of the Group's time together. So intense was the discussion that the Group never 
returned to the videotape, a fact that surprised us as Group leaders very much. One viewing of 
fifteen minutes of tape, and a few minutes in which the sub-groups re-viewed parts of that tape, 
had been sufficient to generate two days of discussion. Though we (the Group leaders) had 
agonized for many weeks over the precise nature of the tape we should offer to the Group for 
analysis, our deliberations had been in vain.  Or had they? During our preparation of this report, 
we have had cause to reflect on the value of the tape we used. In discussing the unfolding of 
the conversations that occurred in those last two days, we now believe that despite our earlier 
worries almost any tape would have sufficed. What seemed to be critical was that the Working 
Group had, as one participant put it, a "shared experience." Fifteen minutes of videotape had 
served not only as an 'example' to stimulate conversation, but also as a gathering place for ideas. 
Though the Group's contact with the videotape itself was brief, we believe it was necessary. 
What participants had seen and heard on the videotape, and their recollections and re-tellings 
of those events (if for a moment we can have permission to call them 'events'), became locations 
for the exploration of shared meanings. Participants referred frequently, at least initially, to 
specific aspects of what they had understood to be happening on the tape, and these explanations 
helped us all to understand the different positions that participants were taking with respect to 
both the nature of data and that of theory. In this way, strong statements of position, some of 
which are at the start of this report, had meaning for those of us in the room on those days. A 
reference to "the videotape" began to mean not only the specific videotape that we had all 
watched, but also other videotapes which we may have seen in the past, and ones we might see 
in the future, and by extension, other forms of recording material.   

A second aspect of our work with this Group that surprised and excited us was the way in which 
the conversation, though wide in scope and great in depth, never strayed far from the orienting 
theme of the Working Group. We had anticipated that some participants might become so 
caught up in investigating a certain aspect of the happenings captured on the videotape that that 
sub-group might wander far from the theme of the Working Group, and be left with little time 
to think deeply about the issues we have described in this report. As we have already indicated, 
though, the participants' contact with the videotape was (by mutual agreement) brief, and, in 
fact, the sub-groups were never re-formed after the first day.  Instead, we participated in the 
conversation as a whole group, feeling no need for sub-division, or further stimulus from the 
videotape. The theme that we traced, best described by our title "From Theory to Observational 
Data (And Back Again)," provoked a zigzagging of discussion from theory to data to theory to 
data. It seemed that each time we returned to one or the other of these two locations of 
conversation, the nature of the 'object', be it theory or data, had changed. Neither of these two 
elements of the conversation seemed static, and each was defined and re-defined, shaped and 
re-shaped, explored, examined, and investigated many times. Each position with respect to the 
nature of theorizing or the nature of data (and there were many more than we have been able to 
present here) was critiqued; each argument probed for insights. Participants' positions with 
respect to what is data, or what might a theory be, changed, sometimes subtly, sometimes more 
radically. And all this while, the theme of the Working Group was closely being traced.   

We hope that the stories we have shared here reveal something of the complexity of the 
conversations that occurred, and the nature of the issues with which this Group grappled, over 
the three days. If the stories told here seem to have lost something in the telling for those who 
were not members of this Group, we nevertheless hope that this report will be revealing in 
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another sense. As one participant suggested, "What I learn from a researcher's analysis is what 
they are sensitive to." Clearly, what is  48  Working Group B  reported here are the statements 
that we heard, accentuated by our understandings, augmented by our  interpretations, and 
shaped by our biases. We make no apologies for this fact, but acknowledge that what we have 
presented here is a story by two people representing a conversation among fourteen. It is, 
though, a story that we hope might provoke further reflection about data and theorizing, and the 
relationship between the two. After all, to echo the words of one participant, "The best we can 
do is tell stories."   
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WHERE IS THE MATHEMATICS? 

John Mason, The Open University 
Eric Muller, Brock University 

At a time when Mathematics Education was still young and there were still many stones still unturned, 
the CMESG Working Group was a place to turn over new stones – not through expert apprenticeship, 
but through bottom up organic activity, hypothesizing, and theorizing. This working group was chosen 
for inclusion in the volume, in part, because it represents such a process. Facilitated by talented and 
invested leaders this working group forged new ideas about the role of games, puzzles, and 
mathematical tasks.  

Alors que la didactique des mathématiques était encore relativement jeune et qu’il demeurait de 
nombreux aspects à explorer, un groupe de travail du GCEDM représentait une opportunité pour 
explorer de nouvelles avenues – non pas à partir d’un mentorat expert, mais en travaillant ensemble, 
en émettant des hypothèses et en essayant de dégager une compréhension théorique. Le choix de ce 
groupe de travail s’explique en partie parce qu’il représente un tel travail. Guidé par des facilitateurs 
talentueux et pleinement engagés, ce groupe de travail a forgé de nouvelles idées quant au rôle des 
jeux, casse-têtes, et tâches mathématiques. 

PARTICIPANTS 
Clifton Baron  
Brent Davis  
George Gadanidis  
Claude Gaulin  
Susan Gerofsky  
Frédéric Gourdeau  
Gila Hanna  
Dave Hewitt  
William Higginson  
Martin Hoffman  

Nicholas Jackiw  
Renée Jackson  
Mary-Lee Judah  
Ann Kajander  
Carolyn Kieran  
Jason Krause  
Dave Lidstone  
Peter Liljedahl  
Joyce Mgombelo 
Immaculate Namukasa 

Nathalie Sinclair 
Ole Skovsmose 
Darren Stanley 
Brett Stevens 
Tania Terenta 
Dave Wagner 
Harley Weston 
Rina Zazkis

SOME INITIAL INTENTIONS  
As teachers, we give students tasks of various kinds. As educators, we expect novice teachers 
to develop skills in using and presenting tasks to students. If we construct tasks through didactic 
engineering starting from a knowledge of the situation, with emphasis on the 'mathematics' then 
there is an issue in acquainting others about the aims, intentions, and means so that potentials 
are actualized. As Dick Tahta observed (1981), in addition to an outer task (to perform what 
you are asked to do) there is an inner task (to make contact with mathematical ideas, to 
experience mathematical themes, to employ mathematical heuristics and powers, etc.). The aim 
of the Working Group was to approach a number of questions including: How does mathematics 
emerge from playing games, from using apparatus and from mathematical instruments? Is it 
possible to identify the properties of such instruments which motivate and facilitate the student's 
transition from the outer task to the inner task? How can this be planned for, enhanced, and 
exploited? What is the role of such instruments in the teaching and learning of mathematics?  
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HOW THE TIME WAS SPENT  
A summary of how the Group spent its time may provide some additional insight into this 
report. As the number of participants was fairly large, it took some time for everyone to 
introduce themselves, their interests and their experiences in the Working Group topic. As an 
ice-breaker, the game of SKUNK (see Appendix A) was played. In the first two sessions 
participants also worked with apparatus, which included the MIRA, hinged mirrors, leapfrog, 
Chinese jigsaw, and other games besides SKUNK that included Brock Bugs and Four- Bidden. 
The Group worked both in plenary, in small discussion groups and in pairs. The latter allowed 
for the sharing of reflections, team playing and the development of game strategies.  

REFLECTING ON EXPERIENCES  
The first task proved very popular with most participants, to the extent that some wanted to 
carry on playing. An element of competitiveness entered, as well as interest in how an extreme 
strategy seemed to work rather better than a more considered one. Certainly it got the group off 
to an active and energetic start. The initial energy release may have made it difficult for more 
cerebral tasks later.  

A large group of participants increases the possibility of divergent views, of experiencing 
shared situations in different ways and of not responding and reacting in unison. This was 
certainly the case for this group and tensions were generated that were not resolved. Within the 
context of the given situation individuals and groups reflected on the mathematics they used or 
developed, the links that facilitated their connection to the mathematics, the barriers that they 
perceived in accessing the mathematics, the role, timing of, and necessity of interventions, in 
order to move to the mathematics, and many other related points that arose during the activities. 
With manipulative-apparatus, including the MIRA, hinged mirrors, leapfrog and the Chinese 
jigsaw, points recorded were categorized as follows:  

GOALS  

In the case of Leap Frogs and Chinese Jigsaw, goals were suggested at the beginning. For MIRA 
and hinged mirrors participants were free to set their own goals. Some teams felt that the goals 
got in the way and distracted from the process of doing mathematics. In the Chinese Jigsaw 
some pairs indicated that they would have benefited more if the goals had been set in broader 
terms. For example if it had been explicitly stated that all patterns and their relationships should 
be explored. Some groups expressed boredom with MIRA because no goals or mathematical 
problems had been set. Some teams changed the goals or set up new goals once they had reached 
the preset goals. Others were satisfied in reaching the goals and moved their attentions to other 
matters. Some discussions ensued about possible conflicts between the goals of the students in 
the activity and the goals of the teacher. How explicit should the teacher express his/her goals 
to the student? How and when should a teacher intervene when she/he realizes that the student 
is moving away from the intended mathematical goals?  

AWARENESS  

Participants, as individuals or as teams, were asked to note whenever they became aware of 
positive or negative reactions or experiences, of changes in strategies or approach, and of 
mathematization. Participants recorded negative reactions to situations where they had used the 
manipulative-apparatus previously, and therefore had already gone through some of the 
mathematization. There was very little enthusiasm shown about extending previous 
experiences, preferring to engage in another activity. They noted positive reactions when they 
found the activity particularly interesting or when the mathematical modeling development was 
not obvious. Some of the groups did not even complete the activity but went straight to the 
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mathematization, satisfied that they had a mental image of the activity. In the mathematization 
process participants used words such as abstraction, replacing the manipulative- apparatus by 
symbols, paper and pencil activities, looking for order, searching for patterns and trying to 
generalize. Others reflected that they had reached the goal with very little awareness of any 
mathematics.  

The reactions reflect those of a group that brought together a very substantial set of experiences 
and mathematical power, a group that was disposed to approach the tasks, and individuals that 
were looking for the mathematical potential within those tasks. One can expect similar 
responses for activities that students enjoy but depending on the age and mathematical ability 
of students one can predict a need to motivate the mathematization of the situation.  

The Group spent some time isolating properties of 'good' games and apparatus, in terms of 
providing a rich environment in which to mathematize. A good game or prompts reflection, is 
amenable to different approaches, motivates conjectures, is aesthetic and sensorial, is attention 
grabbing (it runs when you chase it), has the potential for generalization.  

Is there a comparable list for students who bring a lower level of maturity, experience and 
mathematics background? We distinguish between the 'task' as introduced by the teacher (which 
may or may not be what they envisaged when planning nor what the author or other source had 
in mind), the 'task' as constructed by the participant, and the activity engaged in by the 
participant. The Group suggested that a good game for the classroom would require the 
following: 

• the task as constructed by students needs a hook to engage them, and that the hook 
should be the mathematics itself and not the game; 

• the task needs to provide enough impetus that students can break through the imposed 
structure and get hooked on the mathematics; 

• the mathematics needs to be appropriate for that age group and not too deeply 
imbedded in the activity (i.e., it needs pointers to the fact that mathematics may be 
helpful), it needs some element of surprise in the mathematics and some unexpected 
results that challenge intuition (accessible but bothersome); 

• the activity needs to provide various levels of mathematization allowing the better 
students to progress beyond the average.  

Perhaps it is useful to extend the notion of 'the mathematics' to include the pleasure that comes 
from using one's mathematical powers. Thus, a hook can be that I find myself enjoying being 
called upon to imagine something, to express what I see or think in some way (through gesture 
and movement, through drawing and displaying, through words and symbols), to make 
conjectures but then find I want to modify them, to try to convince others to see what I see, to 
get a sense of what might be going on through trying some examples and then seeing through 
the particulars to a generality. A task which affords access to becoming more aware of such 
powers, and developing and honing them, contributes to mathematical development just as well 
as a task which prompts the student in rehearsing and refining a mathematical technique, or 
appreciation of a mathematical idea or topic.  

A distinction was made between 'jeopardy' type games which provide an environment for 
practice—the game is more the motivator, and other games where the mathematics itself 
motivates the students to continue to examine it. Participants felt that the 'distance' between the 
game and the mathematics is shorter for Brock Bugs than it is for SKUNK. There is a notion 
that one can at the design/deployment stage modify this 'distance'. For example in Leap Frogs, 
adding a quest for minimality to the stated rules decrease the 'distance' (making game-play more 
directly engaged in problem solving); yet suppressing such a rule keeps the structure more 
flexible and open. In SKUNK the 'distance' was found to be huge, which does not diminish the 
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value of the game but seriously changes the intervention model: where low-distance games like 
Brock Bugs and Leap Frogs are amenable to punctuated intervention. This may be due to the 
sophistication of the mathematical concepts required for analyzing SKUNK.  

APPENDIX A  

SKUNK  

A description of this game can be found in pages 28 to 32, of the April 1994 issue of the journal 
"Mathematics Teaching in the Middle School". A short description follows. On the blackboard, 
the teacher draws five columns each headed with one of the letters of the word SKUNK, where 
each letter represents a different round of the game. Students play in teams of two or three and 
their aim is to accumulate as many points as possible over the five rounds of the game. For a 
team to acquire the points resulting from the sum of the values on the roll of two dice, all team 
members must be standing. Before each roll a team must decide whether to stand or to sit as a 
group. If at any stage a team decides to sit it has to remain seated until the end of that round. 
When standing a team gets the total of the dice unless a one comes up, then the play is over for 
that round and the standing teams loose the points accumulated for that round. If a double one 
comes up at any time all standing teams loose the points accumulated for all the rounds up to 
and including the present round. The game provides a blend of experiences in probability and 
decision making.  

MIRA  

The MIRA is a plastic two-way mirror made for classroom use. It is available commercially 
together with various print materials developed for teacher and student use. Geometric 
properties of planar objects and constructions that involve translations, rotations, angle and line 
bisectors, etc. can be motivated by using this apparatus/manipulative.  

HINGED MIRRORS  

The name of this apparatus describes it fully. Eric Muller brought number of pairs of mirrors 
hinged at one edge. No print or other materials were supplied to the Group.  

BROCK BUGS  

The game of Brock Bugs was developed by Eric Muller for use in the teaching and learning of 
probability. The game aims to provide experiences in three specific concepts, namely relative 
frequency and probability distributions, expectations, and the use of the binomial probability 
distribution. Each of these concepts are explored in one of three levels of the game which allow 
students to progress through the game as they develop their understanding. Separate instructions 
are provided for the teacher and for students. The teacher 's notes include suggestions about 
classroom management, interaction with group of students, intervention to motivate 
understanding, etc. There is a game board with spots marked 1 to 14 and two teams are issued 
with different colour chips. To start the game the two teams take turn to place one of their chips 
on an unoccupied position of their choice. The positions of the chips stay fixed for 25 rolls of a 
pair of dice. For each roll the team whose chip is on the position corresponding to the sum on 
the faces of the two dice gets one point. The team with the most points after 25 rolls wins the 
game. Chips are now removed from the board and the game can be repeated. The objective is 
for students to first realise that strategies are in the appropriate placing of their chips and then 
to develop their optimum strategy to win the game. Level 2 is played on the same board but 
positions on the board carry different number of points. In other words a 7 may be worth two 
points while an 11 may be worth seven points. These points are shown in a square below each 
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position. Level 3 asks students to explore reasons why the number of repetitions of the level 1 
game were set at 25.  

LEAPFROGS  

This is a classic Lucas problem that became the name of a group of mathematics teachers in the 
late 60s and early 70s. They met annually to work on mathematics and to design resources 
which required little or no introduction (more like stimuli perhaps, or phenomenon to attract 
attention and mathematization).  

You are given a number of green frogs, and yellow frogs, lined up with greens together and the 
yellows together and a single space in between. Frogs can jump over another frog into a (the) 
vacant space, or slide into an (the) adjacent vacant space. The challenge is to interchange the 
green and yellow frogs and top predict the (minimum) number of moves required. Dudeney (I 
believe it was) extended this into two dimensions: you have two squares of frogs that overlap 
in just one square. This square is vacant. Again the challenge is to interchange the frogs and to 
predict the minimum number of moves.  

CHINESE JIGSAW  

Nine coins are placed in a 3 by 3 array, with all but the centre coin showing a head. You are 
permitted to flip all the coins in a row, or all the coins in a column. The aim is to get all the 
coins facing the same way.  

Eventually participants begin to conjecture that there are some difficulties. Perhaps if you are 
also permitted to flip all the coins in one or even both main diagonals? What if the two-state 
coins are replaced by s-state objects (so after s-flips they are back to their starting state)?  

The name comes from a harder three-dimensional version, found in Chinese toy-stores. Nine 
cubes have been laid out in a 3 by 3 array and a picture has been pasted on the full set, then slit 
along the edges of the cubes to give one-ninth of the picture on one face of each cube. The 
cubes are rolled to display another face each and again a picture is pasted. When six pictures 
are pasted, so that each cube has one-ninth of each of six pictures, you have a six-fold jigsaw 
puzzle. Fortunately, the picture gluing is achieved by rolling all the cubes in each row in the 
same way (that permits four pictures) then in each column (for the remaining two pictures). In 
other words, once you have solved one picture, you can achieve the others by rolling all the 
rows, or all the columns, the same way and the same amount.  

Now, suppose you displace just the centre cube by showing a different face. Can you roll the 
rows and or the columns and restore the picture? The non-commutativity makes analysis rather 
more difficult! (Comment: The coin version of this task generated considerable interest. It 
seemed to be at an appropriate level mathematically, and various ways of thinking afford access 
(groups, linear algebra, combinatorics), yet no really deep theorems or techniques are required. 
Mainly you have to reach the conjecture that it is not possible, and then to justify why.)  

FOUR-BIDDEN  

Packs of cards (produced by ATM in UK) were offered. Each card has a technical term from 
secondary school, and four other terms which are 'forbidden'. Participants draw a card and give 
the others clues as to the technical term, without ever using the four forbidden terms.  

Many different variants are possible such as only using the 'forbidden' terms, trying to work out 
the forbidden terms given the main term, using only diagrams or drawings to give clues, acting 
clues out in silence, team collaborations etc.  
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(Comments: This game generated considerable reaction. Some felt that students should not be 
restricted in how they try to express themselves, especially when the essence of the term is best 
expressed using some of the forbidden terms. In some cases it was not clear why certain terms 
were forbidden and not others.)  

REFERENCE  
Tahta, D. (1981). Some thoughts arising from the new Nicolet films. Mathematics Teaching 94, 

25–29. 
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THE ARITHMETIC/ALGEBRA INTERFACE: IMPLICATIONS FOR 
PRIMARY AND SECONDARY MATHEMATICS  ARTICULATION 

ARITHMÉTIQUE/ALGÈBRE: IMPLICATIONS POUR 
L'ENSEIGNEMENT DES MATHÉMATIQUES AU PRIMAIRE ET AU 

SECONDAIRE 

Nadine Bednarz, Université du Québec à Montréal 
Lesley Lee, Université du Québec à Montréal 

Ce groupe de travail est un bon exemple de ce que le GCEDM/CMESG cherche à faire en regroupant 
des personnes d'horizons divers autour de thématiques liées à l'enseignement et à l'apprentissage des 
mathématiques. Guidés par deux chercheures d'expérience en didactique de l'algèbre, enseignants, 
mathématiciens et didacticiens des mathématiques se sont assis ensemble pour résoudre 
arithmétiquement des problèmes dits algébriques. Une belle entrée en matière pour ensuite s'attaquer 
ensemble à des questions du genre : Qu'est-ce que l'algèbre ? Qu'est-ce que l'arithmétique ? Comment 
faciliter la transition arithmétique/algèbre ? Comme le suggère le compte-rendu, rédigé de manière 
harmonieuse dans les deux langues, le groupe a fonctionné de manière toute naturelle en français et en 
anglais. 

This working group is a good example of how CMESG/GCEDM seeks to gather together people of 
diverse backgrounds around themes related to teaching and learning mathematics. Guided by two 
researchers with experience in teaching algebra; teachers, mathematicians and mathematics educators 
sat together to arithmetically solve algebraic problems. His was a nice introduction to then jointly 
address questions like: What is algebra? What arithmetic? How to facilitate the transition between 
arithmetic and algebra? As suggested by the report, written harmoniously in both languages, the group 
worked very natural in both French and English. 

PARTICIPANTS 
Nadine Bednarz  
Malgorzata Dubiel 
Doug Franks 
Frédéric Gourdeau  
Lionel LaCroix 
Caroline Lajoie  

Alex Lawson  
Lesley Lee 
Anne LeSage 
Geri Lorway 
Ralph Mason 
Janelle McFeetors 

Tom O'Shea 
Tom Schroeder 
Chris Suurtamm 
Mélanie Tremblay 
Vicki Zack 

Les membres de notre groupe de travail proviennent de contextes différents, autant sur le plan 
géographique que sur le plan professionnel. Le groupe était en effet composé d'intervenants 
provenant de l'Ontario, du Québec, du Manitoba, de la Colombie-Britannique, de l'Alberta et 
des États-Unis, et donc de lieux où les programmes d'études, en ce qui concerne l'enseignement 
de l'arithmétique et de l'algèbre notamment, n'apparaissent pas nécessairement au même 
moment ni sous les mêmes formes. Sur le plan professionnel, ils ou elles interviennent comme 
enseignants ou enseignantes au niveau primaire ou secondaire, en formation initiale ou continue 
des enseignants au primaire et au secondaire, d'autres ont une expérience aux études avancées, 
et plusieurs des participants et participantes ont également une expérience d'intervention auprès 
d'adultes. Les contextes dans lesquels la question de « l'articulation arithmétique-algèbre » se 
pose sont donc multiples : ils touchent aux élèves de l'école secondaire appelés à faire cette 
transition (middle school), à la formation des enseignants, dans laquelle les étudiants sont 
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appelés à se prononcer sur la compréhension éventuelle d'élèves, et sur leurs différentes 
stratégies de résolution face à des problèmes, au travail avec des adultes qui ont reçu un 
enseignement de l'algèbre mais ne l'ont pas réellement appris, et qui rencontrent des difficultés 
dans ce domaine. Cette variété de contextes, de positionnements vis à vis la thématique abordée 
dans le groupe de travail a contribué, comme nous le verrons dans ce compte rendu, à enrichir 
la discussion.  

THE FIRST SHARED EXPERIENCE 
Two shared experiences on the second day produced rich questions and discussions, rich 
perhaps because of the diversity of perspectives in the group. The first shared experience 
involved working on the following set of "algebraic problems" arithmetically and considering 
the differences between the arithmetic and the algebraic reasoning involved.   

1. Three tennis rackets and four badminton rackets cost $184. What is the price of a 
badminton racket if it costs $3 less than a tennis racket?  
 

Trois raquettes de tennis et quatre raquettes de badminton coûtent 184$. Quel est 
le prix d'une raquette de badminton si celle-ci coûte 3$ de moins qu'une raquette 
de tennis?  
 

2. Luc has $3.50 less than Michel. Luc doubles his money. Meanwhile Michel 
increases his by 1/7. Now Luc has 40 cents less than Michel. How much did each 
have originally?  
 

Luc a 3.50$ de moins que Michel. Luc double son montant d'argent. Pendant ce 
temps, Michel augmente le sien de 1/7. Maintenant Luc a 0.40$ de moins que 
Michel. Quel montant chacun avait-il au départ ?  
 

3. The dance troupe Petitpas is giving its annual recital tonight. Tickets were all sold 
ahead of time and the caretaker must now organize the hall. If he places 8 chairs in 
a row, 3 spectators will not have a chair. If he puts 9 in a row, there will be 27 empty 
chairs. How many people are expected to attend the recital?  
 

La troupe de danse Petitpas donne son spectacle annuel ce soir. Les billets ont tous 
été vendus à l'avance et le concierge doit maintenant organiser la salle. S'il place 
8 chaises par rangée, 3 spectateurs n'auront pas de chaises. S'il en met 9 par 
rangée, il restera 27 chaises disponibles. Combien de personnes attend-on à ce 
spectacle ?  
 

4. By increasing his speed to 5 km/h, a cyclist saves 37 minutes and 30 seconds. By 
diminishing his speed by 5 km/h, he loses 50 minutes. What is his speed and the 
length of the track?  
 

En augmentant sa vitesse de 5 km/h, un cycliste gagne 37 minutes et 30 secondes. 
En diminuant sa vitesse de 5 km/h, il perd 50 minutes. Quelle est sa vitesse et la 
longueur du parcours ?  
 

5. A man takes five and a half hours to hike 32 km. He starts by walking on flat terrain 
and then climbs a slope at 4 km/h. He turns around at the top and returns on the 
same path to his starting point. We know he walked on the flat terrain for 4 hours 
(2 going and 2 returning) and that it took him twice as long to climb the slope as to 
descend it. Find the length of the flat part of his hike.  
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Un homme met 5 heures et demie pour faire un trajet de 32 km. Il commence par 
marcher sur un terrain plat puis il monte une pente à la vitesse de 4 km/h. Il fait 
alors demi-tour et retourne au point de départ par le même chemin qu'à l'aller. 
Nous savons qu'il a marché pendant 4 heures (2 à l'aller et 2 au retour) sur le 
terrain plat et que la montée de la pente lui prend le double du temps que la 
descente. Calculer la longueur de la partie plate du trajet.  
 

6. It takes a man five and a half hours to complete a certain hike. He starts by walking 
on flat terrain at a speed of 6 km/h and then climbs a slope at 4 km/hr. He turns 
around at the top and returns on the same path to his starting point. We know that 
he descended the slope at 8 km/h and that the length of the slope is 2/7 of the total 
distance walked. Find the total distance he walked.  
 

Il faut à un homme 5 heures 30 pour faire un certain trajet. Il commence par 
marcher sur une partie plate à la vitesse de 6 km/h et continue en montant une pente 
à la vitesse de 4 km/h. Il fait alors demi-tour et arrive au point de départ en faisant 
le même parcours qu'à l'aller. Nous savons que la vitesse de descente de la pente 
est de 8 km/h et que la longueur de la pente est les 2/7 du parcours total. Calculer 
la longueur du parcours. 

Solving the problem arithmetically was not necessarily an easy task for participants. Some of 
the problems appear to be quite complex. The hope was that it would contribute to our 
understanding of one facet of the interface between arithmetic and algebra in a particular 
context, that of problem solving. The two first problems were discussed at length. 

SOLUTIONS TO THE FIRST PROBLEM 

For the first problem, the rackets problem, the group proposed a variety of solutions and some 
of these were the basis of considerable subsequent discussion. 

Solution A: This trial procedure consisted of choosing a certain given number for the 
price of a tennis racket, then finding the corresponding price for the badminton racket 
and then the total amount for 3 tennis rackets and 4 badminton rackets. A new number 
was tried until the correct total price was reached 

 

Solution B: The total number of rackets, 7, was divided into the total price, $184, in 
order to get a ballpark number for the price of a racket. Then a trial and adjustment 
procedure was undertaken. 
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Solution C: This solution began with the fact that 4 of the rackets together cost $12 
less. This was subtracted from $184 to get $172 (to have 7 rackets of the same price) 
and the latter amount was divided by 7 to get 24 and 4/7. The price of the more 
expensive racket was then fixed at three dollars more, 27 and 4/7. The price of the 
badminton racket was multiplied by 4 and that of the tennis racket by 3 with the result 
not coming out to $184.  

Solution C led to some discussion on the difficulty of controlling the relationship "three dollars 
less than" and two corrected solutions (C1 & C2) by the group.  

Solution C1: If they all cost the price of a tennis racket, then the bill would be $184 + 
$12. Dividing $196 by 7 gave the price of the tennis racket, $28 and thus $25 for the 
badminton racket.  

Solution C2: This solution began with the fact that a tennis racket costs $3 more than 
a badminton racket and so the three tennis rackets would cost $9 more altogether. If 
they all cost the price of a badminton racket, then the bill would be $184 – $9. Dividing 
this by 7 gave the price of a badminton racket.  

It was noted that it is difficult to decide whether to add or subtract—controlling the relationship 
"$3 less than" and its influence on the total is difficult—and that sometimes a drawing is helpful 
in making the decision. Nadine offered her drawing of the problem situation and reminded us 
that at the turn of the 20th century this type of drawing could be found in the arithmetic problem 
solving sections of textbooks.  

 

The solution that drew the most attention in the discussion later was the following: 

Solution D: 

 

SOLUTIONS TO THE SECOND PROBLEM  

The second problem (Luc and Michel problem) also led to a variety of solutions, the most 
discussed of which were the two following solutions—reproduced here with an attempt to 
reflect the way the solvers explained them.  
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Solution A:  

• Michel augmente son montant d'argent de 1/7, on va donc choisir au départ un 
nombre divisible par 7, disons 7$. Luc a alors 3,50$. Il double son montant d'argent, 
il a donc maintenant 7$, et Michel 8$ (7$ et 1/7 de 7$). La différence entre leurs deux 
montants est de 1$, ce qui ne convient pas puisque la différence devrait être de 0,40$.  

• On va donc diminuer le montant de Michel choisi au départ pour pouvoir avoir une 
différence moindre à la fin. Prenons 6,30$ (nombre aussi divisible par 7). Luc a alors 
2, 80$ (3,50$ de moins que Michel). Luc double son montant d'argent, il a maintenant 
5,60$. Michel augmente son montant de 1/7, soit de 0,90$, il a donc maintenant 
7,20$. La différence entre les deux montants est alors de 1,60$. La différence a 
augmenté et non diminué....  

• Il faut donc que j'augmente le montant de Michel et non que je le diminue (plusieurs 
membres du groupe avaient fait cette erreur, mettant ici en évidence une des 
difficultés du problème, le contrôle ici de l'effet des transformations sur les grandeurs 
en présence). Prenons 7,70$ (nombre divisible par 7) pour le montant de Michel, Luc 
a alors 4,20$. Luc double son montant, il a maintenant 8,40$ et Michel a 8,80$ (7,70$ 
plus 1/7 de 7,70$). La différence est bien de 0,40$.  

 

Solution B: 

• La différence entre les montants d'argent de Luc et Michel au départ était de 3,50$. 
• Si les deux avaient doublé leurs montants d'argent, l'écart entre ceux-ci aurait alors 

été de 7$. Cependant cet écart n'est réellement que de 0,40$. On a donc réussi à 
regagner 6,60$. 

• Luc a effectivement doublé son montant d'argent, mais Michel n'a pas réellement 
doublé son montant d'argent, il a juste augmenté celui-ci de 1/7. Il lui aurait fallu 6/7 
de plus pour effectivement doubler son montant initial. Si on rajoutait 6/7 de la part 
de Michel, on aurait donc regagné 6,60$. 

• Les 6/7 (de son montant de départ) correspondent donc à 6,60$. 
• Michel avait donc 7,70$. Et Luc avait 4,20$ (3,50$ de moins). 
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THE SECOND SHARED EXPERIENCE 
The second shared experience involved watching a short video extract in which two future 
teachers were discussing their solutions to the following problem: 

 

EXCERPT FROM A DYADIC INTERVIEW 

Éric (EC) «algebraic» problem solver, and Mireille (MI), «arithmetical» problem solver. (A 
partial translation of the verbatim12

 was provided by Nadine.) 

 

MV:  Okay. Luc has $3.50 less than Michel does (she writes down L,M and 3.50 as 
above). Now to start with, I suppose that ... 

EC:  Michel has at least $3.50. 
MV:  Well, let's say ... yeah, you could say that. Okay, Luc doubles his money. ... 

Well, when you get down to it, I go about it more using the difference between 
the two. I know that he, here there's 3.50 separating them. Uh, Luc doubles 
his money whereas Michel increases his money by $1.10. So I know that here 
there was an increase of $1.10. But I don't know the amount that they had (she 
writes down the two?) 

EC:  Okay. 
MV:  What I do know is that there was a difference and that afterwards, I've got 

Luc who's now got 40 cents less than Michel (she writes down .40). So I know 
that the difference between these two (she draws an arrow between $3.50 and 
$ .40) is $3.10. 

EC:  $3.10 you say ... 
MV:  A difference of $3.10, and I know already that...$1.10, here there was an 

increase of $1.10. So normally that would give the amount ... EC: ... that 
Michel had 

MV:  Here, that Luc had. 

                                                 
12 Pour la recherche plus complète dont est tiré ce verbatim, voir S. Schmidt & N. Bednarz (2002), 
Arithmetical and algebraic types of reasoning used by preservice teachers in a problem-solving context, 
Canadian Journal of Science, Mathematics and Technology Education, 2(1), 67–91. 
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Because time was short, we did not observe the second video clip in which the same two 
students worked on the cafe croissant problem (see the problem with contradictory éléments 
below). We did, however, discuss the problem (the purpose here was to focus on the control of 
the process of solving problems in arithmetic and algebra) and Nadine provided a verbal 
description of the student interchange13. 

 

One of the students (EC) immediately attempted an algebraic approach, writing three equations 
with two unknowns, solving two of them and then replacing the numbers found in the other 
one. When he observed that when he put them in the third equation, it didn't give him the right 
answer, he checked his method... He tried again with two other equations...He attempted three 
other algebraic solutions to the same problem ....he never returned to an analysis of the proposed 
relationships in the problem. On the other hand, the other student (MI) worked on the basis of 
the relations in the situation: Here I've got one coffee and three croissants; here I've got two 
coffees and two croissants, I've got one coffee more and one croissant less, and it costs 30 cents 
more. Then here, I have the same thing, I've got one coffee more and one croissant less. That 
costs me 50 cents more! That doesn't work!  

Une certaine expérience partagée a ainsi constitué le point de départ de la discussion 
subséquente du groupe de travail. Elle portait d'une part sur la résolution arithmétique de 
problèmes usuellement présentés en algèbre, et l'explicitation de diverses solutions par les 
participants, et d'autre part sur le visionnement d'un extrait de vidéo dans lequel deux étudiants 
en formation des maîtres confrontaient leurs solutions (arithmétique et algébrique) à un même 
problème.  

Les diverses solutions proposées par le groupe à certains problèmes, les discussions qu'ont 
provoquées certaines solutions plus spécifiquement, les réflexions issues de notre observation 
du vidéo par ailleurs, ont permis d'ouvrir sur un certain nombre de discussions. Nous 
reprendrons maintenant quelques uns des points les plus importants.  

QU'EST-CE QUE L'ARITHMÉTIQUE? QU'EST-CE QUE L'ALGÈBRE?  
Le travail sur les différentes tâches, notamment la résolution arithmétique de problèmes, nous 
a amené à discuter longuement la différence entre arithmétique et algèbre: en quoi peut-on dire 
que cette solution est arithmétique ou algébrique? Où s'arrête l'arithmétique? Où commence 
l'algèbre? Par exemple certaines solutions arithmétiques présentées au problème des raquettes 
ont suscité une interrogation par certains participants: en quoi pouvait-on dire que cette solution 
était arithmétique et non algébrique? Ainsi, si une ligne (voir solution C, dessin proposé par 
Nadine) ou une boîte (voir solution D) est utilisée pour représenter les grandeurs en présence et 
leurs relations, ceci n'est-il pas une certaine façon de représenter l'inconnue et ne peut-on dire 
dans ce cas que le processus de résolution est algébrique? Le fait que certains élèves qui n'ont 
jamais reçu d'enseignement de l'algèbre produisent de telles solutions, ou encore que l'on 

                                                 
13 For more details, see Schmidt & Bednarz (2002). 
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retrouve des illustrations semblables (solution C) dans de vieux manuels d'arithmétique, 
plaident toutefois en faveur de voir celles-ci comme des solutions arithmétiques. La question 
de savoir si une solution est arithmétique ou algébrique est vite apparue au groupe comme 
risquant de nous enfermer dans une discussion stérile, et celle-ci a été abandonnée au profit de 
l'intérêt qu'il pouvait y avoir à encourager certaines solutions particulières dans une perspective 
de transition à l'algèbre.  

WHAT IS ARITHMETIC, WHAT IS ALGEBRA?  
Some of the arithmetic solutions produced by participants led to challenges by others as to 
whether or not they could also be classified as algebraic. For example, if a line or box is used 
to represent the unknown amount, is that just another way of representing the unknown and is 
the solution process essentially algebraic? The fact that some students who have never been 
exposed to algebra produce such solutions argued in favour of viewing these as arithmetic. 
Trying to reach a conclusion about whether such a solution was arithmetic or algebraic was 
eventually abandoned in favour of a discussion of the interest of encouraging this particular 
type of solution as a stepping-stone to algebra.  

POTENTIEL DE CERTAINES SOLUTIONS ARITHMÉTIQUES POUR UN 
PASSAGE À L'ALGÈBRE?  
Le travail autour des solutions proposées par le groupe à quelques problèmes nous a amené à 
discuter très longuement du potentiel de certaines de ces solutions: en quoi ces solutions sont-
elles porteuses de sens, riches pour un éventuel passage à l'algèbre? Comment favoriser la 
transition à partir de celles-ci à l'algèbre? Par exemple, les solutions arithmétiques mettent dans 
certains cas en évidence un contrôle très grand des relations en présence ou des transformations 
sur les grandeurs (voir les solutions C1 et C2, ou D au problème des raquettes, ou la solution 
B, au problème de Luc et Michel) ou s'appuient sur des propriétés des nombres (exemple de la 
solution A, au problème de Luc et Michel), elles constituent un atout important dans la 
mathématisation des problèmes en algèbre. Ces solutions rendent compte par ailleurs dans 
certains cas d'une notation ou représentation globale intéressante (exemple de la solution C, 
illustration proposée, ou de la notation utilisée en D au problème des raquettes). Cette dernière 
solution apparaissait même a priori pour plusieurs des participants très proche d'une résolution 
algébrique (faisant référence à une notation symbolique et semblant opérer sur ce symbolisme 
dans la notation même utilisée). Toutefois, la discussion a mis en évidence que la lettre ici ne 
joue pas vraiment le rôle d'inconnue. Elle sert juste à désigner les quantités en présence, c'est 
en quelque sorte une étiquette (badminton, raquette), ce qui constitue en fait un obstacle dans 
la résolution algébrique ultérieure (où la lettre représente un nombre et la symbolisation des 
relations exprime une relation entre des nombres qui n'est pas une traduction directe). La 
question de la transition à l'algèbre exige donc davantage. Elle peut sans doute s'appuyer 
avantageusement sur les habiletés développées en arithmétique et certaines de ces solutions, 
mais le passage n'est pas une simple transposition d'une procédure à l'autre.  

DO CERTAIN ARITHMETIC SOLUTIONS LEAD MORE EASILY INTO 
ALGEBRAIC SOLUTIONS?  
Some arithmetic solutions produced in the group seemed to be more meaningful and offer a 
greater potential for an eventual passage to algebra. The question arose as to how to move from 
these particular solutions into algebraic ones. For example, arithmetic solutions exhibiting 
mastery of the relationships in the problem or of transformations of quantities (see solutions 
C1, C2 and D to the rackets problem, or solution B to the Luc and Michel problem), demonstrate 
skills that are important in mathematizing problems in algebra. These solutions also show 
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interesting notation or global representations of the problem (for example, the illustration used 
in solution C and the notation in D). For many of the participants, solution D appeared to be 
very close to an algebraic solution in that it involved symbolic notation and operated on that 
notation. However the discussion brought out the view that the letter here did not really play 
the role of an unknown. Rather, the letter designated the quantities present and acted as a label 
(which is considered to be an obstacle in later algebraic work). Thus the passage to algebra 
requires additional insights and skills. It can certainly build on arithmetic skills and solutions 
but the passage is not a simple transposition from one to the other.  

TENSION DANS LA TRANSITION ARITHMÉTIQUE-ALGÈBRE ENTRE 
CONTEXTUALISATION ET DÉCONTEXTUALISATION  
Un point important soulevé par le groupe et sur lequel nous nous sommes longtemps attardés 
est celui de la tension, dans la transition arithmétique-algèbre en résolution de problèmes, entre 
la nécessité de partir du contexte, pour construire notamment un sens à l'expression algébrique 
élaborée ou à toute autre représentation, et la nécessité de quitter le contexte pour aller plus loin 
dans la résolution. Dans nos solutions arithmétiques, nous nous appuyons en effet fortement sur 
le contexte, interprétant constamment les quantités et relations en présence pour pouvoir opérer. 
Chaque partie de la solution s'appuie sur le contexte, peut être vérifiée en regard du contexte. 
Nous reconnaissons que tel n'est pas le cas en algèbre, où le contexte sert seulement au début 
de la résolution du problème lors de la construction de l'équation ou des équations, et à la fin 
du processus dans l'interprétation de la solution trouvée. Plusieurs des participants du groupe 
pensent que cet abandon du contexte est un des gros obstacles dans la résolution de problèmes 
en algèbre. Le problème du café croissant, et sa résolution par les deux étudiants en formation 
à laquelle nous avons fait allusion précédemment, le montre bien et fournit plusieurs arguments 
en faveur du maintient d'un lien avec le contexte. Ceux qui en effet s'engagent dans une 
résolution algébrique semblent tourner en rond, essayant de résoudre à plusieurs reprises deux 
équations à deux inconnues puis de remplacer dans l'autre équation, sans nullement contrôler 
ce qui s'y passe. Ceux qui essaient de résoudre arithmétiquement le problème restent en contact 
avec le contexte, et rapidement réalisent que le problème ne fonctionne pas, qu'il n'y a aucune 
solution.  

Nous nous sommes demandés s'il ne serait pas possible de prévoir des allers retours entre 
contexte et manipulations algébriques, au moins dans les premières étapes de l'apprentissage de 
l'algèbre. Bien que cette question soit restée ouverte, quelques oppositions à cette idée ont été 
exprimées. Tout d'abord, l'algèbre est un outil pour résoudre une classe plus générale de 
problèmes et sa puissance réside justement ici dans l'abandon du contexte, d'autre part, il est 
extrêmement difficile, voire impossible, de donner à chaque étape de la manipulation une 
signification dans le contexte.  

TENSION BETWEEN KEEPING THE CONTEXT AND WORKING IN 
ABSTRACT  
In our arithmetic solutions we were constantly reading and interpreting the problem situation. 
Every line of the solution was or could be checked for sense in the context of the problem. We 
recognized that this is not the case in algebra where the context serves only at the beginning 
and end of the solution process. Several participants thought that this abandonment of context 
was one of the big obstacles to problem solving with algebra. We wondered whether it would 
be possible to move back and forth between the algebraic manipulations and the context, at 
least in the early stages of algebra. Although this question remains open, there was some 
opposition to the idea: firstly, algebra is a tool for solving general problems and its power lies 
in the abandonment of context and secondly, it is extremely difficult to do—perhaps more 
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difficult than the manipulations themselves. The café/croissant problem above provided some 
arguments in favour of maintaining a connection with context. Those who leaped into an 
algebraic solution ended up going around in circles trying to solve 3 equations in two unknowns. 
Those who looked at the problem arithmetically or stayed in touch with the context, quickly 
realized the impossibility of a solution.  

SURVALORISATION DE L'ALGÈBRE ET DÉVALORISATION DE 
L'ARITHMÉTIQUE EN RÉSOLUTION DE PROBLÈMES  
Dans l'extrait vidéo que nous avons visionné, la difficulté du futur enseignant de mathématiques 
au secondaire (ER) à comprendre la solution arithmétique produite par l'autre étudiante (MI), 
et son absence de volonté apparente à vouloir comprendre celle-ci, ont questionné les 
participants. À l'opposé, bien que MI ait eu de la difficulté à suivre le raisonnement algébrique 
de son coéquipier, elle a fait l'effort de comprendre celui-ci et a été tout à fait capable à la fin 
d'expliquer et de refaire ce raisonnement. Derrière l'indifférence du solutionneur «algébrique» 
envers la solution arithmétique de l'autre (qu'il perçoit comme de la magie), il est possible d'y 
lire une certaine supériorité de l'algèbre sur l'arithmétique, ce que le groupe a nommé «une 
certaine arrogance de l'algèbre». Venant de travailler nous-mêmes sur des solutions 
arithmétiques à des problèmes, nous étions naturellement impressionnés par la solution 
arithmétique de MI et par le raisonnement sous-jacent mis en jeu. D'où notre étonnement à voir 
l'inhabileté du solutionneur algébrique à apprécier, lui de son côté, cette solution arithmétique. 
Les conséquences d'une telle attitude selon nous dans la classe sont importantes. Elle questionne 
en effet la capacité du futur enseignant à comprendre les stratégies des élèves et amène à penser 
que lorsque l'algèbre est introduite, tout raisonnement arithmétique est de fait évacué. Ceci peut 
nous laisser penser que le raisonnement arithmétique est de fait, au moment de l'introduction à 
l'algèbre et après, négligé, voire même qu'il régresse. Ceux qui ne rentrent jamais dans l'algèbre 
courent ainsi le risque d'être laissés de côté avec aucun outil pour résoudre les problèmes, et 
aucune confiance dans leur capacité à résoudre des problèmes. Du point de vue de la formation 
des maîtres, un travail important est à faire, en valorisant entre autres les enseignants qui veulent 
comprendre les stratégies premières des élèves.  

TO WHAT EXTENT IS ALGEBRA OVER VALUED AND ARITHMETIC 
UNDER VALUED IN PROBLEM SOLVING?  
In the video extract, we were all slightly appalled by the future high school teacher's inability 
and unwillingness to understand the arithmetic solution produced by the future special 
education teacher. Although the latter found her partner's algebraic solution difficult to follow, 
she did make the effort to do so and in the end was able to follow it. Behind the indifference of 
the algebraic solver towards the arithmetic solution, we read a sense of superiority attributed 
by both students to the algebraic solution and coined the term "the arrogance of algebra". 
Having just worked on arithmetic solutions, we were naturally quite impressed with the 
arithmetic solution and the mathematical reasoning involved. It was worrisome to recognize in 
the algebraic solver the inability to appreciate an arithmetic solution. The consequences of this 
in the classroom assure that once algebra is introduced, all arithmetic reasoning is outlawed. 
Hence arithmetic reasoning atrophies and those who never quite "get" algebra are left with no 
tools and no confidence to solve mathematics problems. In teacher training, it also seems 
important to value teachers who want to understand students' primitive strategies.  
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DEVRIONS-NOUS INTRODUIRE DES PROBLÈMES «D'ALGÈBRE» EN 
ARITHMÉTIQUE?  
Nous avons aussi discuté la pertinence qu'il pouvait y avoir à introduire des problèmes 
classiques d'algèbre, comme ceux que nous avions examinés, pas nécessairement les derniers 
considérés comme complexes pour les élèves, mais d'autres plus simples, avant toute 
introduction à l'algèbre. Beaucoup d'arguments en faveur d'une telle introduction ont été mis en 
évidence par le groupe:  

• Il y a plusieurs stratégies de résolution possibles comme nous l'avons vu, dont le 
potentiel est riche pour le développement d'habiletés en résolution de problèmes: 
essais erreurs raisonnés s'appuyant sur certaines propriétés des nombres; fausse 
position: on fait semblant que...en se donnant un nombre et on réajuste; travail sur les 
relations et comparaison. ...  

• Le recours à plusieurs méthodes de résolution fait partie du curriculum (est requis par 
celui-ci)  

• Il semble toutefois important dans ce travail d'aller au delà de la simple procédure 
d'essais erreurs pour forcer une réflexion sur les relations. L'arithmétique, si elle est 
un appui important pour le passage ultérieur à l'algèbre, doit être une arithmétique 
relationnelle.  

• Les notations utilisées, la manière dont nous rendons compte de ces stratégies, dont 
nous les explicitons, est aussi un appui important pour le travail ultérieur en algèbre: 
notations séquentielles versus notations globales (rendant compte de l'ensemble des 
relations en présence), recours à des illustrations aidant à contrôler les relations, 
présence possible d'une riche variété de notations, représentations (diverses 
représentations explicitant l'ordre de grandeur des notations ou leurs relations, 
notations symboliques ...)  

• Le travail sur différents types de problèmes est possible: travail sur des régularités 
(exemple trouver la somme des 45 premiers nombres entiers rapidement...), problèmes 
mettant en jeu des relations de comparaison, développant une flexibilité à jouer avec 
ces relations de comparaison (se les représenter, les formuler de différentes façons ...)  

• Il est possible de discuter certains critères avec les élèves dans le retour sur les 
stratégies (clarté à des fins de communication de celles-ci à quelqu'un d'autre, 
efficacité, certaine stratégies sont-elles plus efficaces que d'autres?: qu'arrive t-il si 
l'on change certaines données du problème, la solution fonctionne t-elle encore? ...)  

La question de savoir si nous devrions enseigner certaines de ces stratégies , si nous devrions 
parfois insister sur la mise en évidence de certaines stratégies plutôt que d'autres a été posée.  

SHOULD WE INTRODUCE "ALGEBRA" PROBLEMS IN ARITHMETIC?  
A number of arguments were made for introducing classic algebra problems such as those 
examined in the working group before any introduction of algebra.  

• As we saw, a number of solution strategies emerge that are potentially rich for 
developing problem solving abilities: trial and error strategies grounded in number 
sense, trial and adjustment, work on relationships and comparisons. (It is important 
though to go beyond trial and error strategies and move to reflection on the 
relationships between the quantities in the problem.)  

• The use of a variety of solution strategies is required by the curriculum.  
• The notation used (sequential as opposed to global notation, recourse to illustrations, 

multiple notations and representations) and the ensuing discussions are important for 
future work in algebra.  
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• Work on a wide variety of problems is possible: on patterns or regularities (for 
example, find the sum of the first 45 whole numbers rapidly), on comparisons 
(expressing and representing them in different ways), …  

• In discussions of strategies with the students, criteria can be established for clarity in 
presentation, efficiency in solutions (Are some solutions more elegant than others? 
What happens if we change some of the givens in the problem?)  

The question arose as to whether or not we should teach certain of these strategies.  

DEVRIONS-NOUS CONTINUER LE TRAVAIL EN ARITHMÉTIQUE APRÈS 
L'INTRODUCTION DE L'ALGÈBRE?  
Notre travail sur les problèmes nous a amené à la conclusion que l'arithmétique ne devrait pas 
être mise de côté dans le travail en résolution de problèmes, après que l'algèbre ait été introduit. 
Nous avons trouvé quelques unes des solutions arithmétiques que nous avons partagées riches 
sur le plan du raisonnement mis en jeu. Toutefois, encourager des solutions arithmétiques et 
continuer le développement de l'arithmétique chez les étudiants tout au long de l'école 
secondaire ne fait pas vraiment partie des expériences des participants. Le curriculum arrête en 
effet l'enseignement de l'arithmétique en général lorsque l'algèbre est introduit. Dans le 
programme récemment introduit en France, on réintroduit cependant l'arithmétique dans les 
dernières années du secondaire et même au niveau postsecondaire. Il reste à voir ce qu'on 
appelle ici arithmétique. Il y a un intérêt à considérer les raisons qui ont conduit les responsables 
de ce curriculum à vouloir y réintroduire l'arithmétique, ce dernier contribuant selon eux au 
développement d'une certaine rationalité mathématique. Les participants du groupe ont 
mentionné l'intérêt que pourrait avoir un tel travail en arithmétique, articulé par exemple autour 
de la théorie des nombres, pour le développement du concept de variable. La réflexion est ici à 
poursuivre.  

WHAT WOULD BE THE BENEFITS OF CONTINUING THE STUDY OF 
ARITHMETIC THROUGHOUT SECONDARY SCHOOL?  
Our experiences in the group work led us to the conclusion that arithmetic should not be set 
aside in problem solving work after algebra is introduced. We found some of the arithmetic 
solutions to the shared problems both simple and mathematically exciting. However, 
encouraging arithmetic solutions and continuing the development of students' arithmetic 
throughout high school had not been part of the experience or expectations of any of the 
participants. Nadine spoke about the new programs in France where arithmetic has been re-
introduced in the last years of secondary school. There was considerable interest in that 
curriculum and conjectures that students would be much better prepared for tertiary 
mathematics particularly in the area of number theory. One learning shared by all was that the 
meeting of arithmetic and algebra does not just occur in a year or two somewhere in middle 
school. It impacts on all of us wherever we are intervening in the school system.  
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IMAGES OF UNDERGRADUATE MATHEMATICS 

Miroslav Lovric, McMaster University 
David Poole, Trent University 

Animé par deux mathématiciens passionnés par l’éducation mathématique, le groupe avait une 
participation équilibrée de mathématiciens, didacticiens et éducateurs mathématiques. En cela, le 
groupe reflète bien une des caractéristiques du GCEDM. Les discussions sur ce vaste sujet en ont ainsi 
été enrichies de perspectives diverses, et le groupe a manifestement permis d’explorer plusieurs images 
différentes. Il en résulte un rapport intéressant, parfois intriguant, et des images qu’il faut voir dans 
l’appendice.  

Led by two mathematicians with a strong interest in mathematics education, this working group 
brought together a well-balanced group of mathematicians, researchers in mathematics education and 
mathematics educators. This feature of the group reflects one on CMESG’s characteristics. The 
discussions on this vast topic were enriched by these varied perspectives, and the group was obviously 
able to consider many different images. This gave and interesting and somewhat puzzling report, and 
images worth looking at in the Appendix. 

PARTICIPANTS 
Debbie Boutilier  
Olive Chapman  
Stewart Craven  
Malgorzata Dubiel  
Jeff Hooper  

Richard Hoshino  
Leo Jonker  
Shabnam Kavousian  
Miroslav Lovric 
Kate Mackrell 

John Grant McLoughlin 
David Poole 
Rina Zazkis 

 

The theme that the working group was given to discuss, named "Images of Undergraduate 
Mathematics," is certainly very broad and far-reaching. Thinking about it, we published the 
following abstract:  

"I hate math!", "What is Fermat's Last Theorem about?", "I really liked your lecture 
on infinity.", "Fractals are cool but I hated those area and perimeter calculations.", "Do 
I have to teach that calculus course again?", "Do all mathematicians look like that guy 
in Good Will Hunting?", "I have always liked math, and was good at it.", "This 
textbook is useless.", "Why do we need all that geometric stuff?", "Who is Sophie 
Germain?", "Chinese students are expected to do well in mathematics.", "What is all 
this theory good for?", "The problem is that students don't learn that stuff in high 
school anymore.", "Why are you bothering me with questions, just give me the damn 
answer!"  

Images, opinions, and views of mathematics are uncountable ... so are emotions and 
stereotypes. The comments above come from students' comments in course 
evaluations and journal entries, faculty comments over coffee, and comments in the 
media. Can you tell which is which?  

This working group plans to look at this large and complex space of undergraduate 
mathematics—to discuss, investigate, and analyze, in an attempt to describe what it 
looks like. We will not restrict our attention to courses for mathematics majors only: 
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"service" courses will also be considered and we will explore what each type of course 
can learn from the others.  

There are many approaches (historical, cultural, ethnomathematical, 
teaching/learning, epsilon-delta/no epsilon-delta, etc.), and viewpoints (undergraduate 
students, university lecturers, high school students and teachers, mathematics 
education researchers, media and popular culture, etc.) What attracts students to 
mathematics? What repels them? How can we keep interested students from "turning 
off" to mathematics? How can attract those able students who are already turned off? 
How to perceptions and misconceptions play into these issues?  

We'll be searching for interesting facts, fresh ideas, and creative insights. What can we 
learn? Can it help us appreciate mathematics more? Can it lead towards improvements 
in the way we teach and learn mathematics? What other questions can we possibly ask 
(and answer?)  

Moreover, to provoke, motivate, and suggest possible directions of discussion, we produced a 
four-page handout (see Appendix).  

Two-and-a-half days of (somewhat unfocussed) discussion resulted in the following list of 
statements and issues.  

1. Mathematics is difficult. Instructors and teachers need to be honest and straightforward 
about it.  

2. Mathematics is useful. Good reasons to learn mathematics include gaining valuable 
skills and increased chances of finding a good job.  

3. Mathematics is exciting. This excitement, enthusiasm, motivation for mathematics 
needs to be 'transferred' to our students.  

4. Mathematics is not calculus. However, at most universities calculus is the only course 
that a large majority of students take. Although calculus is essential to understanding 
certain areas of mathematics and applications, there are other mathematics disciplines 
that are of equal importance, but are not taught to non-mathematics majors. New 
courses at the entry-level are needed.  

5. Mathematics education is communication. We need to facilitate communication 
between high school teachers, college/university mathematics instructors, and 
mathematics educators.  

6. List of knowledge and skills. Is it possible, and on what level (local, provincial) to 
create a list of knowledge and skills that high school students possess (i.e., that are 
expected of them).  

7. Mathematics instruction needs small classes.  
8. Mathematics education needs the support of NSERC, CMS, and others.  

Although we have touched upon numerous subjects, we will focus our presentation on the above 
statements.  

AD 1  
Mathematics—on any level, from elementary school to graduate courses—is, for most of our 
students, a difficult subject to learn. They know it, and we know it. We should be honest about 
it, and tell our students that they are about to learn something difficult. With our support and 
help, and lots of work on their own, our students should be able to learn the material.  

Issues to consider include:  
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• How to teach mathematics to the 'lower end'—i.e., to the students who are not 
adequately prepared for a university course in mathematics;  

• 'Upper end' students usually get neglected; need to create challenging contexts for 
them; 

• Drill has a place in learning mathematics; it can also serve as a motivational tool;  
• Reading a mathematics textbook is not easy—we need to teach our students how to 

read mathematics.  

AD 2  
We know that mathematics is useful. But what about our students? How can they conclude, 
reading a calendar description of a course (which is usually very short, and more often than not, 
quite vague), why it's important for them to take it? How will they benefit from it? How does 
the course fit, more globally, into their program? What skills are they going to gain, and why 
are those skills important and relevant to them?  

Course syllabus is an ideal medium to address these questions. Of course, it cannot answer all 
students' questions and concerns, but could certainly be a good start.  

Consider, as an example, the list below, given in the syllabus for the first-year science calculus 
course (Math 1A3) at McMaster University14. It is expected that the Math 1A3 course will:  

• give you a detailed discussion of basic concepts of calculus of functions of one 
variable;  

• give you some experience in relating mathematical results obtained using calculus to 
solutions of problems in other disciplines and to "real-world" problems;  

• give you experience in constructing and interpreting graphs of functions, so that you 
will be able to interpret pictorial data obtained from various sources (computers, 
reference manuals, instruments, various reports, etc.);  

• give you experience in reading and writing mathematics, so that you will be able to 
communicate your mathematical and technical ideas to others and use various 
reference sources;  

• teach you how to use computer software to enhance understanding of the material and 
to solve various problems.  

This is just a start. In lectures, when the opportunity arises, students' attention is brought to the 
above items. This way, they can see how the promises given in the syllabus 'materialize' in 
context of the course. The list of course objectives, that accompanies the above list gives further 
information on what will be happening in the course:  

• to learn about basic concepts of calculus (function, limit, continuity, derivative, 
integral);  

• to learn how to think logically (mathematically);  
• to learn how to communicate mathematics ideas in writing;  
• to learn about mathematics as a discipline (what is a definition? theorem? why do we 

need to prove statements in mathematics? why does mathematics insist on precision 
and clarity?).  

Some universities use so-called 'mission statements' or 'rationale for a course' statements to 
precisely describe their courses in terms of knowledge an expectations. It was suggested that, 

                                                 
14 Parts are taken from a similar course taught at University of Waterloo that one of the authors (M. Lovric) 
taught some time ago. 
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in some format, these statements should enter university's official document ('course calendar'). 
Statements about the course should also include the following:  

• 'location' of the course in terms of other courses (what are prerequisites); what courses 
are sequels to it; how does the course fit into a 'general philosophy' of a particular 
program;  

• detailed list of material that students are expected to know or be familiar with;  
• suggestions on how to review the background material, possibly with a good 

reference.  

Given the reasons, and assuming that our students are convinced that learning mathematics is 
useful, how do they learn mathematics?  

The above-mentioned syllabus document for the McMaster calculus course includes the 
following:  

• Learning mathematics (physics, chemistry, philosophy, etc.) requires dedication, 
discipline, concentration, significant amount of your time, and hard work.  

• To learn mathematics means to understand and to memorize.  
• To understand something means to be able to correctly and effectively communicate 

it to somebody else, in writing and orally; to be able to answer questions about it, and 
to be able to relate it to known mathematics material. Understanding is a result of a 
thinking process. It is not a mere transfer from the one who understands (your lecturer) 
to the one who is supposed to understand (you).  

• How do you make yourself understand math? Ask questions about the material and 
answer them (either by yourself, or with the help of your colleague, teaching assistant, 
or lecturer). Approach material from various perspectives, study solved problems and 
work on your own on problems and exercises. Make connections with previously 
taught material and apply what you just learnt to new situations.  

• It is necessary to memorize certain mathematics facts, formulas, and algorithms. 
Memorizing is accomplished by exposure: by doing drill exercises, by using formulas 
and algorithms to solve exercises, by using mathematics facts in solving problems.  

• The only way to master basic technical and computational skills is to solve a large 
number of exercises. You need to drill, i.e., solve (literally) hundreds of problems.  

• It is not really possible to understand new mathematics unless one has mastered (to a 
certain extent) the required background material.  

These are not statements to be taken for granted. Rather, they are supposed to start a discussion 
on the topic, motivate students to think about hows and whys of their learning.  

AD 3  
For most of us, various aspects of doing mathematics are quite exciting. It could be working on 
a research problem, or trying to develop a new approach to teaching certain topic, or creating a 
good problem-solving set for our students (or all of the above). We need to 'transfer' this energy 
to our students. If we teach with enthusiasm and are excited about the material we are 
discussing, our students will be better motivated and will learn mathematics better. Although 
learning style is a matter of personality, there are certain attitudes that we all can 'learn' and 'act' 
when we lecture/teach. If we show interest in what we teach, so will our students.  
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AD 4  
At most universities calculus is the only course that most of the students take. It is the 'ultimate' 
mathematics service course, taught (quite often) to large audiences, made up of majors in almost 
every field: from political science and business, to business and health sciences. Often, calculus 
also serves as a 'gatekeeper'—a course through which all mathematics majors must (first) 
pass—and a 'filter' for other disciplines (e.g., engineering) looking for a quick enrolment-
management tool.  

Although calculus is essential to understanding certain areas of mathematics and its 
applications, there are other mathematics disciplines that are of equal importance, but are not 
taught to non-mathematics majors. New courses at the entry level are needed. For instance, 
students could profit from an entry-level course in linear algebra, probability, number theory, 
or discrete mathematics.  

Why not have a course that discusses mathematics used in the human genome project? Or 
viruses? These could be very rich courses, spanning across areas as diverse as geometry, 
combinatorics, and probability.  

Further suggestions for courses offered at entry-level:  

• Inquiry-type course (e.g., McMaster has 'Inquiry in Mathematics' in its offering of 
first-year courses);  

• Problem-based courses;  
• Problem-solving courses;  
• Foundations course (e.g., University of Waterloo);  
• Geometry (e.g., SFU has a course on Euclidean geometry);  
• Philosophy of math course (e.g., University of Glasgow);  
• Interdisciplinary courses (e.g., Queen's University has a math and poetry course at the 

upper-year level; could there be an entry-level analogue?).  

Among the issues to consider and useful information are the following:  

• Courses developed for math teachers at Brock University became mainstream math 
courses;  

• Some students are not allowed to take first year courses, even remedial, because they 
do not qualify. (Should we have courses that allow these students to take math at 
university level?);  

• Danger of early streaming: students who change their minds are forced to retake 
courses  

• High failure rates in first-year calculus courses;  
• Review prerequisites scheme to broaden the base of students;  
• Role of calculus as a filter/gatekeeper should be re-examined.  

AD 5  
Communication amongst university/college mathematics instructors, mathematics educators in 
faculties of education, and high school teachers is very important. Opportunities abound for 
interaction: math contests in the schools, summer math camps, professional development 
workshops, and local/regional mathematics associations are some examples. We need to look 
for ways to foster dialogue and interaction. CMESG and CMS can play a lead role here in 
making the mathematics community aware of the possibilities that exist and providing easy, 
online access to lists of organizations and key contacts.  
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The aforementioned dialogue would be greatly facilitated if mathematics departments would 
consider hiring in the area of mathematics education, or making cross-appointments with 
faculties of education. Joint projects between mathematicians and mathematics educators are 
another possibility.  

AD 6  
The question of identifying a list of essential mathematical skills that students should acquire 
in high school is a sensitive one. Any attempts in this direction will need to be phrased positively 
('These are skills that will help you succeed.') rather than as an admonishment ('If you don't 
master this list of skills, you will struggle with university mathematics.') There is also the risk 
that such a list will be seen as "bashing" high school teachers.  

One thing seems clear: the high school curriculum is over-packed. It is difficult for students 
(and teachers) to know what is essential when there are so many topics to be covered in so little 
time. The same is true for university mathematics courses. We need to take a critical look at the 
mathematics curriculum at all levels in an effort to provide our students with the time to explore, 
savour and become familiar with the truly essential ideas in mathematics. Can we teach fewer 
topics? What is essential and what is not?  

This notion was the focus of Working Group D and we will allow them to elaborate on it.  

AD 7  
Humanities departments have been more successful at arguing that small class size is integral 
to the way their subject is taught. The argument applies equally to mathematics but we have for 
too long been willing to accept large classes, especially at the introductory level.  

Our best teachers are needed in first-year classes. This is the 'make or break' time for many 
students. A bad experience can cost us mathematics majors and ill-serve students in other 
disciplines.  

We need to involve younger faculty too but tenure and promotion considerations often militate 
against their involvement in teaching issues and curriculum development. (If NSERC were to 
support research in mathematics education, some junior faculty would take advantage of it. It 
was noted in our working group that the situation is quite different in the U.S., where the NSF 
supports both 'traditional' mathematics research and research/projects of an educational nature; 
many highly funded NSF projects have focussed on the first-year experience in mathematics.)  

AD 8  
Mathematics and research in mathematics education need full recognition by 
bodies/organizations that financially (and otherwise) support other areas of mathematics and 
science.  

Levels of recognition include:  

• Local: tenure based on strong teaching record and record of research in mathematics 
education ('scholarship of teaching');  

• CMS needs to support research in mathematics education more strongly (supporting 
projects that promote mathematics is a very positive sign, but the support should not 
stop there); stronger ties between mathematics and mathematics education are needed;  

• Funding agencies, such as NSERC, should support research in mathematics education. 
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A MATHEMATICS CURRICULUM MANIFESTO 

Walter Whiteley, York University 
Brent Davis, University of Alberta 

Breaking with CMESG traditions, this working group was conceived, proposed, and approved during 
the week before the annual meeting actually began.  It arose from a recommendation of a meeting of 
the Canadian Math Education Forum (CMEF) held in Montréal just a few weeks earlier, that university-
based mathematicians prepare and publish a statement on the technical and conceptual preparation that 
was needed for success in university mathematics courses, the point being that the "overstuffed closet" 
of the Canadian high school mathematics curriculum was a result of a perceived high level of 
knowledge required by the universities.  Our deliberations on this question had a sense of urgency and 
purpose––a sense that folks were waiting eagerly to hear what we had to say.   

En rupture avec la tradition, ce groupe de travail avait été conçu, proposé et adopté la semaine précédant 
notre rencontre annuelle. Il émergeait d’une recommandation issue du Forum canadien sur 
l’enseignement mathématique (FCEM) qui s’était tenue à Montréal quelques semaines auparavant : 
que des mathématiciens universitaires publient un énoncé portant sur la préparation technique et 
conceptuelle requise pour réussir dans les cours de mathématiques universitaires. Cela se présentait en 
réaction au carcan dans lequel les curricula dans les écoles secondaires canadiennes étaient pris, dû à 
une perception qu’une abondance de connaissances étaient requises par les universités.  Nos 
discussions revêtaient donc un sentiment d’urgence et avaient un objectif précis, animées par le 
sentiment que l’on attendait avec impatience ce que nous aurions à dire. 

PARTICIPANTS 
Andy Begg  
Katherine Borgen 
Aldona Businskas 
Brent Davis 
Gary Flewelling 
George Gadanidis 

Soheila Gholamazad  
Ann Kajander 
Donna Karsten 
Lionel LaCroix 
Lesley Lee 
Peter Liljedahl 

John Mason 
Tom O'Shea 
Margaret Sinclair 
Peter Taylor 
Walter Whiteley 

BACKGROUND 
Breaking with CMESG traditions and protocols, this working group was conceived, proposed, 
and approved during the week before the annual meeting actually began. We appreciate the 
cooperation of the CMESG in responding to this unusual initiative. The main impetus for this 
unorthodox action was a recommendation that was made at a forum on school mathematics that 
had been hosted by the Canadian Mathematics Society (CMS) in Montréal in mid-May. A 
purpose for the forum was to examine ways in which the CMS might participate meaningfully 
in efforts to reform school mathematics in Canada.  

One prominent topic of discussion at the forum was the "overstuffed closet" of Canadian high 
school mathematics curriculum. It seemed that a near-universal theme in teachers' and 
researchers' responses to proposed pedagogical innovations was that an overprescribed 
curriculum, with long, detailed specific lists of topics, militates against any sort of meaningful 
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change to their teaching. The perception is that an unwieldy syllabus compels lockstep, 
fragmented progress and does not allow time for, let alone encourage, lingering engagements. 
Coupled to this perception is a widespread belief that current curricula are 'held in place' by 
university-based mathematicians. All-too-often, the rationale for maintaining (or even adding 
to) a curriculum topic is that mastery of that topic is needed to ensure that university-bound students 
are prepared to survive undergraduate mathematics.  

With these issues in mind, a proposal went forward at the CMS Forum that university-based 
mathematicians prepare and publish a statement on the sorts of competencies and other 
preparations that are understood as necessary for success in university mathematics courses. 
The goal of this proposal, and of our work, is not to have university mathematicians prescribe, 
or even describe the necessary mathematical curriculum or the pedagogy. The goal is that 
university mathematicians describe what mathematics is, and what background of experiences 
is appropriate preparation for doing mathematics.  

We, as prospective working group leaders, felt that the CMESG conference could be a good 
place to continue discussion of the topic, given both the timing of the meeting (immediately 
after the CMS forum) and the mix of teachers, educational researchers, and mathematicians that 
is present at every CMESG gathering. The response within the working group, and from the 
CMESG executive, confirmed this judgment.  

THE TASK  
The May 2003 CMS Mathematics Education Forum was actually the second of three (the first 
was held in Québec City in May, 1995), with the third tentatively scheduled for late spring, 
2005. (See Dubiel, pp. 87–89 of this volume for further details.) The principal intentions for the 
second forum were to present participants with opportunities to identify important issues and 
to propose courses of action that would—hopefully—help to frame the third forum.  

One of the working groups at the Montréal forum recommended that, by the 2005 gathering, 
there should be a clear statement from the CMS about what students need from school and 
university mathematical experiences, worded to lift this perceived burden and to open up more 
engaging possibilities for teaching and curriculum. It was agreed that such a statement would 
not consist of a detailed list of topics, but would address the broader goals of such a curriculum. 
The end-in-view was a curriculum that offered rich coherent mathematical experiences over 
many concepts, in contrast to what is often described in terms of (as) superficial and fragmented 
encounters with a great many disconnected topics.  

As group leaders, we elected to frame the collective's efforts with the task of making 
recommendations to the CMS for the content and wording of a 'manifesto'. More specifically, 
we proposed that a goal of the working group would be to draft a statement that might be useful 
to members of the CMS as a starting place for discussions—to focus, to mine, to hone, to 
problematize, and to elaborate.  

THE DISCUSSIONS 
As is often the case, our discussions revolved in large part around the meanings of key terms. 
It quickly became apparent that at least part of our task involved the interrogation and 
redefinition of such seemingly transparent notions as 'curriculum' and 'mathematics'.  

The word curriculum, in particular, seemed subject to two incompatible interpretations. On the 
one hand, curriculum was used in reference to formal 'must-do' lists of topics and expected 
levels of learner competence. On the other hand, curriculum was also used to refer to the 
obligation to engage in mathematically rich tasks that engender encounters with particular 
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topics. The two conceptions are not necessarily incompatible: A well-conceived list can help to 
frame rich engagements. However, an over-engineered list—one that reduces broad topics into 
micro-competencies and rigid sequences—can have quite the opposite effect as it compels a 
fragmented approach to instruction.  

Unfortunately, it would seem that the 'must-do' conception of curriculum prevails, and it has 
contributed to a popular conception of mathematics as an amalgam of discrete, mechanical 
procedures that are so often dismissed as irrelevant in the oft-heard statement, "I was never very 
good at math". This proved to be a critical point in our discussions. For many, and perhaps most 
adult Canadians, 'mathematics' is understood in terms of their fragmented, algorithmic high 
school experiences with the subject matter. Our opinions on the nature of mathematics and 
mathematical engagement—as mathematicians, mathematics education researchers, and 
mathematics teachers—would seem to have little impact on popular and dominant beliefs about 
and attitudes toward the subject matter.  

Given this backdrop of popular opinion, it seemed to us reasonable to conceive of our task in 
terms of reverse-engineering a curriculum from a conception of mathematics as more integrated 
and imaginative. The following were among the qualities that we hoped might be embodied in 
a mathematics curriculum:  

• Mathematics arises when engaged in extended investigations and tasks.  
• Students prepare to do mathematics by doing mathematics.  
• A conception of curriculum as a prespecified, micro-detailed list of topics, algorithms 

and competencies prevents the extension of activities; a more flexible understanding 
of curriculum can promote the development of critical mathematical abilities.  

• Mathematics is evolving with new experimental approaches, new topics, and new 
tools.  

Such reframings of 'mathematics' and 'curriculum' prompted our discussions toward several 
other issues, including matters of prerequisites, uniformity of student experience, and the 
simultaneous need to rethink university-level mathematics. Regarding prerequisites— a notion 
that underpins contemporary linearized curricula, widespread 'readiness' testing, and endless 
debates over 'basics'—it was agreed that current emphases on preparing learners for future 
studies were at the expense of immediate and deep engagements with mathematics. An 
emphasis on prerequisites, for example, can support a conception of a singular route through 
mathematics and eclipse the important realization that mathematics has multiple pathways. It 
was also agreed that in many cases the claimed prerequisites were an illusion—material covered 
but not material learned and available as grounding for the next course. It was during discussion 
of this issue that we agreed that an important element in a CMS manifesto would be a statement 
to the effect that rich extended activities on broad topics can be expected to draw in most of the 
topics that might be identified in a curriculum as important—and that those topics that are not 
addressed in a particular activity can likely be set aside to emerge in a different activity or to 
recur when needed.  

On the issue of uniformity of student experience, it was noted that major curriculum revision 
efforts over the past decade, provincial and interprovincial, have been in large part framed by a 
perceived need for learners to follow similar curricula. This 'need' is prompted by a recognition 
of high mobility of Canadians. The most common argument for a unified and highly regulated 
curriculum is that students, quite literally, should be on the same page so that they can move 
without interruption between schools and jurisdictions.  

We agreed that the CMS manifesto would have to address this prominent concern. A consensus 
among us was that the argument of mobility, in and of itself, was just as applicable to the 
conception of mathematics curriculum that our group had begun to articulate: In brief, students 
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whose mathematics experiences have been framed by flexible engagement with meaningful 
inquiries would be well prepared to a move among similar settings. In fact, it was argued, a 
revisioned curriculum might help to ease the problems that are often associated with students 
moving from one location to another. Learners who have been involved in activities that 
foreground interconnections of concepts, inventions of new possibilities, and so on might be 
expected to be able to adapt well to new environments.  

All of this being said, an issue that university-based mathematicians must themselves address 
is the fact that many undergraduate courses can be described in very much the same terms that 
are criticized here: over-engineered, focused on mastery of disconnected topics, and so on. It 
was thus acknowledged that the manifesto would also have to include some sort of commitment 
to the transformation of university mathematics courses.  

With these considerations foregrounded, the working group undertook the task of a draft 
manifesto on our final day together. The statement at the end of this report is a synthesis of 
pieces that were developed in small and whole group discussion.  

An important aspect of the words chosen for the statement, and the words omitted, were the 
tactical understanding of context and appropriate voice. In proposing this statement, we agreed 
that this proposal is a gamble on the deepest priorities of university mathematicians. Although 
most teachers have some concerns about the missing skills of their students, we concluded that 
a deeper discussion of the larger conceptual background which would prepare students to 
effectively learn and apply mathematics at the university level. There were some concerns about 
the expressions from university faculty in other disciplines, whose priorities do not center on 
the rich experiences of doing mathematics. The proposed statement would come from 
university mathematicians, and the discussion must be thoughtfully focused on the deeper 
issues, not fall into the trap of a quick survey of 'topics you want covered' as has sometimes 
happened in the past.  

It was also recognized that this discussion is also linked to the discussions of Working Group 
C on the undergraduate curriculum and pedagogy. We foresee further discussions of these 
connections both within university departments, and at future CMESG conferences (see next 
steps below).  

It is important to note that the text of the manifesto is written in the voice of the CMS. This 
mode of expression was adopted for purely pragmatic reasons. Framing the text in this way 
enabled us to speak more directly and to avoid endless qualifications. It is not in any way our 
intention to 'put words in the mouth' of the Canadian Mathematics Society—merely to offer, in 
as concise terms as we are able, suggestions that we hope are useful in their own discussions.  

NEXT STEPS  
Despite having actually achieved the task that had been set, the group did not in any way see 
its work as completed. In addition to the circulation of a version of the above draft to members 
of the CMS for discussion, the following tasks presented themselves in our closing discussions:  

• the collection of background research to support discussions within the CMS;  
• participation with the CMS in the identification of commissions (likely CMS-based) 

for background reports, surveys, and so on, to be available as support of CMS 
statements;  

• potentially, the preparation of a parallel document by CMESG on pedagogical issues 
to complement the mathematical issues emphasis of the CMS statement;  

• potentially, a follow-up Working Group at the 2004 CMESG meeting, this one 
perhaps concerned with the topics of Working Groups C and D at the 2003 meeting;  
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• participation in the mathematics education sessions at the CMS meetings in December 
2003 (Vancouver) and June 2004 (Halifax);  

• engagement with other regional groups, including Fields (Mathematics Education 
Forum), PIMS (Changing the Culture, 2004), and AMQ;  

• possible submission of discussion documents to regional newsletters, CMS Notes, 
and/or the CMESG newsletter;  

• sharing (and perhaps collaboration) with other subject areas (including physics, 
biology, and statistics);  

• preparation of a report as follow-up to the CMS Forum group.  

At the time of this writing (November 2003), we have followed up on several of these steps. A 
draft version of the manifesto was presented for discussion at the June 2003 meeting of the 
CMS Education Committee and the draft Manifesto was a focus of discussion at the June 
meeting of the Mathematics Education Forum of the Fields Institute. It has also been circulated 
on some lists of teachers in Ontario, and to the person heading up the review of the K–12 
Ontario Mathematics curriculum. It will now be the focus of discussion in a Mathematics 
Education Session at the CMS Winter Meeting in Vancouver, December 2003.  

  



2003  Working Group 

198 

A MANIFESTO 
(Drafted by a Canadian Mathematics Education Study Group Working group, for discussion with the 

Canadian Mathematics Society)  

The CMS endorses the general aims of the current K–12 commonly found at the beginning of 
mathematics curriculum documents across Canada. However, we believe that the structure of these 
curricula is an obstacle to student learning of mathematics. Over-specified and fragmented lists of 
expectations misrepresent what mathematics is and militate against deep and authentic engagement 
with the subject—which, in turn, reduces recruitment and retention of people into the mathematical 
sciences.  

The aim of this document is to describe the necessary preparation for the student who intends to study 
mathematics in university. We are aware that this statement also implies that change is necessary in 
undergraduate mathematics programs, including the mathematics programs offered to pre-service 
teachers.  

The practice of mathematics is constantly evolving. Important new approaches include modeling, and 
numerical and symbolic work with computers. Student needs in such a changing environment cannot 
be met by adding more topics (or substituting new content for old) within an already overstuffed 
curriculum. They must be addressed in a more fundamental way.  

We find that:  

• students coming out of high school mathematics must be able to engage effectively with 
complex problems; they require the ability to 'think mathematically'—that is, to investigate 
the mathematics in a situation, to refine, to expand, and to generalize;  

• students' mathematics concepts must be woven into a connected set of relationships;  
• students must be able to independently encounter and make sense out of new mathematics.  

These aims should have priority over any specific selection of content; and it is our judgment that it is 
impossible to achieve these objectives if teachers are required to cover each item on a curriculum list. 

In support of our view, we point out that:  

• the need for detailed lists of prerequisites in mathematics has been exaggerated. While there 
is some hierarchy of concepts, a more appropriate image of mathematics centers on the rich 
problems themselves with their relationships among concepts and that highlights both 
multiple entrance points into topics and multiple directions for expanding one's practice.  

• a mathematical topic that appears isolated to the students and the teacher reveals a problem 
of placement and/or selection. Choose topics that offer opportunities to generalize and to 
connect.  

• there are diverse modes of mathematical practice, ranging from established paths and 
practices of logical reasoning to modeling, investigation, and technology-supported 
experimentation.  

Although a de-emphasis on checklists would result in variations between schools, we believe that the 
approach to mathematics described herein would not increase problems connected to student 
movement among schools and educational jurisdictions because it focuses on a central goal of 
mathematics education—namely, teaching students to think mathematically about a broad range of 
situations.  

While we have not yet made explicit recommendations, we hope that, in the list of this statement, 
ministries and boards of education will re-examine the following:  

• the structures of curriculum documents and the designs of resource materials;  
• support for teachers' initial and on-going development of professional knowledge;  
• assessment and reporting of students' abilities to engage with mathematically rich problems, 

to think mathematically, and to make sense of mathematics.  

The CMS is committed to supporting teachers and curriculum developers in these difficult and 
important tasks. 
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LEARNER-GENERATED EXAMPLES 

Nathalie Sinclair, Michigan State University 
Anne Watson, Oxford University 

Rina Zazkis, Simon Fraser University 

This Working Group illustrates the rich opportunity that these sessions can provide for productive 
activity, collaboration and learning.  Participants were actively engaged in a sequence of tasks and 
reflective discussion, working to build the theory of Learner-Generated Examples while gaining insight 
into their own teaching practice. 

Ce groupe de travail illustre les possibilités offertes par un tel cadre de travail, alors qu’activités, 
collaboration et apprentissage peuvent y être des plus productifs. Les participants ont pu s’engager 
dans des tâches suivies de discussions, et ont travaillé ensemble afin de dégager une théorie des 
« exemples créés par les apprenants » tout en portant un regard sur leurs propres pratiques enseignantes.      

PARTICIPANTS 
Maha Belkhodja  
Eli Brettler 
Peter Brouwer 
Laurinda Brown 
Aldona Businskas 
Stewart Craven 
Sandy Dawson 
Lucie DeBlois  
Jean-Lou De Carufel 
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Dave Hewitt 
Siobhan Kavousian 
Dave Lidstone 
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Julie Long 
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Doug McDougall 
John Mason  

Immaculate Namukasa 
David Pimm 
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Elaine Simmt 
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Luc Tremblay 
Dave Wagner 
Vicki Zack

PROLOGUE 
Give an example of an irrational number between 0 and 1. And another, and another, and 10 
more. How were these examples found/constructed/generated?  

In this workshop participants were offered a sequence of mathematical tasks to work on in small 
groups, or by themselves. All the tasks involved the construction of mathematical objects in 
some sense, or exploration of what it means to work with 'learner-generated examples' (LGEs). 
Some explanation of terms is necessary here. By 'mathematical object' we mean something we 
can make sense of mathematically, an expression, a question, a class, a number, an equation, a 
diagram, a proof—anything which in mathematics can be the focus of attention. By 
'construction' we mean building, creating, generating such an object rather than being given one 
by an authority such as a teacher or textbook. We are using the phrase 'learner-generated 
example' to show that when a learner creates an object it is an example of some class of such 
objects, and for this purpose we sometimes refer to the workshop participants as 'learners' 
because they were often in the position of having to construct such objects.  

The purpose of the workshop was for all the participants, including the three leaders, to explore 
the power, purposes and pedagogic implications of asking learners to construct their own 
examples. Some of the tasks, and the thinking behind them, arose during the writing of a 
forthcoming book by Anne Watson and John Mason. Rina Zazkis and Nathalie Sinclair both 
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had draft copies of this book, and Nathalie had been using this with practicing teachers. 
However, the workshop was far from being a presentation of fully-formed ideas, rather it was 
an arena in which all of us could work authentically to gain further insight into the issues from 
our own perspectives and starting points, for our own working contexts. In this sense, the 
workshop contributed to praxis and every participant's story will be different. This is an attempt 
to summarise what was spoken in the public domain.  

It is widely acknowledged that mathematics is learned by engagement in mathematical activity 
that invites the construction of meanings which are mediated, in classrooms and textbooks, by 
conventional distinctions and discourse. In usual teaching, the objects of attention are given by 
authorities and learners may or may not see in them what the teacher intends. Thus mathematics 
lessons might appear to involve observing a sequence of presented things whose genesis is a 
mystery and which may seem to be unconnected and incoherent. As a student once said to 
Bateson 'we know you are offering us examples, by we don't know what they are examples of' 
(Bateson, 1973). We are wondering if asking learners to construct their own examples of objects 
on which to work mathematically is possible and useful. Certainly as teachers we have found it 
to be a powerful way to engage learners, and teachers with whom we have worked (experienced 
and new) react as if this approach makes sense to them also. The literature supports this idea as 
well (e.g., Dahlberg and Housman 1997). There is a substantial literature on students posing 
their own problems or test questions, generating their own examples for inductive reasoning, 
and contributing 'owned' examples for motivational purposes (such as using their own heights 
for statistical analysis). In this sense, the focus of this workshop was not new but was part of 
an attempt to bring these kinds of activity under one umbrella and see what the world looks like 
if we ask 'can all types of mathematical object be learner generated?'  

TASK 1:  
Each participant was asked to say their name and give a number between 99 and 100. Then 
they were asked to discuss in small groups how they chose their number.  

This task was intended to be introductory on several levels. It proved to be unexpectedly rich 
socially, pedagogically and mathematically. Socially, of course, it got people talking but, in 
addition, it illustrated that the business of choosing a number also contained an element of self-
presentation. Some people were aware that their choices would give an impression to others of 
their mathematics and this influenced the way they chose numbers, as well as their emotional 
response to the task. For some, the element of competition was mathematically fruitful in 
pushing them to expand their example space, while for others it was inhibiting. In addition, for 
some there was an attempt to 'guess what the teacher is thinking' and to try to anticipate what 
the workshop leaders might be looking for. In fact, we were looking for discussion of these 
reactions! Mathematically, the richness of the task came from the fact that people were working 
on 'number' in creative and imaginative ways— the property of 'richness' was in the ways people 
worked, not in the task itself which also had the potential to become superficial. One pedagogic 
observation was that it was the discussion which made the task rich, but several people reported 
that the way they had chosen their number was not at all superficial, hence showing that 
individuals can enrich a task by the way they impose personal constraints and private rules. For 
example, some 'learners' used their knowledgeable reactions to numbers involving 9s and 1s to 
offer numbers which expressed a sense of 100 as a limit; one gave a number which had already 
been said 'ninety-nine and a half', but in a different form ('ninety-nine point five') to focus on 
representation; one used a number he had used earlier in the day for something else and offered 
'100 minus one over root 2'. This last offering was hotly debated since some people thought it 
was an operation rather than a number. One table engaged in an exploration about the likelihood 
of a number randomly selected between 99 and 100 being rational or irrational; another table 
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offered research evidence to claim that people tend to choose numbers towards the upper end 
of an interval.  

The responses to this task offer fragments towards a theory of LGEs:  

1. Learners select from a personal, task-specific example space influenced as much by 
the situation and their expectations of it as by their prior knowledge. This space is 
likely to be a proper subset of what they know.  

2. A 'good' example has to be seen to be an example of something.  
3. Examples are examples of something. A mathematical object may be a member of 

multiple classes; what is seen by one learner to be an example of class G may be seen 
by another to be an example of class H.  

4. Sharing examples exposes a range of possibilities which may not have occurred to 
others, but one person cannot necessarily make use of the examples given by another. 
New examples are more likely to be taken up by other learners if there is proximal 
relationship to someone's existing example space, and if they are seen to be useful or 
interesting in some way.  

TASK 2:  
Write down a pairs of numbers which differ by 2.  

… now write down another pair of numbers which differ by 2.  

… now write down another pair of numbers which differ by 2.  

This task was done individually and then discussed in groups. The difference between writing 
privately and giving publicly was deliberate, since the pressures of speaking out had been raised 
earlier. It was interesting that for some people this was an entirely new task, but for others the 
extended example spaces developed in the previous task were used for this one. One participant 
said that she found herself using numbers for task 2 she would never have chosen if she had not 
just heard the discussion of task 1. Some reported trying to find interesting pairs, but the 
interpretation of 'interesting' is personal. For some, (1, -1) was interesting since it straddles zero 
which gave it a singular status; others developed generating sequences which would produce 
as many new pairs as were required; others had personal, social or emotional reasons for 
choosing certain numbers. For most, the decisions about how to create second and third pairs 
were mathematical in some way, such as creating a pattern, or going to some extreme, or stating 
a generality of some subclass of possibilities. This led to further fragments:  

5. Learners can employ personal constraints and goals which can make a task more 
interesting for them. Constraints and goals may have the same effect, although 
differently expressed.  

6. The effect of having a generalisation expressed can be to energise or to de-energise. 
Sometimes it is more useful to hold the generalisation until a particular is needed; other 
times exploration of particulars is interesting enough to postpone, or put aside, 
generalisations.  

TASK 3:  
Write down a time at which the hands of a clock are at 90 degrees.  

… now write down another time when the hands of a clock are at 90 degrees.  

… now write down another.  
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This task is, for many, intrinsically more mathematically interesting than the previous task, but 
is of the same generic structure. We did not offer a plenary discussion of the mathematical 
findings, although plenty of time was spent on the maths. Instead we asked participants to 
compare the two 'similar' tasks, since both ostensibly ask for LGEs and push learners beyond 
their immediate offerings.  

Theoretical fragments:  

7. Asking for more than one example can force exploration of a class of objects, and 
more particularly of mathematical structures as learners find out what is possible.  

8. It makes a difference how familiar the class is; how many dimensions of possible 
variation it has; how easily it can be explored; whether there are finitely or infinitely 
many possibilities …  

9. If an example is not easy to find, learners may be pushed towards generalisation which 
suddenly gives access to multiple examples.  

10. Limitations and possibilities may be perceived differently by teachers and learners.  

TASK 4:  
Teacher:  7 squared take away 1 is … ?  
Learner:  48  
Teacher:  6 times 'what' is 48?  
Learner:  8  
Teacher:  now you make up one like that for me 
Learner:  10 squared take away 1 is … ?  
Teacher: 99  
Learner:  9 times 'what' is 99?  
Teacher:  11  

This task continued to be passed between participants around the room until someone said 'n 
squared take away 1'. This task was offered as an example of the kind of repetition which can 
help learners participate in mathematical structures through speech patterns. In the literature on 
problem posing, researchers have shown that learners usually copy the kinds of questions asked 
by their teachers, and this is often taken to be a negative result. In this task, we try to show that 
such copying can be a positive feature of classrooms when used to demonstrate generalities 
through LGEs. However, learners may not see the same generality which the teacher intends, 
and there was discussion of how to handle this in the classroom without being insensitive to 
learners. An example arose in which the 'teacher' tried to start another 'round the room' 
sequence.  

Teacher: what number must I take away from 4 to get -4?  
Learner: 8  

Learner: what number must I take away from 5 to get -2?  

The teacher had intended to work on 'n – (-n) = 2n' but the learner had apparently taken it to be 
an example of more general subtraction of negative numbers. Discussion of this seemed to 
converge towards:  

11. Learners may not sense the same generality that the teacher intends; being 'wrong' can 
be uncomfortable unless a classroom ethos has been strongly established that there are 
always other possible generalities and these may have to be put to one side.  
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TASK 5:  
Find a data set of seven items which have a mode of 5, median of 6 and mean of 7.  

… and another  

… and another  

Alter your set to make the mode 10, the median 12, and the mean 14.  

Alter your set to make the mode 8, the median 9 and the mode 10.  

Discussion of this task led to the observations that, for many, it had not felt like an example-
generating situation until a decision had to be made about whether and how to vary the set to 
form new ones. The scope of possible variation, and the ranges of numbers it was possible to 
have, and their relationships, were all significant. It was generally agreed that this had led to 
significant engagement with the structures of these averages—though, as with all tasks, not for 
everyone. Supplementary questions about the smallest possible data set for which these 
averages can have any pre-assigned values, and how much choice there is for data-sets, were 
provided but also arose from the mathematical activity. One participant said that 7 data points 
had not provided him with enough challenge, so he had decided to limit himself to 5. It was 
important that the participants used a range of different images and methods, such as 'balancing' 
or 'algebraic', to develop their examples, because this gave rise to the first of the following 
fragments:  

12. Learners' example spaces are structured in individual ways, and these structures 
depend also on the initial entry into the space, different images possibly giving access 
to different relationships.  

13. 'To find' questions are asking for LGEs, but the number of members of the example 
space may be limited to one. Thus 'finding' can be seen as imposing a sequence of 
constraints on possibilities until only one example fits all the constraints.  

14. Creating an LGE can lead learners to engage deeply with the meaning of concepts; 
varying constraints can expose assumptions.  

15. Creating examples can involve searching through dusty corners of knowledge, or 
creating new things from known things.  

TASK 6:  

We watched a video of a teacher, a student of Nathalie's, who has decided to include LGEs as 
a central feature of his teaching. He was working with a class who was by then used to 
participating in a range of ways. He asked them to choose numbers between 75 and 100 and to 
design prisms which would have that number as their volume. After some discussion about 
what was meant by 'prism' students started work. Using the 'another and another' prompt he 
encouraged students to generate more than one idea, and some chose to do this by adapting or 
transforming their first ideas. Participants spent some time exploring the task themselves. We 
then watched on video three students showing the rest of the class their ideas at the end of the 
lesson, including one who decided to assign an area of 1 to his cross-section, and discussed 
what had happened. Some issues which emerged were:  

• Choice of total volume was a good idea to engage learners and ensure a variety of 
possibilities, but the choice of number significantly affects the nature of the task.  

• The student who chose a cross-section of 1 may have done it as a joke, but it showed 
the power of using extreme examples.  
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• Had the teacher thought about why only boys were demonstrating their answers? Had 
he thought about the purpose of sharing results?  

• Indeed, there was extended discussion of whether sharing results was ever useful 
unless learners had a purpose for listening to each other, such as comparing methods, 
deciding which is most powerful, seeing if there were generalisations to be made, and 
so on.  

The teacher's view is that these new-to-him strategies he is using have led to significant 
improvement in the participation of students and his own enjoyment of teaching.  

Pedagogic theoretical fragments arising from this video and discussion included:  

16. Listening to learners includes giving up detailed advance planning.  
17. Listening to learners involves giving up authority to learners for the direction of the 

lesson, and depending on the intrinsic warrants for validity within mathematics, 
expressed through discussion and mathematical activity, such as exemplification and 
counter-exemplification  

18. There may be an optimal level of constraint; too much constraint may stifle creativity 
or willingness to engage.  

Giving up authority creates ethical implications for whether and how the teacher, or the whole 
class, handles 'wrong' answers (Chazan & Ball, 1999).  

TASK 7:  

Give15 an example of an arithmetic sequence, and another, and another.  

Rina has for some time been asking learners to give examples of concepts, or classes of objects 
subject to certain constraints, as a regular feature of her teaching (Hazzan & Zazkis, 1997, 1999; 
Zazkis & Liljedahl, 2002). She offered us some transcripts arising from clinical research 
interviews with students who were learning about arithmetic sequences. The aim was to ask 
students to give numbers which would appear in a given sequence, and to ask them also if 
particular numbers would or would not appear, and why. Thus students' understanding of the 
generality expressed by the sequence could both be explored and would also develop within the 
interview. Below are the specific excerpts presented in the working group.  

EXCERPT #1  

Interviewer:  Okay. I would like you to look at a different sequence, and it is 17, 34, 51, 
68 and so on. And I would like to ask you about the number 204. Is it an 
element of this sequence?  

Dave:  If it's a multiple of 17 it is . . .  
Interviewer:  And if it is not a multiple of 17?  
Dave:  Then it shouldn't be.  
Interviewer:  So this will guide your decision.  
Dave:  Um hm.  
Interviewer:  So 204 is indeed 17 x 12. . .  

                                                 
15 Not all LGE tasks need to be of this form—but we have found that it can be particularly fruitful. Look 
in Watson & Mason (forthcoming) and Bills, Bills, Watson and Mason (2004) for many more. 
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Dave:  Then it's in. . .  
Interviewer:  It's in. Can you please give me an example of a big number which is in 

this sequence?  
Dave:  17,000.  
Interviewer:  Another one.  
Dave:  17,051.  
Interviewer:  Okay. What makes you believe that 17,051 is an element of this sequence?  
Dave:  (pause) 17,000 is 1,000 x 17 and that's a multiple of 17. . .  
Interviewer:  Um hm. . .  
Dave:  I also know that 51 is a multiple of 17, and so it's the 3 x 17, so I add 1,003 

17's, I've still got a multiple of 17, it's still going to be in there.  

EXCERPT #2 — CONSIDERING SEQUENCE 8, 15, 22, 29…  

Interviewer:  Okay, so can you give me an example of a number that you believe is not 
in the sequence and example of a number that you believe is, or could be 
in the sequence?  

Leah:  Um, I don't think 714 would be in the sequence, um, a number that could 
be, I would just pick a number that hasn't a factor of 7, so like 511 
possibly, or something  

Interviewer:  And you are saying possibly because. . .  
Leah:  Just, I just picked a number that wasn't, didn't have 7 as a factor.  

EXCERPT #3 — CONSIDERING SEQUENCE 17, 34, 51, 68, …  

Interviewer:  How would you decide whether 204 is an element in this sequence?  
Eve:  Okay, (pause) okay I guess I would use 204 and divide by the first number 

in here, because it looks like, when I'm looking at this sequence it looks 
like um all these numbers are multiples of 17, so if 204 is a multiple of 17 
which means that it will also occur in this sequence, so in order to be a 
multiple of 17, 204 divided by 17 must give us a result of a whole number 
and no decimal places.  

Interviewer:  Okay. . .  
Eve:  So 204 divided by 17, that gives us 12, okay it's 12, this whole number, 

so it's a number in this sequence.  
Interviewer:  Okay. Can you please give me an example of any 4-digit number in this 

sequence?  
Eve:  I could just randomly pick any, okay. . .  
Interviewer:  Yes, please pick any, but convince me that it is in the sequence.  
Eve:  Okay. 17, um, (pause) I just keep on adding 17 to get um this sequence up 

85, 102, 119, 136 and 153. . .  
Interviewer:  Yeah, this is a pretty hard work. . .  
Eve:  Yeah. . .  
Interviewer:  If I want a 4-digit number, it will take you quite a while to get that. . .  
Eve:  Oh, you want a 4-digit number. . .  
Interviewer:  Yeah. . . Eve: Umm, (pause) I don't know how to do this.  

 



2004  Working Group 

206 

EXCERPT #4 — CONSIDERING SEQUENCE 8, 15, 22, 29, …  

Interviewer:  So 704 is not divisible by 7, none of these elements in this sequence you 
believe will be divisible by 7, so can you draw conclusions from what you 
have now?  

Sally:  It's, it's um very possibly in this set.  
Interviewer:  Um hm. What, what will convince you?  
Sally:  (laugh) Well just because it's not divisible by 7, doesn't mean it's in the 

set, right?  
Interviewer:  Can you give me an example of a number that you know for sure that is 

not in this arithmetic sequence?  
Sally:  Um hm, um 700. . .  
Interviewer:  Another one. . .  
Sally:  Um, 77.  
Interviewer:  Okay. And how about 78?  
Sally:  It may be in the set, but it's not divisible by 7. . .  
Interviewer:  (laugh) So 77 you're sure is not, 78 you're not sure.  
Sally:  Right.  
Interviewer:  79?  
Sally:  Could be. . .  
Interviewer:  Could be. 80?  
Sally:  Could be. . .  

EXCERPT #5 — CONSIDERING SEQUENCE 2 ,5, 8, 11, …  

Interviewer:  Could you please give me an example of a number, and I would like a 
relatively big number, like 3-digit number or 4-digit number, that you're 
sure will be listed in this sequence [2,5,8, ...] ?  

Sue:  Mmm, okay, I'm guess it has to be a multiple of 3, because it's common 
difference, so um 333, maybe?  

Interviewer:  So you think that 333 will be listed in this sequence?  
Sue:  I think so. […] Sue: Hmm, wait a minute, 360 is a multiple of 3, yet I just 

said that it didn't go in, right...  
Interviewer:  You did. . .  
Sue:  So then this might not go in there, I don't know, um, (pause) I'm not sure 

(laugh). I think I'll have to guess a couple, I'll have to do trial and error to 
figure it out.  

Interviewer:  And what do you mean by trial and error here?  
Sue:  Like um, I'm going to start with pick a couple of numbers that I think 

would work and then put it back into this formula. . .  
Interviewer:  Okay. . .  
Sue:  To see if I get a whole number. . .  
Interviewer:  For?  
Sue:  For N. (The interview excerpts are from Zazkis & Liljedahl, 2002.)  

After reading excerpts from several transcripts, participants were invited to continue the 
transcript by imagining the next few interchanges. They were then asked to provide another 
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continuation, and then another continuation, thus using the LGE strategy on our own learning 
about the use of examples as a way to engage with mathematical structures. During our 
discussion of these tasks the following arose:  

19. The concept of 'sufficiency' relates to whether the properties the learner is using are 
those the teacher imagines are operating. Asking about exemplification both ways, 
('give me an example' and 'is this an example?') gives a structure to explore this further.  

TASK 8:  

Participants formed groups to produce teaching sequences which used LGEs, either using a 
strategy employed already in the workshop or inventing 'new' ones. Thus everyone had 
experience of thinking through the pedagogic issues. Teaching sequences could be to teach us 
something new, or to look at some old knowledge in new ways. Tasks presented are left for 
readers to contemplate:  

• Make up a problem whose answer is 7C3 ('7 choose 3')—these were then accepted or 
rejected by the 'teacher' saying 'I like it' or 'I don't like it'.  

• Choose a number between 9 and 19. Make triangles with integer sides, the lengths of 
which add up to that number, and another, and another ….  

• Make up a number system which is based on some system of (cultural?) values.  
• Ask learners for an example of a quadrilateral, then ask for one with a constraint that 

excludes the quadrilateral just drawn, then another, and so on. What is the longest 
string of examples which you can create using this structure and any class of objects?  

• Give me a number bigger than 1; bigger than 2; … bigger than 17 000, …  
• Construct 'greater than' and 'less than' statements about the numbers of pens each pair 

of people at a table of four have. Pass the statements to an adjacent table and they have 
to interpret the statements to put people in order of their possession of pens.  

Finally, each participant constructed a statement about what had struck them about the content 
of the workshop. Many of these were restatements of the theoretical fragments reported above, 
so only a few further reflective thoughts will be summarised here:  

The learners' choice of examples tells the teacher how they are classifying and what 
they have as prototypes (Participants referred to Women, Fire and Dangerous Things 
by George Lakoff).  

Errors provide opportunity for growth in a safe environment. 

LGEs are only useful if the teacher is working on strategies for reacting to and valuing 
what is generated, and how to handle surprises.  

Yes-examples and no-examples are both of value, cf. concept-attainment. 

LGE tasks give a way to move students 'out of the box', to be inventive, to feel safe 
while on the edge of not-knowing.  

Asking for LGEs to be constrained in some way forces awareness (Gattegno).  

Shifts from algebra to number, or number to algebra, change the nature of the 
exploration.  

Sometimes LGE tasks cause one to look for particulars, sometimes for patterns and 
generalities.  

LGE tasks are cognitive and constructive.  
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EPILOGUE  

The workshop concluded with offering participants several additional tasks for exploration. 
These tasks are from Watson and Mason (2005, hopefully). We included some of them here for 
the readers' perusal.  

INTER-ROOTAL DISTANCE  

We have decided to call the horizontal distance between neighbouring roots of a polynomial 
function the inter-rootal distance. Imagine a quadratic equation with two real roots. What 
families of quadratic curves have the same inter-rootal distance? 

 

INTER-ROOTAL DISTANCE CONSTRAINED  

Find three different examples of quadratics whose roots are 1 and 2. 

 

FINDING PRIMES  

Find a prime number which cannot be expressed as 4k + 1 for any positive integer k. Find a 
prime number which cannot be expressed as 6m + 1 for any positive integer m. Find a prime 
number which cannot be expressed as 8n + 1 for any positive integer n. 

 

SELF-PERPENDICULAR HEXAGONS  

Draw a hexagon with each pair of opposite edges perpendicular to each other. 
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ÉTUDE DES PRATIQUES D'ENSEIGNEMENT 

Jamie Pyper, University of Western Ontario  
Hassane Squalli, Université de Sherbrooke  
Laurent Theis, Université de Sherbrooke 

This Working Group was chosen as an example of a bilingual session at its best.  The report reflects 
the way the working group was run, moving smoothly between French and English.  Participants spoke 
their preferred language slowly and clearly; translation was provided when needed.   The discussion 
was lively, engaging and thought provoking—an excellent experience for all. 

Un parfait exemple d’un groupe de travail bilingue à son meilleur.  Le rapport illustre le fonctionnement 
du groupe, qui passait harmonieuse du français à l’anglais, et vice-versa. Les participants s’exprimaient 
dans la langue de leur choix, lentement et clairement, et la traduction était offerte au besoin. La 
discussion a été vivante, engageante et riche – une excellente expérience pour toutes et tous.  

PARTICIPANTS 
Adolphe Adihou  
David Benoît  
Christian Bernèche  
Paul Betts  
Egan Chernoff 

Doug Franks  
Dave Hewitt  
Peter Liljedahl  
Vincent Martin 
Susan Oesterle  

Izabella Oliveira  
Alexandre Rivard  
Krishna Subedi 

INITIAL DESCRIPTION OF OUR WORKING GROUP  
The study of teacher practice is increasingly taken into account in research in mathematics 
education. There is increasing evidence of influences on teacher practice—such as context and 
situation, subject matter knowledge, beliefs, and pedagogical knowledge. From pre-service, to 
in-service, to graduate studies, to research, the effect of teaching practice on learning is known 
to be essential—such as the impact on teacher behaviour and possibly student achievement 
(although to date the direct relationship between teaching and learning has not been shown). 
The concept of teaching practice is central to research with an interest on the impact of teachers' 
work.  

In this working group, we wanted to discuss various questions about the study of teacher 
practice around three dimensions: 1) the foundations of the notion of practice, 2) the reasons 
for studying teacher practice, and 3) the possible methodologies to do so.  

1. The concept of teacher practice relies on the various perspectives, beliefs, and 
conceptualizations of "practice". What are the underlying (implicit) principles of the 
concept of practice? What are some of the different meanings the notion of practice 
can have in various epistemological perspectives? In what sense is teaching a practice? 
How is the concept of practice useful for mathematics education?  

2. Why should the concept of practice be studied? What can we learn from the study of 
teacher practice? From the point of view of students' learning? From the point of view 
of in-service teacher training? From the point of view of pre-service teacher training? 
From the point of view of research in mathematics education?  

3. Using particular elementary school level and secondary school level examples of 
teacher practice to explore the methods of analysing mathematics teaching practice, 
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what dimensions should be taken into account? How can we describe teaching 
practice? Is it possible to refer to teacher practice without referring to a particular 
teacher's practice? Is it possible to refer to teacher practice without taking into account 
the content that is taught?  

BACKGROUND  
The initial discussion of the working group illuminated a number of common and shared 
conceptions of teacher practice. Common themes emerged, for example: i) the importance of 
beliefs and confidence in oneself as a teacher; ii) concerns for the selection and management of 
materials, resources, and mathematics content; iii) the importance of the knowledge of students 
and of self—used in the processes of interpretation and understanding of classroom 
experiences, and in making pedagogical decisions with respect to particular tasks for 
mathematical learning opportunities; and iv) social and cultural factors that influence and 
impact the teachers' classroom practices and the learners' mathematical experiences.  

These emergent themes began to coalesce into three overarching conceptions: 
"institutional/logistics", "personal/professional/theoretical", and "classroom students" or 
alternatively conceptualized as "a priori knowledge", "responsiveness in the classroom", and 
"post-reflective turns", respectively. These categories and category titles segued into an 
articulation that as researchers or classroom teachers, we carry various frameworks of 
conceptions of mathematics teaching and learning, and that these frameworks are often evident 
theoretically in our thinking as well as practically in our actions.  

DIFFICULTÉ À CERNER LA NOTION DE PRATIQUE D'ENSEIGNEMENT  

Au cours de la première séance du groupe de travail, nous avons tenté de définir en quoi consiste 
la pratique d'enseignement. Dans la littérature scientifique, il se dégage consensus à l'idée que 
le travail de l'enseignant ne s'effectue pas uniquement pendant le temps de classe. L'enseignant 
travaille aussi en dehors de la classe. Étudier les pratiques d'enseignement exige alors de 
s'intéresser au travail de l'enseignant en classe et en dehors de la classe. Pour Wenger (1998), 
la pratique relève du "faire", dans ses dimensions à la fois historiques et sociales, et dans sa 
capacité à produire de la structure et une signification aux actions. Il en découle plusieurs 
caractéristiques d'une pratique :  

1. La pratique relève du faire mais n'est pas réductible aux actions posées par l'enseignant 
et/ou observées par le chercheur. Elle doit inclure le système qui les oriente. Dans ce 
sens, le chercheur ne doit pas s'arrêter aux actions de l'enseignant mais tenter de 
remonter aux logiques de ces actions et leurs déterminants.   

2. Une pratique s'inscrit dans la durée et dans une historicité. Une activité isolée, sans 
précédent historique, sans référent historique, sans fondement historique ne relèverait 
pas de la pratique.   

3. Cela ne signifie pas que la pratique n'évolue pas. Au contraire, une pratique est 
dynamique, elle évolue dans le temps. L'étude de la pratique vise, entre autres, à « 
déceler le permanent dans le changement (…)» (Weil, 1996).   

4. En tant qu'activité humaine, une pratique est ancrée dans un contexte social. Une 
pratique est socialement partagée, au moins partiellement. L'enseignant n'est pas un 
être solitaire. Il appartient à des collectifs de travail, qui influencent ses choix.  

5. Toujours selon Wenger (1998), le concept de pratique inclut à la fois le champ de 
l'explicite (le langage, les outils, les documents, les symboles, les procédures, les 
règles que les différentes pratiques rendent explicites), et le registre du tacite (relations 
implicites, conventions, hypothèses, représentations sur le monde).  
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Dans l'étude des pratiques, le chercheur est pris par un certain nombre de tensions qui ont fait 
l'objet de discussions au sein du groupe.  

1. Singularité / régularité  
2. L'analyse du travail de l'enseignant est située et conditionnée par un ensemble de 

facteurs. Le chercheur doit distinguer ce qui dans l'action de l'enseignant est singulier, 
de ce qui témoigne d'une certaine régularité. Il doit pour cela observer l'enseignant 
durant une longue période et faire varier certaines variables selon l'objet de son étude 
(différentes classes de même niveau ou de niveaux différents; différents objets 
d'enseignement, etc.). Le risque est de prendre pour générique une action spécifique 
de l'enseignant.  

3. Particulier / général  
4. Les pratiques d'enseignement sont avant tout des pratiques d'enseignants. Ce sont ces 

derniers qui pratiquent l'enseignement. Une pratique est donc toujours une pratique de 
quelqu'un. Comment alors la pratique d'un enseignant rend-elle compte d'une pratique 
d'enseignement au sens générique du terme. En outre, il n'y a pas d'enseignement sans 
un objet d'enseignement; il n'y a pas de pratique sans un objet de pratique. Comment 
alors la pratique d'un enseignant relativement à un objet d'enseignement rend-elle 
compte de la pratique d'enseignement de cet enseignant ?  

5. Microscopique / macroscopique  
6. Le niveau de grain d'analyse est un enjeu important dans les choix méthodologiques 

d'analyse de la pratique d'enseignement. La centration sur l'identification de régularités 
amène à utiliser un grain d'analyse assez gros. En revanche un grain microscopique 
rend difficile de dépasser le caractère singulier des observables.  

7. Point de vue du chercheur/point de vue de l'enseignant  
8. Le point de vue du chercheur seul n'est pas suffisant pour rendre compte de la pratique 

d'enseignement. La prise en compte du point de vue de l'acteur est primordiale.  

TEACHER EFFICACY - AIMS  
The aim of this section of the working group was to articulate a possible framework to 
encompass these expressions of the factors that reflect our own teaching practices. 
Encouragingly, the three conceptual frameworks selected prior to the working group meeting 
appeared to encapsulate the working group's expressions, thoughts, and feelings. The three 
conceptual frameworks are: teacher efficacy (Bandura, 1997; Tschannen-Moran & Woolfolk 
Hoy, 2001; Tschannen-Moran, Woolfolk Hoy & Hoy, 1998), teacher orientation (Feimen-
Nemser, 1990), and teacher concern (Borich & Tombai, 1997; Fuller & Bown, 1975). The 
following few paragraphs will describe these conceptual frameworks in relatively general 
terms.  

We teach who we are. So who is the Self that teaches? From the perspective grounded 
in teacher formation, that Self is the who we are 'disposed' to be, not the who external 
forces maintain we are 'supposed' to be (Hare, 2007, p. 143, bold in original).  

Specific beliefs that teachers carry regarding their confidence in their teaching ability, within 
the context of teaching, are called teacher efficacy. These beliefs also pertain to the teacher's 
beliefs of his or her capacity to affect student performance. Teacher efficacy has been found to 
be a powerful construct that appears to explain and/or predict many aspects of teaching and 
learning. For example, teacher efficacy is related to student achievement (Tschannen-Moran & 
Woolfolk Hoy, 2001, 2002), pre-service teacher behaviours and pre-service teacher preparation 
(Ashton, 1984; Bruce, 2005; Gordon & Debus, 2002; Watters & Ginns, 1995), in-service 
professional development effects (Ross & Bruce, 2007), attitudes towards children and control 
(Woolfolk & Hoy, 1990), and mathematics reform efforts (Smith, 1996; Wheatley, 2002). This 
is not an exhaustive list, however it appears research into teaching and learning has benefited 
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from the teacher efficacy perspective, and the working group's thoughts and reflections on 
teacher practice appear to align with this framework.  

Feimen-Nemser (1990) suggests that the 'orientation', or complex mix of orientations, held by 
the pre-service program faculty influences the development of, and subsequent classroom 
practice orientation of pre-service teachers. Feimen-Nemser (1990) conceptualized teacher 
orientation with five 'extreme' cases: Academic, Technological, Practical, Personal, and 
Critical/Social orientations. The diversity of orientations reflected as attitudes and perspectives 
held by pre-service education faculty was understood to have influence, to impact, to align with, 
and/or to conflict with, the developing pre-service teachers' sense of self and classroom 
instructional behaviour. Feimen-Nemser (1990) and Cotti and Schiro (2004) noted pre-service 
teachers' orientations may reflect the faculty orientation to beliefs about the purpose and means 
of teaching mathematics. In practice, an institution or an individual teacher would express a 
mix of these orientations. The combination and integration of these orientations would be 
apparent in the focus of a pre-service education course, and subsequently may become apparent 
in pre-service teachers' articulations and expressions of their classroom practice, e.g., classroom 
management or instructional strategies.  

The following is the prompt for the working group, and the descriptive paragraphs of each 
teacher orientation used in the working group discussion:  

"Which of these most appeals to your sense of yourself as a mathematics teacher?"  

ACADEMIC ORIENTATION  

The teacher's academic preparation is vital. The knowledge of the structure, concepts, 
skills, and processes of mathematics is the fundamental basis for successful teaching 
in a secondary school math classroom. I know the mathematics and my professional 
treatment of mathematics determines the quality of my teaching.  

TECHNICAL (TECHNOLOGICAL) ORIENTATION  

There are tried and true skills, processes, and steps to follow in order to be an effective 
classroom teacher. There are basic principles and procedures to be used by teachers 
to achieve specified goals. In order to be a successful teacher, it is necessary to 
develop proficiency in the skills of teaching.  

PRACTICAL ORIENTATION  

The greatest source of knowledge about teaching mathematics is the experience of 
teaching mathematics. To become a successful classroom mathematics teacher, one 
must be immersed in the classroom environment as the teacher. Daily practical 
dilemmas and situations in the classroom provide the opportunities to develop and 
hone the teacher's ability to learn to teach and develop the practical wisdom of expert 
teachers.  

PERSONAL ORIENTATION  

To be a good teacher one must know students as individuals. In order to select 
appropriate materials and tasks for student learning, the teacher must know the 
student's individual interests, needs, and abilities. In addition teachers must know 
themselves and work towards personal fulfillment and meaning as a classroom 
teacher. These dual goals intersect and the attention to the personal development of 
the students and the teacher creates the opportunities for quality learning and 
successful teaching.  

CRITICAL/SOCIAL ORIENTATION  
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The critique of schooling in combination with a progressive social vision provides the 
optimal classroom environment for quality teaching and learning. A teacher's social 
justice focus empowers students to connect the relevance of mathematics to their 
personal identity and find influential experiences in the larger local and/or global 
community.  

Teacher concerns are the perceived problems or worries of teachers (Fuller, 1969). Teaching 
behaviours and classroom practices for teaching and learning mathematics arising from 
teachers' beliefs may be related to teachers' concerns. Fuller and Bown (1975) identify a set of 
concerns experienced by teachers and suggest that these concerns are somewhat linear, in that 
teachers progress through stages of concerns. Initially, teachers experience concerns for 'self' 
in a focus on survival and "one's adequacy … as a teacher, about class control, about being 
liked by pupils, about supervisors' opinions, about being observed, evaluated, praised, and 
failed" (p. 37). Then, stretching into the first years of teaching, teachers' concerns turn to 'task', 
the knowing and presenting of the mathematics content, lesson timing issues, and other 
instructional duties, and then, to 'impact' and being aware of the learner and his or her needs, 
and the evaluation of learning fairness.  

These stages are also articulated within the context of power in the classroom (Staton, 1992). 
This sense of power in the classroom is pre-service and in-service teachers' sense of control and 
being controlled, their sense of power exerted by them in the classroom and exerted on them 
from outside the classroom. The teachers' sense of control is also related to their sense of teacher 
efficacy, for example, their beliefs in their ability to provide effective classroom behaviour 
management. Erikson (1993) suggests that there exists a continuum on which beliefs and 
classroom practice change at different rates, and it is possible that varying degrees of all three 
concerns will be evident in teachers' expressions of beliefs and classroom practice (in Muis, 
2004).  

The following is the prompt for the working group members, and the descriptive paragraphs of 
the three teacher concerns used in the working group's discussion:  

"Which of these most accurately represents the concerns you have in your mathematics teaching 
at this point?"  

SELF  

I feel stress about class control—that is, classroom management and discipline and 
dealing with student behaviours in my class. I think about having to master all the 
content of courses I am to teach, and not knowing the answers to the mathematics 
questions my students will ask. I am concerned about being evaluated by supervisors, 
like my Associate Teacher during practicum, and soon my Principal when I start 
teaching in my own classroom. I feel in survival mode and sometimes I wonder how I 
will ever learn to teach at all.  

TASK  

I worry about finding the appropriate teaching method. It is vitally important to find 
the right materials too, like the right activity, task, computer applet, and using the 
smartboard or graphing calculators. For each topic I worry about how I am going to 
teach it. I know the math I am to teach, I am just unsure how I should teach it.  

IMPACT  

Assessment is the first thing I think of and I worry about finding and then using the 
right assessment tool (for example: rubrics, achievement categories, checklists, 
performance criteria, marking schemes). I look for the right task and materials to 
adequately measure student achievement. Fairness and equitable assessment is 
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important because I work to continually recognize the social and emotional needs of 
my students as well as their intellectual development.  

DISCUSSION PROCESS IN THE WORKING GROUP  
During the working group session, the participants were asked to read the paragraphs of teacher 
orientation from the perspective of a classroom teacher, and to reflect upon and draw a picture 
of their own individual teacher orientation, using intersecting circles where size, position on the 
paper, and overlap with the other circles, would indicate the interactions and connections of the 
five orientations. Participants then shared their diagrams with each other and the group as a 
whole. The paragraphs for teacher concern were then read, from the perspective of the 
classroom teacher. A short response was written to the prompt, "What is your teacher concern? 
Give an example to support your claim." This was then shared with the working group. Teacher 
efficacy was explored through the Teachers' Sense of Efficacy Survey (Tschannen-Moran & 
Woolfolk Hoy, 2001). The working group as a whole discussed the implications of our own 
teacher efficacy with regard to the 'study of teacher practice'.  

The purpose of the presentation of these three theoretical constructs was not to provide a rigid 
structure on which to fit all future discussion, but to provide a possible conceptual framework 
to deepen an inquiry and understanding of teacher practice, which might align with the themes 
and relationships expressed by the working group members about 'the study of teacher practice'.  

PARTICIPANTS' PERCEPTIONS OF CHALLENGES IN THE STUDY OF 
TEACHING PRACTICE  
At the end of the working group, we asked the participants to write down the challenges they 
believe the study of teacher practice needs to face. In the following paragraphs, we will present 
some excerpts of the participants' answers.  

Several participants mention the complexity of teacher practice as one of the challenges of its 
study. For one participant, the number of variables involved constitutes a problem: "The 
complexity of the factors involved in teaching practice makes the study of teacher practice 
challenging". This complexity translates on one hand into the necessity of using a large quantity 
of data, and on the other hand, the challenge of "making sense of abundant data". The concept 
of practice itself also seems to lack clarity, as one of the participants identified "defining what 
is (constitutes) practice" as one of the challenges.  

On a methodological level, one participant points out that the study of teacher practice needs to 
deal with different levels of inferences. "For example, the teacher makes inferences on how 
students are "dealing" with the task and the researcher makes inferences on how the teacher is 
"dealing" with the students "dealing" with the task." 

In the same way, the researcher needs to put aside his own point of view in order to get into the 
teacher's logic. « L'effort de mettre de côté temporairement la posture du chercheur pour 
pouvoir rentrer dans la logique de l'acteur. » Furthermore, teachers' and researchers' theoretical 
points of view are not necessarily the same, which generates a "potential […] of synergies or 
disconnects between teachers' and researchers' theoretical perspectives." 

Still on a methodological level, the tension between the individual practice of a particular 
teacher that has been observed and the practice of teachers in general is also seen as a challenge 
by several participants. On one hand, a practice necessarily has an individual part, which is 
difficult to generalize: « Une difficulté est le côté propre individuel d'une pratique et donc, le 
peu de généralisation possible. » For another participant, the generalization is problematic, 
because practice is necessarily related to a particular context: "the context is complex and an 
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essential factor". The same participant also wonders what the researcher is seeing while 
analyzing a teacher's practice: "A teacher's practice is organic, making it difficult to be able to 
capture any more than a snapshot of the practice (or a series of snapshots…?)". 

 

The tension between what is particular to a situation of a teacher and what can be considered 
as general appears, for one participant, both in what the researcher sees and what his aims are. 
Therefore, he needs to decide whether "we are dealing with the particular or the general" and 
whether "we want to say something particular or general". Another participant wonders how 
the presence of the researcher influences the practice of the teacher: "Are we seeing a "real" 
picture, or a "special occasion" for the purpose of the research?" The tension between the 
particular and the general is also mentioned in relation to the research methodology: if the 
researcher chooses a fine-grained analysis, the results will be difficult to generalize, and if the 
analysis is too general, results will be vague.  

Finally, one participant sees one of the main challenges of the study of teacher practice in its 
use during teacher training: « Un des défis de l'étude des pratiques est de contribuer à 
l'amélioration en alimentant la formation des enseignants et de la recherche. » However, this 
use is also associated with dangers, mentioned by two participants: the "prescription of 
researcher practice" and the identification of what constitutes "good, best or effective 
teaching". "The dangers being that a province/government can take this and then say that 
research shows this is effective practice and so we will insist that every teacher should do this. 
This leads to teachers carrying out this surface level behaviour (because they are told they have 
to) but without a connection with their own set of beliefs, etc. The result of this can be very 
ineffective teaching or teachers are just replicating surface level behaviour. It also sends a 
signal where teachers are not being encouraged to develop their own pedagogical beliefs." 
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2013 was designated by the Canadian Mathematics Society (and in fact, world-wide) as the year of the 
Mathematics of Planet Earth.  This was an interesting workshop as it combined questions of curriculum 
and pedagogy with the challenge of modeling the biosphere, an area that mathematics has significantly 
interacted with over the past 50 years.  To emphasize the significance of this these for CMESG, the 
WG had been preceded two years earlier by one led by Barwell, Craven, and Lidstone on climate 
change and mathematics teaching, and was followed in 2014 by one led by Caron, Lidstone and Lovric 
on Complex dynamical systems, in which we used a "hands-on" approach to simulate predator-prey 
dynamics.  Any of these three WGs could have been chosen to represent this theme.  This 2013 study 
was of notable interest in that it featured the use of appropriate graphical display, for example the 
extraordinary Gapminder program, to bring the data to life.   

Notons tout d’abord que 2013 avait été désignée année mondiale des Mathématiques de la Planète 
Terre par l’UNESCO.  L’intérêt de ce groupe de travail venait de la combinaison de questions touchant 
le curriculum et la pédagogie, avec le défi présenté par la modélisation de la biosphère, laquelle est 
fortement liée aux mathématiques depuis plus de 50 ans. L’importance de ces questions pour le 
GCEDM est mise en évidence lorsque l’on se rappelle que ce groupe de travail avait été précédé, deux 
ans auparavant, par celui animé par Barwell, Craven et Lidstone portant sur les changements 
climatiques et l’enseignement des mathématiques, et suivi en 2015 par celui de Caron, Lidstone et 
Lovric sur la dynamique des systèmes complexes, dans lequel avait été utilisée une approche 
expérimentale pour simuler la dynamique prédateur-proie. Ces trois groupes de travail auraient pu être 
choisis pour illustrer ce thème. Le groupe de travail de 2013 se distinguait en particulier par l’intérêt 
porté sur l’importance d’une représentation qui permet de donner vie aux données, tel que cela est 
permis par exemple par l’extraordinaire programme Gapminder.  
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INTRODUCTION: A NOTE FROM THE CO-LEADERS  
The first challenge we had after being invited to lead a Working Group on Mathematics for the 
Planet Earth 2013 was picking a meaningful topic that would be narrow enough to be 
manageable over the course of three days—9 hours—and yet not so narrow that we took the 
stuffing out of this potentially rich and very relevant subject. The MPE2013 website 
(http://mpe2013.org/) identifies four major themes:  
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• A Planet to Discover  
• A Planet Supporting Life  
• A Planet Organized by Humans  
• A Planet at Risk  

And three major mission statements:  

• Encourage research in identifying and solving fundamental questions about planet 
earth.  

• Encourage educators at all levels to communicate the issues related to planet earth.   
• Inform the public about the essential role of the mathematical sciences in facing the 

challenges to our planet.   

There was much here from which to choose—too much to simply leave wide open.   

In 2011, Barwell, Craven, and Lidstone led a CMESG working group on climate change and 
mathematics teaching, and although we felt that climate change was a critical issue, we did not 
want simply to duplicate the experience of two years before. We chose to focus on mathematics 
education and communication, examining the challenges of effectively communicating 
mathematics-related issues related to planet earth. This frequently took us to topics in A Planet 
at Risk, including climate change, with frequent links also to the other three themes, especially 
A Planet Organized by Humans. In preparing, we drew heavily on the graphical communication 
work of Howard Wainer (1997, 2009), Edward Tufte (1983, 1997), and Hans Rosling, creator 
of Gapminder.   

Our Working Group Abstract captured our planned focus:   

Variability, uncertainty, modeling and risk are central mathematical concepts at the 
core of the investigations. How these are presented has a major impact on what is 
communicated and what decisions are made. Examining both the scientific literature 
and what appears in blogs and public discussion, graphic displays and visually 
presented simulations are how people choose to present their 'information'. One 
theme for the working group will be probing such displays, to ask 'where's the math' 
and 'what's the math' in different choices of graphic presentations. These types of 
questions are a central issue of mathematics education. Given the importance of 
'rhetorical communication' on the vital debates involving Planet Earth, we will 
consider 'graphical rhetoric'. How do we put mathematical arguments into these 
displays and how do people extract mathematical reasoning from such graphic 
displays?   

We began the discussion on Day 1 by reviewing the general theme we selected, and sharing 
with the group what we personally saw as questions on the visual representation issues that 
came to mind for each of us. This then led to an introduction to powerful historical examples 
of the early use of graphic representations of quantitative data intended not only to represent 
but to advocate, as well as other graphic resources the group was invited to explore.   

Day 2 started with an introduction by Walter to the work of Tversky, particularly her seminal 
paper, Cognitive Principles of Graphic Display (1997), and sharing the principles of graphic 
representation offered by Tufte. This was followed by an extended discussion of items raised 
in Day 1. We concluded Day 2 with an exploration of data using Rosling's Gapminder World 
program, led by Kathleen.   

Day 3 focused on education for the Mathematics for Planet Earth, the graphic representation of 
quantitative MPE data, and "Where's the math, what's the math?" Doug introduced courses by 
two US-based mathematicians that attempted to address mathematics issues in climate change 
at an early undergraduate level, as well as some University of Cambridge resources on modeling 
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risk, epidemics, etc. He also presented a schematic of what he saw as the shape of the issues 
and the focus of the first two days. Working group members then split into two groups to discuss 
topics that were of particular interest: one we might call "context, good data, and good 
mathematics" and the other, "the mathematics (education) of risk and impact".   

This report will now present the events and discussions of the three days in more detail.  

DAY 1: GRAPHIC REPRESENTATION—CONTEXT, CONTENT, AND 
STORY   
Because our working group was so 'visual' and depended on everyone being able to access, 
show, and discuss graphic data, whether from websites or PowerPoint slide shows, as well as 
to be able to add new resources over the three days, we shared information using memory keys 
and established a Dropbox location. For our first day, Walter and Kathleen had provided 
PowerPoint presentations of "FAQs" and "Issues KP" respectively.   

WALTER'S PRESENTATION   

Walter's slides featured climate change-related visual representations taken from various 
websites. He focused on seven themes related to climate change issues. The content of Walter's 
"Some Climate Change FAQs" presentation is given here. The specific links for the various 
themes are provided in Appendix 1.   

Theme I: Increased Carbon Dioxide  

• Keeling Curve (Carbon dioxide concentration at Mauna Loa Observatory)  
• Questions Walter asked based on the Increase in CO2 evident in this graphic 

representation:  

o Is this man-made?  
o Is it higher than anything in the last 800,000 years?  
o What are the impacts on ocean, atmosphere?  
o How long will it last?  

• Sources: Walter's recommendation to explore the Keeling Curve at the given site on 
different time scales. What one notices in these graphic representations of the data is 
that each has a different message of chaos and pattern.  

Theme II: Ocean Acidification  

• Slide is from the IPCC report (2007). It is a double graph showing: (a) Ocean CO2 

levels over a 20 year period (1985-2005); and (b) Ocean water acidity over the same 
period. Placed side by side (using scales appropriate, respectively, to CO2 levels and 
acidity), the graphs are roughly a reflection of each other. That is the power in the 
display—it seems clear that as CO2 levels have increased, the global ocean pH level 
has decreased (and thus become more acid). The eye in this case is helped by the 
presentation of a drawn (non-linear) line of best fit to the data.  

• "CO2 enters Oceans (makes acid)." Walter's comments and questions—  

o More acid oceans change key parts of the ecology (coral, shells)...  
o Changes in species in particular environments (extinction)  
o How long does the new equilibrium last?  
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Theme III: Continuing Carbon Emissions? [Global Warming]  

• Slide of the 'hockey stick' graph: "Carbon pollution set to end era of stable climate" 
(period: 10 000 BCE to 2000 CE)  

o Reveals the start of an upward change around the year 2000 in "temperature 
change relative to 1961-1990 mean" and a projected very large and rapid upward 
change subsequent to that. Scale is used to dramatically illustrate relative 
stability over a very long period of time, and strength of projected change.  

• Walter's comments and questions—  

o Do carbon emissions (and other emissions—methane, etc.) warm the planet?  
o Are there other sources that can compensate/dominate these human causes?  
o There are differences (more change in the north, less at the equators).  
o What are the risks if we are still uncertain?  
o Is temperature alone (including ocean temperature) the key problem?  

• Walter then asked: Do continuing carbon emissions imply Global Warming?  

o How sensitive is the average temperature to CO2 levels?  

 Skeptics say atmospheric warming has slowed.  
 Scientists say same total heat but more went into the ocean.  

Theme IV: Global Warming and Extreme Weather  

• A series of slides of graphic displays—  

o "5 year average precipitation categories" relative to 20th Century in 2085.  

 Reveals wetter polar and northern/southern temperate regions, roughly stable 
equatorial region, and dryer subtropical regions. Display is based on colour 
change.  

 Source: NOAA  

o View of global northern hemisphere showing colder/warmer than average 
regions for November 2010 (Polar area shown to be 4 to 10º C higher). Warmer 
indicated by increasing deeper shades of red.  

o Source: NASA  

• Walter' s comments (drawing upon the implications of precipitation and temperature 
changes visually displayed)—  

o More humidity stronger events.  
o Amplification (bigger waves) and slower movement.  
o Dry gets dryer, wet gets wetter.  
o Systems can stall—many snow storms, flooding.  
o ... then hot drought in summer …  

Theme V: Sea Level Rise  

• Slide showing global change in "Sea Level Trend 1993-01/2012-12 (mm/Year)"  

o Regional trends illustrated by change in colour—darker (thus more emphasis) 
indicates greater change (drop or rise in SL).  
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• Walter's concerns—  

o Melting ice sheets, glaciers.  
o Expansion of water due to warming (1 m?)  
o Risk of extreme storm surges.  

Theme VI: A Budget for Carbon Emissions?  

• Slide: Graphic of "Oilsands vs. Global CO2 Budget"  

o A graphic of inset (but not concentric) circles offering a number of CO2 

emissions comparisons, and questioning the claims of Federal Government 
Natural Resources Minister Joe Oliver's claims about the limited impact of the 
Oilsands, in contrast to the "Game Over" claims of scientist Jim Hansen.  

• Walter's comments and questions—  

o When I was younger—concern was over peak oil (scarcity). Now concern about 
too much oil, coal …  

o Is there a maximum safe limit for carbon sources we can burn to create CO2?  
o How would this be determined?  
o If there is a budget—whose resources will be left 'in the ground'?  
o If there is a budget, who will have the right to use the associated energy?  
o Will your pension plan go bust investing in oil/coal?  

Theme VII: Communication Barriers  

• Slide from thinkprogress.org—histogram of "Public Perception of [Climate Scientist] 
Consensus"  

o Graph suggests that only 30-50% of climate scientists agree on human-caused 
global warming, while in reality (based on review of peer-reviewed literature) 
there is 97% consensus.  

o Indicates that there is confusion, or unwillingness to accept that there is an issue, 
on the part of the public.  

• Slide illustrating that scientists need to change the way they communicate with the 
public about climate change significantly from the way they communicate with each 
other. A graphic display indicating an "inverted" approach to communicating with the 
public compared to that with each other.  

• Walter's comments and questions—  
• Rhetorical devices: repetition.  

o Story (narrative) or formulae / graphics.  
o Metaphors to live by: e.g. "Climate is like body temperature: there is a safe range 

beyond which there is major risk."  
o Graphics, sequences of graphics, animation.  
o Mathematics is a barrier to public communication: numerically and visually.  
o Does this illustrate a fundamental failure of Math Ed?  
o What does research show works/does not work?  
o Hope works better than fear.  
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Walter focused on major climate change issues in his presentation. Among the features of his 
presentation that raised thoughtful questions were: the nature (form and structure) of visual 
displays themselves; the relationship between context, mathematics, and interpretation; the 
potential story or narrative embedded in the graphic display—what story does the display tell 
(indeed, does it tell a story?), to whom, and are the stories 'read' by the creator and the 
reader/viewer consistent with each other; has mathematics education (and science education) 
failed in its goal of supporting the development of an informed citizenry—or, does it even fully 
understand that as a goal it ought to have?  

KATHLEEN'S PRESENTATION  

Kathleen then presented her issues-based set of slides [My issues/Mes préoccupations].  

She started by stating that she felt as though she was drowning in a sea of information. She 
posed the comment and questions: "I am wary of media coverage; I sense that there is an 
underlying agenda. What's good? What's not? How do I differentiate?" She then gave an 
example of what she meant by 'good' and 'bad' presentations. Again, the specific links are 
provided in Appendix 1.  

The Financial Post, on April 15, 2013, stated that Lawrence Solomon—"one of 
Canada's leading environmentalists" according to his biography—claimed that 
"Arctic sea ice was back to 1989 levels, and now exceed the previous decade."  

Kathleen asked: "Vraiment?" She presented the graphic representation of the NSIDC data that 
Solomon reportedly used to make his claim (approximate time period, 1978 to 2013). It became 
clear immediately that Solomon was being extremely selective in the choice of data points in 
order to make this claim.  

This example again raised the question of how the 'story' that the data tells, in its visual 
representation, is highly dependent on the perspective and intentions of the story teller (in this 
case, Solomon). Kathleen again asked, "What's good? What's not? What can I do to counter 
reporting à la Solomon?"  

Implicit in both Kathleen's and Walter's presentations was the issue of advocacy. Visual 
representations have been used to support arguments covering a range of views and competing 
agendas. How does one counter what is just 'bad mathematics', or evidently misleading 
interpretations of 'good mathematics'?  

Kathleen took this opportunity to introduce the "Wall of Advocacy / Le mur de l'action 
réfléchie". She invited working group members to:  

Take a look at what is posted and add to it when the mood strikes. Jetez-y un coup 
d'oeil et mettez-y du vôtre quand l'envie vous prend!  

She noted the expression: "Une image vaut 1000 mots – A picture is worth 1000 words." She 
concluded by adding to her earlier expression of concern as a citizen, her concerns as a teacher: 
"How do I integrate MPE themes in my teaching? I'm not an expert…where do I get the data? 
What can I do with it without tainting it?"  

She offered the following suggestion: "A good start is looking at graphic displays."  

DOUG'S PRESENTATION  

Doug took a somewhat different opening approach, seeing a significant issue in the mere 
presence of tens, often hundreds, even thousands, of graphic images on a topic, available on the 
resource that most turn to now, the internet. On many MPE-related topics, one might consider 
one can find visual representations of a wide variety of related data. They vary by time of 
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creation, nature of the data collected, period over which the data were collected, geographic 
region in which the data were collected, choice of scale, choice of graph or other graphic, table 
parameters, colour scheme, and other factors, often particular to the intentions and interests of 
the person(s) presenting the display. He showed the example of the rather esoteric but critical 
to the planet topic of nitrogen fertilizer—its overuse around the world. A quick Google search 
of "nitrogen fertilizer overuse – images" produced approximately 900 images—ranging from 
photos of people, crops, pollution caused by fertilizer overuse, manufacturing plants and the 
like, to scientific data tables and the graphic displays of such data, to graphic cartoons warning 
of the dangers.  

How does one make sense of such a collection? What does it take to sift through a collection of 
images like these to identify what might be of particular interest (and perhaps more important, 
of greater social and ecological value), to identify particularly significant contexts, and separate 
'bad' graphics from 'good' graphics, for example? As a grandfather of young children, Doug 
said he was concerned for their future, but noted that it took thoughtfulness and (mathematical) 
understanding to make sense of what the images portray, let alone move people to take action. 
Mathematics education, he thought, needs to pay attention to this weave of contextual and 
mathematical sense-making.  

DISCUSSION  

During the latter part of Day 1, working group members were invited to explore the data, 
graphic representations, and contexts already shown in Walter's and Kathleen's slides, the 
mathematics (including the graphical displays) of the MPE issues that were of particular interest 
to themselves and not yet discussed, or to investigate the "Graphical Resources" set of slides 
that were also located in the Dropbox. Briefly, this set of slides included images of five early 
(19th C) graphic displays of quantitative data (William Playfair, "Price of Wheat," 1821; John 
Snow, "London cholera map," 1854; Florence Nightingale's "rose" graph of British military 
deaths due to disease in the East, 1858; E. J. Marey's graphical French train schedule, 1885; 
and C. J. Minard's graphic of Napoleon's invasion of, and retreat from, Russia, 1869). Tufte, of 
whom more will be said shortly, has described Minard's chart as "probably the best statistical 
graphic ever drawn". These displays are especially marked by their quality, their contextual 
particularity, and, for several of them, their explicit political or advocacy nature. Also among 
the slides was Andy Lee Robinson's "Canary in the Coalmine" image of the decline of Arctic 
ice, and an animated GIF offering a view of the difference between how 'skeptics' and 'realists' 
view global warming (see Appendix 1 for links to both these websites.)  

DAY 2: PRINCIPLES OF GRAPHIC DISPLAY, A DISCUSSION OF 
ISSUES, AND AN EXPLORATION OF DATA WITH GAPMINDER  
This day began with a presentation of "Some Principles of Graphic Design" we compiled from 
the works of Tufte (1983, 1997) and Tversky (1997). It was noted that these guidelines were 
written to refer to static and individual displays, not the animated, sometimes-interactive 
displays that one often finds now on the internet. Nevertheless, they represent important 
principles by which to judge visual displays of quantitative data, wherever one finds them.  

What follows is a brief summary, with attributions where possible, of that full group discussion, 
first on the issues raised by day 1 topics, and second, by the Tversky and Tufte functions and 
principles.  

THOUGHTS ON DAY 1 TOPICS  

• Nenad suggested we need to differentiate between mathematics, science, and social 
science.  
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• France raised the topic of risk—how might we visualize risk? She suggested the work 
of economists and mathematicians such as Graciela Chichilnisky (risk) and Doyne 
Farmer (complex systems).  

• Miroslav asked what mathematics is needed for risk studies.  
• Dave suggested that we face challenges when working from a corporate model that 

places profit at the top of the list. These are based on a carbon economy. We need to 
have an alternative model—what is available that we might consider?  

• Richard remarked that mathematics has limitations—it cannot do all things, such as 
model human experience in an ecosystem, or model Peter's concern for his 
grandchildren. Some important parameters cannot be modeled.  

• Miroslav acknowledged this while observing that mathematics is distinct from reality, 
offering the quote, "All models are wrong, just some are useful." What is important to 
understand are the assumptions on which the model is based.  

• Richard offered the view that it was dangerous and egocentric thinking to assume that 
through mathematics we can control and predict, and thus change conditions to suit 
us.  

• Walter offered the example around the launch of the space shuttle Challenger where 
the use of a flawed graphic (with the irrelevant independent variable—date of 
launch—rather than the critical independent variable—temperature at launch) did not 
support deciding not to launch, even though those creating the visual wanted to 
communicate the engineers' concerns.  

• Context and the issues associated with context were important: Jennifer commented 
that there had to be much more to both context and mathematics than, for example, 
simply displaying a graph in class on Arctic ice changes.  

• Richard saw a need to rethink the teaching of mathematics—for example, not starting 
with the mathematics.  

• Peter felt that teaching a 'named' course (e.g., "Linear Algebra") could be too 
confining, and forced one into a lock-step programmatic approach, rather than a more 
inclusive approach which he would prefer.  

• Frédéric offered something of a reality check, noting that there often were real 
difficulties with trying to do something different in mathematics class, something that 
would make a difference. The (varied) level of students' mastery of mathematics was 
a problem, a barrier.  

• Stewart raised the point that classroom contextual discussions need to be meaningful 
to the students: they have to see themselves in the class, and be engaged. "Why care 
if you don't see yourself?" On the other hand, as a good story teller, Stewart could 
convince the students that studying environmental issues in math was appropriate, but 
the issue was, "Where's the math?"  

• France observed that the discussion had made clear for her the tension (and challenge) 
for mathematics educators between (mathematics) content and context (e.g., social, 
ecological) when it came to the classroom.  

THOUGHTS ON DESIGN FUNCTIONS AND PRINCIPLES  

• Frédéric questioned why understanding was not one of the functions listed by Tversky 
regarding the functions of graphic design. Graphic representations ought to deepen the 
understanding of the context for both the designer and the viewer. [Tversky's list of 
functions included: attract attention and interest, serve as models of actual and 
theoretical worlds, serve as a record of information, facilitate memory, and facilitate 
communication.]  

• Some took issue with Tufte's claim that a good information display should be "causal", 
while Dianne asked where relationship was in the list. [Tufte claimed that information 
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displays should be documentary, comparative, causal and explanatory, quantified, 
multivariate, exploratory, and skeptical.]  

• The topic shifted somewhat to a need to understand who the intended viewers of a 
display were. Richard noted that we have been thinking in terms of the public being 
the audience for the graphs we have looked at, while in fact (for example), the IPCC 
2007 graphs were intended for scientists, not the public.  

• Steven referred to the distinction between 'sensitized' and 'non-sensitized' viewers, and 
used the expression "visual connoisseurship".  

• Richard noted that rhetoric was missing from Tufte's list of intentions for a good 
display: presenting an argument to a particular audience.  

• France concluded that it was necessary to think of graphs as "living things", evolving 
and subject to change.  

A NOTE ON ETHICS AND THE WALL OF ADVOCACY  

As an attempt to give a ubiquitous shape to advocacy as an underlying issue to be addressed by 
our group, the Wall of Advocacy was set up on Day 1 and was accessible throughout. The wall 
served to post articles, website addresses, and documents testifying to different forms of 
advocacy. As a subset of a quite large resource file that was provided to participants on Day 1, 
posted items included advocacy websites, letters to journalists denouncing flawed graphic 
displays—showing how they could be designed to better reflect the data, as well as interesting 
graphics and telling images gleaned off the internet.  

Markers, post-its and sticky gum were available for anyone of the group to share ideas. Though 
many read and took note of what was posted on the Wall on Day 1, little was added to it over 
the course of the three days. The Wall did, however, bring about a short but interesting 
discussion on what form advocacy should or should not take in the classroom. In their 
professional role as mathematicians and mathematics educators, participants felt the need to be 
cautious and not distort the information contained in data. This perspective can be seen in the 
comments shown above made on Day 2, as well as on Day 3. Summing up, we all come to 
teaching with our personal set of biases and must thread a mighty fine line.  

L'EXPLORATION DE DONNÉES AVEC GAPMINDER  

Pour poursuivre la réflexion, nous avons introduit les graphiques interactifs. En particulier, nous 
avons exploré des données à l'aide du gratuiciel Gapminder, un outil de visualisation Internet 
pour l'étude de données statistiques.  

Comme courte introduction au gratuiciel Gapminder, nous avons présenté la vidéo 200 Years 
that Changed the World, http://www.gapminder.org/videos/200-years-that-changed-the-world-
bbc/, dans laquelle Hans Rosling commente un graphique qui lie l'espérance de vie au revenu 
par personne selon le pays.  

After the video, participants were provided with the following two Gapminder graphs:  

• www.bit.ly/b9p3dA—linking CO2 emissions per person with Income per person 
(GDP/capita, PPP$ inflation adjusted) where the size of the bubbles shows total 
emissions/year for the country.  

• www.bit.ly/13UnIhm—linking Water withdrawal (cubic meters per person) and 
Income per person (GDP/capita, PPP$ inflation adjusted) where the size of the bubble 
is the total water withdrawal/year for the country.  

They were invited to address the Gapminder questions: "The USA or China, who emits the 
most CO2?" and "Does income matter?"; and to play with variables and scales, create their own 
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graphs, and explore the available data, noting as they went what works, what doesn't, where 
they were lead to, etc.  

Some of the comments posted:  

• 5 dimensions is very rich  

o Trailing one country to notice patterns of growth & relating to history generates 
conjectures.  

• Great for teaching critical thinking and generating questions.  
• Can be used in secondary curriculum. What students' projects would it support?  
• Produces effective graphics: Leads to exploration & development of critical 

questioning & critical thinking (must source background socio-political & economic 
activities to provide explanation).  

• Use of animated graphs always requires knowledge of historical events & content.  
• Lends itself to the need for definitions (e.g. How do we compare 'incomes' over time? 

What does inflation-adjusted mean? Are tonnes in metric or imperial?)  
• Caveats.  
• Can be challenging to master all parameters.  
• Data predetermined but abundant.  
• Predetermined data limits the scope of the questions.  

Riche, le gratuiciel Gapminder World, disponible sous l'onglet Gapminder World du site 
http://www.gapminder.org/, permet de jouer avec cinq variables, est facile d'approche et les 
données disponibles sont abondantes. L'interaction a amené un questionnement plus audacieux 
et profond que ce qu'a l'habitude de provoquer les graphiques statiques. De plus, ayant accès à 
Internet, les données aberrantes, souvent reléguées aux oubliettes, ont donné lieu à davantage 
d'exploration afin d'en comprendre la signification d'un point de vue économique et 
sociopolitique, mariant ainsi le contenu mathématique au contexte social.  

One item of discontent did arise from the fact that only the indicators available in Gapminder 
World can be displayed. However, anyone interested in displaying their own data sets à la 
Gapminder can do so with a Google Docs spreadsheet (previously known as Motion Chart 
Gadget).  

DAY 3: A VISUAL INTERPRETATION, AND MATHEMATICS AND 
MATHEMATICS EDUCATION  
At the start of the day, Doug presented a rough sketch of his interpretation of the discussion 
themes the first two days: context and content figured significantly. A slightly refined version 
of the diagram is shown in Appendix B.  

A short discussion of the previous day followed, and then Doug presented some educational 
resources:  

• descriptions from two US mathematicians of their courses developed on climate 
change and mathematics (one calculus-based, the other data-based);  

• Cambridge University's educational resources for middle and high school students on 
modeling health and risk (Motivate Maths);  

• the Carbon Mitigation Initiative at Princeton University; and  
• My World 2015.  
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Following this, the working group formed two smaller groups to pursue mathematics topics of 
particular educational interest to them, essentially, context and mathematics, and risk. An 
outline of these discussions is presented below.  

GROUP 1: DATA, GOOD MATHEMATICS, AND MEANING  

Six people were in this group (Egan, Frédéric, Jennifer, Margaret, Richard, and Yasmine), and 
their general focus was on the resources necessary to develop the good mathematics to support 
an informed citizenry, and the challenges that represented. The following description is based 
on notes taken at the time. Because only some comments noted at the time were attributed to 
specific speakers, the decision here is to avoid any attribution.  

The resources considered included data sources, as well as software such as Gapminder. As 
was noted, if an instructor and students are to engage with these contexts—such as climate and 
economic change, for example—in a mathematically significant way, then good data are 
needed. Data now are to a high degree coming from online sources. Although this in turn 
suggests a mathematics that is increasingly computer-based, questions related to the reliability 
of the data, their general availability, how and when they were collected—all connected to the 
consistency, integrity, and context of the data—are critical.  

In a teaching environment, to start with, as one member mentioned, the mathematics teacher 
must become familiar with the data and any software that he or she will use for instructional 
purposes. When using Gapminder, for example, it is important that the teacher first gain 
comfort and comprehension of the program and how it analyzes the data and presents its very 
graphic representations of the results of that analysis. After having spent some time exploring 
data with Gapminder, one member noted how the program offered opportunities to develop 
proportional reasoning skills, concepts and skills related to analytic geometry, and, to some 
extent, transcendental functions (because Gapminder makes extensive use of the logarithmic 
scale).  

A pre-service teacher context was offered by another member as an example, with the intention 
of supporting these candidates in the process of developing plausible and substantial questions 
based on Gapminder. One progression-oriented classroom strategy might look like the 
following:  

• Have teacher candidates begin with an initial exploration (i.e. play with Gapminder).  
• The instructor (as the more experienced person) then selects questions for teacher 

candidates to further investigate.  
• This in turn leads to more in-depth statistical investigations and understanding of the 

meaning of the data.  
• And finally, the conclusion with an investigation or project with the intention of 

producing graphic representations, with a particular audience in mind. Here one might 
consider, for example, both a more sophisticated scientific audience, and an audience 
composed largely of the parents of the students that one might be teaching. What might 
be the similarities and differences in how the data are represented to these two 
audiences?  

This then represents a linkage between the mathematics, the context, and the audience. The 
context serves as a reason for undertaking the mathematics, while the mathematics helps inform 
the particular audience about the contextual circumstances.  

There was in fact substantial discussion of context among many of the group's members—for 
example, climate change and the visual representation of climate-change-related data. One 
person noted that a contextually based discussion allowed for the intention that teachers—and 
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students—have the opportunity to learn to ask good questions. Visual representations of data in 
context need to be created and interpreted at deeper levels than they often are, in order to take 
greater advantage of the learning opportunities they present. Having noted that, however, it was 
observed that visual representations are very audience dependent. Creating visual 
representations is audience dependent; unpacking existing visual representations is audience 
dependent. When given displays—and one finds many thousands when exploring the internet—
it is important to know who they were created for, and who created them. 'Insider' audiences, 
for example scientists, may be able to make assumptions about the data, and consequently their 
graphic representations, that the 'public' community or audience are not able to make (and thus 
may misinterpret representations intended for an 'insider' audience).  

The relationships among context, the mathematics (including the creation and presentation of 
graphic representations), and audience meaning are in fact complex, with an inherent tension, 
as suggested by the preceding comments. Data and their representations are not inherently 
imbued with meaning. Data points on a visual display are in fact quite abstract objects, 
potentially leaving 'viewers' cold and uncertain how to react. Finally it was also noted that in 
the evolving contexts being discussed (those to do with 'planet earth'), uncertainty was an 
unavoidable fact of life, so to speak, and teachers, students, and audiences generally must accept 
that their mathematical analysis (modeling) will not produce a final solution.  

GROUP 2: RISK, PROBABILITY, AND IMPACT  

The second, larger group of Working Group members (Dave, Diane, Dianne, France, Krista, 
Minnie, Miroslav, Nanad, Peter, Steven, and Stewart) focused on the question of risk, which 
had arisen as a thread of discussion in talking about 'change' when it is relatively rapid and 
substantial—climate change (e.g., global warming), health change (e.g., epidemics), economic 
change (e.g., financial collapse), etc.—and the impact of that change on the planet. How do we 
measure the risk associated with these events and changes—what is the impact? And, how do 
we support the development of an educated citizenry that understands these issues? What 
follows is a summary of rough notes made while the group members shared their thoughts. The 
focus shifted somewhat throughout as different group members interjected with what was on 
their mind at that moment. Again, there is no attribution of comments to particular persons.  

'Black swans'—that is, one-off catastrophic events—represented the extreme of these changes, 
but may in fact be most impactful. Probability concepts, although important to develop and 
understand, do not do a good job of accounting for 'black swans', and certainly not of 
understanding the risk associated with them in terms of their impact. One discussion thread 
looked at winning the lottery. There is a very low probability of winning (which could be 
calculated), but purchasers do not care about the low likelihood of winning because the impact 
of not winning is not going to affect their lives (in most cases)—ticket prices are too low. So 
there is little or no risk involved in purchasing a lottery ticket. [This discussion considered the 
risk associated with losing; the impact of winning the lottery apparently was not discussed.] 
"Lotteries are Pink Swans," one person observed.  

It was noted that students often have difficulty grasping probability concepts, so some time 
needs to be devoted to their development; but to discuss risk and impact, students need to go 
beyond conceptual development, and engage with real data. Questions of risk associated with 
past and potential events—even catastrophic—represented by the data, and the impact, need to 
be examined. This would add relevance and serve as motivation. Some examples:  

• 'False positives' – e.g., in health-related issues:  

o risks and impacts  
o side effects  
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o effect on living  

• Coal versus nuclear—which is safer?  
• Swain vs. US court case:  

o Brief background:  

 1964—black man convicted of rape, sentenced to death, Alabama  
 Appealed to US Supreme Court on basis that there were no black jurors and 

that potential black jurors were 'struck' from jury duty by the prosecution 
strictly on the basis of race. Supreme Court turned down the appeal.  

o A group member asked: What is the probability of never having a black juror in 
20 years?  

 North Sea rising and Holland's dikes.  
 Actuarial tables and insurance rate changes.  

The educational intention was not to create actuaries, but to support the development of 
informed citizens who could understand the risk associated with a potential event by being able 
and prepared to sift through information and make an informed decision about the risk to them. 
Currently, it was noted, this is not in the [mathematics] curriculum. An outline of the 
mathematical processes involved was suggested:  

• Generate the questions to be examined or answered  
• Decide on the data  
• Analyze the data  
• Summarize the results of the analysis  
• Revisit the questions  

Modelling was a theme that weaved through the discussion, in part because of the challenging 
relationships between probability, risk, and impact. One suggestion was to address only impact 
and not talk about probability at all, in such situations. Another suggested way of thinking of 
risk was that sometimes it's about probability, while at other times it is impact that must be 
considered. As an example of 'a way in', perhaps one could picture risk as change in insurance 
rates. But modelling the impact function was difficult—and we do also need the probability 
function. The STELLA dynamic systems modelling software was mentioned—which raised the 
question, should dynamic systems be taught earlier than it is currently? The hope was that 
students would come to university and college already with the ability to calculate and interpret 
numerical results [the implication being that presently they often do not arrive with these 
capabilities]. The comment was made that it was also important to be aware that the 
probabilities of events [that take place on or happen to Earth] change over time, and therefore 
we cannot rely exclusively on 'old' data.  

Modelling based on data also raised the important question of the need to understand the 
assumptions embedded in the tables of secondary data that one might use with students. It was 
also critical that as an instructor one needed to be clear on the mathematics that students were 
to learn from the experience. In a reference to the impact of the North Sea rising on Dutch dikes, 
the question was asked, "How would one model the impact?" For example, would it be 
stepwise? Exponential? Modelling, it was noted, was about making decisions and "going with 
it"—and then discussing and refining the model. [One might ask: On what basis?]  

Finally, this mathematics, it was also noted, was being affected or influenced by science 
(biology, and physics, for example), with a focus on functions. But discrete mathematics is 



2013  Working Group 

232 

addressed in a significant way in high school, and notwithstanding the question of how to handle 
missing values in a table of values, complex systems are accessible through discrete methods, 
and iterative processes are highly suitable to computer analysis.  

The discussion was lively, varied, and complex, reflecting closely the nature of the topic itself.  

CONCLUSION  
Mathematics of planet earth is rich in data, modeling and in questions that generate lively 
debates. This was true for the participants in the working group, and we predict it would be true 
for classrooms. Assessing risk and communicating to support decision-making highlight the 
importance of statistical work with large data sets, of stochastic modeling with both uncertainty 
and enough certainty to act. They also highlight visual displays as essential tools of 
communication—and supports for debate. Both the reading of information from graphical 
displays and the development of effective honest graphical displays are important, and 
learnable. These tools and these discussions have an important place in mathematics and 
statistics classrooms.  

APPENDIX A: LINKS TO WEBSITES DESCRIBED IN THE REPORT  

WALTER'S DAY 1 "FAQS" PRESENTATION  

Theme 1: Increased Carbon Dioxide  

• Keeling Curve: http://keelingcurve.ucsd.edu/   

Theme 2: Ocean Acidification  

• A link to investigate: http://en.wikipedia.org/wiki/Ocean_acidification   
• Interactive resources:  

o http://i2i.stanford.edu   
o http://i2i.loven.gu.se/AcidOcean/AcidOcean.htm   

Theme 3: Continuing Carbon Emissions?  

• "Hockey stick" graph: http://thinkprogress.org/climate/2013/04/23/1903001/the-
hockey-stick-lives-new-study-confirms-unprecedented-recent-warming-reverses-
2000-years-of-cooling/?mobile=nc    

• Scientists and global warming: More heat has gone into the 
ocean: http://www.realclimate.org/index.php/archives/2013/04/the-answer-is-
blowing-in-the-wind-the-warming-went-into-the-deep-end/   

• Skeptics and global warming: atmospheric warming has 
slowed: http://www.economist.com/news/science-and-technology/21574461-
climate-may-be-heating-up-less-response-greenhouse-gas-emissions   

Theme 4: Global Warming and Extreme Weather  

• See NOAA and NASA sites.  

Theme 5: Sea Level Rise  

• Sea level trend: http://en.wikipedia.org/wiki/Current_sea_level_rise   
• Risk of storm surges (extremes): http://oceanservice.noaa.gov/facts/sealevel.html   

http://keelingcurve.ucsd.edu/
http://en.wikipedia.org/wiki/Ocean_acidification
http://i2i.stanford.edu/
http://i2i.loven.gu.se/AcidOcean/AcidOcean.htm
http://thinkprogress.org/climate/2013/04/23/1903001/the-hockey-stick-lives-new-study-confirms-unprecedented-recent-warming-reverses-2000-years-of-cooling/?mobile=nc
http://thinkprogress.org/climate/2013/04/23/1903001/the-hockey-stick-lives-new-study-confirms-unprecedented-recent-warming-reverses-2000-years-of-cooling/?mobile=nc
http://thinkprogress.org/climate/2013/04/23/1903001/the-hockey-stick-lives-new-study-confirms-unprecedented-recent-warming-reverses-2000-years-of-cooling/?mobile=nc
http://www.realclimate.org/index.php/archives/2013/04/the-answer-is-blowing-in-the-wind-the-warming-went-into-the-deep-end/
http://www.realclimate.org/index.php/archives/2013/04/the-answer-is-blowing-in-the-wind-the-warming-went-into-the-deep-end/
http://www.economist.com/news/science-and-technology/21574461-climate-may-be-heating-up-less-response-greenhouse-gas-emissions
http://www.economist.com/news/science-and-technology/21574461-climate-may-be-heating-up-less-response-greenhouse-gas-emissions
http://en.wikipedia.org/wiki/Current_sea_level_rise
http://oceanservice.noaa.gov/facts/sealevel.html
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• A student's guide to global warming:  

o http://www.epa.gov/climatestudents/impacts/signs/sea-level.html   
o This EPA slide reveals the upward, roughly linear trend in sea level rise for the 

period 1870-2010—a change of approximately 9 inches. [Units of measure— 
e.g., inches, millimetres, Fahrenheit, Celsius—as well as scale choice are factors 
to consider in these graphic representations of scientific data.]  

Theme 6: A Budget for Carbon Emissions?  

• Oilsands vs. Global CO2 Budget:   
http://www.vancouverobserver.com/blogs/climatesnapshot/do-oilsands-threaten-our-
safe-climate-hansens-game-over-vs-olivers-minuscule    

• Do the Math: http://math.350.org   

Theme 7: Communication Barriers  

• A need for scientists to change the way they communicate—suggested links:  

o http://www.physicstoday.org/resource/1/phtoad/v64/i10/p48_s1?bypassSSO=1   
o http://www.wilsoncenter.org/dialogue-program/severe-weather-and-climate-

change-there-connection   
o http://www.climatechangecommunication.org/   
o http://www.climatecentral.org/   
o http://environment.yale.edu/climate-

communication/article/sixAmericasMay2011   

• What does research show works / does not work?  

o http://climateandcapitalism.com/2009/11/23/naomi-klein-on-climate-debt/   

• Hope works better than fear:  

o http://www.nature.com/nclimate/journal/v2/n8/full/nclimate1610.html   

• Adapting or mitigating … (prepare for it or prevent it)  

o http://en.wikipedia.org/wiki/Adaptation_to_global_warming  
o http://www.global-greenhouse-warming.com/climate-mitigation-and-

adaptation.html   

KATHLEEN'S DAY 1 "ISSUES KP" PRESENTATION  

Lawrence Solomon's Arctic sea ice-related links:  

• Financial Post: http://opinion.financialpost.com/2013/04/15/lawrence-solomon-
arctic-sea-ice-back-to-1989-levels-now-exceeds-previous-decade/   

• Challenging the claim: http://tamino.wordpress.com/2013/04/16/worth-more-than-a-
thousand-words/    

"GRAPHIC RESOURCES" LINKS  

• Andy Lee Robinson's "Canary in the Coalmine" Arctic sea 
ice: http://thinkprogress.org/climate/2013/02/14/1594211/death-spiral-bombshell-
cryosat-2-confirms-arctic-sea-ice-volume-has-collapsed/    

• Animated GIF on Global Warming (skeptics and realists):  

http://www.epa.gov/climatestudents/impacts/signs/sea-level.html
http://www.vancouverobserver.com/blogs/climatesnapshot/do-oilsands-threaten-our-safe-climate-hansens-game-over-vs-olivers-minuscule
http://www.vancouverobserver.com/blogs/climatesnapshot/do-oilsands-threaten-our-safe-climate-hansens-game-over-vs-olivers-minuscule
http://math.350.org/
http://www.physicstoday.org/resource/1/phtoad/v64/i10/p48_s1?bypassSSO=1
http://www.wilsoncenter.org/dialogue-program/severe-weather-and-climate-change-there-connection
http://www.wilsoncenter.org/dialogue-program/severe-weather-and-climate-change-there-connection
http://www.climatechangecommunication.org/
http://www.climatecentral.org/
http://environment.yale.edu/climate-communication/article/sixAmericasMay2011
http://environment.yale.edu/climate-communication/article/sixAmericasMay2011
http://climateandcapitalism.com/2009/11/23/naomi-klein-on-climate-debt/
http://www.nature.com/nclimate/journal/v2/n8/full/nclimate1610.html
http://www.global-greenhouse-warming.com/climate-mitigation-and-adaptation.html
http://www.global-greenhouse-warming.com/climate-mitigation-and-adaptation.html
http://opinion.financialpost.com/2013/04/15/lawrence-solomon-arctic-sea-ice-back-to-1989-levels-now-exceeds-previous-decade/
http://opinion.financialpost.com/2013/04/15/lawrence-solomon-arctic-sea-ice-back-to-1989-levels-now-exceeds-previous-decade/
http://tamino.wordpress.com/2013/04/16/worth-more-than-a-thousand-words/
http://tamino.wordpress.com/2013/04/16/worth-more-than-a-thousand-words/
http://thinkprogress.org/climate/2013/02/14/1594211/death-spiral-bombshell-cryosat-2-confirms-arctic-sea-ice-volume-has-collapsed/
http://thinkprogress.org/climate/2013/02/14/1594211/death-spiral-bombshell-cryosat-2-confirms-arctic-sea-ice-volume-has-collapsed/
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http://thinkprogress.org/climate/2013/03/28/1785461/as-scientists-predicted-global-
warming-continues/   

ADDITIONAL ONLINE RESOURCES IDENTIFIED BY THE WORKING GROUP  

• Cambridge University: "Motivate Maths": http://motivate.maths.org/content/  
• "Carbon Visuals" illustration (from Stewart): http://artthreat.net/2012/11/carbon-

visuals/  
• David McCandless: "The Beauty of Data Visualisation"  

http://www.ted.com/talks/david_mccandless_the_beauty_of_data_visualization.html  
• Graciela Chichilnisky: "Catastrophic Risks" (from France)  

http://chichilnisky.com/pdfs/catastrophic-risks.pdf  
• J. Doyne Farmer: "Economics Needs to Treat the Economy as a Complex System"  

http://ineteconomics.org/sites/inet.civicactions.net/files/farmer_berlinpaper.pdf  
• Hans Rosling & Gapminder:  

o http://www.gapminder.org/videos/   
o 200 Countries, 200 Years, 4 Minutes: http://www.gapminder.org/videos/200-

years-that-changed-the-world-bbc/   
o Let my data set change your mindset: http://www.gapminder.org/videos/ted-us-

state-department/   

• Princeton University: "Carbon Mitigation Initiative"(CMI): http://cmi.princeton.edu/   
• Thomas Goetz: It's time to redesign medical data:  

http://www.ted.com/talks/thomas_goetz_it_s_time_to_redesign_medical_data.html   
[Blood work, CRP and others tests are 'rewritten', inspired by the nutritional value info 
on cereal boxes.]  

• Visual Learning for Science and Engineering  
http://old.siggraph.org/education/vl/vl.htm   

APPENDIX B: ADDITIONAL INDIVIDUAL AND SMALL GROUP 
COMMENTARY  
France, Krista, and Minnie's comments on the Ocean Acidification graphic, comparing CO2 

level graph with ocean pH level graph:  

• Challenging the necessity of including zero. Telling a story is drawing attention to 
something. Thin line with manipulation.  

• The variability in the trend line: What's the story? The meaning? The purpose? To 
make it look more authentic? Respectful of the data? Scientific? Less naïve?  

• Choosing which variables to display. Only two at a time? Playing with size, colour or 
dynamism… What would you gain if you added a graph of pH as a function of CO2? 
Or a dynamic version of that with respect to time?  

• The mirror image with different variables:  

o Tells the story well  
o Strong aesthetic appeal  
o Seems too perfect to be true  

• The hidden information:  

o Where do the points come from? All over the earth? Are they collected on a 
regular basis?  

http://thinkprogress.org/climate/2013/03/28/1785461/as-scientists-predicted-global-warming-continues/
http://thinkprogress.org/climate/2013/03/28/1785461/as-scientists-predicted-global-warming-continues/
http://www.gapminder.org/videos/
http://www.gapminder.org/videos/200-years-that-changed-the-world-bbc/
http://www.gapminder.org/videos/200-years-that-changed-the-world-bbc/
http://www.gapminder.org/videos/ted-us-state-department/
http://www.gapminder.org/videos/ted-us-state-department/
http://cmi.princeton.edu/
http://www.ted.com/talks/thomas_goetz_it_s_time_to_redesign_medical_data.html
http://old.siggraph.org/education/vl/vl.htm
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o Requires expert knowledge to know that pH is a logarithmic indicator (pH).  

• What does this linear trend, on a logarithmic indicator mean in terms of the relation?  

France, Krista, and Minnie comments on Oil Sands vs. Global CO2 Budget graphic:  

• What's the story? What's the message?  
• The choice of form is misleading: Diameter or areas? Could they be spheres?  
• Canada fossil fuels ever burned vs. world global CO2 budget: too much going on…  
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INDIGENOUS WAYS OF KNOWING IN MATHEMATICS 

Lisa Lunney Borden, St. Francis Xavier University  
Florence Glanfield, University of Alberta 

This working group was chosen because it represents an example of the diversity of the 
topics and profoundness of the issues explored at CMESG. The participants experienced 
alternate ways of communicating about, and within, mathematics as they discussed key ideas, 
fundamental to the future of Indigenous and Western mathematics education. 

Ce groupe de travail a été choisi parce qu'il représente un exemple de la diversité des thèmes et la 
profondeur des sujets explorés au GCEDM. Les participants ont pu éprouver des moyens 
divers de communiquer les mathématiques en discutant des idées clés qui sont fondamentales 
pour l'avenir de l'enseignement des mathématiques autochtones et occidentales. 

PARTICIPANTS 
Yasmine Abtahi 
Annette Braconne-

Michoux 
Élysée Robert Cadet 
Bev Caswell 

Roman Chukalovskgy 
Stewart Craven 
Osnat Fellus 
Frédéric Gourdeau 
David Guillemette 

Limin Jao 
Kate Mackrell 
Cynthia Nicol 
Jamie Pyper 
Annie Savard

INTRODUCTION  
As we planned for this group we acknowledged that there are many ways that this working 
group might 'work' on these ideas. Over the three days, this group engaged in a variety of 
experiences to explore what is meant by Indigenous knowledges and how we hold onto these 
ideas in relationship with what we've come to know as 'mathematics' or 'mathematics education' 
or 'mathematics teacher education'.  

STARTING EACH DAY IN A GOOD WAY  
As we planned, we imagined that we would be able to have an Elder alongside. However, this 
did not occur. However, Florence brought along a bundle of sage from the Indigenous Teaching 
and Learning Gardens at the University of Alberta. The sage was a reminder of the sacred 
medicines and the importance of the conversations that we were about to embark upon. The 
sage was gift from the place we now call Alberta. The sage bundle provided us with a reminder 
of our connectedness to the land each morning as we started with a sharing circle. The sharing 
circle began each of the three days so that we could each acknowledge our heart and mind.  

The teachings that Florence has been given around the importance of the circle as a place of 
beginning is that individuals acknowledge their own heart and mind as they enter into the 
conversation. In the circle, each person is invited to describe "what is on the heart" and "what 
is in the mind" as they hold the sage bundle. Once this is shared, it is now a part of the 'collective' 
or the 'community' and we can now 'hear each other'.  
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DOING BIRCH BARK BITING  
The second part of the first meeting was dedicated to experiencing birch bark biting first hand. 
Lisa shared her story of coming to birch bark biting following a conversation with a Mi'kmaw 
elder who described it as a common pastime when she was young and encouraged Lisa to learn 
more about it. Lisa shared that while following up on the conversation she came across an article 
that demonstrated that birch bark biting was indeed a historical part of the Mi'kmaw community:  

That she was "the last one that can do it" was the same phrase echoed in 1993 by 
Margaret Johnson, an Eskasoni Micmac elder from Cape Breton. Continuing 
research has revealed that two other Micmac women – including Johnson's sister on 
another reserve – can also do it. (Oberholtzer & Smith, 1995, p. 307)  

Lisa had known both Margaret, who was affectionately known as Dr. Granny, and her sister, 
Caroline Gould, who had resided in the community where Lisa had taught and often visited the 
school. Unfortunately both women had already passed away by the time Lisa began researching 
this practice.  

Birch bark biting involves folding thin pieces of bark and biting shapes into the bark to create 
designs. The act of folding the bark presents an opportunity to think about fractions, angles, 
shape, and symmetry. Creating the designs draws in geometric reasoning and visualization of 
geometric shapes. However, on this day we began in much the same way Lisa has explained 
she begins with students—showing photos of birch bark biting and asking the question, "How 
do you make this?"  

After some quick tips on how to fold the bark, we first practiced on waxed paper which enabled 
people to get a sense of folding and biting before moving on to using real birch bark. Fold lines 
are easily seen on the waxed paper (see Figure 1). After a few tries with waxed paper, we were 
ready to work with the real birch bark. The bark had to be peeled into single layers which were 
very thin and often very delicate.  

 

Figure 1. Wax Paper Practice.  

Through doing the birch bark biting many questions and observations emerged. The pictures 
tell the story of the birch bark biting. See Figures 2 and 3.  
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Figure 2. Working on our creations 

  

  

Figure 3. Some of our work.  

EXPLORING ALTERNATE WAYS OF DOING MATHEMATICS  
On day 2, we reconnected in circle, sharing some thoughts from the previous day and were 
excited to continue learning. As a way of considering how mathematics learning can emerge 
through centring Indigenous knowledge, Lisa shared videos from two projects that were part of 
the Show Me Your Math (SMYM) program in Nova Scotia public and Mi'kmaw schools. These 
SMYM projects were inspired by Doolittle's (2006) idea of pulling in mathematics by beginning 
in aspects of community culture where the already present, inherent ways of reasoning within 
the culture can help students to make sense of the 'school-based' concepts of mathematics in the 
curriculum. One goal of this work is to have teachers and students learning alongside one 
another as they explore practices that are relevant to the community. As such, these projects 
have been called Mawkinamasultinej! Let's Learn Together! as a way of emphasising this focus 
on learning together. As a group we watched the videos from the eel project done by a grade 
4/5 class in a public school called #KataqProject using the Mi'kmaw word kataq meaning eels 
(see Figure 4). We also watched Sap to Syrup, a project about maple syrup making done by a 
grade 5/6 class in a Mi'kmaw school. The links to these videos are given below.  
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#KataqProject Link:  
https://www.youtube.com/playlist?list=PLJzemBBS0KqjfxhC8sdlwImxjgOAdi8xZ  

Sap to Syrup Link:  
https://drive.google.com/a/pictoulandingschool.ca/file/d/0B9xZFTcbPGMienpJekV
NZU1Bb3c/view?usp=sharing  

These videos provided examples of culturally-based inquiry that can be connected to the school-
based mathematics curriculum. Teachers involved in these projects have shared that the 
outcome connections easily emerged as they engaged in these projects.  

Others in the group shared videos and presentations about their work in communities. Cynthia 
described her work in British Columbia, Annie in Northern Québec, Bev in Northern Ontario, 
Elysée in Southern Québec, and Florence in Alberta.  
 

 
Figure 4. The #KataqProject.  

Our discussions of how mathematics might emerge in different contexts led us to discuss how 
we do mathematics differently in different contexts, including using different algorithms. Our 
diverse group had diverse approaches to doing a standard mathematics problem, which helped 
to prompt discussions about these varied approaches and the implication for teaching and 
learning.  

 
Figure 5. Working Group recording of varied approaches to division.  
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SHARING OUR WORDS  

Those of us who had extensive experience working in Indigenous contexts were able to share 
some words we had been given that we felt helped us to conceptualize some of the ideas we 
were discussing. Lisa shared mawikinutimatimk meaning "coming together to work together", 
a word use to describe a way of working together to solve a problem or discuss an issue, and 
mawkina'masultinej meaning "let's learn together", a word that has been used to describe the 
inquiry projects that have become part of the Show Me Your Math program. In a similar vein, 
Florence shared the Cree word Miyowichitowin meaning "coming together to learn and live 'in 
a good way'" From her experience working in Fort Francis, Bev share the word Gaa-maamawi-
asigagindaasoyang' which was developed by Ojibwe language teacher, Jason Jones, in 
February of 2015 to describe mathematics. It translates as "We are the ones doing the math 
together" and has a sense of the ongoing nature of this work. The components of the word are 
identified below:  

• maamawi – together  
• asig – gathering  
• agind – read or count/put it through thought  
• aaso – performing useful action  
• Gaa and yang are used to put the word into a noun  

These words were used to guide our thinking and inform our discussions.  

KEY LEARNINGS  
On day 3, our focus turned to discussions again in circle and in small groups to begin to 
synthesize our learning. Some key learnings are described below.  

RELATIONSHIPS/RELATIONALITY  

We discussed the idea that 'being together with' or 'building with' or 'learning together with' 
community is essential in this work. Trusting relationships are at the heart of such decolonizing 
endeavours. In particular, if we are not members of an Indigenous community, we must 
acknowledge that we have as much to learn as we have to teach; we are not the experts. We 
must work to build community and develop trust. We need to be aware of who we are working 
with and honour what the community identifies as needs. We must honour elder knowledge and 
value the contributions of these knowledge holders. This requires that we listen with sincerity 
and openness, in a true spirit of learning.  

PLACE  

Connecting to place and learning from place were key ideas that emerged in our discussions as 
well. We discussed questions of how we learn to connect to place, especially if we are outsiders 
to that place, and in so doing begin to learn from place. We discussed how connections to place 
might help us to generate different ways of knowing and different ways of relating to one 
another and to the place itself.  

RECLAIMING / RECONNECTING / REVITALIZING  

The SMYM program, the Indigenous teaching and learning gardens at the University of 
Alberta, Cynthia's work in Haida Gwaii, Bev's work in Fort Francis, Elysée's work in Québec, 
and Annie's work in Northern Québec, all provided examples of how mathematical inquiries 
can provide opportunities to centre Indigenous knowledge as a place of learning. Such centring 
often generates an opportunity for communities to reconnect with knowledge that has been 
nearly forgotten, taken away by forced assimilation and colonization. When such reclaiming or 
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reconnecting happens, this often inspires community members to share stories almost forgotten 
or recall memories not yet shared with the next generation. This allows students to see that 
mathematical thinking has always been a part of community knowledge though it may not be 
articulated in the same way as it is in mathematics textbooks.  

MATHEMATICS IN RELATION  

Our discussions also focused on the nature of mathematics itself. We considered how we might 
bring Western and Indigenous mathematics and knowledge systems into conversation with one 
another.  

FINAL THOUGHTS: MATHEMATICS EDUCATION FOR RECONCILIATION  
As we reflected on our discussions and the ideas that had emerged in these conversations, we 
turned our attention to the recently released report of the Truth and Reconciliation Commission 
of Canada that identified 94 Calls to Action (www.trc.ca).  

FROM THE CALLS TO ACTION OF THE TRC:  

62.  We call upon the federal, provincial, and territorial governments, in consultation and 
collaboration with Survivors, Aboriginal peoples and educators to:  

i. Make age-appropriate curriculum on residential schools, Treaties, and 
Aboriginal peoples' historical and contemporary contributions to Canada a 
mandatory education requirement for Kindergarten to Grade Twelve 
students.  

ii. Provide the necessary funding to post-secondary institutions to educate 
teachers on how to integrate Indigenous knowledge and teaching methods 
into classrooms.  

iii. Provide the necessary funding to Aboriginal schools to utilize Indigenous 
knowledge and teaching methods in classrooms.  

iv. Establish senior-level positions in government at the assistant deputy minister 
level or higher dedicated to Aboriginal content in education.  

63. We call upon the Council of Ministers of Education, Canada to maintain an annual 
commitment to Aboriginal education issues including:  

i. Developing and implementing Kindergarten to Grade Twelve curriculum and 
learning resources on Aboriginal peoples in Canadian history, and the history 
and legacy of residential schools.  

ii. Sharing information and best practices on teaching curriculum related to 
residential schools and Aboriginal history.  

iii. Building student capacity for intercultural understanding, empathy, and 
mutual respect.  

iv. Identifying teacher-training needs relating to the above. (TRC, 2015, p. 7)  

We asked ourselves, what is the role of mathematics education, mathematics educators, and 
mathematics in responding to the TRC Calls to Action? We left our working group with this 
enduring question as we move towards teaching mathematics in a good way and developing 
research with communities.  
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THE COMMONSENSE OF TEACHING  

David Wheeler 
Concordia University 

David Wheeler is one of the forefathers of Mathematics Education in Canada in general, and CMESG 
in particular. As such, it is only fitting that, from time to time, he calls the field to attention and holds 
it responsible for the knowledge it has produced (or failed to produce). This Topic Session is just such 
a call to attention. Taking a "common sense" approach he challenges the notion of teaching and the 
theories that abound. When considering Topic Sessions for inclusion this one came to the fore not only 
for who David Wheeler was to CMESG, but also what he continued to give to the community well past 
his retirement.  

David Wheeler est l’un des pères fondateurs de la didactique des mathématiques au Canada, et en 
particulier au GCEDM. En tant que tel, il est normal que, de temps à autres, il nous rappelle que nous 
sommes responsables des connaissances que nous avons produites (ou que nous n’avons pas produites). 
Cette séance thématique est un tel rappel. Approchant le tout avec un “bon sens” commun, il remet en 
question la notion d’enseignement et les abondantes théories. Parmi les séances thématiques 
considérées pour inclusion dans ce recueil, celle-ci s’est distinguée non seulement à cause de 
l’importance de David Wheeler pour le GCEDM, mais aussi en vertu de ce qu’il a continué à donner à 
la communauté longtemps après sa prise de retraite.  

 

This talk was in Cassandra mode. You know the sort of thing: society is crumbling, war 
and pestilence are around the corner, the situation is hopeless, and similar 
animadversions. Those of a nervous disposition would be well advised to stop reading 
now and take a calming stroll.  

When I first thought about giving this talk, I intended to give most of the time to technical 
aspects of teaching, especially the teaching of mathematics, a topic which doesn't seem to me 
to get the detailed attention and study it deserves. In starting to work on the talk, however, I 
found a lot of more general issues about teaching came into my mind that couldn't be pushed 
aside. What follows is mostly this other "general stuff', so the paper should now be read as a 
prelude to the one I had originally hoped to present.  

A second "caution to the reader" may be in order. I open with some "negative thoughts" that 
appear to be dismissive of a great deal of very dedicated work by many teachers, teacher 
trainers, innovators, and researchers. I start with these because they indicate the position of the 
"frame" through which I am looking at questions in the field. The frame is deliberately placed 
to emphasize how much further remains to be travelled than the distance we have come. It 
insists on reminding us that we have hardly begun to articulate and communicate the skills that 
underlie good teaching. This viewpoint was important for my purpose in giving the talk, which 
was to provoke my listeners into thinking as much about teaching as they do about learning. At 
other times I have other purposes, or I am talking to other audiences, and then I adjust the frame 
accordingly.  

NEGATIVE THOUGHTS  
I took up my first teaching appointment, in a high school, in 1947 and last year I gave up the 
editorship of For the Learning of Mathematics, so I've been involved in one way or another 
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with the teaching of mathematics for 50 years. What do I see now when I look at teaching from 
the perspective of this long haul?  

• Almost all teaching is amateurish.  

Amateurs may love their work, as the etymology of the word suggests, but society expects 
professional expertise from its teachers. I see some very effective teachers, but I also see many 
who don't seem to have the resources of skill and know-how needed to teach effectively in the 
difficult circumstances that many schools present. I have little sense that there is agreement 
among teacher trainers about the technical and/or professional equipment a teacher needs, and 
some of the people training others to teach seem to doubt whether teaching involves the 
application of any techniques at all.  

• Almost all that is said about teaching is banal.  

This thought reinforces the first. The banality seems to arise from uncertainty about the basic 
requirements for effective teaching. Because we haven't resolved the matter of what comprises 
the basic equipment, conversation about teaching never goes much beyond discussing "starting 
points" and we hardly ever get to work on the more searching and sophisticated questions that 
classroom practice throws up. The claim that "teaching is an art" can too easily become an 
evasion of responsibility.  

• Though teachers review and reflect on their actions, they almost never reflect on their 
beliefs.  

This is a tricky point. Western societies, in general, permit people to believe what they want-
it's one of the pillars of a free society. The downside to this freedom is that people begin to 
think that beliefs don't have to be checked out, that evidence for or against their validity doesn't 
have to be considered, that the only authority a belief requires is that enough people hold it. 
Teachers, whose beliefs affect what they do, and whose beliefs may not be entirely compatible 
with actions the educational system tells them to take, need to be particularly alert to both the 
overt and covert effects of the beliefs that touch on their work in their classrooms.  

• Almost all educational trends are essentially concerned with reinventing the wheel.  

Re-inventing the wheel, in spite of the old jibe, isn't altogether a bad thing to do. Each 
generation or two of teachers meets fresh educational and social problems, or old problems with 
a new twist, and a re-inspection of the ways they are being handled can prove useful. But of 
course this point highlights the lack of a well-founded tradition of good teaching practices and 
of a suitable machinery for inducting new teachers into it. (Our wheels remain square, one could 
say, and we continue to find them unsatisfactory, rolling them first this way, then that, to no 
appreciable advantage.)  

N. B. The above statements are not, of course, for general circulation! Should any parent or 
politician accuse me of uttering them I shall immediately deny that I made any such 
observations.  

The following four sections offer my choice of themes connected to teaching that I put forward 
as worth thinking about.  

PARADIGMS  
Here I insert a point about the irreducible components of a model of teaching, and to suggest 
other paradigms of asymmetric social interaction that can be usefully compared with and 
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differentiated from teaching. (In all that follows I am chiefly thinking of the teaching that takes 
place in institutional settings-"classroom teaching.")  

French didacticians have helpfully focused attention on the centrality of the triad: 
teacher/student/subject matter and have framed many of their empirical studies to clarify the 
interactions among its components. In this form, however, the triad makes no explicit 
acknowledgment of the culture (in all the large and the small senses of that word) within which 
the triad is situated. The effect of this culture (or of these cultures, because the classroom is the 
meeting ground of a number of independent and sometimes incompatible cultures) is easily 
overlooked, yet it seems plausible to me that in institutional teaching the cultural factors 
embedded in the teaching environment-the customs, values, expectations, etc., particular to the 
systems involved-have effects that always influence, and sometimes dominate, the interactions 
among the elements of the triad. Taking account explicitly of this "fourth party" can safeguard 
us from painting an unrealistic picture of practical pedagogical possibilities.  

The irreducible components of a model of teaching, I suggest, are: teacher/ 
student/topic/context, where "context" covers all of the physical, linguistic, social, and cultural 
attributes of the place where the teaching happens. The French model assumes, metaphorically 
speaking, two actors with a text, and I am suggesting it is important to integrate these into the 
"setting" – the theatre itself, the type of stage, the scenery, the audience's expectations.  

Are there insights to be obtained by comparing the "teaching paradigm" to others? Here are a 
few pairings to consider.  

• Teacher / student  
• Craftsman / apprentice  
• Mother / infant  
• Guru / disciple  
• Coach / ball player  
• Counsellor / client  
• Abuser / victim  

In many ways the last six can be regarded as variants of the teaching paradigm. I include the 
very last one as a hint to you to entertain the idea that teaching doesn't always have positive and 
liberating effects. Other pairings will probably occur to you.  

Having noted some similarities between the paradigms, we can then try to identify what, if 
anything, is special to the first. This may help us become clearer about what actions properly 
belong to teaching and what prevents it from slipping or sliding into one of the other related but 
different activities.  

Perhaps, too, it is worth considering the ways people learn how to play their parts in these 
various activities.  

THEORIES AND SUCH 
The following is the introduction to a paper in the Fall 1995 issue of the journal Daedalus.  

"Two challenges face American education today: I) raising overall achievement levels 
and 2) making opportunities for achievement more equitable. The importance of both 
derives from the same basic condition-our changing economy. Never before has the 
pool of developed skill and capability mattered more in our prospects for general 
economic health. And never before have skill and knowledge mattered as much in the 
economic prospects for individuals. There is no longer a welcoming place in low-skill, 
high-wage jobs for individuals who have not cultivated talents appropriate to an 
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information economy. The country, indeed each state and region, must press for an 
overall higher level of such cultivated talents. Otherwise, we can expect a 
continuation of the pattern of falling personal incomes and declining public services 
that has characterized the past twenty years.  

The only way to achieve this higher level of skill and ability in the population at large 
is to make sure that all students, not just a privileged and select few, learn the high-
level, embedded, symbolic thinking skills that our society requires. Equity and 
excellence, classically viewed as competing goals, must now be treated as a single 
aspiration." (Resnick 1995)  

The author's main argument in the paper is that the belief that aptitude is the chief determinant 
of educational success has unfortunate consequences; in particular, it discourages students from 
attempting "to break through the barrier of low expectations." She recommends a shift to an 
emphasis on effort, based on the assumption that "effort generates aptitude."  

In this paper Professor Resnick makes the telling point that many of the practices in American 
schools enshrine the claim that aptitude is the most important factor in educational success, and 
that the effects of these practices covertly reinforce the belief even after public or professional 
opinion has (overtly) moved away from it. Probably the most striking example of such a practice 
is the use of SAT scores, which aim to be "knowledge-free," as important indicators for college 
admission. Could anything be more absurd than failing to consider the knowledge that 18 year 
old students have already acquired when deciding whether to accept them for further education?  

The status of the proposition "aptitude determines success" appears to be that of a theory in the 
field of education, but we can remark that the concepts it deals with are not entirely clear, and 
the assertion doesn't seem to have clearly articulated connections to other theoretical statements. 
Does the proposition have empirical support? Can it defeat arguments attempting to disprove 
it? Perhaps it's an item of folklore, not of theory. Either way, Resnick reminds us, too many 
institutionalised practices which may at some time in the past have been derived from the 
"theory" now serve as at least a partial substitute for it, extending its life invisibly.  

We need much more than this single instance to establish a significant generalisation, but it 
nevertheless triggers in me two small "lemmas":  

• Educational ''theory'' doesn't govern educational "practice" in a straightforward way.  
• What educators say they believe about teaching doesn't necessarily match the beliefs 

embedded in their practices.  

Before quitting this example, I must express my extreme disquiet with Resnick's strategy. She 
expresses the basic options in simplistic either/or terms – "aptitude or effort," "equity or 
excellence" – as if her readers would be unable to appreciate a more nuanced account of the 
complexities she is dealing with, and her introduction is as shocking in its use of crude 
generalisations based on unexamined assumptions as anything in the beliefs and practices she 
criticises.  

For my second example I go back over two hundred years to Britain. In 1749 David Hartley 
presented a systematic formulation of his psycho-philosophical theory of associationism. The 
philosophies of Locke and Hume were among its influences, J. S. Mill and Spencer among its 
later adherents16. The theory (which I simplify and abbreviate considerably) held that:  

• Ideas and sensations are reflections of external objects.  

                                                 
16 I am indebted to Brian Simon's paper (1985), Samuel Taylor Coleridge: The education of the intellect, 
for triggering my thoughts about this example and for some of the detail in my account of it. 
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• Particles transmit vibrations from the objects through the senses to the nerves and the 
brain. (This description of the material connection between object and sensation was 
later modified and eventually abandoned.)  

• "Complex" ideas are associations of simpler ones, which connect according to laws of 
simultaneity, contrast, contiguity, etc.  

The first thing this theory does is bring the study of thought, reason, and other mental processes, 
into line with the cosmological and scientific beliefs current in its time: that (physical) 
phenomena are governed by fixed (mechanical) principles whose laws can be discovered 
through a combination of observation and insight. In the second place, it holds out the 
possibility that particular ideas can be generated in the mind by an appropriate manipulation of 
those immediate objects belonging to the material world. This latter implication was seized with 
enthusiasm, suited as it was to an intellectual climate much concerned with exploring the 
possibilities of secularising and democratising society. Among those influenced by the theory 
were the early utopian socialists, exemplified by Robert Owen and his slogan, "Circumstances 
make man!"  

Associationism is essentially a theory of learning and when interpreted within a determinist 
frame of reference it proposes the possibility of making education truly scientific, producing 
guaranteed effects in learners by controlling in detail their educational environment. The theory 
generated a quite extraordinary mood of pedagogical optimism.  

Coleridge and Marx, both originally highly sympathetic to the theory, came to acknowledge its 
drawbacks. Coleridge allows that associationism explains very clearly why certain items of 
knowledge are easy for us to retain and recall, but beyond that it fails by treating the learner as 
properly passive, "a lazy looker-on." He points out that by an act of will anyone can arbitrarily 
give distinction to any item of knowledge whatsoever. Marx asks in what way the theory can 
explain how the educator comes to know what learning is desirable and hence what sort of 
learning environments to construct, and adds that, rather than being the creature of 
circumstances, man is someone who changes circumstances and in the course of that action 
changes himself.  

This example draws our attention to the fact that an educational theory doesn't have to have a 
proven track record to be adopted with enthusiasm. Together with the previous example it 
should encourage us to be sceptical about the development of sound educational theories, and 
especially about the too hasty attempt to deduce practical consequences from them.  

One is very tempted to say, "a plague on all your theories."  

NEW FACTORS  
I consider myself very lucky to have begun teaching in the immediate post-World War 2 years. 
I was energetic and enthusiastic, and so was the general mood in society at the time. Teaching 
looked a worthwhile thing to be doing, its importance wasn't questioned, and everyone was 
optimistic about what institutional education would eventually bring to all students in society, 
not just those who, because of their social class, or because they were deemed unusually 
"bright", had already been led to expect it. How different the mood seems now, fifty years later! 
Yet, I don't side with those who say there has been a substantial falling-off in what teachers and 
students achieve: the hard evidence is scanty and somewhat ambiguous. But I can't deny that 
the optimism of society has been replaced by pessimism and that the schoolteacher's job at the 
end of the millennium appears to be immeasurably more difficult than it was 50 years ago.  

Without claiming to be able to give all the reasons for this shift, I draw attention to three major 
factors affecting the environment within which teachers now have to work.  
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A. Education started out as the education of an elite. This is still the only education that 
is done well. In elite education the teachers and students share a common culture-a 
culture with a common language, common values, common expectations. Teachers 
confronted with the demands of "education for all" are faced with the genuine 
difficulty of working effectively in and around distinct and often incompatible 
subcultures.  

B. Teaching in classrooms used to be teaching "behind walls," physically and 
metaphorically. Classrooms have traditionally been spaces where teachers practised 
their instructional expertise unquestioned by their peers and unobserved by all except 
their students. To an extent the walls have now been toppled. Teachers today are 
evaluated by their students, held accountable by their employers, and generally 
subjected to intense public scrutiny and pressure.  

C. Computers and the Internet pose threats, real and imagined, to traditional teaching 
methods and to the traditional instructional vehicle, viz., books.  

No wonder classroom teaching now seems so much more difficult and so exhausting!  

It's highly unlikely the challenges now facing teachers can be met by trying to go back, to 
reassert the methods and values of the recent past. But the past is enormously powerful. Large 
educational systems have an intrinsic inertia now reinforced by the new openness of the system 
to outside criticism and influence. Parents and politicians even more than teachers may seek 
security in the familiar and shrink from radical change. How else can one account for the 
widespread popular rejection of the electronic calculator as a tool for teaching arithmetic in 
elementary schools? The rejection seems the expression of a fervent wish that the calculator 
didn't exist, had never been invented, so everyone could go on teaching as they did before it 
arrived. But the calculator does exist, the calculator has been invented, and there is no way the 
teaching of elementary number operations can or should go on as before.  

THE PRACTICE OF TEACHING  
Maybe the need now is for more creative and radical kinds of pedagogy. First, though, in this 
new "open" climate, we have to try to establish that pedagogy is important, that it's not just an 
academic word for something trivial, like knowing something and then telling or showing it to 
someone else. Teaching mathematics to all students is difficult, not because mathematics is 
particularly difficult, nor because students are, but because we now have to be able to teach it 
in such a way that anyone can access it if they need it and if they want to, and this is a 
requirement that can't possibly be met without the aid of a skilful and quite sophisticated 
pedagogy. We need to stop talking as if teaching is an art, which is only a sly way of saying "a 
few can teach, most can't," and as if teaching is a science, which would require a consensus 
about basic theories which won't be achieved for a long while, if ever, and settle for teaching 
as essentially a technical matter-not in the sense of a full-fledged technology but as a set of  
know-hows, a sort of kit bag for dealing with the practical demands of the classroom, a kind of 
bricolage.  

Because I have spent so much time on this occasion talking about other issues, I can't go on 
here and now to give genuine substance to the previous sentence, though that is what I hope to 
begin to do another time. It's also my hope that some among my listeners and readers will also 
want to work in detail on this question of the technical nature of teaching.  

POSTSCRIPT   
In spite of the low esteem it suffers, and the institutional restrictions that confine it, teaching 
remains a wonderfully worthwhile activity. Just occasionally it yields the reward that is above 
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all other-the 98 Topic Session 3 awareness that for a particular student intelligence has been 
revealed to itself17. To make "revealing intelligence to itself' an explicit target may be unwise 
since we can so rarely be sure whether, how, or when the target has been attained, but as a 
general orientation, a vision we store in the back of our mind, it may ready us to seize any 
opportunity the classroom does offer to bring this gift to our students.  
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17 I have lifted the phrase from the sentence, "The problem is to reveal an intelligence to itself," on page 
28 of Jacques Rancieres (1991) The Ignorant Schoolmaster: Five Lessons in Intellectual Emancipation. 
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A HISTORICAL PERSPECTIVE ON MATHEMATICS EDUCATION 
RESEARCH IN CANADA: THE EMERGENCE OF A COMMUNITY18  

Carolyn Kieran  
Université du Québec à Montréal  

This special session paper was selected because it connects with both parts of the theme of CMESG 
2016 meeting: "celebrating the past, inspiring the future." It reminds us of the emergence and growth 
of the Canadian mathematics education research committee from the early 1920s to 1995 and the role 
of CMESG/GCEDM in it. The hope is that it will inspire others to update this important historical 
account of our community from 1996 to the present. 

Cette séance thématique spéciale a été choisie parce qu’elle peut être reliée aux deux parties du thème 
de la rencontre du GCEDM de 2016 : «célébrons le passé, inspirons le futur». Carolyn Kieran y raconte 
l’émergence et la croissance de la communauté canadienne de recherche en éducation mathématique 
du début des années 1920 jusqu’à 1995, en faisant ressortir le rôle joué par le GCEDM dans 
l’émergence et la croissance de cette communauté. Notre souhait est que ce texte inspire d’autres 
chercheurs à poursuivre cette importante analyse historique de notre communauté, de 1996 à 
aujourd’hui. 

 

This paper describes the Canadian mathematics education research community—from its 
preemergence in the early 1920s up until 1995. Because data collection ended in 1995, the more 
recent scholars of the community are not included in this story. A future update will hopefully 
rectify this situation. In preparing the chapter on which this paper is based, I first asked myself, 
"What defines a research community? What are its characteristics? How does a research 
community develop? Are there events one can point to that could be said to have contributed to 
its emergence?" I finally decided to use Etienne Wenger's (1998) concept of communities of 
practice as a unifying thread to describe those happenings that I felt were pertinent to the 
formation of the Canadian community of mathematics education researchers. In my analysis of 
the events that fostered the emergence of our community, I weave together the concurrent 
growth of research communities both abroad and within the provinces and the roles that these 
played. The milestones I present are intended to illustrate the spirit of its overall evolution. In 
taking a particular focus, I have regrettably missed certain individuals or events that merit 
inclusion; for this, I offer my sincerest apologies.  

WHAT IS A COMMUNITY OF PRACTICE?  
According to Wenger:  

We all belong to communities of practice. At home, at work, at school, in our 
hobbies—we belong to several communities of practice at any given time. And the 
communities of practice to which we belong change over the course of our lives. In 
fact, communities of practice are everywhere. ... In laboratories, scientists correspond 
with colleagues, near and far, in order to advance their inquiries. Across a worldwide 
web of computers, people congregate in virtual spaces and develop shared ways of 

                                                 
18 This paper is an abridged version of a chapter, "The Twentieth-Century Emergence of the Canadian 
Mathematics Education Research Community", to appear in A History of School Mathematics, edited by 
George Stanic and Jeremy Kilpatrick, which will be published by the National Council of Teachers of 
Mathematics in 2003. 
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pursuing their common interests. ... We can all construct a fairly good picture of the 
communities of practice we belong to now, those we belonged to in the past, and those 
we would like to belong to in the future. We also have a fairly good idea of who 
belongs to our communities of practice and why, even though membership is rarely 
made explicit on a roster or a checklist of qualifying criteria. Furthermore, we can 
probably distinguish a few communities of practice in which we are core members 
from a larger number of communities in which we have a more peripheral kind of 
membership. (pp. 6–7)  

However, not all groupings and associations are communities of practice. The focus is on 
practice. For example, the neighborhood in which one lives may be called a community, but it 
is not a community of practice. More precisely, according to Wenger, communities of practice 
have the following three dimensions that associate practice and community, all of which are 
required for communities of practice: mutual engagement, joint enterprise, and shared 
repertoire.  

MUTUAL ENGAGEMENT  

Mutual engagement involves, according to Wenger, "taking part in meaningful activities and 
interactions, in the production of sharable artifacts, in community-building conversations, and 
in the negotiation of new situations" (p. 184). He adds:  

[communities of practice] come together, they develop, they evolve, they disperse. ... 
Thus, unlike more formal types of organizational structures, it is not so clear where 
they begin and end. They do not have launching and dismissal dates. In this sense, a 
community of practice is a different kind of entity than, say, a task force or a team. ... 
A community of practice takes a while to come into being. (p. 96)  

JOINT ENTERPRISE  

Joint enterprise concerns the way in which members do what they do. Wenger emphasized that 
"because members produce a practice to deal with what they understand to be their enterprise, 
their practice as it unfolds belongs to their community in a fundamental sense" (p. 80). Practice 
is, in fact, shaped by the community's way of responding to conditions, resources, and demands.  

SHARED REPERTOIRE  

Wenger described the shared repertoire of a community of practice as follows:  

The repertoire of a community of practice includes routines, words, tools, ... concepts 
that the community has produced or adopted in the course of its existence, and which 
have become part of its practice. The repertoire combines both reificative and 
participative aspects [reificative: documents, instruments, forms, etc.; participative: 
acting, interacting, mutuality, etc.]. It includes the discourse by which members create 
meaningful statements about the world, as well as the styles by which they express 
their forms of membership and their identities as members. (p. 83)  

The above description would appear to focus more on the repertoire of an existing community. 
But, as Wenger pointed out: "A community of practice need not be reified as such to be a 
community: it enters into the experience of participants through their very engagement" (p. 84). 
Indeed, the reificative aspects of a community are of two types. There are those that are the 
products of the enterprise, such as—for a community of researchers—research reports, 
publications, and so on. There are also those that are more related to the processes engaged in 
by the community. The latter might include the taking on of a more formal, organizational 
structure, but this is not essential for a community to exist. In either case, as Wenger 
emphasized: "Reification is not a mere articulation of something that already exists. ... [It 
involves] not merely giving expression to existing meanings, but in fact creating the conditions 
for new meanings" (p. 68).  
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As reificative aspects can yield evidence related to a community's coming together, emerging, 
and developing, I first present two rather broad examples of reificative aspects of the shared 
repertoire: doctoral dissertation production and government-funded research (note that master's 
theses would have been included as an example in this category, were it not for the challenge 
of obtaining reliable information regarding their production across the country over the past 
century). The overview that is presented in the following section not only signals the growth 
that occurred during approximately three-quarters of a century but also helps situate the later 
discussion of the communities of practice that emerged at both the local and national levels and 
the interactions between them.  

AN OVERVIEW OF THE GROWTH OF A COMMUNITY  
When Jeremy Kilpatrick (1992) wrote a history of research in mathematics education in the 
1992 Handbook of Research on Mathematics Teaching and Learning, he argued that disciplined 
inquiry into the teaching and learning of mathematics in the United States and elsewhere in the 
world had its beginnings in the universities. Therefore, signs of the beginnings of a Canadian 
community of mathematics education researchers were sought in the universities.  

THE EARLY CANADIAN RESEARCH RELATED TO MATHEMATICS EDUCATION  

The first doctorate from a Canadian university for research that was related to school 
mathematics was awarded in 1924, a Doctor of Pedagogy from the University of Toronto (U of 
T) (Dissertation Abstracts 1861–1996). The dissertation had the title Practice in Arithmetic or 
the Arithmetic Scale for Ontario Public Schools. It was followed by three more in 1929, 1943, 
and 1945 at the same university. These first dissertations centered on surveys of the teaching of 
arithmetic, the development of arithmetic evaluation instruments, and the diagnosis and 
remediation of arithmetic learning problems. The subject matter of these dissertations suggests 
that, as early as 1920 at U of T, there were individuals, perhaps even a group, whose main 
research interest was mathematics education.  

In fact, there was very definitely an interest in school arithmetic at U of T, and this 
preoccupation preceded by several years the 1924 dissertation just mentioned. It seems that in 
the late 1880s John Dewey had been contacted by James McLellan, who was Director of 
Normal Schools for Ontario and a professor of pedagogy at U of T (see Dykhuizen 1973, p. 
60), to write a psychological introduction to a book that McLellan was authoring on educational 
theory and practice. The outcome of that collaborative effort was published in 1889 (McLellan 
1889), but more interestingly it led to a second book on the study and teaching of arithmetic, 
The Psychology of Number and its Applications to Methods of Teaching Arithmetic by 
McLellan and Dewey in 1895. However, McLellan passed away in 1907, at the age of 75, and 
thus had no direct role in the supervision of the first dissertations.  

The doctoral research related to school mathematics that was carried out at U of T from the 
1920s to the 1940s was succeeded by similar work in the late 1940s and early 1950s at 
Université de Montréal (one dissertation in 1947) and Université Laval (one dissertation in 
1951). In 1948, U of T added another to its set of dissertations related to school mathematics. 
Thus, the total number of dissertations completed at Canadian universities on research related 
to the mathematics curriculum or the teaching and learning of school mathematics during the 
1924–1951 period was seven. Even though a national community of practice was still far from 
being a reality, it was clear that small groups had begun to be involved in mathematics education 
research in Ontario and Québec by the middle of the twentieth century. But progress during 
these years was very slow. According to the U.S. scholar Ellen Lagemann (1997), mathematics 
education as a research discipline in its own right did not exist in many countries prior to the 
late 1950s and early 1960s, at which time educational research began to be more discipline-
based (see Kilpatrick 1992 for an extensive discussion of this process both in the United States 
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and abroad). Nevertheless, the topics of interest in these early Canadian dissertations related to 
mathematics education reflected themes that were equally of interest south of the border.  

It took the post-World War II population boom to provide a jump-start to the mathematics 
education research enterprise in Canada. The population, which in the 1920s stood at 9 million, 
rose to 14 million in 1950 and then 18 million in 1960, registering in that latter decade the 
highest percent of increase since the years 1900–1910. To accommodate the growing numbers 
of students in the 1960s, the already existing universities had to expand, and new ones were 
created. The number of graduate programs increased, too, which meant that more research 
would now be done than ever before.  

A PERIOD OF GROWTH FOR THE UNIVERSITIES  

Of the several universities created in Canada in the post-World War II years, the two that were 
formed in Montréal—Concordia University in 1964, and Université du Québec à Montréal 
(UQAM) in 1969—made an innovative decision regarding the intersection of mathematics and 
education. Scholars who were interested in the teaching and learning of school mathematics 
were affiliated with mathematics departments rather than education departments. This was a 
period of intense educational reform in the province of Québec. The traditional eight-year 
classical colleges of the French-language educational system of the province were disbanded in 
the 1960s and replaced by high schools, CEGEPs (from Collèges d'enseignement général et 
professionnel [in English, Colleges of General and Professional Training]; i.e., colleges that 
dispensed both preuniversity and technical or vocational courses), and universities. Those who 
had taught at the upper levels in these classical colleges were integrated into the new CEGEPs 
and universities of the province. The same reform that closed the classical colleges also brought 
an end to the French- and English language normal schools and transferred instructors and 
students alike to both the new and existing universities. Similar events with respect to the 
transfer of normal school teachers to the universities occurred in other provinces as well, but at 
different times; for example, in Alberta, this changeover took place in 1945.  

It might have been expected that once the teacher-training faculty had been incorporated into 
universities across the nation, they would soon enough get involved in research. But it took 
time because many of the freshly appointed education professors had to work at obtaining 
doctoral degrees themselves and learning about the research process. At some universities 
across the nation, a tension arose between the role of teacher trainer and that of researcher, and 
was not resolved for several decades in many education faculties. As of the early 1990s, there 
continued to be faculties of education in several universities where the emphasis was clearly on 
teacher training. Research was simply not part of the culture of these faculties of education, as 
was indicated by the lack of graduate programs with a research component. At such universities, 
students might have been able to obtain a master's degree, but had to go elsewhere if they wished 
to continue on to the doctoral level in education. In 1990, there were merely seventeen Canadian 
universities where it was possible to obtain a doctoral degree involving research related to 
mathematics education (see Kieran and Dawson 1992).  

GROWTH IN DISSERTATION RESEARCH RELATED TO MATHEMATICS EDUCATION  

The years from 1955 to about 1969 were years of continuing gradual growth in Canada for 
dissertation-based research related to school mathematics. During this period of population 
increase, of reform in the educational systems of various provinces, and of the beginnings of 
mathematics education as an identifiable field of research study in many countries of the world, 
the number of school-mathematics-related dissertations in Canadian universities showed a 
modest increase. As well, the production moved beyond the universities of Ontario and Québec. 
The Universities of Alberta and British Columbia had also begun to develop research groups 
interested in school mathematics.  
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But the period of most intense growth in dissertation research related to mathematics education 
in Canadian universities occurred from the late 1960s onward. See table 1 for the number of 
dissertations related to school mathematics for which doctoral degrees were awarded in 
Canadian universities from 1924 up to 1995. The data from table 1 are re-presented in graphical 
form in figure 1 so as to see at a glance the periods that were peaks with respect to Canadian 
math education dissertation production. Note the rise in the mid- to late 1970s (of the 43 
doctorates awarded during the years 1974–1979 for research related to mathematics education, 
17 were from the U of A and the remainder from six other universities across the country). This 
rise during the 1970s was followed by a period of slower growth, until the 1990s when the 
sharpest increase took place—resulting in the highest peak in 1994 with twenty-one 
dissertations.  

Over the 72-year period from 1924 through 1995, the lone entrant of the early years— U of T—
was joined during the latter part of this period by several other universities. Nevertheless, the 
majority of the 80 doctorates (63 of them, or 79 percent) for research related to mathematics 
education that were awarded from 1990 to 1995 came from 6 universities (U of T, including 
OISE; U of A; Université Laval; Université de Montréal; UQAM; and UBC). The remaining 
17 doctorates awarded during this period were from 11 other universities across the country. 
By the end of the 1990s, there had been a 60 percent increase in the number of universities 
offering doctoral programs in education over that of 1990. It had become possible to earn a 
doctorate for research in mathematics education in all provinces of the country except for New 
Brunswick, Prince Edward Island, and Newfoundland (see table 2 for province-by-province 
totals of dissertations produced during the 1990–1995 period for research related to 
mathematics education; data reflect the recency of the doctoral programs in Saskatchewan, 
Manitoba, and Nova Scotia). The increase in mathematics education dissertation production 
over the 72-year period suggested the presence of communities of mathematics education 
researchers at certain universities and, along with other events to be discussed, reflected as well 
the growth in the Canadian mathematics education research community at large.  

Table 1. The yearly number of Canadian-university doctoral dissertations related to 
mathematics education for which a degree was awarded during the period 1924–
1995 (A skipped year indicates that no dissertations were produced.) 

 

Note: This compilation is extracted from the following data bases: Bibliothèque Nationale du 
Canada 1947–1981; Bibliothèque Nationale du Canada 1981–1984; Canadian Education 
Index 1976–1996; Dissertation Abstracts 1861–1996; and specialized university listings such 
as that of Université du Québec à Montréal 1996–1997. For work carried out during the early 
part of the period and for which the data bases provided no descriptors or abstracts, only the 
title of the dissertation could be used for deciding whether the content was related to school 
mathematics. 
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Figure 1. A graphical representation of the growth in the number of doctoral 
dissertations related to mathematics education that were produced in Canada 
between 1924 and 1995. 

Table 2. Province-by-province distribution (in a west-to-east order) of 
mathematics education related dissertations for which a doctorate was awarded 
during the 1990–1995 period in Canada 

 

FEDERAL GOVERNMENT FUNDING OF MATHEMATICS EDUCATION RESEARCH  

The continued increase in doctoral dissertation research in mathematics education was but one 
of the global indicators of the growth of the Canadian community. Another indicator, one that 
is also linked with reificative aspects of the shared repertoire, was government funded research. 
Nearly 50 years elapsed between the production of the first dissertation related to school 
mathematics in Canada and the initial awarding of federal funds in 1970 for mathematics 
education research carried out by university faculty (or independent scholars associated with a 
university). However, as table 3 illustrates, the 1970s were not especially productive for 
federally funded research in mathematics education. It was not until 1983 that such projects 
became more significant in number. (Note that federal funding for mathematics education 
research was under the control of the Canada Council, which was set up in 1957, and then under 
the Social Sciences and Humanities Research Council which replaced it in 1978.)  

The low figures in table 3 for certain provinces reflect the fact that universities in some of those 
provinces had not, as of 1990, developed doctoral programs where one could obtain a degree 
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for research related to mathematics education. Thus, academics in those universities had not, in 
general, applied for federal research funds. In contrast, the high figures for the province of 
Québec reflect the emergence of communities of researchers in the 1970s and 1980s who were 
strongly encouraged and supported at both the university and provincial government levels (I 
will say more about this in a later section when I treat the communities of practice in various 
provinces).  

By graphically overlaying the data on doctoral dissertation production with those on federally-
funded research projects (see figure 2), one obtains an overview that suggests three phases of 
growth over the years 1924–1995. The years up to approximately 1967 can be considered the 
years of preemergence of the community—the number of doctoral dissertations had not 
increased dramatically and no research projects related to mathematics education had yet been 
funded. The years from 1967 to approximately 1983 can be considered the years of 
emergence—there was significant growth with respect to doctoral dissertation production and 
mathematics education research by university faculty had begun to be funded, even if somewhat 
sporadically. The years from 1983 onward can be considered the years of continued 
development that followed the middle phase of emergence—doctoral dissertation production 
had gone on to reach new highs, after a brief slowdown period, and federally funded research 
had come into its own. In fact, during the third phase, both dissertation production and federally 
funded research greatly increased together—a sign that the community had already emerged. 
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Table 3. Number of new research projects in mathematics education in Canada 
funded by the Canada Council (1957–1977) and the Social Sciences and 
Humanities Research Council (1978–1995) 

 

Note: The first year in which a given project was funded is the year used, as is the province of 
the principal investigator. Sources: Annual Reports of Canada Council (1958–1978) and Annual 
Reports of Social Sciences and Humanities Research Council of Canada (1978–1996). 
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Figure 2. The number of doctoral dissertations related to mathematics education 
during the period 1924–1995 compared with the number of federally funded 
research projects related to mathematics education (Note that the federal funding 
agency was not established until 1957.) 

INTERNATIONAL INFLUENCES AND INTERACTIONS RELATED TO THE 
EMERGING CANADIAN COMMUNITY OF MATHEMATICS EDUCATION 
RESEARCHERS  
Few countries develop their research communities in isolation. The influences of, and 
interactions with, mathematics education researchers in other countries, along with research 
related events that took place outside Canada, all served to shape the Canadian community. In 
this part of the paper, the focus switches to the activities of individual Canadians and the roles 
they played both at home and abroad, particularly during the 1960s and 1970s—activities that 
had an effect on the evolution of the Canadian community of mathematics education 
researchers. As will be seen, the impact of several of these individuals was felt in both the local 
and the national communities of practice that they worked to develop.  

EARLY INTERACTIONS WITH THE UNITED STATES MATHEMATICS EDUCATION 
RESEARCH COMMUNITY  

The United States was a source of influential ideas with respect to the growth of research in 
mathematics education in Canada not only during the initial three decades of the 1924–1995 
period, when the first doctoral dissertations were produced at U of T, but also in the decades 
that followed, especially from the mid-1950s through the 1960s. Douglas Crawford in the 1970 
History of Mathematics Education in the United States and Canada has described some of the 
interactions that occurred between Canadians and Americans during the 1950s and early 1960s. 
But the most obvious source of influence of the U.S. mathematics education research scene on 
the developing Canadian community during these years was its journals. The U.S. research 
journals played an important dual role, especially in the late 1960s and 1970s, in that they not 
only enabled the growing number of Canadian mathematics education researchers to read about 
the kinds of research that were being conducted in the United States but also published the work 
of members of the newly emerging Canadian research community. These journals thus provide 
a window on the research activities of many Canadians during that period.  

For example, in 1969, the Review of Educational Research (RER) published a special issue on 
mathematics education research. In that special issue was a paper by Tom Kieren on "Activity 
Learning," which contained several references to the mathematics education research activities 
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being engaged in by fellow Canadians. The Journal for Research in Mathematics Education 
(JRME), which published its first issue in January 1970, also featured the work of Canadian 
researchers during its early years, for example, Tom Kieren, Daiyo Sawada, Walter Szetela, W. 
George Cathcart, David Robitaille, Frank Riggs, Doyal Nelson, Lars Jansson, Jim Sherrill, and 
D. Kaufmann. Equally important to note is that these early contributors to RER and JRME were 
primarily from Canada's western provinces—in particular, from U of A and UBC—reflecting 
the ties that had developed between the English speaking mathematics educators of western 
Canada and their National Council of Teachers of Mathematics (NCTM) counterparts in the 
United States. This western Canada-United States connection parallels the pull felt by many of 
the French-speaking researchers of the country, along with some of their Anglophone 
colleagues, toward Europe (e.g., to the International Commission on Mathematical Instruction 
and its quadrennial International Congresses on Mathematical Education, the soon-to-be-
formed International Group for the Psychology of Mathematics Education, and the Commission 
Internationale pour l'Étude et l'Amélioration de l'Enseignement des Mathématiques).  

INTERNATIONAL INTERACTIONS  

Developments in mathematics education research at an international level in the late 1960s and 
1970s attracted the attention of Canadian researchers. Canadians played a role in the growth of 
international associations of researchers, while at the same time coming into contact with fellow 
researchers from other parts of Canada and thereby forging the relationships needed for a 
Canadian community of practice.  

THE EARLY INTERNATIONAL CONGRESSES ON MATHEMATICAL EDUCATION IN THE 
1960S AND 1970S  

The first International Congress on Mathematical Education (ICME), which was held in Lyon, 
France, in August 1969, drew twenty-three Canadians—sixteen from Québec, six from Ontario, 
and one from Manitoba. It exposed them to the work and ideas of several invited speakers, 
including the research-related plenary presentations of Ed Begle from the United States, Efraim 
Fischbein from Israel, and Zoltan Dienes from Canada (see ICME-1 1969). Dienes was a 
researcher, born in Hungary, who had spent several years in Sherbrooke, Québec, directing the 
research center he founded there in the 1960s. The next ICME, held three years later in Exeter, 
England, attracted even more Canadians than the previous one had; this time, fifty-two 
Canadians attended—twenty-three from Ontario, fourteen from Québec, seven from British 
Columbia, three from Nova Scotia, three from Alberta, one from New Brunswick, and one from 
Manitoba. The program allotted more time to research than ICME-1 had, with two of the thirty-
nine working groups targeted explicitly towards discussion of research on learning and teaching 
(ICME-2 1972), one chaired by Efraim Fischbein on the psychology of learning mathematics 
and another chaired by Bent Christiansen on research in the teaching of mathematics. At this 
ICME, among the Canadians attending were Marshall Bye, Douglas Crawford, Claude Gaulin, 
Bill Higginson, Claude Janvier, Raynald Lacasse, and Richard Pallascio.  

The increasing worldwide interest in mathematics education, and in mathematics education 
research in particular, was reflected in Canadian participation at the third ICME in Karlsruhe, 
Germany, in 1976. Fifty-one Canadians attended: twenty-nine from Québec, thirteen from 
Ontario, five from Alberta, one from Manitoba, one from British Columbia, one from 
Saskatchewan, and one from Prince Edward Island. Participants had the opportunity to 
congregate with, and talk to, many active mathematics education researchers from around the 
world, and to hear about current international research activities, such as those reported by 
Heinrich Bauersfeld and by Jeremy Kilpatrick. But, by far, the most important research -related 
event that occurred at ICME-3 was the formation of the International Group for the Psychology 
of Mathematics Education (originally IGPME, then changed to PME), a group that was to 
become the largest association of mathematics education researchers in the world. Not only did 
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Canadians play an important role in the genesis of this international group, but their 
participation in its creation served also to increase the interest in the research enterprise at home 
and to contribute a particular identity to the emerging Canadian community.  

THE FORMATION OF THE INTERNATIONAL GROUP FOR THE PSYCHOLOGY OF 
MATHEMATICS EDUCATION  

At the founding meeting of PME in Karlsruhe, 100 or so persons were present, including six 
Canadians: Claude Dubé, Nicolas Herscovics, Joel Hillel, Claude Janvier, Dieter Lunkenbein, 
and David Wheeler—all of whom were from Québec. The Canadians provided a considerable 
amount of leadership and support in the setting up of PME. The contributions of Nicolas 
Herscovics to the founding of PME were remembered by Efraim Fischbein at the opening 
session of a much later PME conference, in 1995, when he delivered a eulogy in memory of 
Herscovics, who had passed away the previous year:  

Nicolas was instrumental in setting up a Committee, in suggesting the election of a 
president and in contributing to the project of organizing, as quickly as possible, the 
first international conference of the organization. The activity of Nicolas was a 
decisive factor in the creation of the new body. Nicolas understood from the beginning 
that one had to create an organizational body which would facilitate interaction in 
that area [the psychology of mathematics education], would promote common 
research efforts, would contribute to new ideas, new research methods, and would 
confer on mathematics education, a theoretical and investigative dimension which it 
was lacking before. (Fischbein 1995, p. 1)  

Canadians continued to play a major role in PME and remained active through the late 1990s. 
They assisted in the direction of PME in the following capacities: Eight served on the 
international committee (Jacques Bergeron, Claude Gaulin, Gila Hanna, Nicolas Herscovics, 
Claude Janvier, Carolyn Kieran, Gerald Noelting, and Vicki Zack); one was elected to the 
presidency for a three-year term from 1992 to 1995 (Carolyn Kieran); and three Montréalers 
(Jacques Bergeron, Nicolas Herscovics, and Carolyn Kieran), supported by many others from 
the Québec community of mathematics education researchers, hosted the eleventh annual PME 
conference in 1987. By the end of 1995, PME had 684 members, of whom 26 were Canadian— 
from British Columbia on the west coast to Newfoundland on the east coast.  

Since PME's beginnings, Canadians have both drawn on the research that was presented by 
international colleagues at the annual conferences and also contributed their own work. One 
example that suggests how the research of Canadians may have been an influence on the larger 
PME community is reflected in the book published by PME in 1992, Mathematics and 
Cognition (Nesher and Kilpatrick 1992). The major authors in that book were all either 
Canadian, French, or Israeli, with the Canadian chapters focusing especially on the learning of 
early arithmetic and algebra. Additionally, Canadians served as contributing authors to the 
chapters on the epistemology and psychology of mathematics education, language and 
mathematics, and advanced mathematical thinking.  

THE ROLE OF THE COMMISSION INTERNATIONALE POUR L'ÉTUDE ET L'AMÉLIORATION 
DE L'ENSEIGNEMENT DES MATHÉMATIQUES IN THE DEVELOPMENT OF FRENCH-
SPEAKING CANADIAN MATHEMATICS EDUCATION RESEARCHERS  

An important international association involving French-speaking Canadians during the early 
years of their developing practice as mathematics education researchers was the Commission 
Internationale pour l'Étude et l'Amélioration de l'Enseignement des Mathématiques (CIEAEM), 
which had been set up in 1950. According to Claude Janvier (personal communication, 
September 1997), "Québecers were not researchers in the late 1960s and early 1970s; they were 
university teachers looking for the best curricula and the best approaches for teaching that 
curricula." Janvier emphasized that those were the years when the "new math" movement was 
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being experienced. Teachers had to be retrained. In their search for answers to questions 
regarding new approaches to teaching mathematics, Québec mathematics educators came 
across examples of European research. So they decided to attend CIEAEM conferences where 
much of this research was being generated and discussed. The style of research appealed to 
Québec participants: critical questioning of what was being promoted in many countries under 
the name of new math. According to Janvier, the Québecers were also attracted to the voice 
being given in CIEAEM conference discussions to teachers and their experience. 

LOCAL COMMUNITIES OF PRACTICE  
The images presented thus far suggest that communities of mathematics education researchers 
had been established here and there throughout the country. Indeed, local communities of 
mathematics education researchers had either emerged or were in the process of emerging 
during the 1960s and 1970s in several provinces. Not all of these communities were at the same 
point of development at the same time. Nor were they all of the same size or strength. But there 
was no question as to their existence. Space constraints do not allow me to cover all of the 
provinces, such as for example, Manitoba and the work of Lars Jansson, or Nova Scotia where 
Yvonne Pothier and Mary Crowley were instrumental in developing a local community of 
practice, or the efforts of Lionel Pereira-Mendoza in Newfoundland, or the more recent work 
of Vi Maeers in Saskatchewan.  

As will be seen, the local communities were the roots of the national community, a community 
whose period of emergence included a reificative act of a more formal nature in 1978. However, 
these communities were more than roots. They continued to develop, in interaction with the 
national community, during the 1980s through the 1990s. As will be seen from the examples of 
local communities of practice to be presented, it was not always the case that communities of a 
provincial nature emerged. In some provinces, structures—either of a formal or informal 
nature—had simply not been put into place that would encourage the development of a single 
provincial community. In contrast, in other provinces, the local communities of practice had 
become quite interconnected.  

THE COMMUNITIES OF PRACTICE IN ALBERTA  

From about 1965, the University of Alberta (U of A) was an active center of mathematics 
education research, with the work of Doyal Nelson and Sol Sigurdson. Tom Kieren's arrival at 
U of A in 1967 signaled a bustling period devoted to theorizing in this local community of 
mathematics education research. In the 1970s, the research by Kieren, his colleagues, and their 
many graduate students focused on such themes as models of the use of concrete materials, 
rational number construct theory, rational number mechanisms, and neo-Piagetianism. The 
group's strong interest during the 1970s in constructivism developed further when, in the 1980s, 
Maturana and Varela's theories were brought into play.  

Another local community of mathematics education researchers in the province of Alberta was 
situated at the University of Calgary where Bruce Harrison became a faculty member after 
being the first graduate of the new mathematics education doctoral program at U of A in 1968. 
One of Sigurdson's students, Harrison had focused his doctoral research on elaborating and 
testing the work of Richard Skemp on reflective thinking. This community continued its 
evolution throughout the decades that followed, a period that included the arrival of Olive 
Chapman during the 1990s. In another area of Alberta, at the University of Lethbridge, the 
mathematics education group benefited from interactions during the 1970s with Sigurdson from 
U of A on "direct meaning" teaching and curriculum.  

The Alberta community of mathematics education researchers, from its early days in the 1960s 
and 1970s up to the late 1990s, was characterized by a strong theoretical leaning toward a 
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nonrepresentationist, constructivist, enactivist perspective. It could be said that theory building 
was a main feature of their joint enterprise. And this interest was reflected in the dissertation 
topics of several of the mathematics education doctoral students trained in Alberta, including 
the early graduates such as Bruce Harrison, Sandy Dawson, and Bill Higginson. Tom Kieren 
advised many of the U of A students—in fact, he guided to completion more mathematics 
education Ph.D. students than any other Canadian academic during the last three decades of the 
twentieth century. As the Ph.D. graduates from U of A took up posts at other Canadian 
universities, characteristics of that community of practice took root at these other sites. And 
because many of these researchers continued to interact with fellow Canadians in the 
development of a joint enterprise, the Canadian community of mathematics education 
researchers reflected some of the features of the extended Alberta community.  

THE COMMUNITIES OF PRACTICE IN BRITISH COLUMBIA  

In the 1960s, concomitant with the arrival of the new math era, the mathematics education 
department of the University of British Columbia (UBC) mushroomed to become what was 
then the largest in Canada. As the new math period drew to a close, David Robitaille assumed 
the headship of the department, and he and Jim Sherrill in particular redirected the department 
to contemporary concerns.  

Shortly after his arrival, David Robitaille was asked to take over the clinic for school children 
having trouble with mathematics, a project with which the department had been involved for 
some time. The diagnostic research focus gradually evolved during the late 1970s and 1980s 
into more qualitative work on children's misconceptions and on constructivist approaches to 
learning. Examples include studies on problem solving and metacognition (e.g., the work of 
Walter Szetela, Jim Sherrill, and Tom Schroeder), and decimal- fraction learning within a 
Piagetian perspective (the research of Doug Owens). As well, there was a growing interest in 
large-scale evaluation. This interest was exemplified in the role that UBC mathematics 
education researchers played in both the second and third international mathematics studies, in 
particular, as the international coordinating center (directed by David Robitaille) for the entire 
TIMSS study from its outset and until the end of 1993.  

The story of the development of the UBC community of mathematics education researchers 
illustrates the multifaceted nature of the joint enterprise of that community, which had produced 
a shared repertoire covering many different themes of research, from diagnostic work to 
problem solving to large-scale evaluation. This diversification continued through the 1990s 
when new faculty were hired: Susan Pirie, with her interest in models of students' 
understanding; Ann Anderson, who focused on mathematics learning in young children; and 
Cynthia Nicol, whose research centered on the education of mathematics teachers.  

During these same years, another local community of mathematics education researchers 
developed in British Columbia—at Simon Fraser University (SFU). The SFU community was 
characterized by a consistent theme that ran through its approach to mathematics education 
research over the years—that of studying the implementation of innovative teaching practices 
that arose from an investigation of the nature of mathematics. That theme was originated by 
John Trivett, who joined the SFU faculty of education in 1967; was strengthened in the early 
1970s when Sandy Dawson was hired; and became fully developed with the addition of Tom 
O'Shea in the early 1980s. The theme arose out of, and was based on, a close collaboration 
between the mathematics department at SFU (Len Berggren, Harvey Gerber, and others) and 
the above mathematics educators of the faculty of education.  

The same theme that characterized the mathematics education research at SFU from the 1960s 
through the 1980s was reinforced and elaborated when Rina Zazkis joined the faculty in the 
early 1990s. When Rina arrived, not only did she work closely with members of the 
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mathematics department, continuing the tradition established by her colleagues, but she also 
taught courses in that department, in particular the mathematics-for-teachers course that the 
mathematics department had offered for a number of years. Rina also used this opportunity to 
begin an investigation of the understandings that preservice teachers have of number theoretic 
concepts. The close connection between mathematicians and mathematics educators, that was 
one of the distinguishing features of the local community of mathematics education researchers 
at SFU, will be seen to be a characteristic as well of the national community of mathematics 
education researchers from the late 1970s onward.  

THE COMMUNITIES OF PRACTICE IN ONTARIO  

In 1965, U of T's departments of Graduate Studies and Research were transferred to the newly 
created Ontario Institute for Studies in Education (OISE), an autonomous institution with an 
affiliation agreement with U of T. Despite OISE's newly acquired prominence on the graduate 
education scene of Ontario in the 1960s and the past history of U of T in doctoral research 
related to mathematics education prior to the 1960s, events in the 1960s and 1970s seemed to 
work against the growth of a unified community of mathematics education researchers centered 
at OISE. The new math movement brought several actors onto the Ontario mathematics 
education stage, but they belonged to different communities, each with its own forms of 
engagement, enterprise, and shared repertoire. In fact, these communities held quite opposite 
views of what was important in mathematics education and of what it might mean to do research 
in mathematics education.  

In 1985, Gila Hanna joined the OISE faculty, after having been a research associate there since 
1978. Her main research interests focused on gender studies and the role of proof in 
mathematics. She also advised most of the doctoral candidates in mathematics education in 
Ontario from 1985 through the late 1990s. These years, which were important ones in the 
growth of the mathematics education research community at OISE, signaled a period of intense 
activity that was due in no small measure to her leadership. In 1999, just a year before her 
retirement from OISE-U of T, Gila established a new bilingual Canadian journal, which she 
would coedit with two colleagues. These years also witnessed important work being carried out 
by the educational psychologists at OISE, for example, Robbie Case's research on rational 
number and Rina Cohen's on the learning of mathematics in Logo environments.  

While a local community of practice in Ontario was developing at OISE in the late 1980s, other 
communities of mathematics education researchers that were emerging in Ontario included one 
at the University of Western Ontario, where Doug Edge, Eric Wood, Barry Onslow, and Allan 
Pitman were active, and another at the University of Windsor, which centered on the work of 
Erika Kuendiger and her colleagues and students.  

The last local community of practice in Ontario to be discussed, but by no means the smallest 
or the most recent, is the community of mathematics education researchers that emerged at 
Queen's University in Kingston during the 1970s. A faculty of education had been established 
there in the late 1960s, during the period when teachers colleges and normal schools in Ontario 
had begun to be affiliated with the universities. The corps of active researchers in mathematics 
education at Queen's included Hugh Allen, Douglas Crawford, and Bill Higginson. Under Bill's 
leadership, the group established Queen's as an important center of mathematics education and 
mathematics education research, in particular in the area of technology applied to the teaching 
and learning of school mathematics.  

A significant feature of this local community of mathematics education researchers was the 
involvement of some of the faculty from the mathematics department. Working relationships 
were developed between the mathematics educators and mathematicians such as John Coleman. 
Peter Taylor was another Queen's mathematician who actively collaborated with the 
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mathematics educators. Taylor, known for his research on the teaching of calculus, was honored 
in the 1990s for his contributions to mathematics education by a 3M Teaching Fellowship 
awarded by the Society for Teaching and Learning in Higher Education.  

Other Ontario mathematicians who conducted research in mathematics education included Pat 
Rogers, then of York University, whose research focused on increasing the participation of 
women in university mathematics courses, research for which she, too, was awarded a 3M 
Fellowship in the 1990s. Similarly, Eric Muller from Brock University and Ed Barbeau from U 
of T (as well as Bernard Hodgson from Québec) were recipients of the Adrien Pouliot award 
for sustained contributions to mathematics education in Canada, an award given each year since 
1995 by the Canadian Mathematical Society. Other awardees included the group from the 
University of Waterloo for their work on Canadian mathematics competitions at the secondary 
school level.  

The productive interactions between mathematicians and mathematics educators that had been 
fostered at Queen's from the late 1970s through the 1990s were reflected in other such 
collaborative work occurring in the province. For example, in the 1990s, Eric Muller and Ed 
Barbeau, along with Gila Hanna and Bill Higginson, served on the Forum of the Fields Institute 
that played a major role in the revision of the Ontario secondary school mathematics courses. 
Interactions such as these between mathematics educators and mathematicians set in place the 
mechanisms for the creation of a center for mathematics education at the Fields Institute.  

THE COMMUNITIES OF PRACTICE IN QUÉBEC  

The 1960s were exciting years in Québec. Zoltan Dienes, a recent arrival to Canada, had just 
set up his research institute, Centre de Recherche en Psycho-Mathématiques, at Université de 
Sherbrooke. His research center attracted visitors from all around the world, thereby exposing 
Québecers to international mathematics education research. Other signs of research activity in 
Québec in the 1960s and 1970s included the research centers such as Institut National de la 
Recherche Scientifique. However, an event that was among the most significant with respect to 
the emergence of a community of mathematics education researchers in Québec was the 
creation of a government funding agency that paralleled the federal SSHRC. In 1970, the 
Programme de Formation des Chercheurs et d'Actions Concertées (FCAC) was set up by the 
newly formed ministry of education of Québec. One of the key elements of FCAC funding, as 
well as that of the Fonds pour la Formation de Chercheurs et l'Aide à la Recherche (FCAR) that 
replaced it in 1984, was the encouragement of teams of researchers, including teams drawn 
from various universities. Table 4 gives the number of FCAC/FCARfunded projects in 
mathematics education research between 1972 and 1995.  

In comparison with the data presented earlier in table 3, which showed that mathematics 
education research was hardly present on the federal funding scene prior to 1983, the data of 
table 4 reveal that mathematics education research was in fact being funded in Québec during 
the years 1972–1983 and that 1981 was an especially productive year for the emerging 
community. Thus, as of 1970, Québec researchers had access to two governmental funding 
agencies in contrast with researchers from the rest of the country who could only submit 
research proposals to the federal funding agency SSHRC.  

The first recipient of an FCAC grant for mathematics education research, in 1972, was Claude 
Gaulin (with Hector Gravel as co-investigator). Gaulin was one of Québec's pioneers in 
mathematics education research, having carried out studies on the teaching of fractions from 
1966 to 1971 with colleagues from Collège Ste-Marie, a college that was incorporated into 
Université du Québec à Montréal (UQAM) in 1969. Another pioneer from the 1970s was Dieter 
Lunkenbein from Université de Sherbrooke, who conducted research on the teaching of 
geometry in the early grades. And at Université Laval was a mathematician named Fernand 
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Lemay, whose theoretical reflections were a great influence on the conceptual and 
epistemological thinking of some of the Québec mathematics education researchers of that time.  

An additional development of significance for the growing Québec community of mathematics 
education researchers during these years was related to a series of retraining courses for 
mathematics teachers provided by the ministry of education from 1965 to 1970. These courses 
evolved into the highly successful in-service distance education program for the  

Table 4. Number of new research projects in mathematics education in Québec 
funded by FCAC (1970–84) and FCAR (1984–95)  

 

Note: The first year in which a given project was awarded is the year used. 
Sources: Subventions accordées of FCAC (1971–73), Crédits alloués of FCAC 
(1973–77), Répertoire des subventions allouées of FCAC (1977–79), Crédits 
alloués: équipes et séminaires of FCAC (1979–84), Rapports annuels of FCAR 
(1984–91), and Répertoire des subventions octroyées: soutien aux équipes de 
recherche of FCAR (1990–96).  

retraining of mathematics teachers throughout the province (known as the PERMAMA 
program), a program that not only involved many of the province's mathematics educators but 
also served as a basis for elaborating some of their research orientations. Another important 
event of the 1970s was the formation of the Groupe des Didacticiens en Mathématiques (GDM), 
an association of Québec mathematics educators interested in research.  

During the late 1970s, as well, FCAC became more structured and began to give both more and 
larger grants. The excitement that had been generated with the creation of the international PME 
group at Karlsruhe in 1976 led to the formation of new teams of funded researchers in Québec, 
for example, the group of Joel Hillel and David Wheeler, followed by the collaboration of David 
Wheeler and Lesley Lee, at Concordia University, and the team situated at U de M of Nicolas 
Herscovics from Concordia University and Jacques Bergeron from U de M. The latter 
researchers' work on the learning and teaching of early number in the late 1970s and 1980s 
attracted several doctoral students to the team (e.g., Jean Dionne, Nicole Nantais, Bernard 
Héraud), who in turn became advisors to later graduate students of mathematics education at 
other universities in Québec. The work of Roberta Mura at Université Laval in the 1980s on 
women in mathematics brought certain socio-cultural issues to the fore in Québec mathematics 
education research. And Anna Sierpinska's arrival at Concordia in 1990 from her native Poland 
injected new dimensions into the research being carried out on understanding and 
epistemological obstacles.  

Another event that aided the growth of the Québec mathematics education research community 
was the creation of CIRADE in 1980, a center whose initial roots were located in the Centre de 
Recherche en Didactique that was set up when UQAM was established in 1969. Mathematics 
education research flourished there during the 1980s and 1990s. Several international seminars 
and colloquia were held; these involved not only the members of CIRADE and their 
international visitors but also many other mathematics education researchers of Québec. Such 
colloquia focused, for example, on representation and the teaching and learning of mathematics 
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organized by Claude Janvier, on epistemological obstacles and sociocognitive conflict, and on 
approaches to algebra—perspectives for research and teaching, organized by Nadine Bednarz, 
Carolyn Kieran, and Lesley Lee.  

The 1980s were also the years in Québec when the potential of the computer programming 
language, Logo, as a mathematical exploration tool, sparked the interest of many researchers. 
Just about all Québec universities and colleges had their Logo groups of mathematics education 
researchers in the 1980s, such as the UQAM collaboration of Benoît Côté, Hélène Kayler, and 
Tamara Lemerise, as well as the inter-university team of Joel Hillel, Stanley Erlwanger, and 
Carolyn Kieran. During that same decade, the 17 full-time faculty members of the mathematics 
education section of the UQAM Mathematics Department made that group the largest ever 
contingent of mathematics education researchers across the country.  

A MAJOR REIFICATIVE EVENT FOR THE CANADIAN COMMUNITY OF 
PRACTICE: THE FORMATION OF THE CANADIAN MATHEMATICS 
EDUCATION STUDY GROUP / GROUPE CANADIEN D'ÉTUDE EN 
DIDACTIQUE DES MATHÉMATIQUES  
Let us return for a moment to the late 1960s and early 1970s. Local communities of practice 
had been evolving in various provinces since then. Members from some of these communities 
had come together at the early ICMEs, where connections among them had been formed. Then, 
in 1976, the third ICME had led to the establishment of the international PME group of 
researchers. The momentum created by these events beyond Canada's borders sparked not only 
an increased interest in mathematics education research at home but also a need for a structure 
that would permit members of the various local communities of Canada to get together. An 
occasion would soon present itself, even if it was planned with a somewhat different purpose 
in mind.  

In 1977, John Coleman, Bill Higginson, and David Wheeler invited thirty mathematicians and 
mathematics educators from across Canada to join them at a mathematics education conference 
at Queen's University, Kingston, Ontario (sponsored by the Science Council of Canada) to 
discuss the general theme "Educating Teachers of Mathematics: The Universities' 
Responsibility." The conference had been convened primarily as part of the follow-up to the 
Science Council's Background Study No. 37 (Beltzner, Coleman, and Edwards 1976) to 
consider the place and responsibility of Canadian universities in the education of teachers of 
mathematics. Wheeler (1992) wrote that "one purpose of the conference was served by the mere 
fact of bringing participants together and the consequent pooling of ideas and information by 
those who have overlapping interests but seldom meet" (p. 2). Despite the intended "teacher 
education" agenda of the meeting, Coleman wrote in a letter accompanying the proceedings of 
the 1977 conference, "The meeting was noteworthy for the fact that, as far as we were aware, 
there had never been a comparable gathering of [Canadian] university staff whose prime 
concern was research in mathematics education" (Coleman, Higginson, and Wheeler 1978, p. 
1 of accompanying letter, emphasis added). Wheeler (1992) pointed out that "the encounter 
generated a demand from many of the participants for further opportunities to meet and talk" 
(p. 1). The Science Council supported a second invitational meeting in June 1978 at which the 
decision was taken to establish a continuing group to be called the Canadian Mathematics 
Education Study Group (CMESG)/ Groupe Canadien d'Étude en Didactique des 
Mathématiques (GCEDM). This reificative act was a very important one for the emerging 
Canadian community of mathematics education researchers. The formation of this group would 
further enable the connectedness that had already been developing among individual 
researchers across the country, as well as extend the joint enterprise over a broader base. At the 
close of the 1978 meeting, the participants voted for an acting executive committee; a formal 
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constitution was approved at the 1979 meeting; and the first elections under the terms of the 
constitution took place in 1980.  

Tom Kieren, in his plenary address at the 1977 meeting entitled "Mathematics Education 
Research in Canada: A Prospective View," emphasized the "need for much more interrelated 
mathematics education research to tackle the problems [of mathematics education]" and 
suggested that "perhaps our small numbers in Canada and our personal interrelationships will 
allow us to engage in such interrelated research" (Kieren 1978, p. 19). He then offered a few 
recommendations to effect the cooperation needed in Canadian mathematics education 
research, among which was the regular meeting of groups of researchers and teachers to discuss 
problems of mathematics education in Canada.  

CMESG/GCEDM tried to find some balance between focusing on teacher training and on 
research. Wheeler (1992), in a historical retrospective of CMESG/GCEDM written in 1992, 
described the concerns of CMESG/GCEDM as follows: "The two main interests of 
CMESG/GCEDM have been teacher education and mathematics education research, with 
subsidiary interests in the teaching of mathematics at the undergraduate level and in what might 
be called the psycho-philosophical facets of mathematics education (mathematization, imagery, 
the connection between mathematics and language, for instance)" (p. 5). However, because 
many Canadian mathematics education researchers were also responsible for the training of 
mathematics teachers and did in fact focus their research on teacher training, the two main 
spheres of interest were intertwined.  

CMESG/GCEDM has attempted to provide a forum where research could be discussed— and 
even where new research partnerships could be formed—as well as set up an encouraging 
atmosphere where novice researchers could find out how to begin. For individuals coming from 
universities or provinces where no local community of mathematics education research practice 
had yet emerged, this latter provision was extremely important. Through its activities, 
CMESG/GCEDM gave some mathematics educators a taste for research. Wheeler (1992) wrote 
that CMESG/GCEDM "has shown them that their puzzlement about some aspects of 
mathematics is shared by many mathematicians; and it has shown some mathematicians that 
learning can be studied and that teaching might be made into something more than flying by 
the seat of the pants" (p. 8). The fact that the study group included among its active members 
both mathematicians and mathematics educators gave a particular flavor to the nature of the 
research enterprise as engaged in by its participants. One of the aspects of this particularity was 
a fairly wide vision of what it means to do research in mathematics education, as suggested by 
the following: "The Study Group takes as its essential position that the teaching of mathematics 
and all the human activities that are connected to it can, and should, be studied, whether the 
study has the form of an individual's reflections, the reasoned argument of professional 
colleagues, or the more formal questioning of empirical or scholarly research" (Wheeler 1992, 
p. 8).  

From the beginning, the format of the four-day CMESG/GCEDM meetings fostered a unique 
form of mutual engagement of its participants. Three half-days were spent within one of the 
working groups. Designed to be the core activity of the meetings, these working groups were 
based on themes related to research, teacher development, and mathematical topics. During the 
1990s, a novel feature was added to the annual meeting programs: the reporting by new 
mathematics education doctoral graduates of their dissertation research. This feature became a 
standard component of the program and had the effect of encouraging younger mathematics 
education scholars to join the community. But it succeeded in doing more than that. It made 
provision for the community of practice that came together at CMESG/GCEDM meetings to 
be a community of learners in which new practices and new identities were formed for both the 
existing members and the new members. Wenger (1998) argued that "engagement is not just a 
matter of activity, but of community building and ... emergent knowledgeability" (p. 237) and 
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that "practice must be understood as a learning process, ... learning by which newcomers can 
join the community and thus further its practice" (p. 49); "from this perspective, communities 
of practice can be thought of as shared histories of learning" (p. 86). From its beginnings in 
1978, CMESG/GCEDM succeeded in creating both the accumulation of a history of shared 
experiences and the development of interpersonal relationships—processes that, according to 
Wenger, are characteristically entailed in the work of engagement of a community.  

In describing the dimension of a community of practice that is the shared repertoire, Wenger 
emphasized the ways of doing and talking about things, as well as the reified written forms of 
its work. CMESG/GCEDM remained rather steady in size—about sixty people attending the 
annual meetings, with a core of regulars present every year—so the participative aspects of the 
community stayed quite constant over time. The only written trace of the annual meetings is 
the proceedings, but these do not always manage to convey the spirit of the annual get-togethers. 
One has to look further to obtain a sense of the reified repertoire of this national community, 
for example, to the publications of its members or to the journal For the Learning of 
Mathematics (FLM). This journal, which was established by David Wheeler in 1980, often 
published the texts of various contributions made at the annual CMESG/ GCEDM meetings. 
When David retired in the mid-1990s, the administration of the journal was handed over to 
CMESG/GCEDM. David (1997) emphasized, however, that the journal would not become the 
source of "Canadian news and views," but would continue to retain its international character. 
Nevertheless, the "Canadianness" of the journal was articulated by Bill Higginson in a special 
1997 "retirement of the founding editor" issue of FLM:  

Let me point to two other aspects of FLM that have loomed large for this reader. The 
first is the extent to which it has been for me a quintessentially Canadian publication 
in the best possible sense of that term. Partly that has been because of geography. The 
journal was born in the bilingual richness of Montréal (subliminally, I suspect that 
the real meaning of FLM is Front for the Liberation of Mathematics) and then, like 
many other institutions and individuals, succumbed to the siren call of mellower 
British Columbia. More importantly, however, are its close links with one of David 
Wheeler's other legacies, the Canadian Mathematics Education Study Group (Groupe 
Canadien d'Étude en Didactique des Mathématiques) the small but vital organization 
which he was instrumental in creating in the late 1970s. ... The other unique feature 
of FLM for me has been the extent to which it exemplifies what I would like 
mathematics education to be. I have always found the inside front cover proclamation 
of the journal's aims ("... to stimulate reflection on and study of ...") to be a succinct 
and graceful statement. (Higginson 1997, p. 18)  

Because of David Wheeler's influence on the Canadian community of mathematics education 
researchers from the 1970s to his passing in 2000, the above remarks of Higginson can be said 
to be related not merely to FLM; they relate as well to the spirit and to the "ways of doing and 
talking about things" of a national community whose emergence and development were 
stimulated by the founding of CMESG/GCEDM.  

The national community of mathematics education researchers and CMESG/GCEDM were not 
one and the same, even if it was difficult at times to disentangle them. But CMESG/ GCEDM 
encouraged community building and it was this community building that was so vital to the 
growth of a national community of mathematics education researchers. This is not to say that, 
when CMESG/GCEDM meetings were over, members did not return to their local communities 
and work at the continued development of these communities. But they also participated in a 
national community by, for example, collaborating in joint research teams with other 
Canadians, consulting on their research projects, coadvising doctoral students from other 
universities across the country, and organizing research colloquia and conferences with fellow 
Canadian researchers.  
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The annual meetings of CMESG/GCEDM continued to contribute to the emergence and later 
development of the national community of practice; however, there were additional events that 
played a role as well. One of these was the formation of the North American chapter of the 
International Group for the Psychology of Mathematics Education (PMENA), in which 
Canadians participated both as founders and regular contributing members. Another was the 
preparation for and participation in ICME-7, held in Québec City in 1992, an event that entailed 
the involvement in one form or another of all Canadian mathematics education researchers.  

The Canadian Mathematics Education Research Community at the End of the 
Twentieth Century  

The main focus of this paper has been a description of the events related to the emergence of 
the Canadian community of mathematics education researchers, an emergence which could be 
said to have occurred in the block of years from the mid-1960s to the mid-1980s. The discussion 
of those events also touched upon the period of preemergence prior to the mid- 1960s, as well 
as the years of continued development from the mid-1980s onward. What remains is to take a 
final look at the community in the 1990s.  

In 1993, Roberta Mura of Université Laval conducted a survey of all mathematics educators 
who were faculty members of Canadian universities in order to learn more about the community 
that they constituted. Mura (1998) stated that "since the vast majority of universities do not 
have mathematics education departments, 'mathematics educator' is a label that individual 
members of various departments may or may not choose to apply to themselves" (p. 106). She 
therefore sent questionnaires to all those whose names appeared in the CMESG/GCEDM 
mailing list or in the CMESG/GCEDM research monograph produced by Kieran and Dawson 
in 1992, as well as to any other university-based Canadian mathematics educators known to 
these recipients. Of the 158 questionnaires sent out, 106 were returned; of these, 63 were 
retained as they were considered to belong to the target population. To be retained, one had to 
have answered positively to both of the following questions: (a) Do you hold a tenured or 
tenure-track position at a Canadian university? and (b) Is mathematics education your primary 
field of research and teaching? (Mura estimated that the total number of Canadians satisfying 
these two conditions was about 100, coming from approximately twenty-eight universities 
across the country.)  

Mura reported that 44 of the 63 were men (70 percent). The mean age of the 63 respondents 
was fifty years, with a range from thirty to sixty-four. Forty-one of the respondents (65 percent) 
spoke English at work and 22 (35 percent), French. Of the 63 who did acknowledge 
mathematics education as their primary field, 47 (75 percent) worked in education departments, 
13 (21 percent) in mathematics departments, and three had joint appointments. Eleven of the 
13 employed in mathematics departments worked at two Québec universities, Concordia 
University and Université du Québec à Montréal, where mathematics education was a section 
of the mathematics departments. Concerning their education, 56 of the 63 respondents (89 
percent) held doctoral degrees—46 in education, eight in mathematics, and two in psychology. 
For 57 percent of the survey participants, their highest degree was from a Canadian university, 
while for 33 percent it was from a U.S. university (the remaining 10 percent were from various 
other countries). Regarding the supervision of doctoral students, 29 percent had directed the 
research of at least one doctoral student.  

Mura asked, "How do you define mathematics education?" In responding to this open-ended 
question, many referred to the goals of their field—some in theoretical terms, others in practical 
terms. Twenty-two respondents identified the aim of mathematics education in a way classified 
as "analyzing, understanding and explaining the phenomena of the teaching and learning of 
mathematics" (Mura 1998, p. 110). Twenty-one respondents assigned to mathematics education 
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the goal of improving the teaching of mathematics and the facilitation of its learning. But Mura 
pointed out that these two identified goals are not mutually exclusive:  

In fact, four respondents integrated elements of both tendencies in their definitions of 
mathematics education. Contrary to what one might expect, even withdrawing these 
four individuals, the group who expressed a theoretical orientation and the group who 
expressed a practical orientation do not differ substantially from each other in their 
involvement in research as measured by the number of publications and 
communications, the number of theses supervised and manuscripts reviewed, 
membership in editorial boards, participation in joint research projects, co-authored 
publications and exchange of information with colleagues in Canada and abroad. (p. 
110)  

Despite some intersection of goals, the main characteristic of the community as uncovered by 
Mura was its diversity: "Le portrait dessiné par les résultats de l'enquête est celui d'une 
communauté professionnelle diversifiée" ["The portrait drawn by the survey's results is that of 
a diversified professional community"] (Mura 1994, p. 112). This diversity was based partially 
on the fact that the Canadian community consisted of both Anglophones and francophones, 
each group having a different history that was clearly related to the school systems in which 
many of them taught before becoming university academics. But diversity also existed within 
the strictly Anglophone communities of practice where various perspectives on what was 
important in mathematics education existed. Another facet of the community's heterogeneity 
was related to the fact that it included persons who were trained as mathematicians but who 
considered mathematics education to be their primary field of research and teaching. Many of 
these individuals tended to focus their research on the learning of mathematics by 
undergraduate students (e.g., Muller 1991; Taylor 1985). Consequently, they often reported 
their research at meetings of mathematicians, such as the Canadian Mathematical Society or 
the Mathematical Association of America. These researchers also published their work more 
often in the journals and monographs of those mathematical societies than in the usual 
mathematics education research periodicals. Wenger (1998) argued that it is the community 
that creates its own practice. In this regard, the community of mathematics education 
researchers that was created in Canada was one whose practice was markedly characterized by 
diversity.  

However, the multifaceted nature of the Canadian community was not attributable solely to 
linguistic factors or to the discipline of initial training. There were also differences among 
Canadian mathematics education researchers that were related to the theoretical tools they used 
for framing research questions and for analyzing data. Some of these differences were evident 
from the 1980s in, for example, the theoretical perspectives held by U of A researchers. But, 
the variety of theoretical perspectives increased even more across the Canadian mathematics 
education landscape during the 1990s when a widespread shift toward theorizing occurred. One 
of the indicators of this shift was the mix of espoused theoretical positions that were discussed 
within the 1994 CMESG/GCEDM working group on "Theories and Theorizing in Mathematics 
Education" (led by Tom Kieren and Olive Chapman). Much of the previous research of the 
Canadian community had tended by and large to be Piagetian in spirit, often focusing on 
constructivism, cognitive conflict, and epistemological obstacles, and usually paying less 
attention to the role of cultural and social factors. But in the 1990s, theoretical frameworks 
broadened considerably to include, for example, Vygotsky's socio-cultural psychology, 
Brousseau's theory of didactical situations, and the interactionist perspective of Bauersfeld—a 
shift that could also been seen on the international scene.  

As the 1990s ended, there could not be said to be one perspective that characterized the 
Canadian community of mathematics education researchers. Even though it was possible to 
speak in the 1990s of a French or Italian or German school of thought in mathematics education 
research, there was no such single view in the Canadian community. The Canadian community 



2002  Topic Session 

276 

of mathematics education researchers was basically quite eclectic with respect to theories and 
theorizing. However, theoretical sameness, even though it may exist in a community of research 
practice, is not required, for, as Wenger (1998) argued, "If what makes a community of practice 
is mutual engagement, then it is a kind of community that does not entail homogeneity; indeed, 
what makes engagement in practice possible and productive is as much a matter of diversity as 
it is a matter of homogeneity."  
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LESSONS FROM THE PAST, QUESTIONS FOR THE FUTURE: 
MÉDITATION SUR THÈME IMPOSÉ 

Roberta Mura 
Université Laval 

Cette présentation thématique a été retenue pour la profondeur de la réflexion qu'elle suscite chez le 
lecteur, mais aussi parce que son thème peut être relié à celui de la rencontre du GCEDM 2016. En 
2002, à Queen's, à l'occasion de la 25e rencontre du GCEDM, Roberta Mura, mathématicienne de 
formation et chercheure établie en didactique des mathématiques au Canada, est invitée par le comité 
exécutif à faire une présentation sur le thème «Leçons du passé, questions pour l'avenir». Elle donne 
rapidement le ton à sa présentation, tant à l'oral qu'à l'écrit : «Lessons from the past ? We don't learn 
any (...) Nous répétons toujours les mêmes erreurs» ! Le texte, provocateur, s'adresse à toute personne 
intéressée par l'enseignement des mathématiques et par les divers développements dans ce domaine. 

This presentation was selected for the depth of the reflection it arouses in the reader, as well as because 
its theme can be connected to the 2016 CMESG meeting. In 2002, on the occasion of the 25th meeting 
of CMESG, Roberta Mura, mathematician, researcher, and prominent mathematics educator, was 
invited by the Executive Committee to make a presentation on "Lessons from the past, questions for 
the future". With her statement, "Lessons from the past? We do not learn any (...) We always repeat 
the same mistakes", she quickly sets the tone for both the presentation and the text that follows. The 
text is provocative and is for anyone interested in the teaching of mathematics and its various 
developments. 

 

INTRODUCTION  
Perchè — quando si è sbagliato — si dice « un'altra volta saprò comee far »  

quando si dovrebbe dire: « un'altra volta so già come farò? »  

– Cesare Pavese, Il mestiere di vivere19 

Ma première réaction au titre proposé a été : « Lesson from the past? We don't learn any! » 
Nous n'apprenons rien de nos expériences passées, encore moins de celles des autres, nous 
répétons toujours les mêmes erreurs. (Je ne suis pas d'un naturel optimiste, Pavese ne l'était pas 
non plus.)  

Après réflexion, pourtant, j'ai dû admettre que cette conclusion ne pouvait être tout à fait 
acceptable, puisqu'elle était elle-même le fruit d'expériences passées et constituait donc bel et 
bien une leçon du passé, fût-elle la seule!  

« Apprendre une leçon » peut signifier simplement « savoir que les choses sont ainsi » et pas 
nécessairement « modifier son comportement ». Il fallait distinguer les deux sens de cette 
expression.  

L'échec de ma première leçon m'en suggérait immédiatement une seconde — c'est-àdire une 
première, puisque la précédente n'en était plus une : méfions-nous des déclarations trop 
                                                 
19 Cesare Pavese, Il mestiere di vivere (Diario 1935-1950), Torino, Giulio Einaudi editore, 1964, p. 99. Il 
s’agit de l’entrée datée du 25 avril 1938 : « Poquroi — quand on s’est tormpé — diton « une auter fois, je 
saurai comment faire », quand on devrait dier : « une auet rfois, je sais déjà comment je ferai »? » Cesear 
Pavese, Le métier de vivre, traduit de l’italien par Michel Arnaud, Paris, Gallimard, 1987, p. 120. 
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catégoriques! Ce n'est pas une leçon spécialement agréable; il est bien moins fatigant de penser 
et de s'exprimer sans nuances. Les démagogues le savent bien : la nuance confond le public et 
entrave l'action. Toutefois, justement, nous avons affaire à l'éducation et non à la démagogie. 
Si ma leçon permet de distinguer les deux, c'est bon signe.  

J'ai bien senti le danger que cette nouvelle leçon ne se retourne contre elle-même, comme la 
première : n'était-elle pas justement une déclaration un peu tr op nette? Sans doute que si, mais 
j'ai voulu résister à la tentation de m'enliser dans ce terrain.  

On ne peut donc pas nier l'existence de leçons du passé. Reprenons alors avec plus de calme et 
un brin d'optimisme.  

INTRODUCTION, PRISE DEUX  

If I have seen farther than others, it is because  
I have stood on the shoulders of giants.  

– Isaac Newton  

Que nous enseigne le passé? D'abord, qu'il est passé. Nous pouvons le regretter ou nous en 
réjouir, c'est selon. Toutefois, dans bien des cas, avec le passage du temps, nos jugements sur 
les événements et sur les courants de pensée se modifient, des certitudes se lézardent et 
s'effritent, des théories sur l'éducation sont supplantées par d'autres, parfois davantage à cause 
d'un changement de valeurs que de nouvelles découvertes. Il est prudent alors de ne pas trop 
s'attacher aux idées du présent, de s'abstenir d'opinions trop tranchées et de croyances trop 
fermes, de ne pas se lier, corps, coeur et âme, à une conception particulière de l'enseignement 
des mathématiques.  

La vision cumulative de la science évoquée par la citation de Newton n'est pas au goût du jour. 
On a critiqué la vision absolutiste des mathématiques; la même critique doit s'adresser à une 
vision absolutiste de la philosophie et de la didactique des mathématiques. Si les mathématiques 
ne peuvent livrer la vérité et ne peuvent aspirer à la permanence, la philosophie et la didactique 
des mathématiques le peuvent encore moins (y compris lorsqu'elles rejettent une vision 
absolutiste..., mais résistons à la tentation de nous enliser!). Ce qui, aujourd'hui, nous apparaît 
comme la vérité et le bon sens en matière d'enseignement pourra fort bien être perçu comme 
erroné et ridicule dans quelques années. Je vous propose une expérience : songez aux théories 
passées de mode (positivisme, modernisme, behaviorisme, structuralisme, etc.) et au jugement 
que vous portez sur elles. Essayez ensuite de vous placer d'un point de vue futur et de regarder 
de ce point de vue les théories en vogue actuellement, essayez d'imaginer ce que l'on en dira 
dans 10 ans, dans 30 ans ou dans un siècle... Toutes les générations ont cru être sur la bonne 
piste et ont estimé que leurs prédécesseurs s'étaient fourvoyés. Pouvons-nous penser 
sérieusement que nous sommes l'exception, que nous ne faisons pas fausse route, que notre 
piste est réellement la bonne? La contemplation du sort des théories passées nous incite à la 
prudence, à l'humilité et au nonattachement (avec modération!). Voilà donc ma leçon du passé 
: il nous faut regarder nos croyances avec du recul et éviter de les prendre trop au sérieux, de 
nous prendre trop au sérieux.  

D'une part, donc, il semble difficile, en didactique, de se tenir « debout sur les épaules de géants 
» et d'imaginer les générations futur es debout sur les nôtres. D'autre part, comment y renoncer? 
Quelle serait la valeur d'une discipline où nous rejetterions systématiquement la vision de nos 
prédécesseurs pour voir ensuite la nôtre mise de coté à son tour par nos successeurs? Ne 
finirions-nous pas par tourner en rond? N'est-ce pas, du moins un peu, ce que nous faisons? 
Peut-être, en didactique — et plus généralement en éducation — avons-nous un peu trop soif 
de changement et souvent tendance à procéder par réaction, à nous définir par opposition à une 
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théorie précédente, ou concurrente, que nous érigeons en rivale et que nous « démonisons » 
pour nous justifier de la condamner en bloc. Cette attitude est au coeur du drame cyclique de la 
réforme des programmes, dont le scénario pourrait se résumer comme suit :  

1. On juge la situation catastrophique : on prétend qu'au sortir de l'école les élèves ne 
savent pas grand-chose et comprennent encore moins, que leurs connaissances sont 
désuètes, inutiles et inapplicables, que l'école ne fournit de préparation convenable ni 
à la vie ni aux études supérieures. On crie au scandale. Il est toujours possible de 
dresser un constat d'échec, peu importe la situation : tout est dans la façon de s'y 
prendre pour observer et mesurer le phénomène;  

2. On cherche un coupable. On impute le désastre au curriculum (on pourrait aussi mettre 
en cause la compétence du personnel enseignant, ce qui renverrait aux faiblesses des 
programmes de formation des maîtres);  

3. On produit un nouveau curriculum en réaction au précédent : on le définit par 
contraste, on raisonne par dichotomies et on propose des ruptures radicales. On fait 
table rase. On risque alors de donner aux nouvelles idées, bonnes en soi, une 
application d'une étendue exagérée, qui les pervertit et les voue à l'échec à leur tour. 
Comme on dirait en didactique, on les pousse au-delà de leur « domaine de validité »;  

4. On implante le nouveau curriculum, souvent rapidement, et on l'évalue, fréquemment 
de façon prématurée, sans tenir compte du temps nécessaire à un changement en 
profondeur. (La patience est une autre leçon qu'il nous faudrait apprendre du passé.) Il 
s'en suit un nouveau constat d'échec et une reprise du cycle20.  

Peut-être qu'une certaine humilité et un peu de détachement à l'égard de nos propres idées nous 
prédisposeraient à percevoir dans les théories concurrentes autre chose que des défauts et à 
profiter de tout élément utile qu'elles pourraient contenir; cela nous aiderait également à ne pas 
vouloir pousser nos idées au-delà de leurs limites et à prévenir ainsi de nouveaux dégâts ou, du 
moins, à les circonscrire.  

L'enseignement, nous disait David Wheeler il y a quatre ans, est une sorte de bricolage, ce n'est 
pas une science, car cela suppose un consensus sur des théories de base qui est loin d'être atteint, 
si jamais il devait l'être21. J'avais lu une mise en garde similaire dans un petit livre que m'avait 
offert Fernand Lemay, un de mes collègues qui se sont chargés de ma formation en didactique. 
Dans cet ouvrage22, Krishnamurti soutenait qu'aucune méthode ni système ne peut fournir la 
bonne sorte d'éducation (p. 23). Il recommandait de ne pas penser selon des principes et de ne 
pas suivre de méthode, car, selon lui, cela conduit à accorder plus d'importance à la méthode 
qu'à la réalité des élèves (p. 25).  

Dans ce qui suit, je développerai cette méditation sur les vicissitudes de l'enseignement des 
mathématiques à la lumière de la leçon que j'ai dégagée du passé, en prenant comme point de 
départ mon histoire personnelle.  

L'ENSEIGNEMENT DES MATHÉMATIQUES : LES MATHS MODERNES, LA 
RÉFORME DES PROGRAMMES ET LA TRADITION 

                                                 
20 Parfois, comme l’a rappelé Lesley Lee lors de la période de discussion, ce scénario n’est pas suivi et on 
lance une réforme sans fournir de justification. Une culture qui valorise le changement et la nouveauté fait 
que cette pratique rencontre peu d’opposition. 
21 David Wheeler, « The commonsense of teaching », danYsv onne M. Pothier (dir.), Proceedings of the 
Annual Meeting of the Canadian Mathematics Education Study Group, University of British Columbia, 
May 29–June 2, 1998, Mount Saint Vincent University Press, 1998, p. 98. 
22 J. Krishnamurti, Education & the Significance of Life, San Francisco, Harper & Row, 1981/1953, p. 
125. 
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 Le traité prend les mathématiques à leur début, et donne des démonstrations  
complètes. Sa lecture ne suppose donc, en principe, aucune connaissance  

mathématique particulière, mais seulement une certaine habitude du  
raisonnement mathématique et un certain pouvoir d'abstraction.  

– N. Bourbaki, Éléments de mathématique, Mode d'emploi de ce traité  

Mon tout premier contact avec la didactique des mathématiques, à part mes expériences comme 
élève, a eu lieu dans le contexte de la réforme des maths modernes, vers la fin des années 60. 
J'étudiais les mathématiques à l'université, en Italie, et l'on m'avait invitée à donner quelques 
heures de cours dans le contexte d'une activité de perfectionnement d'enseignantes et 
d'enseignants. Je devais leur parler d'ensembles, de relations d'équivalence et d'autres notions 
de ce genre.  

J'étais pleine d'enthousiasme pour ces idées que je venais de découvrir, j'étais heureuse de les 
partager, et le projet de les introduire à l'école me paraissait bon, car il me semblait répondre à 
un besoin réel. Je me souvenais, par exemple, d'avoir été frustrée, au secondaire, par l'absence 
d'une définition du mot « fonction ». Il y avait les polynômes, les fonctions trigonométriques, 
les logarithmes et les exponentielles. En existait-il d'autres? On me disait que oui. Cependant, 
qu'est-ce que c'était une fonction au juste? Mystère! C'est seulement à l'université que l'on 
m'avait enfin révélé qu'une fonction était une correspondance univoque entre deux ensembles. 
(À l'apogée des maths modernes, on envisagera d'enseigner cela au préscolaire!) Cette 
définition m'avait libérée d'un long malaise. Un peu plus tard j'ai pris connaissance d'une 
variante de cette définition, à savoir qu'une fonction est un sous-ensemble du produit de deux 
ensembles respectant certaines conditions, et cette autre formulation m'avait plu également, non 
seulement parce qu'elle faisait ressortir le lien avec l'idée familière de graphique, mais aussi 
parce qu'elle livrait d'emblée la fonction tout entière et qu'elle ne contenait aucune suggestion 
de mouvement (comme ce va-et-vient entre les deux ensembles suggéré par le mot « 
correspondance » dans la première formulation). Je trouvais cela satisfaisant et apaisant.  

En fait, la teneur en maths modernes de mon éducation a été très faible : nulle à l'école, 
relativement modeste à l'université. Si j'en ai appris un peu plus, c'est en raison de mon initiative 
personnelle de tenter de lire, je dis bien « tenter », ce fameux traité qui ne supposait, en principe, 
aucune connaissance mathématique particulière. Cela a été frustrant, bien sûr, mais je n'ai pas 
été rebutée par la chose comme d'autres qui en ont été gavés en bas âge. Au contraire, je me 
souviens de moments de réel plaisir, comme lorsque j'ai lu qu'un couple (a,b) pouvait se définir 
comme l'ensemble {a,{a,b}}. Jusque-là, la notion de couple m'avait agacée, puisque je ne 
voyais pas comment distinguer (a,b) de (b,a) sans importer en mathématique des notions 
physiques telles que « droite » et « gauche » ou « avant » et « après » (j'ai toujours aimé mes 
mathématiques très peurs)23.  

Aujourd'hui, il est rare que l'on ne qualifie pas de « faillite » le mouvement des maths modernes 
et le discours structuraliste qui le sous-tendait. Les exposés systématiques, genre « axiomes, 
définitions, théorèmes, démonstrations », qu'il s'agisse des Éléments d'Euclide ou de ceux de 
Bourbaki, sont donnés comme exemple d'une mauvaise approche didactique. Pourtant, la 
motivation, du moins la motivation initiale, derrière ces traités était d'ordre didactique24. Leur 

                                                 
23 Voilà une autre leçon du passé, du moins de mon passé : l’appr entissage qui fait le plus plaisir est 
habituellement celui qui résout un malaise préexistant, ou satisfait une curiosité préexistante. 
24 Frédéric Patras, La pensée mathématique contemporaine, Paris, Presses universitaires de France, 2001, 
p. 16; Maurice Mashaal, « Bourbaki. Une société secrète de mathématiciens. Un groupe se forme »P, our 
la science, fév.-mai 2000, p. 6–9L; e matin des mathématiciens, entretiens sur l’histoire des 
mathématiques présentés par Émile Noël, Paris, Éditions Belin-Radio France, 1985, p. 43. 
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but était de présenter les concepts et les résultats de base d'une discipline, de façon cohérente, 
claire et ordonnée, avec un degré optimal (pas nécessairement maximal) de généralité.  

N'est-ce pas là des intentions louables? Où est l'erreur? Je ne m'y attarderai pas longtemps, car 
les critiques sont bien connues : les maths modernes ont donné lieu à de nombreux excès et 
dérives, mais, même sans cela, cette approche, qui aspirait pourtant à introduire à l'école des « 
vraies » mathématiques, des mathématiques alignées sur celles qui se pratiquaient à l'université, 
avait le défaut d'offrir aux élèves un savoir achevé, sans leur montrer par quels chemins on en 
arrivait à s'intéresser à telle question, à la circonscrire au moyen de tels concepts, définis de 
telle manière. Elle occultait les raisons du choix des définitions et des axiomes, qui pouvaient 
paraître alors purement gratuits. Les problèmes auxquels répondaient les théorèmes, les cas 
particuliers à partir desquels on avait bâti abstractions et généralisations, les stratégies qui 
avaient permis d'obtenir les résultats, bref tout le processus de création, demeuraient cachés.  

Il fallait donc (re)donner aux élèves la chance de se familiariser avec ce processus, de faire 
appel à leur intuition, d'élaborer les concepts de façon graduelle et de tenter de résoudre des 
problèmes. Il fallait leur permettre de passer par toutes les étapes qu'une présentation 
axiomatique les forçait à sauter. Cependant, cet excellent programme risque lui aussi de 
provoquer des effets pervers, notamment en conduisant à dévaloriser, voire éliminer, l'étape 
finale de systématisation et d'organisation du savoir.  

L'indignation contre l'erreur des maths modernes et l'engouement pour la résolution de 
problèmes ont entraîné une certaine indifférence, presque de la méfiance, à l'égard de tout ce 
qui est abstraction, théorie mathématique, système ordonné de résultats. Si avant on négligeait 
l'activité mathématique, le processus, maintenant on risque d'en oublier le produit. Voilà donc 
ma première question pour l'avenir : comment trouver et maintenir un juste équilibre entre les 
deux25? Dans la conjoncture actuelle, le défi me semble être d'éviter que les concepts demeurent 
au stade d'intuitions, emprisonnés dans des représentations qui ne devaient jouer qu'un rôle 
d'échafaudage26, et d'éviter que les résultats (les solutions des problèmes) s'accumulent sans 
que l'on se soucie de les organiser en structures.  

« Le mode d'exposition suivi est axiomatique et abstrait; il procède le plus souvent du général 
au particulier. »27 Aujourd'hui, cette façon de procéder et l'idée même d'« exposition » sont 
frappées d'anathème. L'orientation actuelle en didactique veut que l'on procède du particulier 
au général. Cela paraît avalisé autant par le bon sens que par la recherche. J'ai tout de même à 
ce sujet des préoccupations de deux ordres : 1) que la nouvelle façon de procéder soit appliquée 
correctement, que l'on prenne réellement le temps, que l'on fasse vraiment l'effort, de se rendre 
au « général », que l'on ne se perde pas dans la multitude des « particuliers »; 2) que l'on n'érige 
pas en dogme une façon unique de opérer. Même si pour l'instant elle semble être la meilleure, 
elle ne l'est sans doute pas pour tout le monde et en toute occasion.  

                                                 
25 D’après Frederick Leung, une plus grande attention accordée au produit, plutôt qu’au processus, est une 
des caractéristiques qui distinguent l’enseignement des mathématiques en Asie de l’Est (les pays de 
culture confucianiste) de celui qui se pratique en Occident (les pays anglo-saxons). Cette plus grande 
attention au produit, ainsi que tous les autres traits qui, selon Leung, définissent l’identité asiatique dans 
l’enseignement des mathématiques, me semble pourtant se retrouver aussi, avec autant de relief, dans la 
tradition « occidentale » : Frederick K.S. Leung, « In search of an East Asian identity in mathematics 
education », Educational Studies in Mathematics, vol. 47, no 1, 2001, p. 35–51. Par ailleurs, j’ai appris de 
mon collègue Christian Laville que, dans l’enseignement de l’histoire, il existe une tension similaire entre 
curriculums modernes centrés sur la pensée historique (le processus) et curriculums anciens centrés sur le 
récit historique (le produit). 
26 Roberta Mura, « L’épaisseur d’un décimètre carré »,La Revue canadienne de l’enseignement des 
sciences, des mathématiques et des technologies, vol. 1, no 3, 2001, p. 291–303. 
27 N. Bourbaki, Éléments de mathématique, Mode d’emploi de ce traité. 
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L'histoire devrait nous inciter à faire preuve de retenue. Nous reconnaissons aisément l'intérêt 
d'un principe de précaution en repensant à l'aventure des maths modernes et en nous disant : « 
Ils auraient dû... », mais le même principe vaut tout autant pour les tendances dominantes 
actuelles! Il est facile, maintenant, d'exhiber des horreurs tirées des manuels scolaires d'époques 
révolues28, mais mettons-nous à la place de nos collègues du futur et essayons de regarder le 
matériel didactique contemporain à travers leurs yeux. Peut-être pourrons-nous déjà entrevoir 
ce qui leur paraîtra risible. (Je pense, par exemple, à certaines « situations-problèmes 
significatives »...) Si nous avons de la difficulté à apprendre des leçons du passé, peut-être que 
voyager mentalement dans l'avenir pour regarder en arrière vers le présent pourra nous aider, 
pour ainsi dire, à apprendre des leçons du futur! 

• • • 

J'ai contrasté l'esprit des nouveaux programmes et celui des maths modernes, alors qu'il est plus 
courant de l'opposer à celui de l'enseignement dit « traditionnel ». Les maths modernes sont un 
épisode bien délimité dans l'histoire de la didactique, un adversaire déjà vaincu. L'ennemi par 
rapport auquel se définissent les nouvelles orientations est l'enseignement « traditionnel ». On 
le dépeint comme la transmission de faits et de techniques au niveau intellectuel le plus bas qui 
soit. Sans doute cela a-t-il existé, et malheureusement cela existé- il encore, mais supposer une 
uniformité dans la tradition plurimillénaire de l'enseignement des mathématiques est une 
simplification inacceptable. En fait, cette tradition contient déjà les principales idées qui 
animent la réforme actuelle.  

Il y a un siècle, par exemple, Mary Boole, épouse de George Boole, prônait et pratiquait déjà 
une approche par découverte29 :  

For mathematical purposes, all influence from without, which induces the pupils to 
admit a principle as valid before his own unbiased reason recognises its truth, come 
under the same condemnation (p. 9).  

Qualities of a teacher [...] Great reserve on the part of the teacher in even stating to 
pupils the special conclusions to which he has been led, lest he should arrest the 
normal exercise of their investigating faculties (p. 11).  

[The teacher's] object should be to efface himself, his books, and his systems; to draw 
aside a curtain from between the child and the process of discovery, and to leave the 
young soul alone with pure Truth (p. 14).  

L'auteure de ces propos n'était pas une visionnaire isolée. Au contraire, Boole fait allusion à des 
théories éducatives de son époque plus radicales que les siennes, condamnant tout apprentissage 
mécanique, théories dont elle se démarque en adoptant une position plus modérée, en 
reconnaissant, à côté de moments privilégiés d'apprentissage pleinement conscient, l'utilité de 
périodes d'entraînement (p. 15).  

Le caractère récurrent des préoccupations à propos de l'enseignement des mathématiques 
ressort bien d'un autre passage du même texte. Boole y rapporte l'indignation d'un professeur 
devant l'incapacité des étudiants à se servir de leurs connaissances mathématiques dans leurs 
études de génie ou de physique. Cela, poursuit-elle, a rallumé l'intérêt pour une question qui 
avait été négligée pendant une ou deux générations, mais qui avait retenu l'attention de savants 
60 ans plus tôt, à savoir (p. 20) : « What are the conditions which favour a vital knowledge of 

                                                 
28 Voir, par exemple, Maurice Mashaal, « Bourbaki. Une société secrète de mathématiciens. Les « maths 
modernes » à l’école » Pour la science, fév.-mai 2000, p. 83. 
29 D.G. Tahta, A Boolean Anthology. Selected Writings of Mary Boole on Mathematical Education, Derby, 
U.K., The Association of Teachers of Mathematics, 1972. Merci à David Pimm d’avoir cité ce texte dans 
un de ses articles et de m’avoir ainsi permis de le découvrir. 
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mathematics? ». L'idée de connaissances vivantes me semble très proche du discours 
contemporain sur la compétence à se servir des mathématiques dans des contextes variés.  

Un autre aspect des nouveaux programmes que l'on peut retracer dans la tradition concerne 
justement l'accent mis sur l'utilité des mathématiques. La part importante du « temps d'antenne 
» réservé aux mathématiques à l'école se justifie par le fait qu'elles « sont partout » et qu'elles 
sont devenues indispensables à la vie en société axer l'enseignement des mathématiques sur leur 
utilité n'était certainement pas le souci des promoteurs des maths modernes, mais ce n'est pas 
non plus une idée nouvelle. À ce propos, la tradition oscille entre deux pôles. D'une part, l'étude 
des mathématiques est conçue comme une poursuite intellectuelle gratuite, « pour l'honneur de 
l'esprit humain », comme l'écrivait Jacobi et le répétait Dieudonné30. Une anecdote célèbre 
illustre bien cette vision. On raconte qu'un élève, après avoir appris un théorème, a demandé à 
Euclide à quoi cela lui servirait. Euclide aurait ordonné alors à son esclave de donner une pièce 
de monnaie au garçon, puisque ce dernier avait besoin de tirer un avantage de ce qu'il 
apprenait31. L'objet de l'histoire est de promouvoir une attitude désintéressée et idéaliste envers 
le savoir. On peut y voir aussi, et dénoncer, une attitude arrogante et élitiste d'hommes 
privilégiés32, mais il reste que tout le monde est en droit d'aspirer à une part de loisir à consacrer, 
éventuellement, à la spéculation gratuite.  

D'autre part, la tradition comprend aussi, et depuis longtemps, une vision plus utilitaire des 
mathématiques. Sans parler des mathématiques babyloniennes qui s'exprimaient 
essentiellement par des problèmes de nature économique, même dans la Grèce classique, il 
semble que l'éducation mathématique des jeunes, jusqu'à 14 ans, avait une orientation surtout 
pratique33. Par la suite, pour les élèves de 14 à 18 ans, l'inclusion dans le curriculum de matières 
plus abstraites, comme l'astronomie et la géométrie, et les dangers d'en pousser l'étude trop loin 
faisaient l'objet de discussions. Platon, qui souhaitait enrichir le contenu mathématique des 
programmes d'études, citait la meilleure éducation des enfants égyptiens, ce qui n'est pas sans 
rappeler le rôle des comparaisons internationales dans les débats contemporains...  

Qu'est-ce donc que la tradition? Un héritage culturel précieux à chérir ou une tyrannie étouffante 
contre laquelle on doit se révolter si l'on veut progresser?  

Pour améliorer quoi que ce soit, nos conditions de vie ou l'enseignement des mathématiques, il 
faut innover (l'inverse n'est pas vrai), et pour innover, il faut s'écarter de la tradition, c'est 
évident. D'où la connotation négative du terme « traditionnel34 ». Cependant, une tradition aussi 
ancienne, riche et variée que celle de l'enseignement des mathématiques, une tradition qui 
contient tout et son contraire, n'est sans doute pas à mettre au rancart en bloc! Et, ne l'oublions 

                                                 
30 C.G.J. Jacobi, Gesammelte Werke, vol. 1, Berlin, 1881, cité par Frédéric Patras, op. cit., p. 4, note 4. 
Dieudonné a intitulé un de ses ouvrages Pour l’honneur de l’esprit humain : JeanA lexandre Dieudonné, 
Pour l’honneur de l’esprit humain : les mathématiques aujourd’hui , Paris, Hachette, 1987. 
31 Thomas L. Heath, Greek Mathematics, New York, Dover Publications, 1963, p. 10. 
32 On répète souvent et avec un peu trop de désinvolture que, si les mathématiques telles que nous les 
connaissons ont été façonnées dans la Grèce classique, c’est parce que les penseurs grecs étaient « des 
hommes libers » : Denis GuedLje, théorème du perroquet, Paris, Éditions duSeuil, 1998, p. 179, cité par 
Bernard Hodgson, « Pourquoi enseigner les mathématiques à tous ? », dans Elaine Simmt, Benrt Davis et 
John Grant McLoughlin (dir.), Proceedings of the Annual Meeting of the Canadian Mathematics 
Education Study Group, Université du Québec à Montréal, May 26–30, 2000, p. 164. Lorsqu’on tient des 
pr opos de ce genre, il faudrait prendre soin de ne pas contribuer à perpétuer une image idéalisée de cette 
société antique et rappeler que ces « hommes libres » devaient leur liberté non pas à une supposée 
démocratie, mais au travail des femmes et des esclaves. 
33 Thomas L. Heath, op. cit., p. 7–10. 
34 Dans d’autres contextes, pourtant — dans l’artisanat par exemple — ce terme n’a pas la même 
connotation. 
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pas, même ce qui nous semble dépassé pourra être revalorisé plus tard. Pensons au domaine 
artistique, où les styles sont constamment réévalués.  

Il en va ainsi, en éducation, des valeurs et des méthodes d'enseignement. Il ne faudrait alors 
peut-être pas oublier entièrement certaines valeurs démodées, telles la clarté et la vérité. La 
clarté était jadis parmi les qualités considérées comme les plus désirables pour l'enseignement. 
Quant à la vérité, elle a été, traditionnellement, la qualité idéale de la connaissance attendue par 
les élèves et dispensée par les maîtres. C'était ce que j'attendais et recherchais quand j'étais 
élève. Cela n'exclut pas l'esprit critique; au contraire, celui-ci doit être bien éveillé pour tester 
la vérité des connaissances proposées. Si l'école renonce à dispenser la vérité, elle laissera un 
vide, un désir insatisfait qu'il faudra combler par d'autres moyens. D'ailleurs, que cherchons-
nous lorsque nous faisons de la recherche, si ce ne sont des connaissances vraies? Bien sûr, 
dans le domaine intellectuel, la vérité n'est pas absolue, elle varie selon les points de vue, mais 
cette affirmation aussi est une vérité. L'existence de plusieurs niveaux de vérité et son caractère 
relatif n'impliquent pas que ce concept soit dépourvu d'intérêt.  

Il ne faudrait pas écarter non plus la possibilité de façons d'apprendre autres que celles qui 
tiennent actuellement la vedette, soit la résolution de problèmes, la recherche personnelle ou 
collective, l'exploration, la découverte et la discussion. Il n'est pas impossible d'apprendre aussi 
par l'écoute, l'observation, l'imitation, la lecture, l'entraînement, la pratique, voire la 
mémorisation35. N'avons-nous pas appris nous-mêmes par un mélange de ces approches? 
Pourquoi rejeter ce qui a fonctionné pour nous? Personnellement, je crois que j'ai beaucoup 
appris des livres. À l'occasion, même de livres qui se situaient au-delà de ma « zone de 
développement proximale ». Je ne comprenais pas, mais je voulais comprendre, je me disais 
qu'un jour je comprendrais. Ces livres constituaient pour moi un but, un horizon vers lequel 
marcher.  

En somme, pour ce qui est de la tradition, il me semble qu'un regard sur l'histoire, même un 
regard sur quelques fragments seulement, nous incite à faire preuve de prudence, d'une part, 
afin de ne pas créer une image stéréotypée de ce qu'est la tradition de l'enseignement des 
mathématiques et, d'autre part, afin de ne pas rejeter entièrement et définitivement des éléments 
de cette tradition qui pourraient s'avérer encore profitables.  

• • • 

Revenons maintenant à la réforme actuelle des programmes. J'ai parlé de l'importance de 
rechercher un équilibre entre processus et produit, entre créativité et systématisation du savoir. 
Une autre problématique où prudence et modération me semblent nécessaires concerne 
l'utilisation des mathématiques. La question que je voudrais poser à l'avenir à ce sujet est la 
suivante : comment éviter l'abus des mathématiques, la mathématisation à outrance, à tort et à 
travers? Y a-t-il moyen de contrer cette tendance par l'éducation? La nouvelle insistance sur les 
situations-problèmes favorisera-t-elle une attitude critique à ce propos ou, au contraire, 
contribuera-t-elle à empirer la situation?  

                                                 
35 Selon Leung (voir la note 7), le rôle accordé à la mémorisation, même avant qu’une pleine 
compréhension soit atteinte, est le deuxième aspect qui caractérise l’enseignement des mathématiques en 
Asie de l’Est par rapport à ce qui se fait en Occident. Le troisième élément est la vision de l’étude comme 
un travail sérieux, difficile et pénible. Leung contraste cela et la recherche, en Occident, d’une manière 
d’apprendre qui soit agréable, voire amusante. Encore une fois, je noterais que les caractéristiques que 
Leung attribue à la vision occidentale de l’enseignement des mathématiques n’en résument pas toute la 
tradition, celle-ci comprenant également des courants qui accordent autant d’importance aux aspects que 
cet auteur considère comme typiques de l’approche asiatique. Il suffit de penser, par exemple, à la célèbre 
réponse de Ménechme à Alexandre (ou d’Euclide à Ptolomée) à savoir qu’il n’existe pas de chemin royal 
en géométrie : Thomas L. Heath,o p. cit., p. 158. 
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Je ne veux pas parler ici de la fabrication d'armes, du clonage de monstres ou de la survente de 
billets d'avion. Une éducation critique peut sensibiliser au rôle des mathématiques dans tout 
cela, mais je doute que la didactique offre des moyens d'endiguer le mal. Le problème que je 
veux soulever est moins grave, mais quand même irritant et davantage de notre ressort. Il s'agit 
de l'emploi de formules, d'images ou de termes mathématiques à mauvais escient, là où ils 
n'apportent rien à la compréhension d'une situation et deviennent même une source de 
confusion. Cette pratique revient, encore une fois, à pousser trop loin une bonne idée et nuit au 
projet de montrer aux élèves l'utilité des mathématiques et de leur apprendre à s'en servir.  

La prolifération de schémas inspirés des maths modernes en constitue un exemple anodin, mais 
typique. Désormais, il ne reste plus rien, à l'école primaire (et bien peu au secondaire), de ces 
notions de théorie des ensembles qui ont été la marque de commerce des maths modernes et la 
cible des railleries de leurs détracteurs36. Entre-temps, par contre, certains éléments du langage 
graphique qui les accompagnait, comme les diagrammes de Venn, sont passés, dénués de leur 
sens, dans l'usage courant. Ironiquement, on en trouve de nombreux exemples parmi les 
illustrations du nouveau programme pour le préscolaire et le primaire au Québec37, programme 
qui, justement, a évacué du contenu d'étude les dernières traces de ce langage! Loin d'éclairer 
quoi que ce soit, la plupart de ces ovales et de ces flèches jouent, au mieux, un rôle purement 
décoratif. Souvent ils trahissent et encouragent un flou intellectuel qui se traduit par des 
schémas dans lesquels des flèches colorées remplacent des connexions logiques que l'on aurait 
du mal à expliciter.  

Pourquoi s'inquiéter de ces pratiques maintenant, à l'heure de l'implantation d'un curriculum qui 
met l'accent justement sur l'utilisation des mathématiques? Celui-ci ne devrait-il pas éduquer à 
en faire un usage judicieux? En principe, oui. Cependant, les contextes qui se prêtent à des 
activités adaptées aux élèves et dans lesquels les mathématiques jouent un rôle véritablement 
significatif ne sont pas si faciles à trouver. Je crains — à tort, je l'espère — que devant cette 
pénurie on ne se rabatte sur des situations artificielles où l'on plaque des éléments 
mathématiques sans trop se soucier de la pertinence de l'opération, comme l'on met des schémas 
inspirés des diagrammes de Venn en guise d'illustration d'un texte.  

Ne nous faisons pas d'illusions, l'introduction à l'école des mathématiques appliquées, pour ne 
parler que de cet aspect de la réforme actuelle, demande au personnel enseignant un effort 
majeur de perfectionnement, un effort comparable à celui qui a été exigé à l'époque par les 
maths modernes. Je me souviens encore très bien du sentiment d'incompétence que j'ai éprouvé 
au début de ma carrière lorsque j'enseignais la géométrie projective et que des étudiants 
d'architecture m'ont posé une question pratique, portant sur la couverture d'un toit. J'ai oublié 
la question, mais je me rappelle que je me suis sentie paralysée, entièrement dépourvue de 
moyens pour aborder une question de ce genre. Je crois que beaucoup d'enseignants et 
d'enseignantes n'ont pas plus de préparation à cet égard, aujourd'hui, que je n'en avais alors, 
après quatre ans de spécialisation en mathématiques, ou que leurs collègues d'antan n'en avaient 
sur la théorie des ensembles, l'algèbre linéaire et l'algèbre abstraite.  

C'est le moment de tirer profit des leçons de l'histoire. Le perfectionnement est indispensable, 
mais il n'est pas suffisant pour le déploiement optimal d'un curriculum radicalement nouveau. 
S'il est vrai, comme l'a rappelé Vicki Zack dans un commentaire écrit remis à la fin de la séance, 
que l'on peut apprendre, changer et se développer tout au long de sa vie, je pense que ce ne 
seront pas tous les enseignants et les enseignantes qui le feront, et qu'il est parfois difficile de 

                                                 
36 Voir par exemple la caricature intitulée « Intersection d’un bébé et d’une pomme de terre », dans Didier 
Nordon, Les mathématiques pures n’existent pas!, Paris, Actes Sud, 1981, p. 6. 
37 Ministère de l’Éducation du Québec, Programme de formation de l’école québécoise. Éducation 
préscolaire. Enseignement primaire, 2001. Voir tous les schémas, notamment ceux des pages 8, 43, 99, 
125, 197, 253 et 257. 
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se débarrasser d'habitudes acquises dans sa jeunesse. Ce n'est que lorsqu'une génération entière 
d'enseignantes et d'enseignants aura reçu une formation initiale en accord avec le nouveau 
curriculum que celui-ci pourra donner sa pleine mesure. D'ici là, il faudra traverser quelques 
décennies de transition pendant lesquelles la plupart des maîtres n'en sauront pas beaucoup plus 
que ce qui se trouve dans les manuels de leurs élèves et garderont une vision des mathématiques 
et de leur enseignement plus ou moins décalée par rapport aux nouvelles orientations. Dans le 
passé, nous n'avons pas eu la patience d'attendre une si longue période. L'aurons-nous cette fois-
ci? Choisirons-nous d'endurer les ratés inévitables et de les corriger graduellement ou en ferons-
nous un argument pour condamner la réforme et changer de cap une fois de plus?  

CONCLUSION  

A popular misconception is that we can't change the past— 
everyone is constantly changing their own past, recalling it, 

revising it. What really happened? A meaningless question. But 
one I keep trying to answer, knowing there is no answer.  

– Margaret Laurence, The Diviners38 

Tirer des leçons de l'histoire est une démarche éminemment subjective, qui consiste à interpréter 
des souvenirs. Encore faut-il que ces derniers soient disponibles. Malheureusement, la mémoire 
humaine est tout sauf fiable et les documents se révèlent souvent ambigus ou incomplets, 
certains ayant été perdus ou détruits, d'autres étant devenus indéchiffrables, sans compter toutes 
les pensées et tous les événements qui n'ont pas été enregistrés et dont la mémoire ne s'est pas 
transmise. Nous ne saurons jamais ce qui s'est passé dans toutes les classes de mathématiques 
et quels en ont été les effets. Les souvenirs que nous interprétons posent eux-mêmes problème. 
L'incertitude n'est pas l'apanage de l'avenir.  

La prudence est donc souhaitable, aussi, lorsque nous reconstruisons le passé. Difficile de savoir 
ce qui est arrivé « en réalité », si tant est que la question ait un sens. Nous suivons notre tendance 
à créer des récits cohérents, et cela nous permet d'y lire des leçons. Je vous en ai proposé une, 
à vous maintenant de fouiller dans vos souvenirs pour en trouver d'autres.  

 

                                                 
38 Margaret Laurence, The Diviners, Toronto, McClelland & Stewart, 1988/1974, p. 70. 
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BUILDING THINKING CLASSROOMS: CONDITIONS FOR 
PROBLEM SOLVING39  

Peter Liljedahl  
Simon Fraser University  

This topic session was chosen because it is representative of the many levels and overreaching 
applicability of the topics discussed at CMESG. The response and composition of the audience, from 
practicing secondary teachers to grad students to university professors, speaks to the relevance and 
resonance of the findings. Conversations were sparked that continued beyond the temporal boundaries 
of the conference. This topic session has significance for all, not only those who attended. 

Cette séance thématique a été choisie parce qu'elle convient aux nombreux niveaux scolaires ainsi 
qu’aux variétés de sujets abordés au GCEDM. La réaction et la composition du public, qui incluait des 
enseignants de mathématiques du secondaire, des étudiants de doctorat, ainsi que des professeurs 
universitaires, démontrent la pertinence de cette approche. Certains échanges amorcés en cours de 
séance se sont poursuivis au-delà des limites temporelles de la rencontre annuelle. Cette session 
thématique est pertinente pour tous, et non uniquement pour ceux qui étaient présents. 

 

In this session, I first introduce the notion of a thinking classroom and then present the 
results of over ten years of research done on the development and maintenance of 
thinking classrooms. Using a narrative style, I tell the story of how a series of failed 
experiences in promoting problem solving in the classroom led first to the notion of a 
thinking classroom and then to a research project designed to find ways to help teachers 
build such a classroom. Results indicate that there are a number of relatively easy-to-
implement teaching practices that can bypass the normative behaviours of many 
classrooms and begin the process of developing a thinking classroom.  

MOTIVATION  
My work on this paper began over 10 years ago when I was observing a grade 7/8 teacher 
introducing problem solving into her teaching for the first time. Problem solving was something 
that, at the time, was becoming more and more prominent in the BC curriculum, and Ms. Ahn 
was interested in incorporating it into her classroom. Despite her best intentions the results were 
abysmal. The students gave up almost as soon as the problem was presented to them and they 
resisted her efforts and encouragement to persist. After three days of constant struggle, Ms. Ahn 
and I both agreed that it was time to abandon these efforts. Wanting to better understand why 
our well-intentioned efforts had failed, I decided to observe Ms. Ahn teach her class using her 
regular style of instruction.  

That the students were lacking in effort was immediately obvious, but what took time to 
manifest was the realization that what was missing in this classroom was that the students were 
not being asked to think. More alarming was that Ms. Ahn's teaching was predicated on an 
assumption that the students either could not, or would not, think. The classroom norms that 

                                                 
39 An extended version of this article, including research on teacher uptake, can be found in Liljedahl (in 
press). 
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had been established in Ms. Ahn's class had resulted in, what I now refer to as, a non-thinking 
classroom. Once I realized this, I proceeded to visit other mathematics classes—first in the 
same school and then in other schools. In each class I saw the same basic behaviour—an 
assumption, implicit in the teacher's practice, that the students either could not, or would not 
think. Under such conditions it was unreasonable to expect that students were going to 
spontaneously persist through a problem-solving encounter.  

What was missing for these students, and their teachers, was a central focus in mathematics on 
thinking. The realization that this was absent in so many classrooms that I visited motivated me 
to find a way to build, within these same classrooms, a culture of thinking, both for the student 
and the teachers. I wanted to build, what I now call, a thinking classroom—a classroom that is 
not only conducive to thinking but also occasions thinking, a space that is inhabited by thinking 
individuals as well as individuals thinking collectively, learning together, and constructing 
knowledge and understanding through activity and discussion. A classroom where thinking was 
assumed to be possible and was expected in every activity. Such a classroom will intersect with 
research on mathematical thinking (Mason, Burton, & Stacey, 1982) and classroom norms 
(Yackel & Rasmussen, 2002). It will also intersect with notions of a didactic contract 
(Brousseau, 1984), the emerging understandings of studenting (Fenstermacher, 1986, 1994; 
Liljedahl & Allan, 2013a, 2013b), knowledge for teaching (Hill, Ball, & Schilling, 2008; 
Shulman, 1986), and activity theory (Engeström, Miettinen, & Punamäki, 1999).  

My early efforts to do so involved a series of three workshops designed to help teachers 
implement problem solving in their classroom. The results of these workshops were mixed. 
Some teachers reported that they saw great enthusiasm in their students, while others reported 
experiences similar to those I had observed in Ms. Ahn's class. Further probing revealed that 
teachers who reported that their students loved what I was offering tended to have practices that 
already involved some level of problem solving. It also revealed that those teachers who 
reported that their student gave up easily or resisted their efforts had practices mostly devoid of 
problem solving. The experiences that that the teachers were having implementing problem 
solving in the classroom were being filtered through their already existing classroom norms 
(Yackel & Rasmussen, 2002). If there was already a culture of thinking and problem solving in 
the classroom then the teachers were reporting success. If the culture was one of direct 
instruction and individual work then, although some students were able to rise to the task, the 
majority of the class was unable to do much with the problems.  

These latter classroom norms are a difficult thing to bypass (Yackel & Rasmussen, 2002), even 
when a teacher is motivated to do so. The teachers that attended these workshops wanted to 
change their practice, at least to some degree, but their initial efforts to do so were not rewarded 
by comparable changes in their students' problem-solving behaviour. Quite the opposite, many 
of the teachers I was working with were met with resistance and complaints when they tried to 
make changes to their practice.  

From these experiences I realized that if I wanted to build thinking classrooms—to help teachers 
to change their classrooms into thinking classrooms—I needed a set of tools that would allow 
me, and participating teachers, to bypass any existing classroom norms. These tools needed to 
be easy to adopt and have the ability to provide the space for students to engage in problem 
solving unencumbered by their rehearsed tendencies and approaches when in their mathematics 
classroom.  

This realization moved me to begin a program of research that would explore the elements of 
thinking classrooms. I wanted to find a collection of teacher practices that had the ability to 
break students out of their classroom normative behaviour—practices that could be used not 
only by myself as a visiting teacher, but also by the classroom teacher that had previously 
entrenched the classroom norms that now needed to be broken.  
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GENERAL METHODOLOGY  
The research to find the elements and teaching practices that foster, sustain, and impede 
thinking classrooms has been going on for over ten years. Using a framework of noticing 
(Mason, 2002)40, I initially explored my own teaching, as well as the practices of more than 
forty classroom mathematics teachers. From this emerged a set of nine elements that permeate 
mathematics classroom practice—elements that account for most of whether or not a classroom 
is a thinking or a non-thinking classroom. These nine elements of mathematics teaching became 
the focus of my research. They are:  

1. the type of tasks used, and when and how they are used;  
2. the way in which tasks are given to students;  
3. how groups are formed, both in general and when students work on tasks;  
4. student work space while they work on tasks;  
5. room organization, both in general and when students work on tasks;  
6. how questions are answered when students are working on tasks;  
7. the ways in which hints and extensions are used while students work on tasks;  
8. when and how a teacher levels41 their classroom during or after tasks;  
9. and assessment, both in general and when students work on tasks.  

Research into each of these was done using design-based methods (Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003; Design-Based Research Collective, 2003) within both my own 
teaching practice as well as the practices of a number of teachers participating in a variety of 
professional development opportunities. This approach allowed me to vary the teaching around 
each of the elements, either independently or jointly, and to measure the effectiveness of that 
method for building and/or maintaining a thinking classroom. Results fed recursively back into 
teaching practice, each time leading either to refining or abandoning what was done in the 
previous iteration.  

This method, although fruitful in the end, presented two challenges. The first had to do with the 
measurement of effectiveness. To do this I used what I came to call proxies for engagement—
observable and measurable (either qualitatively or quantitatively) student behaviours. At first 
this included only behaviours that fit the a priori definition of a thinking classroom. As the 
research progressed, however, the list of these proxies grew and changed depending on the 
element being studied and teaching method being used.  

The second challenge had to do with the shift in practice needed when it was determined that a 
particular teaching method needed to be abandoned. Early results indicated that small shifts in 
practice, in these circumstances, did little to shift the behaviours of the class as a whole. Larger, 
more substantial shifts were needed. These were sometimes difficult to conceptualize. In the 
end, a contrarian approach was adopted. That is, when a teaching method around a specific 
element needed to be abandoned, the new approach to be adopted was, as much as possible, the 
exact opposite to the practice that had shown to be ineffective for building or maintaining a 
thinking classroom. When sitting showed to be ineffective, we tried making the students stand. 
When leveling to the top failed we tried levelling to the bottom. When answering questions 
proved to be ineffective we stopped answering questions. Each of these approaches needed 
further refinement through the iterative design-based research approach, but it gave good 
starting points for this process.  

                                                 
40 At the time I was only informed by Mason (2002); since then I have been informed by an increasing 
body of literature on noticing. 
41 Levelling (Schoenfeld, 1985) is a term given to the act of closing of, or interrupting, students' work on 
tasks for the purposes of bringing the whole of the class (usually) up to certain level of understanding. It 
is most commonly seen when a teacher ends students work on a task by showing how to solve the task.   
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FINDINGS  
In what follows I present, in brief, the results of the research done on each of the nine elements 
and discuss how all nine elements hold together as a framework to build and maintain thinking 
classrooms. All of this research is informed dually by data and analysis that looks both on the 
effect on students and the uptake by teachers.  

1. THE TYPE OF TASKS USED, AND WHEN AND HOW THEY ARE USED  

Lessons need to begin with good problem solving tasks. At the early stages of building a 
thinking classroom these tasks need to be highly engaging collaborative tasks, usually non-
curricular, that drive students to want to talk with each other as they try to solve them (Liljedahl, 
2008). Once a thinking classroom is established the need for problems to be inherently engaging 
diminishes. As a result, the problems shift to towards curricular mathematics (Schoenfeld, 
1985) that can be linked to the curriculum content to be 'taught' that day and permeate the 
entirety of the lesson.  

2. THE WAY IN WHICH TASKS ARE GIVEN TO STUDENTS  

Tasks need to be given orally. If there are data or diagrams needed, these can be provided on 
paper, but the instructions pertaining to the activity of the task need to be given orally. This 
very quickly drives the groups to discuss what is being asked rather than trying to decode 
instructions on a page.  

3. HOW GROUPS ARE FORMED, BOTH IN GENERAL AND WHEN STUDENTS WORK ON 
TASKS  

Grouping needs to be done frequently through visible randomizations (Liljedahl, 2014). Ideally, 
at the beginning of every class a visibly random method is used to assign students to a group of 
2-4 for the duration of that class. These groups will work together on any assigned problem 
solving tasks, sit together or stand together during any group or whole class discussions.  

4. STUDENT WORK SPACE WHILE THEY WORK ON TASKS  

Groups of students need to work on vertical non-permanent surfaces such as whiteboards, 
blackboards, or windows. This will make visible all work being done, not just to the teacher, 
but to the groups doing the work. To facilitate discussion there should be only one felt pen or 
piece of chalk per group.  

5. ROOM ORGANIZATION, BOTH IN GENERAL AND WHEN STUDENTS WORK ON TASKS  

The classroom needs to be de-fronted. The teacher must let go of one wall of the classroom as 
being the designated teaching space that all desks are oriented towards. The teacher needs to 
address the class from a variety of locations within the room and, as much as possible, use all 
four walls of the classroom. It is best if desks are placed in a random configuration around the 
room.  

6. HOW QUESTIONS ARE ANSWERED WHEN STUDENTS ARE WORKING ON TASKS  

Students only ask three types of questions: (1) proximity questions—asked when the teacher is 
close; (2) stop thinking questions—most often of the form "Is this right?"; and (3) keep thinking 
questions—questions that students ask so they can get back to work. Only the third of these 
types should be answered. The first two need to be acknowledged, but not answered.  
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7. THE WAYS IN WHICH HINTS AND EXTENSIONS ARE USED WHILE STUDENTS WORK 
ON TASKS  

Once a thinking classroom is established, it needs to be nurtured. This is done primarily through 
how hints and extensions are given to groups as they work on tasks. Flow (Csíkszentmihályi, 
1990) is a good framework for thinking about this. Hints and extensions need to be given so as 
to keep students in a perfect balance between the challenge of the current task and their abilities 
in working on it. If their ability is too high the risk is they get bored. If the challenge is too great 
the risk is they become frustrated (Liljedahl, 2016).  

8. WHEN AND HOW A TEACHER LEVELS THEIR CLASSROOM DURING OR AFTER TASKS  

Levelling needs be done at the bottom. When every group has passed a minimum threshold, the 
teacher needs to engage in discussion about the experience and understanding the whole class 
now shares. This should involve a reification and formalization of the work done by the groups 
and often constitutes the 'lesson' for that particular class.  

9. ASSESSMENT, BOTH IN GENERAL AND WHEN STUDENTS WORK ON TASKS  

Assessment in a thinking classroom needs to be mostly about the involvement of students in 
the learning process through efforts to communicate with them where they are and where they 
are going in their learning. It needs to honour the activities of a thinking classroom through a 
focus on the processes of learning more so than the products, and it needs to include both group 
work and individual work.  

DISCUSSION  
However, this research also showed that these are not all equally impactful or purposeful in the 
building and maintenance of a thinking classroom. Some of these are blunt instruments capable 
of leveraging significant changes while others are more refined, used for the fine-tuning and 
maintenance of a thinking classrooms. Some are necessary precursors to others. Some are easier 
to implement by teachers than others, while others are more nuanced, requiring great attention 
and more practice as a teacher. And some are better received by students than others. From the 
whole of these results emerged a three-tier hierarchy that represents not only the bluntness and 
ease of implementation, but also an ideal chronology of implementation (see Table 1). 

 
Table 1. Nine elements as chronologically implemented.  

These results are not definitive, exhaustive, or unique. The teaching methods that emerged as 
effective for each of these elements emerged as a result of an a priori commitment to make 
change in a contrarian fashion. This continued until positive effects began to emerge, at which 
point refinements were recursively explored. It is possible that a different approach to the 
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research would have yielded different methods. Different methods could, likewise, emerge a 
different set of stages optimal for the development of thinking classrooms.  

CONCLUSIONS  
The main goal of this research is about finding ways to build thinking classrooms. One of the 
sub-goals of this work on building thinking classrooms was to develop methods that not only 
fostered thinking and collaboration, but also bypassed any classroom norms that would 
potentially inhibit this from happening. Using the methods in stage one while solving problems, 
either together or separately, was almost universally successful. They worked for any grade, in 
any class, and for any teacher. As such, it can be said that these methods succeeded in bypassing 
whatever norms existed in the over six hundred classrooms in which these methods were tried. 
Further, they not only bypassed the norms for the students, but also the norms of the teachers 
implementing them. So different were these methods from the existing practices of the teachers 
participating in the research that they were left with what I have come to call first person 
vicarious experiences. They are first person because they are living the lesson and observing 
the results created by their own hands. But the methods are not their own. There has been no 
time to assimilate them into their own repertoire of practice or into the schema of how they 
construct meaningful practice. As such, they experienced a different way in which their 
classroom could look and how their students could behave. They experienced, thorough these 
otherly methods an otherly classroom—a thinking classroom.  

The results of this research sound extra-ordinary. In many ways they are. It would be tempting 
to try to attribute these to some special quality of the professional development setting or skill 
of the facilitator. But these are not the source of these remarkable results. The results, I believe, 
lie not in what is new, but what is not old. The classroom norms that permeate classrooms in 
North America, and around the world, are so robust, so entrenched, that they transcend the 
particular classrooms and have become institutional norms (Liu & Liljedahl, 2012). What the 
methods presented here offer is a violent break from these institutional norms.  

By constructing a thinking classroom, problem solving becomes not only a means, but also an 
end. A thinking classroom is shot through with rich problems. Implementation of each of the 
aforementioned methods associated with the nine elements and three stages relies on the 
ubiquitous use of problem solving. But at the same time, it also creates a classroom conducive 
to the collaborative solving of problems.  
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WHERE DO I WANT STUDENTS' ATTENTION? AND WHAT CAN I 
DO TO AFFECT THEIR ATTENTION? 

Dave Hewitt 
University of Birmingham 

This session was chosen a nice example of what Ad Hocs are meant to be—an opportunity for deep 
conversations on topics of interest or issues arising during the conference. In this Ad Hoc, Dave Hewitt 
picks up on an idea raised in John Mason's Plenary talk at that meeting, Structure of Attention in 
Teaching Mathematics, to delve more deeply into what particular actions teachers can do to affect 
students' attention. 

Cette séance a été choisie car elle représente bien ce que les séances ad hoc sont censées être – 
l’occasion de discuter en profondeur de sujets ou d’idées qui émergent pendant la conférence. Dans 
cette séance, David Hewitt part d’une idée émise dans la conférence plénière de John Mason, La 
structure de l’attention dans l’enseignement des mathématiques, pour explorer davantage les actes 
qu’un enseignant peut poser pour guider l’attention des étudiants.      

 

Following John Mason's lecture, we explored further the issue of where attention is placed and 
reasons why a teacher might want to affect where a student places his/her attention. 
Furthermore, we considered articulating techniques which might be employed to help affect 
students' attention.  

We began with the following written on the board: 5 + 5 =  

We discussed different consequences of what is stressed and what is ignored. For example 
(underlining indicates stressing):  

5 + 5 = 5 + 4 + 1 = 5 + 3 + 2 =  

5 + 5 = 6 + 4 = 7 + 3 =  

5 + 5 = 2 x 5 (2 lots of 5). A shift of attention can then result in 2 x 5 = 2 + 2 + 2 + 2 + 2  

We looked at the different ways of stressing parts of the following drawing when given the task of 
counting the numbers of 'matches' involved:   

 

This resulted in statements such as the following:  
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2n(n+ 1) =   n(2n + 1) + n     2n2 + 2n  4n + 2n(n-l) 

These resulted from stressing what calculations each person was carrying out to fmd the number 
of 'matches', rather than actually carrying out any calculations. The stressing of the process 
rather than the answer shifts attention from arithmetic to an algebraic structure, which can then 
be expressed as an algebraic statement.  

The following was then put on the board and people were asked to consider, if they were 
teaching something using these images/symbols, where they would wish students' attention to 
be:  

 

This was followed by considering what might be done to try to focus a student's attention onto 
the aspect chosen in each case. I will offer two examples of what was offered:  

For B:  rotating the figure so that one of the sides became horizontal, and then rotating 
it back to its original position (attempt to shift attention onto the property of 
squareness when such a figure is often not considered to be square by 
students).  

For D:  stressing aspects of the number names: two hundred plus three hundred 
(attempt to place attention on the value aspect of the number names in an 
attempt to help students use an existing number 'fact', 2 + 3 + = 5, in this new 
situation).  

I leave the reader to consider how they would approach other images.  
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MEASURING THE IMPACT OF A MENTOR PROGRAM  

A. J. (Sandy) Dawson  
University of Hawaii  

This ad hoc was selected in memory of Sandy Dawson, a friend, mentor, and leader in CMESG. Sandy 
was president of CMESG from 1993 to 1997 and provided ongoing support to the CMESG executive 
by always advising on matters he thought were important for the organization. The ad hoc represents 
what he dedicated the last decade of his life to after retiring from Simon Fraser University and moving 
to the University of Hawaii. It is a testament of his passion to make a difference to teacher education 
in Pacific Island communities. 

Cette présentation ad hoc a été choisie en mémoire de Sandy Dawson, un ami, un mentor et un leader 
au sein du GCEDM. Sandy a été président de 1993 à 1997 et il a toujours offert un support constant au 
comité exécutif en le conseillant sur des aspects qu’il considérait fondamentaux pour l’organisation. 
Cette présentation ad hoc représente ce à quoi il s’est consacré pendant la dernière décennie de sa vie, 
après avoir pris sa retraite de l’Université Simon Fraser et être déménagé pour travailler à l’Université 
d’Hawaii. Ce texte témoigne de sa passion à faire la différence en formation des enseignants des 
communautés des îles du Pacifique. 

 

In 2002 Pacific Resources for Education and Learning (PREL) received funding for five years 
from the National Science Foundation (NSF) teacher enhancement program to implement 
Project MENTOR (Mathematics Education for Novice Teachers: Opportunities for Reflection). 
Project MENTOR staff work with 4-member teams of mentors drawn from departments and 
ministries of education and institutions of higher education in the 10 U.S.-affiliated Pacific 
island communities of American Samoa, the Commonwealth of the Northern Mariana Islands, 
the Federated States of Micronesia (FSM, which includes Chuuk, Kosrae, Pohnpei, and Yap), 
Guam, Hawai'i, the Republic of the Marshall Islands, and the Republic of Palau. Project 
MENTOR established a mentoring program for novice teachers aimed at developing in novice 
teachers the knowledge, skills, and dispositions necessary to become effective teachers of 
mathematics.  

The Project has a number of areas of desired impact:  

• Increase novice teacher (0–3 years experience) ability to plan, implement and assess 
instructional sequences that reflect a standards-based approach;  

• Develop novice teachers' and mentors' abilities to reflect critically on their practices;  
• Develop mentors' abilities to effectively mentor novice teachers;  
• Develop mentors' abilities to provide effective professional development that 

contributes to the professional growth of novice teacher;  
• Increase mentor and novice teacher mathematical knowledge;  
• Increase leader and novice teacher collaboration.  

The Project created a number of strategies in an attempt to accomplish the impact desired. These 
strategies included at least the following:  

• Annual week-long institute provided by Project staff for mentors that focuses on (1) 
mathematical content and pedagogical knowledge, (2) mentoring skills and 
techniques, and (3) assessment strategies;  



2004  Ad Hoc Session 

302 

• Project staff undertake bi-monthly video and/or telephone conferences with mentors, 
and where feasible, deliver local workshops and demonstration lessons for mentors 
and novice teachers;  

• Annual week-long institute provided by mentors for novice teachers that focuses on 
(1) mathematical content, (2) pedagogical knowledge, and (3) and classroom 
assessment strategies;  

• Monthly seminars provided by mentors for novice teachers that focus on the classroom 
experiences of the novice teachers;  

• Monthly observations of the novice teachers by the mentors.  

The tools for measuring impact selected by the Project are the following:  

• Mathematics Content Test administered to novice teachers each year for the three 
years they are involved with the Project;  

• Novice Teacher Questionnaire administered each year (questionnaire focuses on 
attitudes and dispositions towards the teaching of mathematics);  

• Novice Teacher Survey administered after the yearly institutes that focuses on the 
support provided to novice teachers by the mentors;  

• Mathematics Content Test administered to mentors at the beginning and end of the 
Project;  

• Mentor Questionnaire administered at the beginning and end of the Project;  
• Institute assessment instrument completed by mentors at the conclusion of the yearly 

Project staff-led institutes;  
• Group interviews of mentors by island community regarding the observations made 

by mentors of the novice teachers.  

The presentation sought input regarding the match among the focus of impact, strategies 
chosen, and the tools designed to measure impact. Participants made several suggestions for 
alternate ways to measure impact that may be better suited to the setting of the Project.  
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APPENDIX A / ANNEXE A  

PLENARY LECTURES AT EACH ANNUAL MEETING / 
CONFÉRENCES PLÉNIÈRES DES RENCONTRES ANNUELLES       

1977 A.J. COLEMAN  The objectives of mathematics education   
C. GAULIN   Innovations in teacher education programmes  

 T.E. KIEREN   The state of research in mathematics education   
 
1978 G.R. RISING  The mathematician's contribution to curriculum 

development   
A.I. WEINZWEIG  The mathematician's contribution to pedagogy   

 
1979 J. AGASSI  The Lakatosian revolution   

J.A. EASLEY Formal and informal research methods and the cultural 
status of school mathematics   

 
1980 C. GATTEGNO  Reflections on forty years of thinking about the teaching  

of mathematics   
D. HAWKINS  Understanding understanding mathematics   

 
1981 K. IVERSON  Mathematics and computers    

J. KILPATRICK The reasonable effectiveness of research in mathematics 
education   

 
1982 P.J. DAVIS  Towards a philosophy of computation   

G. VERGNAUD  Cognitive and developmental psychology and research in  
mathematics education   

 
1983 S.I. BROWN  The nature of problem generation and the mathematics  

curriculum   
P.J. HILTON  The nature of mathematics today and implications for  

mathematics teaching    
 
1984 A.J. BISHOP  The social construction of meaning: A significant  

development for mathematics education?   
L. HENKIN   Linguistic aspects of mathematics and mathematics  

instruction   
 
1985 H. BAUERSFELD Contributions to a fundamental theory of mathematics  

learning and teaching   
H.O. POLLAK  On the relation between the applications of mathematics  

and the teaching of mathematics   
 
1986 R. FINNEY  Professional applications of undergraduate mathematics 
 A.H. SCHOENFELD Confessions of an accidental theorist   
 
1987 P. NESHER  Formulating instructional theory: the role of students'  
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misconceptions   
H.S. WILF  The calculator with a college education   

1988 C. KEITEL  Mathematics education and technology   
L.A. STEEN  All one system   

 
1989 N. BALACHEFF  Teaching mathematical proof: The relevance and  

complexity of a social approach   
D. SCHATTSNEIDER Geometry is alive and well   

 
1990 U. D'AMBROSIO Values in mathematics education  A. SIERPINSKA On  

understanding mathematics   
1991 J .J. KAPUT  Mathematics and technology: Multiple visions of multiple  

futures   
C. LABORDE  Approches théoriques et méthodologiques des recherches  

françaises en didactique des mathématiques   
 
1992 ICME-7   
 
1993 G.G. JOSEPH  What is a square root? A study of geometrical  

representation in different mathematical traditions   
J CONFREY  Forging a revised theory of intellectual development:  

Piaget, Vygotsky and beyond   
 
1994 A. SFARD  Understanding = Doing + Seeing ?   

K. DEVLIN  Mathematics for the twenty-first century   
 
1995 M. ARTIGUE  The role of epistemological analysis in a didactic  

approach to the phenomenon of mathematics learning and 
teaching   

K. MILLETT  Teaching and making certain it counts   
 
1996 C. HOYLES  Beyond the classroom: The curriculum as a key factor in  

students' approaches to proof   
D. HENDERSON Alive mathematical reasoning   

 
1997 R. BORASSI  What does it really mean to teach mathematics through  

inquiry?  
 P. TAYLOR  The high school math curriculum   

T. KIEREN  Triple embodiment: Studies of mathematical  
understanding-in-interaction in my work and in the work  
of CMESG/GCEDM   

 
1998 J. MASON  Structure of attention in teaching mathematics   

K. HEINRICH  Communicating mathematics or mathematics storytelling   
 
1999 J. BORWEIN  The impact of technology on the doing of mathematics 
 W. WHITELEY  The decline and rise of geometry in 20th century North  

America   
W. LANGFORD  Industrial mathematics for the 21st century   
J. ADLER  Learning to understand mathematics teacher development  

and change: Researching resource availability and use in  
the context of formalised INSET in South Africa   
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B. BARTON  An archaeology of mathematical concepts: Sifting  
languages for mathematical meanings   

2000 G. LABELLE  Manipulating combinatorial structures   
M. B. BUSSI  The theoretical dimension of mathematics: A challenge  

for didacticians   
 
2001 O. SKOVSMOSE Mathematics in action: A challenge for social theorising 
 C. ROUSSEAU  Mathematics, a living discipline within science and  

technology   
 
2002 D. BALL & H. BASS Toward a practice-based theory of mathematical  

knowledge for teaching   
J. BORWEIN  The experimental mathematician: The pleasure of  

discovery and the role of proof   
 
2003 T. ARCHIBALD  Using history of mathematics in the classroom: Prospects  

and problems   
A. SIERPINSKA  Research in mathematics education through a keyhole   

 
2004 C. MARGOLINAS La situation du professeur et les connaissances en jeu au  

cours de l'activité mathématique en classe   
N. BOULEAU  La personnalité d'Evariste Galois: le contexte  

psychologique d'un goût prononcé pour les mathématique  
abstraites   

 
2005 S. LERMAN  Learning as developing identity in the mathematics  

classroom    
J. TAYLOR  Soap bubbles and crystals   

 
2006 B. JAWORSKI  Developmental research in mathematics teaching and  

learning: Developing learning communities based on  
inquiry and design    

E. DOOLITTLE  Mathematics as medicine  
 
2007 R. NÚÑEZ  Understanding abstraction in mathematics education:  

Meaning, language, gesture, and the human brain   
T. C. STEVENS  Mathematics departments, new faculty, and the future of  

collegiate mathematics   
 
2008 A. DJEBBAR  Art, culture et mathématiques en pays d'Islam (IXe-XVe s.) 
 A. WATSON  Adolescent learning and secondary mathematics   
 
2009 M. BORBA  Humans-with-media and the production of mathematical  

knowledge in online environments   
G. de VRIES  Mathematical biology: A case study in interdisciplinarity   
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2010 W. BYERS  Ambiguity and mathematical thinking   

M. CIVIL  Learning from and with parents:  Resources for equity in  
mathematics education   

B. HODGSON  Collaboration et échanges internationaux en éduction  
mathématique dans le cadre de la CIEM : regards selon  
une perspective canadienne  ICMI as a space for 
international collaboration and exchange in mathematics 
education:  Some views from a Canadian perspective   

S. DAWSON  My journey across, through, over, and around academia:   
"...a path laid while walking..."   

 
2011 C. K. PALMER  Pattern composition: Beyond the basics   

P. TSAMIR &   The Pair-Dialogue approach in mathematics teacher   
D. TIROSH  education   

 
2012 P. GERDES  Old and new mathematical ideas from Africa: Challenges for  

reflection   
M. WALSHAW   Towards an understanding of ethical practical action in  

mathematics education: Insights from contemporary  
inquiries   

W. HIGGINSON  Cooda, wooda, didda, shooda: Time series reflections on  
CMESG/GCEDM   

 
2013 R. LEIKIN  On the relationships between mathematical creativity,  

excellence and giftedness   
B. RALPH   Are we teaching Roman numerals in a digital age?   
E. MULLER  Through a CMESG looking glass  

 
2014 D. HEWITT  The Economic Use of Time and Effort in the Teaching  

and Learning of Mathematics 
N. NIGAM  Mathematics in Industry, Mathematics in the Classroom:  

Analogy and Metaphor 
 
2015 E. RODITI   Diversité, variabilité et convergence des pratiques  

enseignantes  Diversity, Variability, and Commonalities  
Among Teaching Practices 

D. HUGES HALLET Connections: Mathematical, Interdisciplinary, Electronic,  
and Personal 
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APPENDIX B / ANNEXE B  

WORKING GROUPS AT EACH ANNUAL MEETING / GROUPES DE 
TRAVAIL DES RENCONTRES ANNUELLES  

1977  Queen's University, Kingston, Ontario 

 Teacher education programmes  
 Undergraduate mathematics programmes and prospective teachers  
 Research and mathematics education  
 Learning and teaching mathematics  

1978  Queen's University, Kingston, Ontario 

 Mathematics courses for prospective elementary teachers  
 Mathematization  
 Research in mathematics education  

1979  Queen's University, Kingston, Ontario  

 Ratio and proportion: a study of a mathematical concept  
 Minicalculators in the mathematics classroom  
 Is there a mathematical method?  
 Topics suitable for mathematics courses for elementary teachers  

1980  Université Laval, Québec, Québec  

 The teaching of calculus and analysis  
 Applications of mathematics for high school students  
 Geometry in the elementary and junior high school curriculum  
 The diagnosis and remediation of common mathematical errors  

1981  University of Alberta, Edmonton, Alberta  

 Research and the classroom  
 Computer education for teachers  
 Issues in the teaching of calculus  
 Revitalising mathematics in teacher education courses  

1982  Queen's University, Kingston, Ontario  

 The influence of computer science on undergraduate mathematics education  
 Applications of research in mathematics education to teacher training 

programmes  
 Problem solving in the curriculum  

1983  University of British Columbia, Vancouver, British Columbia  

 Developing statistical thinking  
 Training in diagnosis and remediation of teachers  
 Mathematics and language  
 The influence of computer science on the mathematics curriculum  
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1984  University of Waterloo, Waterloo, Ontario  

 Logo and the mathematics curriculum  
 The impact of research and technology on school algebra  
 Epistemology and mathematics  
 Visual thinking in mathematics  

1985  Université Laval, Québec, Québec  

 Lessons from research about students' errors  
 Logo activities for the high school  
 Impact of symbolic manipulation software on the teaching of calculus  

1986  Memorial University of Newfoundland, St.  John's, Newfoundland  

 The role of feelings in mathematics  
 The problem of rigour in mathematics teaching  
 Microcomputers in teacher education  
 The role of microcomputers in developing statistical thinking  

1987  Queen's University, Kingston, Ontario  

 Methods courses for secondary teacher education  
 The problem of formal reasoning in undergraduate programmes  
 Small group work in the mathematics classroom  

1988  University of Manitoba, Winnipeg, Manitoba  

 Teacher education: what could it be?  
 Natural learning and mathematics  
 Using software for geometrical investigations  
 A study of the remedial teaching of mathematics  

1989  Brock University, St.  Catharines, Ontario  

 Using computers to investigate work with teachers  
 Computers in the undergraduate mathematics curriculum  
 Natural language and mathematical language  
 Research strategies for pupils' conceptions in mathematics  

1990  Simon Fraser University, Vancouver, British Columbia  

 Reading and writing in the mathematics classroom  
 The NCTM "Standards" and Canadian reality  
 Explanatory models of children's mathematics  
 Chaos and fractal geometry for high school students  

1991  University of New Brunswick, Fredericton, New Brunswick 

 Fractal geometry in the curriculum  
 Socio-cultural aspects of mathematics  
 Technology and understanding mathematics  
 Constructivism: implications for teacher education in mathematics  
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1992 ICME–7, Université Laval, Québec, Québec  

1993  York University, Toronto, Ontario  

 Research in undergraduate teaching and learning of mathematics  
 New ideas in assessment  
 Computers in the classroom: mathematical and social implications  
 Gender and mathematics  
 Training pre-service teachers for creating mathematical communities in the 

classroom  

1994  University of Regina, Regina, Saskatchewan 

 Theories of mathematics education  
 Pre-service mathematics teachers as purposeful learners: issues of 

enculturation  
 Popularizing mathematics  

1995  University of Western Ontario, London, Ontario  

 Autonomy and authority in the design and conduct of learning activity  
 Expanding the conversation: trying to talk about what our theories don't talk 

about  
 Factors affecting the transition from high school to university mathematics  
 Geometric proofs and knowledge without axioms  

1996  Mount Saint Vincent University, Halifax, Nova Scotia 

 Teacher education: challenges, opportunities and innovations  
 Formation à l'enseignement des mathématiques au secondaire: nouvelles 

perspectives et défis  
 What is dynamic algebra?  
 The role of proof in post-secondary education  

1997  Lakehead University, Thunder Bay, Ontario  

 Awareness and expression of generality in teaching mathematics  
 Communicating mathematics  
 The crisis in school mathematics content  

1998  University of British Columbia, Vancouver, British Columbia  

 Assessing mathematical thinking  
 From theory to observational data (and back again)  
 Bringing Ethnomathematics into the classroom in a meaningful way  
 Mathematical software for the undergraduate curriculum  

1999  Brock University, St.  Catharines, Ontario  

 Information technology and mathematics education: What's out there and 
how can we use it?  

 Applied mathematics in the secondary school curriculum  
 Elementary mathematics  
 Teaching practices and teacher education  
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2000  Université du Québec à Montréal, Montréal, Québec  

 Des cours de mathématiques pour les futurs enseignants et enseignantes du 
primaire  Mathematics courses for prospective elementary teachers  

 Crafting an algebraic mind: Intersections from history and the contemporary 
mathematics classroom  

 Mathematics education et didactique des mathématiques : y a-t-il une raison 
pour vivre des vies séparées?  Mathematics education et didactique des 
mathématiques: Is there a reason for living separate lives?  

 Teachers, technologies, and productive pedagogy  

2001  University of Alberta, Edmonton, Alberta  

 Considering how linear algebra is taught and learned  
 Children's proving  
 Inservice mathematics teacher education  
 Where is the mathematics?  

2002  Queen's University, Kingston, Ontario  

 Mathematics and the arts  
 Philosophy for children on mathematics  
 The arithmetic/algebra interface: Implications for primary and secondary 

mathematics  Articulation arithmétique/algèbre: Implications pour 
l'enseignement des mathématiques au primaire et au secondaire  

 Mathematics, the written and the drawn  
 Des cours de mathématiques pour les futurs (et actuels) maîtres au secondaire 
 Types and characteristics desired of courses in mathematics programs for 
future (and in-service) teachers  

2003  Acadia University, Wolfville, Nova Scotia  

 L'histoire des mathématiques en tant que levier pédagogique au primaire et 
au secondaire  The history of mathematics as a pedagogic tool in Grades K–
12  

 Teacher research: An empowering practice?  
 Images of undergraduate mathematics  
 A mathematics curriculum manifesto  

2004  Université Laval, Québec, Québec  

 Learner generated examples as space for mathematical learning  
 Transition to university mathematics  
 Integrating applications and modeling in secondary and post secondary 

mathematics  
 Elementary teacher education – Defining the crucial experiences  
 A critical look at the language and practice of mathematics education 

technology  

2005  University of Ottawa, Ottawa, Ontario  

 Mathematics, education, society, and peace  
 Learning mathematics in the early years (pre-K – 3)  
 Discrete mathematics in secondary school curriculum  
 Socio-cultural dimensions of mathematics learning  
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2006  University of Calgary, Calgary, Alberta  

 Secondary mathematics teacher development  
 Developing links between statistical and probabilistic thinking in school 

mathematics education  
 Developing trust and respect when working with teachers of mathematics  
 The body, the sense, and mathematics learning  

2007  University of New Brunswick, New Brunswick  

 Outreach in mathematics – Activities, engagement, & reflection  
 Geometry, space, and technology: challenges for teachers and students  
 The design and implementation of learning situations  
 The multifaceted role of feedback in the teaching and learning of mathematics  

2008  Université de Sherbrooke, Sherbrooke, Québec  

 Mathematical reasoning of young children  
 Mathematics-in-and-for-teaching (MifT): the case of algebra  
 Mathematics and human alienation  
 Communication and mathematical technology use throughout the post-

secondary curriculum  Utilisation de technologies dans l'enseignement 
mathématique postsecondaire  

 Cultures of generality and their associated pedagogies  

2009  York University, Toronto, Ontario  

 Mathematically gifted students  Les élèves doués et talentueux en 
mathématiques  

 Mathematics and the life sciences  
 Les méthodologies de recherches actuelles et émergentes en didactique des 

mathématiques  Contemporary and emergent research methodologies in 
mathematics education  

 Reframing learning (mathematics) as collective action  
 Étude des pratiques d'enseignement  
 Mathematics as social (in)justice  Mathématiques citoyennes face à 

l'(in)justice sociale  

2010 Simon Fraser University, Burnaby, British Columbia  

 Teaching mathematics to special needs students: Who is at-risk?  
 Attending to data analysis and visualizing data  
 Recruitment, attrition, and retention in post-secondary mathematics  
 Can we be thankful for mathematics? Mathematical thinking and aboriginal 

peoples  
 Beauty in applied mathematics  
 Noticing and engaging the mathematicians in our classrooms  

2011  Memorial University of Newfoundland, St. John's, Newfoundland  

 Mathematics teaching and climate change  
 Meaningful procedural knowledge in mathematics learning  
 Emergent methods for mathematics education research: Using data to develop 

theory  Méthodes émergentes pour les recherches en didactique des 
mathématiques: partir des données pour développer des théories  
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 Using simulation to develop students' mathematical competencies – Post 
secondary and teacher education  

 Making art, doing mathematics  Créer de l'art; faire des maths  
 Selecting tasks for future teachers in mathematics education  

2012  Université Laval, Québec City, Québec  

 Numeracy: Goals, affordances, and challenges  
 Diversities in mathematics and their relation to equity  
 Technology and mathematics teachers (K-16)  La technologie et l'enseignant 

mathématique (K-16)  
 La preuve en mathématiques et en classe  Proof in mathematics and in 

schools  
 The role of text/books in the mathematics classroom  Le rôle des manuels 

scolaires dans la classe de mathématiques  
 Preparing teachers for the development of algebraic thinking at elementary 

and secondary levels  Préparer les enseignants au développement de la 
pensée algébrique au primaire et au secondaire  

2013  Brock University, St. Catharines, Ontario  

 MOOCs and online mathematics teaching and learning  
 Exploring creativity: From the mathematics classroom to the mathematicians' 

mind  Explorer la créativité : de la classe de mathématiques à l'esprit des 
mathématiciens  

 Mathematics of Planet Earth 2013: Education and communication  
Mathématiques de la planète Terre 2013 : formation et communication (K-
16)  

 What does it mean to understand multiplicative ideas and processes? 
Designing strategies for teaching and learning  

 Mathematics curriculum re-conceptualisation  

2014  University of Alberta, Edmonton, Alberta  

 Mathematical habits 
 Mathematical Habits of Mind  Modes de pensée mathématiques 
 Formative Assessment in Mathematics: Developing Understandings, Sharing 

Practice, and Confronting Dilemmas 
 Texter mathématique  Texting Mathematics 
 Complex Dynamical Systems 
 Role-Playing and Script-Writing in Mathematics Education: Practice and 

Research 

2015 Université de Moncton, Moncton, New Brunswick 

 Task Design and Problem Posing 
 Indigenous Ways of Knowing in Mathematics 
 Theoretical Frameworks in Mathematics Education Research  Les cadres 

théoriques dans la recherche en didactique des mathématiques 
 Early Years Teaching, Learning and Research: Tensions in Adult-Child 

Interactions Around Mathematics 
 Innovations in Tertiary Mathematics Teaching, Learning and Research  

Innovations au post-secondaire pour l'enseignement, l'apprentissage et la 
recherche

http://www.cmesg.org/wp-content/uploads/2016/05/CMESG2015.pdf
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APPENDIX C / ANNEXE C 

PROCEEDINGS OF ANNUAL MEETINGS / ACTES DES 
RENCONTRES ANNUELLES    

Past proceedings of CMESG/GCEDM annual meetings have been deposited in the ERIC 
documentation system with call numbers as follows:   

Proceedings of the 1980 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 204120 

Proceedings of the 1981 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 234988   

Proceedings of the 1982 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 234989   

Proceedings of the 1983 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 243653   

Proceedings of the 1984 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 257640   

Proceedings of the 1985 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 277573   

Proceedings of the 1986 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 297966   

Proceedings of the 1987 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 295842   

Proceedings of the 1988 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 306259   

Proceedings of the 1989 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 319606   

Proceedings of the 1990 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 344746   

Proceedings of the 1991 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 350161   

Proceedings of the 1993 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 407243   

Proceedings of the 1994 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 407242   

Proceedings of the 1995 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 407241   

Proceedings of the 1996 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 425054   

Proceedings of the 1997 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 423116   

Proceedings of the 1998 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 431624   

Proceedings of the 1999 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 445894   

Proceedings of the 2000 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 472094   

Proceedings of the 2001 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 472091   

Proceedings of the 2002 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529557   
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Proceedings of the 2003 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529558   

Proceedings of the 2004 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529563   

Proceedings of the 2005 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529560   

Proceedings of the 2006 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529562   

Proceedings of the 2007 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529556   

Proceedings of the 2008 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529561   

Proceedings of the 2009 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529559   

Proceedings of the 2010 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 529564   

Proceedings of the 2011 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 547245  

Proceedings of the 2012 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 547246    

Proceedings of the 2013 Annual Meeting . . . . . . . . . . . . . . . . . . .  ED 547247 

Proceedings of the 2014 Annual Meeting . . . . . . . . . . . . . . . . . . .  submitted   

Proceedings of the 2015 Annual Meeting . . . . . . . . . . . . . . . . . . .  submitted 

NOTE   
There was no Annual Meeting in 1992 because Canada hosted the Seventh International 
Conference on Mathematical Education that year. 
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